TW202024632A - 超音波檢查方法及超音波檢查裝置 - Google Patents

超音波檢查方法及超音波檢查裝置 Download PDF

Info

Publication number
TW202024632A
TW202024632A TW108143860A TW108143860A TW202024632A TW 202024632 A TW202024632 A TW 202024632A TW 108143860 A TW108143860 A TW 108143860A TW 108143860 A TW108143860 A TW 108143860A TW 202024632 A TW202024632 A TW 202024632A
Authority
TW
Taiwan
Prior art keywords
type
waveform
ultrasonic
reference waveform
ultrasonic probe
Prior art date
Application number
TW108143860A
Other languages
English (en)
Other versions
TWI708940B (zh
Inventor
小林昌幸
酒井薫
菊池修
住川健太
Original Assignee
日商日立電力解決方案股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立電力解決方案股份有限公司 filed Critical 日商日立電力解決方案股份有限公司
Publication of TW202024632A publication Critical patent/TW202024632A/zh
Application granted granted Critical
Publication of TWI708940B publication Critical patent/TWI708940B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本發明提供一種即便於使用具有多種頻率特性之超音波探針之情形時,亦能夠穩定地進行剝離檢測之超音波檢查方法。 本發明之超音波檢查方法具有如下步驟:登錄步驟,其係針對超音波探針2之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部;載入步驟,其係基於超音波探針2之種類識別碼,將參照波形載入運算處理部5;檢測步驟,其係檢測接收波形之波峰;對位步驟,其係基於接收波形之波峰,將已載入之參照波形沿時間軸方向進行對位;計算步驟,其係計算接收波形與參照波形之相關值;判定步驟,其係基於相關值之正負,判定檢查對象物之內部狀態是否為異常狀態;及顯示步驟,其係藉由C型示波器顯示使於判定步驟中被判定為異常狀態之異常區域顯示於顯示裝置。

