TW412828B - DRAM cell capacitor and method for fabricating thereof - Google Patents

DRAM cell capacitor and method for fabricating thereof Download PDF

Info

Publication number
TW412828B
TW412828B TW088101191A TW88101191A TW412828B TW 412828 B TW412828 B TW 412828B TW 088101191 A TW088101191 A TW 088101191A TW 88101191 A TW88101191 A TW 88101191A TW 412828 B TW412828 B TW 412828B
Authority
TW
Taiwan
Prior art keywords
layer
conductive
opening
insulating layer
electrode
Prior art date
Application number
TW088101191A
Other languages
Chinese (zh)
Inventor
Byung-Jun Park
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TW412828B publication Critical patent/TW412828B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

A double pole type stacked capacitor with significantly increased surface area and a method for fabricating thereof with process simplicity are disclosed. The double pole type capacitor is constituted by a first pole and a second pole which are spaced apart from each other but electrically connected to each other through a conductive pattern. The method for fabricating double pole type capacitor includes the step of forming a conductive layer pattern over a first insulating layer having a storage contact pad therein, sequentially forming a second insulating layer and a first material layer over the first insulating layer including the conductive layer pattern, sequentially etching the first material layer, the second insulating layer, and the conductive layer pattern using a first photolighography, and thereby forming a first opening to the first insulating layer over the one of the storage contact pad, forming a conductive sidewall spacers in the first opening, using the sidewall spacers and the first material layer as a mask and etching the first insulating layer down to the one of the storagecontact pad, and thereby forming a second opening, depositing a conductive material in the first and second openings and over the first material layer and planarizing down to the second insulating layer to form a first conductive pole, etching the second insulating layer until the first insulating layer and the other end of the conductive layer pattern is exposed using a second photolithography, and thereby forming a third opening spaced apart from the first opening, and filling the third opening with the same material as the first conductive pole to form a second conductive pole.

