CN117613005B - 一种混合型cmos器件及其制作方法 - Google Patents

一种混合型cmos器件及其制作方法 Download PDF

Info

Publication number
CN117613005B
CN117613005B CN202410092726.6A CN202410092726A CN117613005B CN 117613005 B CN117613005 B CN 117613005B CN 202410092726 A CN202410092726 A CN 202410092726A CN 117613005 B CN117613005 B CN 117613005B
Authority
CN
China
Prior art keywords
substrate
cmos device
type region
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410092726.6A
Other languages
English (en)
Other versions
CN117613005A (zh
Inventor
余毅
李彦庆
郭同健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202410092726.6A priority Critical patent/CN117613005B/zh
Publication of CN117613005A publication Critical patent/CN117613005A/zh
Application granted granted Critical
Publication of CN117613005B publication Critical patent/CN117613005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及半导体器件制造技术领域,具体涉及一种混合型CMOS器件及其制作方法,制作步骤包括:(1)选取硅片作为衬底,经过化学清洗;(2)使用掩膜技术在衬底表面覆盖一层光刻胶,在p型区域和n型区域注入掺杂剂,快速退火使掺杂的材料与硅晶片结合;(3)在整个硅衬底上生长一层绝缘性氧化层;(4)利用光刻技术在绝缘氧化层上形成多晶硅门电极;(5)在整个器件上沉积金属层;(6)将多余的金属层和绝缘层刻蚀掉。本申请提出的混合型CMOS器件制作方法可以进一步减小器件的尺寸和功耗,实现更小的芯片面积和更高的集成度,制得的混合型CMOS器件具有更广泛的应用领域、更高的集成度和功能性、较低的功耗。

