WO2020116289A1 - 超音波検査方法及び超音波検査装置 - Google Patents

超音波検査方法及び超音波検査装置 Download PDF

Info

Publication number
WO2020116289A1
WO2020116289A1 PCT/JP2019/046449 JP2019046449W WO2020116289A1 WO 2020116289 A1 WO2020116289 A1 WO 2020116289A1 JP 2019046449 W JP2019046449 W JP 2019046449W WO 2020116289 A1 WO2020116289 A1 WO 2020116289A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
ultrasonic
reference waveform
ultrasonic probe
processing unit
Prior art date
Application number
PCT/JP2019/046449
Other languages
English (en)
French (fr)
Inventor
昌幸 小林
薫 酒井
菊池 修
健太 住川
Original Assignee
株式会社日立パワーソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立パワーソリューションズ filed Critical 株式会社日立パワーソリューションズ
Priority to KR1020217016519A priority Critical patent/KR102559929B1/ko
Priority to CN201980079054.2A priority patent/CN113167766B/zh
Publication of WO2020116289A1 publication Critical patent/WO2020116289A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Definitions

  • the present invention relates to an ultrasonic inspection method and an ultrasonic inspection device.
  • Patent Document 1 is a background art in this technical field.
  • Patent Document 1 states that "Ultrasonic waves are reflected at boundaries having different acoustic impedances (density x sound velocity), and the magnitude of the reflected signal depends on the acoustic impedance of the substance that composes the interface.
  • the phase of reflection differs between the case where an ultrasonic wave is incident from a substance to a small substance and the case where an ultrasonic wave is incident from a substance with a small acoustic impedance to a large substance.
  • a method is known for ultrasonically inspecting the presence or absence of delamination of the joint of materials or parts and the presence or absence of voids by utilizing this phenomenon.” See detailed description of invention).
  • Patent Document 1 A reflected wave of ultrasonic waves emitted from the ultrasonic probe toward the inside of the test material is received as an RF signal, and the maximum value of the positive peak of the RF signal and the above-mentioned The absolute value of the negative peak of the RF signal is detected, the sum of the maximum value of the positive peak and the absolute value of the negative peak is calculated, and the sum value and the maximum value of the positive peak or the negative value are calculated.
  • Patent Document 1 describes an ultrasonic inspection method for detecting the presence or absence of peeling by detecting inversion of the phase of ultrasonic waves.
  • the determination of phase inversion is based on the local information of the waveform such as the maximum value of the peak, it is determined that the waveform is phase inversion or not the phase determination when the entire waveform is viewed.
  • the waveform of the reflected wave that should not be used may be erroneously determined.
  • FIG. 17A of the present application is a schematic diagram of a received waveform of a reflected wave at an interface without peeling.
  • FIG. 17B of the present application is a schematic diagram of a received waveform of a reflected wave at an interface with peeling. Looking at the entire waveform, the difference between the two is clear. However, the absolute values of the peak values of the positive peak and the negative peak are close to each other. Therefore, when the peak values of the positive and negative peaks are used as a scale, there is no clear difference between the two waveforms, and if the peak values of the positive or negative peaks fluctuate due to noise etc., the judgment result can easily change. And stable test results cannot be obtained.
  • the present invention provides an ultrasonic inspection method and an ultrasonic inspection apparatus capable of stably detecting separation even when an ultrasonic probe having various frequency characteristics is used.
  • the ultrasonic inspection method of the present invention is an ultrasonic probe that generates ultrasonic waves, enters an inspection target, and receives a reflection waveform reflected from the inspection target as a reception waveform.
  • an ultrasonic inspection method and an ultrasonic inspection device capable of stably detecting separation even when an ultrasonic probe having various frequency characteristics is used.
  • 13A and 13B are A scope images in which the received waveforms shown in FIGS. 13A and 13B and the reference waveform acquired by the method shown in FIG. 15 are superimposed and drawn. It is a schematic diagram which shows the received waveform of the reflected wave of the interface which has not peeled. It is a schematic diagram which shows the received waveform of the reflected wave of the interface with peeling.
  • FIG. 1 is a block diagram showing the configuration of an ultrasonic inspection apparatus 100 according to the first embodiment.
  • the ultrasonic inspection apparatus 100 includes an ultrasonic flaw detector 1, an ultrasonic probe 2, a scanning mechanism unit 3, a mechanism unit controller 4, an arithmetic processing unit 5 (microprocessor), a hard disk 6, an oscilloscope 7, a monitor 8, an input device. It is configured to include 12 and the like.
  • the ultrasonic flaw detector 1 is an ultrasonic flaw detector that drives by applying a pulse signal 9 to an ultrasonic probe 2 that generates ultrasonic waves.
  • the ultrasonic probe 2 is an ultrasonic probe (probe) that is held or driven by the scanning mechanism unit 3 and that scans the inspection object.
  • the scanning mechanism unit 3 is controlled by the mechanism unit controller 4.
  • the ultrasonic flaw detector 1 is driven by applying a pulse signal 9 to the ultrasonic probe 2, and ultrasonic waves are transmitted to the inspection object 50 (subject) through the water from the ultrasonic probe 2.
  • the ultrasonic flaw detector 1 receives a reflected wave U2 returning from a plurality of interfaces inside or on the surface of the inspection object 50 as a reflected wave 10, and generates an RF (Radio Frequency) signal 11 corresponding to the reflected wave U2.
  • a receiver (not shown) for amplifying is provided.
  • the ultrasonic probe 2 is sequentially scanned by the scanning mechanism unit 3 onto the inspection site of the inspection object.
  • the ultrasonic probe 2 is electrically connected to the ultrasonic flaw detector 1 via a connector, and the ultrasonic probe 2 can be easily removed and attached by the user.
  • the ultrasonic wave generated by the ultrasonic probe 2 may be referred to as a “transmitted wave”. Further, the reflected wave U2 or the RF signal 11 received by the ultrasonic probe 2 may be referred to as a “received wave”.
  • the ultrasonic flaw detector 1 sends a pulse signal 9 to the ultrasonic probe 2, and the ultrasonic probe 2 converts the pulse signal 9 into an ultrasonic wave and makes it enter the inspection object 50.
  • the ultrasonic probe 2 receives the reflected wave U2 from the inspection object 50 and sends it to the ultrasonic flaw detector 1.
  • the ultrasonic flaw detector 1 converts the reflected wave 10 into an RF signal 11 and sends it to the arithmetic processing unit 5 (control unit).
  • the arithmetic processing unit 5 sends a control signal to the mechanism unit controller 4 to scan the appropriate region of the inspection object using the ultrasonic probe 2, and realizes the mechanism control.
  • the ultrasonic probe 2 is automatically controlled (scanned) by the system of the processing unit 5 ⁇ mechanism controller 4 ⁇ scanning mechanism 3 ⁇ ultrasonic probe 2 ⁇ ultrasonic flaw detector 1.
  • Data obtained by the arithmetic processing unit 5 (including the RF signal 11 and the signals required for the automatic control) are stored in the hard disk (storage unit) 6 as necessary.
  • the arithmetic processing unit 5 is connected to an oscilloscope (display unit) 7 and a monitor (display unit) 8 and can perform A scope display or C scope display in real time.
  • the “A scope display” is a display of the RF signal 11 when the horizontal axis of the oscilloscope 7 is time and the vertical axis is the amplitude (peak value) of the waveform of the RF signal 11.
  • the “C scope display” means that the ultrasonic probe 2 is vertically and horizontally scanned with respect to the inspection object, and the horizontal axis (X direction) of movement of the ultrasonic probe 2 is plotted on the horizontal axis of the display screen. Is a gradation display of the absolute value of the maximum value of the positive peak or the maximum value of the negative peak of the waveform of the RF signal 11 when the vertical axis (Y direction) distance is taken on the vertical axis.
  • the A scope display may be displayed on the same monitor as the C scope display by the arithmetic processing unit 5.
  • the arithmetic processing unit 5 executes processing according to an instruction input from the input device 12 by the user, for example, designation of an evaluation gate or selection of a peak of the RF signal 11 described later.
  • the input device 12 may be, for example, a keyboard, a pointing device, or the like.
  • the hard disk 6 stores a color palette in which a color to be used is defined according to the waveform of the RF signal 11 (particularly, the peak size) when the C scope display is performed. The definition of the color is specifically associated with the waveform of the RF signal 11 using the RYB (Red Yellow Blue) value.
  • the hard disk 6 also stores a program (a program for performing an ultrasonic inspection method) for the arithmetic processing unit 5 to execute the ultrasonic inspection of the first embodiment.
  • the evaluation gate is for extracting only the component of the reflected wave 10 from the inspection location of the inspection object from the components of the RF signal 11 input from the ultrasonic flaw detector 1 and displaying the C scope. Therefore, the evaluation gate has a function of opening and passing the RF signal 11 for a predetermined time after a predetermined delay time (gating).
  • the setting of the evaluation gate is performed by the arithmetic processing unit 5 based on the input from the input device 12, for example. Alternatively, the arithmetic processing unit 5 may analyze the RF signal 11 and set it automatically.
  • the arithmetic processing unit 5 is equipped with a gate circuit that generates an evaluation gate.
  • the maximum of the positive peak and the maximum of the negative peak are included in the range of the evaluation gate on the A scope. Unless one or both of the maximum of the positive peak and the maximum of the negative peak are included in the evaluation gate range, the portion that is not the inspection target is erroneously recognized as the maximum of the positive peak or the maximum of the negative peak, This is because there is a risk that the evaluation of the inspection target site may not be performed correctly.
  • the higher level of the positive and negative peaks of the RF signal 11 is selected and reflected in the C scope.
  • the positive/negative of the peak of the RF signal 11 may be referred to as “polarity”, and the explanation may be made such that the polarity of the peak is positive or negative.
  • the phase inversion described in Patent Document 1 and the polarity inversion are synonymous.
  • FIG. 2 is a diagram showing an example of a waveform of a transmission wave used in ultrasonic inspection.
  • the transmission wave in FIG. 2 is a waveform in which the horizontal axis represents time and the vertical axis represents amplitude, that is, peak value.
  • the time taken on the horizontal axis proceeds to the right in FIG. 2, the peak value taken on the vertical axis is 0 at the center, and the upward direction in FIG. 2 indicates a positive polarity.
  • the downward direction shows negative polarity.
  • the transmitted wave has a waveform in which peaks with different polarities appear alternately, and among these peaks, the peak with the highest peak value appears in the initial stage, and has a waveform that gradually decreases.
  • the number of peaks included in the transmitted wave, the interval, and the peak value differ depending on the type of ultrasonic probe.
  • FIG. 3 is a diagram showing how a transmitted wave is incident on the inspection object and reflected as a received wave.
  • the inspection target is an IC chip in which the layer L1 and the layer L2 are joined.
  • the layer L1 is made of a material having an acoustic impedance of Z1
  • the layer L2 is made of a material having an acoustic impedance of Z2.
  • the acoustic impedance is obtained by multiplying the density of the material by the speed of sound.
  • Z1>Z2 if there is peeling, Z1>Z2, and if Z2 is regarded as almost 0 as compared with Z1, the relational expression of Z2-Z1 ⁇ Z1 is established.
  • the peeling portion can be regarded as a layer made of air, and the acoustic impedance of air is almost 0 as compared with the solid material, so the acoustic impedance of the peeling portion is almost 0.
  • the boundary portion where the layers L1 and L2 are normally joined without peeling may be referred to as a “normal boundary portion”.
  • FIG. 4A is a diagram showing a reception waveform at the normal boundary portion (without separation), in which the transmission wave shown in FIG.
  • FIG. 4B is a diagram showing a reception waveform at the peeling portion (with peeling), in which the transmission wave shown in FIG.
  • Ultrasonic waves have the property of inverting the phase of reflected waves when they enter a material having a large acoustic impedance and are reflected by the material. Therefore, as shown in FIG. 4A, when the transmitted wave is incident from the layer L1 toward the layer L2, unless the boundary between the layers L1 and L2 is separated, the received wave reflected at the boundary is: The phase does not reverse. However, as shown in FIG.
  • a reference waveform that has no phase inversion with respect to the transmitted wave and is similar in waveform to the transmitted wave is used.
  • the arithmetic processing unit 5 calculates the correlation coefficient between the received waveform of the reflected wave of interest and the reference waveform, and performs the peeling determination based on whether the correlation coefficient is positive or negative. If the correlation coefficient is negative, it is considered that there is phase inversion, that is, the peeling portion.
  • the correlation between the received waveform and the reference waveform is quantified using the correlation coefficient as an index. However, if the index represents the correlation between the two waveforms, an index other than the correlation coefficient (correlation value) Can also be adopted. The detailed peeling determination method will be described below.