Description

超音波檢查方法及超音波檢查裝置
本發明係關於一種超音波檢查方法及超音波檢查裝置。
作為本技術領域之先前技術,有專利文獻1。專利文獻1中記載有「超音波會於聲阻抗(密度×音速)不同之境面發生反射,且該反射信號之大小受構成界面之物質之聲阻抗影響。於超音波自聲阻抗較大之物質入射至聲阻抗較小之物質之情形時和與之相反地超聲波自聲阻抗較小之物質入射至聲阻抗較大之物質之情形時,反射之相位不同。例如於超音波自固體入射至如水或空氣般阻抗較小之物質時,反射之相位發生反轉。周知如下方法:利用上述現象,藉由超音波來檢查材料或零件之接合部有無剝離或有無孔隙。」(參照發明之詳細說明)。
又,專利文獻1中記載有「一種超音波檢查方法,其係接收自超音波探針向受檢材料內部發射之超音波之反射波作為RF(Radio Frequency,射頻)信號,且檢測上述RF信號之正波峰之最大值及上述RF信號之負波峰之絕對值,計算出該正波峰之最大值與負波峰之絕對值之和,且計算出該和之值與上述正波峰之最大值或負波峰之絕對值中之任一者之比,將以該等和之值與比之值為參數之函數進行C型示波器顯示,而檢查上述接合部有無剝離。」(參照申請專利範圍)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開平3-102258號公報
[發明所欲解決之問題]
上述專利文獻1中記載有一種檢測超音波之相位之反轉而檢查有無剝離之超音波檢查方法。然而,於專利文獻1之超音波檢查方法中,相位反轉之判定係基於波峰之最大值等波形之局部資訊而進行,故有時會對自波形整體來看為相位反轉、或者並非相位判定與不應進行判定之反射波之波形進行誤判定。
例如本申請之圖17A係無剝離之界面之反射波之接收波形的模式圖。本申請之圖17B係有剝離之界面之反射波之接收波形的模式圖。自波形整體來看,兩者之差異較明顯。然而,任一波形之正波峰之峰值與負波峰之峰值之絕對值均相近。因此,以正、負波峰之峰值為標度來看,當兩波形無明顯差異,且因雜訊等而導致正波峰或負波峰之峰值發生變動時,判定結果容易發生變化而無法獲得穩定之檢查結果。
又,通常超音波探針之發送波之頻率特性因種類而異,因此即便為同一檢查對象物之同一超音波反射位置,若超音波探針之種類不同,則正波峰之峰值與負波峰之峰值不同。當然,專利文獻1中所記載之根據正波峰之峰值與負波峰之峰值之絕對值所獲得之參數值亦因超音波探針之種類而異。因此,單憑上述參數值,使用者一方有可能無法容易地判斷是否為剝離。
因此,本發明提供一種即便於使用具有多種頻率特性之超音波探針之情形時,亦能夠穩定地檢測剝離之超音波檢查方法及超音波檢查裝置。 [解決問題之技術手段]
為解決上述問題,本發明之超音波檢查方法之特徵在於:其係使用產生超音波並向檢查對象物入射,且接收自檢查對象物反射之反射波形作為接收波形之超音波探針,利用運算處理部解析接收波形,藉此對檢查對象物之內部狀態進行檢查,且具有如下步驟:登錄步驟,其係針對超音波探針之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部;載入步驟,其係基於超音波探針之種類識別碼將參照波形載入運算處理部;檢測步驟,其係檢測接收波形之波峰;對位步驟,其係基於接收波形之波峰,將已載入之參照波形沿時間軸方向進行對位;計算步驟,其係計算接收波形與參照波形之相關值;判定步驟,其係基於相關值之正負,判定檢查對象物之內部狀態是否為異常狀態;及顯示步驟,其係藉由C型示波器顯示使於判定步驟中被判定為異常狀態之異常區域顯示於顯示裝置。關於本發明之其他態樣,將於下述實施形態中進行說明。 [發明之效果]
根據本發明,可提供一種即便於使用具有多種頻率特性之超音波探針之情形時,亦能夠穩定地檢測剝離之超音波檢查方法及超音波檢查裝置。
對用以實施本發明之實施形態,適當參照圖式進行詳細說明。 <<第1實施形態>> 圖1係表示第1實施形態之超音波檢查裝置100之構成的方塊圖。超音波檢查裝置100包含超音波探傷器1、超音波探針2、掃描機構部3、機構部控制器4、運算處理部5(微處理機)、硬碟6、示波器7、顯示器8及輸入裝置12等而構成。
超音波探傷器1係對產生超音波之超音波探針2賦予脈衝信號9而驅動之超音波探傷器。超音波探針2係由掃描機構部3保持或驅動,且於檢查對象物上進行掃描之超音波探針(probe)。該掃描機構部3受機構部控制器4控制。
即,超音波探傷器1係對超音波探針2賦予脈衝信號9而驅動,且以水為媒介自超音波探針2對檢查對象物50(受檢體)發送超音波U1。又,超音波探傷器1具備接收器(未圖示),該接收器接收自檢查對象物50之表面或者內部之複數個界面返回之反射波U2作為反射波10,產生與之相應之RF(Radio Frequency,射頻)信號11並放大。
超音波探針2藉由掃描機構部3依次掃描至檢查對象物之檢查部位。超音波探針2經由連接器與超音波探傷器1電性連接,超音波探針2可由使用者容易地拆卸與安裝。
再者,為便於說明,有時將超音波探針2所產生之超音波稱作「發送波」。又,有時將超音波探針2所接收之反射波U2或RF信號11稱作「接收波」。
如上所述,超音波探傷器1向超音波探針2發送脈衝信號9,超音波探針2將脈衝信號9轉換為超音波並向檢查對象物50入射。超音波探針2接收來自檢查對象物50之反射波U2,並發送至超音波探傷器1。超音波探傷器1將反射波10轉換為RF信號11,並發送至運算處理部5(控制部)。運算處理部5為了使用超音波探針2掃描檢查對象物之適當部位,而向機構部控制器4發送控制信號,從而實現機構控制。藉由運算處理部5→機構部控制器4→掃描機構部3→超音波探針2→超音波探傷器1之系統而實現超音波探針2之自動控制(掃描)。
運算處理部5所獲得之資料(包含RF信號11或上述自動控制所需之信號)視需要儲存至硬碟(記憶部)6。又,運算處理部5與示波器(顯示部)7及顯示器(顯示部)8連接,能夠即時地進行A型示波器顯示或C型示波器顯示。
再者,所謂「A型示波器顯示」係指以時間為示波器7之橫軸,以RF信號11之波形之振幅(峰值)為縱軸時之RF信號11的顯示。又,所謂「C型示波器顯示」係指使超音波探針2相對於檢查對象物縱橫地進行掃描,以超音波探針2移動之橫向(X方向)距離為顯示畫面之橫軸且以縱向(Y方向)距離為縱軸時之、RF信號11之波形之正波峰最大值或負波峰最大值之絕對值的灰階顯示。A型示波器顯示有時亦藉由運算處理部5而顯示於與C型示波器顯示相同之顯示器。
又,運算處理部5執行由使用者自輸入裝置12輸入之指示、例如下述與評估閘門之指定或RF信號11之波峰之選擇相應之處理。輸入裝置12例如可為鍵盤、指向裝置等。硬碟6記憶有調色盤,該調色盤定義了於進行C型示波器顯示時,根據RF信號11之波形(特別是波峰之大小)而使用之顏色。顏色之定義具體而言係使用RYB(Red Yellow Blue,紅黃藍)值與RF信號11之波形建立對應關係。
又,硬碟6記憶有用以供運算處理部5執行第1實施形態之超音波檢查之程式(用以執行超音波檢查方法之程式)。
