TW202124285A - 鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件 - Google Patents

鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件 Download PDF

Info

Publication number
TW202124285A
TW202124285A TW109134814A TW109134814A TW202124285A TW 202124285 A TW202124285 A TW 202124285A TW 109134814 A TW109134814 A TW 109134814A TW 109134814 A TW109134814 A TW 109134814A TW 202124285 A TW202124285 A TW 202124285A
Authority
TW
Taiwan
Prior art keywords
ferrite
particles
ferrite powder
powder
spherical
Prior art date
Application number
TW109134814A
Other languages
English (en)
Inventor
安賀康二
小島隆志
杉浦隆男
續忠志
近野曉美
桑原翔
Original Assignee
日商保德科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商保德科技股份有限公司 filed Critical 日商保德科技股份有限公司
Publication of TW202124285A publication Critical patent/TW202124285A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2262Oxides; Hydroxides of metals of manganese
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

提供一種鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件,所述鐵氧體粉末應用於複合材料時,能夠不損及成形性及填充性且抑制鐵氧體粒子的脫落。此鐵氧體粉末,至少包含於表面具備階段結構的球狀或多面體狀的鐵氧體粒子,前述階段結構於前述鐵氧體粒子的表面具有多邊形狀的輪廓。

Description

鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件
本發明關於鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件。
鐵氧體粉末與樹脂所構成的複合材料,以電磁波遮蔽材起始,多用於種種的用途。此種的複合材料是藉由將鐵氧體粉末與樹脂混練以製作。複合材料成形為片等的形狀而成形為複合體(成形體)。此時,構成鐵氧體粉末的粒子的形狀接近球形的話,成形時的流動性變高,複合體中的鐵氧體粉末的填充率變高。因此,在成形性變得良好的同時,電磁波遮蔽性能等的特性亦變得良好。依此觀點,提案有以球狀或多面體狀的粒子構成的鐵氧體粉末(粒子)。
例如是,專利文獻1(國際公開第2017/212997號)揭示一種鐵氧體粒子,為平均粒徑1~2000nm的單結晶且具備真球狀的粒子形狀,其特徵在於該鐵氧體粒子實質上不含Zn,含有3~25重量%的Mn,43~65重量%的Fe,記載有該鐵氧體粒子與黏結劑構成的成形體所測定的複合磁導率的實部在100MHz~1GHz的頻帶中具有極大值,該鐵氧體粒子使用於電子機器的電磁波遮蔽材料,能夠與頻率無關的穩定的遮蔽廣範圍頻帶的電磁波(專利文獻1的請求項1及段落[0078])。
專利文獻2(日本專利公開2016-60682號公報)揭示一種真球狀鐵氧體粉,其特徵在於含有15~30重量%的粒徑未滿11 μm的鐵氧體粒子,且體積平均粒徑為10~50 μm,記載有作為填料使用時的填充性以及成形性良好,具有優良的操作性且高阻抗,因此此球狀鐵氧體粉與樹脂共同做成樹脂組合物,進而成形的成形體,能夠使用於電磁波吸收用的IC封裝劑起始的種種用途(專利文獻2的請求項1及段落[0093])。
專利文獻3(國際公開第2018/061327號)揭示一種Ni-Zn-Cu系鐵氧體粒子,其特徵在於該鐵氧體粒子為平均粒徑1~2000 nm的單結晶且具備多面體狀的粒子形狀,含有5~10重量%的Ni,15~30重量%的Zn,1~5重量%的Cu,25~50重量%的Fe,記載有由於該鐵氧體粒子兼備高飽和磁化以及高電阻,適用於磁填料或成形體原料(專利文獻3的請求項1及段落[0089])。
專利文獻4(日本專利公開2006-160560號公報)揭示一種球狀燒結鐵氧體粒子,(a)可溶性離子的含量為5 ppm以下,(b)平均粒徑為10~50 μm的範圍,(c)X線繞射所得的結晶結構顯示偏鋁酸鎂結構,記載有含有該球狀燒結鐵氧體粒子與二氧化矽粒子所構成的填料之半導體封裝用樹脂組合物,於低黏度具有良好的流動特性,且具有電磁波遮蔽性能,藉由將此樹脂組合物作為封裝材料使用,所得的半導體裝置的EMC優良(專利文獻4的請求項1及段落[0023])。
專利文獻5(日本專利公開平04-304700號公報)揭示一種Mn-Zn系鐵氧體粒子構成的電波吸收體材料粉末,其特徵在於為平均粒徑為50~150 μm的球狀粒子,記載有藉由為平均粒徑150 μm以下的球狀,能夠藉由流動性提升而改善習知成為材料大粒徑化障礙之射出成形的澆口的阻塞(專利文獻5的請求項1及段落[0008])。
而且,雖然是使用於與電磁波遮蔽材等的複合材料不同的用途,在專利文獻6(日本專利第5921801號公報)揭示一種電子照相顯影劑用載體芯材的製造方法,其特徵在於將作為原料的Fe2 O3 粉末、每10 kg該Fe2 O3 粉末為10~50 g的作為副原料之碳酸鹽與還原劑做成的混合物顆粒化之後,以1000℃以下的溫度燒成,製造在粒子的表面具有同心圓狀擴展的隆起部分的集合之階段狀凹凸的載體芯材,記載有該載體芯材的球形度為0.8以上(專利文獻6的請求項1及段落[0024])。 [先前技術文獻] [專利文獻]
[專利文獻1]國際公開第2017/212997號 [專利文獻2]日本專利公開2016-60682號公報 [專利文獻3]國際公開第2018/061327號 [專利文獻4]日本專利公開2006-160560號公報 [專利文獻5]日本專利公開平04-304700號公報 [專利文獻6]日本專利第5921801號公報