  • the ultrasonic inspection apparatus 100 uses a standard test piece and acquires a reference waveform from the reflected wave on the surface of the standard test piece.
  • the following shows an example of using a quartz glass with a smoothed surface as a standard test piece, but a standard test that does not invert the phase with respect to the transmitted wave and can obtain a reference waveform with a similar waveform to the transmitted wave. If it is a piece, there is no restriction on the type of standard test piece that can be applied.
  • FIG. 5 is a diagram showing a method of acquiring a received waveform of a reflected wave on the surface of quartz glass.
  • the quartz glass 14 is immersed in the water 13. Since the acoustic impedance of the quartz glass 14 is larger than the acoustic impedance of the water 13, the reflected wave on the surface of the quartz glass has no phase inversion with respect to the transmitted wave, and the transmitted wave and the waveform have a similar shape.
  • a transmission wave is incident on the quartz glass 14 from the ultrasonic probe 2 in a state where the focal position of the ultrasonic probe 2 is aligned with the surface of the quartz glass 14, and the ultrasonic wave is detected on the surface of the quartz glass 14.
  • the reflected wave reflected is received by the ultrasonic probe 2.
  • FIG. 6 is a diagram showing a method of extracting a reference waveform from a received waveform of a reflected wave on the surface of quartz glass.
  • the received waveform 17 of the reflected wave reflected by the quartz glass surface is displayed in the A scope.
  • the user specified the start point 15 and the end point 16 from the received waveform 17 displayed in the A scope, and the data of the received waveform 17 between the start point 15 and the end point 16 was used as the reference waveform.
  • the reference waveform is acquired for each type of ultrasonic probe, and each reference waveform is stored in the hard disk 6.
  • the arithmetic processing unit 5 assigns an identifier to each of the stored reference waveforms, and associates the identifier of the reference waveform with the type identifier of the ultrasonic probe.
  • the arithmetic processing unit 5 causes the monitor 8 to display a GUI for allowing the user to select the reference waveform identifier, and displays the reference waveform corresponding to the reference waveform identifier selected by the user on the oscilloscope 7 or the monitor 8 using the A scope. By doing so, the user can visually confirm the reference waveform at appropriate times.
  • FIG. 7 is a GUI (Graphical User Interface) that allows the user to select the type of ultrasonic probe connected to the ultrasonic inspection apparatus 100.
  • the GUI 18 displays a list of types of ultrasonic probes registered in the ultrasonic inspection apparatus 100 in advance.
  • the user selects the type of ultrasonic probe connected to the ultrasonic inspection apparatus 100 from the list.
  • the arithmetic processing unit 5 can save and load (read) the reference waveform data associated with the selected product type identifier of the ultrasonic probe in the memory area of the arithmetic processing unit 5. Becomes This improves the usability of the ultrasonic inspection device 100.
  • the selection of the ultrasonic probe type identifier may be automatically performed using an RFID (Radio Frequency Identifier). Specifically, an RF tag (Radio Frequency) containing the identifier information of the ultrasonic probe is attached to each ultrasonic probe, and the arithmetic processing unit 5 causes the RF of the connected ultrasonic probe to be detected. Read the tag. Thereby, the ultrasonic inspection apparatus 100 automatically reads the type identifier of the ultrasonic probe. The reference waveform associated with the read ultrasonic probe type identifier is loaded. This improves the usability of the ultrasonic inspection device 100.
  • RFID Radio Frequency Identifier
  • the hard disk 6 stores the ultrasonic probe type library information to be displayed in a list on the GUI 18, and by updating the ultrasonic probe type library information, the ultrasonic waves to be displayed in a list on the GUI 18 are updated. Transducer varieties are updated. It is possible to register the reference waveform corresponding to the updated ultrasonic probe type identifier.
  • the update of the ultrasonic probe type library information can be executed by copying the new ultrasonic probe type library information stored in a recording medium such as a CD or a DVD to the hard disk 6.
  • FIG. 8 is a diagram showing a method of determining the presence or absence of peeling by using a loaded reference waveform.
  • FIG. 8 shows a reception waveform 19 obtained by injecting a transmission wave into the separation section.
  • the received waveform 19 includes the received waveform (surface echo) reflected on the surface of the layer L1 (see FIG. 3) in the first half of the time axis direction, and the received waveform (interface echo) reflected at the interface between the layers L1 and L2 in the latter half.
  • the time when the peak value of the reception waveform 19 exceeds the threshold value within the range of the surface echo gate 20 (S gate) is the surface echo start point 21 (trigger).
  • the arithmetic processing unit 5 sets the points.
  • the arithmetic processing unit 5 sets, in the evaluation gate 22, a time range delayed by a certain time from the surface echo start point 21. Within the range of the evaluation gate 22, the maximum value of the positive peak value or the maximum absolute value of the negative peak value of the received waveform 19 is reflected on the C scope.
  • the arithmetic processing unit 5 aligns the reference waveform 23 in the time axis direction.
  • the positive and negative maximum peak values of the received waveform 19 are used.
  • FIG. 8 shows the result of alignment based on the maximum negative peak value.
  • the arithmetic processing unit 5 detects the maximum negative peak value peak 24 from the received waveform 19 within the range of the evaluation gate 22.
  • the reference waveform 23 is aligned in the time axis direction so that the maximum peak value peak of the reference waveform 23 and the maximum negative peak value peak 24 of the received waveform 19 coincide with each other.
  • the arithmetic processing unit 5 extracts the peak value data of the received waveform 19 in the time range where the received waveform 19 and the reference waveform 23 overlap, and calculates the correlation coefficient between the extracted peak value data and the reference waveform 23. At this time, a negative correlation coefficient is obtained. Next, the arithmetic processing unit 5 similarly calculates a positive correlation coefficient based on the maximum positive peak value and compares the negative correlation coefficient with the positive correlation coefficient. However, the correlation coefficient with the larger absolute value is adopted. When the correlation coefficient having a negative value is large, the interface echo within the range of the evaluation gate 22 is determined as a separation candidate. The measurement point determined to be a peeling candidate is finally determined whether it is peeling by the threshold processing described below.
  • the final peeling determination may be performed by using the feature amount of the peeling region in addition to the threshold processing.
  • the arithmetic processing unit 5 performs a labeling process for extracting pixels of continuous peeling regions, and the feature amount related to the shape such as the area or the roundness is fixed.
  • the peeling area within the range is displayed on the monitor 8 as the final peeling area.
  • FIG. 9 is a GUI that displays the measurement points determined to be peeling in color on the C scope.
  • the peeling determination validation button 28 receives an input from the user as to whether or not to perform the peeling determination.
  • the peeling determination enabling button 28 is grayed out to invalidate the peeling determination processing. This makes it possible to easily grasp whether or not the peeling determination can be performed.
  • the abnormal area 29 (peeling portion) is displayed in color on the image of the inspection object displayed in the C scope. With the color display, the user can easily determine the presence or absence of peeling.
  • FIG. 9 shows an example in which an evaluation gate is set at the interface between the layer L1 and the layer L2 (see FIG. 3) and visualized.
  • the correlation coefficient threshold adjustment bar 26 and the brightness value threshold adjustment bar 27 receive inputs of the correlation coefficient threshold and the brightness value threshold from the user.
  • the arithmetic processing unit 5 compares the correlation coefficient threshold with the correlation coefficient at each measurement point, and compares the brightness value threshold with the brightness value at each measurement point, and the absolute value of the correlation coefficient is larger than the correlation coefficient threshold.
  • the measurement point whose brightness value is larger than the brightness value threshold is displayed in color as the abnormal area 29.
  • the measurement parameter display area 30 also displays measurement parameters such as the type identifier of the connected ultrasonic probe, the reference waveform identifier, and the scanning condition of the ultrasonic probe. This improves the usability of the ultrasonic inspection device 100.
  • the measurement point determined to be peeling is color-displayed on the C scope.
  • the measurement point determined to be a peeling candidate that is, the correlation coefficient is negative.
  • the measurement point may be displayed on the monitor 8 so that the user can understand the measurement point.
  • the measurement points having a correlation coefficient of 0 to -1 are displayed in gray scale with 256 gradations. The user can easily adjust the threshold value for the correlation coefficient by using such distribution of the correlation coefficient.
  • the C scope image 25 When the C scope image 25 is output as an electronic file, it is output as EXIF (Exchangeable Image File Format), and the information of the measurement parameter display area 30 such as the type identifier of the connected ultrasonic probe and the reference waveform identifier is electronically output. It can also be embedded in a file.
  • the C-scope image 25, the two-dimensional image of the distribution of the correlation coefficient, and the multi-TIFF image may be output. By leaving the information of the luminance value and the correlation coefficient as the multi-TIFF image, the user can re-analyze the correlation coefficient. This improves the usability of the ultrasonic inspection device 100.
  • the arithmetic processing unit 5 detects that the connected ultrasonic probe is removed. When the removal of the ultrasonic probe is detected, the arithmetic processing unit 5 executes the opening of the memory area of the arithmetic processing unit 5 in which the reference waveform is stored, and unloads (reads the reference waveform. Discard things). When the reference waveform is unloaded, it becomes possible to load the reference waveform associated with the type identifier of another ultrasonic probe.
  • FIG. 10 is a GUI for confirming the alignment result of the reference waveform 23.
  • the GUI displays the alignment result of the reference waveform 23 in the A scope.
  • the reception waveform 19 and the reference waveform 23 are drawn so as to overlap each other, and when the negative correlation coefficient is adopted at the selected measurement point, the maximum negative peak value peak is obtained.
  • the result of alignment based on is displayed.
  • a positive correlation coefficient is used, the result of alignment based on the positive peak value peak is displayed.
  • the correlation coefficient threshold value By checking the alignment result of the reference waveform 23, for example, when a certain measurement point is not color-displayed, it is not color-displayed because phase inversion is not performed, or the correlation coefficient threshold value is high. You can see if it is not displayed in color due to. When color display is not performed because the correlation coefficient threshold value is high, the user can understand that the correlation coefficient threshold value should be set low, which helps in setting the correlation coefficient threshold value.
  • FIG. 11 is a processing flow chart showing the processing procedure of a program for determining the presence or absence of peeling.
  • the arithmetic processing unit 5 executes the processing program stored in the hard disk 6 and determines the presence or absence of peeling.
  • processing parameters used for peeling determination are input to the program.
  • the parameters include the setting conditions of the S gate, the evaluation gate, the brightness value, the threshold value for the correlation coefficient, the threshold value for detecting the peak from the received waveform, and the like.
  • step S2 and step S3 the reference waveform and the received waveform are input to the processing program, respectively.
  • step S4 the arithmetic processing unit 5 detects the start point of the surface echo from the received waveform as a trigger point.
  • step S5 the arithmetic processing unit 5 sets a time range delayed by a certain time from the trigger point detected in step S4 as an evaluation gate.
  • step S6 the arithmetic processing unit 5 acquires the brightness value to be reflected on the C scope from the maximum value of the positive peak value of the received waveform 19 or the maximum value of the absolute value of the negative peak value.
  • step S7 the arithmetic processing unit 5 detects the maximum peak value peak of the received waveform on the positive side and the negative side within the range of the evaluation gate.
  • step S8 the arithmetic processing unit 5 aligns the reference waveforms with the positive maximum peak value peak as a reference, and calculates a positive correlation coefficient (see FIG. 12A).
  • step S9 the arithmetic processing unit 5 aligns the reference waveforms with the negative maximum peak value peak as a reference, and calculates a negative correlation coefficient (see FIG. 12B).
  • step S10 the arithmetic processing unit 5 compares the positive correlation coefficient and the negative correlation coefficient, and adopts the correlation coefficient having the larger absolute value.