再者,經C型示波器顯示之RF信號11僅顯示出評估閘門中所包含之成分。評估閘門係用於僅擷取自超音波探傷器1輸入之RF信號11之成分中之、由來自檢查對象物之檢查部位之反射波10構成之成分,並進行C型示波器顯示者。因此,評估閘門具有於特定延遲時間後使閘門打開特定時間而使該RF信號11通過之功能(閘控)。評估閘門之設定係例如基於來自輸入裝置12之輸入,藉由運算處理部5進行。或,可由運算處理部5對RF信號11進行解析並自動地設定。運算處理部5搭載有產生評估閘門之閘門電路。但,於A型示波器上始終需要確認正波峰之最大峰值及負波峰之最大峰值包含於評估閘門之範圍內。其原因在於,若正波峰之最大峰值與負波峰之最大峰值中之一者或兩者不包含於評估閘門範圍內,則有非檢查對象部位之部位被誤識別為正波峰之最大峰值或負波峰之最大峰值,而無法準確地評估檢查對象部位之虞。
又,於根據評估閘門中所包含之RF信號11之最大值獲得C型示波器時,例如於RF信號11中選擇正負波峰中之較高之位準並反映至C型示波器。
再者,為便於說明,有時將進行以下等說明:將RF信號11所具有之波峰之正負稱作「極性」,波峰之極性為正或負。又,專利文獻1中所記載之相位反轉與極性反轉為同義。
圖2係表示超音波檢查時使用之發送波之波形之一例的圖。圖2之發送波係以時間為橫軸且以振幅即峰值為縱軸時之波形。橫軸所取之時間朝向圖2中、右方向行進,縱軸所取之峰值係將中央設為0,自中央朝向圖2中、上之方向表示正極性,朝向下之方向表示負極性。關於該等方向,對於下述發送波及接收波之波形亦同樣。
發送波具有如下波形:極性不同之波峰交替地出現,該等波峰中之峰值最大之波峰出現於初期階段並逐漸減少。發送波中所包含之波峰之數量、間隔、峰值因超音波探針之種類而異。
圖3係表示向檢查對象物入射發送波,且該發送波以接收波之形式反射之情況的圖。檢查對象物係層L1與層L2接合所得之IC晶片。層L1由聲阻抗為Z1之材質形成,層L2由聲阻抗為Z2之材質形成。聲阻抗係設為材質之密度×音速而求出。
通常,超音波之反射率R為,R=(Z2-Z1)/(Z2+Z1)。 此處,若有剝離,則Z1>Z2,若與Z1相比,將Z2視作大致為0,則Z2-Z1<Z1之關係式成立。
層L1與層L2之接合面即交界部之一部分剝離而形成了剝離部。剝離部可視作包含空氣之層,因空氣之聲阻抗與固體之材質相比大致為0,故剝離部之聲阻抗大致為0。再者,有時將未發生剝離而層L1與層L2正常接合之交界部稱為「正常交界部」。
圖4A係表示正常交界部(無剝離)處之圖2所示之發送波入射至檢查對象物並反射所得之接收波形的圖。圖4B係表示剝離部(有剝離)處之圖2所示之發送波入射至檢查對象物並反射所得之接收波形的圖。超音波具有如下性質:於自聲阻抗較大之物質入射至聲阻抗較小之物質並反射之情形時,反射波之相位發生反轉。因此,如圖4A所示,於發送波自層L1朝向層L2入射之情形時,若層L1與層L2之交界部未發生剝離,則於該交界部反射之接收波之相位不發生反轉。然而,如圖4B所示,當發送波入射至剝離部時,因剝離部之聲阻抗大致為0,故於該剝離部反射之接收波之相位將發生反轉。圖4B所示之接收波亦於剝離部相對於發送波(參照圖2)發生相位反轉。
以下,使用超音波探針2所接收到之接收波,對判定檢查對象物是否存在剝離之方法進行說明。
本實施形態中,使用相對於發送波無相位反轉且波形與發送波為相似形之參照波形。運算處理部5計算出所關注之反射波之接收波形與參照波形之相關係數,基於相關係數之正負進行剝離判定。若相關係數為負,則認為存在相位之反轉,即認為係剝離部。再者,本實施形態中,以相關係數為指標將接收波形與參照波形之相關性定量化,但只要為表示兩波形間之相關性之指標,則亦可採用相關係數以外之指標(相關值)。以下,對詳細之剝離之判定方法進行敍述。
首先,超音波檢查裝置100使用標準試片,自標準試片表面之反射波獲取參照波形。以下,表示對標準試片使用表面經平滑化之石英玻璃之例,但只要為可獲取相對於發送波無相位之反轉且波形與發送波為相似形之參照波形之標準試片,則可應用之標準試片之類別並無限制。
圖5係表示獲取石英玻璃表面之反射波之接收波形之方法的圖。石英玻璃14浸漬於水13中。因石英玻璃14之聲阻抗較水13之聲阻抗大,故石英玻璃表面之反射波相對於發送波無相位之反轉且波形與發送波為相似形。超音波檢查裝置100以使超音波探針2之焦點位置對準石英玻璃14表面之狀態,自超音波探針2向石英玻璃14入射發送波,藉由超音波探針2接收於石英玻璃14之表面反射之反射波。
圖6係表示自石英玻璃表面之反射波之接收波形提取參照波形之方法的圖。圖6中,將於石英玻璃表面反射之反射波之接收波形17進行A型示波器顯示。使用者根據經A型示波器顯示之接收波形17指定起點15及終點16,將自起點15至終點16之間之接收波形17之資料設為參照波形。參照波形係針對超音波探針之每個種類而獲取,且將各個參照波形保存於硬碟6。運算處理部5對所保存之每個參照波形賦予識別碼,且將參照波形之識別碼與超音波探針之種類識別碼建立對應關係。
又,運算處理部5使顯示器8顯示讓使用者選擇參照波形之識別碼之GUI,且使與使用者所選擇之參照波形之識別碼對應之參照波形於示波器7或顯示器8上進行A型示波器顯示,藉此讓使用者適時地目視確認參照波形。
圖7係讓使用者選擇與超音波檢查裝置100連接之超音波探針之種類之GUI(Graphical User Interface)。GUI18顯示預先登錄於超音波檢查裝置100之超音波探針之種類之清單。又,使用者自清單中選擇與超音波檢查裝置100連接之超音波探針之種類。藉由該選擇,運算處理部5可將與所選擇之超音波探針之種類識別碼建立對應關係之參照波形資料,保存並載入(讀取)至運算處理部5之記憶區域。藉此,超音波檢查裝置100之可用性提高。
超音波探針之種類識別碼之選擇亦可使用RFID(Radio Frequency Identifier,射頻識別符)而自動地執行。具體而言,於每個超音波探針上裝上存有超音波探針之識別碼資訊之RF標籤(Radio Frequency,射頻),運算處理部5讀取所連接之超音波探針之RF標籤。藉此,超音波檢查裝置100自動地讀取超音波探針之種類識別碼。載入與所讀取出之超音波探針之種類識別碼建立對應關係之參照波形。藉此,超音波檢查裝置100之可用性提高。
再者,硬碟6保存有以清單形式顯示於GUI18之超音波探針之種類庫資訊,藉由更新該超音波探針之種類庫資訊,而更新以清單形式顯示於GUI18之超音波探針之種類。可實現與已更新之超音波探針之種類識別碼對應之參照波形之登錄。超音波探針之種類庫資訊之更新可藉由將CD(Compact Disk,緊密光碟)、DVD(Digital Versatile Disk,數位多功能光碟)等記錄媒體中所保存之新超音波探針之種類庫資訊複製至硬碟6而執行。
