TW202117801A - 用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法 - Google Patents

用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法 Download PDF

Info

Publication number
TW202117801A
TW202117801A TW109110269A TW109110269A TW202117801A TW 202117801 A TW202117801 A TW 202117801A TW 109110269 A TW109110269 A TW 109110269A TW 109110269 A TW109110269 A TW 109110269A TW 202117801 A TW202117801 A TW 202117801A
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
hydrogen
patent application
scope
Prior art date
Application number
TW109110269A
Other languages
English (en)
Other versions
TWI830891B (zh
Inventor
伊莎貝爾 伯崔德
艾利克斯 德朗
伊莎貝 于耶
艾瑞克 布托
摩根 洛基歐
Original Assignee
法商索泰克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商索泰克公司 filed Critical 法商索泰克公司
Publication of TW202117801A publication Critical patent/TW202117801A/zh
Application granted granted Critical
Publication of TWI830891B publication Critical patent/TWI830891B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3226Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Acoustics & Sound (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Light Receiving Elements (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本發明涉及一種用於製作包含被移轉至設有一電荷捕捉層(3)的一支撐件(2)上的一薄層(5)之一結構(1)之方法,該方法包括以下步驟: -準備該支撐件(2),包括在一基底底材(6)上形成該電荷捕捉層(3),該電荷捕捉層(3)具有小於10^18 at/cm^3的氫濃度; - 透過一介電層(4)將該支撐件(2)接合至一施體底材,該介電層(4)具有小於10^20 at/cm^3的氫濃度,或包含一阻擋層防止氫向該電荷捕捉層(3)擴散,或具有低氫擴散率; - 移除該施體底材之一部分,以形成該薄層(5); 該製作方法將該結構(1)暴露在低於最高溫度1000°C的溫度下。本發明亦涉及此方法結束時所獲得之結構。