[發明所要解決的課題] 依此,提案藉由使用球狀或多面體狀的鐵氧體粉末,以謀求作為複合材料或複合體時的成形性以及填充性改善。但是,本發明人們調查時,得知如使用此種的鐵氧體粉末與樹脂製作複合體,具有鐵氧體粒子容易從複合體脫落的問題。特別是複合體加工之際鐵氧體粒子的脫落(脫離粒子)被多數發現。此種的鐵氧體粒子脫落由於會導致複合體表面的平滑性劣化,較為不佳。
在探究粒子脫落的原因時,本發明人認為球狀或多面體狀的鐵氧體粉末由於其表面過於平滑,與樹脂的密接力差。進而進行檢討的結果,得到下述發現:即使是球狀或多面體狀的鐵氧體粉末,藉由在其表面設置多邊形狀的階段結構而改善與樹脂的密接力,以及具備此種粒子的鐵氧體粉末,將其應用於複合材料或複合體時,能夠不損及成形性及填充性且抑制粒子的脫落,從而完成本發明。
因此,本發明的課題為提供一種鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件,所述鐵氧體粉末應用於複合材料或複合體時,能夠不損及成形性及填充性且抑制粒子的脫落。 [用於解決課題的手段]
本發明包含下述(1)~(7)的態樣。尚且,本說明書中的「~」的表示方式包含其兩端的數值。亦即是,「X~Y」與「X以上、Y以下」同義。
(1)一種鐵氧體粉末,至少包含於表面具備階段結構的球狀或多面體狀的鐵氧體粒子,前述階段結構於前述鐵氧體粒子的表面具有多邊形狀的輪廓。
(2)上述(1)的鐵氧體粉末,前述階段結構具有2段以上的階段。
(3)上述(1)或(2)的鐵氧體粉末,前述鐵氧體粉末其形狀係數SF-1為100~110。
(4)上述(1)~(3)的任一項的鐵氧體粉末,前述鐵氧體粉末其體積粒度分布的50%徑(D50)為0.10~20.00 μm。
(5)上述(1)~(4)的任一項的鐵氧體粉末,前述鐵氧體粉末具有錳(Mn)含量為4.0~17.0質量%、鐵(Fe)含量為50.0~70.0質量%之錳(Mn)鐵氧體的組成。
(6)一種鐵氧體樹脂複合材料,包含上述(1)~(5)的任一項的鐵氧體粉末與樹脂。
(7)一種電磁波遮蔽材、電子材料或電子構件,包含上述(6)的鐵氧體樹脂複合材料。 [發明的效果]
依照本發明,提供一種鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件,所述鐵氧體粉末應用於複合材料或複合體時,能夠不損及成形性及填充性且抑制鐵氧體粒子的脫落。
以下對本發明的具體的實施型態(以下稱為「本實施型態」)進行說明。本發明並不限定於以下實施型態,在不變更本發明的要旨的範圍內可進行種種的變更。
1.鐵氧體粉末 本實施型態的鐵氧體粉末至少包含於表面具備階段結構的球狀或多面體狀的鐵氧體粒子。此階段結構於鐵氧體粒子的表面具有多邊形狀的輪廓。
本實施型態的鐵氧體粉末由複數的鐵氧體粒子構成。亦即是,鐵氧體粉末為複數的鐵氧體粒子的集合體。而且,鐵氧體粉末至少包含於表面具備階段結構的球狀或多面體狀的鐵氧體粒子(球狀樣階段粒子)。亦即是,構成鐵氧體粉末的鐵氧體粒子,可以是其一部分為球狀樣階段粒子,或者亦可以是全部為球狀樣階段粒子。
藉由使鐵氧體粉末所含的粒子的形狀為球狀或多面體狀,能夠使此粉末的成形性以及填充性更為優良。這是因為球狀或多面體狀的粒子在成形時與其他粒子接觸時能後滑順地迴避。因此成形時的流動性良好並緻密地填充。相對於此,具有板狀或針狀此種異方形狀或不定形狀的粒子,成形性與填充性差。
鐵氧體粉末含鋅(Zn)或鍶(Sr)等的飽和蒸汽壓高的成分時,粒子容易成為多面體狀。這是被認為是因為鐵氧體粉末製造時的高溫加熱(熱噴塗)步驟中,飽和蒸汽壓高的成分由粒子內部向外部移動而作為助焊劑的功能,依此粒子容易成長為反應結晶結構的多面體狀。另一方面,鐵氧體粉末不含飽和蒸汽壓高的成分時,例如是具有錳(Mn)鐵氧體等的組成時,粒子容易成為球狀。
多面體狀的粒子基本上具有複數的多邊形立體的組合之形狀。構成多面體的多邊形,典型為三角形、四邊形、六邊形、八邊形、十邊形或此些的組合而構成。作為此種的多面體,例如是舉出四邊形、六邊形與八邊形的組合而成的大斜方截半立方體。而且,多面體的面數越多的話越接近球。因此,多面體狀粒子較佳為具有10面體以上,更佳為具有12面體以上,再更佳為具有14面體以上的形狀。而且,多面體典型為具有100面體以下,更典型為具有72面體以下,再更典型為具有24面體以下的形狀。
尚且,構成多邊形的直線在一處或複數處斷裂的粒子,或直線的一部份成為曲線的粒子,如果在觀察粒子整體時可認知為多面體狀的程度,亦認定為包含於多面體狀粒子。而且,構成多邊形的直線包含有細微的鋸齒之粒子,亦認定為包含於多面體狀粒子。進而,球狀樣階段粒子在其表面具有階段結構,嚴格來說,具有不為完全的球狀或多面體狀的情形。但是,此階段結構與粒子的尺寸相比格外的小。因此,即使具有此種微觀的階段結構,巨觀來看具有球或多面體的形狀的粒子,亦視為球狀或多面體狀的粒子。
本實施型態的鐵氧體粉末,在其所含的鐵氧體粒子(球狀樣階段粒子)具備階段結構。此階段結構使用圖1以及圖2進行說明。圖1以及圖2為本實施型態的一態樣的球狀樣階段粒子的表面SEM像。如圖1以及圖2所見可知,粒子的表面並非平滑,形成有階段結構。藉由包含此種具有階段結構的粒子,在將鐵氧體粉末應用於複合材料或複合體時,與樹脂的密接力提升且抑制粒子脫落。其詳細的機制雖不明確,但推測藉由在粒子表面存在階段結構,粒子的表面積、亦即是與樹脂的接觸面積增大,其結果,粒子與樹脂之間的化學的結合力變高。而且,推測藉由階段結構的段差而將粒子與樹脂嵌合,發揮了樹脂的錨定效果,粒子與樹脂之間的物理的結合力變高。
階段結構為在鐵氧體粒子的表面具有多邊形狀的輪廓。亦即是,由表面觀察粒子時,階段結構其外形(輪廓)為多邊形。換句話說,可以藉由直線的組合而包圍粒子表面的一個區域的方式來設置階段結構。藉由設置此種的階段結構,能夠更有效果的防止粒子的脫落。階段結構的輪廓並不限定為多邊形狀。但是,反應鐵氧體的結晶結構,輪廓典型的為三角形、四邊形、六邊形、八邊形、十邊形。而且,鐵氧體粒子其表面亦可以具備複數的階段結構。依此,能夠更為有效的防止粒子的脫落。各鐵氧體粒子所具備的階段結構,較佳為4~50個,更佳為4~30個。
尚且,階段結構的輪廓較佳為無端點,亦即是為由封閉的直線形狀所構成。但是,構成輪廓的直線的一處或複數處斷裂的情形,直線的一部分成為曲線的情形,或直線包含有細微的鋸齒的情形,如果在觀察整體時可認知為多邊形狀的程度,亦認定為多邊形狀的輪廓。
