WO2017126093A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2017126093A1
WO2017126093A1 PCT/JP2016/051764 JP2016051764W WO2017126093A1 WO 2017126093 A1 WO2017126093 A1 WO 2017126093A1 JP 2016051764 W JP2016051764 W JP 2016051764W WO 2017126093 A1 WO2017126093 A1 WO 2017126093A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
temperature
loss
control device
value
Prior art date
Application number
PCT/JP2016/051764
Other languages
English (en)
French (fr)
Inventor
小林 澄男
真人 高瀬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2016/051764 priority Critical patent/WO2017126093A1/ja
Priority to JP2017562393A priority patent/JPWO2017126093A1/ja
Priority to TW106102261A priority patent/TWI617107B/zh
Publication of WO2017126093A1 publication Critical patent/WO2017126093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control

Definitions

  • the present invention relates to a motor control device, and relates to a motor control device that performs overload protection of an AC motor.
  • induction motors In general industries, general-purpose induction motors (inductive motors) driven by inverters and permanent magnet brushless DC motors are used for speed control applications as power sources such as fan pump air conditioners and transport machines in various production plants. ing. Permanent magnet AC servo motors and vector control for rapid acceleration / deceleration and positioning control that make use of excellent servo performance for speed, torque, and position control applications in semiconductor, electronic component manufacturing and assembly machines, forging machines, etc. An induction motor dedicated to inverter drive is used. In a forging machine, an automobile body or the like is die-cut from a plate material, and a drawing process is performed by a press machine, and an AC servo motor excellent in low speed and high torque characteristics is used as a drive motor.
  • the motor is an induction type motor or a permanent magnet type motor
  • the temperature of the motor tends to increase due to the demand for high rotation and high torque repetitive load. Temperature control is an important issue because the motor temperature has a great influence on output fluctuations and component loads.
  • Patent Document 1 discloses a technique of installing an electronic thermal in a stator, thereby monitoring current and monitoring motor overload.
  • Patent Document 2 discloses a technique for protecting a motor from an overload by incorporating a temperature detector for detecting a temperature rise of a stator winding in the motor and monitoring the detected value.
  • Patent Document 3 discloses that the motor overload protection is performed by estimating the motor winding temperature by further subtracting the heat dissipation loss from the value obtained by subtracting the motor output power from the motor input power.
  • Non-Patent Document 1 discloses motor loss and loss reduction measures.
  • FIG. 21 on page 32 shows four types of losses: copper loss, stray load loss, iron loss, and mechanical loss. Copper loss and stray load loss increase as the load factor increases, and iron loss and mechanical loss are constant and are not affected by fluctuations in the load factor.
  • the iron loss depends on the magnetic flux density of the motor magnetic circuit. Copper loss includes primary copper loss due to winding resistance of the motor and secondary copper loss generated on the rotor side of the induction motor.
  • the rotor is a permanent magnet AC servo motor, DC brushless motor (hereinafter referred to as DCBL motor). ) Is excluded.
  • DCBL motor DC brushless motor
  • JP 2011-188581 A Japanese Patent Laid-Open No. 10-174276 JP-A-11-089083
  • an induction motor is an aluminum die-cast rotor that integrally molds a bar and an end ring using a die-cast material with good workability, such as a squirrel-cage winding, or actually aluminum material, or an iron core.
  • a bar rotor is formed by inserting a conductor bar (copper material) into the slot and joining the end ring and the bar.
  • a secondary current of the motor flows through the cage conductor. The voltage induced in the squirrel-cage conductor on the secondary side is determined by the turn ratio between the primary winding of the stator and the secondary winding of the rotor.
  • the number of turns on the rotor side is a die cast structure or a bar rotor that joins the end ring and the bar as described above, and thus it is difficult to make a complicated structure. Therefore, the number of secondary windings is smaller than the number of primary windings, and the induced voltage is low.
  • the secondary current becomes larger than the current on the primary side as the secondary voltage decreases.
  • the motor output shaft repeats acceleration, deceleration, pushing and holding or servo lock with variable speed repeatedly, the secondary current increases in inverse proportion to the turns ratio, and the secondary copper loss is the current. Is generated by the square of, the rotor side temperature becomes extremely high. Since this heat is cooled by heat conduction from the rotor to the cooling fins on the motor surface via the stator, there remains a problem in cooling efficiency.