Description

一种混合型CMOS器件及其制作方法
技术领域
本发明涉及半导体器件制造技术领域,具体涉及一种混合型CMOS器件及其制作方法。
背景技术
混合型CMOS芯片(Complementary Metal Oxide Semiconductor)是一种结合了模拟信号和数字信号处理功能的集成电路芯片,译为互补-金属-氧化物-半导体存储器。CMOS集成电路是将N沟道MOS晶体管和P沟道MOS晶体管同时用于一个集成电路中,它在同一芯片上同时包含了模拟电路和数字电路的特性,使得芯片能够处理模拟信号和数字信号的混合输入输出;
在混合型CMOS器件中,n型区域和p型区域是指完全沟道长度(L)的一部分,它们用于构成MOSFET晶体管的源极和漏极区域。n型(通常用于nMOSFET晶体管)区域是掺杂有五价磷(Phosphorus)等掺杂物的硅材料,这些掺杂物会提供额外的自由电子,使得该区域具有负电荷,从而形成n型导电性,当输入信号为高电平时,n型区域之间形成导电通路;p型(通常用于pMOSFET晶体管)区域是掺杂有三价硼(Boron)等掺杂物的硅材料,这些掺杂物会提供额外的“空穴”,使得该区域具有正电荷,从而形成p型导电性,当输入信号为低电平时,p型区域之间形成导电通路。
而现有技术中许多混合型CMOS器件的尺寸比例设计不当,尺寸比例不合理可能导致器件的静态功耗(即漏电流)失衡,如果N型区域过大,将导致静态功耗增加;而如果P型区域过大,将导致驱动能力不足。
发明内容
针对上述现有技术中的不足,本发明提供了一种调节n型区域和p型区域以提高CMOS器件的集成度以及降低功耗和尺寸的混合型CMOS器件制作方法。
本发明的目的采用以下技术方案来实现:
一种混合型CMOS器件的制作方法,包括以下制备步骤:
(1)选取硅片作为衬底,经过化学清洗,除去所述衬底的表面的杂质和氧化层;
(2)在所述衬底的表面覆盖一层光刻胶,将掩膜与所述衬底对准,使用光刻机进行曝光;
(3)在所述衬底的p型区域和n型区域注入掺杂剂,快速退火使掺杂的材料与硅晶片结合,使用有机溶剂去除残留的光刻胶;
(4)使用化学气相沉积法在所述硅衬底上生长一层绝缘性氧化层;
(5)利用光刻技术在所述衬底的绝缘氧化层上形成多晶硅门电极;
(6)在整个器件上沉积金属层;
(7)将所述器件上多余的金属层和绝缘层刻蚀掉,形成器件的导线和联系孔。
优选地,所述步骤(1)中,化学清洗具体包括:将硅片浸泡在碱性溶液中,取出后用去离子水清洗,再将硅片浸泡在酸性溶液中,取出后用去离子水清洗。
更优选地,所述碱性溶液选自浓氢氧化钠或浓氢氧化铵,所述酸性溶液选自浓硝酸或浓氢氟酸,所述浸泡时间为10~15min,所述去离子水温度为40~50℃,所述去离子水清洗时间为5~8min。
优选地,所述步骤(3)中,快速退火温度为800~1100℃,高温结束后迅速将加热后的所述衬底冷却至常温。
优选地,所述步骤(3)中,所述衬底的p型区域以硼作为掺杂剂,所述衬底n型区域的掺杂剂选自磷或砷中的一种。
更优选地,所述CMOS器件逻辑门为与门时,Dn:Dp=1~1.5:1,所述CMOS器件逻辑门为或门时,Dn:Dp=1:2~3,其中Dn表示n型区域的宽度,Dp表示p型区域的宽度。
不同类型的逻辑门(如与门、或门、非门)的布局和结构会对p型和n型区域的大小有不同的要求。非门仅包含一个晶体管,因此对区域尺寸的要求较小,p型和n型区域都较小;与门需要n型区域作为输入和输出,通常需要多个串联的MOS晶体管,因此对于n型区域来说,需要具有较高的导通能力,因此n型区域较大,而p型区域的尺寸较小;或门则需要p型区域作为输入和输出,通常需要多个并联的MOS晶体管,因此对于p型区域来说,需要具有较高的导通能力,因此p型区域较大,而n型区域的尺寸较小。
优选地,所述步骤(4)中,绝缘性氧化层为SiO2
优选地,所述步骤(5)中,多晶硅门电极层厚度为60~90nm,多晶硅门宽度和厚度的比例为1~2:1,多晶硅门电极层长度的计算公式为:
其中,L表示多晶硅门电极层长度,W表示器件宽度,e表示电场强度,C表示电容。
一种根据混合型CMOS器件及其制作方法制得的混合型CMOS器件。
优选地,所述一种混合型CMOS器件,用于图像传感、模拟信号处理或无线通信领域。
有益效果:
1、本申请根据不同逻辑门在工作过程中需要不同的驱动电流,合理设置n型和p型区域宽度的比例,对CMOS器件的n型和p型区域宽度进行限定,优化CMOS器件的功耗,可以平衡n型和p型晶体管的工作速度,提高整体的逻辑门响应时间。
2、本申请根据器件宽度、电场强度以及电容计算多晶硅门电极的长度,通过控制多晶硅门电极的长度提高晶体管的驱动能力,信号传输的路径较短时,减小了电荷积累效应,电荷的移动时间更短,从而使得晶体管的开启和关闭速度更快,降低互连延迟,n型FET(n型场效应晶体管)和p型FET(p型场效应晶体管)的工作机制和性能不同,通过调整多晶硅门电极的长度,可以实现更好的电流控制和性能优化,提高整个CMOS器件的工作速度。
3、本申请设计通过优化器件的工艺,进一步减小器件的尺寸和功耗,缩短芯片设计时长,在短时间内实现更小的芯片面积和更高的集成度,混合型CMOS器件具有更广泛的应用领域、更高的集成度和功能性、较低的功耗。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1为混合型CMOS器件的制作方法流程图。
具体实施方式
发明人发现,现有技术形成的混合型CMOS器件的尺寸比例设计不当,导致器件的静态功耗(即漏电流)失衡,针对上述原因,本发明提供一种混合型CMOS器件及其制作方法,通过优化器件的工艺,减小器件的尺寸和功耗,缩短芯片设计时长,在短时间内实现更小的芯片面积和更高的集成度,混合型CMOS器件具有更广泛的应用领域、更高的集成度和功能性、较低的功耗。
一种混合型CMOS器件的制作方法,包括以下制备步骤:
(1)选取硅片作为衬底,将硅片浸泡在浓氢氧化钠或浓氢氧化铵中10~15min,取出后用40~50℃的去离子水清洗5~8min,再将硅片浸泡在浓硝酸或浓氢氟酸中10~15min,取出后用40~50℃的去离子水清洗5~8min,除去所述衬底的表面的杂质和氧化层;
(2)在所述衬底的表面覆盖一层光刻胶,将掩膜与所述衬底对准,使用光刻机进行曝光;
(3)当CMOS器件逻辑门为与门时,Dn:Dp=1~1.5:1,所述CMOS器件逻辑门为或门时,Dn:Dp=1:2~3,其中Dn表示n型区域的宽度,Dp表示p型区域的宽度,在衬底的p型区域注入硼掺杂剂,在衬底的n型区域注入磷或砷掺杂剂,快速退火使掺杂的材料与硅晶片结合,快速退火温度为800~1100℃,高温结束后迅速将加热后的所述衬底冷却至常温,冷却结束后使用有机溶剂去除残留的光刻胶;
(4)使用化学气相沉积法在所述硅衬底上生长一层SiO2绝缘性氧化层;
(5)利用光刻技术在所述衬底的绝缘氧化层上形成多晶硅门电极,多晶硅门电极层厚度为60~90nm,多晶硅门宽度和厚度的比例为1~2:1,多晶硅门电极层长度根据公式计算,其中,L表示多晶硅门电极层长度,W表示器件宽度,e表示电场强度,C表示电容;
(6)在整个器件上沉积金属层;
(7)将所述器件上多余的金属层和绝缘层刻蚀掉,形成器件的导线和联系孔。
为了更清楚的说明本发明,对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
结合以下实施例对本发明作进一步说明。
实施例1
一种混合型CMOS器件及其制作方法,包括以下制备步骤:
(1)选取硅片作为衬底,将衬底浸泡在浓氢氧化钠溶液中10min,取出后用40℃的去离子水清洗5min,再将硅片浸泡在浓硝酸溶液中10min,取出后用40℃的去离子水清洗5min,除去表面杂质和氧化层;
(2)在衬底的表面覆盖一层光刻胶,将掩膜与衬底对准,使用光刻机进行曝光;
(3)当CMOS器件逻辑门为与门时,Dn:Dp=1:1,当CMOS器件逻辑门为或门时,Dn:Dp=1:2,其中Dn表示n型区域的宽度,Dp表示p型区域的宽度,在衬底的p型区域注入硼掺杂剂,在衬底的n型区域注入磷掺杂剂,注入掺杂剂后快速退火使掺杂的材料与硅晶片结合,快速退火温度为800℃,高温结束后迅速将加热后的衬底冷却至常温,使用有机溶剂去除衬底上残留的光刻胶;
(4)使用化学气相沉积法在整个硅衬底上生长一层SiO2
(5)利用光刻技术在衬底的绝缘氧化层上形成厚度为60nm的多晶硅门电极,多晶硅门宽度和厚度的比例为1:1,根据计算公式计算出多晶硅门电极层的长度;
(6)在整个器件上沉积金属层;
(7)将衬底上多余的金属层和绝缘层刻蚀掉,形成器件的导线和联系孔,最后进行封装。
实施例2