  • step S11 the arithmetic processing unit 5 performs threshold processing of the brightness value and the correlation coefficient, and when the brightness value is larger than the brightness value threshold and the correlation coefficient is larger than the correlation coefficient threshold (step S11, Yes), It is determined that there is peeling (step S12), and the process proceeds to step S14. In other cases (step S11, No), the arithmetic processing unit 5 determines that there is no peeling (step S13), and proceeds to step S14.
  • step S14 the arithmetic processing unit 5 determines whether or not the processing of all the measurement points has been completed, and when the processing of all the measurement points has not been completed (step S14, No), the processing returns to step S3 and all the measurement points are processed.
  • step S15 the process proceeds to step S15.
  • the arithmetic processing unit 5 When the processing from step S3 to step S13 is completed at all measurement points, the arithmetic processing unit 5 outputs the correlation coefficient distribution of all measurement points as a two-dimensional image (step S15).
  • the measurement points with a negative correlation coefficient are displayed in gray scale so that the measurement points with a strong negative correlation can be grasped.
  • the measurement points with a correlation coefficient of 0 to ⁇ 1 are displayed in gray scale with 256 gradations. The user can easily adjust the threshold value for the correlation coefficient by using the correlation coefficient distribution.
  • the separation area is output as a two-dimensional image (see FIG. 9).
  • step S15 the distribution of the correlation coefficient (step S15) and the separation area (step S16) are executed at the time when the separation determination of all measurement points is completed in step S14.
  • the distribution of the correlation coefficient and the peeling area may be displayed on the monitor 8 each time the peeling determination of each measurement point is completed so that the user can confirm the processing result in real time.
  • the reference waveform used for peeling determination is associated with each type of ultrasonic probe, the number of peaks of the received waveform, the interval, and the change of the peak value due to the change of the type of ultrasonic probe Correspondingly, it is possible to correctly determine peeling. Further, even when the ultrasonic probe having various frequency characteristics is used, the peeling detection can be stably performed.
  • the user is taught the received waveform of the normal boundary portion, and the received waveform of the reflected wave of the taught normal boundary portion is used as the reference waveform.
  • the ultrasonic inspection apparatus 100 according to the second embodiment is the same as that of the first embodiment except how to take the reference waveform, and thus the description overlapping with the description of the first embodiment will be omitted.
  • FIG. 13A is a diagram showing a received waveform of a reflected wave at a peeling portion for an inspection object in which the layer L1 of the IC chip (see FIG. 3) is thin.
  • FIG. 13B is a diagram showing the received waveform of the reflected wave at the peeling portion for the inspection object in which the layer L1 (see FIG. 3) of the IC chip has a large thickness.
  • the phase of the reception waveform 101 is inverted with respect to the phase of the reference waveform 23 (see the first embodiment) obtained from the reception waveform on the surface of the quartz glass.
  • the phase of the received waveform 102 does not appear to be inverted with respect to the phase of the reference waveform 23.
  • the phase of the received waveform 102 does not appear to be inverted with respect to the phase of the reference waveform 23 because the ultrasonic wave changes its waveform as the ultrasonic wave propagates inside the layer L1 and the ultrasonic wave whose waveform has changed. Is received.
  • the transmitted wave generated by the ultrasonic probe has a frequency bandwidth according to the type of ultrasonic probe. Since the ultrasonic wave has a property that the attenuation of the amplitude accompanying the propagation increases as the frequency increases, the attenuation of the high frequency component relatively increases as the ultrasonic wave propagates inside the layer L1.
  • the layer L1 when the layer L1 is thick, a significant difference occurs between the waveform of the ultrasonic wave propagating inside the layer L1 and the waveform of the transmission wave.
  • the inversion of the phase of the ultrasonic wave at the peeling portion does not change regardless of the thickness of the layer L1, but comparing the reception waveform and the transmission waveform, when the layer L1 is thick, the reception waveform is changed due to the change in the reception waveform.
  • the waveform is no longer similar to the transmitted waveform and the reference waveform 23. The above is the reason why the phase of the received waveform 102 does not seem to be inverted with respect to the phase of the reference waveform 23.
  • the reference waveform 23 obtained from the received waveform on the surface of the quartz glass is used, when an IC chip having a thick layer L1 is set as an inspection target, in some rare cases, correct peeling determination may not be possible. Even if the layer L1 is an IC chip having a small thickness, when an ultrasonic probe having a high center frequency is used, the same phenomenon occurs because the high-frequency component is significantly attenuated.
  • the user is taught the received waveform of the reflected wave at the normal boundary portion and the taught received waveform at the normal boundary portion is referred to as the reference waveform so that the separation can be correctly determined even if the above-described waveform change occurs. did.
  • the reflected wave at the normal boundary portion propagates inside the layer L1 similarly to the received waveform 102, and the waveform is deformed. Therefore, the received waveform of the reflected wave at the normal boundary portion and the received waveform 102 are similar to each other.
  • the phase of the reception waveform of the separation section is inverted with respect to the phase of the reception waveform 102 from the above relational expression of Z2-Z1 ⁇ Z1. Therefore, the arithmetic processing unit 5 can correctly determine the separation by evaluating the positive/negative of the correlation with the received waveform 102 using the received waveform at the boundary as the reference waveform.
  • FIG. 14 is a GUI that allows the user to specify a measurement point that includes the received waveform of the reflected wave at the normal boundary.
  • the evaluation gate is set so as to include the interface echo between the layers L1 and L2, and the C scope is displayed.
  • an IC chip which is a good product and which is known to be free from peeling is used, or an IC chip whose location where peeling is not known is used.
  • the cursor 103 causes the user to select a measurement point that teaches the received waveform of the reflected wave at the normal boundary portion.
  • FIG. 15 is a GUI that allows the user to specify the received waveform of the reflected wave at the normal boundary.
  • the received waveform 104 at the measurement point selected by the GUI shown in FIG. 14 is displayed in the A scope.
  • the user designated a start point 105 and an end point 106, and the data of the received waveform 104 between the start point 105 and the end point 106 was used as a reference waveform.
  • the reference waveform data is acquired for each type of ultrasonic probe, and the reference waveform data for each type of ultrasonic probe is stored in the hard disk 6.
  • the arithmetic processing unit 5 assigns an identifier to each of the stored reference waveform data, and associates the identifier of the reference waveform with the type identifier of the ultrasonic probe.
  • FIG. 16 is an A scope image in which the received waveform 102 shown in FIGS. 13A and 13B and the reference waveform 107 acquired by the method shown in FIG. 15 are superimposed and drawn. It can be seen that the phase of the received waveform 102 is inverted with respect to the reference waveform 107. With the reference waveform 23 obtained from the received waveform of the reflected wave on the surface of the quartz glass, the phase inversion of the received waveform 102 could not be detected (see FIG. 13B). However, the reference waveform 107 obtained from the received waveform at the normal boundary portion can correctly detect the phase inversion of the received waveform 102.
  • the ultrasonic inspection apparatus 100 According to the ultrasonic inspection apparatus 100 according to the present embodiment, it is possible to correctly perform the peeling determination even for the IC chip having the thick layer L1.
  • the ultrasonic inspection method of this embodiment described above has the following features.
  • the ultrasonic inspection method according to the present embodiment uses an ultrasonic probe that generates an ultrasonic wave, enters the inspection target, and receives a reflected waveform reflected from the inspection target as a reception waveform, and receives the calculation processing unit. It is an ultrasonic inspection method for inspecting the internal state of an inspection object by analyzing a waveform.
  • the ultrasonic inspection method includes a registration step (for example, refer to FIGS. 5 and 6) of registering a reference waveform unique to each type of ultrasonic probe in a storage unit (for example, the hard disk 6) in association with a type identifier.
  • a loading step eg, step S2 in FIG.
  • steps S8 and S9 in FIG. 11 of loading a reference waveform on the basis of the type identifier of the ultrasonic probe and a detection step (eg, step S7 of FIG. 11) for detecting a peak of the received waveform.
  • a positioning step for positioning the loaded reference waveform in the time axis direction based on the peak of the received waveform (for example, steps S8 and S9 in FIG. 11), and a calculation step for calculating a correlation value between the received waveform and the reference waveform.
  • steps S8 and S9 in FIG. 11 and a determination step (for example, steps S10 and S11 in FIG. 11) for determining whether the internal state of the inspection object is an abnormal state based on whether the correlation value is positive or negative.
  • a display step (for example, step S16 in FIG. 11) of displaying the abnormal region determined to be in the abnormal state in the determination step on the display device by the C scope display.
  • the registered ultrasonic probe types are displayed on the display device as a list (see FIG. 7), and the ultrasonic probe type is displayed to the user from among the displayed ultrasonic probe types.
  • the selecting step of selecting the type and the loading step the reference waveform can be loaded based on the type of the ultrasonic probe selected by the user (see the description of FIG. 7).
  • the ultrasonic probe is provided with an RF (Radio Frequency) tag in which the type information of the ultrasonic probe is embedded, and has a reading step for reading the type of the ultrasonic probe from the RF tag, and the reading at the loading step.
  • a reference waveform can be loaded based on the type of ultrasonic probe read in step (see the description of FIG. 7).
  • a first threshold adjusting step for the correlation value (see FIG. 9) that allows the user to specify the threshold for the correlation value
  • a second threshold adjusting step for the brightness value that allows the user to specify the threshold for the luminance value of the C-scope image information (see FIG. 9).
  • the determination step it is possible to determine whether or not the internal state of the inspection target is an abnormal state based on the threshold value for the correlation value and the threshold value for the brightness value designated by the user.
  • the ultrasonic inspection method includes a step of displaying the type identifier of the ultrasonic probe on the display device in the display step, and a step of displaying the identifier of the reference waveform loaded in the loading step on the display device. (See description of FIG. 9).
  • the ultrasonic inspection method has a drawing step of causing the display device to draw the reference waveform and the received waveform in an overlapping manner in the display step (see FIG. 16).
  • the ultrasonic inspection method includes the step of displaying the reflection waveform of the surface of the standard test piece on the display device in the A scope display in the registration step, and the range of the reference waveform from the reflection waveform of the surface of the standard test piece displayed in the A scope. And a step of receiving the designation (see FIGS. 5 and 6).
  • the ultrasonic inspection method includes an output step of outputting the C scope image information displayed in the display step in EXIF (Exchangeable Image File Format), an ultrasonic probe type identifier and a load in the output image electronic file. And a step of embedding the identifier of the generated reference waveform (see the description of FIG. 9).
  • EXIF Exchangeable Image File Format
  • a step of causing a user to specify a normal part of the inspection object on a C scope display a step of displaying a received waveform of the normal part on a display device with an A scope display, and a reference from a received waveform displayed on the A scope
  • a step of receiving a designation of a waveform range can register the designated range as a reference waveform (see FIGS. 14 and 15).
  • the present invention is not limited to the above-described embodiment, and various modifications are included.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those including all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them with, for example, an integrated circuit. Further, each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function. Information such as a program, a table, and a file that realizes each function can be placed in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines are shown to be necessary for explanation, and not all control lines and information lines are shown on the product. In practice, it may be considered that almost all configurations are connected to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