圖8係表示使用已載入之參照波形來判定有無剝離之方法之圖。圖8中表示向剝離部入射發送波而獲得之接收波形19。接收波形19包含在時間軸方向之前半部分於層L1(參照圖3)之表面反射之接收波形(表面回波)、及在後半部分於層L1與層L2之界面反射之接收波形(界面回波)。首先,為了自接收波形19提取層L1與層L2之界面回波,運算處理部5將於表面回波閘門20(S閘門)之範圍內接收波形19之峰值超過閾值之時間設定為表面回波起點21(觸發點)。運算處理部5對評估閘門22設定了自表面回波起點21延遲一定時間之時間範圍。於該評估閘門22之範圍內,使接收波形19之正峰值之最大值或負峰值之絕對值之最大值反映於C型示波器。
其次,運算處理部5對參照波形23進行時間軸方向對位。關於對位,使用接收波形19之正、負最大峰值波峰。圖8表示以負最大峰值波峰為基準進行對位後之結果。運算處理部5於評估閘門22之範圍內自接收波形19檢測出負最大峰值波峰24。以使參照波形23之最大峰值波峰與接收波形19之負最大峰值波峰24一致之方式,將參照波形23沿時間軸方向進行對位。
運算處理部5於接收波形19與參照波形23重疊之時間範圍內,提取接收波形19之峰值資料,利用所提取之峰值資料與參照波形23計算相關係數。此時將獲得負值之相關係數。其次,運算處理部5以正最大峰值波峰為基準同樣地計算正值之相關係數,將負值之相關係數與正值之相關係數進行比較,採用絕對值較大之相關係數。於負值之相關係數較大之情形時,評估閘門22之範圍內之界面回波被判定為剝離候補。被判定為剝離候補之測定點係藉由下述閾值處理而最終判定是否剝離。
又,上文中例示藉由閾值處理進行最終之剝離判定之例,但亦可對閾值處理進行追加,使用剝離區域之特徵量進行最終之剝離判定。具體而言,於結束全部測定點之剝離判定之時間點,運算處理部5進行提取連續之剝離區域之像素之標記處理,將面積或真圓度等與形狀相關之特徵量收斂於一定範圍內之剝離區域作為最終剝離區域顯示於顯示器8。
圖9係使被判定為剝離之測定點於C型示波器上進行彩色顯示之GUI。剝離判定有效化按鈕28自使用者受理是否執行剝離判定之輸入。再者,於已選擇未登錄有參照波形之超音波探針之種類之情形時,使判定剝離有效化按鈕28顯示為灰色,而使剝離判定處理無效化。藉此,可容易理解能否進行剝離判定。
C型示波器圖像25係使異常區域29(剝離部)於經C型示波器顯示之檢查對象物之圖像上進行彩色顯示。藉由彩色顯示,使用者可容易地判定有無剝離。
於圖9中,表示於層L1與層L2之界面(參照圖3)設定評估閘門並圖像化之例。相關係數閾值調整欄26、亮度值閾值調整欄27自使用者受理相關係數閾值與亮度值閾值之輸入。運算處理部5進行相關係數閾值與各測定點處之相關係數之比較、及亮度值閾值與各測定點處之亮度值之比較,將相關係數之絕對值較相關係數閾值大且亮度值較亮度值閾值大之測定點設為異常區域29而進行彩色顯示。又,測定參數顯示區域30顯示所連接之超音波探針之種類識別碼、參照波形之識別碼、超音波探針之掃描條件等測定參數。藉此,超音波檢查裝置100之可用性提高。
再者,圖9中說明了使被判定為剝離之測定點於C型示波器上進行彩色顯示之例,但為了讓使用者能夠理解被判定為剝離候補之測定點(參照上述圖8之說明)、即相關係數為負之測定點,亦可使其顯示於顯示器8。具體而言,關於相關係數為0至-1之測定點,以256灰階進行灰度顯示。使用者藉由使用此種相關係數之分佈,而使針對相關係數之閾值之調整變得容易。
於將C型示波器圖像25以電子檔案之形式輸出之情形時,亦可以EXIF(Exchangeable Image File Format,可交換圖像檔案格式)輸出,且將所連接之超音波探針之種類識別碼、參照波形之識別碼等測定參數顯示區域30之資訊嵌入至電子檔案。又,亦可使C型示波器圖像25與上述相關係數之分佈之二維圖像以多TIFF(Tag Image File Format,標籤圖像檔案格式)圖像之形式輸出。作為多TIFF圖像,藉由留存亮度值與相關係數之資訊,使用者能夠進行相關係數之再解析。藉此,超音波檢查裝置100之可用性提高。
運算處理部5偵測所連接之超音波探針被卸除之情況。若偵測到超音波探針已被卸除,則運算處理部5執行保存有參照波形之運算處理部5之記憶區域之開放,並卸載參照波形(廢棄已讀取之內容)。當參照波形被卸載時,可載入與其他超音波探針之種類識別碼建立對應關係之參照波形。
圖10係確認參照波形23之對位結果之GUI。該GUI中,當使用者選擇圖9所示之C型示波器圖像25之任意之測定點時,將參照波形23之對位結果進行A型示波器顯示。A型示波器圖像中,以重疊之方式繪製有接收波形19與參照波形23,當於所選擇之測定點,採用負值之相關係數之情形時,顯示以負最大峰值波峰為基準進行對位之結果。又,於採用正值之相關係數之情形時,顯示以正峰值波峰為基準進行對位之結果。使用者藉由確認參照波形23之對位結果,例如於某測定點未進行彩色顯示之情形時,可知是因未進行相位反轉而導致未進行彩色顯示,抑或是因相關係數閾值較高而導致未進行彩色顯示。於因相關係數閾值較高而導致未進行彩色顯示之情形時,由於使用者能夠理解只要將相關係數閾值設定得較低即可,故成為相關係數閾值設定之輔助。
圖11係表示進行剝離有無判定之程式之處理程序的處理流程圖。運算處理部5執行硬碟6中所保存之處理程式,判定有無剝離。首先,於步驟S1中,將用於剝離判定之處理參數輸入至程式。此處,參數係指S閘門、評估閘門之設定條件、亮度值、針對相關係數之閾值、及用於自接收波形中檢測出波峰之閾值等。
又,於步驟S2、步驟S3中,將參照波形與接收波形分別輸入至處理程式。於步驟S4中,運算處理部5自接收波形中檢測出表面回波之起點作為觸發點。於步驟S5中,運算處理部5將自步驟S4中檢測出之觸發點延遲一定時間之時間範圍設定為評估閘門。於步驟S6中,運算處理部5自接收波形19之正峰值之最大值或負峰值之絕對值之最大值中獲取反映於C型示波器之亮度值。
於步驟S7中,運算處理部5於評估閘門之範圍內在正側與負側檢測接收波形之最大峰值波峰。於步驟S8中,運算處理部5以正最大峰值波峰為基準進行參照波形之對位,計算出正值之相關係數(參照圖12A)。於步驟S9中,運算處理部5以負最大峰值波峰為基準進行參照波形之對位,計算出負值之相關係數(參照圖12B)。於步驟S10中,運算處理部5進行正值之相關係數與負值相關係數之比較,且採用絕對值較大之相關係數。於步驟S11中,運算處理部5進行亮度值及相關係數之閾值處理,於亮度值較亮度值閾值大且相關係數較相關係數閾值大之情形時(步驟S11,是(Yes)),判定為有剝離(步驟S12),而進入至步驟S14。運算處理部5於除此以外之情形時(步驟S11,否(No)),判定為無剝離(步驟S13),而進入至步驟S14。
繼而,於步驟S14中,運算處理部5判定是否結束全部測定點之處理,於尚未結束全部測定點之處理之情形時(步驟S14,否),返回至步驟S3,於結束全部測定點之處理之情形時(步驟S14,是),進入至步驟S15。