Description

412828 at ^^^^pif.doc/0〇8 gy ''〜_ ___. ________-—"**—-------- — — " " 五、發明説明(I ) 本發明是有關於一種半導體元件,且特別是有關於 〜種增加動態隨機存取記憶體之胞體電容器表面積及其製 造方法。 在ULSI的技術中’於一個小的基底面積而能彳|得足 夠的電荷儲存電容値是—項參馨且ft真龜戰。當 逐漸擴展高密度動態隨機存取記憶體的同時’每一個記憶 胞的電荷儲存元件必須適於小面積。然而,降低記憶胞面 積而造成之胞體電容値的減少會影響動態隨機存取記憶體 封裝密度(packing density)的增加。因此’胞體電容値減少 的問題必須解決以達成半導體元件高封裝密度的目的。 爲了保持電容器之電容値於一可接受的値,於是具有 立體結構之堆疊電容器被提出。此堆疊電容器包括圓筒狀 (cylindrical)和簡單長方型(box)結構的電容器。當外表面 和內表面可以被用來當作一有效的電容面積時,圓筒結構 之電容器即是立體結構堆疊電容器中較合適的。最近,藉 由倉虫刻(engraving)或控制複晶砂長晶(nucleation)和晶粒成 長(g r o w t h)的條件來調整複晶矽儲存電極本身表面型態, 而用以增加電容器有效面積和電容値的一沉積於儲存電極 上方之半球形砂晶粒(hemispherical-grain polysilicon/’tlSG) 層的新技術已被開發。 然而’微影製程上的限制比如造成圓筒結構之電容器 在ULSI應用中彳威||哩_案他,而且所形成的兩叫龈容易造 _||鐵哀電*基鼠胤壤嚴厕ji 〇另外,簡單 長方型結構電容器則具有無法提供足夠電容値的缺點。 5 裳------訂------冰 (誚先闖讀背面之注意事項再蛾寫本頁) 本紙張尺度適用中國國家標率(CNS ) Α4規格(210Χ2?7公釐) 412828 4384pif.doc/008 五、發明説明(> ) 因此,在降低製程複雜度的同時能提供電容器儲存電 極高電容値之大表面積的製程是急需的。 有鑑於此,本發明的目的是提供^表鼠穆 的®遂器&._墓焉屋逍遷基。爲了達成此目的,本發明 提供一二極型式的電容器,其中獅藉由一經 定義篆靈如同連接的橋樑)而與另一複晶矽導 電極電性連接。複晶矽導電極其中之一穿透過複晶矽圖案 層和絕緣層,直至位於下方之接觸墊(或擴散層)。此連接 的橋樑在形成與接觸墊連接之複晶矽導電極之後才形成, 但又於另一複晶矽導電極形成之前形成。與接觸墊(或擴 散層)連接之複晶矽導電極藉由複晶矽材質之導電側壁間 隙壁(side wall spacer)以自行對準(self-aligned)的方法而形 成。簡言之,一第一開口形成於一絕緣層中,接著側壁間 隙壁形成於第一開口。之後,以側壁間隙壁爲罩幕,形成 一位於第一開口下方之另一絕緣層中且暴露出接觸墊之第 ' 二開口。作爲儲存電極之^導電層丨塡入第一開口和第二開 口中,用以形成一第一導電極。因此,在第一開口和第二 開口之間,相當於儲存接觸窗開口(storage contact hole)與 儲存電極之間就不會有對準失誤的發生。 爲達成上述及其他之目的,本發明提出一種二極型式 之電容器的製造方法。其二極型式之電容器包括在#導.廳 谨眞社:形成充节隔離層),用以定義出主..勲區和非ΐ.動 區。了圍JI操和--:il_ /汲Ji區忿測孤成趁良屬麗墓底上 和半導體基底中。一氨全面覆蓋於半導體基底上 6 —1 n i. 訂 Ϊ n 妒· ("先閱讀背面之注意事項再填寫本頁} 本紙張尺度適用中國國家梯準(CNS ) A4規格(210 X 297公釐) ^部中夾"ί(,Α’Λ Τ,消贽合斜""?木 412828 4384pif,doc/008 五、發明説明(巧) 方。一儲存接觸墊藉由適當的方法形成於第一氧化層中且 與源極/汲極區相連。一第二氧化層形成於第一氧化層和 接觸墊上方。一位元線形成於第二氧化層上。一第三氧化 層和一氮化矽層依序形成於第二氧化層和位元線上方。 一第一複晶矽層沉積於氮化矽層上方,用以當作連結 兩導電極之橋樑。第一複晶矽層經定義之後形成一第一複 晶矽圖案層,此第一複晶矽圖案層相對應的位置與接觸墊 重疊且向接觸墊的側邊延伸。一第四氧化層即所謂的犧牲 氧化層,形成於氮化砂層和第一複晶砍圖案層上方。此犧 牲氧化層的厚度取決於儲存電極的高度,因此犧牲氧化層 的厚度會隨著預設之電容値而改變,而在本實施例中犧牲 氧化層較佳之厚度約爲卫〇〇'埃左右。一材質層例 如沉積於第四氧化層上,且具有與第四氧化層不 同之蝕刻選擇率(etch selectivity),用以當作後續飽刻第四 氧化層之一蝕刻罩幕。 — 一亀云:ϊ:直:薦_震於爆赢||.航意凰上。此第一光阻層 經定義以形成與複晶矽圖案層之一端對準之一開口部分。 利用經定義之第一光阻層爲飩刻罩幕,蝕刻複晶矽材質 層,第四氧化層,複晶矽圖案層和氮化矽層,以形成一暴 露第三氧化層之第一開口,此第一開口具有幾乎垂直之側 壁。而必須注意的是一部份的複晶矽圖案層仍位於氮化矽 層上方並埋於第四氧化層中,且與第一開口的一側邊對 齊。移除經定義之第一層光阻層之後,一複晶矽材質之導 電間隙壁形成於第一開口的側壁,其厚度約爲250埃。利 7 本紙乐尺度適州中國國家標準(CNS > Α4規格(210X297公釐) --------裝------訂------氣 (誚先閱讀背面之注意事項再填寫本萸) A7 B7 4384pif.doc 五、發明説明(U ) 用複晶矽材質層和複晶矽間隙壁爲蝕刻罩幕,蝕刻第3_ 化層和第二氧化層直至暴露出接觸墊,以形成一第二開 口。由於間隙壁的形成而造成第二開口自動對準於第〜開 口。一儲存電極比如爲複晶矽層之導電材質塡入第一閉〇 與第二開口中,且塡入的高度超出複晶矽材質層。接著 坦化直至暴露出第四氧化層,以形成二極型式儲存電極之 —第一複晶砍導電極(conductive pole)。 一第二光阻層塗覆於第四氧化層上方。此第二光阻層 經定義以形成與複晶矽圖案層和部份氮化矽層對準之一開 口部分。利用經定義之第二光阻層爲蝕刻罩幕,蝕刻第四 氧化層,直至暴露出複晶砂圖案層和氮化砂層,以形成〜 第三開口。在本文中,一部份的複晶矽圖案層仍埋於第四 氧化層中且與第一導電極之側壁相接。此第三開口與第一 導電極之間隔約爲l〇〇nm,且後續塡入之導電材質會藉由 埋於第四氧化層中剩餘之複晶矽圖案層與第一導電極電性 耦接。也就是說,突出於第一導電極之一側邊的剩餘複晶 矽圖案層伸入第三開口中。在移除經定義之第二光阻層之 後,爲了製作儲存電極之一導電材質形成於第二開口,形 成二極型式儲存電極之一第二導電極。由上述可知,此第 二導電極可藉由位於下方剩餘之複晶矽圖案層而與第一導 電極達成電性連接。因此,一二極型式的儲存電極即形成。 而第二導電極的數目可爲了進一步的增加儲存電極的表面 積而增加。之後,依序在儲存電極上方形成一介電層和--上電極(top electrode),以形成一電容器。 {誚先閱讀背面之ί±意事項再蛾朽本頁j "" Γ 餌浐部十央^^^^^消贽合:^^印*11^ 本紙张尺度適圯中國阐家標準((:阳)八4規^(210><297公釐) 412Q28 4 3 8 4 pif . doc/ 008 五、發明説明(() 二極型式之電容器可藉由額外增加儲存電極(第二導電 極),以及作爲連接第一導電極和第二導電極之用的連接 橋樑(複晶矽圖案層),使得此電容器具有增加表面積的優 點。此外,主要的儲存電極(第一導電極)是利用複晶矽間 隙壁以自動對準的方式而形成,所以主要的儲存電極之製 程可以被簡化。 雲麗5發嗯之上述目的、特激 ' 祖優點篚更甩顯;J, 氣:Ji溫赛鳳式:.作—說腹如 下: 圖式之簡單說明: 第1A圖至第1G圖繪示依照本發明一較佳實施例,一 種沿著動態隨機存取記憶胞體電容器位元線方向的剖面示 意圖; 第2A圖至第2G圖繪示依照本發明一較佳實施例,一 種沿著動態隨機存取記憶胞體電容器字元線方向的剖面示 '意圖; 第3圖繪示依照本發明一較佳實施例,在形成一複晶 ... 矽圖案層之後,動態隨機存取記憶胞體電容器的上視平面 圖; 第4圖繪示依照本發明一較佳實施例,在形成一第一 開口之後,動態隨機存取記憶胞體電容器的上視平面圖; :第5圖繪示依照本發明一較佳實施例,在形成一位於 第一開口側壁之複晶矽間隙壁之後與形成一第二開口之 前,動態隨機存取記憶胞體電容器的上視平面圖; 9 本紙張尺度適川中國國家標準(CNsTA4g ( 210X297公楚Υ T 訂—— 銀 (誚先閱讀背面之注意事項再填寫本頁)412828 at ^^^^ pif.doc / 0〇8 gy '' ~ _ ___. ________--- " ** ---------- --- " " V. Description of the Invention (I) This The invention relates to a semiconductor device, and more particularly to a method for increasing the surface area of a cell capacitor of a dynamic random access memory and a method for manufacturing the same. In ULSI's technology, it can be used on a small substrate area || A sufficient charge storage capacitor is--Xian Shenxin and ft. As the high-density dynamic random access memory is gradually expanded, the charge storage element of each memory cell must be suitable for a small area. However, the decrease in cell capacitance 値 caused by reducing the memory cell area will affect the increase in the packing density of dynamic random access memory. Therefore, the problem of reduction in cell body capacitance must be solved in order to achieve the purpose of high packaging density of semiconductor devices. In order to keep the capacitance of the capacitor to an acceptable level, a stacked capacitor having a three-dimensional structure was proposed. The stacked capacitors include cylindrical and simple box-shaped capacitors. When the outer surface and the inner surface can be used as an effective capacitance area, a capacitor with a cylindrical structure is more suitable for a stacked capacitor with a three-dimensional structure. Recently, the surface shape of the polycrystalline silicon storage electrode itself is adjusted by engraving or controlling the conditions of nucleation and grain growth of the polycrystalline sand to increase the effective area and capacitance of the capacitor. A new technology of hafnium, a hemispherical-grain polysilicon / 'tlSG layer deposited over a storage electrode, has been developed. However, the limitations of the lithography process, such as the capacitors that cause the cylindrical structure, are used in ULSI applications || Miles, and the two called gingiva are easy to make _ || ji 〇 In addition, simple rectangular capacitors have the disadvantage that they cannot provide sufficient capacitance. 5 Clothes ------ Order ------ Ice (I read the precautions on the back first, and then write this page) This paper size applies the Chinese National Standard (CNS) Α4 specification (210 × 2 ~ 7 mm) ) 412828 4384pif.doc / 008 V. Description of the Invention (>) Therefore, a process that can provide a large surface area of high capacitance of the capacitor storage electrode while reducing the complexity of the process is urgently needed. In view of this, it is an object of the present invention to provide the 遂 穆 遂 遂 遂 遂 遂 & ._ 墓 焉 屋 逸 逍 基. In order to achieve this object, the present invention provides a two-pole type capacitor, in which a lion is electrically connected to another polycrystalline silicon conductive electrode by defining a spirit (like a bridge for connection). One of the polycrystalline silicon conductive electrodes penetrates through the polycrystalline silicon pattern layer and the insulating layer to the contact pad (or diffusion layer) located below. This connected bridge was formed after the polycrystalline silicon conductive electrode connected to the contact pad was formed, but was formed before another polycrystalline silicon conductive electrode was formed. The polycrystalline silicon conductive electrode connected to the contact pad (or the diffusion layer) is formed by a self-aligned method using a conductive side wall spacer of the polycrystalline silicon material. In short, a first opening is formed in an insulating layer, and then a sidewall gap is formed in the first opening. After that, using the side wall gap as a cover, a second opening of the contact pad is formed in another insulating layer below the first opening. The conductive layer serving as a storage electrode is inserted into the first opening and the second opening to form a first conductive electrode. Therefore, between the first opening and the second opening, there is no misalignment between the storage contact hole and the storage electrode. To achieve the above and other objectives, the present invention proposes a method for manufacturing a two-pole type capacitor. The two-pole type capacitors are included in # 导. 厅 (Zhenjishe: forming a filling section isolation layer), which is used to define the main .. area and the non .. area. Gao Wei JI Cao and-: il_ / Ji Ji District speculated that Gu Cheng was on the bottom of Liang's tomb and in the semiconductor substrate. Ammonia is fully covered on the semiconductor substrate 6 — 1 n i. Ordering n envy (" Read the precautions on the back before filling this page} This paper size is applicable to China National Standard (CNS) A4 (210 X 297 (Mm) ^ In the middle of the clip " ί (, Α'ΛΤ, eliminate the oblique "? wood 412828 4384pif, doc / 008 V. Description of the invention (ingenious) square. A storage contact pad by appropriate The method is formed in the first oxide layer and connected to the source / drain region. A second oxide layer is formed over the first oxide layer and the contact pad. A bit line is formed on the second oxide layer. A third oxide A layer and a silicon nitride layer are sequentially formed over the second oxide layer and the bit line. A first polycrystalline silicon layer is deposited over the silicon nitride layer and serves as a bridge connecting the two conductive electrodes. After the crystalline silicon layer is defined, a first polycrystalline silicon pattern layer is formed, and the position corresponding to the first polycrystalline silicon pattern layer overlaps the contact pad and extends to the side of the contact pad. A fourth oxide layer is a so-called sacrificial An oxide layer is formed over the nitrided sand layer and the first polycrystalline cut pattern layer. The degree depends on the height of the storage electrode, so the thickness of the sacrificial oxide layer will change with the preset capacitance 値, and in this embodiment, the preferred thickness of the sacrificial oxide layer is about 100 angstroms. A material layer such as It is deposited on the fourth oxide layer and has an etch selectivity different from that of the fourth oxide layer, and is used as an etching mask for one of the fourth oxide layers to be subsequently etched. — A cloud: ϊ: 直: Recommended_Shock on the explosion win || .Hangyihuang. This first photoresist layer is defined to form an opening aligned with one end of the polycrystalline silicon pattern layer. The first photoresist layer is defined as Engraving the mask, etching the polycrystalline silicon material layer, the fourth oxide layer, the polycrystalline silicon pattern layer and the silicon nitride layer to form a first opening exposing the third oxide layer, the first opening having almost vertical sidewalls It must be noted that a part of the polycrystalline silicon pattern layer is still located above the silicon nitride layer and buried in the fourth oxide layer, and is aligned with one side of the first opening. Remove the defined first layer After the photoresist layer, a conductive spacer made of polycrystalline silicon is formed on the first The thickness of the side wall of the opening is about 250 Angstroms. Lee 7 This paper is a standard of the Chinese state of Shizhou (CNS > Α4 size (210X297 mm) -------- installation ------ order-- ---- Ga (诮 Please read the notes on the back before filling in this 萸) A7 B7 4384pif.doc V. Description of the invention (U) Use the polycrystalline silicon material layer and the polycrystalline silicon spacer as the etching mask, and etch the 3_ And the second oxide layer until the contact pad is exposed to form a second opening. The second opening is automatically aligned with the first opening due to the formation of the gap wall. A storage electrode is, for example, a conductive material of a polycrystalline silicon layer Into the first and second openings, and into the second opening, and the intrusion height exceeds the polycrystalline silicon material layer. Then, the fourth oxide layer is exposed until the fourth oxide layer is exposed to form a first conductive pole of the bipolar type storage electrode. A second photoresist layer is coated on the fourth oxide layer. This second photoresist layer is defined to form an opening portion aligned with the polycrystalline silicon pattern layer and a portion of the silicon nitride layer. Using the defined second photoresist layer as an etching mask, the fourth oxide layer is etched until the polycrystalline sand pattern layer and the nitrided sand layer are exposed to form a third opening. In this article, a part of the polycrystalline silicon pattern layer is still buried in the fourth oxide layer and is in contact with the sidewall of the first conductive electrode. The distance between the third opening and the first conductive electrode is about 100 nm, and the conductive material that is subsequently inserted will be electrically coupled to the first conductive electrode through the remaining polycrystalline silicon pattern layer buried in the fourth oxide layer. Pick up. That is, the remaining polycrystalline silicon pattern layer protruding from one side of the first conductive electrode projects into the third opening. After the defined second photoresist layer is removed, a conductive material for forming a storage electrode is formed in the second opening to form a second conductive electrode for a storage electrode of a bipolar type. It can be known from the above that the second conductive electrode can be electrically connected to the first conductive electrode through the polycrystalline silicon pattern layer remaining below. Therefore, a bipolar type storage electrode is formed. The number of the second conductive electrodes may be increased in order to further increase the surface area of the storage electrode. After that, a dielectric layer and a top electrode are sequentially formed over the storage electrode to form a capacitor. {诮 Read the 意 things on the back first and then moth the page j " " Γ 浐 浐 部 十 央 ^^^^^ 消 贽 合: ^^ 印 * 11 ^ This paper is suitable for Chinese interpreter standards ((: Yang) eight 4 rules ^ (210 > < 297 mm) 412Q28 4 3 8 4 pif. Doc / 008 V. Description of the invention (() A two-pole type capacitor can be added with an additional storage electrode (second Conductive electrode), and a connecting bridge (polycrystalline silicon pattern layer) for connecting the first and second conductive electrodes, which makes this capacitor have the advantage of increasing the surface area. In addition, the main storage electrode (the first conductive electrode) It is formed by the self-alignment of the polycrystalline silicon spacer, so the main storage electrode process can be simplified. Yunli 5 Fan's above-mentioned purpose, especially exciting, ancestral advantages are even more obvious; J, Qi: Ji Wen Saifeng's style: .work-say the abdomen is as follows: Figures 1A to 1G illustrate a preferred embodiment of the invention, a dynamic random access memory cell capacitor bit according to a preferred embodiment of the present invention A schematic sectional view in the direction of a line; FIGS. 2A to 2G show a preferred embodiment according to the present invention. In the embodiment, a cross-section along the direction of a word line of a capacitor of a dynamic random access memory cell shows an 'intention; FIG. 3 illustrates a preferred embodiment of the present invention, after forming a poly ... silicon pattern layer , A top plan view of a dynamic random access memory cell capacitor; FIG. 4 shows a top plan view of a dynamic random access memory cell capacitor after forming a first opening according to a preferred embodiment of the present invention; FIG. 5 is a top plan view of a dynamic random access memory cell capacitor after forming a polycrystalline silicon spacer on a side wall of a first opening and before forming a second opening according to a preferred embodiment of the present invention; FIG. 9 The size of this paper is suitable for China National Standards (CNsTA4g (210X297 Gong Chu Υ T-Silver (诮 Please read the precautions on the back before filling in this page)