構成階段結構的階段可為1段,亦可為多段。但是,階段的段數越多,能夠更為有效的防止粒子的脫落。因此,階段段數較佳為2段以上,更佳為4段以上。另一方面,階段段數過多的話,具有鐵氧體粒子粉末的流動性劣化的疑慮。因此,階段的段數較佳為100段以下,更佳為80段以下。尚且,階段結構由多段階段構成的情形,上段的階段所包圍的區域比其下段的階段所包圍的區域小1點。亦即是階段結構亦能夠構成為越上段面積越小的多邊形板的積層體。
階段結構由多段階段構成的情形,階段的平均間隔(Hs)較佳為0.001~0.2 μm(1~200 nm)。此處,平均間隔(Hs)為階段結構的鄰接的斷差(step)間的距離的平均值。此處使用圖3進行說明。圖3為多段階段結構的斷面模式圖。如圖3所示的多段階段結構存在有複數的段差,且與鄰接的段差隔著某距離而分離。此鄰接的段差間的距離的平均值設為階段的平均間隔(Hs)。平均間隔(Hs)可使用掃瞄式電子顯微鏡(SEM)等觀察鐵氧體粒子表面而求得。Hs較佳為3nm以上,更佳為10nm以上。而且,Hs較佳為100 nm以下,更佳為50 nm以下,特佳為25 nm以下。
體積平均粒徑(D50)為2.00 μm以上的情形,鐵氧體粉末中的球狀樣階段粒子的含有比例(Ps)以個數基準較佳為3%以上,更佳為20%以上,再更佳為60%以上。Ps越高的話,與樹脂的密接力提升且抑制粒子脫落。因此,Ps越高越好。但是,典型的為90%以下,更典型的為80%以下,再典型的為70%以下。尚且,Ps能夠藉由掃瞄式電子顯微鏡(SEM)等觀察而求得。而且,Ps能夠藉由控制鐵氧體粉末製造時的條件來調整。
另一方面,體積平均粒徑(D50)為0.10 μm以上、未滿2.00 μm的情形,鐵氧體粉末中的球狀樣階段粒子的含有比例(Ps)以個數基準較佳為0.5%以上,更佳為1%以上,再更佳為2%以上。Ps越高的話,與樹脂的密接力提升且抑制粒子脫落。但是,從樹脂脫離而成為問題者為0.3 μm以上的粒子。如體積平均粒徑在0.10 μm以上、未滿2.00 μm的範圍內,粒徑較小則BET比表面積大。因此,Ps滿足0.5%以上的範圍即可。Ps典型的為60%以下,更典型的為45%以下,再更典型的為30%以下。尚且,Ps能夠藉由掃瞄式電子顯微鏡(SEM)等觀察而求得。而且,Ps能夠藉由控制鐵氧體粉末製造時的條件以調整。
鐵氧體粉末其形狀係數SF-1較佳為100~110。SF-1為構成粉末之粒子的球形度的指標,完全的球形為100,越離開球形則變大。藉由使SF-1為110以下,即使粒子為球狀或多面體狀的其中之一,但因粉末的流動性高,成形性及填充性更為優良。SF-1較佳為105以下,更佳為103以下。
鐵氧體粉末其形狀係數SF-2較佳為100~110。SF-2為構成粉末之粒子表面凹凸程度的指標。SF-2如表面無凹凸則為100,凹凸越深則變大。本實施型態的鐵氧體粉末於粒子表面具有微觀的階段結構,依此在作為複合材料或複合體時,與樹脂的密接性提升並抑制粒子的脫落。因此較佳為適度高的SF-2。SF-2更佳為101%以上。另一方面,SF-2過高的話,粉末的流動性變差,具有成形性與填充性變差的疑慮。SF-2更佳為105以下。
鐵氧體粉末其體積粒度分布的50%徑(體積平均粒徑;D50)較佳為0.10~20.00 μm。藉由使D50為0.10 μm以上,能夠抑制鐵氧體粉末的凝集,成形性與填充性更為優良。另一方面,藉由使D50為20.00 μm以下,能夠抑制粒子間空隙的產生,填充性更為優良。D50更佳為0.50 μm以上,再更佳為0.60 μm以上,特佳為0.80 μm以上,最佳為1.00 μm以上。而且,D50更佳為10.00 μm以下,再更佳為8.00 μm以下,特佳為6.00 μm以下,最佳為4.00 μm以下。
鐵氧體粉末在後述的粒度分布測定中0.3 μm以上的粒子的含有比例較佳為0.1個數%以上,更佳為5.0個數%以上,再更佳為10.0個數%以上,最佳為20.0個數%以上。尚且,個數分布是使用將體積粒度分布測定結果換算為個數分布的資料。
鐵氧體粉末其振實密度較佳為0.50~3.50 g/cm3 ,更佳為1.00~3.00 g/cm3 。藉由混合小粒徑的大粒徑的粒子能夠提高振實密度,其結果,鐵氧體粉末的填充性作為整體更為優良。
鐵氧體粉末其BET比表面積較佳為0.35~10.00 m2 /g。藉由使BET比表面積為10.00 m2 /g以下,能夠抑制鐵氧體粉末的凝集,成形性以及填充性更為優良。另一方面,藉由使BET比表面積為0.35 m2 /g以上,能夠抑制粒子間空隙的產生,填充性更為優良。而且,藉由使BET比表面積於上述範圍內,鐵氧體粉末應用於複合材料或複合體時,與樹脂的密接性更為良好。BET比表面積更佳為0.50 m2 /g以上。而且,BET比表面積更佳為7.50 m2 /g以下,再更佳為5.00 m2 /g以下,特佳為2.50 m2 /g以下。
鐵氧體粉末的組成並沒有特別限制。但是,鐵氧體粉末較佳為具有錳(Mn)鐵氧體的組成。錳(Mn)鐵氧體為主要包含錳(Mn)、鐵(Fe)、氧(O)的鐵氧體,可含有鎂(Mg)、鋅(Zn)以及/或是鍶(Sr)等的其他成分。錳(Mn)鐵氧體亦可具有不包含其他成分,包含錳(Mn)、鐵(Fe)、氧(O),殘餘部分由不可避免的雜質構成之組成。而且,鐵氧體粉末的錳(Mn)含量較佳為4.0~17.0質量%,鐵(Fe)含量較佳為50.0~70.0質量%。藉由為此種組成,能夠使鐵氧體粉末及使用其製作的複合料或複合體的磁特性良好。錳(Mn)含量更佳為4.0~11.0質量%,再更佳為5.0~10.0質量%。而且,鐵(Fe)含量更佳為60.0~65.0質量%,再更佳為61.0~65.0質量%
2.鐵氧體粉末的製造方法 本實施型態的鐵氧體粉末其製造方法並無限制。但是,如下述說明,能夠藉由以規定條件熱噴塗(thermal spraying)鐵氧體原料的混合物,接著急冷以製造。
〈原料混合〉 首先,混合鐵氧體原料以做成原料混合物。作為鐵氧體原料,可使用氧化物、碳酸鹽、氫氧化物以及/或是氯化物等公知鐵氧體原料。而且,原料的混合使用漢塞混合機等公知的混合機,亦可使用乾式以及濕式的其中之一或兩者進行。
〈預燒成及粉碎〉 其次,將所得的原料混合物預燒成為預燒成物。預燒成可使用公知的手法進行。例如是可使用迴轉窯、連續爐或是批式爐等的爐來進行。預燒成的條件亦可為公知的條件。例如是舉出在大氣等的氣體環境下以700~1300℃保持2~12小時的條件。
〈造粒〉 其後,將所得的預燒成物粉碎並造粒以做成造粒物。粉碎方法並沒有特別的限制。例如是使用振動研磨機、球磨機或珠磨機等的公知的粉碎機,亦可使用乾式以及濕式的其中之一或兩者進行。造粒方法亦可為公知的方法。例如是於粉碎後的預燒成物中添加水及因應需要的聚乙烯醇(PVA)等黏結劑、分散劑以及/或是消泡劑以調整黏度,其後使用噴霧乾燥機等的造粒機以造粒。
通常於鐵氧體粒子的製造中,黏結劑成分在正式燒成之前去除。相對於此,本實施型態較佳是不進行去黏結劑處理。藉由在含有黏結劑的狀態進行熱噴塗,能夠穩定的生成階段形狀。