(1)选取硅片作为衬底,将衬底浸泡在浓氢氧化钠溶液中15min,取出后用50℃的去离子水清洗8min,再将衬底浸泡在浓硝酸溶液中15min,取出后用50℃的去离子水清洗8min,除去衬底表面的杂质和氧化层;
(2)在衬底的表面覆盖一层光刻胶,将掩膜与衬底对准,使用光刻机进行曝光;
(3)当CMOS器件逻辑门为与门时,Dn:Dp=1.5:1,当CMOS器件逻辑门为或门时,Dn:Dp=1:3,其中Dn表示n型区域的宽度,Dp表示p型区域的宽度,在衬底的p型区域注入硼掺杂剂,在衬底的n型区域注入磷掺杂剂,注入掺杂剂后快速退火使掺杂的材料与硅晶片结合,快速退火温度为1100℃,高温结束后迅速将加热后的衬底冷却至常温,使用有机溶剂去除衬底上残留的光刻胶;
(4)使用化学气相沉积法在整个硅衬底上生长一层SiO2
(5)利用光刻技术在衬底的绝缘氧化层上形成厚度为90nm的多晶硅门电极,多晶硅门宽度和厚度的比例为2:1,根据计算公式计算出多晶硅门电极层的长度;
(6)在整个器件上沉积金属层;
(7)将衬底上多余的金属层和绝缘层刻蚀掉,形成器件的导线和联系孔,最后进行封装。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种混合型CMOS器件的制作方法,其特征在于,包括以下制备步骤:
(1)选取硅片作为衬底,经过化学清洗,除去所述衬底的表面的杂质和氧化层;
(2)在所述衬底的表面覆盖一层光刻胶,将掩膜与所述衬底对准,使用光刻机进行曝光;
(3)在所述衬底的p型区域和n型区域注入掺杂剂,快速退火使掺杂的材料与硅晶片结合,使用有机溶剂去除残留的光刻胶;
(4)使用化学气相沉积法在所述衬底上生长一层绝缘性氧化层;
(5)利用光刻技术在所述衬底的绝缘氧化层上形成多晶硅门电极,多晶硅门电极层厚度为60~90nm,多晶硅门宽度和厚度的比例为1~2:1,多晶硅门电极层长度的计算公式为:,其中,L表示多晶硅门电极层长度,W表示器件宽度,e表示电场强度,C表示电容;
(6)在整个器件上沉积金属层;
(7)将所述器件上多余的金属层和绝缘层刻蚀掉,形成器件的导线和联系孔;所述CMOS器件逻辑门为与门时,Dn:Dp=1~1.5:1,所述CMOS器件逻辑门为或门时,Dn:Dp=1:2~3,其中Dn表示n型区域的宽度,Dp表示p型区域的宽度。
2.根据权利要求1所述的一种混合型CMOS器件的制作方法,其特征在于,所述步骤(1)中,化学清洗具体包括:将硅片浸泡在碱性溶液中,取出后用去离子水清洗,再将硅片浸泡在酸性溶液中,取出后用去离子水清洗。
3.根据权利要求2所述的一种混合型CMOS器件的制作方法,其特征在于,所述碱性溶液选自浓氢氧化钠或浓氢氧化铵,所述酸性溶液选自浓硝酸或浓氢氟酸,所述浸泡时间为10~15min,所述去离子水温度为40~50℃,所述去离子水清洗时间为5~8min。
4.根据权利要求1所述的一种混合型CMOS器件的制作方法,其特征在于,所述步骤(3)中,快速退火温度为800~1100℃,高温结束后迅速将加热后的所述衬底冷却至常温。
5.根据权利要求1所述的一种混合型CMOS器件的制作方法,其特征在于,所述步骤(3)中,所述衬底的p型区域以硼作为掺杂剂,所述衬底n型区域的掺杂剂选自磷或砷中的一种。
6.根据权利要求1所述的一种混合型CMOS器件的制作方法,其特征在于,所述步骤(4)中,绝缘性氧化层为SiO2
7.一种混合型CMOS器件,其特征在于,根据权利要求1-6任一项所述的制作方法制得。
8.根据权利要求7所述的混合型CMOS器件,其特征在于,用于图像传感、模拟信号处理或无线通信领域。
CN202410092726.6A 2024-01-23 2024-01-23 一种混合型cmos器件及其制作方法 Active CN117613005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410092726.6A CN117613005B (zh) 2024-01-23 2024-01-23 一种混合型cmos器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410092726.6A CN117613005B (zh) 2024-01-23 2024-01-23 一种混合型cmos器件及其制作方法