41282S A7 4384pif.doc/008 β7 ___ 五、發明説明(t ) 第6圖繪示依照本發明一較佳實施例,在形成一第一 導電極之後’動態隨機存取記憶胞體電容器的上視平面 圖;以及 第7圖繪示依照本發明一較佳實施例,一種一極型式 之儲存電極結構的示意圖。 其中,各圖示之標號所代表的元件結構如下: 10 :半導體基底 11 :主動區 12 :元件隔離結構 14 :閘電極 15,18,20,28 :氧化層 16 :儲存接觸墊 19 :位元線 22 :氮化砂層 24,24a :複晶矽層 26,3 1,40 :光阻層 30 :材質層 32,36,42 :開口 34 :導電側壁間隙壁 38,44 :導電極 46 :儲存電極 實施例 本發明之較佳實施例將配合所附圖式作詳細的說明 本紙張尺度通坷中囤國家標準(CNS ) A4規格(210X297公嫠) --------A丨, (誚先閱讀背面之注意事項再填寫本頁) 訂 412828 A741282S A7 4384pif.doc / 008 β7 ___ 5. Description of the Invention (t) Figure 6 shows the top view of the 'Dynamic Random Access Memory Cell Capacitor' after forming a first conductive electrode according to a preferred embodiment of the present invention. A plan view; and FIG. 7 is a schematic diagram of a one-pole type storage electrode structure according to a preferred embodiment of the present invention. Among them, the element structures represented by the symbols shown in the figures are as follows: 10: semiconductor substrate 11: active area 12: element isolation structure 14: gate electrode 15, 18, 20, 28: oxide layer 16: storage contact pad 19: bit Line 22: nitrided sand layer 24, 24a: polycrystalline silicon layer 26, 3 1, 40: photoresist layer 30: material layer 32, 36, 42: opening 34: conductive sidewall spacer 38, 44: conductive electrode 46: storage Electrode embodiment The preferred embodiment of the present invention will be described in detail in conjunction with the attached drawings. National paper standard (CNS) A4 specification (210X297 cm) in this paper standard. -------- A 丨, (诮 Please read the notes on the back before filling this page) Order 412828 A7