如同前述,製造後的鐵氧體粉末包含鋅(Zn)或鍶(Sr)等的飽和蒸汽壓高的成分時,粒子容易成為多面體狀。另一方面,即使是包含飽和蒸汽壓高的元素之情形,藉由於後述的高溫加熱(熱噴塗)步驟適當的控制溫度,能夠一邊維持真球狀的粒子形狀,一邊於粒子表面形成多面體形狀的細微階段結構。這是因為鐵氧體主成分之鐵(Fe)與鐵(Fe)以外的元素的飽和蒸汽壓相異。而且,除了適當的控制溫度之外,藉由利用在高溫加熱(熱噴塗)步驟所供給的原料粒子(造粒物)所含的黏結劑成分的吸熱反應是有效的。
具體而言,原料粒子組成(MFe 、Mm )以及黏結劑樹脂量(B)所表示的相對黏結劑樹脂量(B×(MFe +Mm )/Mm ,單位:質量%),較佳以滿足下述(1)式的方式調整。尚且,下述(1)式中,MFe 為鐵(Fe)的莫耳數,Mm 為鐵(Fe)以外的金屬元素的總莫耳數,B為黏結劑樹脂的量(單位:質量%)。
[數1]
Figure 02_image001
…(1)
相對黏結劑樹脂量如低於0.06,黏結劑樹脂成分添加量變得過少。由於熱噴塗火焰的溫度變得過高,即使是真球狀的粒子亦難以形成階段結構。另一方面,相對黏結劑樹脂量高於0.30的話,黏結劑成分添加量過多。因此,熱噴塗火焰的溫度下降過多,不僅真球狀的粒子,亦大量形成不定形的粒子。相對黏結劑樹脂量更佳為0.07以上、0.20以下。
〈熱噴塗〉 接著對所得的造粒物熱噴塗以得到熱噴塗物。熱噴塗可以將燃燒氣體與氧的混合氣體作為可燃性氣體燃燒焰使用。燃燒氣體與氧的容量比較佳為1:3.5~1:6.0,更佳為1:4.9~1:6.0,特佳為1:4.9~1:5.3。依此能夠使揮發的材料凝縮,較佳的進行粒徑小的粒子的形成。例如是舉出相對於燃燒氣體7 Nm3 /小時而氧為35 Nm3 /小時的比例(燃燒氣體與氧的容量比為1:5)的條件。
燃燒氣體或氧過多的條件,未用於燃燒的氣體或氧因燃燒而奪取產生的熱,具有火焰的溫度下降的疑慮。因此,以此種條件進行熱噴塗並不佳。未使用於燃燒的剩餘燃燒氣體量較佳為所供給的燃燒氣體量的20體積%以下。而且,未使用於燃燒的剩餘氧量較佳為所供給的氧量的20體積%以下。
作為熱噴塗所使用的燃燒氣體,舉出丙烷氣體、丙烯氣體、乙炔氣體等的可燃性氣體,其中較佳為丙烷氣體。為了使造粒物能夠在可燃性氣體中搬送,可以使用氮、氧、空氣等搬送氣體。所搬送的造粒物的流速較佳為20~60 m/秒。熱噴塗溫度較佳為1000~3500℃,更佳為2000~3500℃。藉由滿足此種條件,能夠使揮發的材料凝縮,進而較佳的進行粒徑較小的粒子的形成。而且,能夠進而較佳的調整所得的鐵氧體粒子的形狀。
其次,於藉由熱噴塗鐵氧體化的粒子導入冷卻用氣體進行急冷及凝固,並以旋風器或過濾器回收凝固的粒子。然後,亦可將回收的鐵氧體粒子因應需要分級。能夠使用室溫的大氣作為冷卻用氣體。或者是,為了防止急冷而氧化,亦可以使用低於室溫的空氣或惰性氣體(氮氣、氦氣、氬氣等)。分級可使用既有的風力分級(氣流分級)、篩網(mesh)過濾、篩(sieve)分級、沈降等手法,粒度調整至所希望的粒徑。尚且,旋風器等的氣流分級能夠將粒徑大的粒子於1個步驟中分離並回收。
為了得到具備階段結構的鐵氧體粒子(球狀樣階段粒子),重要的是以規定條件熱噴塗造粒物。熱噴塗時將造粒物整體熔融後進行急冷。其詳細的機制不明,但推測可能是高溫熔融時反映鐵氧體的結晶結構的多邊形狀的階段結構形成於粒子表面,藉由急冷而其結構繼續保持的被冷卻。亦即是,藉由熱噴塗含有黏結劑的造粒物,黏結劑一邊分解且原料一次粒子一邊變化為鐵氧體粒子(球狀樣階段粒子)。黏結劑分解為吸熱反應,即使形成階段結構亦難以加入必要以上的熱。因此,推測容易生成以及維持明確的階段結構。另一方面,造粒物未含有黏結劑或含量非常少的情形,由火焰接受過剩的熱。因此,即使形成階段結構,隨著時間經過階段結構無法維持於粒子整體,而局部的消滅。造粒物的黏結劑含量相對於造粒物的質量較佳為0.007質量%以上。另一方面,造粒物的黏結劑的含量過剩的情形,由於吸熱反應變得過大而容易生成不為真球狀的粒子。造粒物的黏結劑含量相對於造粒物的質量較佳為0.100質量%以下,更佳為0.050質量%以下。
而且,造粒物以熔融溫度以下的溫度燒成而做成鐵氧體粒子的情形,難以形成多邊形狀的階段結構,假使有形成,亦被認為經由徐冷而階段結構消失。例如是,專利文獻6是製造將原料顆粒化之後以1000℃以下的溫度燒成之粒子表面具有階段狀的凹凸的載體芯材(專利文獻6的請求項1)。但是,此階段狀的凹凸為同心圓狀,與本實施型態對象之階段結構的形狀相異。
而且,熱噴塗時的條件亦重要。亦即是,藉由自通過熱噴塗火焰中之際的溫度(對原料粒子賦予熱量)冷卻至室溫為止之間的時間,發現階段結構的機制變化。特別是,藉由將通過高溫度火焰的原料一次粒子急冷而發現階段結構。即使是相同溫度的火焰,原料一次粒子的每單位時間的通過數量(每單位時間的處理量)變多的話則難以發現階段結構。因此,由發現階段結構的觀點,較佳是熱噴塗原料的供給量少。例如是,供給量較佳為20 kg/時間以下,更佳為10 kg/時間以下,最佳為未滿5 kg/時間。
而且,燃燒氣體量比較佳為1.05以上、2.00以下。此處,燃燒氣體量比是實際燃燒所使用的燃燒氣體量(Nm3 /時間)對原料供給量(kg/時間)之的比,依照下述(2)式求得。
[數2]
Figure 02_image003
…(2)
而且,實際的燃燒所使用的燃燒氣體量(Nm3 /時間),依照下述(3)式或(4)式求得。
[數3] 實際的燃燒氣體量=供給的氧量/5 …(3) (供給的燃燒氣體量×5-供給的氧量≧0的情形) [數4] 實際的燃燒氣體量=供給的燃燒氣體量 …(4) (供給的燃燒氣體量×5-供給的氧量<0的情形)
3.鐵氧體樹脂複合材料 本實施型態的鐵氧體樹脂複合材料,包含上述鐵氧體粉末與樹脂。依照此複合材料,不損及成形性及填充性,抑制鐵氧體粒子的脫落。
作為構成複合材料的樹脂,例如是舉出環氧樹脂、胺基甲酸酯樹脂、丙烯酸樹脂、矽酮樹脂、聚醯胺樹脂、聚醯亞胺樹脂、聚醯胺醯亞胺樹脂、氟樹脂或此些的組合。此處矽酮樹脂亦可為藉由丙烯酸、胺基甲酸酯、環氧基以及/或是氟等改質的改質矽酮樹脂。
複合材料亦可以包含鐵氧體粉末與樹脂以外的其他成分。作為此種的成分,例如是舉出溶媒、填充劑(有機填充劑、無機填充劑)、塑化劑、抗氧化劑、分散劑、顏料等的著色劑以及/或是熱傳導性粒子等。
複合材料中的鐵氧體粉末對全固體成分的比例,較佳為50~95質量%,更佳為80~95質量%。而且,複合材料中的樹脂對全固體成分的比例,較佳為5~50質量%,更佳為5~20質量%。藉由使鐵氧體粉末或樹脂的比例為上述範圍內,複合材料中的鐵氧體粉末的分散穩定性,以及複合材料的保存穩定性以及成形性優良的同時,複合材料成形所得的複合體(成形體)的機械強度或電磁波遮蔽性能等的特性更為優良。