於在全部測定點完成自步驟S3至步驟S13之處理之時間點,運算處理部5將全部測定點之相關係數分佈以二維圖像之形式輸出(步驟S15)。此處,關於相關係數為負之測定點,以能夠理解強負相關之測定點之方式進行灰階顯示。例如,關於相關係數為0至-1之測定點,以256灰階進行灰度顯示。使用者藉由使用相關係數分佈,而使針對相關係數之閾值之調整變得容易。於步驟S16中,將剝離區域(異常區域)以二維圖像之形式輸出(參照圖9)。
上文中,敍述了於在步驟S14中結束全部測定點之剝離判定之時間點,執行相關係數之分佈之輸出(步驟S15)、剝離區域之輸出(步驟S16)之例。然而,亦可為每當各測定點之剝離判定結束時,便使相關係數之分佈與剝離區域顯示於顯示器8,讓使用者能夠即時地確認處理結果。
藉由使用如上所述之本實施形態之剝離判定方法,即便針對如圖17A、17B所示之峰值之正負對稱性較高之接收波形亦可獲得準確之剝離判定結果。若藉由圖11所示之流程圖對圖17B之有剝離之接收波形進行處理,則與正值之相關係數相比,負值之相關係數之絕對值較大,因此判定為有相位之反轉。藉由設定適當之相關係數閾值,能夠準確地判定為剝離。又,因用於剝離判定之參照波形與超音波探針之每個種類建立了對應關係,故亦可對應於由超音波探針之種類變更所致之接收波形之波峰之數量、間隔、峰值之變化,而準確地進行剝離判定。又,即便於使用具有多種頻率特性之超音波探針之情形時亦可穩定地檢測剝離。
<<第2實施形態>> 於第2實施形態之檢查裝置中,讓使用者教示正常交界部之接收波形,將所教示之正常交界部之反射波之接收波形設為參照波形。再者,第2實施形態之超音波檢查裝置100除參照波形之獲取方法外,與第1實施形態相同,因此省略與第1實施形態之說明重複之部分。
於第1實施形態之剝離判定方法中,於層L1之厚度極厚之情形時,有時會產生如下現象。於第2實施形態中,使用圖來說明關於該現象之進一步之改善對策。
圖13A係關於IC晶片之層L1(參照圖3)之厚度較薄之檢查對象物,示出剝離部之反射波之接收波形的圖。圖13B係關於IC晶片之層L1(參照圖3)之厚度較厚之檢查對象物,示出剝離部之反射波之接收波形的圖。如圖13A所示,於層L1較薄之情形時,接收波形101之相位相對於自石英玻璃表面之接收波形獲得之參照波形23(參照第1實施形態)之相位發生反轉。另一方面,如圖13B所示,於層L1較厚之情形時,接收波形102之相位看似相對於參照波形23之相位未發生反轉。
接收波形102之相位看似相對於參照波形23之相位未發生反轉之原因在於:隨著超音波於層L1內部傳播,超音波之波形發生變化,接收到波形發生變化之超音波。通常,超音波探針所產生之發送波具有與超音波探針之種類對應之頻帶寬度。超音波因具有頻率越高則伴隨傳播之振幅之衰減越大之性質,故隨著超音波於層L1內部傳播,高頻成分之衰減相對地變大。其結果,於層L1較厚之情形時,於層L1內部傳播之超音波之波形與發送波之波形產生顯著差異。無關於層L1之厚度,於剝離部發生超音波之相位反轉之情況不變,若將接收波形與發送波形進行比較,則於層L1較厚之情形時,因上述波形之變化,接收波形相對於發送波形及參照波形23不再為相似形。以上為接收波形102之相位看似相對於參照波形23之相位未發生反轉之原因。
如上所述,若使用自石英玻璃表面之接收波形獲得之參照波形23,則於將層L1較厚之IC晶片設為檢查對象物之情形時,鮮少有無法準確地進行剝離判定之情形。又,即便為層L1較薄之IC晶片,於使用中心頻率較高之超音波探針之情形時,因高頻成分之衰減變得明顯而產生相同之現象。
因此,於本實施形態中,為了實現即便產生上述波形之變化,亦能準確地進行剝離判定,而讓使用者教示正常交界部之反射波之接收波形,並將所教示之正常交界部之接收波形設為參照波形。正常交界部之反射波與接收波形102同樣地於層L1內部傳播,波形產生變形,故正常交界部之反射波之接收波形與接收波形102為相似形。又,根據上述Z2-Z1<Z1之關係式,剝離部之接收波形之相位相對於接收波形102之相位發生了反轉。因此,運算處理部5藉由將交界部之接收波形設為參照波形,並評估其與接收波形102之相關之正負,能夠準確地進行剝離判定。
以下,使用圖來說明讓使用者教示正常交界部之反射波之接收波形,並將所教示之正常交界部之接收波形設為參照波形之方法。
圖14係讓使用者指定包含正常交界部之反射波之接收波形之測定點的GUI。圖14中,關於層L1較厚之IC晶片,以包含層L1與層L2之界面回波之方式設定評估閘門並進行C型示波器顯示。此處,使用預先已知為合格品且無剝離之IC晶片,或者使用已知無剝離之部位之IC晶片。游標103係供讓使用者選擇教示正常交界部之反射波之接收波形的測定點。
圖15係讓使用者指定正常交界部之反射波之接收波形之GUI。該GUI中,將於圖14所示之GUI中所選擇之測定點之接收波形104進行A型示波器顯示。於經A型示波器顯示之接收波形104中,使用者指定起點105及終點106,且將自起點105至終點106之間之接收波形104的資料設為參照波形。參照波形資料係針對超音波探針之每個種類而獲取,將針對超音波探針之每個種類之參照波形資料保存於硬碟6。運算處理部5對所保存之每個參照波形資料賦予識別碼,且將參照波形之識別碼與超音波探針之種類識別碼建立對應關係。
圖16係將圖13A、圖13B所示之接收波形102與利用圖15所示之方法獲取之參照波形107進行重疊繪圖所得之A型示波器圖像。已知接收波形102之相位相對於參照波形107發生了反轉。於自石英玻璃表面之反射波之接收波形獲得之參照波形23中,無法檢測出接收波形102之相位之反轉(參照圖13B)。然而,於自正常交界部之接收波形獲得之參照波形107中,能夠準確地檢測出接收波形102之相位之反轉。
如上文中已作說明,根據本實施形態之超音波檢查裝置100,即便對於層L1較厚之IC晶片亦可準確地進行剝離判定。
以上所說明之本實施形態之超音波檢查方法具有如下特徵。 本實施形態之超音波檢查方法係使用產生超音波並向檢查對象物入射,且接收自檢查對象物反射之反射波形作為接收波形之超音波探針,利用運算處理部解析接收波形,藉此對檢查對象物之內部狀態進行檢查者。超音波檢查方法具有如下步驟:登錄步驟(例如參照圖5、圖6),其係針對超音波探針之每個種類將固有之參照波形與種類識別碼建立關聯並登錄於記憶部(例如硬碟6);載入步驟(例如圖11之步驟S2),其係基於超音波探針之種類識別碼,將參照波形載入運算處理部;檢測步驟(例如圖11之步驟S7),其係檢測接收波形之波峰;對位步驟(例如圖11之步驟S8、S9),其係基於接收波形之波峰,將已載入之參照波形沿時間軸方向進行對位;計算步驟(例如圖11之步驟S8、S9),其係計算接收波形與參照波形之相關值;判定步驟(例如圖11之步驟S10、S11),其係基於相關值之正負,判定檢查對象物之內部狀態是否為異常狀態;及顯示步驟(例如圖11之步驟S16),其係藉由C型示波器顯示使於判定步驟中被判定為異常狀態之異常區域顯示於顯示裝置。根據本實施形態之超音波檢查方法,即便於使用具有多種頻率特性之超音波探針之情形時,亦可穩定地檢測剝離。