Description

用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法
本發明涉及一種用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法。
集成元件通常製作於晶圓形式的底材上,該底材主要作為元件生產過程之支撐。然而,隨著集成元件的集成度和預期效能提升,集成元件效能與其底材特性之間的關聯益發重要。這類情況尤其常見於處理訊號頻率在約3kHz和300GHz之間的射頻(RF)元件中,該頻率尤其常用於電信領域(行動電話,Wi-Fi,藍牙等)。
以元件/底材之耦合為例,在元件中傳播的高頻訊號所產生的電磁場會穿透至底材深處,並與存在於其中的電荷交互作用。這會導致部分訊號功率因插入損失(insertion loss)而被浪費,以及元件之間的串擾(crosstalk)等問題。
射頻元件,例如濾波器、開關、天線轉接器及功率放大器,可在專門適應這些現象並改善其效能水準的底材上製作。
習知的高電阻率絕緣體上矽(HR SOI)底材包含電阻率大於1 kOhm.cm的矽支撐底材、位於支撐底材上的介電層,以及設置在該絕緣層上的矽表面薄層。該底材亦可包括設置在支撐底材與介電層之間的電荷捕捉層。該捕捉層可包含無摻雜的多晶矽。這類底材的製作方法在諸如文件FR 2860341、FR 2933233、FR 2953640、US 2015/115480、US 7268060或US 6544656中已有說明。一般而言,其意圖限制施加到這類底材上的熱處理溫度及/或持續時間,以避免捕捉層再結晶,從而降低其射頻效能。
還有其他原因使某些半導體結構在其製作或使用過程中無法暴露於高溫中,例如高於600°C或1000°C之溫度。由具有相異熱膨脹係數的兩個底材組裝而成的結構即為此種情況。其中一底材形成該結構的支撐件,而來自另一底材的薄層則移轉到該支撐件上。
舉例而言,當該薄層由鐵電材料形成時,其性質亦可將該結構的處理溫度限制為其居禮溫度(Curie temperature),亦即,若超過該溫度,該材料將失去其永久極化(permanent polarization)。
此外,當該薄層包含元件時,有時必須限制半導體結構所暴露的溫度。該些元件可直接在該結構上面(或當中)形成,或移轉到支撐件上以形成此結構。暴露在高於400°C或600°C的溫度時,構成元件的摻雜物或金屬的擴散會使元件失去功能。
吾人亦可選擇刻意限制該結構之元件所暴露的溫度。當電荷捕捉層或介電層係透過LPCVD(低壓化學氣相沈積)或PECVD(電漿增強化學氣相沈積)技術形成時尤其如此。這些價廉的技術可在約600℃的中等溫度下,統一對多個底材實施。
然而,本案申請人已觀察到,僅使用中度熱處理(即不使結構暴露在高於1000℃溫度下)的方法所製作之包含電荷捕捉層及介電層的結構,其射頻(RF)效能水準遠低於預期。
如SOITEC公司於2015年1月出版,名為〈White paper - RF SOI wafer characterisation〉的文件所述,底材的射頻效能可透過二次諧波失真(second harmonic distortion,HD2)測量來描述。在半導體結構包含電荷捕捉層且僅實施中度熱處理的情況下,本案申請人觀察到HD2特性在預期值的55%及75%之間。
本發明之目的為解決至少部分上述問題。更詳細而言,本發明的目標為提出一種用於製作半導體結構之方法,其包含將一薄層移轉到設有電荷捕捉層之支撐件上,該方法並未將該結構暴露在高溫熱處理中,但仍可使該結構具備合規的RF效能水準。
為了達成該目標,本發明之標的提出一種用於製作一結構之方法,該結構包括移轉到設有電荷捕捉層之支撐件上的一薄層,該方法包含以下步驟: - 準備該支撐件,包括在一基底底材上形成該電荷捕捉層,該電荷捕捉層具有小於10^18 at/cm^3的氫濃度; - 透過一介電層將該支撐件接合至一施體底材,該介電層具有小於10^20 at/cm^3的氫濃度,或包含一阻擋層防止氫向該電荷捕捉層擴散,或具有低氫擴散率; - 移除該施體底材之一部分,以形成該薄層; 該製作方法將該結構(1)暴露在低於最高溫度1000°C的溫度下。
在支撐件製備步驟期間形成具低氫濃度的捕捉層,可避免過度中和(neutralizing)該層的電荷陷阱(electric charge trap)。形成同樣具低氫濃度或可防止氫擴散的介電層,可避免或限制氫向捕捉層擴散,尤其是在製作方法期間及組裝步驟之後,該介電層暴露於熱處理的期間。作為替代方案,可在介電層中設置阻擋層,以防止氫從介電層向捕捉層擴散。
根據本發明之其他有利的和非限制性的特徵,其可以單獨實施,或以任何技術上可行的組合來實施: •   該電荷捕捉層係在600°C及950°C之間的沈積溫度下沈積,且準備該支撐件的步驟包括在一貧氫氣氛(hydrogen depleted)中且在所述沈積溫度及1000°C之間的溫度下,對該電荷捕捉層進行第一階段回火; •   該電荷捕捉層的沈積係採用一LPCVD技術; •   該電荷捕捉層係在950°C及1100°C之間的溫度下沈積而形成; •   該電荷捕捉層的沈積係在一磊晶設備中實施; •   該介電層係經由沈積氫濃度大於10^20 at/cm^3之一材料,並在一貧氫氣氛中進行第二階段回火而製成; •   所述第二階段回火係在中性氣氛中於800°C及900°C之間的溫度下進行至少1小時; •   該介電層係在進行第一階段回火之前,經由將氫濃度大於10^20 at/cm^3之一材料沈積在該電荷捕捉層上而製成; •   該介電層係經由在800°C及1000°C之間的溫度下將該電荷捕捉層熱氧化而製成; •   該介電層包含該阻擋層,且該阻擋層直接接觸該電荷捕捉層; •   該阻擋層由一層SiN或AlN形成; •   具低氫擴散率的該介電層包含一有氮之氧化物,其氮氧比大於或等於0.01或0.05; •   具低氫擴散率的該介電層包含一有氮之氧化矽,其氮氧比在0.01及0.25之間或0.05及0.1之間; •   該製作方法包括在所述接合步驟之前,在該施體底材中形成一脆性平面之步驟,且其中,所述移除步驟係透過在該脆性平面處使該施體底材斷裂來進行; •   該薄層由壓電及/或鐵電材料組成; •   該薄層由鉭酸鋰或鈮酸鋰製成。