超音波検査方法は、超音波探触子(2)の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録する登録ステップと、超音波探触子(2)の品種識別子に基づき参照波形を演算処理部(5)にロードするロードステップと、受信波形のピークを検出する検出ステップと、受信波形のピークに基づきロードされた参照波形を時間軸方向に位置合わせする位置合わせステップと、受信波形と参照波形の相関値を算出する算出ステップと、相関値の正負に基づき検査対象物の内部状態が異常状態であるか否かを判定する判定ステップと、判定ステップで異常状態と判定された異常領域をCスコープ表示で表示装置に表示させる表示ステップと、を有する。

Description

超音波検査方法及び超音波検査装置
 本発明は、超音波検査方法及び超音波検査装置に関する。
 本技術分野の背景技術として、特許文献1がある。特許文献1には、「超音波は音響インピーダンス(密度×音速)の異なる境面で反射し、その反射信号の大きさは界面を構威する物質の音響インピーダンスによって左右される。音響インピーダンスの大きい物質から小さい物質に超音波が入射する場合と逆に音響インピーダンスの小さい物質から大きい物質に超音波が入射する場合とでは反射の位相が異なるのである。例えば固体から水や空気のようにインピーダンスの小さい物質に入射するとき反射の位相は反転する。この現象を利用して、材料や部品の接合部の剥離の有無やボイドの有無を超音波により検査する方法が公知である。」とある(発明の詳細な説明参照)。
 また、特許文献1には、「超音波探触子から被検材内部へ向けて発射された超音波の反射波を受信してRF信号とし、上記RF信号の正のピークの最大値及び上記RF信号の負のピークの絶対値を検出して、この正のピークの最大値と負のピークの絶対値の和を算出し、この和の値と、上記正のピークの最大値或いは負のピークの絶対値のいずれかとの比を算出し、これら和の値と比の値とをパラメータとする関数をCスコープ表示して上記接合部の剥離の有無を検査する超音波検査方法。」と記載されている(特許請求の範囲参照)。
特開平3-102258号公報
 前記特許文献1には、超音波の位相の反転を検出して剥離の有無を検査する超音波検査方法が記載されている。しかし、特許文献1の超音波検査方法では、位相反転の判定がピークの最大値といった波形の局所的情報に基づいているため、波形全体を見ると位相反転である、あるいは位相判定でないと判定すべきでない反射波の波形に対して、誤って判定する場合がある。
 例えば本願の図17Aは、剥離のない界面の反射波の受信波形の模式図である。本願の図17Bは、剥離のある界面の反射波の受信波形の模式図である。波形全体を見ると両者の違いは明らかである。しかし、いずれの波形も正のピークの波高値と負のピークの波高値の絶対値が近い。このため、正と負のピークの波高値を尺度としてみると、両波形に明確な違いはなく、ノイズ等の理由で正または負のピークの波高値が変動すると、容易に判定結果が変化して安定した検査結果が得られない。
 また、一般的に超音波探触子の送信波の周波数特性は品種により異なるため、同一検査対象物の同一超音波反射位置であっても、超音波探触子の品種が異なると正のピークの波高値と負のピークの波高値が異なる。当然、特許文献1に記載されている正のピークの波高値と負のピークの波高値の絶対値により得られるパラメータ値も超音波探触子の品種により異なる。従って、上記パラメータ値単独では、剥離であるか否かをユーザ側で容易に判断できない可能性がある。
 そこで本発明は、様々な周波数特性を有する超音波探触子を使用した場合でも安定して剥離検出が可能な超音波検査方法及び超音波検査装置を提供する。
 前記課題を解決するために、本発明の超音波検査方法は、超音波を発生して検査対象物へ入射し、検査対象物から反射した反射波形を受信波形として受信する超音波探触子を用い、演算処理部で受信波形を解析することで、検査対象物の内部状態を検査する超音波検査方法であって、超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録する登録ステップと、超音波探触子の品種識別子に基づき参照波形を演算処理部にロードするロードステップと、受信波形のピークを検出する検出ステップと、受信波形のピークに基づきロードされた参照波形を時間軸方向に位置合わせする位置合わせステップと、受信波形と参照波形の相関値を算出する算出ステップと、相関値の正負に基づき検査対象物の内部状態が異常状態であるか否かを判定する判定ステップと、判定ステップで異常状態と判定された異常領域をCスコープ表示で表示装置に表示させる表示ステップと、を有することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、様々な周波数特性を有する超音波探触子を使用した場合でも安定して剥離検出が可能な超音波検査方法及び超音波検査装置を提供することができる。
第1実施形態に係る超音波検査装置の構成を示すブロック図である。 超音波検査で用いる送信波の波形の一例を示す図である。 検査対象物に送信波を入射し、それが受信波として反射する様子を示す図である。 正常境界部での、図2で示した送信波が検査対象物に入射して反射した受信波形を示す図である。 剥離部での、図2で示した送信波が検査対象物に入射して反射した受信波形を示す図である。 石英ガラスを用いて表面の反射波の受信波形を取得する方法を示す図である。 石英ガラス表面の反射波の受信波形から参照波形を抽出する方法を示す図である。 超音波検査装置に接続した超音波探触子の品種をユーザに選択させるGUI(Graphical User Interface)である。 ロードされた参照波形を用いて剥離有無を判定する方法を示す図である。 剥離と判定された測定点をCスコープ上でカラー表示させるGUIである。 参照波形の位置合わせ結果を確認するGUIである。 剥離有無判定を行うプログラムの処理手順を示す処理フロー図である。 正の最大波高値ピークを基準に参照波形の位置合わせを行い、正の値の相関係数を算出する方法を示す図である。 負の最大波高値ピークを基準に参照波形の位置合わせを行い、負の値の相関係数を算出する方法を示す図である。 ICチップの層L1の厚みが薄い検査対象物について、剥離部の反射波の受信波形を示した図である。 ICチップの層L1の厚みが厚い検査対象物について、剥離部の反射波の受信波形を示した図である。 正常境界部の反射波の受信波形を含む測定点をユーザに指定させるGUIである。 正常境界部の反射波の受信波形をユーザに指定させるGUIである。 図13A、図13Bに示した受信波形と、図15に示した方法で取得した参照波形を重ね合わせ描画したAスコープ画像である。 剥離がない界面の反射波の受信波形を示す模式図である。 剥離のある界面の反射波の受信波形を示す模式図である。
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 <<第1実施形態>>
 図1は、第1実施形態に係る超音波検査装置100の構成を示すブロック図である。超音波検査装置100は、超音波探傷器1、超音波探触子2、走査機構部3、機構部コントローラ4、演算処理部5(マイクロプロセッサ)、ハードディスク6、オシロスコープ7、モニタ8、入力装置12などを含んで構成されている。
 超音波探傷器1は、超音波を発生する超音波探触子2にパルス信号9を与えて駆動する超音波探傷器である。超音波探触子2は、走査機構部3により保持または駆動され、かつ検査対象物上で走査される超音波探触子(プローブ)である。この走査機構部3は機構部コントローラ4によって制御される。
 すなわち、超音波探傷器1は、超音波探触子2にパルス信号9を与えて駆動し、超音波探触子2から水を媒介にして検査対象物50(被検体)に対して超音波U1を送出する。また、超音波探傷器1は、検査対象物50の表面あるいは内部の複数の界面から戻ってくる反射波U2を反射波10として受信し、それに応じたRF(Radio Frequency)信号11を発生させ、増幅するレシーバ(図示せず)を備える。
 超音波探触子2は、走査機構部3によって検査対象物の検査部位へ逐次走査される。超音波探触子2は、超音波探傷器1とコネクタを介して電気的に接続されており、超音波探触子2は、ユーザによって容易に取り外しと取り付けが可能である。
 なお、説明の便宜上、超音波探触子2が発生する超音波を「送信波」と称する場合がある。また、超音波探触子2が受信する反射波U2またはRF信号11を「受信波」と称する場合がある。
 超音波探傷器1は、前記したように、超音波探触子2にパルス信号9を送り、超音波探触子2はパルス信号9を超音波に変換して検査対象物50に入射する。検査対象物50からの反射波U2を超音波探触子2が受信し、超音波探傷器1へと送る。超音波探傷器1は反射波10をRF信号11に変換し、演算処理部5(制御部)へ送る。演算処理部5は、超音波探触子2を用いて検査対象物の適宜部位を走査させるために、機構部コントローラ4へ制御信号を送り、機構コントロールを実現する。演算処理部5→機構部コントローラ4→走査機構部3→超音波探触子2→超音波探傷器1の系統によって超音波探触子2の自動制御(走査)がなされる。
 演算処理部5が得たデータ(RF信号11や、前記自動制御に要する信号を含む)は必要に応じてハードディスク(記憶部)6へ蓄積される。また、演算処理部5は、オシロスコープ(表示部)7およびモニタ(表示部)8に接続され、リアルタイムにAスコープ表示またはCスコープ表示を行うことができる。
 なお、「Aスコープ表示」とは、オシロスコープ7の横軸に時間をとり、縦軸にRF信号11の波形の振幅(波高値)をとったときのRF信号11の表示である。また、「Cスコープ表示」とは、超音波探触子2を検査対象物に対して縦横にスキャンし、表示画面の横軸に超音波探触子2の移動の横方向(X方向)距離をとり、縦軸に縦方向(Y方向)距離をとったときの、RF信号11の波形の正のピークの最大値または負のピークの最大値の絶対値の階調表示である。Aスコープ表示は、演算処理部5によりCスコープ表示と同じモニタに表示されることもある。
 また、演算処理部5は、ユーザによって入力装置12から入力された指示、例えば、後述する、評価ゲートの指定やRF信号11のピークの選択に応じた処理を実行する。入力装置12は、例えば、キーボード、ポインティングデバイスなどでもよい。ハードディスク6には、Cスコープ表示するときに、RF信号11の波形(特に、ピークの大きさ)に応じて使用する色が定義されたカラーパレットが記憶されている。色の定義は、具体的にはRYB(Red Yellow Blue)値を用いてRF信号11の波形と対応付ける。
 また、ハードディスク6には、第1実施形態の超音波検査を演算処理部5が実行するためのプログラム(超音波検査方法を行うためのプログラム)が記憶されている。
 なお、Cスコープ表示されるRF信号11は、評価ゲートに含まれている成分のみが表示される。評価ゲートは、超音波探傷器1から入力されたRF信号11の成分のうち、検査対象物の検査箇所からの反射波10による成分のみを取出してCスコープ表示させるためのものである。そのため、評価ゲートは、そのRF信号11を所定の遅延時間後に所定の時間だけゲートを開き通過させる機能を有している(ゲーティング)。評価ゲートの設定は、例えば入力装置12からの入力に基づいて演算処理部5によって行われる。または、演算処理部5がRF信号11を解析し自動的に設定してもよい。演算処理部5には、評価ゲートを生成するゲート回路が搭載されている。ただ、Aスコープ上では常に、正のピークの最大および負のピークの最大が評価ゲートの範囲内に含まれていることを確認する必要がある。正のピークの最大と負のピークの最大の片方もしくは両方が評価ゲート範囲内に含まれていなければ、検査対象箇所ではない箇所が正のピークの最大や負のピークの最大と誤認識され、検査対象箇所の評価が正しくできない恐れがあるからである。
 また、評価ゲートに含まれているRF信号11の最大値からCスコープを得る際には、例えば、RF信号11において正負のピークのうち高い方のレベルを選択しCスコープに反映する。
 なお、説明の便宜上、RF信号11が持つピークの正負を「極性」と呼び、ピークの極性が正または負である、といった説明をする場合がある。また、特許文献1に記載されている位相反転と、極性反転は同義である。
 図2は、超音波検査で用いる送信波の波形の一例を示す図である。図2の送信波は、横軸に時間をとり、縦軸に振幅、つまり波高値をとったときの波形である。横軸にとった時間は、図2中、右方向に向かって進行し、縦軸にとった波高値は中央を0として、そこから図2中、上に向かう方向は正の極性を示し、下に向かう方向は負の極性を示す。これらの方向については、後記する送信波および受信波の波形についても同様である。
 送信波は、極性の異なるピークが交互に現れ、それらのピークのうち波高値が最大となるピークが初期段階に現れ、次第に減少していく波形を持つ。送信波に含まれるピークの数、間隔、波高値は超音波探触子の品種により異なる。
 図3は、検査対象物に送信波を入射し、それが受信波として反射する様子を示す図である。検査対象物は、層L1と層L2とが接合したICチップである。層L1は、音響インピーダンスがZ1となる材質で形成され、層L2は音響インピーダンスがZ2となる材質で形成されている。音響インピーダンスは、材質の密度×音速として求められる。