Publications (2)

Publication Number Publication Date
CN117613005A CN117613005A (zh) 2024-02-27
CN117613005B true CN117613005B (zh) 2024-04-26

Family

ID=89953876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410092726.6A Active CN117613005B (zh) 2024-01-23 2024-01-23 一种混合型cmos器件及其制作方法

Country Status (1)

Country Link
CN (1) CN117613005B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682055A (en) * 1986-03-17 1987-07-21 Rca Corporation CFET inverter having equal output signal rise and fall times by adjustment of the pull-up and pull-down transconductances
EP0240781A2 (de) * 1986-04-08 1987-10-14 Siemens Aktiengesellschaft Verfahren zum Herstellen von Flankenmaskierschichten an den Gate-Elektroden von MOS-Transistoren mit schwach-dotierten Drain-Anschlussgebieten
US5227679A (en) * 1992-01-02 1993-07-13 Advanced Micro Devices, Inc. Cmos digital-controlled delay gate
US5612638A (en) * 1994-08-17 1997-03-18 Microunity Systems Engineering, Inc. Time multiplexed ratioed logic
US5786247A (en) * 1994-05-06 1998-07-28 Vlsi Technology, Inc. Low voltage CMOS process with individually adjustable LDD spacers
US5973363A (en) * 1993-07-12 1999-10-26 Peregrine Semiconductor Corp. CMOS circuitry with shortened P-channel length on ultrathin silicon on insulator
US6111267A (en) * 1997-05-13 2000-08-29 Siemens Aktiengesellschaft CMOS integrated circuit including forming doped wells, a layer of intrinsic silicon, a stressed silicon germanium layer where germanium is between 25 and 50%, and another intrinsic silicon layer
CN101106107A (zh) * 2006-07-10 2008-01-16 中芯国际集成电路制造(上海)有限公司 互补金属氧化物半导体器件的制造方法
US8778786B1 (en) * 2012-05-29 2014-07-15 Suvolta, Inc. Method for substrate preservation during transistor fabrication
CN107526883A (zh) * 2017-08-16 2017-12-29 宁波大学 Cmos数字逻辑电路中mos晶体管总沟道宽度的估算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004054106A1 (ja) * 2002-12-09 2004-06-24 Fujitsu Limited 高速伝送回路
US7208815B2 (en) * 2004-05-28 2007-04-24 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS logic gate fabricated on hybrid crystal orientations and method of forming thereof
US20070063738A1 (en) * 2005-09-16 2007-03-22 Fischer Timothy C CMOS logic circuitry
US20070063277A1 (en) * 2005-09-22 2007-03-22 International Business Machines Corporation Multiple low and high k gate oxides on single gate for lower miller capacitance and improved drive current
US7652339B2 (en) * 2007-04-06 2010-01-26 Xerox Corporation Ambipolar transistor design
US7750400B2 (en) * 2008-08-15 2010-07-06 Texas Instruments Incorporated Integrated circuit modeling, design, and fabrication based on degradation mechanisms
US8446175B2 (en) * 2009-12-23 2013-05-21 Texas Instruments Incorporated Logic-cell-compatible decoupling capacitor
US9529953B2 (en) * 2012-08-02 2016-12-27 The United States Of America, As Represented By The Secretary Of The Navy Subthreshold standard cell library