4.電磁波遮蔽材、電子材料、電子構件 本實施型態的電磁波遮蔽材、電子材料或電子構件,包含上述的鐵氧體樹脂複合材料。電磁波遮蔽材、電子材料或電子構件可將複合材料以公知的手法成形以製作。成形手法並沒有特別的限制,例如是舉出壓縮成形、擠製成形、射出成形、吹塑成形、壓延成形。而且,亦可為將複合材料的塗膜形成於基體上的手法。
依此,本實施型態的鐵氧體粉末的特徵在於包含具有特定的形狀且於其表面具備特定的階段結構之鐵氧體粒子。此鐵氧體粉末適用於電磁波遮蔽材、電子材料以及/或是電子構件的用途。而且,本實施型態的鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件,能夠不損及成形性及填充性且抑制鐵氧體粒子的脫落。相對於此,專利文獻1~5並無相關於鐵氧體粒子的表面結構的記載,亦未將粒子脫落視為課題。而且,專利文獻6所揭示的載體芯材其表面的階段狀凹凸為同心圓狀,與本實施型態對象之階段結構的形狀相異。而且,其課題為提升載體芯材的帶電賦予能力(專利文獻6的段落[0026]),與粒子脫落並無關係。 [實施例]
本實施型態藉由以下的例子進一步具體說明。
(1)鐵氧體粉末的製作 例1 〈原料混合〉 使用氧化鐵(Fe2 O3 )與四氧化三錳(Mn3 O4 )作為原料,以鐵(Fe)與錳(Mn)的莫耳比Fe:Mn=7.8:1的方式秤量,使用漢塞混合機混合。
〈預燒成及粉碎〉 將所得的混合物使用迴轉窯預燒成。預燒成是藉由將混合物於大氣中以900℃保持4小時以進行。所得的預燒成物使用乾式珠磨機(3/16英吋的鋼珠)粗粉碎,然後加水,使用濕式珠磨機(0.65 mm的二氧化鋯珠)微粉碎。粉碎粉的粒徑為2.26 μm。
〈造粒〉 於所得的漿料(slurry)中加入以固體成分換算為0.017質量%的作為黏結劑的聚乙烯醇(PVA,10%水溶液)。其後,將添加有黏結劑的漿料使用噴霧乾燥機造粒。
〈熱噴塗〉 將所得的造粒物於可燃性氣體燃燒焰中熱噴塗以及急冷。熱噴塗是以丙烷氣體流量7.0 m3 /時間、氧流量35 m3 /時間、原料供給速度4.5 kg/時間的條件進行。而且對剛熱噴塗後的燃燒氣體導入冷卻用的大氣以將熱噴塗物急冷,急冷的熱噴塗物以設置於氣流的下游側的旋風器回收。使用篩從所得的熱噴塗物去除粗粉,進而藉由分級裝置去除微粉,得到複數個錳(Mn)系鐵氧體粒子構成的鐵氧體粉末。
例2 對剛熱噴塗後的燃燒氣體導入冷卻用的大氣以將熱噴塗物急冷,急冷的熱噴塗物以設置於氣流的下游側的袋式過濾器回收。藉由氣流分級從所得的熱噴塗物去除粗粉,但不進行微粉的去除。除此之外與例1相同的進行鐵氧體粉末的製作。
例3 原料混合時,以鐵(Fe)與錳(Mn)的莫耳比Fe:Mn=3.0:1的方式秤量。而且造粒時,於漿料中加入以固體成分換算為0.044質量%的作為黏結劑的聚乙烯醇(PVA,10%水溶液)。除此之外與例1相同的進行鐵氧體粉末的製作。例3的預燒成以及粉碎後的粉碎粉的粒徑為2.52 μm。
例4 對剛熱噴塗後的燃燒氣體導入冷卻用的大氣以將熱噴塗物急冷,急冷的熱噴塗物以設置於氣流的下游側的袋式過濾器回收。藉由氣流分級從所得的熱噴塗物去除粗粉,但不進行微粉的去除。除此之外與例3相同的進行鐵氧體粉末的製作。
例5 原料混合時,以鐵(Fe)與錳(Mn)的莫耳比Fe:Mn=14.0:1的方式秤量。而且造粒時,於漿料中加入以固體成分換算為0.010質量%的作為黏結劑的聚乙烯醇(PVA,10%水溶液)。除此之外與例1相同的進行鐵氧體粉末的製作。例5的預燒成以及粉碎後的粉碎粉的粒徑為2.01 μm。
例6 熱噴塗是以丙烷氣體流量7.5 m3 /時間、氧流量35 m3 /時間、原料供給速度4.5 kg/時間的條件進行。對剛熱噴塗後的燃燒氣體導入冷卻用的大氣以將熱噴塗物急冷,急冷的熱噴塗物以設置於氣流的下游側的袋式過濾器回收。藉由氣流分級從所得的熱噴塗物去除粗粉,但不進行微粉的去除。除此之外與例5相同的進行鐵氧體粉末的製作。
例7 熱噴塗是以丙烷氣體流量7.5 m3 /時間、氧流量37.5 m3 /時間、原料供給速度6kg/時間的條件進行。對剛熱噴塗後的燃燒氣體導入冷卻用的大氣以將熱噴塗物急冷,急冷的熱噴塗物以設置於氣流的下游側的旋風器回收。除此之外與例1相同的進行鐵氧體粉末的製作。
例8 對剛熱噴塗後的燃燒氣體導入冷卻用的大氣以將熱噴塗物急冷,急冷的熱噴塗物以設置於氣流的下游側的袋式過濾器回收。藉由氣流分級從所得的熱噴塗物去除粗粉,但不進行微粉的去除。除此之外與例7相同的進行鐵氧體粉末的製作。
例9(比較) 取代熱噴塗,進行造粒物的去黏結劑以及正式燒成,其後,將所得的燒成物解碎,藉由氣流分級從解碎物去除粗粉以及微粉。去黏結劑以及正式燒成是將造粒物於大氣中以650℃保持4小時,其後,於氧0體積%的氣體環境下以1250℃保持4小時而進行。而且,解碎使用鎚碎機進行。除此之外與例1相同的進行鐵氧體粉末的製作。
關於例1~例9,鐵氧體粉末的製作條件表示於表1。
(2)複合材料的製作 使用例1~例9所得的鐵氧體粉末,製作鐵氧體樹脂複合材料。複合材料的製作依照下述進行。將所得的鐵氧體粉末與市售的環氧樹脂,以鐵氧體粉末的體積成為60體積%的方式秤量,以公轉自轉攪拌機糊化。而且使用黏度計測定所得的糊(paste)黏度。將所得的糊流入矽酮樹脂的模具後熱硬化,製作脫離粒子評價用試樣(複合材料)。
(3)評價 關於例1~例9所得的鐵氧體粉末以及複合材料,以下述進行各種特性的評價。
〈元素分析-金屬成分含量〉 鐵氧體粉末的金屬成分的含量如同下述測定。首先,秤量0.2 g的試料(鐵氧體粉末),將其加入純水60 ml與1N的鹽酸20 ml以及1N的硝酸20 ml之後加熱,調整為試料完全溶解的水溶液。所得的水溶液設置於感應偶合電漿(ICP)分析裝置(股份有限公司島津製作所,ICPS-10001V),測定金屬成分的含量。
〈粒子的表面結構-Ps〉 鐵氧體粉末中的粒子的表面結構,如同下述進行評價。首先,以掃瞄式電子顯微鏡(SEM;日立先端科技公司,SU-8020)觀察鐵氧體粉末。觀察時,平均粒徑2 μm以上的粒子將倍率設為50000倍,平均粒徑未滿2 μm的粒子設為200000倍。然後,任一的情形將水平費雷特直徑0.3μm以上的粒子在視野中置入1~30個,較佳為1~10個的狀態進行攝影。
攝影為隨機的攝影10視野份,對於水平費雷特直徑0.3 μm以上的粒子確認有無多邊形狀階段。然後,球狀樣粒子的比例(Ps)依照下述(5)式計算。尚且,水平費雷特直徑未滿0.3 μm的粒子在攝影時電子線透過粒子,具有無法判定有無階段的疑慮。因此,在評價的對象外。
