TW202029289A - 一種用於製作包含上覆薄膜之凹穴之元件之方法 - Google Patents

一種用於製作包含上覆薄膜之凹穴之元件之方法 Download PDF

Info

Publication number
TW202029289A
TW202029289A TW108145514A TW108145514A TW202029289A TW 202029289 A TW202029289 A TW 202029289A TW 108145514 A TW108145514 A TW 108145514A TW 108145514 A TW108145514 A TW 108145514A TW 202029289 A TW202029289 A TW 202029289A
Authority
TW
Taiwan
Prior art keywords
basic
cavities
partitions
substrate
donor substrate
Prior art date
Application number
TW108145514A
Other languages
English (en)
Other versions
TWI800699B (zh
Inventor
布魯諾 奇瑟蘭
Original Assignee
法商索泰克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法商索泰克公司 filed Critical 法商索泰克公司
Publication of TW202029289A publication Critical patent/TW202029289A/zh
Application granted granted Critical
Publication of TWI800699B publication Critical patent/TWI800699B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00158Diaphragms, membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本發明涉及一種用於製作包含懸於一有用凹穴上方之一薄膜之元件之方法,其包括: •   提供一通用結構使其包含一表面層,該表面層在一主平面中延伸且設置在一載體底材之第一側上,該載體底材包含在該表面層下方開口的多個基本凹穴及劃分各基本凹穴的多個分隔件,該些分隔件具有形成該載體底材之第一側之全部或部分的上表面; •   界定出相鄰基本凹穴之群組,使該相鄰基本凹穴之群組的輪廓在該主平面中對應於該有用凹穴的輪廓; •   移除位於該相鄰基本凹穴之群組之輪廓內部的該些分隔件,以形成該有用凹穴,並釋出設置在該有用凹穴上方且構成該薄膜之該表面層。