 一般的には、超音波の反射率Rは、R=(Z2-Z1)/(Z2+Z1)となる。
 ここで、剥離があると、Z1>Z2となり、Z1と比較して、Z2をほぼ0とみなすと、Z2-Z1<Z1の関係式が成り立つ。
 層L1と層L2との接合面である境界部は、その一部が剥離して剥離部が形成されている。剥離部は空気からなる層とみなすことができ、空気の音響インピーダンスは、固体の材質と比較するとほぼ0であるため、剥離部の音響インピーダンスはほぼ0である。なお、剥離せず、層L1と層L2とが正常に接合した境界部を「正常境界部」と称する場合がある。
 図4Aは、正常境界部(剥離無し)での、図2で示した送信波が検査対象物に入射して反射した受信波形を示す図である。図4Bは、剥離部(剥離あり)での、図2で示した送信波が検査対象物に入射して反射した受信波形を示す図である。超音波は音響インピーダンスの大きい物質から小さい物質に入射して反射する場合には、反射波の位相が反転する性質を持つ。したがって、図4Aに示すように、送信波が層L1から層L2に向かって入射する場合、層L1と層L2との境界部が剥離していなければ、その境界部で反射する受信波は、位相が反転しない。しかし、図4Bに示すように、剥離部に送信波が入射すると、剥離部の音響インピーダンスはほぼ0であるため、その剥離部で反射する受信波は、位相が反転する。図4Bに示す受信波も剥離部では送信波(図2参照)に対して位相が反転している。
 以下に、超音波探触子2が受信した受信波を用いて、検査対象物に剥離が存在するか否か判定する方法について説明する。
 本実施形態では、送信波に対して位相の反転がなく、かつ送信波と波形が相似形の参照波形を用いる。演算処理部5は、着目する反射波の受信波形と参照波形の相関係数を算出し、相関係数の正負に基づき剥離判定を行う。相関係数が負であれば、位相の反転あり、すなわち剥離部であると考える。なお、本実施形態では、相関係数を指標として受信波形と参照波形の相関性を定量化するが、2波形間の相関性を表す指標であれば、相関係数以外の指標(相関値)についても採用できる。以下に、詳細な剥離の判定方法について述べる。
 まず、超音波検査装置100は、標準試験片を用い、標準試験片表面の反射波から参照波形を取得した。以下には、標準試験片に表面を平滑化した石英ガラスを用いた例を示すが、送信波に対して位相の反転がなく、かつ送信波と波形が相似形の参照波形が取得できる標準試験片であれば、適用可能な標準試験片の種類に制約はない。
 図5は、石英ガラス表面の反射波の受信波形を取得する方法を示す図である。石英ガラス14は、水13に浸漬されている。石英ガラス14の音響インピーダンスは水13の音響インピーダンスより大きいため、石英ガラス表面の反射波は、送信波に対して位相の反転がなく、かつ送信波と波形が相似形である。超音波検査装置100は、超音波探触子2の焦点位置を石英ガラス14表面に合わせた状態で、超音波探触子2から石英ガラス14に送信波を入射し、石英ガラス14の表面で反射した反射波を超音波探触子2により受信する。
 図6は、石英ガラス表面の反射波の受信波形から参照波形を抽出する方法を示す図である。図6では、石英ガラス表面で反射した反射波の受信波形17がAスコープ表示されている。Aスコープ表示された受信波形17から開始点15と、終了点16をユーザが指定し、開始点15から終了点16の間の受信波形17のデータを参照波形とした。参照波形は超音波探触子の品種毎に取得され、各々の参照波形をハードディスク6に保存する。演算処理部5は、保存された参照波形毎に識別子を付与し、かつ参照波形の識別子と超音波探触子の品種識別子との対応付けを行う。
 また、演算処理部5は、モニタ8に参照波形の識別子をユーザに選択させるGUIを表示させ、ユーザが選択した参照波形の識別子に対応した参照波形をオシロスコープ7、またはモニタ8上にAスコープ表示させることにより、適時ユーザに参照波形を目視確認させる。
 図7は、超音波検査装置100に接続した超音波探触子の品種をユーザに選択させるGUI(Graphical User Interface)である。GUI18は、あらかじめ超音波検査装置100に登録された超音波探触子の品種のリストを表示する。また、超音波検査装置100に接続された超音波探触子の品種を、ユーザがリスト中から選択する。この選択により、演算処理部5は、選択された超音波探触子の品種識別子に対応付けされた参照波形データを、演算処理部5のメモリ領域に保存してロードする(読み込む)ことが可能となる。これにより、超音波検査装置100の使い勝手が向上する。
 超音波探触子の品種識別子の選択は、RFID(Radio Frequency Identifier)を用いて自動的に実行させてもよい。具体的には、超音波探触子の識別子情報が入ったRFタグ(Radio Frequency)を超音波探触子毎に付けておき、演算処理部5が、接続された超音波探触子のRFタグを読み取る。これにより、超音波検査装置100は、自動的に超音波探触子の品種識別子を読み取る。読み取られた超音波探触子の品種識別子に対応付けされた参照波形がロードされる。これにより、超音波検査装置100の使い勝手が向上する。
 なお、ハードディスク6には、GUI18にリスト表示させる超音波探触子の品種ライブラリ情報が保存されており、この超音波探触子の品種ライブラリ情報を更新することで、GUI18にリスト表示する超音波探触子の品種が更新される。更新された超音波探触子の品種識別子に対応する参照波形の登録が可能となる。超音波探触子の品種ライブラリ情報の更新は、CD、DVD等の記録媒体に保存された新たな超音波探触子の品種ライブラリ情報をハードディスク6に複製することで実行可能となる。
 図8は、ロードされた参照波形を用いて剥離有無を判定する方法を示す図である。図8には、剥離部に送信波を入射して得た受信波形19を示す。受信波形19には、時間軸方向の前半に層L1(図3参照)の表面で反射した受信波形(表面エコー)、後半に層L1と層L2の界面で反射した受信波形(界面エコー)を含む。まず受信波形19から層L1と層L2の界面エコーを抽出するため、表面エコーゲート20(Sゲート)の範囲内で受信波形19の波高値が閾値を超えた時間を表面エコー開始点21(トリガポイント)として、演算処理部5は設定する。演算処理部5は、表面エコー開始点21から一定時間遅延した時間範囲を評価ゲート22に設定する。この評価ゲート22の範囲内において、受信波形19の正の波高値の最大値、または負の波高値の絶対値の最大値を、Cスコープに反映させる。
 次に、演算処理部5は、参照波形23の時間軸方向位置合わせをする。位置合わせには、受信波形19の正と負の最大波高値ピークを用いる。図8は、負の最大波高値ピークを基準に位置合わせした結果を示す。演算処理部5は、評価ゲート22の範囲内で受信波形19から負の最大波高値ピーク24を検出する。参照波形23の最大波高値ピークと受信波形19の負の最大波高値ピーク24とが一致するように、参照波形23を時間軸方向に位置合わせする。
 演算処理部5は、受信波形19と参照波形23とが重なる時間範囲において、受信波形19の波高値データを抽出し、抽出した波高値データと参照波形23とで、相関係数を算出する。このとき負の値の相関係数が得られる。次に、演算処理部5は、正の最大波高値ピークを基準にして同様に正の値の相関係数を算出し、負の値の相関係数と、正の値の相関係数を比較し、絶対値の大きなほうの相関係数を採用する。負の値の相関係数が大きい場合、評価ゲート22の範囲内の界面エコーは剥離候補と判定される。剥離候補と判定された測定点は、下記の閾値処理により最終的に剥離であるか否かが判定される。
 また、前記では閾値処理で最終的な剥離判定を行う例を示したが、閾値処理に追加して、剥離領域の特徴量を用いて最終的な剥離判定を行うようにしてもよい。具体的には、全測定点の剥離判定が終了した時点で、演算処理部5は、連続した剥離領域の画素を抽出するラベリング処理を行い、面積や真円度といった形状に関する特徴量が一定の範囲内に収まった剥離領域を最終的な剥離領域としてモニタ8に表示する。
 図9は、剥離と判定された測定点をCスコープ上でカラー表示させるGUIである。剥離判定有効化ボタン28は、剥離判定を実行するか否かの入力をユーザから受け付ける。なお、参照波形が登録されていない超音波探触子の品種が選択された場合に、剥離判定有効化ボタン28をグレーアウトさせて、剥離判定処理を無効化させる。これにより、剥離判定ができるか否かが容易に把握できる。
 Cスコープ画像25は、Cスコープ表示された検査対象物の画像上に異常領域29(剥離部)がカラー表示される。カラー表示により、ユーザは剥離有無が容易に判定できる。
 図9では、層L1と層L2の界面(図3参照)に評価ゲートを設定して映像化した例を示す。相関係数閾値調整バー26、輝度値閾値調整バー27は、ユーザから相関係数閾値と輝度値閾値の入力を受け付ける。演算処理部5は、相関係数閾値と各測定点における相関係数の比較、および輝度値閾値と各測定点における輝度値の比較を行い、相関係数の絶対値が相関係数閾値より大きく、かつ輝度値が輝度値閾値より大きな測定点を異常領域29としてカラー表示させる。また、測定パラメータ表示領域30は、接続された超音波探触子の品種識別子、参照波形の識別子、超音波探触子のスキャン条件等の測定パラメータを表示する。これにより、超音波検査装置100の使い勝手が向上する。
 なお、図9では、剥離と判定された測定点をCスコープ上でカラー表示させる例について説明したが、剥離候補と判定された測定点(前述図8の説明参照)、すなわち相関係数が負であった測定点をユーザが把握できるように、モニタ8に表示させてもよい。具体的には、相関係数が0から-1の測定点について、256階調でグレースケール表示させる。ユーザは、このような相関係数の分布を用いることで、相関係数に対する閾値の調整が容易になる。
 Cスコープ画像25を電子ファイルとして出力する場合、EXIF(Exchangeable Image File Format)として出力し、接続された超音波探触子の品種識別子、参照波形の識別子等、測定パラメータ表示領域30の情報を電子ファイルに埋め込むこともできる。また、Cスコープ画像25と、前記相関係数の分布の2次元画像と、マルチTIFF画像として出力させてもよい。マルチTIFF画像として、輝度値と相関係数の情報を残しておくことで、ユーザは相関係数の再解析が可能となる。これにより、超音波検査装置100の使い勝手が向上する。
 演算処理部5は、接続された超音波探触子が取り外されたことを検知する。超音波探触子が取り外されたことが検知されると、演算処理部5は、参照波形が保存された演算処理部5のメモリ領域の開放を実行し、参照波形をアンロードする(読み込んだものを破棄する)。参照波形がアンロードされると、別の超音波探触子の品種識別子に対応付けされた参照波形のロードが可能となる。
 図10は、参照波形23の位置合わせ結果を確認するGUIである。このGUIには、図9に示したCスコープ画像25の任意の測定点をユーザが選択すると、参照波形23の位置合わせ結果がAスコープ表示される。Aスコープ画像には、受信波形19と参照波形23が重ね合わせて描画されており、選択された測定点において、負の値の相関係数が採用された場合には、負の最大波高値ピークを基準に位置合わせした結果が表示される。また、正の値の相関係数が採用された場合には、正の波高値ピークを基準に位置合わせした結果が表示される。ユーザは、参照波形23の位置合わせ結果を確認することで、例えばある測定点がカラー表示されない場合に、位相反転をしていないことが理由でカラー表示されないのか、あるいは相関係数閾値が高いことが理由でカラー表示されないのかを知ることができる。相関係数閾値が高いことが理由でカラー表示されない場合は、相関係数閾値を低く設定すればよいことをユーザが把握できるため、相関係数閾値設定の補助となる。
 図11は、剥離有無判定を行うプログラムの処理手順を示す処理フロー図である。演算処理部5は、ハードディスク6に保存された処理プログラムを実行し、剥離有無を判定する。まず、ステップS1において、剥離判定に用いる処理パラメータがプログラムに入力される。ここで、パラメータとは、Sゲート、評価ゲートの設定条件、輝度値、相関係数に対する閾値、受信波形からピークを検出するための閾値等である。
 また、ステップS2、ステップS3において、それぞれ参照波形と受信波形が処理プログラムに入力される。ステップS4では、演算処理部5は、受信波形から表面エコーの開始点をトリガポイントとして検出する。ステップS5では、演算処理部5は、ステップS4で検出したトリガポイントから一定時間遅延した時間範囲を評価ゲートとして設定する。ステップS6では、演算処理部5は、受信波形19の正の波高値の最大値、または負の波高値の絶対値の最大値からCスコープに反映させる輝度値を取得する。