  • permanent magnet motors like induction motors, provide motor overload protection with electronic thermal monitoring of the stator motor current, and motor overload protection with a built-in temperature detector in the stator winding.
  • the permanent magnet motor has a phenomenon that the temperature rise of the motor becomes large even when the load torque is equal to or lower than the rated torque in a high speed range, and the influence of the temperature rise due to iron loss is large.
  • the iron loss is a loss generated in the iron core, and is generated when the magnetic flux passing through the iron core changes.
  • the permanent magnet is supplied from the stator winding with a ripple current including a high frequency component by a PWM driven inverter having a carrier frequency of several k to several tens of kHz.
  • the current containing the high-frequency ripple creates a magnetic flux with ripple in the iron core or permanent magnet of the motor, and causes iron loss that is hysteresis loss or eddy current loss.
  • Patent Document 3 discloses that motor overload protection is performed by subtracting the motor output power from the motor input power and further subtracting the heat dissipation loss from this value to estimate the motor winding temperature.
  • overload protection in which the secondary current of the rotor of the induction motor is monitored or overload protection due to a temperature increase of the permanent magnet of the rotor of the permanent magnet motor.
  • the load in the servo press machine is a repetitive load use or a repetitive load continuous use (herein referred to as “repetitive load”), and in a motor operated with a repetitive load, during one cycle of repeated load application.
  • repetitive load a repetitive load used or a repetitive load continuous use
  • a motor loss corresponding to the peak is stored in the motor.
  • the amount of heat stored in the motor radiates from the cooling fins on the motor surface on the stator side.
  • temperature management including the rotor is important, but since the rotor is not stationary, the electronic thermal and temperature detector disclosed in Patent Documents 1 and 2 are installed in the rotor. However, it is difficult to control the temperature.
  • a technique for detecting overload of the motor including not only the part on the stator side but also the part on the rotor side.
  • a technique is desired that, when an overload is detected in a specific part of the motor, regardless of the motor type or specification mode, informs that it is an overload of the motor or triggers a specific control.
  • the configuration described in the claims is applied. That is, the total loss, which is the difference between the input power and output power of the AC motor, is detected, and the total loss is calculated based on the amount of heat obtained by integrating the deviation between the total heat dissipation per unit time of the AC motor.
  • a motor control device having a controller that calculates the temperature of an AC motor and determines an overload of the AC motor according to the temperature, wherein the controller is fixed from the amount of heat of a stator winding of the AC motor When the rotor winding temperature is calculated and the rotor temperature is calculated from the amount of heat of the rotor of the AC motor and reaches any one of the threshold values compared with the respective threshold values, the AC motor is overloaded as an external notification signal. And at least one of reducing or stopping the power supply of the AC motor.
  • overload protection of a motor can be performed in consideration of not only the stator but also the temperature of other motor components including the rotor.
  • by managing overload in units of individual components it is possible to realize motor overload management with excellent versatility without being limited by the motor type or specification mode.
  • Other problems, configurations, and effects of the present invention will become apparent from the following description.
  • FIG. 1 It is a block diagram which shows typically the overload detection circuit at the time of applying the motor control apparatus which is one embodiment to which this invention is applied for induction type motors. It is a schematic diagram which shows the motor loss at the time of the power running of the motor control apparatus by a present Example. It is a schematic diagram which shows the motor loss at the time of regeneration of the motor control apparatus by a present Example. It is a schematic diagram which shows the motor loss at the time of regeneration by the DC power supply of the motor control apparatus by a present Example. It is a figure which shows an example of repetitive load use from the relationship between the rotational speed of a motor for press machines, and a torque. FIG.
  • FIG. 6 is a schematic diagram showing a relationship between motor rotation speed and torque characteristics during powering of the motor control device according to the present embodiment. It is a schematic diagram which shows a loss by the relationship with the motor rotational speed-torque characteristic at the time of regeneration of the motor control apparatus by a present Example. It is a figure which shows the kind of loss which generate
  • the motor power conversion device 100 may be a relay or the like as long as it includes an AC servo amplifier, a DCBL controller, an inverter, a vector control inverter, and the like and includes an arithmetic device.
  • an AC motor serves to convert electrical energy into work energy.
  • IM induction
  • PM permanent magnet
  • the power of work energy is output power Pout, and torque Tf and rotational speed Nf are given to the load connected to the motor.
  • Inputs and outputs can be expressed in units of W (watts).
  • the physical quantity that is the basis of the heat quantity of the motor is regarded as the total motor loss Ploss, not the motor current. It is complicated to calculate the total amount of loss by accumulating individual losses, but the total loss can be obtained even if the breakdown of the loss is not known. That is, as shown in (Expression 2), the total loss Ploss of the motor is obtained by subtracting the output power Pout from the input power Pin of the motor.
  • the hysteresis loss is proportional to the frequency (motor rotation speed), and the eddy current loss is proportional to the square of the frequency (motor rotation speed), so the loss increases especially in the high rotation range.
  • the carrier frequency is given by a ripple current including a high frequency component of several k to several tens of kHz.
  • the current containing the high-frequency ripple becomes a magnetic flux with ripple in the iron core or permanent magnet of the motor, and causes iron loss that is hysteresis loss or eddy current loss.
  • the iron loss can be obtained by a magnetic field analysis simulation because the magnetic circuit is formed by the material, plate thickness, and cross-sectional hole shape of the permanent magnet of the rotor in the stator or rotor core or permanent magnet motor.
  • the motor output power Pout can be obtained by (Equation 5).
  • the motor rotation speed Nf and the torque Tf are values controlled by the motor power conversion device 100 and are obtained by calculation in the motor power conversion device 100.
  • sensorless vector control enables high-accuracy speed control by estimating the motor rotation speed and reducing the load fluctuation rate even if the motor does not have a speed sensor such as an encoder.
  • the motor output power Pout may be calculated using the estimated rotational speed Nf of the motor used in this sensorless vector control.
  • the motor input power Pin is expressed by (Equation 6). Similarly to the above, the motor input power Pin is an output of the motor power conversion device, a value used in the device, and can be easily calculated.
  • Equation 7 the instantaneous value product of each phase voltage applied to the motor and the phase current is calculated, and the sum of the phase powers of the U, V, and W phases of the motor is calculated. (Equation 7) may be obtained.
  • phase voltage is represented by Vu, Vv, and Vw
  • phase voltage effective value is represented by Vrms
  • the angular frequency of the power source is represented by ⁇
  • the time is represented by t
  • (Equation 8-1) to (Equation 8-3) and (Equation 9-1) to (Equation 9-3) are substituted and calculated
  • the input power Pin of the motor can be obtained by (Equation 10).
  • each instantaneous phase current is Iu, Iv, Iw
  • the effective phase current value is Irms
  • the phase angle is ⁇
  • the total loss Ploss of the motor obtained in the above (Equation 2) is calculated as Pin-Pout as (Motor input power)-(Motor output power) as an amount that changes to the conventional motor current. If the total heat quantity of the motor is Q1 (J), the total loss Ploss can be integrated over time and expressed as (Equation 11).
  • the measurement of the specific heat c1 of the motor electrical unit and the housing is performed (without rotating the cooling fan) by determining the measurement location of the motor temperature and maintaining the heat insulation state around the motor stator winding. It is preferable to obtain a constant loss Ploss (amount of heat) and measure the temperature rise ⁇ Tc1 of the motor housing by (Equation 12). Note that the specific heat of the motor is equivalent to the specific heat because it is composed of various materials, so the temperature rise value changes when the measurement location is changed. It shall be expressed.
  • the temperature rise Tc2 (K) of the stator winding of the motor is expressed as follows: the amount of heat of the stator is Q2 (J), the mass of the stator is m2 (kg), and the equivalent specific heat of the stator winding is c2 (J / kg ⁇ K). Then, (Formula 14) is obtained.
  • the temperature rise Tc3 (K) of the rotor cage conductor of the induction motor is such that the amount of heat of the rotor is Q3 (J), the mass of the rotor m3 (kg), and the equivalent specific heat c3 of the rotor cage conductor (J / kg ⁇ K), it becomes as shown in (Equation 15).
  • the temperature rise Tc4 (K) of the bearing of the motor is expressed as follows, assuming that the heat quantity of the bearings and others is Q4 (J), the mass of the bearings and other parts m4 (kg), and the equivalent specific heat c4 (J / kg ⁇ K) of the bearings. 16).
  • thermal resistance Rth (° C./W) as a mathematical formula for calculating a temperature rise value with a cooling fin or the like.
  • This thermal resistance gives the loss value (W) in the steady state, and it can be calculated how many times the temperature rise value in the saturated state becomes (K), but the load applied to the motor is in real time When changing, an excessive temperature cannot be obtained even if the loss value (W) that changes instantaneously is multiplied by the thermal resistance.
  • the motor is expressed by a thermal transfer function
  • the temperature rise value of the motor housing is calculated from (Equation 13)
  • the temperature rise value of the motor housing takes the difference from the ambient temperature.
  • the heat radiation amount per unit time for heat radiation from the motor is calculated by (Equation 17) from the temperature difference of the motor housing. From these, the current total loss value held by the motor is calculated from the difference between the total loss Ploss generated from the motor and the heat dissipation amount Qf per unit time radiated from the motor, and the motor is fixed from this total loss current value.
  • the temperature increase value of the stator winding is calculated from (Equation 14), the temperature increase value of the motor rotor is calculated from (Equation 15), and the temperature increase value of the bearing that supports the rotor by the stator of the motor is 16), the temperature rise value of each part is compared with the threshold value for determining overload, and when any part detects overload first, it outputs it as motor overload. Yes.
  • the above is the outline of the overload protection process performed by the motor power conversion device 100 of the present embodiment.
  • FIG. 2 schematically shows the motor loss when the motor power converter 100 is “powering”.
  • Reference numeral 1 denotes a motor, which rectifies the power supplied from the AC power source 2 by the full-wave rectifier converter 5 of the forward converter 4 with a power regeneration function, smoothes it by the smoothing capacitor 8, and converts it into a DC voltage.
  • the direct current power is converted from the direct current power source to the alternating current again by the reverse converter 9 to supply electric power to the motor 1.
  • the reverse converter 9 includes a switching element 10 and a flywheel diode 11 connected in reverse parallel, and further includes one arm connected in series on the upper side (P side) and the lower side (N side). In this figure, three phases of three arms are illustrated.
  • the switching element 10 performs PWM (Pulse Width Modulation) control by switching the power circuit.
  • the motor 1 applies a rotational speed Nf and torque Tf to the motor output shaft as power to drive the machine.
  • the width of the arrow of the motor 1 shown in FIG. 2 indicates the degree of power.
  • the motor 1 obtains the input power Pin and outputs the motor output Pout. Therefore, the magnitude relationship is that the input power Pin> the output power Pout, and the reduced amount is the loss Ploss. Most of the loss Ploss is generated by the motor.
  • the power regeneration converter 6 of the forward converter 4 with the power regeneration function is in a resting state.
  • FIG. 3 schematically shows the motor loss when the motor power conversion apparatus 100 is “at the time of regeneration”.
  • the motor 1 is an elevator motor or the like that performs four-quadrant operation.
  • the elevator motor moves up and down in the vertical direction, and when it is lowered, it suppresses the vehicle cage from falling in the direction of gravity, while the motor torque is output in the upward direction, and the speed moves smoothly in the downward direction.
  • the motor output shaft is rotated from the outside when the vehicle cage falls due to gravity. Therefore, the motor is in a power generation state, and the generated (regenerated) energy passes from the motor 1 through the inverse converter 9 and charges the smoothing capacitor 8 with the generated (regenerated) energy.
  • Reference numeral 4 denotes a forward converter with a power regeneration function, which is a power regeneration converter 6 and regenerates the power generation (regeneration) energy accumulated in the smoothing capacitor 8 to the AC power source 2 through the regeneration AC reactor 7.
  • a power regeneration converter 6 regenerates the power generation (regeneration) energy accumulated in the smoothing capacitor 8 to the AC power source 2 through the regeneration AC reactor 7.
  • the power running state in FIG. 2 is defined as a positive direction.
  • the input power Pin and the output power Pout are negative values in FIG. 3 in the regenerative state.
  • Fig. 4 schematically shows the motor loss during regeneration of the motor power converter using a DC power supply.
  • 2 and 3 are AC power supplies, so a DC power source is obtained through a forward converter and converted to AC again by an inverse converter.
  • the forward converter 4 with a power regeneration function is used. Is no longer necessary. Since this figure is in the regenerative state, the generated power (regenerative) energy passes from the motor 1 through the inverse converter 9 and the smoothing capacitor 8 is charged with the generated (regenerative) energy. Same as 3. 3 differs from FIG.
  • the AC power source 2 is changed to a DC power source (battery) 3 and the smoothing capacitor 8 is charged with power generation (regeneration) energy, and at the same time, the DC power source (battery) 3 is directly regenerated and charged.
  • the positive and negative polarities and magnitudes of the absolute values of the input power Pin and the output power Pout are the same as those in FIG.
  • the explanation of the motor loss during power running is the same as that of the reverse converter 9 of FIG. 2 because the forward converter 4 with the power regeneration function of FIG. 2 has a DC output.
  • FIG. 5 is a diagram illustrating an example of the use of repetitive load from the rotational speed and torque of a press machine motor.
  • the press machine has a structure in which the rotational movement of the motor is changed to a reciprocating movement by a crank mechanism, and shows an example in which a thin plate is drawn at the bottom dead center by moving the slide up and down.
  • the upper figure of FIG. 5 shows the motor rotation speed, the slide is operated from the top dead center in the normal direction, and is stopped immediately before the thin plate material before the bottom dead center to prevent the seizure of the mold. Lowering and pressing and drawing. After fully pressing, the motor operates in the same forward direction, the slide moves up, returns to top dead center, and the 1/2 cycle is completed.
  • the lower diagram of FIG. 5 shows the torque of the motor.
  • the motor 1 When the motor 1 descends, it accelerates in the power running direction, operates at a constant speed and decelerates and stops, and operates with regenerative torque. When the slide returns to the top dead center, the motor accelerates in the forward rotation direction, operates at constant speed with power running, and stops at regenerative operation when decelerating.
  • the motor moves down the slide in the reverse direction, stops just before the thin plate material before the bottom dead center in order to prevent seizure of the mold, holds the position, then lowers again and presses the diaphragm. Processing. After fully pressing, the motor operates in the same reverse rotation direction, the slide moves up and returns to top dead center, and the remaining half cycle is completed.
  • the motor can rotate once in the forward operation, return once in the reverse operation, and the slide can be drawn twice.
  • FIG. 6 is a diagram for explaining the loss on the “motor rotational speed-torque characteristics” of “powering” of the present embodiment.
  • the horizontal axis is the rotational speed Nf
  • the vertical axis is the (powering) torque Tf
  • the maximum torque of the motor is shown by a line connecting points A-B-C-D.
  • the rated output point P0 at which the rated torque Tf0 of the motor and the rated rotational speed Nf0 are set is shown in the drawing.
  • Pin Ploss + Pout from (Equation 2). Therefore, when motor loss is added to the motor output Pout constant curve, the input power Pin constant curve is obtained.
  • examples of mechanical loss, iron loss, stray load loss, and copper loss are shown. Copper loss is in the low-speed, high-torque region, and the ratio of the total loss is dominant due to the increase in current. Iron loss is not affected by current, but hysteresis loss is proportional to frequency, and eddy current loss increases with the square of frequency. For this reason, especially in the permanent magnet motor, the motor voltage is saturated in the high speed region and the maximum torque is reduced, and the ratio of the iron loss to the total loss suddenly increases and is controlled.
  • FIG. 7 is a diagram for explaining the loss on the “motor rotational speed-torque characteristics” during regeneration of the present embodiment.
  • the horizontal axis is the rotational speed Nf
  • the vertical axis is the regenerative torque Tf
  • the power running torque is shown as a positive scale, whereas it is shown as a negative scale.
  • the motor shaft is rotated from the machine side, the output power Pout becomes the largest, this energy is regenerated to the input power source, and the input power Pin becomes the smallest.
  • individual losses are omitted in the figure, the portion sandwiched between the input power Pin and the output Pout is the total loss Ploss.
  • the copper loss becomes dominant in the maximum torque region in the low speed region, and the iron loss increases in the region where the maximum torque in the high speed region is limited.
  • the pulse width of the PWM waveform is not controlled so that the (voltage) V / (frequency) F applied to the motor is constant when the DC voltage (voltage between PN) rises due to regenerative energy during regeneration in the induction motor. If so, iron loss will increase.
  • Fig. 8 shows the types of losses that occur in each part of the motor.
  • the loss generated for each part of the induction motor and the permanent magnet motor is roughly classified into a fixed loss and a load loss.
  • Fixed loss includes iron loss and mechanical loss that are not related to the magnitude of the load, and load loss is copper loss and stray load loss that increase or decrease depending on the size of the load.
  • the copper loss shown in this figure occurs in the primary winding and the secondary winding, and occurs in the relationship of (current square) ⁇ (winding resistance). Copper loss occurs in the stator windings of induction and permanent magnet motors, and in the cage and bar conductors of induction motors.
  • the stray load loss is a loss caused by an eddy current flowing in a metal part other than a conductor or an iron core due to a load current flowing.
  • the stray load loss occurs in a motor housing, a cover, etc., and is a part that is difficult to measure and measure.
  • the iron loss includes hysteresis loss and eddy current loss, which are related to an increase in frequency (motor rotational speed) and maximum magnetic flux density, and are generated in the stator and the iron core of the rotor and the permanent magnet of the permanent magnet motor.
  • the iron loss is obtained by (Equation 3) and (Equation 4).
  • iron loss due to a high frequency carrier frequency applied to the motor occurs in the iron core and permanent magnet.
  • the mechanical loss includes a friction loss generated between the shaft and the bearing and a wind loss caused by friction of the rotor with surrounding air.
  • the power consumption of the fan is also added to the mechanical loss.
  • these losses are classified into an induction motor and a permanent magnet motor, and as a part thereof, a stator is an iron core, a winding, and others, a rotor is an iron core, a cage conductor (induction motor), Other than the permanent magnet (permanent magnet motor) and the stator / rotor, they are classified into bearings and fans, and there are four types of losses: copper loss (primary and secondary), stray load loss, iron loss, and mechanical loss. The part which generate
  • FIG. 9 schematically shows a circuit configuration when the motor power converter 100 is applied to an induction motor.
  • the motor power converter 100 is an inverter that drives the motor 1, a vector control inverter, an induction AC servo amplifier, or the like.
  • the power supplied from the AC power supply 2 is rectified by the full-wave rectifying converter 5 of the forward converter 4 with the power regeneration function, smoothed by the smoothing capacitor 8, and converted to a DC voltage (PN voltage).
  • the reverse converter 9 converts this DC power source into AC again, and is connected to the induction motor 1a via the U-phase and W-phase current detectors CTu12 and CTw13.
  • the switching element 10 and the flywheel diode 11 are connected in reverse parallel, and one arm connected in series between the PN is provided with n arms (three phases in the figure).
  • the switching element 10 performs PWM control by switching, controls the speed and position of the induction motor 1a, and drives the machine by applying power to the load. Further, the motor 1 is in a power generation state during the regenerative operation, and the regenerative energy is charged from the motor 1 to the smoothing capacitor 8 via the inverse converter 9. Further, the regenerative energy is returned from the smoothing capacitor 8 through the power regeneration converter 6 to the AC power source 2 through the regeneration AC reactor 7.
  • the induction motor 1a includes an encoder 14a for position and speed detection on the motor shaft.
  • the encoder 14a is not essential. This is because in the case of sensorless vector control, it is possible to use the estimated rotational speed Nf of the motor that is internally processed.
  • the output of the encoder 14a attached to the motor shaft is sent to the position / speed calculator 27 of the control logic circuit 15 to output the rotational speed Nf of the motor.
  • the torque current command Iq is output to the subtracter 20 that calculates the difference from the torque current feedback signal Iqf and is also sent to the slip frequency calculator 30.
  • the rotational speed Nf signal is sent to the magnetic flux calculator 29, and a magnetic flux current command Id serving as a magnetic flux weakening control pattern is outputted so that constant output control is performed at a constant magnetic flux below the base rotational speed and above the base rotational speed.
  • the magnetic flux current command Id is output by the slip frequency calculator 30 in proportion to the torque current of the output slip angular frequency ⁇ s below the base rotational speed.
  • the angular frequency ⁇ 1 is converted into a phase ⁇ by the integrator 36 and sent to the dq / 3-phase converter 24 and the 3-phase / dq converter 26.
  • the U-phase current detector CTu12 and the W-phase current detector CTw13 detect the current of the induction motor 1a and input the current feedback Iuf and Iwf signals to the three-phase / dq converter 26 of the control logic circuit 15.
  • the three-phase / dq converter 26 converts the three-phase Iuf and Iwf signals into Idf and Iqf signals represented by d and q-axis orthogonal.
  • the magnetic flux current command Id is amplified by the d-axis current controller (ACR) 22 by taking the difference from the magnetic flux current feedback signal Idf by the subtractor 20.