Description

一種用於製作包含上覆薄膜之凹穴之元件之方法
本發明與微電子及微系統領域有關。詳細而言,本發明涉及一種用於製作包含懸於有用凹穴上方之薄膜之元件之方法。
MEMS元件(MEMS為「微機電系統」的簡稱)常被用於製作各種感應裝置及應用中:例如壓力感應器、麥克風、射頻開關、電聲(electro-acoustic)轉換器和超音波傳感器(例如壓電微機械超音波傳感器(pMUT))等。
許多MEMS元件以懸於有用凹穴上方之彈性薄膜(flexible membrane)為基礎。在操作上,與物理參數(例如pMUT的聲波傳播)相關的薄膜撓曲(deflection)會被轉換成電子訊號(反之亦然,根據元件處於接收模式或發射模式而定)。
視實施的設備類型而定,各有用凹穴的幾何特徵(形狀、橫向尺寸、深度)、薄膜的幾何特徵(厚度)及兩者的平面分佈(inter-cavity distance,凹穴間距)會有所不同。
在Lu Yipeng及David A. Horsley發表之文章〈Modeling, fabrication, and characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers〉(Journal of Microelectromechanical Systems 24.4 (2015) 1142-1149)中,描繪了一種由設有埋置有用凹穴之SOI(絕緣體上矽)底材起始,製作pMUT元件之示例性方法。此方法利用事先在底材中形成之有用凹穴,以限制所需使用之光刻遮罩數目。
該方法是有吸引力的,但也意味著設計聲學元件的工作必須由底材製造商承擔。詳細而言,底材製造商必須能夠設計和製作包含有用凹穴的底材,且其必須完全符合元件所要求的拓撲(凹穴的幾何特徵、凹穴間距)。然而,元件拓撲(device topology)通常是元件製造商不願揭露之重要且敏感的資訊。
此外,底材製造商必須針對每種拓撲開發特定的底材製作方法。為此所需付出的努力,會使得快速且經濟的開發元件更加困難。
因此,有必要能夠提供一種可基於懸於有用凹穴上方的薄膜來製作廣泛元件的底材,從而無須針對每種元件開發特定的底材製程。
本發明之目的為達成前述目標。本發明涉及一種用於製作元件之方法,該元件包含懸在有用凹穴上方之薄膜,所述方法因為使用通用底材而得以簡化。
本發明涉及一種用於製作包含懸於有用凹穴上方之薄膜之元件之方法,該方法包括: •提供一通用結構使其包含一表面層,該表面層在一主平面中延伸且設置在一載體底材之第一側上,該載體底材包含在該表面層下方開口的多個基本凹穴及劃分各基本凹穴的多個分隔件,該些分隔件具有形成該載體底材之第一側之全部或部分的上表面; •界定出相鄰基本凹穴之群組,使該相鄰基本凹穴之群組的輪廓在該主平面中對應於該有用凹穴的輪廓; •移除位於該相鄰基本凹穴之群組之輪廓內部的該些分隔件,以形成該有用凹穴,並釋出設置在該有用凹穴上方且構成該薄膜之該表面層。
根據本發明之其他有利的和非限制性的特徵,其可以單獨實施,或以任何技術上可行的組合來實施: •分隔件將基本凹穴彼此分隔; •分隔件依照分隔件網絡分佈在主平面中,分隔件網絡允許基本凹穴之間的連通,每一基本凹穴被分隔件網絡之基本圖案所界定; •提供通用結構包含: 。提供施體底材, 。提供載體底材使其包含開口的基本凹穴及劃分各基本凹穴之分隔  件,分隔件的上表面形成載體底材之第一側之全部或部分, 。於載體底材之第一側組合施體底材及載體底材, 。薄化施體底材以形成表面層; •提供施體底材包括將輕物種植入施體底材,以形成埋置弱化區位於施體底材之第一部分與施體底材之第二部分之間,第一部分係用於形成表面層,第二部分係用於形成施體底材之其餘部分; •薄化施體底材包括經由埋置弱化區將表面層從施體底材之其餘部分分離; •施體底材之第一部分具有0.2微米及2微米之間的厚度; •所述組合包括透過分子黏附鍵結施體底材及載體底材的第一側; •移除位於相鄰基本凹穴之群組之輪廓內部的分隔件包括局部蝕刻表面層以形成穿過表面層之至少一通孔,以及經由該至少一通孔對分隔件進行化學蝕刻; •至少一通孔被形成垂直於(plumb with)分隔件; •一通孔被製作成與基本凹穴群組的每一基本凹穴垂直; •移除位於相鄰基本凹穴之群組之輪廓內部的分隔件包括局部蝕刻載體底材之第二側,以形成向基本凹穴之群組之其中一凹穴開口之至少一通孔,以及經由該至少一通孔對分隔件進行化學蝕刻; •分隔件包括選自於氧化矽、氮化矽、單晶矽、多晶矽、非晶矽或多孔矽之至少一材料; •施體底材包括至少一半導體或壓電材料。