可將於上述登錄步驟中所登錄之超音波探針之種類以清單形式顯示於顯示裝置(參照圖7),讓使用者自以清單形式顯示之超音波探針之種類中選擇超音波探針之種類,於上述載入步驟中,基於使用者所選擇之超音波探針之種類載入參照波形(參照圖7之說明)。
超音波探針可具備嵌入有超音波探針之種類資訊之RF(Radio Frequency)標籤,超音波檢查方法具有自RF標籤讀取超音波探針之種類之讀取步驟,且於載入步驟中,基於在讀取步驟中所讀取之超音波探針之種類載入參照波形(參照圖7之說明)。
超音波檢查方法可具有如下步驟:針對相關值之第1閾值調整步驟,其係讓使用者指定針對相關值之閾值(參照圖9);及針對亮度值之第2閾值調整步驟,其係讓使用者指定針對C型示波器圖像資訊之亮度值之閾值(參照圖9);且於上述判定步驟中,基於由使用者指定之針對相關值之閾值與針對亮度值之閾值,判定檢查對象物之內部狀態是否為異常狀態。
超音波檢查方法可於上述顯示步驟中具有如下步驟(參照圖9之說明):使超音波探針之種類識別碼顯示於顯示裝置;及使於上述載入步驟中所載入之參照波形之識別碼顯示於顯示裝置。
超音波檢查方法可於上述顯示步驟中具有繪圖步驟,該繪圖步驟係將參照波形與接收波形重疊地繪製於顯示裝置(參照圖16)。
超音波檢查方法可於上述登錄步驟中具有如下步驟(參照圖5、圖6):藉由A型示波器顯示使標準試片之表面之反射波形顯示於顯示裝置;及自經A型示波器顯示之標準試片之表面之反射波形接受參照波形之範圍之指定。
超音波檢查方法可具有受理步驟,該受理步驟係自使用者受理是否執行上述判定步驟之指定,且於上述載入步驟中,當未載入有參照波形時,將受理步驟中來自使用者之指定設為不可受理(參照圖9)。
超音波檢查方法可具有如下步驟(參照圖9之說明):輸出步驟,其係以EXIF(Exchangeable Image File Format,可交換圖像檔案格式)輸出於上述顯示步驟中所顯示之C型示波器圖像資訊;及將超音波探針之種類識別碼與已載入之參照波形之識別碼嵌入至經輸出之圖像電子檔案中。
可於上述登錄步驟中具有如下步驟:藉由C型示波器顯示讓使用者指定檢查對象物之正常部;藉由A型示波器顯示將正常部之接收波形顯示於顯示裝置;及自A型示波器顯示之接收波形接受參照波形之範圍之指定;且上述登錄步驟將經指定之範圍登錄作為參照波形(參照圖14、圖15)。
再者,本發明並不限定於上述實施形態,包含多種變化例。例如,上述實施形態係為了易於理解地說明本發明而詳細地進行說明者,並不限定於具備所說明之全部構成者。又,可將某實施形態之構成之一部分置換成其他實施形態之構成,又,亦可於某實施形態之構成中添加其他實施形態之構成。又,關於各實施形態之構成之一部分,可進行其他構成之追加、刪除、置換。
又,關於上述各構成、功能、處理部、處理方法等,可藉由將其等之一部分或全部於例如積體電路中加以設計等而以硬體實現。又,上述各構成、功能等亦可藉由處理器解釋並執行實現各功能之程式而以軟體實現。實現各功能之程式、表格、檔案等資訊可存放於記憶體或硬碟、SSD(Solid State Drive,固態磁碟機)等記錄裝置、或IC(Integrated Circuit,積體電路)卡、SD(Secure Digital,安全數位)卡、DVD等記錄媒體。
又,關於控制線或資訊線,示出了自說明來看認為必需者,自製品來看未必必須示出所有控制線或資訊線。實際上可認為幾乎所有構成均相互連接。
1:超音波探傷器 2:超音波探針 3:掃描機構部 4:機構部控制器 5:運算處理部 6:硬碟(記憶部) 7:示波器(A型示波器顯示)(顯示裝置) 8:顯示器(C型示波器顯示)(顯示裝置) 9:脈衝信號 10:反射波 11:RF信號 12:輸入裝置 13:水 14:石英玻璃 15:起點(石英玻璃表面之反射波之接收波形) 16:終點(石英玻璃表面之反射波之接收波形) 17:接收波形(石英玻璃表面之反射波) 18:GUI 19:接收波形(IC晶片) 20:表面回波閘門(S閘門) 21:表面回波起點(觸發點) 22:評估閘門 23:參照波形(自石英玻璃表面之接收波形獲取) 24:負最大峰值波峰 25:C型示波器圖像 26:相關係數閾值調整欄(第1閾值調整欄) 27:亮度值閾值調整欄(第2閾值調整欄) 28:判定剝離有效化按鈕 29:異常區域 30:測定參數顯示區域 50:檢查對象物(受檢體) 100:超音波檢查裝置 101:接收波形(於較薄之層L1傳播) 102:接收波形(於較厚之層L1傳播) 103:游標 104:接收波形(正常交界部之反射波) 105:起點(正常交界部之反射波之接收波形) 106:終點(正常交界部之反射波之接收波形) 107:參照波形 L1:層 L2:層 U1:超音波 U2:反射波
圖1係表示第1實施形態之超音波檢查裝置之構成的方塊圖。 圖2係表示超音波檢查中所使用之發送波之波形之一例的圖。 圖3係表示向檢查對象物入射發送波,且該發送波以接收波之形式反射之情況的圖。 圖4A係表示正常交界部處之圖2所示之發送波入射至檢查對象物並反射所得之接收波形的圖。 圖4B係表示剝離部處之圖2所示之發送波入射至檢查對象物並反射所得之接收波形的圖。 圖5係表示使用石英玻璃獲取表面之反射波之接收波形之方法的圖。 圖6係表示自石英玻璃表面之反射波之接收波形提取參照波形之方法的圖。 圖7係讓使用者選擇與超音波檢查裝置連接之超音波探針之種類的GUI(Graphical User Interface,圖形用戶介面)。 圖8係表示使用已載入之參照波形來判定有無剝離之方法的圖。 圖9係使判定為剝離之測定點於C型示波器上進行彩色顯示之GUI。 圖10係確認參照波形之對位結果之GUI。 圖11係表示進行剝離有無判定之程式之處理程序的處理流程圖。 圖12A係表示以正最大峰值波峰為基準進行參照波形之對位,計算正值之相關係數之方法的圖。 圖12B係表示以負最大峰值波峰為基準進行參照波形之對位,計算負值之相關係數之方法的圖。 圖13A係關於IC晶片之層L1之厚度較薄之檢查對象物,示出剝離部之反射波之接收波形的圖。 圖13B係關於IC晶片之層L1之厚度較厚之檢查對象物,示出剝離部之反射波之接收波形的圖。 圖14係讓使用者指定包含正常交界部之反射波之接收波形的測定點之GUI。 圖15係讓使用者指定正常交界部之反射波之接收波形之GUI。 圖16係將圖13A、圖13B所示之接收波形與利用圖15所示之方法所獲取之參照波形重疊地繪製所得之A型示波器圖像。 圖17A係表示無剝離之界面之反射波之接收波形的模式圖。 圖17B係表示有剝離之界面之反射波之接收波形的模式圖。
1:超音波探傷器
2:超音波探針
3:掃描機構部
4:機構部控制器
5:運算處理部
6:硬碟(記憶部)
7:示波器(A型示波器顯示)(顯示裝置)
8:顯示器(C型示波器顯示)(顯示裝置)
9:脈衝信號
10:反射波
11:RF信號
12:輸入裝置
50:檢查對象物(受檢體)
100:超音波檢查裝置
U1:超音波
U2:反射波