^3g4〇if.doc/008 A _ _. 一.. _ B7 五'發明说明(q) 本發明是有關於一動態隨機存取記憶胞體電容器及其製造 方法。爲了能更了解本發明,在龙簡單的政龜現,動態直 、機..存息或障靡,遭浪4爆氣必屣和場效應雩勗糧j肖遵的嚴靡 氣程。第1A圖至第ig圖所繪示的是依照本發明一較佳 實施例,一種沿著動態隨機存取記憶胞體電容器&元方 向的剖面示意圖。第2A圖至第2G圖所繪示的是依照本 發明一較佳實施例’一種沿著動態隨機存取記憶胞體電容 肆^^£^^勺剖面示意圖。在第2A圖至第2G圖中爲 了淸楚描繪本發明’故與第1A圖至第1G圖相同的部分 可用相同的編號。在本發明之較佳實施例中,將同時參照 第1圖與第2圖來做描述。 請同時參照第1圖與第2圖,一元件隔離結構12形成 於一半導體基底10之一預定的區域範圍中,用以定義一 主動區11和一非主動區,而元件隔離結構12例如爲~場氧 化ϋ/此元件隔離結構12如是利用傳 ' 統的技術形成’另外矽的場氧化法也可以選擇性的被使 用。利用傳統微影蝕刻製程,於半導體基底10上形成複 數個閛電極I4,且其外圍披覆了具有保護作用的絕緣層(例 農1硬mmit#)。利用傳統離子植入步驟,於半導體 基底10上方形成複數個源極/汲極區(未繪示於圖中),此 複數個源極/汲極區分別與閘電極I4的側邊相鄰&。一第 -氧化職1面覆离包含.鼠風么孟屬麗基底μ o』複 數個•存_接.£%,6(?t〇ra^—onta义卫^£1風g違形 成於第一氧化層15內而與源極/汲極區接觸。一第二氧化 本紙乐尺度遶州中國國家標準(CNS ) Μ規格(210X297公釐} (諳先閱讀背面之注意事項再楨寫本頁) 裝 訂 412828 五、發明説明(3) 層18全面覆蓋第一氧化層15與接觸墊16。複數個位元線 I9形成於第二氧化層18上。一第三氧化層2〇全面覆蓋第 二氧化層1 8與位元線1 9。接著,例如形成一層氮化矽層 22於第三氧化層20上方,且其與第三氧化層20具有不同 的蝕刻選擇率。可以以氮化矽層22當作後續蝕刻一第四 氧化層的--蝕刻中止層,但此氮化矽層22的形成視需要 而定。 驟。一第一複晶矽層24沉積於 氮化矽層22上,此第一複晶矽層24係用以做爲風邊量極 38加1^44^間電性連接时被擔i2_connecting bridge)。其 中,一儲存電極46即包含兩導電極38和44,以及電性串禹 接兩導電極38和44之連接橋樑〗24a>如第1G圖所示。 而第一複晶矽層Μ形成的厚度大約爲550-1000埃左右。 請參照第1B圖和第2B圖,一第一光阻層塗覆於第〜 複晶矽層24上方。以經定義之第一光阻層26爲蝕刻罩幕, 蝕刻第一複晶矽層24直至暴露出氮化矽層22,以形成複 數個當作連接橋樑之用的複晶矽圖案層(poly pattern)24a。 一複晶矽圖案層24a例如形成在相對應於接觸墊u上方 的位置,以及向接觸墊16的側向延伸。詳細的說明請參 照第3圖,其所繪示的是依照本發明一較佳實施例,在形 成複晶矽圖案層24a之後,動態隨機存取記憶胞體電容器 的上視平面圖。在第3圖中,複晶砂圖案層24a是形成於 氮化矽層22上方之預定位置上。複晶矽圖案層24a的形 成位置與部分的主動區11重疊,且在此同時特別與位於 --------政------,η------線 {誚先閱讀背面之注意事項再填巧本頁j^ 3g4〇if.doc / 008 A _ _. 1 .. _ B7 5 'Description of the Invention (q) The present invention relates to a dynamic random access memory cell capacitor and a method for manufacturing the same. In order to better understand the present invention, in the simple political process of the dragon, the dynamics, dynamics, and benefits are inevitable, and the violent gas path will be affected by the explosion of waves and the effects of field effects. Figures 1A to ig show schematic cross-sections along the direction of a dynamic random access memory cell capacitor & element according to a preferred embodiment of the present invention. Figures 2A to 2G are schematic cross-sectional views of a dynamic random access memory cell capacitor according to a preferred embodiment of the present invention. In FIGS. 2A to 2G, the present invention is illustrated in detail. Therefore, the same parts as those in FIGS. 1A to 1G may be given the same reference numerals. In the preferred embodiment of the present invention, description will be made with reference to Figs. 1 and 2 at the same time. Please refer to FIG. 1 and FIG. 2 at the same time. An element isolation structure 12 is formed in a predetermined area of a semiconductor substrate 10 to define an active region 11 and an inactive region. The element isolation structure 12 is, for example, ~ Field oxide / This element isolation structure 12 is formed using conventional techniques. In addition, field oxidation of silicon can also be used selectively. Using a conventional lithographic etching process, a plurality of rhenium electrodes I4 are formed on the semiconductor substrate 10, and the periphery thereof is covered with a protective insulating layer (e.g. agricultural 1 hard mmit #). Using a conventional ion implantation step, a plurality of source / drain regions (not shown) are formed over the semiconductor substrate 10, and the plurality of source / drain regions are respectively adjacent to the side of the gate electrode I4 &. A first-oxidation position is covered by 1 side. The mouse wind is not the base of the genus μ o 『plural 存 save and connect. £%, 6 (? T〇ra ^ —onta 义 卫 ^ £ 1 wind g is formed in The first oxide layer 15 is in contact with the source / drain regions. A second oxide paper is wrapped around the Chinese National Standard (CNS) M specifications (210X297 mm) (谙 Read the precautions on the back before writing Page) Binding 412828 V. Description of the invention (3) The layer 18 fully covers the first oxide layer 15 and the contact pad 16. A plurality of bit lines I9 are formed on the second oxide layer 18. A third oxide layer 20 completely covers the first The second oxide layer 18 and the bit line 19 are formed. Then, for example, a silicon nitride layer 22 is formed over the third oxide layer 20, and the etching selectivity is different from that of the third oxide layer 20. Silicon nitride may be used. The layer 22 is used as an etching stop layer for subsequent etching of a fourth oxide layer, but the formation of the silicon nitride layer 22 is determined as needed. A first polycrystalline silicon layer 24 is deposited on the silicon nitride layer 22 This first polycrystalline silicon layer 24 is used as a wind-side volume electrode 38 plus 1 ^ 44 ^ when electrically connected). Among them, a storage electrode 46 That is, two conductive electrodes 38 and 44 and a connecting bridge electrically connected to the two conductive electrodes 38 and 44 are shown in FIG. 1G. The thickness of the first polycrystalline silicon layer M is about 550-1000. Please refer to FIG. 1B and FIG. 2B, a first photoresist layer is coated on the first to polycrystalline silicon layer 24. The first photoresist layer 26 is defined as an etching mask, and the first photoresist layer is etched. The crystalline silicon layer 24 is exposed until the silicon nitride layer 22 is exposed to form a plurality of poly crystalline silicon pattern layers 24a for connecting bridges. A poly crystalline silicon pattern layer 24a is formed, for example, corresponding to a contact pad. The position above u and the lateral extension to the contact pad 16. For detailed description, please refer to FIG. 3, which shows a dynamic state after the polycrystalline silicon pattern layer 24a is formed according to a preferred embodiment of the present invention. A top plan view of a random access memory cell capacitor. In Figure 3, the polycrystalline sand pattern layer 24a is formed at a predetermined position above the silicon nitride layer 22. The formation position and part of the polycrystalline silicon pattern layer 24a The active area 11 overlaps, and at the same time it is especially located at the -------- political --------, η ------ line {阅读 Read the notes on the back before filling out this page j