根據另一面向,本發明提出一種無須暴露在高溫下的結構,例如高於600°C或1000°C,該結構包括: - 一基底底材; - 一捕捉層,其設置在該基底底材上並具有小於10^18 at/cm^3的氫濃度; - 一介電層,其設置在該捕捉層上,該介電層具有小於10^20 at/cm^3的氫濃度,或包含一阻擋層防止氫向該捕捉層擴散,或具有低氫擴散率; - 一薄層,其設置在該介電層上。
根據本發明之其他有利的和非限制性的特徵,其可以單獨實施,或以任何技術上可行的組合來實施: •   該薄層由一鐵電材料形成,該鐵電材料具有永久極化,以及介於600°C及1000°C之間的居禮溫度; •   該介電層與該捕捉層及該薄層接觸; •   具低氫擴散率的該介電層包含一有氮之氧化物,其氮氧比大於或等於0.01或0.05; •   具有低擴散率的該介電層包含一有氮之氧化矽,其氮氧比在0.01及0.25之間或0.05及0.1之間。
圖1繪示結構1,其製作方法為本發明之標的。結構1具有表面薄層5、包含諸如氧化矽等氧化物之介電層4,以及支撐件2。支撐件2設有置於基底底材6上之電荷捕捉層3。捕捉層3介於介電層4和基底底材6之間。介電層4優選為與捕捉層3及薄層5接觸。
結構1一般而言可為圓形晶圓的形式,其直徑可為100、200、300或450 mm。
如前文習知技術文件所闡述,結構1可以多種方式製作。一般而言,一種用於製作結構1的方法可包括組裝支撐件2和施體底材、將介電層插入這兩個元件之間,接著移除施體底材之一部分以形成薄層5。移除施體底材之一部分的步驟,可經由化學機械薄化該底材來執行。結構1優選為以Smart Cut TM技術製成,根據該技術,旨在形成薄層5的層係經由在施體底材中植入輕質物種所形成的脆性平面來界定。接著,在脆性平面處斷裂,以將該層從施體底材上去除,並透過介於支撐件2與施體底材之間的介電層4,將該層移轉到設有捕捉層3的支撐件2上。
基底底材6通常為數百微米厚。基底底材優選為具有高電阻率,其大於1000 ohm.cm,更優選為大於2000 ohm.cm。如此可限制電荷、電洞或電子的密度,其可能在基底底材中移動。然而,本發明不限於具有前述電阻率之基底底材,當基底底材具有更合規的大約數百ohm.cm或更低的電阻率時,例如低於1000 ohm.cm、低於500 ohm.cm或甚至低於10 ohm.cm時,本發明也能提供RF效能方面之益處。
出於可取得性與成本因素,基底底材6優選為單晶矽製。舉例而言,基底底材6可為具有6及10ppm之間的低間隙氧(interstitial oxygen)含量之CZ矽底材,或天生具有非常低間隙氧含量之FZ矽底材。基底底材亦可為具有大於26 ppm之大量間隙氧(以下以「高Oi」表示)的CZ矽底材。作為替代方案,基底底材亦可由其他材料形成,例如藍寶石、玻璃、石英、碳化矽等。在某些情況下,尤其是當捕捉層3夠厚時,例如超過30微米厚時,基底底材6可具有小於1 kohm.cm的標準電阻率。
如習知技術之文件所述,捕捉層3在性質上可具有很大的變化。一般而言,捕捉層3為具有結構缺陷(例如錯位、晶界、非晶區、間隙、包藏、孔洞等)的非晶層。這些結構缺陷形成在材料中易於流動的電荷的陷阱,例如在不完整或未定(incomplete or pending)化學鍵處。捕捉層中的傳導因而受到遏止,進而具有高電阻率。
為了便於實施,捕捉層3可有利地由一層多晶矽形成。當形成在具有電阻性的基底底材6上時,其厚度範圍可從0.3至3 μm。然而,吾人亦可視結構1預期的RF效能水準,而設想其他低於或高於此範圍之厚度。
為了在可能施加到結構1的熱處理過程中保持捕捉層的多晶品質,沈積電荷捕捉層3之前,可在基底底材6上有利地提供由諸如二氧化矽製的非晶層。
作為替代方案,捕捉層3可經由在基底底材6的表面厚度中植入例如氬等相對重的物種而形成,以在其中形成構成電荷陷阱的結構缺陷。捕捉層3亦可經由使基底底材6之表面厚度孔隙化(porosification)而形成,或透過可在基底底材6的表面厚度中形成能夠捕捉電荷的結構缺陷之任何方法形成。
表面薄層5可為任何合適的類型。當結構1旨在容納集成半導體元件時,薄層5可由單晶矽組成,或由例如鍺、矽鍺、碳化矽等其他半導體材料組成。當結構1旨在容納表面聲波濾波器時,薄層5可由壓電及/或鐵電材料組成,例如鉭酸鋰或鈮酸鋰。薄層5亦可包含集成元件的成品或半成品,其在製作結構1的步驟期間於施體底材上形成並被移轉到支撐件2上。一般而言,該薄層的厚度可在10 nm及10微米之間。
茲參考圖1說明一種用於製作結構之方法。此方法包含推導出本發明的初步實驗。根據該實驗方法,使用在600℃及650℃之溫度間進行的LPCVD技術,透過沈積在矽基底底材6上形成多晶矽之電荷捕捉層3。該捕捉層3約1微米厚。
使用在600°C溫度下進行的PECVD技術,將形成結構1之介電層4,厚度為300nm至1000nm的氧化矽層沈積在捕捉層3上。在沈積之後,接著於中性或氧化氣氛中以600°C進行約1小時的緻密化回火(densification annealing)。接著以化學機械研磨步驟(CMP)研磨該層,去除約200至800奈米之氧化物,以獲得在5*5微米的上粗糙度小於0.3nm RMS的表面。
氫離子被植入鉭酸鋰鐵電施體底材的第一面中,以形成埋置脆性平面。第一層係以此方式界定在該脆性平面與施體底材的第一面之間。將施體底材組裝在設置於支撐件2上的氧化矽層4上,接著使用約400°C的中度熱處理,使施體底材在脆性平面處斷裂。施體底材的第一層被釋放,以暴露出該層的自由面,其可加以製備以提升晶體品質與表面狀況。所述製備包括以化學機械研磨薄化第一層的步驟,以及在中性氣氛中以500°C熱處理1小時的步驟。
