TW202302935A - GaO系單晶基板及GaO系單晶基板的製造方法 - Google Patents

GaO系單晶基板及GaO系單晶基板的製造方法 Download PDF

Info

Publication number
TW202302935A
TW202302935A TW111110789A TW111110789A TW202302935A TW 202302935 A TW202302935 A TW 202302935A TW 111110789 A TW111110789 A TW 111110789A TW 111110789 A TW111110789 A TW 111110789A TW 202302935 A TW202302935 A TW 202302935A
Authority
TW
Taiwan
Prior art keywords
single crystal
crystal
substrate
based single
plane
Prior art date
Application number
TW111110789A
Other languages
English (en)
Inventor
西口健吾
古滝敏郎
Original Assignee
日商安達滿納米奇精密寶石股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商安達滿納米奇精密寶石股份有限公司 filed Critical 日商安達滿納米奇精密寶石股份有限公司
Publication of TW202302935A publication Critical patent/TW202302935A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

議題:可製作完全沒有雙晶的Ga 2O 3系單晶及Ga 2O 3系單晶基板,進而可以高良率生產使用Ga 2O 3系單晶基板的光裝置、功率裝置等。 解決方式:使用雜質濃度調整為單晶中含有的雜質濃度為0.02mol%以上0.15mol%以下的氧化鎵原料,成長完全沒有雙晶的單晶,從該單晶製作完全沒有雙晶的Ga 2O 3系單晶基板。

Description

Ga2O3系單晶基板及Ga2O3系單晶基板的製造方法
本發明係關於Ga 2O 3系單晶基板及Ga 2O 3系單晶基板的製造方法。
最近,開始盛行使用作為新的半導體基板的Ga 2O 3系單晶基板的光裝置、功率裝置等的各種半導體元件的開發。
一般而言,在單晶基板上形成各種裝置結構時,如果在基板存在雙晶,則成長在該部分的層積膜有時發生破裂、裂紋、剝離等,成長與所期望的面方位不同的面方位的層積膜,故無法使用於作為裝置。因此,需要完全不包含雙晶的無雙晶的單晶基板。
惟,如專利文獻1、2所說明,Ga 2O 3系單晶在其結晶成長時有容易發生雙晶的問題。因此,如專利文獻3所述,使用與模具寬度相同寬度的種晶,不進行晶頸及擴展而作結晶成長,可使雙晶大致為0條。 [先行技術文獻] [專利文獻]
[專利文獻1]日本專利第6097989號公報 [專利文獻2]日本專利第5879102號公報 [專利文獻3]日本專利第5777756號公報
[發明所欲解決的問題]
但是,即使以專利文獻3所述方法,由於在從種晶重新結晶化的部分,有時發生雙晶而並不完全是零雙晶,而並不充分。在對雙晶的發生容易度造成影響的要素之一,可舉出該單晶所屬結晶系。現今,使用在半導體產業的Si基板、InP基板、GaN基板等分別屬於立方晶、立方晶、六方晶的對稱性良好的結晶系,與可得完全沒有雙晶的單晶基板不同,Ga 2O 3系單晶屬於對稱性較差的結晶系的單斜晶系,係具有非常強的劈開性的罕見結晶,故不知是否可成長完全沒有雙晶的單晶,製作完全無雙晶的基板。此外,專利文獻3所述的方法,由於不實施晶頸及擴展,故有容易發生結晶缺陷而結晶性不佳的問題。
本發明係有鑑於上述課題所完成,以提供可製作完全沒有雙晶而結晶性良好的Ga 2O 3系單晶及Ga 2O 3系單晶基板,進而可以高良率生產使用Ga 2O 3系單晶基板的光裝置、功率裝置等為目的。 [用以解決問題的手段]
上述課題在本發明者專心研討的結果,發現可藉由以下的[1]~[6]的本發明解決。
[1]一種Ga 2O 3系單晶基板,單晶中含有的雜質共計濃度在0.02mol%以上、0.15mol%以下,而完全沒有雙晶。
[2]如上述[1]之Ga 2O 3系單晶基板,其中上述雜質係由Si、Sn、C、Mg、N、Fe、P、Cu、Co、Ni的任何一個以上的元素構成。
[3]如上述[1]或[2]之Ga 2O 3系單晶基板,其中上述基板的主面為(100)面、(010)面、(001)面、(-201)面、(101)的任一面。
[4]如上述[1]或[2]之Ga 2O 3系單晶基板,其中上述主面為對(100)面、(010)面、(001)面、(-201)面、(101)面的任一面,傾斜7∘以內的面(惟,不包含0∘)。
[5]一種Ga 2O 3系單晶基板的製造方法,其係由以感應加熱模式的單晶成長方法成長的Ga 2O 3系單晶做基板加工,含有的雜質濃度在0.02mol%以上、0.15mol%以下,而完全沒有雙晶。
[6]如上述[5]之Ga 2O 3系單晶基板的製造方法,其中成長上述Ga 2O 3系單晶的方向為a軸方向、b軸方向、c軸方向、或對各個軸以7∘以內(惟,不包含0∘)的範圍傾斜的任一方向。
[發明的效果] 根據本發明,可製作完全沒有雙晶而結晶性良好的Ga 2O 3系單晶基板。
以下參照圖1至圖3,說明本實施形態。在本實施的形態,所謂Ga 2O 3系單晶13係指Ga 2O 3單晶或含有Al的Ga 2O 3結晶。含有Al時,係組成比為(Al 1-xGa x) 2O 3(0<X≦1)的結晶。
作為切出Ga 2O 3系單晶基板16或21的來源的Ga 2O 3系單晶的製造的一例,可舉出以感應加熱模式的單晶成長方法的EFG(Edge-defined Film-fed Growth:限邊薄片續填成長)法成長的β型Ga 2O 3系單晶(β-Ga 2O 3單晶)。圖1係表示採用EFG法的β-Ga 2O 3系單晶的製造裝置1的構造的示意剖面圖。再者,結晶成長方法並非限制在EFG法,亦可為CZ(Czochralski:柴可拉斯基)法、布里奇曼(Bridgman)法等。
如圖1所示在製造裝置1的內部,有填充Ga 2O 3系單晶的原料的坩堝3,然後,坩堝3內設置設有縫隙的模具5。在坩堝13的上表面,除了模具5的上表面,有蓋6。
在坩堝13填充的原料為純度5N(99.999%)以上的高純度Ga 2O 3(氧化鎵)。然後,為保持結晶性良好的狀態且不在成長結晶中發生雙晶,添加在單晶中的共計含有率呈0.02mol%以上、0.15mol%以下的雜質。此亦同時為使Ga 2O 3系單晶基板成所期望的半導體物性值(例如,電阻率、載子類型、載子密度、遷移率等)。再者,由於藉由添加雜質,在結晶成長不容易發生多晶而提升結晶性,故可提升單晶的良率。但是,如果雜質濃度變得過高,則相反地結晶性會變差。沒有添加雜質時,容易發生多晶。雜質元素,有Si、Sn、C、N、P、Fe、Mg、Cu、Co、Ni等,混在氧化鎵的起始原料時,以該等的元素單體或以氧化物、氮化物的形式使用。
再者,填充在坩堝13的原料,為盡可能填充較多,以高密度的原料為佳。
會在成長裝置內加熱成為β-Ga 2O 3的熔點的約1800℃以上的高溫,而會暴露在β-Ga 2O 3的熔液、蒸汽等中的坩堝13、模具5、蓋6等,使用不容易與Ga 2O 3的熔液及蒸汽等反應,且具有超過約1800℃的高熔點材質者。現行,銥最適合,故成長氣氛需要是氬、氮等的惰性氣體100Vol%,或將氧以最高3Vol%程度包含的惰性氣氛。為抑制原料從坩堝3的蒸發,亦可加壓。
坩堝3,藉由以感應線圈所構成的加熱器部9感應加熱到既定的溫度,使坩堝3內的原料熔融,熔液以毛細管現象從狹縫5A升起。
在此,在加熱方式,亦有一般使用於Si單晶的CZ法結晶成長的電阻加熱,但Ga 2O 3系單晶成長的情形以感應加熱較適合。因為Ga 2O 3具有非常容易發生昇華、蒸發的性質,故利用不得不將熱區內全體的溫度上升的電阻加熱的結晶成長的情形,會從種晶、成長的結晶等發生昇華、分解蒸發,故該等結晶變瘦變細,最壞的狀況則會消失。結果,結晶成長的良率下降,甚至結晶本身無法成長。相對於此,感應加熱的情形,由於係只有加熱坩堝3、蓋6等銥的部分的局部加熱,故結晶相對容易冷卻,可將來自結晶部分的昇華、分解蒸發等抑制到可大致忽視的程度。此外,由於不會被不必要地加熱,故亦可相對抑制從坩堝的昇華、蒸發。結果,可提升顯示原本的投入原料之中成為單晶的部分的重量比例的原料效率。
將在狹縫5A上方的種晶10降低,與露出熔液的模具上表面部5B的一部分接觸。之後,藉由將種晶10以既定速度拉升,從種晶10的熔液接觸部開始結晶化。
首先,在盡可能的高溫下,邊調整拉升速度邊將種晶10拉升,為了去除結晶中的差排而製作細的頸部(晶頸13a)。具體而言,在溫度為1800℃以上,使頸部的粗細為種晶與模具上表面部接觸的斷面積的約一半以下,可使Ga 2O 3系單晶13的差排密度為1.0×10 5個/cm 2以下。結晶成長的原理上,種晶以盡可能差排少的為佳。
接著,將種晶保持具11的上升速度設定為既定速度,以種晶10為中心,使Ga 2O 3系單晶13向模具5的寬度方向以一定角度θ擴大的方式結晶成長(擴展13b)。氧化鎵單晶的雙晶,在晶頸、擴展、然後後述的直胴部的任一的成長時均會發生,但特別是在擴展階段頻繁地發生。然後,雙晶沿著與結晶中的(100)面平行的方向成長延伸,直到撞到結晶頂部之前都不會消失。
一般而言,雙晶的出現比例會依存於θ的大小。為不發生雙晶,使θ小而慢慢地擴大為佳。θ越大,由於熔液中的原子會急劇地排列結晶化,故會發生更多原子排列混亂的雙晶。具體而言,如果30∘以下則可使雙晶消失而成長結晶性高的單晶。如果θ比30∘更大會產生雙晶。
但是,不管上述θ的大小,單晶中的雜質濃度在0.02mol%以上時,不會發生雙晶。如果雜質濃度較0.02mol%低,則會發生雙晶。再者,雖然雜質濃度較0.15mol%高時,不會發生雙晶,但會產生晶界且結晶性會變差。因此,雜質濃度以0.15mol%以下為佳。
接著,Ga 2O 3系單晶13,擴展到模具5的全寬(全擴展),則接著,將具有與模具5的全寬相同的寬度形狀的部分(直胴部13c),拉升到適當的長度。直胴部的長度,並無特別限定。
直胴部的成長結束之後,降溫至室溫,再將結晶從製造裝置取出,使用應變檢查器及X射線繞射裝置評估有無雙晶及結晶性。如果單晶中的雜質濃度在上述既定範圍,則完全不存在雙晶。此外,亦完全不存在晶界。再者,上述評估,亦可在將取出的結晶做基板加工之後實施。
再者,如果單晶中的雜質濃度在上述既定範圍,則在Ga 2O 3系單晶13的結晶成長,使用具有與模具5的全寬相同寬度的無雙晶種晶,省去上述晶頸及擴展,從種晶直接成長直胴部時,亦完全不會發生雙晶,然後可成長結晶性優良的無雙晶的單晶。
拉升的面方位按照主面的面方位可以種種設定。拉升的方向為a軸、b軸、c軸、或對各軸傾斜±7∘以內(惟0∘不包括在內)的任一方向上拉升。在此所述拉升方向為結晶的成長方向。作為基板16的主面15,以可形成良好的表面形貌的半導體層,而適於製作紫外LED等的半導體裝置結構的(100)面、(010)面、(001)面、(101)面、(-201)面及對(100)面、(010)面、(001)面、(101)面、(-201)面的任一面以±7∘以內的角度範圍(惟,不包括0∘)傾斜的面的任一為佳。
再者,Ga 2O 3系單晶13的拉升方向及種晶10的設定方向,通常係將Ga 2O 3系單晶13的面20的面方位如上述設定。
接著,說明將結晶成長的Ga 2O 3系單晶13基板加工成Ga 2O 3系單晶基板16的方法。例如,藉由切片機、取心鑽、超音波加工機等,施以切削加工成方形或圓形,切出既定形狀的方形基板或圓形基板。
然後,使用端面磨床進行基板外形的微調整形。
此外,亦可在上述切削加工前後,按照需要,在基板16或21上製作定向平面(Orientation flat)。
關於上述定向平面,主面為(100)面或從(100)面以7∘以下的範圍傾斜的面時,至少定向平面的一個係與主面垂直且對b軸呈平行的端面。上述主面為(100)面以外或從(100)面以7∘以下的範圍傾斜的面以外時,至少定向平面的一個係與上述主面垂直,且對上述主面與上述(100)的交線呈平行的端面。
藉由在上述結晶方位製作定向平面,可在加工時,不會在基板發生裂紋、碎屑、剝離。
接著,以製作的基板16的一面作為主面15,至少對該主面15進行研磨、拋光的研磨加工,使主面15超平坦,同時調整基板16的厚度。此外,對背面19,亦施以按照需要的研磨加工。研磨(lapping)的研磨粒使用氧化鋁為佳。拋光,使用化學機械研磨(CMP),在CMP研磨粒使用膠體二氧化矽為佳。
藉由上述,主面15的表面粗糙度Ra成為3.0nm以下,背面19的表面粗糙度Ra按照需要成為0.1nm以上。
結束上述基板加工之後,去除附著在基板上的矽石等的污垢,為去除調整殘留加工應力、在基板表面形成潔淨的氧化層等,以丙酮等的有機清洗之後做氫氟酸清洗、進一步實施RCA清洗的基板清洗。
再者,在上述基板加工步驟,亦可適當實施對Si、InP、藍寶石等單晶的基板加工領域的業者來說很一般的以去除殘留熱應力、殘留加工應力等、著色為目的及改善電特性為目的熱處理。熱處理的氣氛氣體,除了氫氣等還原性氣體,可使用氮、二氧化碳、氬、氧、空氣的任一氣體,亦可適當組合。處理溫度為500℃~1600℃,以700~1400℃為佳。此外,亦可加壓。
藉由經上述步驟,可製作在主面完全沒有雙晶且完全沒有晶界而結晶性優良的Ga 2O 3系單晶基板。
再者,上述基板的平面方向的形狀,為方形、圓形,或設有定向平面的方形、圓形。然後,為可精密控制形狀,又同時可確保作為自立基板的剛性,且具有不會發生不適合操作的程度的強度,再者,從可防止發生裂紋、毛邊的觀點,上述方形時,以長邊15mm以上、150mm以下,上述各圓形時,以直徑ϕ25mm以上、ϕ160mm以下為佳。
再者,由上述理由,基板的厚度以0.1mm以上、2.0mm以下為佳。
此外,從藉由實施上述EFG法的晶頸及擴展所成長的上述單晶切出,做基板加工的上述基板16的差排密度為1.0×10 5個/cm 2以下。藉由抑制在低差排密度,可提升光裝置的發光效率、改善裝置壽命等、以及在功率裝置,提升功率轉換效率、提升裝置壽命等。
上述差排密度,例如可以蝕刻基板時的點狀蝕坑密度替代,以KOH蝕刻劑蝕刻評估。
以下將說明關於本發明的實施例,惟本發明並非僅限定於以下的實施例。 (實施例1)
在此,說明關於實施晶頸及擴展的EFG法的結晶成長的情形。首先,關於投入坩堝的氧化鎵原料,將各實施例樣品1~4的混合表1所示濃度的Si雜質的純度6N的Ga 2O 3粉原料燒結粉碎。然後,在各結晶成長,將高密度的上述各原料投入坩堝,以下以相同方式施以各結晶成長及研磨加工製作基板。再者,作為Si雜質,使用氧化物的SiO 2
結晶成長爐的氣體氣氛,以大氣壓的氮,藉由感應加熱將銥坩堝加熱。
首先,到達既定溫度,則將種晶下降,使種晶尖端與模具接觸使之熔解。在晶頸步驟,將成長溫度,以偏高的1850℃以上,以種晶拉升速度10mm/hr以上開始,之後適宜調整溫度速度,使頸粗呈ϕ4mm。
接著,在擴展步驟,使拉升速度為10mm/hr,將成長溫度緩慢下降使θ呈50∘,全擴展到模具寬度55mm、模具厚度10mm。
全擴展之後,邊適宜調整溫度速度,邊成長長度55mm的直胴部。
之後,降溫至室溫,將結晶從成長裝置取出。將結晶以應變檢查器評估,結果各實施例樣品的結晶均得到完全沒有雙晶的單晶。
再者,拉升的單晶的最寬的面係成為基板主面的面,本次係以主面成為(-201)面的方式設定種晶且在b軸方向拉升成長。
結束結晶成長之後取出,以應變檢查器及X射線繞射裝置評估各樣品的切出來源的結晶,結果任一結晶均完全不含雙晶。此外,亦完全沒有發生晶界。
接著,為從成長的單晶做基板加工,首先,作為定向平面,以切片機在與b軸方向平行的方向的端面形成一個,在與[10-1]方向平行的端面形成一個,共計兩個端面。之後,以鑽石取心鑽切出尺寸ϕ2英寸的圓形。
接著,在氮氣體氣氛下,以1000℃進行5小時熱處理之後,對基板的主面,進行研磨及拋光。此外,背面僅實施研磨。結束研磨之後,實施上述各清洗,之後以應變檢查器及X射線繞射裝置評估,結果所有的實施例樣品,均得到完全沒有雙晶的無雙晶的ϕ2英寸基板。此外,亦完全沒有晶界而結晶性良好。
[表1]
樣品 單晶中的Si濃度 [mol%] 有無雙晶 有無晶界
1 0.02
2 0.05
3 0.08
4 0.13
(比較例1) 此外,與實施例1同樣地製作比較例樣品5、6。惟,混合在原料而含在結晶中的Si雜質濃度與實施例樣品不同,如表2所示。
[表2]
樣品 單晶中的Si濃度 [mol%] 有無雙晶 有無晶界
5 0.01
6 0.15
結束結晶成長之後,將取出的各樣品的切出來源的結晶以應變檢查器及X繞射裝置評估,結果在樣品5的切出來源的結晶含有雙晶。雖然在樣品6的切出來源的結晶完全不含雙晶,但有發生晶界。
再者,將基板的上述比較例樣品5、6,以應變檢查器及X射線繞射裝置評估,結果樣品5含有雙晶,只有在樣品6完全不含雙晶。但是樣品6存在晶界而結晶性不佳。
以上,如果匯整實施例1及比較例1的結果,則如圖5,使製作晶頸、擴展等的該單晶中所含有Si雜質濃度為0.02mol%~0.15mol%,則可得完全沒有雙晶且完全沒有晶界而結晶性優良的單晶及基板。 (實施例2)
說明使用與模具5的全寬相同寬度的種晶,以省略晶頸及擴展的EFG法的結晶成長的情形。首先,關於投入坩堝的氧化鎵原料,將各實施例樣品7~10成混合表3所示濃度的Si雜質的純度6N的Ga 2O 3粉原料燒結粉碎。然後,在各結晶成長,將高密度的上述各原料投入坩堝,以下與實施例1同樣地施以各結晶成長及研磨加工等以製作基板。再者,作為Si雜質,使用氧化物的SiO 2。此外,單晶係b軸拉升的(-201)面。
結晶成長爐的氣體氣氛,以大氣壓的氮,藉由感應加熱將銥坩堝加熱。
首先,到達既定溫度,則將種晶下降,使種晶尖端與模具接觸使之熔解。以成長溫度1800℃以上、種晶拉升速度50mm/hr以下開始,邊適宜調整溫度速度以使種晶與模具間的熔液不間斷地,邊成長長度55mm的直胴部。
之後,降溫至室溫且將結晶從成長爐取出。將結晶以應變檢查器及X射線繞射裝置評估,結果各實施例樣品的結晶均得到完全沒有雙晶的單晶。此外,亦完全沒有發生晶界。
接著,將成長的單晶與實施例1同樣地基板加工,以應變檢查器及X繞射裝置評估各實施例樣品,結果各樣品均得到完全沒有雙晶的無雙晶、完全沒有晶界而結晶性優良的的ϕ2英寸基板。
[表3]
樣品 單晶中的Si濃度 [mol%] 有無雙晶 有無晶界
7 0.03
8 0.05
9 0.09
10 0.14
(比較例2) 此外,將比較例樣品11、12與實施例2同樣地製作。惟,混合在起始原料時而含在結晶中的Si雜質濃度與實施例2不同,如表4所示。
[表4]
樣品 單晶中的Si濃度 [mol%] 有無雙晶 有無晶界
11 0.01
12 0.18
結束結晶成長之後,取出各樣品的切出來源的結晶,以應變檢查器及X繞射裝置評估,結果在樣品11的切出來源的結晶含有雙晶。雖然在樣品12的切出來源的結晶完全不含雙晶,但有發生晶界。
由上述結晶進行基板加工的樣品11含有雙晶,樣品12完全不含雙晶。但是,只有樣品12存在晶界而結晶性不佳。
以上,匯整實施例2及比較例2的結果,如圖6所示,只要使在省略晶頸、擴展所製作的該單晶中所含有的Si雜質濃度在0.02mol%~0.15mol%,可得完全沒有雙晶且完全沒有晶界而結晶性優良的上述單晶及上述基板。
以上,根據所說明的本實施形態,在結晶中含有0.02~0.15mol%的Si,則可成長完全沒有雙晶而結晶性優良的單晶,藉由對上述單晶做基板加工,可製作完全沒有雙晶的無雙晶、完全沒有晶界而結晶性優良的基板。
再者,本發明並非限定於上述說明的實施形態及實施例,在該領域具有通常知識者可在本發明的技術上思想內有很多變形。
然後,本發明的範圍,係以專利請求項及其同等物所允許的最廣泛的解釋所允許的最大限度所決定,並非以上述所詳細記載限制或限定。
1:成長爐 2:含有Ga 2O 3的熔液 3:坩堝 4:支持台 5:模具 5A:狹縫 5B:開口 6:蓋 7:熱電偶 8:隔熱材 9:加熱器部 10:種晶 11:種晶保持具 12:軸 13:Ga 2O 3系單晶 13a:頸部 13b:擴展 13c:直胴部 15:Ga 2O 3系單晶基板的主面 16,21:Ga 2O 3系單晶基板 19:Ga 2O 3系單晶基板的背面 20:Ga 2O 3系單晶的面 t:Ga 2O 3系單晶基板的厚度 θ:擴展角度
圖1係說明關於本發明之利用EFG法的Ga 2O 3系單晶的製造方法的一例的成長爐的示意剖面圖。 圖2係利用圖1的EFG法的Ga 2O 3系單晶的製造方法的說明圖。 圖3(a)係表示關於本發明的實施形態的Ga 2O 3系單晶基板的一例的斜視圖。(b)係表示關於本發明的實施形態的Ga 2O 3系單晶基板的一例的平面圖。 圖4係表示關於本發明的實施形態的Ga 2O 3系單晶基板的另一例的斜視圖。 圖5係關於本發明的實施例1及比較例1的Ga 2O 3系單晶中的Si雜質濃度[mol%]、有無雙晶、有無晶界的圖表。 圖6係關於本發明的實施例2及比較例2的Ga 2O 3系單晶中的Si雜質濃度[mol%]、有無雙晶、有無晶界的圖表。
1:製造裝置
2:含有Ga2O3的熔液
3:坩堝
4:支持台
5:模具
5A:狹縫
5B:模具上表面部
6:蓋
7:熱電偶
8:隔熱材
9:加熱器部
10:種晶
11:種晶保持具
12:軸
13:Ga2O3系單晶

Claims (6)

  1. 一種Ga 2O 3系單晶基板,單晶中含有的雜質共計濃度在0.02mol%以上、0.15mol%以下,而完全沒有雙晶。
  2. 如請求項1之Ga 2O 3系單晶基板,其中上述雜質係由Si、Sn、C、Mg、N、Fe、P、Cu、Co、Ni的任何一個以上的元素構成。
  3. 如請求項1或2之Ga 2O 3系單晶基板,其中上述基板的主面為(100)面、(010)面、(001)面、(-201)面、(101)面的任一面。
  4. 如請求項1或2之Ga 2O 3系單晶基板,其中上述主面為對(100)面、(010)面、(001)面、(-201)面、(101)面的任一面,傾斜7∘以內(惟,不包含0∘)的面。
  5. 一種Ga 2O 3系單晶基板的製造方法,其係由以感應加熱模式的單晶成長方法成長的Ga 2O 3系單晶做基板加工,含有的雜質濃度在0.02mol%以上、0.15mol%以下,而完全沒有雙晶。
  6. 如請求項5之Ga 2O 3系單晶基板的製造方法,其中成長上述Ga 2O 3系單晶的方向為a軸方向、b軸方向、c軸方向、或對各個軸以±7∘以內(惟,不包含0∘)的範圍傾斜的任一方向。
TW111110789A 2021-03-24 2022-03-23 GaO系單晶基板及GaO系單晶基板的製造方法 TW202302935A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021049333A JP2022147882A (ja) 2021-03-24 2021-03-24 Ga2O3系単結晶基板と、Ga2O3系単結晶基板の製造方法
JP2021-049333 2021-03-24

Publications (1)

Publication Number Publication Date
TW202302935A true TW202302935A (zh) 2023-01-16

Family

ID=83397414

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111110789A TW202302935A (zh) 2021-03-24 2022-03-23 GaO系單晶基板及GaO系單晶基板的製造方法

Country Status (3)

Country Link
JP (2) JP2022147882A (zh)
TW (1) TW202302935A (zh)
WO (1) WO2022202767A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786179B2 (ja) * 2010-03-12 2015-09-30 並木精密宝石株式会社 酸化ガリウム単結晶及びその製造方法
JP5879102B2 (ja) * 2011-11-15 2016-03-08 株式会社タムラ製作所 β−Ga2O3単結晶の製造方法
JP2013237591A (ja) * 2012-05-16 2013-11-28 Namiki Precision Jewel Co Ltd 酸化ガリウム融液、酸化ガリウム単結晶、酸化ガリウム基板、および酸化ガリウム単結晶の製造方法
JP5788925B2 (ja) * 2013-04-04 2015-10-07 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
JP5865440B2 (ja) * 2014-06-30 2016-02-17 株式会社タムラ製作所 β−Ga2O3系単結晶基板の製造方法
JP5749839B1 (ja) * 2014-06-30 2015-07-15 株式会社タムラ製作所 β−Ga2O3系単結晶基板
EP3042986A1 (en) * 2015-01-09 2016-07-13 Forschungsverbund Berlin e.V. Method for growing beta phase of gallium oxide (ß-Ga2O3) single crystals from the melt contained within a metal crucible by controlling the partial pressure of oxygen.
JP6567865B2 (ja) * 2015-05-08 2019-08-28 株式会社タムラ製作所 Ga2O3系単結晶基板

Also Published As

Publication number Publication date
JP2022147882A (ja) 2022-10-06
JP2023021233A (ja) 2023-02-10
WO2022202767A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
CN107208311B (zh) 碳化硅单晶块的制造方法和碳化硅单晶块
EP2455515B1 (en) Process for producing sic single crystal
TWI628319B (zh) β-Ga 2 O 3 Method for cultivating single crystals, and β-Ga 2 O 3 Single crystal substrate and its manufacturing method (1)
JP5542383B2 (ja) シリコンウェーハの熱処理方法
KR101310292B1 (ko) 사파이어 시드 및 그 제조방법과 사파이어 단결정의 제조방법
CN111945220A (zh) 一种制备8英寸籽晶的方法
JP2023533326A (ja) 高品質の炭化ケイ素種結晶、炭化ケイ素結晶、炭化ケイ素基板およびそれらの製造方法
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
TWI580827B (zh) Sapphire single crystal nucleus and its manufacturing method
Deitch et al. Bulk single crystal growth of silicon-germanium
JPH11322490A (ja) シリコン単結晶ウエ―ハの製造方法およびシリコン単結晶ウエ―ハ
US6143267A (en) Single crystal SiC and a method of producing the same
JP2007070131A (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP7394332B2 (ja) 鉄ガリウム合金の単結晶インゴットの育成方法およびその加工方法、鉄ガリウム合金の単結晶インゴット
TWI779145B (zh) 處理單晶矽鑄碇以改善雷射光散射環狀/核狀圖案的方法
KR20030023509A (ko) 실리콘 반도체기판 및 그 제조방법
TW202302935A (zh) GaO系單晶基板及GaO系單晶基板的製造方法
CN114262936B (zh) 碳化硅单晶生长方法及裂纹闭合生长方法
TWI765810B (zh) 碳化矽錠的製造方法、碳化矽晶圓的製造方法、碳化矽錠以及碳化矽錠製造裝置
JP2012031004A (ja) 半絶縁性GaAs単結晶ウエハ
JPH0797299A (ja) SiC単結晶の成長方法
CN114561701B (zh) 一种铸造法生长氧化镓单晶的方法及包含氧化镓单晶的半导体器件
JP2013049608A (ja) 大口径サファイア単結晶基板
WO2023181259A1 (ja) AlN単結晶基板及びデバイス
EP4105367A1 (en) Silicon carbide wafer and semiconductor device