[數5]
Figure 02_image005
…(5)
此處,Ni 為第i視野所攝影的水平費雷特直徑0.3μm以上的粒子的數量,ni 為第i視野所攝影的粒子中,具有球狀樣階段的粒子的數量。而且,部分的超出攝影視野外側的粒子亦計算為1粒子。
〈粒子的表面結構-Hs〉 藉由掃瞄式電子顯微鏡(SEM)觀察時,將倍率設定為200000倍,並且使1~30個、較佳為1~10個球狀樣階段粒子進入視野中央的方式攝影。後,由SEM照相的比例尺(scale)依照下述(6)式求得階段的平均間隔(Hs)。
[數6]
Figure 02_image007
…(6)
圖1所示為球狀樣階段粒子的SEM相片的一例。圖中的箭頭(→)表示相對於平行排列的階段的垂直方向。而且,圖的數字(1、2、3...)表示各階段。尚且,攝影只要能判別階段即可,不需要使粒子整體進入1視野中。而且,在計算Hs時,階段可選擇1粒子的任意1處。方向相異的階段複數存在的情形,亦可由大致代表其粒子的階段來計算。階段的數量可為4以上。
〈形狀係數-平均粒徑2 μm以上的情形〉 關於平均粒徑2 μm以上的粒子,鐵氧體粉末的形狀係數(SF-1以及SF-2)使用粒子影像分析裝置(Malvern Panalytical公司,Morpholgi G3)求得。首先,使用粒子影像分析裝置解析鐵氧體粉末。解析時對粉末中的30000粒子逐粒子進行影像解析,自動測定圓度(Circularity)、周圍長(Perimeter)、圓相當徑(CE Diameter)。此時,使用倍率10倍的物鏡。而且,使用裝置附屬的分散用治具將粒子分散於載玻片上。此時,以試樣量:3 mm3 ,分散壓:5 bar的條件使粒子分散。
所得的資料中,將體積平均粒徑±5%以內的粒子資料的平均設為平均圓度、平均周圍長(Perimeter)、平均圓相當徑,依照下述(7)式以及下述(8)式計算SF-1以及SF-2。
[數7] SF-1=(平均圓度)-1 ×100 …(7) [數8]
Figure 02_image009
…(8)
〈形狀係數-平均粒徑未滿2 μm的情形〉 關於平均粒徑未滿2 μm的粒子,鐵氧體粉末的形狀係數(SF-1以及SF-2)使用FE-SEM(場發射掃瞄式電子顯微鏡)求得。首先,使用FE-SEM以複數視野進行鐵氧體粉末的攝影。攝影以倍率100000倍的條件進行。其後,使用影像解析軟體(Image-Pro Plus)進行影像解析。解析時選擇體積平均粒徑±5%以內的圓相當徑的100粒子,逐粒子進行解析。然後,測定最大長(水平費雷特直徑)R(單位:μm)、投影周圍長L(單位:μm)以及投影面積S(單位:μm2 )、圓相當徑r(單位:μm)。
其次,依照下述(9)式以及下述(10)式計算各粒子的SF-1以及SF-2,將個別的平均值設為鐵氧體粉末的SF-1以及SF-2。
[數9]
Figure 02_image011
…(9) [數10]
Figure 02_image013
…(10)
〈異形粒子比例〉 鐵氧體粉末中的異形粒子比例如同下述求得。使用粒子影像解析裝置解析時,計數圓度0.965以上、1.000以下的粒子個數N與圓度0.950以上、未滿0.965的粒子個數n,異形粒子比例依照下述(11)式計算。尚且,圓度未滿0.950的粒子具有為凝集粒子的疑慮。因此,此種粒子由評價對象除外。
[數11]
Figure 02_image015
…(11)
〈振實密度〉 鐵氧體粉末的振實密度,使用USP振實密度測定裝置(Hosokawa micron股份有限公司,Powder tester PT-X)。依據JIS Z 2512-2012測定。
〈真比重〉 鐵氧體粉末的真比重使用氣體置換法,根據JIS Z8807:2012測定。具體而言,使用全自動真密度測定裝置(股份有限公司Mountech,Macpycno)。
〈粒度分布〉 鐵氧體粉末的粒度分布如同下述測定。首先,將試料(鐵氧體粉末)10 g以及水80 ml置入100 ml的燒杯,添加2滴六偏磷酸鈉作為分散劑。其次,使用超音波均質機(股份有限公司SMT,UH-150型)分散。此時,超音波均質機的輸出等級設為4進行20秒的分散。其後,去除燒杯表面產生的泡,所得的分散液導入至雷射繞射式粒度分布測定裝置(島津製作所有限公司,SALD-7500nano)並測定。測定條件設為泵速度7、內藏超音波照射時間30,折射率1.70-050i。藉由此測定求得體積粒度分布的10%徑(D10)、50%徑(體積平均粒徑,D50)、90%徑(D90)。
〈BET比表面積〉 鐵氧體粉末的BET比表面積使用比表面積測定裝置(股份有限公司Mountech,Macsorb HM model-1208)測定。首先,將約10 g鐵氧體粉末載於藥包紙,以真空乾燥機脫氣。確認真空度為-0.1 MPa以下後,以200℃加熱2小時,去除附著於粒子表面的水分。其後,將水分去除的鐵氧體粉末(約0.5~4 g)置入測定裝置專用的標準試樣管,以精密天平正確地秤量。接著,將經秤量的鐵氧體粒子設置於測定裝置的測定埠並測定。測定以1點法進行。測定氣體環境為溫度10~30℃,相對濕度20~80%(無結露)。
〈磁特性-飽和磁化、殘留磁化以及保磁力〉 鐵氧體粉末的磁特性(飽和磁化、殘留磁化以及保磁力),如同下述測定。首先,於內徑5 mm、高2 mm的試管中填入試料(鐵氧體粉末),設置於振動試料型磁測定裝置(東英工業股份有限公司,VSM-C7-10A),施加外加磁場並掃描(sweep)至5 kOe,接著減少外加磁場,畫出磁滯曲線。根據此曲線的資料,求得試料的飽和磁化σs、殘留磁化σr以及保磁力Hc。
〈磁導率〉 鐵氧體粉末的磁導率使用RF阻抗/材料分析儀(Agilent Technologies股份有限公司,E4991A)與磁性材料測定電極(16454A)測定。首先,將試料(鐵氧體粉末)9 g與黏結劑樹脂(Kynar301F:聚偏二氟乙烯)1 g置入聚乙烯製容器(內容量100 ml),使用球磨機,以回轉數100 rpm的條件進行攪拌及混合。其次,所得的混合物(0.6g程度)填充於模具(dice,內徑4.5 mm,外徑13 mm),使用加壓機以40MPa的壓力進行1分鐘的加壓以做成成形體。所得的成形體使用熱風乾燥機以140℃進行2小時的加熱硬化,以做成測定用試樣。所得的試樣設置於RF阻抗/材料分析儀,輸入事先測定的測定用試樣的外徑、內徑以及高度。測定時,振幅設為100 mV,以對數尺度掃描(sweep)測定頻率1 MHz~3 GHz的範圍。求得頻率100 MHz的複數磁導率的實部(μ')與虛部(μ''),損失係數(tanδ)依照下述(12)式計算。
[數12]
Figure 02_image017
…(12)