如文件US 2015/0168326所教示,如此製作之結構的預期RF效能水準,係透過確定HQF(Harmonics Quality Factor,諧波品質因數)的值進行估計。所述HQF值可根據捕捉層4和基底底材6的深度電阻率分佈(depth resistivity profile)來估計。
接著在已準備之結構1上進行二次諧波失真(HD2)特性測量。此測量係在900 MHz下進行,其在前述名為〈White paper - RF SOI wafer characterisation〉的文件中已有說明。更詳細而言,共平面導線(coplanar guides)係經由在鉭酸鋰薄表面層的自由面上沈積鋁線而形成。接著,將900 MHz頻率之訊號施加到導線一端,並在另一端測量二次諧波訊號HD2。二次諧波訊號越弱,結構的效能水準越高。
HD2測量和HQF估計是與結構1尤其相關的特性,因為它們高度代表將在此結構上形成之集成RF元件之效能。
意外的是,在前述方法結束時,結構1的HD2特性值僅相當於HQF估計所提供預期結果的約50%至75%。
根據額外的研究,本案申請人領悟到,這種低效能現象與電荷捕捉層3及介電層4中存在過量的氫有關。該介電層(在此例中為SiO2)具有大於10^20 at/cm^3的氫,而該捕捉層3具有大於10^18 at/cm^3的氫。
富含氫的介電層4形成一種貯存器(reservoir),當介電層4和捕捉層3中的氫濃度差異過大,並考量到對結構1施加的熱處理時,保留在介電層4中的氫可向捕捉層3擴散。因此,捕捉層之氫係透過介電層4提供。接著,該氫可中和捕捉層3的電荷陷阱,詳言之在捕捉層3與介電層4的界面處。應注意的是,在暴露於超過1000°C溫度下的習知結構中,例如在精整該結構的最後階段中,介電層4或捕捉層3中所含的氫透過熱處理期間的擴散而被除去,因此HD2測量值與HQF估計值之間不會發生顯著差異。
本案申請人接著利用此發現研發出一種製作方法,該方法不採用將結構暴露在高溫下的熱處理,但仍可使該結構具有合規的RF效能水準。「合規(compliant)」一詞係指HD2測量值與其HQF估計值的差異不超過20%。
一般而言,該方法旨在形成氫濃度相對較低的捕捉層3,以避免過度中和電荷陷阱。該方法亦旨在考量到施加在該結構上的熱處理後,形成具低氫濃度或可限制該氫擴散的介電層4,以避免或限制氫向捕捉層遷移。
更詳細而言,該方法重複了製備支撐件2、將該支撐件2與施體底材組合,並移除一部分施體底材之步驟。由於本申請案引言中所述的所有原因,結構1在其製作期間、組裝步驟期間或組裝步驟之後,都不能暴露於超過1000°C的溫度中。然而,本發明之方法的目的係在製備支撐件的步驟中,形成氫濃度低於10^18 at/cm^3的低氫濃度捕捉層3,以避免過度中和捕捉層3中的陷阱。該方法之目同時為形成氫濃度小於10^20 at/cm^3的低氫濃度介電層4,或可限制氫擴散的介電層4,以避免形成氫貯存器,該氫隨後可能向捕捉層3擴散或在介電層4與捕捉層3的界面處擴散。作為替代方案,可在介電層中設置阻擋層,以防止氫向捕捉層擴散。本發明有利的是,當介電層沒有阻擋層或無法捕捉其中所含的氫時,可尋求將介電層中的氫濃度限制在小於10^19 at/cm^3,或甚至小於10^18 at/cm^3。
可設想若干實施例來製作這類捕捉層3及介電層4。
根據捕捉層3的第一實施例,其可經由在中等溫度下沈積而形成,例如嚴格限定在600°C及950°C之間。捕捉層3可為在沈積爐中以LPCVD技術形成的多晶矽層之沈積。吾人已發現,這類沈積形成的捕捉層3之氫濃度大於10^18 at/cm^3,且通常在10^18 at/cm^3和10^19 at/cm^3之間。
為了降低該濃度,根據該第一實施例,可在所述沈積溫度與1000°C之間的溫度下,於貧氫氣氛(hydrogen depleted atmosphere,即小於5 ppm)中對該捕捉層提供第一階段回火。第一階段回火的溫度有利者為高於620°C,優選為低於900°C,並至少持續一小時,優選為持續數小時。在這些優選回火條件下,存在於捕捉層3中的氫可被有效擴散,以透過再結晶作用將其濃度降到低於閾值10^18 at/cm^3而無損該捕捉層的多晶性質。
第一階段回火可在沈積捕捉層3之後直接進行,或者,當介電層4至少部分沈積在捕捉層3上時,於形成介電層4之後進行,其將在下文進一步說明之。
根據捕捉層3的第二實施例,其係在高溫下,例如950°C及1100°C之間的溫度,沈積在基底底材6上。該捕捉層3可為在磊晶反應器中製作的多晶矽沈積。在這類沈積條件下形成的捕捉層3的氫濃度,比透過LPCVD技術形成的捕捉層3的氫濃度低數倍。在所有情況下,都必須確保該濃度小於10^18 at/cm^3。在第二實施例中,由於捕捉層3係直接形成以使其具有低氫濃度,因此不需要進行第一實施例中所提供用於使氫擴散的第一階段回火。
介電層4可透過在捕捉層3上沈積而形成。作為替代方案,或除此之外,介電層4亦可全部或部分透過沈積在施體底材的第一面上形成。要選擇在支撐件或施體底材上形成介電層4,取決於是否有可能將它們暴露於相對較高的溫度。
因此,介電層4的第一實施例係使用PECVD技術在沈積爐中沈積氧化矽而製作。該沈積係在中等溫度下進行,通常在600°C及800°C之間。在此例中,介電層4具有高於10^20 at/cm^3的顯著氫濃度。
為了降低該濃度,可施加類似前述第一階段回火的第二階段回火,其又稱為「緻密化」回火。該第二階段回火涉及在貧氫氣氛(即小於5ppm)中進行回火,並使介電層4暴露在高於其沈積溫度的溫度中。所述氣氛可為中性或氧化氣氛。所述溫度優選為高於800°C,通常在800°C及900°C之間。該回火持續至少一小時,優選為持續數小時,以使氫最終從介電層4及可能從捕捉層3擴散出來。在該緻密化回火結束時,介電層4具有10^20 at/cm^3之較低氫濃度,而捕捉層3具有10^18 at/cm^3之較低氫濃度。
應注意的是,第二緻密化回火可改變介電層的特性,除了其氫濃度。詳細而言,第二緻密化回火尤其可能降低氫的擴散率,亦即氫物種在構成介電層的材料中擴散的能力,因此該氫即使具有相對較高的濃度(約10^20 at/cm^3),也不太可能擴散到捕捉層3。
一般而言,介電層4優選者為設置在支撐件2上,而不是施體底材上。事實上,通常可以第一及/或第二階段回火的溫度對支撐件2進行熱處理,但對施體底材並不總是如此。舉例而言,該底材可能具有脆性平面,或由居禮溫度較低的鐵電材料構成,或包含元件,前述情況各會將可施加於該底材的熱預算限制在數百度,持續相對較短時間(少於1小時)。但本發明不排除在某些有利情況下,介電層4可至少部分地形成在施體底材上。
當介電層4形成在捕捉層3上,且此二層已如前所述在相對較低溫下沈積時,則每個沈積步驟之後不必分別施加第一和第二階段回火。如前所述,在低溫下於捕捉層3上形成介電層4之後,可在與第一和第二階段回火相似的條件下進行單一階段回火。換言之,在此情況下,沈積介電層4之前不需對捕捉層3進行特定的回火。
根據介電層4的第二實施例,其可經由熱氧化捕捉層3而製成。該處理可透過在氧化爐中將設有捕捉層3的支撐件2暴露在嚴格介於800°C及1000°C之間的溫度下及富氧氣氛中實施。所述氣氛可為乾或濕氣氛。眾所周知,暴露的持續時間係根據介電層4的所需厚度而選定。一般而言,優選為將氧化溫度限制在1000°C,以避免捕捉層3發生再結晶的風險。此外,這樣的介電層4優選為將高溫下形成的捕捉層3(根據前述捕捉層3的第二實施方案)氧化而製成。事實上,這樣的層在再結晶風險方面具有更高的溫度穩定性。
當捕捉層3為矽製時(通常是如此),透過熱氧化捕捉層所形成的二氧化矽介電層4具有特別低的氫濃度,約10^17 at/cm^3,其為習知測量方法的檢測極限。可視需要引入研磨因此而氧化之捕捉層3表面的步驟,以使其與後續的組裝步驟相容。
介電層4亦可根據第三實施例製備,此方式在無法將介電層4暴露於相對較高溫度(例如高於800℃)時特別有利。在此例中,介電層4可在相對較低的溫度下形成(例如根據介電層4的第一實施例),注意要在介電層4中包含阻擋層,以防止氫擴散至捕捉層。
如此,雖然介電層4的氫濃度可能大於10^20 at/cm^3,但介電層4中所含的氫無法向捕捉層3擴散,捕捉層3的氫濃度從而小於10^18 at/cm^3。這樣可避免捕捉層3的電荷陷阱被中和。在一變化例中,介電層4完全由阻擋層形成,其將可容納的氫皆保留在其中。
阻擋層可由一層氮化矽或氮化鋁構成,或包含一層氮化矽或氮化鋁,其厚度大於10奈米,通常在10及100奈米之間。在富氫的介電層4剩餘部分(例如二氧化矽)形成之前,可透過例如PECVD技術將阻擋層直接沈積在捕捉層3上。作為替代方案,該阻擋層可在介電層4剩餘部分已形成後,於施體底材上形成,以在下一個組裝施體底材和支撐件2的步驟中使該阻擋層與捕捉層3接觸。
在另一變化例中,阻擋層由氫濃度非常低的氧化矽層形成,其濃度為約10^17 at/cm^3。在此例中,阻擋層形成緩衝,以吸收來自介電層的氫從而防止氫向捕捉層3擴散。在此例中,考量到介電層的厚度及其氫濃度,阻擋層被提供成具有足夠厚度,使氫在擴散到阻擋層之後,其氫濃度不超過10^20 at/cm^3。當介電層4係經由在施體底材那側進行沈積而形成,且阻擋層係經由將捕捉層3熱氧化而形成時(如前文介電層4的第二實施例所述),可採用此變化例。
根據又另一方法,可使介電層4具有任意濃度的氫,但該介電層4具低氫擴散率,因此氫被充分捕捉在其中而不會明顯地向捕捉層3擴散。在此例中,介電層4可完全由一層可防止其所含的氫擴散的材料形成。因此,該層可包含沈積的氧化物,例如含氮的氧化矽SiON,其氮/氧比大於或等於0.01,或有利地大於或等於0.05。當介電層4係基於非常普遍的氧化矽時,吾人可選擇使氮氧比不超過0.1或0.25,以避免過度改變材料特徵,並使其保持與簡單氧化矽SiO2等效或接近的行為。應注意的是,這種富氮的氧化物層可容易地透過諸如PECVD等技術形成,其中,至少一載體氣體可選定為氮,其可以受到控制之方式與氧化物層結合。氮氧比可使用稱為EDX(其為「能量色散X射線譜(energy-dispersive X-ray spectroscopy)」之縮寫)之技術加以測量,或由氧化物層4之SIMS(二次離子質譜,secondary ion mass spectrometry)測量所確定的氮和氧測量結果得出。
一般而言,當一結構包含以下元件時,可稱介電層4具低氫擴散率: - 一介電層,其包含濃度至少為10^20 at/cm^3的氫,並與該層接觸, - 1微米厚之一多晶矽捕捉層,其最初氫濃度小於10^18 at/cm^3,在500°C下回火1小時後的熱處理結束時,捕捉層測得的氫濃度小於10^18 at/cm^3。
介電層4可在其整個厚度上由具有低擴散率的材料形成,例如依照前述比例的含氮沈積氧化物。作為替代方案,可以只提供一個阻擋層防止氫向捕捉層3擴散,該阻擋層由先前替代方案所提出的低擴散率材料形成。
在組裝步驟之前,可研磨至少某些待接觸的面,尤其是對應於所沈積捕捉層及/或介電層的暴露面者。如前所述,在組裝步驟之後,接著移除施體底材之一部分以形成薄層5。所述移除可透過薄化或斷裂施體底材而達成。可提供製備移轉層的步驟,例如研磨及/或熱回火步驟,以改善薄層5的特性。
組裝、移除部分施體底材及製備移轉層之步驟,係在中等溫度下進行,以使結構1總是暴露在低於1000°C之溫度下,優選為低於800°C或600°C。其目的是至少在製作方法的組裝步驟期間和之後,限制介電層4的溫度暴露,從而限制氫從介電層4向捕捉層3擴散。一般而言,介電層中的氫濃度越高(但保持低於10^20 at/cm^3的閾值),介電層4和結構1所暴露的最高溫度所受限制越大。
無論捕捉層3和介電層4所選擇的實施方式為何,皆可在前述製作方法完成後獲得如圖1所示之結構1,其包括: - 一基底底材6; - 一捕捉層3,其設置在該基底底材6上並具有小於10^18 at/cm^3的氫濃度; - 一介電層4,其設置在該捕捉層3上,有利者為與該捕捉層3接觸;該介電層4具有小於10^20 at/cm^3的氫濃度,或包含一阻擋層防止氫向該電荷捕捉層3擴散,或雖具任意氫濃度但有低氫擴散率; - 一薄層5,其設置在該介電層4上,優選為與該介電層4接觸。該薄層5可由例如矽之半導體材料組成、由例如鐵電材料之絕緣體組成,或由包含集成半導體元件之層組成。