412828 4 3 8 4 pi f . doc/008 五、發明説明(A ) 複晶砂圖案層24a之一竭下方的接觸墊Ιό自成一列。複 晶砂圖案層24a爲i尊圓形.Ellipse shape)或^巨开%(rectangle shape),其長的方向(“a”)的長度大約爲350nm,短的方向 (“c”)的長度大約爲150nm。與位元線方向成一列之相鄰複 晶石夕圖案層24a之間的距離(“b”)約爲250nm,而與字元線 方向成一列之相鄰複晶矽圖案層24a之間的距離(“d”)約爲 1 50nm 〇 請參照第1C圖和第2C圖,移除經定義之第一光阻層 26之後,一爲犧牲氧化層(sacrificial oxide layer)之第四氧 化層28形成於氮化砍層22與複晶砂圖案層24a上。此犧 牲氧化層28的厚度爲儲存電極之預定高度,因此犧牲氧 化層28的厚度會隨著預設的電容値而改變。在此實施例 中,此犧牲氧化層28形成的厚度約爲8000-1 1000埃左右。 一材質層30形成於第四氧化層28的上方,其材質比如爲 複晶矽,而形成的厚度大約爲1500-2000埃左右。因材質 層30具有與第四氧化層28不同的蝕刻選擇率,故可以在 進行後續蝕刻第四氧化層28之步驟時,當作一蝕刻罩幕。 一第二光阻層覆蓋於材質層30的上方,而定義後的第 二光阻層31是用以形成與接觸墊16對準之複晶矽圖案層 24a的一端相對應的開口部分。接著,利用定義之第二光 阻層31爲罩幕,蝕刻材質層30,第四氧化層28,複晶矽 圖案層24a和氮化矽層22,以形成複數個第一開口 32。 第一開口 32例如具有一大致垂直的側壁,且第一開口 32 暴露出第三氧化層20。値得注意的是一部份的複晶矽圖案 -ΐ衣 訂 H I ί I 冰 (讳先閱讀背面之注意事項再填寫本頁} 本紙張尺度速用中國國家標隼(CNS > A4規格(2i〇X297公釐〉 412828 A7 ^384pj. f.doc/008 D / 五、發明説明(卜) 層2如仍位於氮化矽層22上方且埋於第四氧化層28中, 並且第一開口 32的一側邊與複晶矽圖案層的一端相 接。此第一開口 32的開口大小(“e”)約爲150nm。第4圖 所繪示的是依照本發明一較佳實施例,在形成第一開口 3 2 之後,動態隨機存取記憶胞體電容器的上視平面圖。請參 照第4圖,第一開口 32對應於接觸墊16上方且與複晶矽 圖案層24a的一端相接。 在移除經定義之第二層光阻層31之後,如第1E圖和 第2E圖所示,一複晶矽材質之形成於 第一開口 32,其厚產約篇250nm。利用複晶矽材質層30 和複晶矽間隙壁34爲蝕刻罩幕,蝕刻第三氧化層20和第 二氧化層18直至暴露出接觸墊16,用以形成複數個第二 開口 36。第二開口 36之開口大小例如約爲100nm。由於 間隙壁34的形成,造成第二開口 36與第一開口 32自動 對準而自成一列。本文中此處之第二開口 36與傳統簡單 長方型結構電容器之儲存電極的接觸窗相當。因此,發生 在習之技藝中儲存接觸窗和儲存電極之間的對準失誤即可 被避免。第5圖所繪示的是依照本發明一較佳實施例,在 形成一位於第一開口 32側壁之複晶矽間隙壁34之後與形 成一第二開口 36之前,動態隨機存取記憶胞體電容器的 上視平面圖。由圖中可知,由於複晶矽間隙壁34具有厚 度之故,使得第二開口 36的開口比第一開口 32小。 請參照第1F圖和第2F圖,作爲儲存電極的一導電材 質,其材質比如爲複晶矽。此複晶矽塡滿第一開口 32與 裝 訂 、 (誚先閱讀背面之注意事項再读ί"本頁) 本紙張尺度適用中國國家標準(CNS > A4規格(210X297公釐) 麫"部中央n·^·而妁 T."'f<c :5^nf,I$, 412828 4384pif.doc/008 gj __L_ _. - -- ' '~ . . ~ 五、發明说明((M ) 第二開口 36,且塡滿的高度超出複晶矽材質層30。對此 複晶砂與複晶矽材質層30進行平坦化的鈾刻步驟’例如 利用化學機械硏磨(CMP)或蝕刻技術’直至暴露出第四氧 化層28,以形成儲存電極之複數個第一導電極38 ’其第 一導電極38例如形成於接觸墊丨6上且與之接觸。由上述 可知,複晶矽圖案層24a與第一導電極38的一側邊電性 連接,且位於氮化矽層22上方向外延伸。 第二導電極的形成是下一個進行的步驟。第二導電極 須藉由突出於第一導電極38側邊之複晶矽圖案層24a而 與第一導電極38連接。爲了達成此目的,一第三光阻層 覆蓋第四氧化層28的上方,經定義之第三光阻層40用以 形成與另一端部分的複晶矽圖案層24a和氮化矽層22對 準之開口部分。利用經定義之第三光阻層40爲罩幕’蝕 刻第四氧化層28以形成複數個第三開口 42,其第三開口 42例如形成於另一端的複晶矽圖案層24a和氮化矽層22 上方。在本文中,複晶矽圖案層24a和氮化矽層22可當 作蝕刻中止層。若沒有形成一層氮化矽層22 ’則蝕刻第四 • 氧化層28時須藉由時間的控制,才能達到較爲良好的蝕 刻效果。在此較佳實施例中,第三開口 42之開口大小(“h”) 約爲2〇Onm,且其與第一導電極38間隔的距離(“g”)約爲 lOOnm。 在移除經定義之第三光阻層40之後’做爲儲存電極之 一導電材質塡入於第三開口 42中,且高度超出第四氧化 層28,而此導電材質比如爲複晶矽。接著,對此複晶矽進 15 CNS ) A4 规格(2丨 0X297公釐 Ί I I — — — —— —裝— I I I ,^訂 I n n 脉 ("先閱讀背面之注意事項再蛾寫本萸) 紅浐部屮 Aii.^-^hJri/if 合 Mit印 Τ 412828 A7 ^384pif.doc/008 ηΊ _____________ Η,_ 五、發明説明((ν) ~ 行一平坦化的蝕刻步驟,直至暴露出第四氧化層28 ,以形 成儲存電極之複數個第二導電極44。所形成的第二導電極 44例如藉由複晶矽圖案層24a而與第一導電極38達成電 性連接。之後,利|爆,以 ‘ elea.rods.)46,而每一·個二極型式之儲存電極46包括第一 導電極3 8 ’第二導電極44和複晶矽圖案層24a,如同第1 G 圖和第2(3圖所示。 随置_at 加。 第6圖繪示依照本發明一較佳實施例,在形成第二導 電極44之後,動態隨機存取記憶胞體電容器0喝ϋ' 圖。請參照第6圖,二極型式之儲存電極:46w,包括與儲存 接觸墊(未繪示於圖中)耦接之第一導電極38,第二導電極 44,以及用以連接第一導電極38和第二導電極44之複晶 砂圖案層24a。順著位元線的方向所測得到相鄰儲存電極 之間的距離(“i”)約爲I50nm,而順著字元線的方向所測得 到相鄰儲存電極之間的距離約爲l5〇nm。 接著,一介電層(未繪示於圖中)和一上電極(未繪不於 圖中)依序形成於二極型式的儲存電極46上,以形成一二 極型式的電容器(double pole type capacitor)。 险ϋ器,以及 (氇㈣亂sua),武鼻 氣面«點。此外,主要的儲存電極(第一導電極38)是 本紙张尺廋適扣中國國家標準(CNS ) A4規格(2]0Χ2ί>7公釐) I ,裝 訂 . 奴 (誚先聞讀背面之)±意事項再填荇本頁) A7 B7 應力發 —*- Πιι·ν .,··》 兩相 4 3 8 4 pif .doc/lo^^^ 五、發明説明((〇 遞:賜難德成,使得主要儲存 電極的製程被簡化。根據本發明,窜電碧器昀蠢 增加時’可利用..α&ϋ泣雾氣得震容値,而 不須如BST鐵零雪層’因鐵電物質之介電 的形成需要在高溫的條件下,容易造成.不_富 生。 第7圖所繪示的是依照本發明一較佳實施例 鄰二極型式之儲存電極結構的示意圖。此二極型式之儲存 電極結構將參照第1G圖和第7圖。二極型式之儲存電極 46包括第一導電極38,第二導電極44和複晶矽圖案層 24a 是藉由複晶砂圖 …S J潰麵丄6 接16 與源極/汲極區相接,故第一導電極38可藉儲存接觸墊π 與源極/汲極區耦接。另外,第二導電極44則與複晶矽圖 案層24a的另一端相連接。位的 尺寸。第二導電極44的數目可因第二導電極 44和複晶砂圖案層24a的尺寸縮小而增加。第一導電極38 的上半部尺寸大小約爲150nm,而其下半部尺寸大小約爲 lOOnni。第二導電極44的尺寸大小約爲200nm。兩相鄰儲 存電極之間的距離約爲150nm,而第一導電極38和第二 導電極44之間的距離約爲lOOnrn。 雖然本發明已以一較佳實施例揭露如上,然其並非用 17 I ^ t I 1>', ("先閱讀背面之注意事項再硪寫本頁) 本紙張尺度適州中國國家標準(CNS ) A4規格(210X297公釐) 412828 at d-384pif,doc/ 008 g7 五、發明説明(叫) 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍內,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者爲準。 --------裝— (销先閱讀背面之注意事項再峨.??本頁) 丁 -° h浐部屮 Ai;^^,m;7i竹合竹.^-印 ΐ412828 4 3 8 4 pi f. Doc / 008 V. Description of the invention (A) The contact pads under one of the polycrystalline sand pattern layers 24a are arranged in a row. The polycrystalline sand pattern layer 24a is an i-shaped circle (Ellipse shape) or a rectangular shape (rectangle shape), and the length in the long direction ("a") is about 350 nm and the length in the short direction ("c") It is about 150nm. The distance ("b") between the adjacent polycrystalline silicon pattern layers 24a in a line with the bit line direction is about 250 nm, and the distance between the adjacent polycrystalline silicon pattern layers 24a with a line in the word line direction is about 250 nm. The distance ("d") is about 150nm. Please refer to FIG. 1C and FIG. 2C. After removing the defined first photoresist layer 26, a fourth oxide layer 28 is a sacrificial oxide layer. It is formed on the nitride cutting layer 22 and the polycrystalline sand pattern layer 24a. The thickness of the sacrificial oxide layer 28 is a predetermined height of the storage electrode. Therefore, the thickness of the sacrificial oxide layer 28 changes with a predetermined capacitance 値. In this embodiment, the sacrificial oxide layer 28 is formed to a thickness of about 8000 to 1000 angstroms. A material layer 30 is formed above the fourth oxide layer 28, and the material is, for example, polycrystalline silicon, and the thickness is about 1500-2000 angstroms. Since the material layer 30 has an etching selectivity different from that of the fourth oxide layer 28, it can be used as an etching mask when the subsequent step of etching the fourth oxide layer 28 is performed. A second photoresist layer covers the material layer 30, and the defined second photoresist layer 31 is used to form an opening portion corresponding to one end of the polycrystalline silicon pattern layer 24a aligned with the contact pad 16. Next, using the defined second photoresist layer 31 as a mask, the material layer 30, the fourth oxide layer 28, the polycrystalline silicon pattern layer 24a and the silicon nitride layer 22 are etched to form a plurality of first openings 32. The first opening 32 has, for example, a substantially vertical sidewall, and the first opening 32 exposes the third oxide layer 20. What you should pay attention to is a part of the polycrystalline silicon pattern-ΐ 衣 ΐHI ί I Bing (Please read the precautions on the back before filling this page} This paper is a fast-moving Chinese national standard (CNS > A4 specifications ( 2i × 297mm> 412828 A7 ^ 384pj. F.doc / 008 D / V. Description of the Invention (b) If the layer 2 is still located above the silicon nitride layer 22 and buried in the fourth oxide layer 28, and the first opening One side of 32 is connected to one end of the polycrystalline silicon pattern layer. The opening size ("e") of the first opening 32 is about 150 nm. Figure 4 illustrates a preferred embodiment according to the present invention. After forming the first opening 3 2, a top plan view of the DRAM cell capacitor. Referring to FIG. 4, the first opening 32 corresponds to the contact pad 16 and is connected to one end of the polycrystalline silicon pattern layer 24 a. After removing the defined second photoresist layer 31, as shown in FIG. 1E and FIG. 2E, a polycrystalline silicon material is formed in the first opening 32, and its thickness is about 250 nm. Using polycrystalline The silicon material layer 30 and the polycrystalline silicon spacer wall 34 are etching masks, and the third oxide layer 20 and the second oxide layer 18 are etched until exposed. The contact pad 16 is formed to form a plurality of second openings 36. The opening size of the second openings 36 is, for example, about 100 nm. Due to the formation of the gap wall 34, the second openings 36 and the first openings 32 are automatically aligned to form themselves. One column. The second opening 36 here is equivalent to the contact window of the storage electrode of a traditional simple rectangular structure capacitor. Therefore, the misalignment between the storage contact window and the storage electrode that occurs in the conventional technique can be detected. Avoid. Figure 