 ステップS7では、演算処理部5は、評価ゲートの範囲内で受信波形の最大波高値ピークを正側と負側で検出する。ステップS8では、演算処理部5は、正の最大波高値ピークを基準に参照波形の位置合わせを行い、正の値の相関係数を算出する(図12A参照)。ステップS9では、演算処理部5は、負の最大波高値ピークを基準に参照波形の位置合わせを行い、負の値の相関係数を算出する(図12B参照)。ステップS10では、演算処理部5は、正の値の相関係数と負の相関係数の比較を行い、絶対値の大きな方の相関係数を採用する。ステップS11では、演算処理部5は、輝度値および相関係数の閾値処理を行い、輝度値が輝度値閾値より大きく、かつ相関係数が相関係数閾値より大きい場合(ステップS11,Yes)、剥離有りと判定し(ステップS12)、ステップS14に進む。演算処理部5は、それ以外の場合(ステップS11,No)、剥離無しと判定し(ステップS13)、ステップS14に進む。
 そして、ステップS14では、演算処理部5は、全測定点の処理が終了したか判定し、全測定点の処理が終了していない場合(ステップS14,No)、ステップS3に戻り、全測定点の処理が終了している場合(ステップS14,Yes)、ステップS15に進む。
 全測定点において、ステップS3からステップS13の処理が完了した時点で、演算処理部5は、全測定点の相関係数分布を二次元画像として出力する(ステップS15)。ここでは、相関係数が負の測定点について、負の相関が強い測定点が把握できるように階調表示させる。例えば、相関係数が0から-1の測定点について、256階調でグレースケール表示させる。ユーザは相関係数分布を用いることで、相関係数に対する閾値の調整が容易になる。ステップS16では、剥離領域(異常領域)を二次元画像として出力する(図9参照)。
 前記では、ステップS14において全測定点の剥離判定が終了した時点で、相関係数の分布の出力(ステップS15)、剥離領域の出力(ステップS16)を実行する例について述べた。しかし、各測定点の剥離判定が終了する毎に、相関係数の分布と剥離領域をモニタ8に表示させて、ユーザがリアルタイムで処理結果を確認できるようにしてもよい。
 以上に述べた本実施形態に係る剥離判定方法を用いることで、図17A,17Bに示したような、波高値の正負対称性が高い受信波形に対しても正しい剥離判定結果が得られる。図17Bの剥離ありの受信波形に対して、図11に示したフローチャートで処理を行うと、正の値の相関係数に比べて、負の値の相関係数の方が絶対値は大きいため、位相の反転ありと判定される。適当な相関係数閾値を設定することで、正しく剥離と判定が可能となる。また、剥離判定に用いる参照波形は、超音波探触子の品種毎に対応付けされているため、超音波探触子の品種を変更による受信波形のピークの数、間隔、波高値の変化にも対応して正しく剥離判定が可能である。また、様々な周波数特性を有する超音波探触子を使用した場合でも安定して剥離検出が可能である。
<<第2実施形態>>
 第2実施形態に係る検査装置では、ユーザに正常境界部の受信波形を教示させ、教示された正常境界部の反射波の受信波形を参照波形とした。なお、第2実施形態に係る超音波検査装置100は、参照波形の取り方以外は、第1実施形態と同様であるので、第1実施形態の説明と重複する部分は省略する。
 第1実施形態の剥離判定方法において、層L1の厚みが極端に厚い場合、次のような現象が生じる場合がある。第2実施形態では、この現象についてのさらなる改善策について図を用いて説明する。
 図13Aは、ICチップの層L1(図3参照)の厚みが薄い検査対象物について、剥離部の反射波の受信波形を示した図である。図13Bは、ICチップの層L1(図3参照)の厚みが厚い検査対象物について、剥離部の反射波の受信波形を示した図である。図13Aに示すように、層L1が薄い場合、受信波形101の位相は、石英ガラス表面の受信波形から得た参照波形23(第1実施形態参照)の位相に対して反転する。一方、図13Bに示すように、層L1が厚い場合、受信波形102の位相は、参照波形23の位相に対して反転していないように見える。
 受信波形102の位相が、参照波形23の位相に対して反転していないように見えるのは、層L1内部を超音波が伝搬するに従い、超音波の波形が変化し、波形が変化した超音波を受信したためである。一般的に、超音波探触子が発生する送信波は、超音波探触子の品種に応じた周波数帯域幅を持つ。超音波は、周波数が高くなるほど伝搬に伴う振幅の減衰が大きくなる性質を持つため、層L1内部を超音波が伝搬するに従い、相対的に高周波成分の減衰が大きくなる。その結果、層L1が厚い場合、層L1内部を伝搬した超音波の波形と送信波の波形に顕著な違いが生じる。剥離部で超音波の位相の反転が起こることは、層L1の厚さによらず不変であるが、受信波形と送信波形を比較すると、層L1が厚い場合、前記の波形の変化により、受信波形は、送信波形、及び参照波形23に対して相似形でなくなる。以上が、受信波形102の位相が、参照波形23の位相に対して反転していないように見える原因である。
 以上述べたように石英ガラス表面の受信波形から得た参照波形23を用いると、層L1が厚いICチップを検査対象物とした場合に、まれに、正しく剥離判定できない場合があった。また、層L1が薄いICチップであっても、中心周波数が高い超音波探触子を用いた場合、高周波成分の減衰が顕著になるため同様の現象が生じる。
 そこで本実施形態では、上記の波形の変化が生じても、正しく剥離判定できるよう、ユーザに正常境界部の反射波の受信波形を教示させ、教示された正常境界部の受信波形を参照波形とした。正常境界部の反射波は、受信波形102と同様に層L1内部を伝搬して、波形の変形が生じているため、正常境界部の反射波の受信波形と受信波形102は相似形である。また、前述のZ2-Z1<Z1という関係式から剥離部の受信波形の位相は、受信波形102の位相に対して反転している。従って、演算処理部5は、境界部の受信波形を参照波形として、受信波形102との相関の正負を評価することにより、正しく剥離判定できる。
 以下に、図を用いて、ユーザに正常境界部の反射波の受信波形を教示させ、教示された正常境界部の受信波形を参照波形とする方法について説明する。
 図14は、正常境界部の反射波の受信波形を含む測定点をユーザに指定させるGUIである。図14には、層L1の厚いICチップについて、層L1と層L2の界面エコーを含むように評価ゲートを設定してCスコープ表示させている。ここでは、あらかじめ良品で剥離がないことが分かっているICチップを用いるか、あるいは剥離がない場所が分かっているICチップを用いる。カーソル103は、ユーザに正常境界部の反射波の受信波形を教示させる測定点を選択させる。
 図15は、正常境界部の反射波の受信波形をユーザに指定させるGUIである。このGUIには、図14に示したGUIで選択した測定点の受信波形104がAスコープ表示される。Aスコープ表示された受信波形104において、開始点105と、終了点106をユーザが指定し、開始点105から終了点106の間の受信波形104のデータを参照波形とした。参照波形データは、超音波探触子の品種毎に取得され、超音波探触子の品種毎の参照波形データをハードディスク6に保存する。演算処理部5は、保存された参照波形データ毎に識別子を付与し、かつ参照波形の識別子と超音波探触子の品種識別子との対応付けを行う。
 図16は、図13A、図13Bに示した受信波形102と、図15に示した方法で取得した参照波形107を重ね合わせ描画したAスコープ画像である。受信波形102の位相は、参照波形107に対して反転していることが分かる。石英ガラス表面の反射波の受信波形から得た参照波形23では、受信波形102の位相の反転を検出することができなかった(図13B参照)。しかし、正常境界部の受信波形から得た参照波形107では、受信波形102の位相の反転を正しく検出できる。
 前記で説明した通り本実施形態に係る超音波検査装置100によれば、層L1が厚いICチップに対しても正しく剥離判定を行うことができる。
 以上説明した本実施形態の超音波検査方法は、次の特徴を有する。
 本実施形態の超音波検査方法は、超音波を発生して検査対象物へ入射し、検査対象物から反射した反射波形を受信波形として受信する超音波探触子を用い、演算処理部で受信波形を解析することで、検査対象物の内部状態を検査する超音波検査方法である。超音波検査方法は、超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部(例えば、ハードディスク6)に登録する登録ステップ(例えば、図5、図6参照)と、超音波探触子の品種識別子に基づき参照波形を演算処理部にロードするロードステップ(例えば、図11のステップS2)と、受信波形のピークを検出する検出ステップ(例えば、図11のステップS7)と、受信波形のピークに基づきロードされた参照波形を時間軸方向に位置合わせする位置合わせステップ(例えば、図11のステップS8,S9)と、受信波形と参照波形の相関値を算出する算出ステップ(例えば、図11のステップS8,S9)と、相関値の正負に基づき検査対象物の内部状態が異常状態であるか否かを判定する判定ステップ(例えば、図11のステップS10,S11)と、判定ステップで異常状態と判定された異常領域をCスコープ表示で表示装置に表示させる表示ステップ(例えば、図11のステップS16)と、を有する。本実施形態の超音波検査方法によれば、様々な周波数特性を有する超音波探触子を使用した場合でも安定して剥離検出が可能である。
 前記登録ステップで、登録された超音波探触子の品種を表示装置にリスト表示し(図7参照)、リスト表示された超音波探触子の品種の中からユーザに超音波探触子の品種を選択させる選択ステップと、前記ロードステップにおいて、ユーザが選択した超音波探触子の品種に基づき参照波形をロードすることができる(図7の説明参照)。
 超音波探触子は、超音波探触子の品種情報を埋め込んだRF(Radio Frequency)タグを備え、RFタグから超音波探触子の品種を読取る読取りステップを有し、ロードステップで、読取りステップで読み取った超音波探触子の品種に基づき参照波形をロードすることができる(図7の説明参照)。
 ユーザに相関値に対する閾値を指定させる相関値に対する第1閾値調整ステップ(図9参照)と、ユーザにCスコープ画像情報の輝度値に対する閾値を指定させる輝度値に対する第2閾値調整ステップ(図9参照)と、を有し、前記判定ステップにおいて、ユーザから指定された相関値に対する閾値と輝度値に対する閾値とに基づき検査対象物の内部状態が異常状態であるか否かを判定することができる。
 超音波検査方法は、前記表示ステップで、超音波探触子の品種識別子を表示装置に表示させるステップと、前記ロードステップでロードされた参照波形の識別子を表示装置に表示させるステップと、を有する(図9の説明参照)。
 超音波検査方法は、前記表示ステップで、表示装置に参照波形と受信波形とを重ね合わせて描画させる描画ステップを有する(図16参照)。
 超音波検査方法は、前記登録ステップで、標準試験片の表面の反射波形をAスコープ表示で表示装置に表示させるステップと、Aスコープ表示された標準試験片の表面の反射波形から参照波形の範囲の指定を受けるステップと、を有する(図5、図6参照)。
 前記判定ステップを実行するか否かを、ユーザからの指定を受ける受付ステップを有し、前記ロードステップにおいて、参照波形がロードされていないとき、受付ステップにおけるユーザからの指定を受付不可とすることができる(図9参照)。
 超音波検査方法は、前記表示ステップで表示されたCスコープ画像情報をEXIF(Exchangeable Image File Format)で出力する出力ステップと、出力された画像電子ファイルに超音波探触子の品種識別子と、ロードされた参照波形の識別子と、を埋め込むステップと、を有する(図9の説明参照)。
 前記登録ステップで、Cスコープ表示でユーザに検査対象物の正常部を指定させるステップと、正常部の受信波形をAスコープ表示で表示装置に表示するステップと、Aスコープ表示された受信波形から参照波形の範囲の指定を受けるステップと、を有し、前記登録ステップは、指定された範囲を参照波形として登録することができる(図14、図15参照)。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
 1  超音波探傷器
 2  超音波探触子
 3  走査機構部
 4  機構部コントローラ
 5  演算処理部
 6  ハードディスク(記憶部)
 7  オシロスコープ(Aスコープ表示)(表示装置)
 8  モニタ(Cスコープ表示)(表示装置)
 9  パルス信号
 10  反射波
 11  RF信号
 12  入力装置
 13  水
 14  石英ガラス
 15  開始点(石英ガラス表面の反射波の受信波形)
 16  終了点(石英ガラス表面の反射波の受信波形)
 17  受信波形(石英ガラス表面の反射波)
 18  GUI
 19  受信波形(ICチップ)
 20  表面エコーゲート(Sゲート)
 21  表面エコー開始点(トリガポイント)
 22  評価ゲート
 23  参照波形(石英ガラス表面の受信波形から取得)
 24  負の最大波高値ピーク
 25  Cスコープ画像
 26  相関係数閾値調整バー(第1閾値調整バー)
 27  輝度値閾値調整バー(第2閾値調整バー)
 28  剥離判定有効化ボタン
 29  異常領域
 50  検査対象物(被検体)
 100  超音波検査装置
 101  受信波形(薄い層L1を伝搬)
 102  受信波形(厚い層L1を伝搬)
 103  カーソル
 104  受信波形(正常境界部の反射波)
 105  開始点(正常境界部の反射波の受信波形)
 106  終了点(正常境界部の反射波の受信波形)
 L1,L2  層