該介電層中的氫濃度可有利地小於10^19 at/cm^3,或甚至小於10^18 at/cm^3。
該介電層可包含一有氮之氧化物,其氮氧比大於或等於0.01或0.05。在此例中,其氫濃度可為任意濃度。該介電層可包含一有氮之氧化矽,其氮氧比在0.01及0.25之間或0.05及0.1之間,或者,該介電層由前述有氮之氧化矽形成。
當該薄層由居禮溫度低於1000°C,通常在600°C和1000°C之間,的鐵電材料形成時,可製作該結構而無需使該薄層暴露於高於此居禮溫度,從而保持其永久極化。
舉例而言,已製作出多個支撐件2,其包含電阻率為3000 ohm.cm之矽基底底材6,並依序在該基底底材6上透過LPCVD技術形成1微米厚之多晶矽捕捉層3,及透過PECVD技術形成300奈米厚之氧化矽介電層。
在富氧且氫含量小於5ppm的氣氛中,於600°C的溫度下,對以此方式製作的第一批次支撐件之堆疊施加緻密化回火階段一小時。
根據本發明將第二批次和第三批次在富含氧且氫含量小於5 ppm的氣氛中,分別於800°C及900°C的溫度下,暴露於緻密化回火階段至少一小時。
在緻密化回火階段後,測量捕捉層(「H捕捉-緻密後」)及介電層(「H介電」)中的氫濃度。
使用Smart CutTM 方法,將鉭酸鋰的一表面薄層5移轉到每一批次的支撐件2上。製備該層,以使其最終厚度為600 nm。製作該些結構的步驟包括不超過600°C的中度回火。在以此方式準備的三批結構上測量捕捉層3的氫濃度(「H捕捉-結構」)、二次諧波(「HD2」- 施加15dBm之訊號」)及支撐件2的電阻率分佈,以確定品質因數(「HQF」)。作為提醒,此HQF值可允許吾人估計一結構的RF效能之預期合規值。
下表顯示第一批次、第二批次和第三批次的平均結果:
批次 HD2 HQF HD2/HQF H 捕捉 H 介電
1 -60 dBm -92 dBm 65% 緻密後: 1.5 10^18 at/cm^3   結構: > 4.10^18 at/cm^3   10^21 at/cm^3
2 -79.4 dBm -95 dBm 83% 緻密後: 2 10^17 at/cm^3   結構: 10^18 at/cm^3   10^20 at/cm^3
3 -84.2 dBM -83 dBm 100% 緻密後: 1.5 10^17 at/cm^3   結構: 10^18 at/cm^3   6. 10^19
從表中可看出,已接受習知技術處理的第一批次結構的RF效能水準遠低於預期(HD2/HQF比為65%)。從表中亦可看出,不同層中的氫濃度超過了極限值,尤其是捕捉層3在緻密化回火階段之後(「緻密後」)以及在最終結構(「結構」)中的氫濃度。
相較之下,依照本發明之方式進行處理的第二批次和第三批次結構的RF效能水準,明顯處於預期水準(HD2/HQF比分別為83%和100%)。
從表中可看出,在結構完全製作後所測得的捕捉層3中氫濃度,大於緻密化回火階段後所測得的濃度。然而,該濃度保持小於或等於10^18 at/cm^3的閾值,這樣可讓RF效能保持合規。即使在結構1的製作過程中進行熱處理之後,存在於介電層中的氫也沒有明顯向捕捉層遷移。
應注意的是,當結構1在介電層4下方具有捕捉層3時,捕捉層越薄,結構1對該層中所含的氫就越敏感。事實上,從介電層4擴散到捕捉層3之的氫量相同時,較薄捕捉層中的氫濃度,將大於較厚捕捉層中的氫濃度。此外,當捕捉層的厚度小於1微米或750 nm或小於或等於500 nm時,本發明之方法尤其有利。在小於1微米之相對較薄的捕捉層組構中,可選擇將厚度為例如20至50 nm之一阻障層或一SiON層集成到介電層4中,盡可能靠近捕捉層,以限制氫的擴散。舉例而言,可在捕捉層上形成一氧化矽層,該層可使用氮基電漿製備,以在表面上摻入氮,然後再將其與施體底材那側的介電層4的另一部分組裝。這麼做可在氧化層的表面厚度上形成富氮SiO阻障層,其可防止介電層4其餘部分所含的氫向捕捉層擴散。
作為提醒,結構的RF效能對於在該結構上形成的元件品質因數具有決定性的影響。本案申請人已在額外觀察中證實,形成在本發明方法所製作之一結構上的共振器,其反共振傳導(anti-resonance conductance)與該結構的RF效能直接相關。此類共振器可由在底材上形成之指叉梳(interdigitated comb)製作,該底材與前述第一或第二批次的底材完全相同或類似。這種共振器的品質因數,通常被決定為反共振頻率的電阻與該電阻一半處的帶寬(bandwidth)之比。製作在依照本發明第二及第三批次結構上的共振器的品質因數評估值,遠高於製作在第一批次結構上的共振器的品質因數。
當然,本發明不限於此處所述實施方式,且對於實施例所為之各種變化均落入申請專利範圍所界定之範疇。
詳言之,薄層5可包含一鐵電材料或由一鐵電材料製成,例如LiTaO3、LiNbO3、LiAlO3、BaTiO3、PbZrTiO3、KNbO3、BaZrO3、CaTiO3、PbTiO3或KTaO3。
提供薄層5之施體底材形式可為標準尺寸的圓形晶圓,例如直徑150 mm或200 mm的圓形晶圓。然而,本發明不限於所述尺寸或形狀。施體底材可能來自鐵電材料的晶錠,從而使施體底材具有預定的晶向(crystal orientation),或者,施體底材可甚至包括組裝到底材支撐件上的一層鐵電材料。
鐵電材料薄層的晶向可根據預期應用而選定。因此,就LiTaO3材料而言,通常做法為選擇30°及60°XY之間或40°與50° XY之間的晶向,尤其是要利用薄層特性形成表面聲波(SAW)濾波器時。就LiNbO3材料而言,通常做法為選擇約128° XY的晶向。但本發明絕不限於特定晶向。
1:結構 2:支撐件 3:捕捉層 4:介電層 5:薄層 6:基底底材
下文關於本發明之實施方式一節,將更清楚說明本發明其他特徵和優點,實施方式係參照所附圖式提供,其中,圖1繪示一結構,其製作方法為本發明之標的。
1:結構
2:支撐件
3:捕捉層
4:介電層
5:薄層
6:基底底材