5 illustrates a dynamic random access memory after forming a polycrystalline silicon spacer 34 on the side wall of the first opening 32 and before forming a second opening 36 according to a preferred embodiment of the present invention. A top plan view of a cell capacitor. As can be seen from the figure, due to the thickness of the polycrystalline silicon spacer 34, the opening of the second opening 36 is smaller than that of the first opening 32. Please refer to FIGS. 1F and 2F as A conductive material of the storage electrode, such as polycrystalline silicon. This polycrystalline silicon is filled with the first opening 32 and binding, (诮 Please read the precautions on the back first and then read this page) This paper size is applicable to China Home standard (CNS > A4 specification (210X297 mm) 麫 " Central part of the Ministry n · ^ · and 妁 T. " 'f < c: 5 ^ nf, I $, 412828 4384pif.doc / 008 gj __L_ _. --'' ~.. ~ V. Description of the invention ((M) The second opening 36, and the full height exceeds the polycrystalline silicon material layer 30. The polycrystalline sand and the polycrystalline silicon material layer 30 are planarized. The uranium engraving step is performed, for example, using chemical mechanical honing (CMP) or etching techniques, until the fourth oxide layer 28 is exposed to form a plurality of first conductive electrodes 38 of the storage electrode. The first conductive electrodes 38 are formed, for example, in contact. On pad 6 and in contact with it. As can be seen from the above, the polycrystalline silicon pattern layer 24a is electrically connected to one side of the first conductive electrode 38, and extends outwardly above the silicon nitride layer 22. The formation of the second conductive electrode is the next step. The second conductive electrode must be connected to the first conductive electrode 38 through a polycrystalline silicon pattern layer 24a protruding from the side of the first conductive electrode 38. To achieve this, a third photoresist layer covers the fourth oxide layer 28, and the third photoresist layer 40 is defined to form a pair of the polycrystalline silicon pattern layer 24a and the silicon nitride layer 22 at the other end. Quasi-opening. Using the defined third photoresist layer 40 as a mask, the fourth oxide layer 28 is etched to form a plurality of third openings 42. The third openings 42 are, for example, a polycrystalline silicon pattern layer 24a and silicon nitride formed at the other end. Above layer 22. Herein, the polycrystalline silicon pattern layer 24a and the silicon nitride layer 22 may be used as an etching stop layer. If a silicon nitride layer 22 ′ is not formed, the fourth oxide layer 28 must be time-controlled to achieve a better etching effect. In this preferred embodiment, the opening size ("h") of the third opening 42 is about 200 nm, and the distance ("g") from the first conductive electrode 38 is about 100 nm. After the defined third photoresist layer 40 is removed, a conductive material as a storage electrode is inserted into the third opening 42 and has a height exceeding the fourth oxide layer 28, and the conductive material is, for example, polycrystalline silicon. Next, enter 15 CNS of this polycrystalline silicon into A4 specification (2 丨 0X297mmΊ II — — — — — — — — —, order I nn vein (" Read the notes on the back first, then write the moth 蛾)浐 部 浐 Aii. ^-^ HJri / if and Mit India 412828 A7 ^ 384pif.doc / 008 ηΊ _____________ Η, _ 5. Description of the invention ((ν) ~ Perform a planarization etching step until the first The oxidized layer 28 is used to form a plurality of second conductive electrodes 44 of the storage electrode. The formed second conductive electrode 44 is electrically connected to the first conductive electrode 38 through the polycrystalline silicon pattern layer 24a. | Explode, with 'elea.rods.) 46, and each storage electrode 46 of a bipolar type includes a first conductive electrode 3 8', a second conductive electrode 44 and a polycrystalline silicon pattern layer 24a, as shown in Figure 1G And Figure 2 (shown in FIG. 3). Attached _at plus. Figure 6 shows a dynamic random access memory cell capacitor 0 after the second conductive electrode 44 is formed according to a preferred embodiment of the present invention. Figure. Please refer to Figure 6. Diode type storage electrode: 46w, including the first coupling with storage contact pad (not shown in the figure). The conductive electrode 38, the second conductive electrode 44, and the polycrystalline sand pattern layer 24a for connecting the first conductive electrode 38 and the second conductive electrode 44. The distance between adjacent storage electrodes is measured along the direction of the bit line. The distance ("i") is about I50nm, and the distance between adjacent storage electrodes measured along the direction of the word line is about 150nm. Next, a dielectric layer (not shown in the figure) and An upper electrode (not shown in the figure) is sequentially formed on the storage electrode 46 of the two-pole type to form a double-pole type capacitor. , Wu nose air surface «point. In addition, the main storage electrode (the first lead electrode 38) is the size of this paper suitable for Chinese National Standard (CNS) A4 specifications (2) 0 × 2ί > 7 mm) I, binding. Slave (I read it on the back first) ± Issue items and then fill out this page) A7 B7 Stress development — *-Πιι · ν., ... Two-phase 4 3 8 4 pif .doc / lo ^^^ V. Description of the invention ((Transfer): Difficult to accomplish, making the manufacturing process of the main storage electrode simplified. According to the present invention, when the increase in channeling device is increased, 'available .. α & amp The weeping fog is shocking, and it does not need to be like the BST iron zero snow layer because of the formation of the ferroelectric material's dielectric needs to be under high temperature conditions, it is easy to cause. Not _ Fusheng. Figure 7 shows It is a schematic diagram of a storage electrode structure of an adjacent bipolar type according to a preferred embodiment of the present invention. The storage electrode structure of this bipolar type will refer to FIGS. 1G and 7. The storage electrode 46 of the bipolar type includes a first conductive electrode 38, a second conductive electrode 44 and a polycrystalline silicon pattern layer 24a. The polycrystalline sand pattern ... SJ break surface 丄 6 to 16 is connected to the source / drain region. Therefore, the first conductive electrode 38 can be coupled to the source / drain region through the storage contact pad π. In addition, the second conductive electrode 44 is connected to the other end of the polycrystalline silicon pattern layer 24a. Bit size. The number of the second conductive electrodes 44 may be increased due to the reduction in the size of the second conductive electrodes 44 and the polycrystalline sand pattern layer 24a. The size of the upper half of the first conductive electrode 38 is about 150 nm, and the size of the lower half thereof is about 100 nm. The size of the second conductive electrode 44 is about 200 nm. The distance between two adjacent storage electrodes is about 150 nm, and the distance between the first conductive electrode 38 and the second conductive electrode 44 is about 100 nrn. Although the present invention has been disclosed as above with a preferred embodiment, it does not use 17 I ^ t I 1 > ', (" Read the precautions on the back before writing this page) CNS) A4 specification (210X297 mm) 412828 at d-384pif, doc / 008 g7 V. Description of the invention (called) To limit the invention, anyone skilled in the art can depart from the spirit and scope of the invention. Various modifications and retouchings are made, so the protection scope of the present invention shall be determined by the scope of the appended patent application. -------- 装 — (Please read the precautions on the back of the pin first, then this page.) Ding-° h 浐 部 屮 Ai; ^^, m; 7i 竹 合 竹. ^-印 ΐ

S 本紙張尺度適川中國國家標隼(CNS ) Α4規格(210X297公釐)S This paper is suitable for Sichuan National Standard (CNS) Α4 size (210X297 mm)

Claims (1)

經濟部中央標準局負工消費合作社印製 412828 Μ α ο c ' 3 Ο f 六、申請專利範圍 1. 一種動態隨機存取記憶體之胞體電容器的製造方 法,該方法包括: 提供一具有一閘電極和一對與該閘電極側邊相鄰接的 源極/汲極區之半導體基底; 形成一對與該源極/汲極區接觸之儲存接觸墊; 形成一第一絕緣層於該半導體基底上; 形成-導電圖案層於該第一·絕緣層上,該導電層圖案 與該儲存接觸墊之--重疊且向該儲存接觸墊之一的側邊延 伸,該導電圖案層具有相對的兩端; 依序於該含有導電圖案層之第一絕緣層上形成一第二 絕緣層和一第一材質層,該第一材質層與該第二絕綠層具 有不同的蝕刻率; 利用一第一微影步驟蝕刻該第一材質層,該第二絕緣 層和該導電圖案層,以形成一暴露該第一絕緣層且位於該 儲存接觸墊之一上方的第一開口,而該第一開口穿透該導 電圖案層的一端; 形成一導電側壁間隙壁於該第一開口; 以該導電側壁間隙壁與該第一材質層爲罩幕,蝕刻該 第一絕緣層至該儲存接觸墊之一,以形成一第二開口; 沉積一導電材質於該第-開口和該第二開Π中且超出 該第一材質層,進行平坦化直至暴露出該第二絕緣層以形 成一第一導電極; 利用一第二微影步驟,蝕刻該第二絕緣層直至暴露出 該第一絕緣層和該導電圖案層的另一端,並形成一與該第 19 本紙張尺度適用中國國家標率(CNS ) Λ4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) •裝- 經濟部中央標準局員工消費合作社印製 412828 A8 B8 4 3 S 4 ο 1 f , d ο c / Ο 0 S 益 六、申請專利範圍 一開口間隔之第三開口;以及 用一與該第一導電極相同材質塡滿該第三開口以形成 一第二導電極,該第二導電極藉由該導電圖案層與該第一 導電極連接, 其中該第一導電極、該第^導電極和導電圖案層構成 一該動態隨機存取記憶體之胞體電容器的儲存電極。 2. 如申請專利範圍第1項所述之方法,其中該導電圖 案層的材質與該第一導電極相同。 3. 如申請專利範圍第1項所述之方法,其中該第二絕 緣層具有至少與該儲存電極相同之厚度。 4. 如申請專利範圍第1項所述之方法,其中該第二絕 緣層包括一氧化層,該第一材質層包括一複晶砂層。 5. 如申請專利範圍第1項所述之方法,其中導電圖案 層具有約550-1000埃左右的厚度,該第二絕緣層具有約 8000-1 1000埃左右的厚度,該第一材質層具有約1500-2000 埃左右的厚度。 6. 如申請專利範圍第1項所述之方法,其中該側壁間 隙壁的材質與該第一導電極相同。 7. 如申請專利範圍第1項所述之方法,其中該平坦化 的方法比如爲化學機械硏磨法和回蝕刻其中之一。 8. 如申請專利範圍第1項所述之方法,其中該第一開 口之直徑約爲150 nm,該第二開口之直徑約爲100 nm, 該第二開口之-直徑約爲200nm。 9. 如申請專利範圍第1項所述之方法,其中該第一導 20 I--— — — — — —良---I n _ τ _ _ _ _ _ . 襄 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家樣準(CNS ) A4規格(210X297公釐) A BCD 412828 S S ρ 1 i .doc/L!〇8 六、申請專利範圍 電極和該第二導電極彼此相隔約100 nm,而該儲存電極與 相鄰儲存電極間相隔約1 50 nm。 10. 如申請專利範圍第1項所述之方法,更包括在形 成該導電圖案層之前,形成一第二材質層於該第一絕緣層 上,而該第二材質層具有與該第二絕緣層不同的蝕刻率且 該第二材質層爲形成該第三開口步驟中之-·蝕刻中止層。 11. 如申請專利範圍第10項所述之方法,其中該第二 材質層包括一氮化矽層。 12. —動態隨機存取記憶胞體電容器,該裝置包括: 一儲存接觸墊形成於一半導體基底上,且與該半導體 基底之一源極/汲極區電性連接; 一絕緣層形成於該包含儲存接觸墊之半導體基底上; 以及 一具有一第一和一第二導電極之動態隨機存取記憶胞 體電容器之儲存電極,該第一和該第二導電極彼此間隔, 但藉由形成於該絕緣層上之導電圖案層而彼此電性連接, 該第一導電極穿透該絕緣層而與該儲存接觸墊電性相連。 13. 如申請專利範圍第12項所述之動態隨機存取記憶 胞體電容器,其中該第一導電極於頂部之直徑約爲 1 5Onm,而位於該絕緣層內之底部的直徑約爲1 00 nm,該 第二導電極之直徑約爲200 nm。· 14. 如申請專利範圍第12項所述之動態隨機存取記憶 胞體電容器,其中該第·-導電極和該第二導電極彼此相隔 約100nm,而該儲存電極與相鄰之儲存電極相隔約150nm。 本紙張尺度適用中國國家標準(CNS ) A4规格(210 X 297公釐) - - - ....... - i -...... I- - id t^i I - - - - ^^1 \—Ψ -5 (請先閱讀背面之注意事項再填寫本頁) 經濟部中央標隼局員工消費合作社印装Printed by the Central Standards Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 412828 Μ α ο c '3 Ο f Six. Patent application scope 1. A method for manufacturing a cell capacitor of dynamic random access memory, the method includes: A gate electrode and a pair of semiconductor substrates in the source / drain region adjacent to the gate electrode side; forming a pair of storage contact pads in contact with the source / drain region; forming a first insulating layer on the A semiconductor substrate is formed; a conductive pattern layer is formed on the first insulating layer, the conductive layer pattern overlaps with the storage contact pad and extends to one of the storage contact pads; the conductive pattern layer has an opposite A second insulating layer and a first material layer are sequentially formed on the first insulating layer containing the conductive pattern layer, and the first material layer and the second green insulating layer have different etch rates; A first lithography step etches the first material layer, the second insulation layer and the conductive pattern layer to form a first opening that exposes the first insulation layer and is over one of the storage contact pads, and the first Opened Penetrating one end of the conductive pattern layer; forming a conductive sidewall gap wall at the first opening; using the conductive sidewall gap wall and the first material layer as a cover, etching the first insulating layer to one of the storage contact pads To form a second opening; deposit a conductive material in the first opening and the second opening and beyond the first material layer, and planarize until the second insulating layer is exposed to form a first conductive electrode ; Using a second lithography step, etching the second insulating layer until the other end of the first insulating layer and the conductive pattern layer is exposed, and forming a 19th paper standard applicable to China National Standards (CNS) Λ4 specification (210X297 mm) (Please read the precautions on the back before filling this page) • Equipment-Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 412828 A8 B8 4 3 S 4 ο 1 f, d ο c / Ο 0 S Yiliu, a third opening with an opening interval in the scope of patent application; and filling the third opening with the same material as the first conductive electrode to form a second conductive electrode through the conductive pattern Layer with The first conductive electrode is connected, wherein the first conductive electrode, the third conductive electrode, and the conductive pattern layer constitute a storage electrode of a cell capacitor of the dynamic random access memory. 2. The method according to item 1 of the scope of patent application, wherein the material of the conductive pattern layer is the same as that of the first conductive electrode. 3. The method according to item 1 of the scope of patent application, wherein the second insulating layer has at least the same thickness as the storage electrode. 4. The method according to item 1 of the scope of patent application, wherein the second insulating layer includes an oxide layer, and the first material layer includes a polycrystalline sand layer. 5. The method according to item 1 of the scope of patent application, wherein the conductive pattern layer has a thickness of about 550-1000 angstroms, the second insulating layer has a thickness of about 8000-1 1000 angstroms, and the first material layer has A thickness of about 1500-2000 Angstroms. 6. The method according to item 1 of the scope of patent application, wherein the material of the sidewall spacer is the same as that of the first conductive electrode. 7. The method according to item 1 of the scope of patent application, wherein the planarization method is, for example, one of chemical mechanical honing method and etch-back. 8. The method according to item 1 of the scope of patent application, wherein the diameter of the first opening is approximately 150 nm, the diameter of the second opening is approximately 100 nm, and the diameter of the second opening is approximately 200 nm. 9. The method as described in item 1 of the scope of patent application, wherein the first guide 20 I --------good --- I n _ τ _ _ _ _ _. Xiang (please read the first Note: Please fill in this page again) This paper size is applicable to China National Standard (CNS) A4 specification (210X297mm) A BCD 412828 SS ρ 1 i.doc / L! 〇8 6. Patent application scope electrode and the second guide The electrodes are approximately 100 nm apart from each other, and the storage electrode is approximately 150 nm apart from adjacent storage electrodes. 10. The method according to item 1 of the scope of patent application, further comprising forming a second material layer on the first insulating layer before forming the conductive pattern layer, and the second material layer has a second insulation from the second insulation layer. Layers with different etch rates, and the second material layer is an etching stop layer in the step of forming the third opening. 11. The method of claim 10, wherein the second material layer includes a silicon nitride layer. 12. —Dynamic random access memory cell capacitor, the device includes: a storage contact pad formed on a semiconductor substrate and electrically connected to a source / drain region of the semiconductor substrate; an insulating layer formed on the semiconductor substrate; A semiconductor substrate including a storage contact pad; and a storage electrode of a dynamic random access memory cell capacitor having a first and a second conductive electrode, the first and the second conductive electrode being spaced apart from each other, but formed by The conductive pattern layers on the insulating layer are electrically connected to each other. The first conductive electrode penetrates the insulating layer and is electrically connected to the storage contact pad. 13. The dynamic random access memory cell capacitor according to item 12 of the scope of the patent application, wherein the diameter of the first conductive electrode at the top is about 15 nm, and the diameter of the bottom of the first conductive electrode is about 100. nm, the diameter of the second conductive electrode is about 200 nm. · 14. The dynamic random access memory cell capacitor as described in item 12 of the scope of the patent application, wherein the first- and second-conductive electrodes are separated from each other by about 100 nm, and the storage electrode is adjacent to the storage electrode. About 150nm apart. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)---.......-i -...... I--id t ^ i I---- ^^ 1 \ —Ψ -5 (Please read the notes on the back before filling out this page) Printed by the Employees' Cooperatives of the Central Bureau of Standards, Ministry of Economic Affairs
TW088101191A 1998-04-25 1999-01-27 DRAM cell capacitor and method for fabricating thereof TW412828B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980014851A KR100270210B1 (en) 1998-04-25 1998-04-25 DRAM cell capacitor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TW412828B true TW412828B (en) 2000-11-21

Family

ID=19536714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW088101191A TW412828B (en) 1998-04-25 1999-01-27 DRAM cell capacitor and method for fabricating thereof

Country Status (7)

Country Link
JP (1) JP2000022099A (en)
KR (1) KR100270210B1 (en)
CN (1) CN1236993A (en)
DE (1) DE19908446A1 (en)
FR (1) FR2778019A1 (en)
GB (1) GB2336716B (en)
TW (1) TW412828B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6426249B1 (en) * 2000-03-16 2002-07-30 International Business Machines Corporation Buried metal dual damascene plate capacitor
KR100502410B1 (en) * 2002-07-08 2005-07-19 삼성전자주식회사 DRAM cells
KR100510527B1 (en) 2003-05-01 2005-08-26 삼성전자주식회사 Semiconductor device having storage node and method for manufacturing the same
KR100545865B1 (en) * 2003-06-25 2006-01-24 삼성전자주식회사 Semiconductor device and manufacturing method thereof
CN111599812B (en) * 2015-04-30 2023-07-04 联华电子股份有限公司 Static random access memory

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438011A (en) * 1995-03-03 1995-08-01 Micron Technology, Inc. Method of forming a capacitor using a photoresist contact sidewall having standing wave ripples
JP2776331B2 (en) * 1995-09-29 1998-07-16 日本電気株式会社 Semiconductor device and manufacturing method thereof
US5643819A (en) * 1995-10-30 1997-07-01 Vanguard International Semiconductor Corporation Method of fabricating fork-shaped stacked capacitors for DRAM cells
US5721154A (en) * 1996-06-18 1998-02-24 Vanguard International Semiconductor Method for fabricating a four fin capacitor structure
US5744833A (en) * 1996-08-16 1998-04-28 United Microelectronics Corporation Semiconductor memory device having tree-type capacitor
GB2322964B (en) * 1997-03-07 2001-10-17 United Microelectronics Corp Polysilicon CMP process for high-density DRAM cell structures

Also Published As

Publication number Publication date
JP2000022099A (en) 2000-01-21
GB2336716B (en) 2000-11-15
CN1236993A (en) 1999-12-01
DE19908446A1 (en) 1999-11-04
KR100270210B1 (en) 2000-10-16
KR19990081113A (en) 1999-11-15
GB9905192D0 (en) 1999-04-28
FR2778019A1 (en) 1999-10-29
GB2336716A (en) 1999-10-27

Similar Documents

Publication Publication Date Title
US7902081B2 (en) Methods of etching polysilicon and methods of forming pluralities of capacitors
TW516219B (en) Semiconductor device and method for manufacturing the same
TW459386B (en) Memory with trench-capacitor and selection-transistor and its production method
TW390027B (en) A method for fabricating DRAM cell capacitor
US5714401A (en) Semiconductor device capacitor manufactured by forming stack with multiple material layers without conductive layer therebetween
TW464871B (en) 6 1/4 f2 DRAM cell structure with four nodes per bitline-stud and two topological wordline levels
US6403431B1 (en) Method of forming in an insulating layer a trench that exceeds the photolithographic resolution limits
TW412828B (en) DRAM cell capacitor and method for fabricating thereof
TW311256B (en) Manufacturing method of dynamic random access memory
TW388984B (en) Dynamic random access memory manufacturing
TW506121B (en) Circuit-arrangement with at least one capacitor and at least one transistor connected with the capacitor
TW383479B (en) Manufacturing method for interconnect of DRAM
TW432699B (en) A method for fabricating a DRAM cell capacitor
KR960001331B1 (en) Semiconductor memory device and the manufacturing method
TW434886B (en) Manufacturing method of stacked capacitor
TW439268B (en) Dynamic random access memory structure having vertical transistor and its fabricating method
TW299482B (en) Manufacturing method of capacitor of memory cell in DRAM
TW407376B (en) Manufacture of DRAM capacitor
TW439266B (en) Fabricating method of dynamic random access memory
TW396615B (en) Manufacturing method of double crown capacitor of memory cell region in dynamic random access memory
TW307026B (en) Manufacturing method of stacked capacitor
TW321787B (en) Production method of DRAM capacitor
TW432683B (en) Fabrication method of stacked bottom storage node for reducing the crystallization of amorphous silicon
TW393736B (en) Manufacturing method of the DRAM cells' fork-shaped bottom electrode
TW541667B (en) Crown-type capacitor of high-density DRAM