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682055A (en) * 1986-03-17 1987-07-21 Rca Corporation CFET inverter having equal output signal rise and fall times by adjustment of the pull-up and pull-down transconductances
EP0240781A2 (de) * 1986-04-08 1987-10-14 Siemens Aktiengesellschaft Verfahren zum Herstellen von Flankenmaskierschichten an den Gate-Elektroden von MOS-Transistoren mit schwach-dotierten Drain-Anschlussgebieten
US5227679A (en) * 1992-01-02 1993-07-13 Advanced Micro Devices, Inc. Cmos digital-controlled delay gate
US5973363A (en) * 1993-07-12 1999-10-26 Peregrine Semiconductor Corp. CMOS circuitry with shortened P-channel length on ultrathin silicon on insulator
US5786247A (en) * 1994-05-06 1998-07-28 Vlsi Technology, Inc. Low voltage CMOS process with individually adjustable LDD spacers
US5612638A (en) * 1994-08-17 1997-03-18 Microunity Systems Engineering, Inc. Time multiplexed ratioed logic
US6111267A (en) * 1997-05-13 2000-08-29 Siemens Aktiengesellschaft CMOS integrated circuit including forming doped wells, a layer of intrinsic silicon, a stressed silicon germanium layer where germanium is between 25 and 50%, and another intrinsic silicon layer
CN101106107A (zh) * 2006-07-10 2008-01-16 中芯国际集成电路制造(上海)有限公司 互补金属氧化物半导体器件的制造方法
US8778786B1 (en) * 2012-05-29 2014-07-15 Suvolta, Inc. Method for substrate preservation during transistor fabrication
CN107526883A (zh) * 2017-08-16 2017-12-29 宁波大学 Cmos数字逻辑电路中mos晶体管总沟道宽度的估算方法

Also Published As

Publication number Publication date
CN117613005A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
TWI747179B (zh) 金屬氧化物半導體場效電晶體及其形成方法、可選擇性調整金屬氧化物半導體場效電晶體之關斷電容之電路
US7843013B2 (en) Semiconductor device and method for fabricating the same
JP4633310B2 (ja) Mosトランジスタのゲルマニウムがドーピングされたポリシリコンゲートの形成方法及びこれを利用したcmosトランジスタの形成方法
JP2000232167A (ja) より少ないマスク・ステップによる高信頼性高性能のコア・トランジスタおよびi/oトランジスタのための新規な混合電圧cmos処理
US6342413B1 (en) Method of manufacturing semiconductor device
US6376323B1 (en) Fabrication of gate of P-channel field effect transistor with added implantation before patterning of the gate
US20090050980A1 (en) Method of forming a semiconductor device with source/drain nitrogen implant, and related device
CN117613005B (zh) 一种混合型cmos器件及其制作方法
Yeap et al. Introductory chapter: Integrated circuit chip
US6362034B1 (en) Method of forming MOSFET gate electrodes having reduced depletion region growth sensitivity to applied electric field
JP2006514424A (ja) ショットキ・バリアcmosデバイスおよび方法
JP2005514772A (ja) 電気的にプログラムされたソース/ドレイン直列抵抗を有するmosトランジスタ
US20060148185A1 (en) Method for manufacturing high voltage transistor
KR20030002256A (ko) 시모스 (cmos)의 제조 방법
US20220028855A1 (en) Semiconductor structure and fabrication method thereof
KR100459932B1 (ko) 반도체장치의 제조방법
JP2001176984A (ja) 半導体集積回路装置の製造方法
US6872608B1 (en) Method to selectively form poly SiGe P type electrode and polysilicon N type electrode through planarization
US7229885B2 (en) Formation of a disposable spacer to post dope a gate conductor
CN116705828A (zh) 高压半导体器件及其制备方法
TW202414693A (zh) 觸發可控矽整流器
KR100400305B1 (ko) Cmos의 제조 방법
KR100504196B1 (ko) 반도체 메모리 소자의 제조 방법
JPH0621094A (ja) 半導体装置の製造方法
JP3956879B2 (ja) 半導体集積回路装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant