TW202019081A - 載波頻率設定方法、馬達驅動系統及載波頻率設定裝置 - Google Patents

載波頻率設定方法、馬達驅動系統及載波頻率設定裝置 Download PDF

Info

Publication number
TW202019081A
TW202019081A TW108123277A TW108123277A TW202019081A TW 202019081 A TW202019081 A TW 202019081A TW 108123277 A TW108123277 A TW 108123277A TW 108123277 A TW108123277 A TW 108123277A TW 202019081 A TW202019081 A TW 202019081A
Authority
TW
Taiwan
Prior art keywords
motor
carrier frequency
torque
inverter
relationship
Prior art date
Application number
TW108123277A
Other languages
English (en)
Other versions
TWI713296B (zh
Inventor
大杉保郎
Original Assignee
日商日本製鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本製鐵股份有限公司 filed Critical 日商日本製鐵股份有限公司
Publication of TW202019081A publication Critical patent/TW202019081A/zh
Application granted granted Critical
Publication of TWI713296B publication Critical patent/TWI713296B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/50Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

以馬達之損失與逆變器之損失的合計損失變小的方式驅動馬達。在合計損失呈最小的最佳載波頻率與馬達之轉矩的關係上,導出最佳載波頻率之最低值,且在與最低的最佳載波頻率對應的馬達之轉矩以下的範圍,具有馬達之轉矩變大,載波頻率呈概略相同或者變小的部分,並且在與最低的最佳載波頻率對應的馬達之轉矩以上的範圍,具有馬達之轉矩變大,載波頻率呈概略相同或者變大的部分,以此方式設定馬達之轉矩與載波頻率的關係。

Description

載波頻率設定方法、馬達驅動系統及載波頻率設定裝置
發明領域 本發明是有關於載波頻率設定方法、馬達驅動系統及載波頻率設定裝置,特別是為了使用逆變器來驅動馬達而使用且合適的載波頻率設定方法、馬達驅動系統及載波頻率設定裝置。 本申請案主張提申日期2018年7月2日,於日本申請的日本專利特願2018-126066號之優先權,且將其內容調用至此。
發明背景 以驅動電車、混合動力車與家電製品等的馬達的電源裝置而言,有使用PWM(Pulse Width Modulation)控制方式之逆變器。如此的逆變器藉由載波(例如三角波)與電壓指令訊號的比較,來決定脈衝訊號之寬度(使脈衝ON的時間),且藉由因應生成的脈衝訊號來使開關元件(例如IGBT(絕緣閘雙極電晶體,Insulated Gate Bipolar Transistor))ON/OFF,來將輸入的直流電力轉換成具有馬達驅動所需要的頻率之交流電力並供應至馬達。在驅動馬達時,有需要使馬達之損失減低,並且使逆變器之損失減低,以馬達驅動系統整體而言實現高效率化。
專利文獻1已揭示:準備對馬達與逆變器之合計損失呈最小的PWM控制之載波頻率 (載波之頻率)與馬達之電角度頻率的關係做設定的列表資料,並以與馬達之電角度頻率檢測值對應的PWM控制之載波頻率,來運轉逆變器並驅動馬達。
專利文獻2、3已記載因應馬達之轉速與轉矩,來設定載波頻率。 具體而言專利文獻2中,在馬達之轉速低且馬達之轉矩大的第1區域,將載波頻率設定於最低的第1頻率。又,在馬達之轉速比起在第1區域設定的轉速更高,且馬達之轉矩與在第1區域設定的轉矩為相同程度的第2區域中,將載波頻率設定於比第1頻率高的第2頻率。又,在馬達之轉速比在第1區域及第2區域設定的轉速更高,且馬達之轉矩比在第1區域及第2區域設定的轉矩更低的第2轉矩的第3區域中,將載波頻率設定於最高的第3頻率。
又,專利文獻3中,在馬達之轉速低且馬達之轉矩小的區域,設定低載波頻率,且隨著馬達之轉速升高而將載波頻率設定成較高。專利文獻3中,將在低旋轉區的非小轉矩區域之載波頻率設低被視為是有效的。
先行技術文獻 專利文獻 專利文獻1:日本專利特開2007-282298號公報 專利文獻2:日本專利特開2008-22671號公報 專利文獻3:日本專利特開2009-171768號公報
發明概要 發明欲解決之課題 然而,專利文獻1所記載的技術中,未提及關於馬達之轉矩變動時的載波頻率。又,專利文獻2、3所記載的技術中,是馬達之轉矩大時,使載波頻率降低。專利文獻2中,是轉矩越大,馬達之驅動電流會增加而使電流損失變大,因此是做成藉由使載波頻率降低而減低電流損失。專利文獻3中,轉矩越大電流越大,因此開關元件之ON損失變大,且在大轉矩區域中逆變器之損失增大,又,馬達之轉速越低則集中流過各相橋臂的電流量會變多,因而是做成將低旋轉且非小轉矩區域之載波頻率設定為較低。本發明人不受如此之見解所束縛,對馬達之各轉速調查過馬達之轉矩、馬達之損失及逆變器之損失的合計損失之間的關係,得出若以專利文獻2、3所記載之手法來設定載波頻率,則由馬達之損失及逆變器之損失的合計損失來算出的綜合效率之觀點來看,會有不佳的情況。
本發明是有鑑於如以上的問題點,以能夠做到以馬達之損失及逆變器之損失的合計損失變小的方式來驅動馬達為目的。
用以解決課題之手段 本發明之載波頻率設定方法,是設定用以驅動馬達的逆變器中之載波頻率的載波頻率設定方法,其特徵在於具有:損失導出步驟,在使用前述逆變器來驅動前述馬達時的前述逆變器之損失與前述馬達之損失的和即綜合損失之導出上,使前述馬達所產生的轉矩、前述馬達之轉速、以及前述逆變器的載波頻率各自不同地來進行;載波頻率導出步驟,依據由前述損失導出步驟所導出的前述綜合損失,在複數個轉矩及複數個轉速之各個組合中,導出前述綜合損失成為最小時的載波頻率作為最佳載波頻率;關係導出步驟,依據由前述載波頻率導出步驟導出的前述最佳載波頻率,對前述馬達之各轉速導出前述馬達之轉矩與前述最佳載波頻率間的關係;關係記憶步驟,記憶藉由前述關係導出步驟在前述馬達之各轉速上導出的關係;以及載波頻率設定步驟,在藉由前述關係記憶步驟將前述關係記憶後,在驅動前述馬達時,依據該關係來設定與前述馬達之轉矩的指令值及前述馬達之旋轉圈述的指令值相應的載波頻率。
本發明之馬達驅動系統之第1例具有逆變器;馬達,接收從前述逆變器供應的交流電而被驅動;以及控制裝置,控制前述逆變器之動作,前述馬達驅動系統之特徵在於:前述逆變器具有使用寬能隙半導體來構成的開關元件,前述控制裝置具有載波頻率設定機構,前述載波頻率設定機構是依據在前述馬達之各轉速上導出的前述馬達之轉矩與前述逆變器的載波頻率的關係,來設定前述逆變器之載波頻率,在對前述馬達之各轉速導出的前述馬達之轉矩與載波頻率的關係,具有前述馬達之轉矩變大時,載波頻率升高的部分。 本發明之馬達驅動系統之第2例具有逆變器;馬達,接收從前述逆變器供應的交流電而受驅動;以及控制裝置,控制前述逆變器之運作,前述馬達驅動系統之特徵在於:前述逆變器具有使用寬能隙半導體以外的半導體來構成的開關元件,前述控制裝置具有載波頻率設定機構,前述載波頻率設定機構是依據對述馬達之各轉速導出的前述馬達之轉矩與在前述逆變器的載波頻率間的關係,來設定前述逆變器之載波頻率,對前述馬達之各轉速導出的前述馬達之轉矩與載波頻率的關係,無關前述馬達之轉矩,載波頻率呈概略相同值。
本發明之載波頻率設定裝置,其是設定用以驅動馬達的逆變器之載波頻率的載波頻率設定裝置,其特徵在於:以前述馬達之轉矩、及在使用前述逆變器來驅動前述馬達時的前述逆變器之損失與前述馬達之損失的和即綜合損失呈最小時的載波頻率即最佳載波頻率的關係而言,在前述逆變器具有使用寬能隙半導體來構成的開關元件的情況下,對前述馬達之各轉速導出:在前述馬達之轉矩是於與前述最佳載波頻率呈最低值的載波頻率對應的前述馬達之轉矩以上的範圍內,具有馬達之轉矩變大時,前述最佳載波頻率則升高的部分,且在前述馬達之轉矩是於與前述最佳載波頻率呈最低值的載波頻率對應的前述馬達之轉矩以下的範圍內,更具有馬達之轉矩變大時,前述最佳載波頻率降低的部分之關係,前述載波頻率設定裝置在前述逆變器具有使用寬能隙半導體以外的半導體來構成的開關元件的情況下,對前述馬達之各轉速導出:無關前述馬達之轉矩,前述最佳載波頻率呈概略一定值之關係,前述載波頻率設定裝置依據前述馬達之轉矩與前述最佳載波頻率的關係,來設定前述逆變器之載波頻率。
發明之效果 藉由本發明,能以使馬達之損失及逆變器之損失的合計損失變小的方式來驅動馬達。
較佳實施例之詳細說明 以下將一邊參照圖式,一邊說明本發明之實施型態。 (第1實施型態) 首先,說明第1實施型態。 圖1是顯示馬達驅動系統之概略構成之一例的圖。 本實施型態中,是以馬達M在轉子收納有永久磁鐵的IPMSM (Interior Permanent Magnet Synchronous Motor,永久磁鐵嵌入型同步電動機)之情況來舉例說明。
圖1中,用以驅動如此之馬達M的馬達驅動系統具有交流電源10、整流電路20、電解電容器30、電壓感測器40、逆變器50、電流感測器61~63、以及控制逆變器50之動作的控制裝置70。
交流電源10供應商用頻率(50Hz/60Hz)之交流電力。 整流電路20例如是以4個二極體構成的全波整流電路,將交流電力轉換為直流電力。 電解電容器30去除由整流電路20輸出的直流電力之脈動電流。
電壓感測器40測量輸入至逆變器50之直流的輸入電壓Vi。 逆變器50例如是具備構成三相全橋式的6個開關元件的電路。逆變器50會依據由控制裝置70輸出,且輸入至開關元件的PWM訊號S,來使開關元件ON/OFF,藉此將輸入的直流電力,轉換成具有用以驅動馬達M所需要的頻率的交流電力,並且輸出(供應)至馬達M。本實施型態中,開關元件是以使用寬能隙半導體(SiC、GaN等)所構成的開關元件之情況來舉例說明。
電流感測器61~63例如是CT(比流器,Current Transformer),檢測流通於馬達M之各相u、v、w之線圈的交流馬達電流Iu、Iv、Iw。
控制裝置70具有施加電壓演算部71、載波產生部72、比較部73、PWM訊號輸出部74、以及載波頻率設定裝置7A。控制裝置70例如可藉由使用微電腦和演算電路來實現。又,控制裝置70例如可藉由向量控制來控制馬達M之動作。有關載波頻率相關的構成以外,可由周知的技術來實現,因而於此省略其詳細的說明。 施加電壓演算部71是輸入從外部輸入的速度指令值(馬達M之轉速的指令值)、同樣從外部輸入的轉矩指令值(馬達M之轉矩的指令值)、以電壓感測器40測量到的輸入電壓Vi、以及以電流感測器61~63測量到的馬達電流Iu、Iv、Iw,且依據此等來演算施加於馬達M之各相上的電壓,並生成表示該電壓的電壓指令訊號。載波頻率設定裝置7A具有載波頻率設定部75。
載波產生部72產生PWM控制中的載波(用於PWM訊號S之生成的載波)。本實施型態中,是以載波為三角波的情況來舉例說明。 比較部73會比較以施加電壓演算部71生成的電壓指令訊號與以載波產生部72產生的三角波(載波)。 PWM訊號輸出部74會將與在比較部73的比較結果相應的脈衝訊號,作為PWM訊號S來輸出至逆變器50。如同前述,逆變器50會依據該PWM訊號S來使開關元件ON/OFF,以將輸入的直流電力轉換成交流電力,且輸出至馬達M。
載波頻率設定部75設定載波之頻率,即載波頻率(逆變器50之載波頻率)。載波產生部72會產生藉由載波頻率設定部75設定的載波頻率之三角波。本實施型態中,載波頻率設定部75設定與馬達M之轉速的指令值及與馬達M之轉矩的指令值相應的載波頻率。
如同發明欲解決之課題說明欄中所說明,專利文獻2、3中,是做成在馬達之轉矩小時將載波頻率升高(馬達之轉矩大時將載波頻率降低),但這樣做會有不佳的情況。為了實際證明,本發明人是以馬達驅動系統之綜合效率而言,由馬達之損失及逆變器之損失的合計損失來算出的綜合效率之觀點來看,調查用以做成高效率之馬達驅動系統的載波頻率。針對其結果,於以下說明。
於此,馬達驅動系統之綜合效率,是將馬達M之輸出(=轉矩×轉速),除以朝逆變器50的輸入電力而得的值(綜合效率=輸出÷輸入電力)。 從朝逆變器50的輸入電力減去馬達M之輸出後的值為在馬達驅動系統失去的能量(損失)。於此,是以該損失等同於馬達M之損失與逆變器50之損失的和而言,來探討損失的解析。馬達M之損失是除了鐵損及銅損之外,還包含機械損失、風阻損失以及軸承損失等。然而,只要馬達M之形狀相同,且轉速相同,即使變更逆變器50之動作,亦可將該等損失(機械損失、風阻損失以及軸承損失等)視為一定。因此,在以下顯示的鐵損,是設成包含該等損失。即使如此,只要相同轉速,則可認為在馬達M之損失中,雖會含有一定量的該等損失(機械損失、風阻損失以及軸承損失等),但對於驗證馬達驅動系統之損失相對於馬達M之轉矩變化的增減趨勢,並不造成阻礙。因此,於此馬達M之損失,是設成由鐵損(但是包含有機械損失、風阻損失以及軸承損失等的損失)及銅損來構成。又,於此是將載波頻率之範圍設成5kHz~50kHz。
如已前述之本實施型態中,評價對象之馬達M是IPMSM。馬達M之基本規格如以下。又,作為構成逆變器50之開關元件的半導體元件,是使用屬於寬能隙半導體的一種的SiC半導體元件。 • 相位數:3 • 極數:12 • 定子外徑:135mm • 定子內徑:87mm • 定子槽數:18 (集中繞組) • 定子(芯)材質:無方向性電磁鋼板(35A300) • 轉子外徑:85mm • 轉子(芯)積厚:30mm • 轉子內的永久磁鐵之殘留磁通密度1.1T
圖2-1~圖2-2是顯示以表格形式顯示馬達M之轉速比例為1.00時的損失測量結果的圖。轉速比例是測量時的轉速相對於馬達M之最大轉速的比例。轉速比例為1.00是表示以相同於最大轉速的轉速來做測量。圖2-1(a)、圖2-1(b)、圖2-1(c)、圖2-2(a)、圖2-2(b)分別是轉矩比例0.05、0.125、0.25、0.375、0.5時的測量結果。轉矩比例是測量時的轉矩相對於馬達M之最大轉矩的比。轉矩比例為0.5是表示以最大轉矩之50%的轉矩來做測量。於此,馬達M之最大轉速及最大轉矩可因應馬達M之用途而適當地設計、決定。
在圖2-1及圖2-2,fc 表示載波頻率。於此,是將馬達M之輸出電力相對於逆變器50之輸入電力的比,稱為綜合效率。在圖2-1及圖2-2,綜合效率最高的是在轉矩比例為0.5、載波頻率fc 為40kHz之時(圖2-2(b)之fc =40kHz)。在圖2-1及圖2-2,綜合效率比例是在各載波頻率fc 之綜合效率相對於在相同的轉速比例之中最大的綜合效率的比。
又,將馬達M之銅損及鐵損與逆變器50之損失的和,稱為綜合損失。在圖2-1及圖2-2,綜合損失比例是在各載波頻率fc 的綜合損失相對於在相同的轉速比例及相同的轉矩比例之中,載波頻率fc 最低(於此是5kHz)時的綜合損失的比。 又,在圖2-1及圖2-2,銅損比例是在各載波頻率fc 的馬達M的銅損相對於在相同的轉速比例及相同的轉矩比例之中,載波頻率fc 最低(於此是5kHz)時的綜合損失的比。鐵損比例是在各載波頻率fc 的馬達M的鐵損相對於在相同的轉速比例及相同的轉矩比例之中,載波頻率fc 最低(於此是5kHz)時的綜合損失的比。逆變器損失比例是在各載波頻率fc 的逆變器50的損失相對於在相同的轉速比例及相同的轉矩比例之中,載波頻率fc 最低(於此是5kHz)時的綜合損失的比。 圖3是以圖表形式,顯示圖2-1及圖2-2所示的綜合效率比例與載波頻率的關係的圖。
如圖2-1、圖2-2、以及圖3所示,在轉矩比例相對較小的條件(轉矩比例為0.05、0.125)下,載波頻率為40kHz時綜合效率比例呈最大。相對於此,在轉矩比例為0.25之條件下,在載波頻率為20kHz時綜合效率比例呈最大。在轉矩比例為更大的條件(轉矩比例為0.375、0.5)下,分別是在載波頻率為30kHz、40kHz時綜合效率比例呈最大,轉矩比例越大,綜合效率比例呈最大的載波頻率越高。在以下的說明中,因應需要而將相同的轉矩比例之中綜合效率呈最大(綜合損失最小)的載波頻率,稱為最佳載波頻率。另外,在圖2-2(b),載波頻率為30kHz、40kHz時的綜合效率比例皆為1.000,但若計算至小數點第4位以後,則載波頻率為40kHz時的綜合效率比例(1.0000)會變得比載波頻率為30kHz時的綜合效率比例(0.9997)更大。
如同以上內容,在馬達M之轉速比例為1.00時,最佳載波頻率與馬達M之轉矩的關係上,可知於最佳載波頻率存在有最低值。進一步,可知與最低值的載波頻率對應的轉矩之範圍僅有一個(僅轉矩比例0.250)。並且,可知當馬達M之轉矩在與最低的最佳載波頻率對應的馬達M之轉矩以上之範圍中,馬達M之轉矩變大時,最佳載波頻率呈相同或是升高。另一方面,可知當馬達M之轉矩在與最低的最佳載波頻率對應的馬達M之轉矩以下之範圍中,馬達M之轉矩變大時,最佳載波頻率呈相同或是降低。如同前述,專利文獻2、3所記載的技術中,是馬達M之轉矩變大時,使載波頻率降低。對此,本發明人在對馬達之各轉速導出的最佳載波頻率與馬達M之轉矩的關係中,首次找出了以下見解:於最佳載波頻率中存在有最低值,且在與最低的最佳載波頻率對應的馬達M之轉矩以上的範圍中,有需要在馬達M之轉矩變大時,使最佳載波頻率呈相同或是升高,進而,在與最低的最佳載波頻率對應的馬達M之轉矩以下的範圍中,當馬達M之轉矩變大時,使載波頻率呈相同或是降低,藉此可使馬達驅動系統之整體效率提升。
於是,本發明人針對在馬達M之轉矩大的條件下升高載波頻率更可使馬達驅動系統之效率上升的主要原因,進行了探討。 圖4-1及圖4-2是以圖表形式,來顯示圖2-1及圖2-2所顯示的綜合損失比例與載波頻率的關係的圖。圖4-1(a)、圖4-1(b)、圖4-1(c)、圖4-2(a)與圖4-2(b)分別顯示轉矩比例為0.05、0.125、0.25、0.375與0.5 (圖2-1(a)、圖2-1(b)、圖2-1(c)、圖2-2(a)與圖2-2(b))時的結果。
如圖4-1(a)及圖4-1(b)所示,在轉矩比例為0.05、0.125之條件(以下稱為低負載條件)下,馬達M的鐵損相對於綜合損失之比例較大。因此,藉由使載波頻率升高,可減低馬達M之鐵損。另一方面,若使載波頻率升高,則逆變器50之損失會變大。又,鐵損比例與銅損比例的和是當載波頻率升高時,會一邊漸漸變小並一邊趨近一定值。以如以上的馬達M之損失降低與逆變器50之損失增加間的折衷考量,而定出綜合損失呈最小的載波頻率。因此,在轉矩比例0.05、0.125中,可認為最佳載波頻率是40kHz。
接著,如圖4-1(c)所示,在轉矩比例為0.25之條件(以下稱為中負載條件)下,比起圖4-1(a)及圖4-2(b)所示的低負載條件時,馬達M的銅損相對於綜合損失的比例較大。又,與低負載條件同樣,鐵損比例與銅損比例的和,是當載波頻率升高,一邊漸漸變小一邊趨近一定值,但鐵損比例與銅損比例的和呈概略一定值的載波頻率為20kHz,比起低負載條件時更低。又,與低負載條件時同樣,當使載波頻率升高時,逆變器50之損失變大。但是,載波頻率變成20kHz以上時,比起低負載條件(其中的載波頻率為40kHz以上時),相對於載波頻率之增加的逆變器50之損失的增加量變大(逆變器50之損失的增加方式變急)。以如以上的馬達M之損失降低與逆變器50之損失間的折衷考量,而定出綜合損失呈最小的載波頻率,且該載波頻率比低負載條件時更低。因此,在轉矩比例0.25處,可認為最佳載波頻率是20kHz。
接著,如圖4-2(a)及圖4-2(b)所示,在轉矩比例為0.375、0.5之條件(以下稱為高負載條件)下,比起圖4-1(c)所示的中負載條件時,馬達M之銅損相對於綜合損失的比例較大。又,高負載條件也是和低負載條件及中負載條件時同樣,當載波頻率升高時,鐵損比例與銅損比例的和一邊漸漸變小一邊趨近一定值,相對於此,逆變器損失比例則增加。又,馬達M之轉矩越大,於各載波頻率的逆變器損失比例變大。
馬達M之轉矩越大時(即,變成高負載時)為了產生該轉矩,所需要的馬達電流會變大。因此,為了藉由PWM控制來高精度地進行波形控制,需要更高的載波頻率。亦即,在高負載條件下,由於馬達電流變大,馬達M之銅損比起中負載條件變得更大,又,在載波頻率低的條件下,磁通密度之波形會產生許多失真、諧波成分,因此馬達M之鐵損比起中負載條件會增大。
基於在如以上的馬達M之損失降低與逆變器50之損失增加間的折衷,定出綜合損失呈最小的載波頻率,且該載波頻率比起中負載條件時更高。又,該載波頻率會隨著馬達M之轉矩變大而升高。因此,在轉矩比例0.375、0.5中,可認為最佳載波頻率分別為30kHz、40kHz。
如上,在馬達M之轉速比例為1.00的情況下,當馬達M之轉矩在與最低的最佳載波頻率對應的馬達M之轉矩以下的範圍,馬達M之轉矩變大時,最佳載波頻率呈相同或者降低,而當馬達M之轉矩在與最低的最佳載波頻率對應的馬達M之轉矩以上的範圍中,馬達M之轉矩變大時,最佳載波頻率呈相同或者升高,藉此可使馬達驅動系統整體之效率最大化(使損失最小化)。
接著,本發明人確認了不論馬達M之轉速,在最佳載波與馬達M之轉矩的關係上,最佳載波中存在有最低值,且在與最低的最佳載波頻率對應的馬達M之轉矩以上的範圍,馬達M之轉矩變大時,最佳載波頻率有必要呈相同或者升高。此事項顯示於圖5-1~圖13-3。圖5-1~圖5-3、圖8-1~圖8-3、以及圖11-1~圖11-3之表格項目內容,與圖2-1及圖2-2所示的表格項目內容相同。
「圖5-1~圖5-3」、「圖8-1~圖8-3」、「圖11-1~圖11-3」分別是以表格形式顯示馬達M之轉速比例為0.75、0.50、0.25時的損失測量結果的圖。「圖5-1(a)、圖8-1(a)、圖11-1(a)」、「圖5-1(b)、圖8-1(b)、圖11-1(b)」、「圖5-1(c)、圖8-1(c)、圖11-1(c)」、「圖5-2(a)、圖8-2(a)、圖11-2(a)」、「圖5-2(b)、圖8-2(b)、圖11-2(b)」、「圖5-2(c)、圖8-2(c)、圖11-2(c)」、「圖5-3(a)、圖8-3(a)、圖11-3(a)」、「圖5-3(b)、圖8-3(b)、圖11-3(b)」、「圖5-3(c)、圖8-3(c)、圖11-3(c)」分別顯示轉矩比例為0.05、0.125、0.25、0.375、0.5、0.625、0.75、0.875、1.0時的測量結果。另外,馬達M之轉速比例為0.75以下時,可將馬達M之轉矩供給到最大轉矩。
又,圖6、圖9、圖12分別是將圖5-1~圖5-3、圖8-1~圖8-3、圖11-1~圖11-3所示的綜合效率比例與載波頻率的關係,以圖表形式來顯示的圖。圖6(b)是將圖6(a)之綜合效率比例為0.980~1.005之區域擴大顯示的圖。圖9(b)是將圖9(a)之綜合效率比例為0.95~1.01之區域擴大顯示的圖。圖12(b)是將圖12(a)之綜合效率比例為0.90~1.00之區域擴大顯示的圖。
圖7-1~圖7-3、圖10-1~圖10-3、圖13-1~圖13-3分別是將圖5-1~圖5-3、圖8-1~圖8-3、圖11-1~圖11-3所示的綜合損失比例與載波頻率的關係,以圖表形式來顯示的圖。「圖7-1(a)、圖10-1(a)、圖13-1(a)」、「圖7-1(b)、圖10-1(b)、圖13-1(b)」、「圖7-1(c)、圖10-1(c)、圖13-1(c)」、「圖7-2(a)、圖10-2(a)、圖13-2(a)」、「圖7-2(b)、圖10-2(b)、圖13-2(b)」、「圖7-2(c)、圖10-2(c)、圖13-2(c)」、「圖7-3(a)、圖10-3(a)、圖13-3(a)」、「圖7-3(b)、圖10-3(b)、圖13-3(b)」、「圖7-3(c)、圖10-3(c)、圖13-3(c)」分別顯示轉矩比例為0.05、0.125、0.25、0.375、0.5、0.625、0.75、0.875、1.0時的結果。
如圖5-1~圖13-3所示,馬達M之轉速為0.25、0.50、以及0.75時也與1.00時相同,在最佳載波頻率與馬達M之轉矩的關係上,可知最佳載波頻率中存在有最低值,且當馬達M之轉矩在與最低的最佳載波頻率對應的馬達M之轉矩以上的範圍中,馬達M之轉矩變大時,最佳載波頻率會呈相同或者升高。另外,於圖5-2(b),載波頻率為10kHz、15kHz時的綜合效率比例皆為0.999,但計算至小數點第4位以後,載波頻率為10kHz時的綜合效率比例則會變得比載波頻率為15kHz時的綜合效率比例大。又,於圖5-3(b)、(c),載波頻率為10kHz、15kHz時的綜合效率比例分別為0.995、0.991,但計算至小數點第4位以後,載波頻率為15kHz時的綜合效率比例則變得比載波頻率為10kHz時的綜合效率比例大。又,於圖8-1(c)、圖11-2(c),載波頻率為5kHz、10kHz時的綜合效率比例分別為0.977、0.983,但計算至小數點第4位以後,載波頻率為10kHz時的綜合效率比例則變得比載波頻率為5kHz時的綜合效率比例大。
在馬達M之轉速比例為0.25、0.50及0.75時,比起馬達M之轉速比例為1.00時,激磁基本頻率較低,因此藉由使載波頻率升高而來的銅損佔比與鐵損佔比的和之減低效果會變小(一部分因測量時的變異性等影響,隨著載波頻率升高則銅損佔比與鐵損佔比的和會變大)。因此,在馬達M之轉速比例為0.25、0.50及0.75時,沒有如同馬達M之轉速比例為1.00時,馬達M之轉矩在與最低的最佳載波頻率對應的馬達M之轉矩更小的範圍,而是藉由馬達M之轉矩變大時,最佳載波頻率呈相同或者升高,來使馬達驅動系統整體之效率最大化(使損失最小化)。
[表1]
Figure 02_image001
以上的結果顯示於表1。表1顯示從圖2-1~圖13-2所示結果得到的轉矩比例及馬達M之各轉速比例的最佳載波頻率。另,在此,是舉例顯示將轉矩比例變更的間隔設為0.125 (或是0.075)的情況。若將轉矩比例變更的間隔設為小於圖2-1~圖2-2、圖5-1~圖5-3、圖8-1~圖8-3、以及圖11-1~圖11-3所示的間隔時,由於測量時的變異性等,即使是在表1的最佳載波頻率呈相同的轉矩比例範圍中,最佳載波頻率也可能增減(些微地)。例如,於馬達之轉速比例為0.25,在轉矩比例為0.05~0.125之範圍中,最佳載波頻率為5kHz,但在轉矩比例為0.05~0.125之間,最佳載波頻率有可能相對於5kHz增減。因此,於前述說明,為了使馬達驅動系統整體之效率最大化,在將即使馬達M之轉矩變化而最佳載波頻率仍為相同值的關係導出的轉矩比例範圍中,不必將載波頻率設定成與最佳載波頻率完全相同,概略相等即可。 載波頻率之5%程度的差異,給予最小的最佳載波頻率值的影響小。因此,於本說明書的「概略相等」是意指「載波頻率之差異在5%以下」。
如從表1所知,無論在馬達M之轉速比例為何的情況下,馬達M之轉矩與最佳載波頻率的關係,具有馬達M之轉矩變大時最佳載波頻率升高的部分。例如,在馬達M之轉速比例為0.75的情況,轉矩比例從0.125變化成0.250而馬達M之轉矩變大時,最佳載波頻率會從5kHz變化成10kHz因而升高。又,轉矩比例從0.625變化成0.750而馬達M之轉矩變大時,最佳載波頻率會從10kHz變化成15kHz因而升高。又,在馬達M之轉速比例為1.00的情況,轉矩比例從0.250變化成0.375、從0.375變化成0.500而馬達M之轉矩變大時,最佳載波頻率會分別從20kHz變化成30kHz、從30kHz變化成40kHz因而升高。又,馬達M之轉速比例為1.00的情況,具有馬達M之轉矩變大時,最佳載波頻率降低的部分。具體上在轉矩比例從0.125變化成0.250而馬達M之轉矩變大時,最佳載波頻率會從40kHz變化成20kHz因而降低。 進而,可知無論在馬達M之轉速比例為何的情況,與最低值的最佳載波頻率對應的轉矩比例之範圍,僅存在一種範圍。例如,在馬達M之轉速比例為0.75的情況,於轉矩比例從0.05至0.125之範圍中,最佳載波頻率呈最低值5kHz,而在其他轉矩比例的範圍中,最佳載波頻率則高於5kHz。又,在馬達M之轉速比例為1.00的情況,在轉矩比例為0.250時,最佳載波頻率呈最低值20kHz,而在其他轉矩比例之範圍中,最佳載波頻率則高於20kHz。故,在馬達M之轉矩比例於比與最低的最佳載波頻率對應的轉矩比例之範圍更小的範圍中,使馬達M之轉矩比例變大時,最佳載波頻率相同或降低;或者是在馬達M之轉矩比例於比與最低的最佳載波頻率對應的轉矩比例之範圍更大的範圍中,使馬達M之轉矩比例變大時,最佳載波頻率相同或升高,藉此可使馬達驅動系統整體之效率最大化(使損失最小化)。
本發明人在其他的IPMSM和逆變器50上,也是使馬達M之轉矩變大時,最佳載波頻率呈概略相同或者升高,藉此確認了可以使馬達驅動系統整體之效率最大化(使損失最小化)的轉矩範圍。 又,逆變器損失比例、鐵損比例及銅損比例的和之值本身雖是依逆變器與馬達M之種類而異,但逆變器損失比例、鐵損比例及銅損比例的和相對於載波頻率變化的變化行為,可認為是不會依馬達M之種類而有太大的差異。因此,藉由使馬達M之轉矩變大時,載波頻率呈概略相同或者升高,可使馬達驅動系統整體之效率最大化(使損失最小化)之事項,不限於IPMSM,在其他種類的馬達M也可認為是相同的。
如前述,載波頻率設定部75設定與馬達M之轉速的指令值及馬達M之轉矩的指令值相應的載波頻率。因此,預先記憶馬達M之轉速及轉矩與最佳載波頻率的關係。一邊參照圖14之流程圖,一邊說明將馬達M之轉矩與最佳載波頻率的關係,對馬達M之各轉速導出的方法之一例。圖14之流程圖是對馬達M之實際機器(例如電車、混合動力車、家電製品等)使用之前的準備步驟之一例。
首先,於步驟S1401,控制裝置70在對控制裝置70預先設定的馬達M之轉速之複數個候選之中,指定1個未選擇的候選。 接著,於步驟S1402,控制裝置70在對控制裝置70預先設定的馬達M之轉矩之複數個候選之中,指定1個未選擇的候選。
接著,於步驟S1403,控制裝置70在對控制裝置70預先設定的載波頻率之複數個候選之中,指定1個未選擇的候選。 接著,於步驟S1404,控制裝置70依據在步驟S1401~S1403指定的內容來產生PWM訊號S,且輸出至逆變器50。逆變器50依據該PWM訊號S來使馬達M動作。此時,施加電壓演算部71將在步驟S1401指定的轉速作為馬達M之轉速的指令值,且將在步驟S1402指定的轉矩作為馬達M之轉矩的指令值,並且演算出施加於馬達M之各相的電壓,且生成表示該電壓的電壓指令訊號。又,載波產生部72產生在步驟S1403指定的載波頻率之三角波。
接著,於步驟S1405,測量在步驟S1404使馬達M動作時的綜合損失(使用逆變器50來驅動馬達M時的綜合損失)。如同前述,綜合損失是馬達M之銅損及鐵損,與逆變器50之損失的和。綜合損失是從朝逆變器50的輸入電力減去馬達M之輸出的值而導出。馬達M之銅損是從流過馬達M之各相u、v、w之線圈的電流與線圈電阻來的焦耳損失而導出。馬達M之鐵損是從朝馬達M的輸入電力減去馬達M之輸出與銅損的值而導出。逆變器50之損失是從朝逆變器50的輸入電力減去逆變器之輸出電力(朝馬達M的輸入電力)的值而導出。 接著,於步驟S1406,控制裝置70判定是否已將對控制裝置70預先設定的載波頻率之複數個候選全部指定。該判定之結果,在沒有將載波頻率之複數個候選全部指定時,處理程序會回到步驟S1403。而且,到載波頻率之複數個候選之全部被指定為止,重複執行步驟S1403~S1406之處理程序。也就是說,在步驟S1405中的綜合損失之測量(導出),是使逆變器50中的載波頻率不同地來進行。
在步驟S1406中判定已將載波頻率之複數個候選全部指定時,已於重複執行的步驟S1405中求得下述損失,即:使用載波頻率之全部的候選各自的三角波以生成將在步驟S1401指定的轉速、及在步驟S1402指定的轉矩作為指令值的PWM訊號S,來驅動馬達M時的綜合損失。然後,處理程序進到步驟S1407。 於步驟S1407中,控制裝置70將生成在步驟S1401指定的馬達M之轉速、及在步驟S1402指定的馬達M之轉矩作為指令值的PWM訊號S,來驅動馬達M時的綜合損失之中呈最小的綜合損失的載波頻率,特定為最佳載波頻率(也就是說,是依據於步驟S1405中導出的綜合損失,將綜合損失呈最小時的載波頻率導出作為最佳載波頻率)。
此時,可如同以下內容來特定最佳載波頻率。在處理程序進到步驟S1407的階段中,載波頻率之候選的數量有多少,就求得多少在步驟S1403指定的載波頻率之候選與指定了該載波頻率時在步驟S1405所測量出的綜合損失的組別。控制裝置70依據該等載波頻率之候選與綜合損失的組別,將表示載波頻率與綜合損失的關係之數學式,藉由最小平方法等周知的手法來導出。控制裝置70於該數學式,將綜合損失呈最小的載波頻率特定為最佳載波頻率。
接著,於步驟S1408,控制裝置70判定是否已將對控制裝置70預先設定的馬達M之轉矩的複數個候選全部指定。該判定之結果,在沒有將馬達M之轉矩的複數個候選全部指定時,處理程序會回到步驟S1402。而且,到馬達M之轉矩的複數個候選全部被指定為止,重複執行步驟S1402~S1408之處理程序。也就是說,在步驟S1405的綜合損失之測量(導出),是使馬達M所產生的轉矩不同地來進行。又,於步驟S1407中的最佳載波頻率之導出,是針對複數個轉矩的各個來進行。 在步驟S1408中已判定將馬達M之轉矩的複數個候選全部指定時,已於重複執行的步驟S1407中求得下述損失,即:使用載波頻率之全部的候選各自的三角波以生成將在步驟S1401指定的馬達M之轉速、及馬達M之轉矩的全部候選的各個作為指令值的PWM訊號S,來驅動馬達M時的最佳載波頻率。然後,處理程序進到步驟S1409。
於步驟S1409中,控制裝置70導出針對步驟S1401中所指定的馬達M的轉速之馬達M的轉矩與最佳載波頻率間的關係。對將馬達M之轉矩與最佳載波頻率間的關係導出的方法之具體例作說明。首先,控制裝置70針對在重複執行的步驟S1402中指定的馬達M之轉矩的各個,來進行將步驟S1402所指定的馬達M之轉矩中的最佳載波頻率擷取。藉此,針對在步驟S1401指定的馬達M之轉速,是依馬達M之轉矩的候選的數量有多少,就求得多少馬達M之轉矩與該馬達M上的最佳載波頻率的組別。控制裝置70是將如以上的方式而得的馬達M之轉矩與該馬達M之轉矩中的最佳載波頻率的組別,作為馬達M之轉矩與最佳載波頻率的關係來導出。
接著,於步驟S1410,控制裝置70判定是否已將針對控制裝置70預先設定的馬達M之轉速的複數個候選全部指定。該判定之結果,在沒有將馬達M之轉速的複數個候選全部指定時,處理程序會回到步驟S1401。而且,到馬達M之轉速的複數個候選全部被指定為止,重複執行步驟S1401~S1410之處理程序。也就是說,在步驟S1405的綜合損失之測量(導出),是使馬達M之轉速不同地來進行。又,於步驟S1407中的最佳載波頻率之導出,是針對複數個轉速的各個來進行。 在步驟S1410中判定已將馬達M之轉速的複數個候選全部指定時,會分別針對馬達M之轉速的全部候選,於重複執行的步驟S1409中,求得馬達M之轉矩與最佳載波頻率間的關係。然後,處理程序會進到步驟S1411。
於步驟S1411中,控制裝置70依據於步驟S1407導出的最佳載波頻率,將馬達M之轉矩與最佳載波頻率的關係,對馬達M之各轉速導出並記憶。此關係會成為如同表1所示的關係。
此時,依據已一邊參照表1一邊說明的見解,藉由控制裝置70來對馬達M之各轉速導出的馬達M之轉矩與最佳載波頻率的關係(於步驟S1411導出的關係)具有:在馬達M之轉矩是於與步驟S1407中所特定的複數個最佳載波頻率(在馬達M之轉速共通的條件下,並在馬達M之轉矩相異的條件下所特定的複數個最佳載波頻率)中的最低載波頻率對應的馬達M之轉矩以上的範圍內,馬達M之轉矩變大,最佳載波頻率升高的部分(第1部分)。
表1所示之例中,馬達M之轉速比例0.25、0.50、0.75、1.00的情況,分別是最低的最佳載波頻率為5kHz、5kHz、5kHz、20kHz,與該最低的最佳載波頻率對應的轉矩比例分別是0.050及0.125、0.050及0.125、0.050及0.125、0.250。並且,馬達M之轉速比例為0.25、0.50、0.75、1.00的情況,在與最低的最佳載波頻率對應的轉矩比例以上的轉矩比例範圍,即0.125~0.250、0.125~0.250、0.125~0.250、0.250~0.500的範圍中,轉矩比例分別是從0.125至0.250、從0.125至0.250、從0.125至0.250、從0.250至0.375、以及從0.375至0.500變化而變大時,最佳載波頻率分別是從5至10、從5至10、從5至10、從20至30、以及30~40分別變化而升高。藉由控制裝置70來將對馬達M之各轉速導出的馬達M之轉矩與最佳載波頻率的關係,會變成如此的關係。
在表1之馬達M的轉速比例為「0.25」的例子中,於步驟S1411所導出的關係具有第1部分(馬達M之轉矩比例在0.050以上、1.000以下之部分),前述第1部分是馬達M之轉矩比例變大時,最佳載波頻率升高的部分,且是在馬達M之轉矩比例是於與步驟S1407中所導出的馬達M之複數個轉速比例(「0.25」、「0.50」、「0.75」、「1.00」)之中的一個轉速比例「0.25」對應的最佳載波頻率(「5」、「10」)之中,與最低載波頻率「5」對應的馬達M之轉矩比例(「0.050」、「 0.125」)以上的範圍內。 在「馬達M之轉矩比例變大,最佳載波頻率升高的第1部分」中,也可包含有「即使馬達M之轉矩變比例大,最佳載波頻率仍呈概略相同的部分」。 在表1的馬達M之轉速比例為「0.25」的例子中,第1部分(馬達M之轉矩比例在0.050以上,1.000以下的部分)包含有「即使馬達M之轉矩比例變大,最佳載波頻率仍呈概略相同的部分(馬達M之轉矩比例在0.050以上,0.125以下的部分、以及馬達M之轉矩比例在0.250以上,1.000以下的部分)」。
在表1之馬達M的轉速比例為「0.50」的例子中,於步驟S1411所導出的關係具有第1部分(馬達M之轉矩比例在0.050以上、1.000以下之部分),前述第1部分是馬達M之轉矩比例變大時,最佳載波頻率升高的部分,且是在馬達M之轉矩比例是於與步驟S1407中所導出的最佳載波頻率(「5」、「10」)之中,與最低載波頻率「5」對應的馬達M之轉矩比例(「0.050」、「 0.125」)以上的範圍內。 在表1的馬達M之轉速比例為「0.50」的例子中,第1部分(馬達M之轉矩比例在0.050以上,1.000以下的部分)包含有「即使馬達M之轉矩比例變大,最佳載波頻率仍呈概略相同的部分(馬達M之轉矩比例在0.050以上,0.125以下的部分、以及馬達M之轉矩比例在0.250以上,1.000以下的部分)」。
在表1之馬達M的轉速比例為「0.75」的例子中,於步驟S1411所導出的關係具有第1部分(馬達M之轉矩比例在0.050以上、0.750以下之部分),前述第1部分是馬達M之轉矩比例變大時,最佳載波頻率升高的部分,且是在馬達M之轉矩比例是於步驟S1407中所導出的最佳載波頻率(「5」、「10」、「15」)之中,與最低的載波頻率「5」對應的馬達M之轉矩比例(「0.050」、「0.125」)以上的範圍內。 在表1的馬達M之轉速比例為「0.75」的例子中,第1部分(馬達M之轉矩比例在0.050以上,0.750以下的部分)包含有「即使馬達M之轉矩比例變大,最佳載波頻率仍呈概略相同的部分(馬達M之轉矩比例在0.050以上,0.125以下的部分、以及馬達M之轉矩比例在0.250以上,0.625以下的部分)」。
在表1之馬達M的轉速比例為「1.00」的例子中,於步驟S1411所導出的關係具有第1部分(馬達M之轉矩比例在0.250以上、0.500以下之部分),前述第1部分是馬達M之轉矩比例變大時,最佳載波頻率升高的部分,且是在馬達M之轉矩比例是於步驟S1407中所導出的最佳載波頻率(「20」、「30」、「40」)之中,與最低載波頻率「20」對應的馬達M之轉矩比例(「0.250」)以上的範圍內。
又,當馬達M之轉矩在以前述的方式來特定的複數個最佳載波頻率之中,與最低的最佳載波頻率對應的馬達M之轉矩以下的範圍時,在該範圍中,藉由控制裝置70來對馬達M之各轉速導出的馬達M之轉矩與最佳載波頻率的關係,具有馬達M之轉矩變大,最佳載波頻率降低的部分(第2部分)。
在表1所示之例中,馬達M之轉速比例為1.00的情況,最低的最佳載波頻率為20kHz,與該最低的最佳載波頻率對應的轉矩比例為0.250,且有該轉矩比例(=0.250)以下的轉矩比例(=0.250、0.125、0.050)。並且,在與該最低的最佳載波頻率對應的轉矩比例即0.250以下的轉矩比例之範圍,亦即0.125~0.250的範圍中,轉矩比例從0.125變化至0.250而變大時,最佳載波頻率會從40變化至20而降低。藉由控制裝置70來導出的馬達M之轉矩與最佳載波頻率的關係,會呈如此的關係。
在表1之馬達M的轉速比例為「1.00」的例子中,於步驟S1411導出的關係具有第2部分(馬達M之轉矩比例在0.050以上、0.250以下之部分),前述第2部分是馬達M之轉矩變大時,最佳載波頻率降低的部分,且是在馬達M之轉矩比例是於步驟S1407中導出的最佳載波頻率(「20」、「30」、「40」)之中,與最低載波頻率「20」對應的馬達M之轉矩比例(「 0.250」)以下的範圍內。 在「馬達M之轉矩變大時,最佳載波頻率降低的第2部分」也可包含有「即使馬達M之轉矩變大,最佳載波頻率仍呈概略相同的部分」。 在表1的馬達M之轉速比例為「1.00」的例子中,第2部分(馬達M之轉矩比例在0.050以上,0.250以下的部分)包含有「即使馬達M之轉矩比例變大,最佳載波頻率仍呈概略相同的部分(馬達M之轉矩比例在0.050以上,0.125以下的部分)」。
例如,控制裝置70可從針對馬達M之轉速的全部候選的各個之馬達M之轉矩與最佳載波頻率的關係(馬達M之轉矩與該馬達M之最佳載波頻率的組別)中,對馬達M之各轉速導出將馬達M之轉速、馬達M之轉矩、及最佳載波頻率互相賦予關聯性並記憶的列表(table),來作為馬達M的轉矩與最佳載波頻率的關係。又,控制裝置70從針對馬達M之轉速的全部候選的各個之馬達M之轉矩與最佳載波頻率的關係(馬達M之轉矩與該馬達M之最佳載波頻率的組別)中,將顯示馬達M之轉矩與最佳載波頻率的關係之數學式,藉由最小平方法等周知的手法,對馬達M之各轉速導出。然後,結束圖14之流程圖的處理程序。
藉由圖14之流程圖,在依馬達M之各轉速記憶馬達M之轉矩與最佳載波頻率的關係後(在準備步驟結束後),於馬達M之各轉速使用馬達M之轉矩與最佳載波頻率的關係,實施進行實際機台的馬達M之驅動的實際使用步驟。在實際使用步驟中,例如會執行以下處理程序。 在驅動馬達M時,載波頻率設定部75從馬達M之轉矩與最佳載波頻率在馬達M之各轉速的關係,來擷取與馬達M之轉矩的指令值及馬達M之轉速的指令值對應的最佳載波頻率,作為逆變器50上的載波頻率(也就是說,依據上述關係,來設定與馬達M之轉矩的指令值及馬達M之轉速的指令值相應的載波頻率)。 例如,從表1所示的馬達M之轉速比例1.00中,馬達M之轉矩比例與最佳載波頻率的關係,來設定逆變器50上的載波頻率時,載波頻率設定部75會在馬達M之轉矩在與最低的最佳載波頻率(20kHz)對應的馬達M之轉矩以上的範圍(馬達M之轉矩為0.250~0.500的範圍)中,將馬達M之轉矩變大時會從20kHz升高至40kHz的最佳載波頻率,設定為逆變器50上的載波頻率。又,載波頻率設定部75會在馬達M之轉矩在與最低的最佳載波頻率(20kHz)對應的馬達M之轉矩以下的範圍(馬達M之轉矩為0.050~0.250的範圍)中,將馬達M之轉矩變大時會從40kHz降低至20kHz的最佳載波頻率,設定為逆變器50上的載波頻率。
在將該關係做成列表的情況下,會有於該列表中不存在與指令值(馬達M之轉速、轉矩)相同的值的情況。此情況下,載波頻率設定部75例如是依據該指令值,對該列表所儲存的值進行內插處理或外推處理,藉此可將對應於與指令值相同的值(馬達M之轉速、轉矩)的最佳載波頻率導出作為逆變器50上的載波頻率。 載波產生部72以如此的方式來產生藉由載波頻率設定部75設定的載波頻率之三角波。另,如同以上內容,馬達M之轉矩與最佳載波頻率在馬達M之各轉速的關係中之最佳載波頻率值,是作為適用於逆變器50上的載波頻率來使用。因此,馬達M之轉矩與最佳載波頻率的在馬達M之各轉速上的關係,和馬達M之轉矩與適用於逆變器50上的載波頻率的在馬達M之各轉速上的關係,是同義的。
如以上內容,本實施型態中,以逆變器50而言,在使用具有使用寬能隙半導體來構成的開關元件的逆變器50的情況下,是以馬達M之轉矩在載波頻率呈最低的轉矩以上的區域中,當馬達M之轉矩變大時,最佳載波頻率則呈概略相同或升高的方式,對馬達M之各轉速設定馬達M之轉矩與最佳載波頻率的關係。因此,可以考量馬達M之鐵損及銅損與逆變器50內的切換損失,並使馬達驅動系統整體的效率提高的方式來設定載波頻率。故,可以使馬達M之損失與逆變器50之損失的合計損失變小的方式來驅動馬達M。
在本實施型態,是舉例說明藉由實際測試來對馬達M之各轉速導出馬達M之轉矩與最佳載波頻率的關係的情況。然而,馬達之轉矩與最佳載波頻率的關係未必是需要以如此的方式來對馬達M之各轉速導出。例如,也可使用數值分析,來導出藉由逆變器50來對馬達M激磁時的馬達驅動系統之整體損失。
又,在本實施型態,已舉例說明以控制裝置70來對馬達M之各轉速導出馬達M之轉矩與最佳載波頻率的關係的情況。然而,馬達M之轉矩與最佳載波頻率的關係,也可利用與控制裝置70不同的資訊處理裝置來對馬達M之各轉速導出。例如,使用數值分析來導出藉由逆變器50來將馬達M激磁時的馬達驅動系統之整體損失時,這樣做較佳。又,在這樣做的情況下,控制裝置70會以該資訊處理裝置,來取得對馬達M之各轉速導出的馬達M之轉矩與最佳載波頻率的關係。此時,馬達M之轉矩與最佳載波頻率的關係,亦可依馬達M之各轉速記憶於控制裝置70之內部,亦可依馬達M之各轉速記憶於控制裝置70之外部。
又,在本實施型態中,已舉出使用交流電源10與整流電路20,來產生朝向逆變器50的輸入電力之情況為例加以說明。然而,未必需要以如此的方式進行。例如可使用直流電源,來作為交流電源10與整流電路20之代替。進而言之,前述直流電源也可做成具有升降壓功能。或者,直流電源也可做成是具有蓄電功能,且可將馬達M的再生電力蓄電的構成。
(第2實施型態) 接著,說明第2實施型態。在第1實施型態中,舉例說明構成逆變器50的開關元件,是使用寬能隙半導體來構成的開關元件之情況。對此,在本實施型態中,會針對構成逆變器50的開關元件,是使用寬能隙半導體以外的半導體(具有一般能隙的半導體)來構成的開關元件之情況來說明。如此,本實施型態與第1實施型態,主要差異在於構成逆變器50的開關元件為不同之構成。因此,於本實施型態之說明中,針對與第1實施型態相同的部分,會附上與圖1~圖14相同的編號並省略詳細說明。
本發明人除了使用具有一般能隙的半導體之一的Si半導體元件作為構成逆變器50的開關元件的半導體元件、以及將載波頻率設為5kHz~40kHz以外,是以與第1實施型態所說明之相同的條件下,調查了用以做成高效率馬達驅動系統的載波頻率。針對其結果於以下說明。 圖15-1~圖15-2是將馬達M之轉速比例為1.00時的損失之測量結果,以表格形式來顯示的圖。圖15-1(a)、(b)、圖15-2(a)、(b)分別是與圖2-1(a)、(b)、圖2-2(a)、(b)對應的圖。圖16是將圖15-1及圖15-2所示的綜合效率比例與載波頻率的關係,以圖表形式顯示的圖。圖16是與圖3對應的圖。圖17-1及圖17-2是將圖15-1及圖15-2所示的綜合損失比例與載波頻率的關係,以圖表形式顯示的圖。圖17-1(a)、(b)、(c)、圖17-2(a)、(b)分別是與圖4-1(a)、(b)、(c)、圖4-2(a)、(b)對應的圖。
圖18-1~圖18-3、圖21-1~圖21-3、圖24-1~圖24-3分別是將馬達M之轉速比例為0.75、0.50、0.25時的損失之測量結果,以表格形式來顯示的圖。圖18-1(a)、(b)、(c)~圖18-3(a)、(b)、(c)、圖21-1(a)、(b)、(c)~圖21-3(a)、(b)、(c)、圖24-1(a)、(b)、(c)~圖24-3(a)、(b)、(c),分別是與圖5-1(a)、(b)、(c)~圖5-3(a)、(b)、(c)、圖8-1(a)、(b)、(c)~圖8-3(a)、(b)、(c)、圖11-1(a)、(b)、(c)~圖11-3(a)、(b)、(c)對應的圖。
圖19、圖22、圖25分別是將圖18-1~圖18-3、圖21-1~圖21-3、圖24-1~圖24-3所示的綜合效率比例與載波頻率的關係,以圖表形式來顯示的圖。 圖20-1~圖20-3、圖23-1~圖23-3、圖26-1~圖26-3分別是將圖18-1~圖18-3、圖21-1~圖21-3、圖24-1~圖24-3所示的綜合效率比例與載波頻率的關係,以圖表形式來顯示的圖。圖20-1(a)、(b)、(c)~圖20-3(a)、(b)、(c)、圖23-1(a)、(b)、(c)~圖23-3(a)、(b)、(c)、圖26-1(a)、(b)、(c)~圖26-3(a)、(b)、(c),分別是與圖7-1(a)、(b)、(c)~圖7-3(a)、(b)、(c)、圖10-1(a)、(b)、(c)~圖10-3(a)、(b)、(c)、圖13-1(a)、(b)、(c)~圖13-3(a)、(b)、(c)對應的圖。
如圖17-1~圖17-2、圖20-1~圖20-3、圖23-1~圖23-3、及圖26-1~圖26-3所示,比起使用寬能隙半導體來作為逆變器50之開關元件的情況(圖4-1~圖4-2、圖7-1~圖7-3、圖10-1~圖10-3、及圖13-1~圖13-3),逆變器損失比例更大。這是因為比起使用寬能隙半導體以外的一般半導體來作為開關元件的情況,使用寬能隙半導體作為開關元件這方,開關元件之開關損失較小。該開關損失有載波頻率越高則越大的傾向。
又,如圖16、圖19、圖22、及圖25所示,即使變更馬達M之轉速比例及轉矩比例,最佳載波頻率仍呈5kHz。即使使用寬能隙半導體以外的半導體來作為開關元件,也是如同第1實施型態所說明,在載波頻率低的區域中,載波頻率升高時,鐵損比例與銅損比例的和會漸漸變大,之後會趨近一定值。另一方面,如同前述,將寬能隙半導體以外的半導體作為開關元件使用時,則比起將寬能隙半導體作為開關元件使用的情況,逆變器50之損失(及逆變器損失比例)變大,進而,相對於載波頻率之增加的逆變器50之損失(及逆變器損失比例)的增加量也會變大(逆變器50之損失(及逆變器)的增加方式變急)。 從以上事項來看,使用寬能隙半導體以外的半導體來作為開關元件時,無關馬達M之轉速及轉矩,最佳載波頻率仍是呈概略相等。
另,如同第1實施型態所說明,將變更轉矩比例的間隔設成小於圖15-1~圖15-2、圖18-1~圖18-3、圖21-1~圖21-3、圖24-1~圖24-3所示的間隔時,由於測量的變異性等,最佳載波頻率可能有增減。因此,最佳載波頻率無須完全相同,概略相同即可。 如以上,以構成逆變器50的開關元件的半導體元件而言,在本發明人使用寬能隙半導體以外的一般半導體來作為開關元件的情況,初次看出無關馬達M之轉速及轉矩,最佳載波頻率會呈概略相同的見解。又,如第1實施型態中所說明,確認了解由在其他的馬達M及逆變器50也設成同樣,可使馬達驅動系統整體之效率最大化(使損失最小化)。
又,以上的最佳載波頻率,例如是可藉由在圖14之流程圖進行步驟S1401~S1408、S1410之處理程序來導出。因應馬達M之轉矩而最佳載波頻率不同(些微)的情況下,亦可將其等之代表值(例如平均值、眾數、中位數、最低值,或者最高值)對馬達M之各轉速導出1個來作為最佳載波頻率,亦可以圖14之流程圖所說明的方式,將馬達M之轉矩與最佳載波頻率的關係(無關馬達M之轉矩及轉速,最佳載波頻率會呈概略相同值的關係),對馬達M之各轉速導出。無論是在何種的導出方法,無關馬達M之轉速及轉矩,藉由載波頻率設定部75來對馬達M之各轉速設定的載波頻率,會呈概略相同值(例如與載波頻率之最低值概略相同的值)。 也就是說,在本實施型態中,於實際使用步驟中,載波頻率設定部75會依據無關馬達M之轉矩及轉速,最佳載波頻率仍會呈概略相同值的關係,將最佳載波頻率作為在逆變器50上的載波頻率,來對馬達M之各轉速設定。
如同以上在本實施型態中,以逆變器50而言,在使用具有使用寬能隙半導體以外的半導體來構成的開關元件的逆變器50之情況下, 是無關馬達M之轉速及轉矩,使載波頻率呈概略相同。因此,即使是使用了使用寬能隙半導體以外的一般半導體來構成的開關元件,也能獲得與在第1實施型態所說明內容相同的效果。 於本實施型態中,也可採用在第1實施型態所說明的各種變形例。 上述的馬達M之轉速比例的值僅為一例,本發明亦可適用上述的馬達M之轉速比例之數值以外的值。
另,以上說明的本發明之實施型態中,控制裝置70之構成,也可藉由電腦執行程式來實現。又,記錄了前述程式的電腦可讀取的記憶媒體及前述程式等的電腦程式產品,也可做為本發明之實施型態來適用。作為記錄媒體,例如可使用軟式磁碟、硬碟、光碟、磁光碟、CD-ROM、磁帶、非揮發性記憶卡、ROM等。 又,以上說明的本發明之實施型態,僅不過是顯示來實施本發明的具體例子,不得藉此限定解釋本發明之技術範圍。亦即,本發明只要不脫離其技術思想、或其主要的特徵,則能夠以各種形式來實施。
10:交流電源 20:整流電路 30:電解電容器 40:電壓感測器 50:逆變器 61~63:電流感測器 70:控制裝置 71:施加電壓演算部 72:載波產生部 73:比較部 74:PWM訊號輸出部 75:載波頻率設定部 7A:載波頻率設定裝置 M:馬達 S:PWM訊號 Vi:輸入電壓 fc:載波頻率 u、v、w:馬達之各相 Iu、Iv、Iw:馬達電流
圖1是顯示馬達驅動系統之概略構成之一例的圖。 圖2-1是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為1.00時的損失測量結果的第1圖。 圖2-2是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為1.00時的損失測量結果的第2圖。 圖3是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為1.00時的綜合效率比例與載波頻率的關係的圖。 圖4-1是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為1.00時的綜合損失比例與載波頻率的關係的第1圖。 圖4-2是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為1.00時的綜合損失比例與載波頻率的關係的第2圖。 圖5-1是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.75時的損失測量結果的第1圖。 圖5-2是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.75時的損失測量結果的第2圖。 圖5-3是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.75時的損失測量結果的第3圖。 圖6是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合效率比例與載波頻率的關係的圖。 圖7-1是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合損失比例與載波頻率的關係的第1圖。 圖7-2是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合損失比例與載波頻率的關係的第2圖。 圖7-3是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合損失比例與載波頻率的關係的第3圖。 圖8-1是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.50時的損失測量結果的第1圖。 圖8-2是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.50時的損失測量結果的第2圖。 圖8-3是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.50時的損失測量結果的第3圖。 圖9是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合效率比例與載波頻率的關係的圖。 圖10-1是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合損失比例與載波頻率的關係的第1圖。 圖10-2是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合損失比例與載波頻率的關係的第2圖。 圖10-3是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合損失比例與載波頻率的關係的第3圖。 圖11-1是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.25時的損失測量結果的第1圖。 圖11-2是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.25時的損失測量結果的第2圖。 圖11-3是顯示第1實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.25時的損失測量結果的第3圖。 圖12是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合效率比例與載波頻率的關係的圖。 圖13-1是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合損失比例與載波頻率的關係的第1圖。 圖13-2是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合損失比例與載波頻率的關係的第2圖。 圖13-3是顯示第1實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合損失比例與載波頻率的關係的第3圖。 圖14是說明將馬達M之轉矩與載波頻率的關係,在馬達M之各轉速上導出的方法之一例的流程圖。 圖15-1是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為1.00時的損失測量結果的第1圖。 圖15-2是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為1.00時的損失測量結果的第2圖。 圖16是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為1.00時的綜合效率比例與載波頻率的關係的圖。 圖17-1是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為1.00時的綜合損失比例與載波頻率的關係的第1圖。 圖17-2是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為1.00時的綜合損失比例與載波頻率的關係的第2圖。 圖18-1是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.75時的損失測量結果的第1圖。 圖18-2是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.75時的損失測量結果的第2圖。 圖18-3是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.75時的損失測量結果的第3圖。 圖19是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合效率比例與載波頻率的關係的圖。 圖20-1是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合損失比例與載波頻率的關係的第1圖。 圖20-2是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合損失比例與載波頻率的關係的第2圖。 圖20-3是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.75時的綜合損失比例與載波頻率的關係的第3圖。 圖21-1是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.50時的損失測量結果的第1圖。 圖21-2是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.50時的損失測量結果的第2圖。 圖21-3是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.50時的損失測量結果的第3圖。 圖22是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合效率比例與載波頻率的關係的圖。 圖23-1是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合損失比例與載波頻率的關係的第1圖。 圖23-2是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合損失比例與載波頻率的關係的第2圖。 圖23-3是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.50時的綜合損失比例,與載波頻率的關係的第3圖。 圖24-1是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.25時的損失測量結果的第1圖。 圖24-2是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.25時的損失測量結果的第2圖。 圖24-3是顯示第2實施型態的圖,且是以表格形式顯示馬達之轉速比例為0.25時的損失測量結果的第3圖。 圖25是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合效率比例與載波頻率的關係的圖。 圖26-1是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合損失比例與載波頻率的關係的第1圖。 圖26-2是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合損失比例與載波頻率的關係的第2圖。 圖26-3是顯示第2實施型態的圖,且是以圖表形式顯示馬達之轉速比例為0.25時的綜合損失比例與載波頻率的關係的第3圖。
10:交流電源
20:整流電路
30:電解電容器
40:電壓感測器
50:逆變器
61~63:電流感測器
70:控制裝置
71:施加電壓演算部
72:載波產生部
73:比較部
74:PWM訊號輸出部
75:載波頻率設定部
7A:載波頻率設定裝置
M:馬達
S:PWM訊號
Vi:輸入電壓
u、v、w:馬達之各相
Iu、Iv、Iw:馬達電流

Claims (9)

  1. 一種載波頻率設定方法,其是設定用以驅動馬達的逆變器中之載波頻率的載波頻率設定方法,其特徵在於具有: 損失導出步驟,在使用前述逆變器來驅動前述馬達時的前述逆變器之損失與前述馬達之損失的和即綜合損失之導出上,使前述馬達所產生的轉矩、前述馬達之轉速、以及前述逆變器的載波頻率各自不同地來進行; 載波頻率導出步驟,依據藉由前述損失導出步驟導出的前述綜合損失,在複數個轉矩及複數個轉速之各個組合中,導出前述綜合損失成為最小時的載波頻率作為最佳載波頻率; 關係導出步驟,依據藉由前述載波頻率導出步驟導出的前述最佳載波頻率,對前述馬達之各轉速導出前述馬達之轉矩與前述最佳載波頻率的關係; 關係記憶步驟,記憶藉由前述關係導出步驟對前述馬達之各轉速導出的關係;以及 載波頻率設定步驟,在藉由前述關係記憶步驟將前述關係記憶後,在驅動前述馬達時,依據該關係來設定與前述馬達之轉矩的指令值及前述馬達之轉速的指令值相應的載波頻率。
  2. 如請求項1之載波頻率設定方法,其中前述逆變器具有使用寬能隙半導體來構成的開關元件, 在前述關係導出步驟對前述馬達之各轉速導出的前述馬達之轉矩與前述最佳載波頻率的關係具有第1部分,前述第1部分是前述馬達之轉矩變大時,前述最佳載波頻率升高的部分,且是在前述馬達之轉矩於藉由前述載波頻率導出步驟導出的前述最佳載波頻率之中,與最低的載波頻率對應的前述馬達之轉矩以上的範圍內的部分。
  3. 如請求項2之載波頻率設定方法,其中在前述關係導出步驟對前述馬達之各轉速導出的前述馬達之轉矩與前述最佳載波頻率的關係具有第2部分,前述第2部分是前述馬達之轉矩變大時,前述最佳載波頻率降低的部分,且是在前述馬達之轉矩於藉由前述載波頻率導出步驟導出的前述最佳載波頻率之中,與最低載波頻率對應的前述馬達之轉矩以下的範圍內的部分。
  4. 如請求項2或3之載波頻率設定方法,其中在前述關係導出步驟對前述馬達之各轉速導出的前述馬達之轉矩與前述最佳載波頻率的關係,只具有一個前述馬達之轉矩是於藉由前述載波頻率導出步驟導出的前述最佳載波頻率之中,與最低載波頻率對應的前述馬達之轉矩的範圍。
  5. 如請求項1之載波頻率設定方法,其中前述逆變器具有使用寬能隙半導體以外的半導體來構成的開關元件, 在前述關係導出步驟對前述馬達之各轉速導出的前述馬達之轉矩與前述最佳載波頻率的關係上,無關前述馬達之轉矩,前述最佳載波頻率是呈概略相同值。
  6. 一種馬達驅動系統,其具有: 逆變器; 馬達,接收從前述逆變器供應的交流電力而被驅動;以及 控制裝置,控制前述逆變器之動作, 前述馬達驅動系統之特徵在於: 前述逆變器具有使用寬能隙半導體來構成的開關元件, 前述控制裝置具有載波頻率設定機構,前述載波設定機構是依據對前述馬達之各轉速導出的前述馬達之轉矩與前述逆變器中的載波頻率的關係,來設定前述逆變器之載波頻率; 對前述馬達之各轉速導出的前述馬達之轉矩與載波頻率的關係具有前述馬達之轉矩變大時,載波頻率升高的部分。
  7. 如請求項6之馬達驅動系統,其中對前述馬達之各轉速導出的前述馬達之轉矩與載波頻率的關係,在前述馬達之轉矩是於與前述馬達之轉矩變大,載波頻率升高的部分之最低載波頻率對應的前述馬達之轉矩以下的範圍內,具有前述馬達之轉矩變大,前述最佳載波頻率降低的部分。
  8. 一種馬達驅動系統,其具有: 逆變器; 馬達,接收從前述逆變器供應的交流電而被驅動;以及 控制裝置,控制前述逆變器之動作, 前述馬達驅動系統之特徵在於: 前述逆變器具有使用寬能隙半導體以外的半導體來構成的開關元件, 前述控制裝置具有載波頻率設定機構,前述載波頻率設定機構是依據對前述馬達之各轉速導出的前述馬達之轉矩與在前述逆變器的載波頻率的關係,來設定前述逆變器之載波頻率, 在對前述馬達之各轉速導出的前述馬達之轉矩與載波頻率的關係上,無關前述馬達之轉矩,載波頻率呈概略相同值。
  9. 一種載波頻率設定裝置,其是設定用以驅動馬達的逆變器之載波頻率的載波頻率設定裝置,其特徵在於: 以前述馬達之轉矩、及在使用前述逆變器來驅動前述馬達時的前述逆變器之損失與前述馬達之損失的和即綜合損失呈最小時的載波頻率即最佳載波頻率的關係而言, 前述載波頻率設定裝置在前述逆變器具有使用寬能隙半導體來構成的開關元件的情況下,是對前述馬達之各轉速導出:在前述馬達之轉矩是於與前述最佳載波頻率呈最低值的載波頻率對應的前述馬達之轉矩以上的範圍內,具有馬達之轉矩變大時,前述最佳載波頻率則升高的部分,且在前述馬達之轉矩是於與前述最佳載波頻率呈最低值的載波頻率對應的前述馬達之轉矩以下的範圍內,更具有馬達之轉矩變大時,前述最佳載波頻率降低的部分之關係, 前述載波頻率設定裝置在前述逆變器具有使用寬能隙半導體以外的半導體來構成的開關元件的情況下,對前述馬達之各轉速導出:無關前述馬達之轉矩,前述最佳載波頻率呈概略一定值之關係, 前述載波頻率設定裝置依據前述馬達之轉矩與前述最佳載波頻率的關係,來設定前述逆變器之載波頻率。
TW108123277A 2018-07-02 2019-07-02 載波頻率設定方法、馬達驅動系統及載波頻率設定裝置 TWI713296B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-126066 2018-07-02
JP2018126066 2018-07-02

Publications (2)

Publication Number Publication Date
TW202019081A true TW202019081A (zh) 2020-05-16
TWI713296B TWI713296B (zh) 2020-12-11

Family

ID=69060342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108123277A TWI713296B (zh) 2018-07-02 2019-07-02 載波頻率設定方法、馬達驅動系統及載波頻率設定裝置

Country Status (11)

Country Link
US (1) US11888422B2 (zh)
EP (1) EP3820039A4 (zh)
JP (1) JP6950827B2 (zh)
KR (1) KR102580048B1 (zh)
CN (1) CN112219351B (zh)
BR (1) BR112020022425A2 (zh)
CA (1) CA3097504C (zh)
MX (1) MX2020012658A (zh)
RU (1) RU2756895C1 (zh)
TW (1) TWI713296B (zh)
WO (1) WO2020009062A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740592B (zh) * 2020-07-30 2021-09-21 新代科技股份有限公司 多軸馬達控制系統及其方法
TWI755131B (zh) * 2020-10-30 2022-02-11 禾一電子科技有限公司 即時無感測器馬達控制驅動系統

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111293953A (zh) * 2020-03-27 2020-06-16 重庆金康动力新能源有限公司 电机控制方法、装置、电动汽车和存储介质
WO2023007619A1 (ja) * 2021-07-28 2023-02-02 三菱電機株式会社 電力変換装置および空気調和機
CN113708702B (zh) * 2021-09-01 2023-08-22 臻驱科技(上海)有限公司 一种电机控制器的降频控制方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812299B2 (ja) 2000-06-28 2006-08-23 日産自動車株式会社 電気自動車用モータ制御装置
JP2007282298A (ja) 2006-04-03 2007-10-25 Nissan Motor Co Ltd モーター制御装置
JP2006223097A (ja) * 2006-04-21 2006-08-24 Mitsubishi Electric Corp 永久磁石形モータ、永久磁石形モータの制御方法、永久磁石形モータの制御装置、圧縮機、冷凍・空調装置。
JP2008022671A (ja) 2006-07-14 2008-01-31 Toyota Motor Corp インバータの制御装置、インバータの制御方法および車両
JP4424421B2 (ja) 2008-01-17 2010-03-03 トヨタ自動車株式会社 電動車両の制御装置およびそれを備えた電動車両、ならびに電動車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2009291019A (ja) * 2008-05-30 2009-12-10 Toyota Motor Corp 交流モータ用インバータの制御装置
JP4605274B2 (ja) * 2008-08-27 2011-01-05 トヨタ自動車株式会社 車両
US8251388B2 (en) * 2008-09-04 2012-08-28 Bell Sports, Inc. Bicycle child seat
US8519653B2 (en) * 2009-05-29 2013-08-27 Toyota Jidosha Kabushiki Kaisha Control device and control method for AC motor
DE112010002693T5 (de) * 2009-06-25 2013-01-24 Honda Motor Co., Ltd. Stromausgabevorrichtung
JP2012010513A (ja) * 2010-06-25 2012-01-12 Nippon Steel Corp モータ駆動装置
JP5742124B2 (ja) * 2010-07-21 2015-07-01 日産自動車株式会社 ハイブリッド車両の制御装置
JP5929596B2 (ja) * 2012-07-31 2016-06-08 株式会社デンソー モータ駆動装置
JP6184753B2 (ja) * 2013-05-30 2017-08-23 コベルコ建機株式会社 電動機駆動用インバータ装置
JP6062327B2 (ja) * 2013-07-09 2017-01-18 日立オートモティブシステムズ株式会社 インバータ装置および電動車両
JP5984991B1 (ja) * 2015-04-02 2016-09-06 三菱電機株式会社 モータ制御装置及びモータ制御方法
DE102015218507A1 (de) * 2015-09-25 2017-03-30 Robert Bosch Gmbh Verfahren und Steuervorrichtung zum Betrieb eines elektrischen Antriebsstrangs
WO2017126093A1 (ja) * 2016-01-22 2017-07-27 株式会社日立産機システム モータ制御装置
JP6754661B2 (ja) 2016-10-11 2020-09-16 日立オートモティブシステムズ株式会社 交流電動機の制御装置および制御方法、並びに交流電動機駆動システム
JP6282331B1 (ja) * 2016-10-31 2018-02-21 三菱電機株式会社 電力変換装置
JP6784166B2 (ja) * 2016-12-16 2020-11-11 アイシン精機株式会社 電動機制御装置
JP6342531B1 (ja) 2017-02-06 2018-06-13 不二製油株式会社 餌用生物用油脂組成物、餌用生物用油脂組成物の製造方法及び餌用生物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740592B (zh) * 2020-07-30 2021-09-21 新代科技股份有限公司 多軸馬達控制系統及其方法
TWI755131B (zh) * 2020-10-30 2022-02-11 禾一電子科技有限公司 即時無感測器馬達控制驅動系統

Also Published As

Publication number Publication date
RU2756895C1 (ru) 2021-10-06
EP3820039A1 (en) 2021-05-12
MX2020012658A (es) 2021-02-02
JP6950827B2 (ja) 2021-10-13
WO2020009062A1 (ja) 2020-01-09
US11888422B2 (en) 2024-01-30
BR112020022425A2 (pt) 2021-02-09
TWI713296B (zh) 2020-12-11
CA3097504C (en) 2023-03-28
KR102580048B1 (ko) 2023-09-20
CA3097504A1 (en) 2020-01-09
CN112219351B (zh) 2024-02-09
JPWO2020009062A1 (ja) 2021-04-30
EP3820039A4 (en) 2022-03-23
CN112219351A (zh) 2021-01-12
US20210091704A1 (en) 2021-03-25
KR20210003870A (ko) 2021-01-12

Similar Documents

Publication Publication Date Title
TWI713296B (zh) 載波頻率設定方法、馬達驅動系統及載波頻率設定裝置
EP3522363B1 (en) Control device for power converter
CN104767455B (zh) 一种混合励磁同步电机无位置传感器直接转矩控制方法
US9118271B2 (en) System and method for non-sinusoidal current waveform excitation of electrical generators
WO2020258802A1 (zh) 一种计及pwm谐波条件下的变频电机铁耗电阻的计算方法
TW201230657A (en) Current control gain adjusting method for pm motor, current control method, and control device
JP5674383B2 (ja) 電気機械を非制限電流波形で励起させるシステム及び方法
Peters et al. Control realization for an interior permanent magnet synchronous motor (IPMSM) in automotive drive trains
JP3758059B2 (ja) 同期電動機の駆動制御装置
JP2003164179A (ja) モータ駆動装置及びモータ駆動方法
Ishihara et al. Improving the efficiency of switched reluctance motors using a step-skewed rotor
CN107636944B (zh) 电动机系统及其控制方法
Ralev et al. Impact of smooth torque control on the efficiency of a high-speed automotive SRM drive
Zheng et al. Analysis and fault-tolerant control of inter-turn short-circuit fault for five-phase permanent-magnet synchronous machine
JP2012010513A (ja) モータ駆動装置
JP2009022085A (ja) モータ制御装置とその制御方法
Knapp et al. Comparison of Losses in Permanent Magnet Synchronous Machines fed with 2-level or 3-level-NPC Converter
Wu et al. Efficiency improvement method based on comprehensive loss regression model for doubly salient electromagnetic generation system
GB2587926A (en) Brushless, self-excited synchronous field-winding machine
WO2022172505A1 (ja) 電動機駆動装置
JP2001224197A (ja) 永久磁石同期モータの回転子位置検出方法
KR20210126917A (ko) 모터 구동용 전력 변환 장치 및 그 제어 방법
JP2004166396A (ja) ブラシレスモータの駆動装置