Claims (20)

  1.  超音波を発生して検査対象物へ入射し、前記検査対象物から反射した反射波形を受信波形として受信する超音波探触子を用い、演算処理部で前記受信波形を解析することで、前記検査対象物の内部状態を検査する超音波検査方法であって、
     超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録する登録ステップと、
     前記超音波探触子の品種識別子に基づき参照波形を前記演算処理部にロードするロードステップと、
     前記受信波形のピークを検出する検出ステップと、
     前記受信波形のピークに基づき前記ロードされた参照波形を時間軸方向に位置合わせする位置合わせステップと、
     前記受信波形と前記参照波形の相関値を算出する算出ステップと、
     前記相関値の正負に基づき前記検査対象物の内部状態が異常状態であるか否かを判定する判定ステップと、
     前記判定ステップで異常状態と判定された異常領域をCスコープ表示で表示装置に表示させる表示ステップと、を有する
     ことを特徴とする超音波検査方法。
  2.  請求項1に記載の超音波検査方法において、
     前記登録ステップで登録された超音波探触子の品種を前記表示装置にリスト表示し、
     前記リスト表示された超音波探触子の品種の中からユーザに超音波探触子の品種を選択させる選択ステップと、
     前記ロードステップにおいて、ユーザが選択した超音波探触子の品種に基づき前記参照波形をロードする
     ことを特徴とする超音波検査方法。
  3.  請求項1に記載の超音波検査方法において、
     前記超音波探触子は、前記超音波探触子の品種情報を埋め込んだRF(Radio Frequency)タグを備え、
     前記RFタグから前記超音波探触子の品種を読取る読取りステップを有し、
     前記ロードステップで、前記読取りステップで読み取った超音波探触子の品種に基づき参照波形をロードする
     ことを特徴とする超音波検査方法。
  4.  請求項1に記載の超音波検査方法において、
     ユーザに相関値に対する閾値を指定させる相関値に対する第1閾値調整ステップと、
     ユーザにCスコープ画像情報の輝度値に対する閾値を指定させる輝度値に対する第2閾値調整ステップと、を有し、
     前記判定ステップにおいて、ユーザから指定された相関値に対する閾値と輝度値に対する閾値とに基づき前記検査対象物の内部状態が異常状態であるか否かを判定する
     ことを特徴とする超音波検査方法。
  5.  請求項1に記載の超音波検査方法において、
     前記表示ステップで、
     前記超音波探触子の品種識別子を前記表示装置に表示させるステップと、
     前記ロードステップでロードされた参照波形の識別子を前記表示装置に表示させるステップと、を有する
     ことを特徴とする超音波検査方法。
  6.  請求項1に記載の超音波検査方法において、
     前記表示ステップで、前記表示装置に前記参照波形と前記受信波形とを重ね合わせて描画させる描画ステップを有する
     ことを特徴とする超音波検査方法。
  7.  請求項1に記載の超音波検査方法において、
     前記登録ステップで、
     標準試験片の表面の反射波形をAスコープ表示で前記表示装置に表示させるステップと、
     前記Aスコープ表示された前記標準試験片の表面の反射波形から前記参照波形の範囲の指定を受けるステップと、を有する
     ことを特徴とする超音波検査方法。
  8.  請求項1に記載の超音波検査方法において、
     前記判定ステップを実行するか否かを、ユーザからの指定を受ける受付ステップを有し、前記ロードステップにおいて、前記参照波形がロードされていないとき、前記受付ステップにおける前記ユーザからの指定を受付不可とする
     ことを特徴とする超音波検査方法。
  9.  請求項1に記載の超音波検査方法において、
     前記表示ステップで表示されたCスコープ画像情報をEXIF(Exchangeable Image File Format)で出力する出力ステップと、
     出力された画像電子ファイルに前記超音波探触子の品種識別子と、前記ロードされた参照波形の識別子と、を埋め込むステップと、を有する
     ことを特徴とする超音波検査方法。
  10.  請求項1に記載の超音波検査方法において、
     前記登録ステップで、
     Cスコープ表示でユーザに検査対象物の正常部を指定させるステップと、
     前記正常部の受信波形をAスコープ表示で前記表示装置に表示するステップと、
     前記Aスコープ表示された受信波形から前記参照波形の範囲の指定を受けるステップと、を有し、
     前記登録ステップは、前記指定された範囲を前記参照波形として登録する
     ことを特徴とする超音波検査方法。
  11.  超音波を発生して検査対象物へ入射し、前記検査対象物から反射した反射波形を受信波形として受信する超音波探触子と、演算処理部と、表示装置とを備え、前記演算処理部は、前記受信波形を解析することで、前記検査対象物の内部状態を検査する超音波検査装置であって、
     前記演算処理部は、
     前記超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録し、
     前記超音波検査装置に接続された前記超音波探触子の品種識別子に基づき参照波形を前記演算処理部にロードし、
     前記受信波形のピークを検出し、
     前記受信波形のピークに基づき前記ロードされた参照波形を時間軸方向に位置合わせをし、
     前記受信波形と前記参照波形の相関値を算出し、
     前記相関値の正負に基づき前記検査対象物の内部状態が異常状態であるか否かを判定し、
     前記異常状態と判定された異常状態の領域をCスコープ表示で前記表示装置に表示させる
     ことを特徴とする超音波検査装置。
  12.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録する際に、前記記憶部に登録された超音波探触子の品種を前記表示装置にリスト表示し、
     前記リスト表示された超音波探触子の品種の中からユーザに超音波探触子の品種を選択させ、
     前記超音波検査装置に接続された前記超音波探触子の品種識別子に基づき参照波形を前記演算処理部にロードする際に、ユーザが選択した超音波探触子の品種に基づき前記参照波形をロードする
     ことを特徴とする超音波検査装置。
  13.  請求項11に記載の超音波検査装置において、
     前記超音波探触子は、前記超音波探触子の品種情報を埋め込んだRF(Radio Frequency)タグを備え、
     前記演算処理部は、
     前記RFタグから前記超音波探触子の品種を読取り、
     前記超音波検査装置に接続された前記超音波探触子の品種識別子に基づき参照波形を前記演算処理部にロードする際に、読取りした超音波探触子の品種に基づき参照波形をロードする
     ことを特徴とする超音波検査装置。
  14.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記表示装置に、ユーザに相関値に対する閾値を指定させる相関値に対する第1閾値調整バーと、ユーザにCスコープ画像情報の輝度値に対する閾値を指定させる輝度値に対する第2閾値調整バーと、を表示し、
     前記相関値の正負に基づき前記検査対象物の内部状態が異常状態であるか否かを判定する際に、ユーザから指定された相関値に対する閾値と輝度値に対する閾値とに基づき前記検査対象物の内部状態が異常状態であるか否かを判定する
     ことを特徴とする超音波検査装置。
  15.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記異常状態と判定された異常状態の領域をCスコープ表示で前記表示装置に表示させる際に、前記超音波探触子の品種識別子を前記表示装置に表示し、
     前記ロードされた参照波形の識別子を前記表示装置に表示する
     ことを特徴とする超音波検査装置。
  16.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記異常状態と判定された異常状態の領域をCスコープ表示で前記表示装置に表示させる際に、前記表示装置に前記参照波形と前記受信波形とを重ね合わせて描画する
     ことを特徴とする超音波検査装置。
  17.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録する際に、標準試験片の表面の反射波形をAスコープ表示で前記表示装置に表示し、
     前記Aスコープ表示された前記標準試験片の表面の反射波形から前記参照波形の範囲の指定を受ける
     ことを特徴とする超音波検査装置。
  18.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記相関値の正負に基づき前記検査対象物の内部状態が異常状態であるか否かを判定するか否かを、ユーザからの指定を受付をし、
     前記超音波検査装置に接続された前記超音波探触子の品種識別子に基づき参照波形を前記演算処理部にロードする際に、前記参照波形がロードされていないとき、前記受付における前記ユーザからの指定を受付不可とする
     ことを特徴とする超音波検査装置。
  19.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記異常状態と判定された異常状態の領域をCスコープ表示で前記表示装置に表示されたCスコープ画像情報をEXIF(Exchangeable Image File Format)で出力し、
     出力された画像電子ファイルに前記超音波探触子の品種識別子と、前記ロードされた参照波形の識別子と、を埋め込む
     ことを特徴とする超音波検査装置。
  20.  請求項11に記載の超音波検査装置において、
     前記演算処理部は、
     前記超音波探触子の品種毎に固有の参照波形を品種識別子と関連付けて記憶部に登録する際に、Cスコープ表示でユーザに検査対象物の正常部を指定させ、
     前記正常部の受信波形をAスコープ表示で前記表示装置に表示し、
     前記Aスコープ表示された受信波形から前記参照波形の範囲の指定を受け付け、
     前記指定された範囲を前記参照波形として登録する
     ことを特徴とする超音波検査装置。
PCT/JP2019/046449 2018-12-05 2019-11-27 超音波検査方法及び超音波検査装置 WO2020116289A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217016519A KR102559929B1 (ko) 2018-12-05 2019-11-27 초음파 검사 방법, 초음파 검사 장치 및 초음파 검사 프로그램
CN201980079054.2A CN113167766B (zh) 2018-12-05 2019-11-27 超声波检查方法、超声波检查装置以及存储有超声波检查程序的程序产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228430A JP6602449B1 (ja) 2018-12-05 2018-12-05 超音波検査方法、超音波検査装置及び超音波検査プログラム
JP2018-228430 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020116289A1 true WO2020116289A1 (ja) 2020-06-11

Family

ID=68462346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046449 WO2020116289A1 (ja) 2018-12-05 2019-11-27 超音波検査方法及び超音波検査装置

Country Status (5)

Country Link
JP (1) JP6602449B1 (ja)
KR (1) KR102559929B1 (ja)
CN (1) CN113167766B (ja)
TW (1) TWI708940B (ja)
WO (1) WO2020116289A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229911A (zh) * 2020-10-13 2021-01-15 上海大学 一种用于实时检测3d打印件脱层的方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420632B2 (ja) 2020-04-16 2024-01-23 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法
JP7508384B2 (ja) * 2021-02-09 2024-07-01 株式会社日立パワーソリューションズ 超音波検査装置、超音波検査方法及びプログラム
JP7093884B1 (ja) 2021-11-30 2022-06-30 株式会社日立パワーソリューションズ アレイ型超音波映像装置および超音波画像表示方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174653A (ja) * 1985-10-16 1987-07-31 Hitachi Constr Mach Co Ltd 超音波検査方法および装置
JPH0157738B2 (ja) * 1982-06-07 1989-12-07 Hitachi Ltd
JP2896385B2 (ja) * 1989-09-14 1999-05-31 日本クラウトクレーマー株式会社 超音波検査方法及び装置
JP2015031660A (ja) * 2013-08-06 2015-02-16 株式会社Ihi検査計測 内部付着物の厚さ計測装置と方法
US20170023527A1 (en) * 2014-04-03 2017-01-26 Creo Dynamics Ab Method and device for inspection of solids by means of ultrasound
WO2018088288A1 (ja) * 2016-11-08 2018-05-17 株式会社日立製作所 超音波計測装置および方法
JP2018084416A (ja) * 2016-11-21 2018-05-31 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法
WO2018129832A1 (zh) * 2017-01-16 2018-07-19 广东百事泰电子商务股份有限公司 一种基于维也纳pfc的智能型半桥修正波电压转换电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129832A1 (ja) * 2007-03-29 2008-10-30 Panasonic Corporation 超音波測定方法及び装置
US8143898B1 (en) * 2007-04-06 2012-03-27 Unisyn Medical Technologies, Inc. Systems and methods for reconfiguring an ultrasound device
CN101672826B (zh) * 2009-10-16 2013-06-12 中国电子科技集团公司第四十五研究所 超声扫描显微镜c扫描相位反转图像的构建方法
JP6092109B2 (ja) * 2010-10-13 2017-03-08 マウイ イマギング,インコーポレーテッド 凹面超音波トランスデューサ及び3dアレイ
CN103852521B (zh) * 2014-02-17 2016-04-06 上海市岩土工程检测中心 一种用超声波检测多层介质耦合质量的方法
CN108267508A (zh) * 2017-12-27 2018-07-10 东南大学 一种基于Android设备的多通道超声探伤系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0157738B2 (ja) * 1982-06-07 1989-12-07 Hitachi Ltd
JPS62174653A (ja) * 1985-10-16 1987-07-31 Hitachi Constr Mach Co Ltd 超音波検査方法および装置
JP2896385B2 (ja) * 1989-09-14 1999-05-31 日本クラウトクレーマー株式会社 超音波検査方法及び装置
JP2015031660A (ja) * 2013-08-06 2015-02-16 株式会社Ihi検査計測 内部付着物の厚さ計測装置と方法
US20170023527A1 (en) * 2014-04-03 2017-01-26 Creo Dynamics Ab Method and device for inspection of solids by means of ultrasound
WO2018088288A1 (ja) * 2016-11-08 2018-05-17 株式会社日立製作所 超音波計測装置および方法
JP2018084416A (ja) * 2016-11-21 2018-05-31 株式会社日立パワーソリューションズ 超音波検査装置及び超音波検査方法
WO2018129832A1 (zh) * 2017-01-16 2018-07-19 广东百事泰电子商务股份有限公司 一种基于维也纳pfc的智能型半桥修正波电压转换电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKAI, KAORU: "Image Restoration and Minute Defects Detection Technique Using Ultrasonic Image for Highly Integrated Electronic Devices", JOURNAL OF THE JAPAN SOCIETY FOR PRECISION ENGINEERING, vol. 83, no. 2, 2017, pages 125 - 128 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229911A (zh) * 2020-10-13 2021-01-15 上海大学 一种用于实时检测3d打印件脱层的方法和装置
CN112229911B (zh) * 2020-10-13 2022-08-19 上海大学 一种用于实时检测3d打印件脱层的方法和装置

Also Published As

Publication number Publication date
KR20210083336A (ko) 2021-07-06
JP6602449B1 (ja) 2019-11-06
JP2020091194A (ja) 2020-06-11
TWI708940B (zh) 2020-11-01
KR102559929B1 (ko) 2023-07-27
CN113167766A (zh) 2021-07-23
CN113167766B (zh) 2024-07-23
TW202024632A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2020116289A1 (ja) 超音波検査方法及び超音波検査装置
US20020058871A1 (en) Frequency domain processing of scanning acoustic imaging signals
US20070118313A1 (en) Systems and methods for detecting discontinuous fibers in composite laminates
JP2019197007A (ja) 超音波探傷の判定装置、判定プログラム及び判定方法
EP0219128B1 (en) Ultrasonic inspection method and apparatus
US20090225083A1 (en) Peak visualization enhancement display system for use with a compressed waveform display on a non-destructive inspection instrument
Mayer et al. Characterization of reflector types by phase-sensitive ultrasonic data processing and imaging
JP6034057B2 (ja) 局所ゲイン間隔を用いた超音波スキャニング
JP6797646B2 (ja) 超音波検査装置及び超音波検査方法
JP2011053040A (ja) 超音波検査方法及び装置
JP4580957B2 (ja) コンクリート構造物の非破壊検査方法
JP5742513B2 (ja) 超音波探傷方法および超音波探傷装置
JP5033152B2 (ja) 超音波検査装置および超音波検査方法
JP5904154B2 (ja) 超音波探傷方法および超音波探傷装置
JP5416726B2 (ja) 超音波検査装置および超音波検査方法
JP4672441B2 (ja) 超音波探傷方法及び探傷装置
WO2021210227A1 (ja) 超音波検査装置及び超音波検査方法
CN110710989B (zh) 弹性成像方法、系统及计算机可读存储介质
JP2896385B2 (ja) 超音波検査方法及び装置
CN111047547A (zh) 一种基于多视图tfm的联合缺陷定量方法
JP2007292554A (ja) 超音波探傷システム
JPH09318608A (ja) 材料の非破壊検査方法及びその装置
Zahran et al. Automatic data processing and defect detection in time-of-flight diffraction images using statistical techniques
JPH0658917A (ja) 超音波検査方法および装置
JP3207740B2 (ja) 欠陥位置推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217016519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892733

Country of ref document: EP

Kind code of ref document: A1