在以下說明中,圖式中相同的數字可代表同類型之元件。為了易讀起見,圖式未按比例而是概要繪製。更詳細而言,相對於x軸和y軸代表的橫向尺寸,z軸代表的層厚度並未按比例繪製;此外,各層之間的相對厚度在圖式中不一定符合實際比例。
本發明涉及一種用於製作包含懸於有用凹穴230上之薄膜210之元件200之方法(圖1e及圖1f)。舉例而言,元件200可由一超音波或聲學換能器(acoustic transducer)組成。
根據本發明之製作方法首先包含提供通用結構100之步驟,其包含一表面層10,該表面層10在主平面(x,y)中延伸且被設置在載體底材20之第一側21上。載體底材20包含在表面層10下方開口的基本凹穴23,以及垂直於主平面(x,y)的分隔件24,分隔件24分隔每一基本凹穴23(圖1a、5a)。分隔件24之上表面至少形成載體底材20的第一側21之部分。
作為非限制性示例,分隔件24包含選自於氧化矽、氮化矽、單晶矽、多晶矽、非晶矽或多孔矽之至少一材料。
根據第一有利實施例,分隔件24將基本凹穴23彼此完全分隔。如圖1b之平面圖所示,分隔件24有利地在主平面(x,y)中排列成網格,從而可使每一基本凹穴23與相鄰凹穴分開,並因此劃定每一基本凹穴23的界限。
在此例中,基本凹穴23以正方形表示,但在替代方案中亦可為長方形、圓形或其他幾何形狀。
根據本發明之第二實施例,基本凹穴23未彼此分開。分隔件24可優選地依照一分隔件24網絡,均勻地分佈在主平面(x,y)中,如圖5b所繪示例。分隔件24未彼此相連,而是形成局部的分隔件及/或支柱。在此實施例中,基本凹穴23指位於分隔件24網絡之基本圖案23e內的凹穴。在圖5b的示例中,基本圖案23e對應於四個相鄰分隔件24虛擬地圍出的方形圖案;基本凹穴23由四個相鄰分隔件24界定,並對應於基本圖案23e之內部區域。
在此例中,分隔件24的上表面(在主平面(x,y)中)呈正方形,但其亦可具有長方形、圓形或其他幾何形狀。分隔件24亦可依照交錯網絡或另一均勻分佈的方式來分佈。作為非限制性示例,分隔件24在主平面(x,y)中的尺寸可為大約5微米、7微米、10微米或15微米。
所述製作方法接著包括界定相鄰基本凹穴23之群組23g之步驟,該群組的外輪廓在主平面(x,y)中對應於有用凹穴230之輪廓(圖1c、5c)。當然,此情況涉及基本凹穴之至少一群組23g之界定:事實上,在通用結構100係從直徑介於100毫米及300毫米之間的載體底材20形成時,複數個群組23g將依照一預定分佈在主平面(x,y)中被界定出來。
此界定步驟取決於欲製作之元件200的類型,詳言之,其取決於在主平面(x,y)中,有用凹穴230的所需橫向尺寸;這些橫向尺寸可從數十微米至數百微米或數毫米不等。此界定步驟亦取決於所述元件200所需的有用凹穴之間的間距:該間距舉例而言可從數十微米到數百微米或數毫米不等。
應注意的是,此界定步驟和後續步驟可優選地由元件製造商執行,底材製造商僅負責提供通用結構100。作為替代方案,底材製造商可應客戶要求並根據客戶設定的規格實施所述界定步驟。
根據本發明之製作方法接著包含移除位於基本凹穴23群組23g之輪廓內的分隔件24之步驟;所述分隔件以下稱為臨時分隔件24g。
移除臨時分隔件24g的步驟可有利地包含對表面層10進行局部蝕刻,以在基本凹穴群組23g的界定區域中形成穿過表面層10的至少一通孔13(圖2a及圖2b)。
所述局部蝕刻可透過光刻及乾式或濕式化學蝕刻法進行。詳言之,沉積在表面層10之自由側12’上的光罩(未繪出)可劃定出待蝕刻以形成通孔13之區域,並保護自由表面12’的其餘部分。應注意的是,在形成載體底材20之基本凹穴23及分隔件24的過程中,被界定在載體底材20的外圍及/或在其第一側21及/或第二側22上為切割線(cutting lanes)所提供之區域中的對準標記(alignment marks),其在此移除步驟期間可相對於分隔件24及基本凹穴23達成精確的定位。所述標記亦可用於需要相對於元件200中有用凹穴230進行對齊之後續步驟。
根據第一變化例,如圖2b所示,該(至少一)通孔13被製作成與臨時分隔件24g垂直。
根據第二變化例,其可用於本發明之第一實施例,通孔13被製作成垂直於基本凹穴群組23g之至少一基本凹穴23(未繪示於圖中)。
在前述變化例中,可在真空或在受到控制之氣氛中透過例如沉積多晶矽來重新塞住(至少一)通孔13。
根據第三變化例(未繪出),移除臨時分隔件24g可包含經由局部蝕刻載體底材20之第二側22直到基本凹穴23群組23g之凹穴以形成至少一通孔13。所述在第二側22進行的蝕刻可有利地在MEMS元件200製作完成時進行,詳言之,當載體底材20被薄化至例如400、200、100、50微米或更小時。這麼做可允許製作出小尺寸的通孔13,同時維持在使用習知化學蝕刻技術可獲得的被蝕刻厚度/通孔尺寸之比例(ratios of etched thickness/dimensions of the aperture)內。應注意的是,此變化例允許薄膜(表面層10垂直於基本凹穴23群組23g的部分)藉由避免通孔13從中穿過而保持完整。
在前述的任一變化例中,可接著經由通孔13進行適於蝕刻分隔件24材料的乾式或濕式化學蝕刻,以去除臨時分隔件24g(圖1d、5d),並在有用凹穴230的整個範圍上釋出(形成薄膜210的)表面層10。
在去除臨時分隔件24g的步驟完成時,可獲得元件200,其包含懸於有用凹穴230上之薄膜210(圖1e)。
本發明用於製作元件200之方法因使用了通用結構100而得以簡化,因為在其開發過程中不需瞭解幾何學及有用凹穴230的分佈。通用結構100包含複數個基本凹穴23和複數個分隔件24(其中一些為臨時分隔件24g,因為它們最終會被去除),以形成由一個或多個基本凹穴群組23g所界定之一個或多個有用凹穴230。
在本發明之第一實施例中,通用結構100包含以分隔件24彼此分隔之基本凹穴23,在去除臨時分隔件24g後,位於有用凹穴230上方的薄膜210透過分隔件24保持在其整個周邊上方(圖1d及圖1e)。在本發明之第二實施例中,通用結構100之分隔件24未將基本凹穴23彼此分開,而在去除臨時分隔件24g後,位於有用凹穴230上方的薄膜210係透過分隔件24保持在其局部周邊上方(圖5d及圖5e)。前述二實施例可取決於預期之元件200類型而從中擇一實施。
因此,通用結構100具有能夠根據有用凹穴230之各種拓撲而用於製作多種元件200之優點,所述有用凹穴230可從基本凹穴23之群組23g形成。
此外,經由移除臨時分隔件24g而製作有用凹穴230的優點在於只需要移除少量材料,因為分隔件具有較小寬度,這可限制蝕刻時間並為有用凹穴230獲致精確尺寸。
所述製作方法(無論哪一實施例)亦可包含在表面層10上,詳言之在薄膜210上面及其周圍,製作元件200之額外步驟。此額外步驟尤其可包含光刻、蝕刻及沉積絕緣層及/或導電層等步驟,以在每一薄膜210上方界定及形成,舉例而言,電極220(圖1f)。
應注意的是,作為替代方案,該些額外步驟可在移除臨時分隔件24g的步驟之前進行,以利用表面層10因其下之臨時分隔件24g而在整個結構100範圍(主平面(x,y)中)所提供之機械強度。
根據實施本發明之一有利方式,提供通用結構100之步驟首先包含提供一施體底材1。施體底材1具有用於與載體底材20組合之前側11,以及背側12。作為非限制性示例,施體底材1可包含至少一半導體(例如矽、碳化矽等)或一壓電材料(例如鉭酸鋰、鈮酸鋰、氮化鋁、氧化鋅、PZT等)。
第二,提供通用結構100之步驟包含提供載體底材20,其包含用於與施體底材1組合之第一側21,以及第二側22。載體底材更包括基本凹穴23,其在第一側21開口,以及分隔件24,其上表面形成第一側21之全部或部分。
作為非限制性示例,載體底材20可包含矽、玻璃、藍寶石等等。
基本凹穴23在主平面(x,y)中的形狀可為圓形、正方形、長方形或多邊形。基本凹穴23在主平面(x,y)中的橫向尺寸可有利地小於50微米,或小於25微米,或小於10微米。基本凹穴23彼此之間隔對應於分隔件24之寬度,可從1微米至數十微米不等。作為非限制性示例,分隔件24的寬度可為約5微米、7微米、10微米或15微米。分隔件24之上表面可具有圓形、正方形、長方形或多邊形的形狀。
基本凹穴23沿著垂直於主平面(x,y)之z軸的深度,其亦對應於分隔件24之高度,可從數十奈米至數十微米或數百微米不等,視所欲製作之元件200而定。
第三,提供通用結構100之步驟包含組合施體底材1之前側11與載體底材20之第一側21。該組合操作優選地包含透過分子黏附的直接鍵結。分子黏附之原理為習知技術中所周知,故不在此詳述。應注意的是,待接合的底材必須具有非常好的表面光潔度(清潔、粗糙度低等等),才能獲得高品質的組合。
為了確保高品質的連接,組合步驟可有利地包括在施體底材1和載體底材20的待連接表面接觸前,對其進行清潔。作為示例,微電子的習知清潔程序,尤其是用於矽底材者,包括臭氧清潔、SC1清潔(「標準清潔1」的縮寫)和SC2清潔(「標準清潔2」的縮寫)及中間的清洗步驟。待連接之表面亦可在彼此接觸前被活化,例如使用電漿,以促進這些表面之間的高鍵結能(bonding energy)。
施體底材1及/或載體底材20可視需要分別在前側11及/或第一側21包含一鍵合層,以提升鍵結品質和交界面之鍵結能。
第四,提供通用結構100之步驟包含薄化施體底材1以形成表面層10。
根據此有利實施方式之第一變化例,薄化施體底材1係在其背側12進行機械研磨、化學機械研磨及/或化學蝕刻。薄化步驟結束時,可獲得設置在載體底材20上且具有被薄化自由側12’之表面層10(圖1a)。
根據此變化例,表面層10之厚度可介於數微米及數十或數百微米之間。
根據此有利實施方式之第二變化例,可使用Smart CutTM 製程進行薄化,其係基於植入輕離子及經由植入區分離。
因此,根據此第二變化例,前述提供施體底材1之步驟包括將輕物種植入施體底材1,以形成埋置弱化區2位於該施體底材之第一部分3與該施體底材1之第二部分4之間,第一部分3係用於形成表面層10,第二部分4係用於形成施體底材1之其餘部分(圖3a)。較佳者為,在植入步驟前將中間層5設置在施體底材1的前側11。在組合步驟前,此中間層5可被保留、移除及/或由一鍵合層取代。
第一部分3的厚度及之後的表面層10的厚度,取決於輕物種(例如氫或氦)的植入能量。植入能量可有利地被選定,以使施體底材1之第一部分3具有約0.2微米至2微米之厚度。
施體底材1接著在依照本發明之方法之組合步驟中接合至載體底材20 (圖3b)。
同樣根據此第二變化例,薄化施體底材1之步驟包括在埋置弱化區2將表面層10(其由被分離之第一部分3形成)從施體底材1之其餘部分4分離(圖3c)。此分離步驟較佳者為在溫度為數百及700°C之間的熱處理期間進行。作為替代方案,分離亦可在熱處理後透過機械應力以機械方式輔助或達成。
薄化步驟結束時,可獲得移轉至載體底材20之表面層10(圖3c)。應記住的是,Smart CutTM 製程可獲得具極佳厚度均勻性的薄層。
在某些情況下,表面層10的厚度在使用Smart CutTM 製程移轉後會不足,這時可藉由在表面層10的自由表面12’上沉積額外層,以再增加其厚度,例如在下述的精加工期間以磊晶生長或其他習知沉積方法達成。
在前述的兩個薄化變化例中,當表面層10設置在載體底材20上時,薄化步驟可包括旨在改善晶質(從層中去除缺陷)、改善表面品質(從自由表面12’去除殘留粗糙度)及/或調整表面層10厚度的精加工(finishing processing)。此精加工可包含一次或多次的熱處理、化學機械研磨、化學蝕刻、磊晶生長及/或額外層的沉積。
實施例之示例 在此示例中,欲製作之元件200需要厚度1.5微米之矽薄膜210懸於正方形有用凹穴230上方,該正方形邊長約104微米且深度約1微米。
根據本發明之製作方法首先提供通用結構100,其包含1.5微米之矽表面層及正方形基本凹穴23,其邊長為20微米、深度為1微米、間隔為8微米。
施體底材1為矽製底材(圖4a)。植入輕物種前,可透過諸如熱氧化之方式,在底材的前側11上形成厚度舉例而言約100奈米之矽氧化物層5。植入能量設為210 keV,氫物種劑量約為7E 16/cm2 。如此而形成埋置弱化區2,其位於底材1之第一部分3及第二部分4之間的主平面(x,y)中,且在深度約1.9微米處。
在組合載體底材20之步驟前,氧化物層5可能被保留或去除。
載體底材20為矽製底材。在載體底材20之第一側21及第二側22上形成厚度為2微米之熱氧化層24a。此熱氧化層24a形成於底材20之第一側21及第二側22上。位於第二側22之熱氧化層可視情況被全部或局部地保留或移除。作為替代方案,可只在載體底材20之第一側21(使用習知沈積技術)沉積一氧化層。
接著透過光刻法,在載體底材20的第一側21上界定出光罩25,該第一側包括熱氧化層24a會被蝕刻之未遮蔽區域,以及熱氧化層24a會收到保護之遮蔽區域(圖4b)。應注意的是,在載體底材20的外圍上及/或切割通道區域中亦界定出對準標記,其將用於後續的光刻步驟,因為當基本凹穴23被埋置在表面層10下時,必須能夠重新確定基本凹穴23的座標。
未遮蔽區域之界定係依照通用結構100之基本凹穴23之尺寸及目標平面分佈。在未遮蔽區域中,熱氧化層24a的乾式或濕式化學蝕刻係對其整個厚度進行,即2微米(圖4c)。接著移除光罩25(圖4d)。
一般而言,在此示例中,每一基本凹穴23的邊長為20微米,分隔件24依照網格分佈,其寬度為8微米且將基本凹穴23彼此分開(圖4e)。
在清潔和活化步驟之後,使施體底材1的前側11和載體底材20的第一側21接觸並透過分子黏附鍵結(圖4f)。應注意的是,直接鍵結可在周圍大氣下進行或在(氣體的壓力和性質)受控制的氣氛下進行。用於強化鍵結界面之回火,可在約350℃的溫度下對已鍵結之結構進行。
經由埋置弱化區2進行之分離,是在分離熱處理期間在約500℃的溫度下實施。
接著可獲得通用結構100,其包含設置在載體底材20之複數個基本凹穴23上的表面層10(圖4g)。
最好進行諸如熱氧化和化學機械研磨等精加工操作,以確保被移轉之表面層10有良好的表面和結構的品質,並獲得1.5微米的厚度。
接著進行界定出相鄰基本凹穴23之至少一群組23g之步驟,其外輪廓在主平面中對應於有用凹穴230之輪廓。如圖4h所示,十六個基本凹穴23的群組23g被界定出來,以形成每邊約104微米的有用凹穴230。分隔所述十六個基本凹穴23的分隔件為臨時分隔件24g,其將在所述製作方法的下一步驟中被去除。
在移除臨時分隔件24的步驟中,可使用設置在載體底材20上的對準標記經由光刻法定義出一光罩14(舉例而言為氮化矽製),以界定出未遮蔽區域,這些區域將形成穿過表面層10的通孔13,而表面層10自由側12的其餘部分將被遮蔽並因此受到保護。對矽製表面層10進行乾式或濕式局部蝕刻以形成多個通孔13a,每一通孔13a的橫截面積被選定成小於分隔件24g的上表面(圖4i)且被設置在形成臨時分隔件24g的網格的相交處。
在通孔13存在的情況下進行化學蝕刻,例如以氫氟酸(HF)蒸氣為基礎的乾式化學蝕刻,以去除形成臨時分隔件24g的熱氧化物,從而在有用凹穴23的整個範圍上釋放表面層10以形成薄膜210。
在化學蝕刻臨時分隔件24g之前或在移除臨時分隔件24g的步驟結束時,可將光罩14移除。
應注意的是,視去除臨時分隔件24g的步驟所選擇的方法而定,可對界定有用凹穴230的分隔件24進行過蝕刻(over-etching),以實質上改變有用凹穴230和相關薄膜210之尺寸。因此,有必要考慮過蝕刻的潛在影響及/或調整臨時分隔件24g移除步驟所選的方法,以獲得具有正確尺寸之有用凹穴230。
接著,如有必要可將通孔13再塞住。
最後可獲得欲製作之元件200,其包含懸於有用凹穴230上之薄膜210,且表面層10(薄膜210)之厚度及有用凹穴230之幾何特徵皆符合前述規格。
當然,本發明不限於本說明書所述之實施方式及示例,且實施例方式之各種變化例均落入申請專利範圍所界定之範疇。
1:施體底材 2:埋置弱化區 3:第一部分 4:第二部分 5:氧化物層 10:表面層 11:前側 12:背側 12’:自由側 13、13a:通孔 20:載體底材 21:第一側 22:第二側 23:基本凹穴 23e:基本圖案 23g:群組 24:分隔件 24g:臨時分隔件 25:光罩 100:通用結構 200:元件 210:薄膜 220:電極 230:有用凹穴
以下關於本發明之詳細說明,將更清楚說明本發明其他特徵和優點,詳細說明係參照所附圖式提供,其中: 圖1a至圖1f繪示根據本發明之用於製作包含上覆薄膜之有用凹穴之元件之方法; 圖2a至圖2b繪示根據本發明之製作方法之步驟; 圖3a至圖3c繪示根據本發明之製作方法之其他步驟; 圖4a至圖4j繪示根據本發明之製作方法之實施例示例; 圖5a至圖5e繪示根據本發明之製作方法之步驟。

Claims (13)

  1. 一種用於製作包含懸於一有用凹穴(230)上方之一薄膜(210)之一元件(200)之方法,該方法包括: - 提供一通用結構(100)使其包含一表面層(10)在一主平面(x,y)中延伸且設置在一載體底材(20)之第一側(21)上,該載體底材(20)包含在該表面層(10)下方開口的多個基本凹穴(23)及劃分各基本凹穴(23)的多個分隔件(24),該些分隔件(24)具有形成該載體底材(20)之第一側(21)之全部或部分的上表面; - 界定出相鄰基本凹穴(23)之一群組(23g),使相鄰基本凹穴(23)之該群組(23g)的輪廓在該主平面(x,y)中對應於該有用凹穴(230)的輪廓; - 移除位於相鄰基本凹穴(23)之該群組(23g)輪廓內部的該些分隔件(24g),以形成該有用凹穴(230),並釋出設置在該有用凹穴(230)上方且構成該薄膜(210)之該表面層(10)。
  2. 如申請專利範圍第1項之方法,其中該些分隔件(24)將該些基本凹穴(23)彼此分隔。
  3. 如申請專利範圍第1項之方法,其中該些分隔件(24)依照一分隔件網絡分佈在該主平面(x,y)中,所述分隔件網絡允許該些基本凹穴(23)之間的連通,每一基本凹穴(23)被所述分隔件網絡之基本圖案(23e)所界定。
  4. 如申請專利範圍第1至3項中任一項之方法,其中提供該通用結構(100)包括: - 提供一施體底材(1), - 提供該載體底材(20)使其包含開口的該些基本凹穴(23)及劃分各基本凹穴(23)之該些分隔件(24),該些分隔件的上表面形成該載體底材(20)之第一側(21)之全部或部分, - 在該載體底材(20)之第一側(21)組合該施體底材(1)及該載體底材(20), - 薄化該施體底材(1)以形成該表面層(10)。
  5. 如申請專利範圍第4項之方法,其中 - 提供該施體底材(1)包括將輕物種植入該施體底材(1),以形成一埋置弱化區(2)介於該施體底材(1)之第一部分(3)與該施體底材(1)之第二部分(4)之間,該第一部分(3)係用於形成該表面層(10),該第二部分(4)係用於形成該施體底材(1)之其餘部分, - 薄化該施體底材(1)包括經由該埋置弱化區(2)將該表面層(10)從該施體底材(1)之其餘部分(4)分離。
  6. 如申請專利範圍第5項之方法,其中該施體底材(1)之第一部分(3)具有0.2微米及2微米之間的厚度。
  7. 如申請專利範圍第4至6項中任一項之方法,其中所述組合包括經由分子黏附鍵結該施體底材(1)及該載體底材(20)的第一側(21)。
  8. 如申請專利範圍第1至7項中任一項之方法,其中移除位於相鄰基本凹穴(23)之該群組(23g)輪廓內部的該些分隔件(24g)包括局部蝕刻該表面層(10)以形成穿過該表面層(10)之至少一通孔(13),以及經由該至少一通孔(13)對該些分隔件(24g)進行化學蝕刻。
  9. 如申請專利範圍第8項之方法,其中該至少一通孔(13)被製作成垂直於該些分隔件(24g)。
  10. 如申請專利範圍第8項之方法,其中一通孔(13)被製作成垂直於相鄰基本凹穴之該群組(23g)的每一基本凹穴(23)。
  11. 如申請專利範圍第1至7項中任一項之方法,其中移除位於相鄰基本凹穴(23)之該群組(23g)輪廓內部的該些分隔件(24g)包括局部蝕刻該載體底材(20)之第二側(22),以形成向相鄰基本凹穴(23)之該群組(23g)中一基本凹穴(23)開口的至少一通孔(13),以及經由該至少一通孔(13)對該些分隔件(24g)進行化學蝕刻。
  12. 如申請專利範圍第1至11項中任一項之方法,其中該些分隔件(24)包括選自於氧化矽、氮化矽、單晶矽、多晶矽、非晶矽或多孔矽之至少一材料。
  13. 如申請專利範圍第4至12項中任一項之方法,其中該施體底材(1)包括至少一半導體或壓電材料。
TW108145514A 2018-12-20 2019-12-12 一種用於製作包含上覆薄膜之凹穴之元件之方法 TWI800699B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873602 2018-12-20
FR1873602A FR3090615B1 (fr) 2018-12-20 2018-12-20 Procédé de fabrication d’un dispositif comprenant une membrane surplombant une cavité