〈脫離粒子的比例〉 複合材料(複合體)的脫離粒子的比例如同下述求得。首先,使用研磨機研磨複合材料以使粒子斷面露出。使用場發射掃描式電子顯微鏡(FE-SEM)於複數視野進行研磨斷面的觀察,計數最表面露出的鐵氧體粒子以及脫離粒子的個數。然後,脫離粒子的比例依照下述(13)式計算。
[數13]
Figure 02_image019
…(13)
(4)結果 關於例1~例9,所得的評價結果表示於表2及表3。而且,關於例1、例4以及例9,鐵氧體粒子的表面SEM像個別表示於圖1、圖2、圖4。
如表2所示,藉由熱噴塗所製作的例1~例8的鐵氧體粉末,此些所含的粒子為真球狀或多面體狀。其中,粗粉藉由篩分級、微粉藉由氣流分級而去除的例1、例3、例5以及例7,體積平均粒徑D50較大(3.48~3.94 μm),具有真球狀的粒子形狀。相對於此,粗粉藉由氣流分級去除、微粉未進行去除的例2、例4、例6以及例8,D50較小(0.23~0.83 μm),為多面體狀。但是,例1~例8的任一的形狀係數SF-1小(101~102),可知球形度優良。
例1~例8在粒子表面具備多邊形狀的階段結構。因此,做成複合材料時的脫離粒子比例小至6個數%以下。特別是球狀樣階段粒子的比例(Ps)高至64~67%的例1、例3以及例5,幾乎未見到脫離粒子。
相對於此,藉由燒成製作的例9的鐵氧體粉末,所含的粒子為粒狀,並不是真球狀或多面體狀。而且,例9在粒子表面不具備階段結構。因此,做成複合材料時的脫離粒子比例高至15個數%。
[表1] 表1 鐵氧體粉末的製作條件
  原料混合 預燒成 漿料調整 去黏 結劑 正式 燒成 熱噴塗 回收 方法 解碎 分級
Fe (mol) Mn (mol) 粉碎粒徑(μm) 黏結劑 (質量%) B×(MFe +Mm )/Mm 丙烷氣體流量(m3 /hr) 氧流量(m3 /hr) 原料供給量(kg/hr) 粗粉側 微粉側
例1 7.8 1 大氣中900℃ 2.26 PVA0.017 0.15 - - 7 35 4.5 旋風器 - 氣流
例2 7.8 1 大氣中900℃ 2.26 PVA0.017 0.15 - - 7 35 4.5 袋式過濾器 - 氣流 -
例3 3 1 大氣中900℃ 2.52 PVA0.044 0.18 - - 7 35 4.5 旋風器 - 氣流
例4 3 1 大氣中900℃ 2.52 PVA0.044 0.18 - - 7 35 4.5 袋式過濾器 - 氣流 -
例5 14 1 大氣中900℃ 2.01 PVA0.010 0.15 - - 7 35 4.5 旋風器 - 氣流
例6 14 1 大氣中900℃ 2.1 PVA0.010 0.15 - - 7.5 35 4.5 袋式過濾器 - 氣流 -
例7 7.8 1 大氣中900℃ 2.26 PVA0.017 0.15 - - 7.5 37.5 6 旋風器 - 氣流
例8 7.8 1 大氣中900℃ 2.26 PVA0.017 0.15 - - 7.5 37.5 6 袋式過濾器 - 氣流 -
例9* 7.8 1 大氣中900℃ 2.26 PVA0.017 0.15 大氣中650℃ O2 0vol% 1250℃ - - - - 鎚碎機 氣流 氣流
註1)「*」表示比較例。 註)「-」表示未進行處理。
[表2] 表2 鐵氧體粉末的評價結果
  鐵氧體粉末
化學分析(ICP) 粒子形狀 粒子的表面結構 形狀係數 異形粒子 比例(%) 振實密度(g/cm3 ) 真比重(g/cm3 ) 體積粒度分布 (μm) 0.3μm以上 粒子含有比例 (個數%) BET(m2 /g)
Fe (wt%) Mn (wt%) 階段 Ps(%) Hs(nm) SF-1 SF-2 D10 D50 D90
例1 63.0 7.6 真球狀 多邊形 65 15 101 101 7.5 2.75 5.01 1.92 3.72 8.95 99.8 0.55
例2 63.1 8.5 多面體 多邊形 24 5 101 103 16.4 1.08 5.21 0.40 0.83 1.75 18.5 3.76
例3 57.1 13.7 真球狀 多邊形 67 15 102 101 8.3 2.95 5.01 1.89 3.94 9.27 99.9 0.68
例4 54.2 15.9 多面體 多邊形 27 5 102 102 15.9 1.21 5.20 0.10 0.51 1.45 22.8 5.91
例5 66.2 5.3 真球狀 多邊形 64 15 101 101 7.8 3.00 5.01 1.66 3.78 9.18 99.8 0.58
例6 62.7 5.1 多面體 多邊形 25 5 101 103 18.3 1.18 5.20 0.12 0.58 1.59 20.3 6.07
例7 59.7 8.0 真球狀 多邊形 29 20 101 101 6.5 2.51 5.02 1.93 3.48 8.87 99.6 1.26
例8 59.3 8.1 多面體 多邊形 15 5 101 103 18.1 1.04 5.22 0.09 0.23 1.32 6.5 9.93
例9* 61.7 7.7 粒狀 閉曲線 0 550 106 106 20.2 2.66 5.19 7.92 11.00 16.02 100.0 0.43
註1)「*」表示比較例。
[表3] 表3 鐵氧體粉末與複合體的評價結果
  鐵氧體粉末 複合體
磁特性(VSM) 磁導率(100MHz) 脫離粒子比例 (個數%) 黏度(mPa·s)
σs (A·m2 /kg) σr (A·m2 /kg) Hc ((1000/4π)A/m) μ' μ'' tanδ
例1 84.7 2.9 41.7 6.88 0.35 0.05 <1 80000
例2 81.2 4.4 53.0 8.62 0.31 0.04 <1 155000
例3 77.1 3.6 58.2 8.03 1.05 0.13 <1 85000
例4 75.8 5.6 61.3 9.72 0.77 0.08 <1 180000
例5 83.8 2.6 34.8 5.19 0.15 0.03 <1 83000
例6 77.1 6.8 72.0 8.21 0.16 0.02 <1 185000
例7 82.4 3.1 42.0 7.47 0.82 0.11 6 120000
例8 73.0 9.3 85.6 9.14 0.52 0.06 1 250000
例9* 92.9 3.9 51.0 4.56 1.88 0.41 15 35000
註1)「*」表示比較例。
Is:距離
圖1所示為實施例試樣的表面SEM像。 圖2所示為實施例試樣的表面SEM像。 圖3所示為階段結構的斷面模式圖。 圖4所示為比較例試樣的表面SEM像。