Claims (20)

  1. 一種超音波檢查方法,其特徵在於: 其係使用產生超音波並向檢查對象物入射,且接收自檢查對象物反射之反射波形作為接收波形之超音波探針,利用運算處理部解析上述接收波形,藉此檢查上述檢查對象物之內部狀態者;且具有如下步驟: 登錄步驟,其係針對超音波探針之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部; 載入步驟,其係基於上述超音波探針之種類識別碼,將參照波形載入上述運算處理部; 檢測步驟,其係檢測上述接收波形之波峰; 對位步驟,其係基於上述接收波形之波峰,將上述已載入之參照波形沿時間軸方向進行對位; 計算步驟,其係計算上述接收波形與上述參照波形之相關值; 判定步驟,其係基於上述相關值之正負,判定上述檢查對象物之內部狀態是否為異常狀態;及 顯示步驟,其係藉由C型示波器顯示使於上述判定步驟中被判定為異常狀態之異常區域顯示於顯示裝置。
  2. 如請求項1之超音波檢查方法,其係 將於上述登錄步驟中所登錄之超音波探針之種類以清單形式顯示於上述顯示裝置, 讓使用者自上述以清單形式顯示之超音波探針之種類中選擇超音波探針之種類, 於上述載入步驟中,基於使用者所選擇之超音波探針之種類載入上述參照波形。
  3. 如請求項1之超音波檢查方法,其中 上述超音波探針具備嵌入有上述超音波探針之種類資訊之RF(Radio Frequency,射頻)標籤, 該超音波檢查方法具有自上述RF標籤讀取上述超音波探針之種類之讀取步驟,且 於上述載入步驟中,基於在上述讀取步驟中所讀取之超音波探針之種類載入參照波形。
  4. 如請求項1之超音波檢查方法,其具有: 針對相關值之第1閾值調整步驟,其係讓使用者指定針對相關值之閾值;及 針對亮度值之第2閾值調整步驟,其係讓使用者指定針對C型示波器圖像資訊之亮度值之閾值;且 於上述判定步驟中,基於由使用者指定之針對相關值之閾值與針對亮度值之閾值,判定上述檢查對象物之內部狀態是否為異常狀態。
  5. 如請求項1之超音波檢查方法,其中 於上述顯示步驟中具有如下步驟: 使上述超音波探針之種類識別碼顯示於上述顯示裝置;及 使於上述載入步驟中所載入之參照波形之識別碼顯示於上述顯示裝置。
  6. 如請求項1之超音波檢查方法,其中 於上述顯示步驟中具有繪圖步驟,該繪圖步驟係將上述參照波形與上述接收波形重疊地繪製於上述顯示裝置。
  7. 如請求項1之超音波檢查方法,其中 於上述登錄步驟中具有如下步驟: 藉由A型示波器顯示使標準試片之表面之反射波形顯示於上述顯示裝置;及 自上述經A型示波器顯示之上述標準試片之表面的反射波形接受上述參照波形之範圍之指定。
  8. 如請求項1之超音波檢查方法,其 具有受理步驟,該受理步驟係自使用者接受是否執行上述判定步驟之指定,且於上述載入步驟中,當未載入有上述參照波形時,將上述受理步驟中來自上述使用者之指定設為不可受理。
  9. 如請求項1之超音波檢查方法,其具有如下步驟: 輸出步驟,其係以EXIF(Exchangeable Image File Format,可交換圖像檔案格式)輸出於上述顯示步驟中所顯示之C型示波器圖像資訊;及 嵌入步驟,其係將上述超音波探針之種類識別碼與上述已載入之參照波形之識別碼嵌入至經輸出之圖像電子檔案中。
  10. 如請求項1之超音波檢查方法,其中 於上述登錄步驟中具有如下步驟: 藉由C型示波器顯示讓使用者指定檢查對象物之正常部; 藉由A型示波器顯示將上述正常部之接收波形顯示於上述顯示裝置;及 自上述經A型示波器顯示之接收波形接受上述參照波形之範圍之指定;且 上述登錄步驟將上述經指定之範圍登錄作為上述參照波形。
  11. 一種超音波檢查裝置,其特徵在於: 具備超音波探針、運算處理部及顯示裝置,該超音波探針產生超音波並向檢查對象物入射,且接收自上述檢查對象物反射之反射波形作為接收波形,且上述運算處理部藉由解析上述接收波形而對上述檢查對象物之內部狀態進行檢查,上述運算處理部係 針對超音波探針之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部, 基於與上述超音波檢查裝置連接之上述超音波探針之種類識別碼,將參照波形載入上述運算處理部, 檢測上述接收波形之波峰, 基於上述接收波形之波峰,將上述經載入之參照波形沿時間軸方向進行對位, 計算上述接收波形與上述參照波形之相關值, 基於上述相關值之正負,判定上述檢查對象物之內部狀態是否為異常狀態, 藉由C型示波器顯示使上述被判定為異常狀態之異常狀態區域顯示於上述顯示裝置。
  12. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 於針對超音波探針之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部時,將登錄於上述記憶部之超音波探針之種類以清單形式顯示於上述顯示裝置, 讓使用者自上述以清單形式顯示之超音波探針之種類中選擇超音波探針之種類, 於基於與上述超音波檢查裝置連接之上述超音波探針之種類識別碼,將參照波形載入上述運算處理部時,基於使用者所選擇之超音波探針之種類載入上述參照波形。
  13. 如請求項11之超音波檢查裝置,其中 上述超音波探針具備嵌入有上述超音波探針之種類資訊之RF(Radio Frequency)標籤, 上述運算處理部係 自上述RF標籤讀取上述超音波探針之種類, 於基於與上述超音波檢查裝置連接之上述超音波探針之種類識別碼,將參照波形載入上述運算處理部時,基於所讀取之超音波探針之種類載入參照波形。
  14. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 於上述顯示裝置中顯示:針對相關值之第1閾值調整欄,其讓使用者指定針對相關值之閾值;及針對亮度值之第2閾值調整欄,其讓使用者指定針對C型示波器圖像資訊之亮度值之閾值;且 於基於上述相關值之正負,判定上述檢查對象物之內部狀態是否為異常狀態時,基於由使用者指定之針對相關值之閾值與針對亮度值之閾值,判定上述檢查對象物之內部狀態是否為異常狀態。
  15. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 於藉由C型示波器顯示使上述被判定為異常狀態之異常狀態區域顯示於上述顯示裝置時,將上述超音波探針之種類識別碼顯示於上述顯示裝置,且 將上述已載入之參照波形之識別碼顯示於上述顯示裝置。
  16. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 於藉由C型示波器顯示使上述被判定為異常狀態之異常狀態區域顯示於上述顯示裝置時,將上述參照波形與上述接收波形重疊地繪製於上述顯示裝置。
  17. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 於針對超音波探針之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部時,藉由A型示波器顯示將標準試片之表面之反射波形顯示於上述顯示裝置, 自上述經A型示波器顯示之上述標準試片之表面之反射波形接受上述參照波形之範圍之指定。
  18. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 自使用者受理如下指定,即,是否基於上述相關值之正負來判定上述檢查對象物之內部狀態是否為異常狀態, 於基於與上述超音波檢查裝置連接之上述超音波探針之種類識別碼,將參照波形載入上述運算處理部時,當未載入有上述參照波形時,將上述受理中來自上述使用者之指定設為不可受理。
  19. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 以EXIF(Exchangeable Image File Format)輸出C型示波器圖像資訊,該C型示波器圖像資訊係藉由C型示波器顯示將上述被判定為異常狀態之異常狀態區域顯示於上述顯示裝置而得, 將上述超音波探針之種類識別碼與上述已載入之參照波形之識別碼嵌入至經輸出之圖像電子檔案。
  20. 如請求項11之超音波檢查裝置,其中 上述運算處理部係 於針對超音波探針之每個種類將固有參照波形與種類識別碼建立關聯並登錄於記憶部時,藉由C型示波器顯示讓使用者指定檢查對象物之正常部, 藉由A型示波器顯示將上述正常部之接收波形顯示於上述顯示裝置, 自上述經A型示波器顯示之接收波形受理上述參照波形之範圍之指定, 將上述經指定之範圍登錄作為上述參照波形。
TW108143860A 2018-12-05 2019-12-02 超音波檢查方法及超音波檢查裝置 TWI708940B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-228430 2018-12-05
JP2018228430A JP6602449B1 (ja) 2018-12-05 2018-12-05 超音波検査方法、超音波検査装置及び超音波検査プログラム