Publications (2)

Publication Number Publication Date
TW202029289A true TW202029289A (zh) 2020-08-01
TWI800699B TWI800699B (zh) 2023-05-01

Family

ID=66676725

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108145514A TWI800699B (zh) 2018-12-20 2019-12-12 一種用於製作包含上覆薄膜之凹穴之元件之方法

Country Status (9)

Country Link
US (1) US11939214B2 (zh)
EP (1) EP3898503A1 (zh)
JP (1) JP7368057B2 (zh)
KR (1) KR20210104823A (zh)
CN (1) CN113226978A (zh)
FR (1) FR3090615B1 (zh)
SG (1) SG11202106419XA (zh)
TW (1) TWI800699B (zh)
WO (1) WO2020128245A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3111628B1 (fr) 2020-06-18 2022-06-17 Commissariat Energie Atomique Procédé de fabrication d’un dispositif microélectronique comprenant une membrane suspendue au-dessus d’une cavité
FR3138657A1 (fr) 2022-08-08 2024-02-09 Airmems Commutateur MEMS à multiples déformations et commutateur comprenant un ou plusieurs commutateurs MEMS

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214567B2 (ja) * 1997-08-05 2009-01-28 株式会社デンソー 圧力センサ用半導体基板の製造方法
JP3435665B2 (ja) * 2000-06-23 2003-08-11 株式会社村田製作所 複合センサ素子およびその製造方法
JP3782095B2 (ja) * 2002-06-24 2006-06-07 松下電器産業株式会社 赤外線センサの製造方法
US6958255B2 (en) * 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
DE102004027501A1 (de) * 2004-06-04 2005-12-22 Robert Bosch Gmbh Mikromechanisches Bauelement mit mehreren Kavernen und Herstellungsverfahren
US7998829B2 (en) * 2007-12-11 2011-08-16 Hvvi Semiconductors, Inc. Semiconductor structure and method of manufacture
US8429969B2 (en) * 2009-04-17 2013-04-30 Hitachi, Ltd. Inertial sensor and method of manufacturing the same
JP5732203B2 (ja) * 2010-05-21 2015-06-10 日立オートモティブシステムズ株式会社 複合センサの製造方法
JP5751332B2 (ja) * 2011-08-25 2015-07-22 株式会社ニコン 空間光変調素子の製造方法、空間光変調素子、空間光変調器および露光装置
CA2898453C (en) 2013-03-13 2021-07-27 Illumina, Inc. Multilayer fluidic devices and methods for their fabrication
US20160178467A1 (en) * 2014-07-29 2016-06-23 Silicon Microstructures, Inc. Pressure sensor having cap-defined membrane
JP2017106857A (ja) * 2015-12-11 2017-06-15 ローム株式会社 半導体式ガスセンサ、半導体式ガスセンサの製造方法、およびセンサネットワークシステム
DE102016113347A1 (de) * 2016-07-20 2018-01-25 Infineon Technologies Ag Verfahren zum produzieren eines halbleitermoduls
IT201600121533A1 (it) * 2016-11-30 2018-05-30 St Microelectronics Srl Trasduttore elettroacustico integrato mems con sensibilita' migliorata e relativo processo di fabbricazione
WO2018119101A1 (en) * 2016-12-22 2018-06-28 Illumina, Inc. Flow cell package and method for making the same

Also Published As

Publication number Publication date
JP2022513753A (ja) 2022-02-09
JP7368057B2 (ja) 2023-10-24
KR20210104823A (ko) 2021-08-25
US20210387853A1 (en) 2021-12-16
TWI800699B (zh) 2023-05-01
CN113226978A (zh) 2021-08-06
WO2020128245A1 (fr) 2020-06-25
FR3090615A1 (fr) 2020-06-26
FR3090615B1 (fr) 2020-12-11
US11939214B2 (en) 2024-03-26
SG11202106419XA (en) 2021-07-29
EP3898503A1 (fr) 2021-10-27

Similar Documents

Publication Publication Date Title
US9458009B2 (en) Semiconductor devices and methods of forming thereof
US7153716B2 (en) Method of manufacturing a micro-electrical-mechanical system
US20080185669A1 (en) Silicon Microphone
EP1632105B1 (en) Fabrication of silicon microphones
TW202029289A (zh) 一種用於製作包含上覆薄膜之凹穴之元件之方法
JP2009226582A (ja) 半導体装置の製造方法
TWI787565B (zh) 用於移轉表面層至凹穴上之方法
US20230292618A1 (en) Methods for designing and producing a device comprising an array of micro-machined elements, and device produced by said methods
TW201205689A (en) Method of etching and singulating a cap wafer
EP2256084B1 (en) Method of manufacturing a MEMS element
JP2000133817A (ja) 半導体圧力センサおよびその製造方法
EP3009793B1 (en) Method of fabricating piezoelectric mems device
CN108632732B (zh) 麦克风及其制造方法
JP2022001403A (ja) キャビティの上方で懸架される膜を備えるマイクロエレクトロニクスデバイスを製造するための方法
JP5674304B2 (ja) Soiウェハの製造方法
KR20210056831A (ko) Soi 기판 제조 방법
JP2004069542A (ja) 可動部を有する力学量センサの製造方法