Claims (21)

  1. 一種用於製作包含被移轉至設有一電荷捕捉層(3)的一支撐件(2)上的一薄層(5)之一結構(1)之方法,該方法包括以下步驟: - 準備該支撐件(2),包括在一基底底材(6)上形成該電荷捕捉層(3),該電荷捕捉層(3)具有小於10^18 at/cm^3的氫濃度; - 透過一介電層(4)將該支撐件(2)接合至一施體底材,該介電層(4)具有小於10^20 at/cm^3的氫濃度,或包含一阻擋層防止氫向該電荷捕捉層(3)擴散,或具低氫擴散率; - 移除該施體底材之一部分,以形成該薄層(5); 該製作方法之特徵在於將該結構(1)暴露在低於最高溫度1000°C的溫度下。
  2. 如申請專利範圍第1項之方法,其中該電荷捕捉層(3)係在600°C及950°C之間的沈積溫度下沈積,且準備該該支撐件(2)的步驟包括在一貧氫氣氛中且在所述沈積溫度及1000°C之間的溫度下,對該電荷捕捉層(3)進行第一階段回火。
  3. 如申請專利範圍第2項之方法,其中該電荷捕捉層(3)的沈積係採用一LPCVD技術。
  4. 如申請專利範圍第1項之方法,其中該電荷捕捉層(3)係經由在950°C及1100°C之間的溫度下沈積而形成。
  5. 如申請專利範圍第4項之方法,其中該電荷捕捉層(3)的沈積在一磊晶設備中實施。
  6. 如申請專利範圍第1至5項中任一項之方法,其中該介電層(4)係經由沈積氫濃度大於10^20 at/cm^3之一材料,並在一貧氫氣氛中進行第二階段回火而製作。
  7. 如申請專利範圍第6項之方法,其中所述第二階段回火係在中性氣氛中於800°C及900°C之間的溫度下進行至少1小時。
  8. 如申請專利範圍第2或3項之方法,其中該介電層(4)係在施加第一階段回火之前,經由將氫濃度大於10^20 at/cm^3之一材料沈積在該電荷捕捉層(3)上而製作。
  9. 如申請專利範圍第1至5項中任一項之方法,其中該介電層(4)係經由在800°C及1000°C之間的溫度下將該電荷捕捉層(3)熱氧化而製作。
  10. 如申請專利範圍第1至5項中任一項之方法,其中該介電層(4)包含該阻擋層,且該阻擋層直接接觸該電荷捕捉層(3)。
  11. 如申請專利範圍第10項之方法,其中該阻擋層由一層SiN或AlN形成。
  12. 如申請專利範圍第1至5項中任一項之方法,其中具低氫擴散率的該介電層(4)包含一有氮之氧化物,其氮氧比大於或等於0.01或0.05。
  13. 如申請專利範圍第1至5項中任一項之方法,其中具有低氮擴散率的該介電層(4)包含一有氮之氧化矽,其氮氧比在0.01及0.25之間或0.05及0.01之間。
  14. 如申請專利範圍第1至13項中任一項之方法,其包括在所述接合步驟之前,在該施體底材中形成一脆性平面之步驟,且其中,所述移除步驟係透過在該脆性平面處使該施體底材斷裂來進行。
  15. 如申請專利範圍第1至14項中任一項之方法,其中該薄層(5)由一壓電及/或鐵電材料組成。
  16. 如申請專利範圍第15項之方法,其中該薄層(5)由鉭酸鋰(lithium tantalate)或鈮酸鋰(lithium niobate)製成。
  17. 一種無法暴露在諸如高於600°C或1000°C高溫下的結構(1),該結構(1)包括: - 一基底底材(6); - 一捕捉層(3),其設置在該基底底材(6)上並具有小於10^18 at/cm^3的氫濃度; - 一介電層(4),其設置在該捕捉層(3)上,該介電層(4)具有小於10^20 at/cm^3的氫濃度,或包含一阻擋層防止氫向該捕捉層(3)擴散,或具有低氫擴散率; - 一薄層(5),其設置在該介電層(4)上。
  18. 如申請專利範圍第17項之結構(1),其中該薄層(5)由一鐵電材料形成,該鐵電材料具有永久極化,以及介於600°C及1000°C之間的居禮溫度。
  19. 如申請專利範圍第17或18項之結構(1),其中該介電層(4)與該捕捉層(3)及該薄層(5)接觸。
  20. 如申請專利範圍第17至19項中任一項之結構(1),其中具低氫擴散率的該介電層(4)包含一有氮之氧化物,其氮氧比大於或等於0.01或0.05。
  21. 如申請專利範圍第17至19項中任一項之結構(1),其中具低氫擴散率的該介電層(4)包含一有氮之氧化矽,其氮氧比在0.01及0.25之間或0.05及0.01之間。
TW109110269A 2019-07-12 2020-03-26 用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法 TWI830891B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1907859 2019-07-12
FR1907859A FR3098642B1 (fr) 2019-07-12 2019-07-12 procédé de fabrication d'une structure comprenant une couche mince reportée sur un support muni d’une couche de piégeage de charges