Publications (2)

Publication Number Publication Date
TW202024632A true TW202024632A (zh) 2020-07-01
TWI708940B TWI708940B (zh) 2020-11-01

Family

ID=68462346

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108143860A TWI708940B (zh) 2018-12-05 2019-12-02 超音波檢查方法及超音波檢查裝置

Country Status (5)

Country Link
JP (1) JP6602449B1 (zh)
KR (1) KR102559929B1 (zh)
CN (1) CN113167766A (zh)
TW (1) TWI708940B (zh)
WO (1) WO2020116289A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420632B2 (ja) 2020-04-16 2024-01-23 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法
CN112229911B (zh) * 2020-10-13 2022-08-19 上海大学 一种用于实时检测3d打印件脱层的方法和装置
JP2022121859A (ja) * 2021-02-09 2022-08-22 株式会社日立パワーソリューションズ 超音波検査装置、超音波検査方法及びプログラム
JP7093884B1 (ja) 2021-11-30 2022-06-30 株式会社日立パワーソリューションズ アレイ型超音波映像装置および超音波画像表示方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213248A (ja) * 1982-06-07 1983-12-12 Hitachi Ltd 超音波による欠陥識別方法とその装置
JPH0718842B2 (ja) * 1985-10-16 1995-03-06 日立建機株式会社 超音波検査装置
JP2896385B2 (ja) * 1989-09-14 1999-05-31 日本クラウトクレーマー株式会社 超音波検査方法及び装置
KR101137141B1 (ko) * 2007-03-29 2012-04-20 파나소닉 주식회사 초음파 측정 방법 및 장치
US7748901B2 (en) * 2007-04-06 2010-07-06 Unisyn Medical Technologies, Inc. Universal x-ray test bed
US9247926B2 (en) * 2010-04-14 2016-02-02 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
CN101672826B (zh) * 2009-10-16 2013-06-12 中国电子科技集团公司第四十五研究所 超声扫描显微镜c扫描相位反转图像的构建方法
JP5957425B2 (ja) * 2013-08-06 2016-07-27 株式会社Ihi検査計測 内部付着物の厚さ計測装置と方法
CN103852521B (zh) * 2014-02-17 2016-04-06 上海市岩土工程检测中心 一种用超声波检测多层介质耦合质量的方法
SE537991C2 (sv) * 2014-04-03 2016-01-19 Creo Dynamics Ab Förfarande och anordning för inspektion av strukturer med ultraljud
JP2020024090A (ja) * 2016-11-08 2020-02-13 株式会社日立製作所 超音波計測装置および方法
JP6797646B2 (ja) * 2016-11-21 2020-12-09 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法
CN106655804A (zh) * 2017-01-16 2017-05-10 广东百事泰电子商务股份有限公司 一种基于维也纳pfc的智能型半桥修正波电压转换电路
CN108267508A (zh) * 2017-12-27 2018-07-10 东南大学 一种基于Android设备的多通道超声探伤系统

Also Published As

Publication number Publication date
TWI708940B (zh) 2020-11-01
JP6602449B1 (ja) 2019-11-06
KR102559929B1 (ko) 2023-07-27
KR20210083336A (ko) 2021-07-06
JP2020091194A (ja) 2020-06-11
CN113167766A (zh) 2021-07-23
WO2020116289A1 (ja) 2020-06-11

Similar Documents

Publication Publication Date Title
TWI708940B (zh) 超音波檢查方法及超音波檢查裝置
US20070150238A1 (en) Sensor array for navigation on surfaces
JP2019197007A (ja) 超音波探傷の判定装置、判定プログラム及び判定方法
JP5156707B2 (ja) 超音波検査方法及び装置
JP6797646B2 (ja) 超音波検査装置及び超音波検査方法
JP5033152B2 (ja) 超音波検査装置および超音波検査方法
Broberg et al. Improved corner detection by ultrasonic testing using phase analysis
JP4738243B2 (ja) 超音波探傷システム
JP2005274444A (ja) 超音波探傷画像処理装置及びその処理方法
JP5416726B2 (ja) 超音波検査装置および超音波検査方法
JP4672441B2 (ja) 超音波探傷方法及び探傷装置
JP2014202525A (ja) 超音波探傷方法および超音波探傷装置
WO2021210227A1 (ja) 超音波検査装置及び超音波検査方法
CN111047547A (zh) 一种基于多视图tfm的联合缺陷定量方法
JP4209220B2 (ja) 超音波信号処理方法
JPS6229023B2 (zh)
Kobayashi et al. Signal processing method for scanning-acoustic-tomography defect detection based on correlation between ultrasound waveforms
Zahran et al. Automatic data processing and defect detection in time-of-flight diffraction images using statistical techniques
JPH0658917A (ja) 超音波検査方法および装置
Heaps Ultrasonic Thickness Testing for Corrosion
JP2016118514A (ja) 超音波探傷装置及び超音波探傷方法
JP3327870B2 (ja) 超音波信号処理装置
JP2002333435A (ja) 超音波信号処理装置
JP2021076376A (ja) 超音波探傷検査装置、および反射源特定方法
JPS63295960A (ja) 超音波測定方式