Claims (7)

  1. 一種鐵氧體粉末,至少包含於表面具備階段結構的球狀或多面體狀的鐵氧體粒子,前述階段結構於前述鐵氧體粒子的表面具有多邊形狀的輪廓。
  2. 如請求項1之鐵氧體粉末,其中前述階段結構具有2段以上的階段。
  3. 如請求項1之鐵氧體粉末,其中前述鐵氧體粉末其形狀係數SF-1為100~110。
  4. 如請求項1之鐵氧體粉末,其中前述鐵氧體粉末其體積粒度分布的50%徑(D50)為0.10~20.00 μm。
  5. 如請求項1之鐵氧體粉末,其中前述鐵氧體粉末具有錳(Mn)含量為4.0~17.0質量%、鐵(Fe)含量為50.0~70.0質量%之錳(Mn)鐵氧體的組成。
  6. 一種鐵氧體樹脂複合材料,包含如請求項1至5的任一項之鐵氧體粉末與樹脂。
  7. 一種電磁波遮蔽材、電子材料或電子構件,包含如請求項6之鐵氧體樹脂複合材料。
TW109134814A 2019-10-07 2020-10-07 鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件 TW202124285A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019184770 2019-10-07
JP2019-184770 2019-10-07

Publications (1)

Publication Number Publication Date
TW202124285A true TW202124285A (zh) 2021-07-01

Family

ID=75437240

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109134814A TW202124285A (zh) 2019-10-07 2020-10-07 鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件

Country Status (7)

Country Link
US (1) US20220340444A1 (zh)
EP (1) EP4043402A4 (zh)
JP (1) JPWO2021070871A1 (zh)
KR (1) KR20220098126A (zh)
CN (1) CN114341079B (zh)
TW (1) TW202124285A (zh)
WO (1) WO2021070871A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117098731A (zh) * 2021-03-31 2023-11-21 保德科技股份有限公司 铁氧体粉末、铁氧体树脂复合材料以及电磁波屏蔽材料、电子材料或电子部件
DE102022115371A1 (de) 2022-06-21 2023-12-21 Tdk Electronics Ag Kugeln aufweisend ein Ferritmaterial und Verwendung von Kugeln aufweisend ein Ferritmaterial

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1055373A (en) 1976-04-15 1979-05-29 Goodyear Tire And Rubber Company (The) Tire safety support
JP2876088B2 (ja) * 1990-10-18 1999-03-31 戸田工業株式会社 フェライト・樹脂複合組成物
JPH04304700A (ja) 1991-04-02 1992-10-28 Kawasaki Steel Corp 電波吸収体材料用粉末およびその製造方法
JPH07230182A (ja) * 1994-02-17 1995-08-29 Fuji Xerox Co Ltd 磁性トナー
JP3542319B2 (ja) * 2000-07-07 2004-07-14 昭栄化学工業株式会社 単結晶フェライト微粉末
JP4651004B2 (ja) 2004-12-07 2011-03-16 戸田工業株式会社 球状焼結フェライト粒子およびそれを用いた半導体封止用樹脂組成物ならびにそれを用いて得られる半導体装置
DE102008036837A1 (de) * 2008-08-07 2010-02-18 Epcos Ag Sensorvorrichtung und Verfahren zur Herstellung
JP5921801B2 (ja) * 2010-02-22 2016-05-24 Dowaエレクトロニクス株式会社 電子写真現像剤用キャリア芯材およびその製造方法
TWI518713B (zh) * 2012-12-06 2016-01-21 China Steel Corp Soft magnetic powder and its making method and composite material sheet body which can suppress electromagnetic interference
CN103131384B (zh) * 2013-02-28 2014-06-04 湖南大学 一种低密度多孔结构的纳米复合吸波粉体及其制备方法
JP5735999B2 (ja) * 2013-03-28 2015-06-17 Dowaエレクトロニクス株式会社 フェライト粒子及びそれを用いた電子写真現像用キャリア、電子写真用現像剤並びにフェライト粒子の製造方法
JP5818380B2 (ja) * 2013-11-25 2015-11-18 Dowaエレクトロニクス株式会社 フェライト粒子並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤
JP2015190995A (ja) * 2014-03-27 2015-11-02 パウダーテック株式会社 電子写真現像剤用フェライトキャリア芯材、フェライトキャリア及び該フェライトキャリアを用いた電子写真現像剤
JP6493727B2 (ja) 2014-09-19 2019-04-03 パウダーテック株式会社 球状フェライト粉、該球状フェライト粉を含有する樹脂組成物、及び該樹脂組成物を用いた成型体
JP5904684B1 (ja) * 2015-10-09 2016-04-20 Dowaエレクトロニクス株式会社 キャリア芯材並びにそれを用いた電子写真現像用キャリア及び電子写真用現像剤
CA3028341C (en) 2016-06-07 2024-03-12 Powdertech Co., Ltd. Ferrite particles, resin composition and electromagnetic wave shielding material
JP6393944B2 (ja) 2016-09-30 2018-09-26 パウダーテック株式会社 Ni−Zn−Cu系フェライト粒子、樹脂組成物及び樹脂成形体
JP6814056B2 (ja) * 2017-01-24 2021-01-13 パウダーテック株式会社 フェライト粉および樹脂組成物
US11952286B2 (en) * 2018-02-13 2024-04-09 Powdertech Co., Ltd. Mn ferrite powder, resin composition, electromagnetic wave shielding material, electronic material, and electronic component
WO2019159799A1 (ja) * 2018-02-13 2019-08-22 パウダーテック株式会社 複合粒子、粉末、樹脂組成物および成形体

Also Published As

Publication number Publication date
WO2021070871A1 (ja) 2021-04-15
US20220340444A1 (en) 2022-10-27
KR20220098126A (ko) 2022-07-11
CN114341079B (zh) 2023-03-24
EP4043402A1 (en) 2022-08-17
EP4043402A4 (en) 2023-10-18
JPWO2021070871A1 (zh) 2021-04-15
CN114341079A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
JP7068703B2 (ja) フェライト粒子、樹脂組成物及び電磁波シールド材料
JP6712655B2 (ja) 軟磁性粉末、軟磁性材料、並びに圧粉磁心の製造方法
KR102358001B1 (ko) 나노 사이즈의 진구상 페라이트 입자 및 그 제조 방법
TW202124285A (zh) 鐵氧體粉末、鐵氧體樹脂複合材料、電磁波遮蔽材、電子材料或電子構件
CN111164050B (zh) Mn-Zn系铁氧体颗粒、树脂成形体、软磁性混合粉及磁芯
JP6393944B2 (ja) Ni−Zn−Cu系フェライト粒子、樹脂組成物及び樹脂成形体
JP7269661B2 (ja) Mnフェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品
JP7335670B2 (ja) フェライト粉末、フェライト樹脂複合材料並びに電磁波シールド材、電子材料又は電子部品
JPWO2019027023A1 (ja) 複合粒子、粉末、樹脂組成物および成形体
JP5690474B2 (ja) 磁性粉末
JP7269660B2 (ja) Mn-Mg系フェライト粉末、樹脂組成物、電磁波シールド材、電子材料および電子部品
TW202037580A (zh) 電極形成材料、電極的製造方法及電極
TW202037579A (zh) 鐵氧體複合粉末、鐵氧體成型體的製造方法、鐵氧體燒結體的製造方法、成型體及燒結體
WO2021200746A1 (ja) フェライト粉末、フェライト樹脂組成物、樹脂成型体、電子部品、電子機器又は電子機器筐体
WO2024204618A1 (ja) フェライト粉末