Publications (2)

Publication Number Publication Date
TW202117801A true TW202117801A (zh) 2021-05-01
TWI830891B TWI830891B (zh) 2024-02-01

Family

ID=68072792

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109110269A TWI830891B (zh) 2019-07-12 2020-03-26 用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法

Country Status (9)

Country Link
US (1) US20220247374A1 (zh)
EP (2) EP4060715A1 (zh)
JP (1) JP7500701B2 (zh)
KR (1) KR20220032100A (zh)
CN (1) CN114127893A (zh)
FI (1) FI3997728T3 (zh)
FR (1) FR3098642B1 (zh)
TW (1) TWI830891B (zh)
WO (1) WO2021008742A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137493A1 (fr) 2022-06-29 2024-01-05 Soitec Procede de fabrication d’une structure comportant une couche barriere a la diffusion d’especes atomiques
FR3137490B1 (fr) 2022-07-04 2024-05-31 Soitec Silicon On Insulator Procede de fabrication d’une structure comportant une couche barriere a la diffusion d’especes atomiques
FR3141592A1 (fr) * 2022-10-26 2024-05-03 Soitec Substrat piézoélectrique sur isolant (POI) et procédé de fabrication d’un substrat piézoélectrique sur isolant (POI)
FR3141590A1 (fr) * 2022-10-26 2024-05-03 Soitec Substrat piézoélectrique sur isolant (POI) et procédé de fabrication d’un substrat piézoélectrique sur isolant (POI)
FR3141591A1 (fr) * 2022-10-26 2024-05-03 Soitec Substrat piézoélectrique sur isolant (POI) et procédé de fabrication d’un substrat piézoélectrique sur isolant (POI)
WO2024115410A1 (fr) * 2022-11-29 2024-06-06 Soitec Support comprenant une couche de piegeage de charges, substrat composite comprenant un tel support et procedes de fabrication associes.
WO2024115414A1 (fr) * 2022-11-29 2024-06-06 Soitec Support comprenant une couche de piegeage de charges, substrat composite comprenant un tel support et procedes de fabrication associes
WO2024115411A1 (fr) * 2022-11-29 2024-06-06 Soitec Support comprenant une couche de piegeage de charges, substrat composite comprenant un tel support et procedes de fabrication associes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055397A1 (fr) 1999-03-16 2000-09-21 Shin-Etsu Handotai Co., Ltd. Procede de production d'une tranche de silicium et tranche de silicium ainsi obtenue
FR2838865B1 (fr) 2002-04-23 2005-10-14 Soitec Silicon On Insulator Procede de fabrication d'un substrat avec couche utile sur support de resistivite elevee
FR2860341B1 (fr) 2003-09-26 2005-12-30 Soitec Silicon On Insulator Procede de fabrication de structure multicouche a pertes diminuees
JP5367330B2 (ja) 2007-09-14 2013-12-11 株式会社半導体エネルギー研究所 Soi基板の作製方法及び半導体装置の作製方法
FR2933233B1 (fr) 2008-06-30 2010-11-26 Soitec Silicon On Insulator Substrat de haute resistivite bon marche et procede de fabrication associe
FR2953640B1 (fr) 2009-12-04 2012-02-10 S O I Tec Silicon On Insulator Tech Procede de fabrication d'une structure de type semi-conducteur sur isolant, a pertes electriques diminuees et structure correspondante
FR2985812B1 (fr) 2012-01-16 2014-02-07 Soitec Silicon On Insulator Procede et dispositif de test de substrats semi-conducteurs pour applications radiofrequences
US9768056B2 (en) 2013-10-31 2017-09-19 Sunedison Semiconductor Limited (Uen201334164H) Method of manufacturing high resistivity SOI wafers with charge trapping layers based on terminated Si deposition
US9899499B2 (en) * 2014-09-04 2018-02-20 Sunedison Semiconductor Limited (Uen201334164H) High resistivity silicon-on-insulator wafer manufacturing method for reducing substrate loss
WO2016081367A1 (en) * 2014-11-18 2016-05-26 Sunedison Semiconductor Limited HIGH RESISTIVITY SILICON-ON-INSULATOR SUBSTRATE COMPRISING A CHARGE TRAPPING LAYER FORMED BY He-N2 CO-IMPLANTATION
FR3029682B1 (fr) * 2014-12-04 2017-12-29 Soitec Silicon On Insulator Substrat semi-conducteur haute resistivite et son procede de fabrication
EP3266038B1 (en) * 2015-03-03 2019-09-25 GlobalWafers Co., Ltd. Method of depositing charge trapping polycrystalline silicon films on silicon substrates with controllable film stress
US9881832B2 (en) 2015-03-17 2018-01-30 Sunedison Semiconductor Limited (Uen201334164H) Handle substrate for use in manufacture of semiconductor-on-insulator structure and method of manufacturing thereof
JP6353814B2 (ja) 2015-06-09 2018-07-04 信越半導体株式会社 貼り合わせsoiウェーハの製造方法
WO2017142704A1 (en) * 2016-02-19 2017-08-24 Sunedison Semiconductor Limited High resistivity silicon-on-insulator substrate comprising a charge trapping layer formed on a substrate with a rough surface
FR3053532B1 (fr) * 2016-06-30 2018-11-16 Soitec Structure hybride pour dispositif a ondes acoustiques de surface
EP4009361A1 (en) * 2016-12-05 2022-06-08 GlobalWafers Co., Ltd. High resistivity silicon-on-insulator structure

Also Published As

Publication number Publication date
JP7500701B2 (ja) 2024-06-17
JP2022540627A (ja) 2022-09-16
FR3098642A1 (fr) 2021-01-15
KR20220032100A (ko) 2022-03-15
FR3098642B1 (fr) 2021-06-11
EP4060715A1 (fr) 2022-09-21
WO2021008742A1 (fr) 2021-01-21
FI3997728T3 (fi) 2023-04-27
US20220247374A1 (en) 2022-08-04
CN114127893A (zh) 2022-03-01
EP3997728B1 (fr) 2023-02-22
EP3997728A1 (fr) 2022-05-18
TWI830891B (zh) 2024-02-01

Similar Documents

Publication Publication Date Title
TWI830891B (zh) 用於製作包含被移轉至設有電荷捕捉層的支撐件上的一薄膜之結構之方法
TWI758133B (zh) 製備多層結構的方法
US7449395B2 (en) Method of fabricating a composite substrate with improved electrical properties
US20220301847A1 (en) Support for a semiconductor structure
FI3948966T3 (en) METHOD FOR PRODUCING A THIN LAYER OF FERROELECTRIC MATERIAL
WO2016016532A1 (fr) Structure pour applications radio-frequences
JP2019512870A (ja) 半導体構造用の支持体
US20230230874A1 (en) Method for transferring a thin layer onto a support substrate provided with a charge-trapping layer
KR102484156B1 (ko) 전하를 트랩핑하기 위한 층을 포함하는 반도체 엘리먼트의 제조를 위한 프로세스
CN112236853A (zh) 用于集成射频器件的衬底及其制造方法
CN112420915B (zh) 复合衬底的制备方法、复合薄膜及电子元器件
TWI843831B (zh) 用於製備鐵電材料薄膜之方法
TW202416344A (zh) 用於製作具原子物種擴散阻隔層之結構之方法
TW202416352A (zh) 用於製作具原子物種擴散阻隔層之結構之方法
CN116783683A (zh) 适用于射频应用的由硅制成的支撑衬底及相关制造方法
CN117116759A (zh) 一种衬底外延层表面寄生电导效应的方法