  • the torque current command Iq orthogonal to the magnetic flux current command Id is amplified by the q-axis current controller (ACR) 23 by taking the difference from the torque current feedback signal Iqf by the subtractor 20.
  • the outputs of the d-axis and q-axis current controllers (ACR) 22 and 23 are input to the dq / 3-phase converter 24 as d-axis and q-axis voltage commands Vd and Vq, and the three-phase voltage commands Vu, Vv and Vw are PWMed.
  • the signal is output to the circuit 25 and given as a gate signal of the switching element 10 of the inverse converter 9, so that the induction motor 1a is controlled.
  • the motor current feedback Iuf and Iwf signals are converted into orthogonal Idf and Iqf signals by the three-phase / dq converter 26, and the torque calculator 32 vector-calculates the motor torque Tf.
  • the torque signal Tf and the rotational speed Nf from the position / speed calculator 27 are input, and the output Pout calculator 33 calculates (Equation 5) to obtain the output power Pout.
  • the current calculator 34 calculates the effective current value I, the phase voltage effective value is input from the dq / 3-phase converter 24, the phase voltage, current, and power factor cos ⁇ are obtained from the vector calculation, and the input Pin calculator 35 ( The input power Pin is calculated according to Equation 6).
  • Pout and Pin calculated by the output Pout calculator 33 and the input Pin calculator 35 are calculated by the subtracter 20 as Pin-Pout of (Equation 2), and the total loss Ploss of the motor is calculated.
  • the total loss Ploss of the motor is sent to the overload detection circuit 17a to determine whether or not the motor is overloaded.
  • the overload detection circuit 17a determines that the motor is overloaded from the accumulated heat amount of the motor, the state of the heat radiation amount per unit time, or the temperature rise of each part of the motor
  • the overload detection circuit OL sends an overload detection signal OL to the protection processing circuit 18
  • an overload display or overload notification signal is output, and further, the motor is stopped to perform overload protection.
  • the speed controller (ASR) 21, the d-axis and q-axis current controllers (ACR) 22 and 23, the PWM circuit 25 in the control logic circuit 15 described above, and other block diagrams are arithmetic units such as a CPU and a DSP. And realized through collaboration with software. Similarly, each block diagram in the total loss calculation circuit 16 is realized in cooperation with a calculation device and software.
  • FIG. 10 schematically shows a circuit configuration when the motor power converter is applied to a permanent magnet motor.
  • the motor power converter 100 includes an AC servo amplifier, a DCBL controller, and an inverter.
  • the forward converter 4 with power regeneration function, the reverse converter 9, the U-phase and W-phase current detectors CTu12 and CTw13 are the same as those applied to the induction motor (FIG. 9).
  • the permanent magnet motor 1b includes an encoder 14b for detecting the position, speed, and magnetic pole position on the motor shaft.
  • the motor power conversion device 49 is a DCBL controller or inverter
  • the encoder 14b is not an essential component.
  • the speed can be controlled by vector control.
  • the magnetic pole position detection is for detecting the position of the magnetic pole of the permanent magnet attached to the rotor of the motor.
  • the output of the encoder 14b attached to the motor shaft is sent to the position / velocity magnetic pole position calculator 28 of the control logic circuit 15 to output the rotational speed Nf of the motor.
  • a magnetic pole position signal ⁇ is output from the position / velocity magnetic pole position calculator 28 to the dq / 3-phase converter 24 and the 3-phase / dq converter 26.
  • the current of the permanent magnet motor 1b is detected by the U-phase current detector CTu12 and the W-phase current detector CTw13, and is input to the three-phase / dq converter 26 of the control logic circuit 15 as current feedback Iuf and Iwf signals.
  • the three-phase / dq converter 26 converts the three-phase Iuf and Iwf signals into Idf and Iqf signals represented by d and q axis orthogonality.
  • the torque current command Iq is output to the subtracter 20 that calculates the difference from the torque current feedback signal Iqf, and the deviation is amplified by the q-axis current controller (ACR) 23.
  • the d-axis current command Id is a current command for performing field weakening.
  • the subtracter 20 takes a difference from the d-axis current feedback signal Idf, and the deviation is amplified by the d-axis current controller (ACR) 22. .
  • the outputs of the d-axis and q-axis current controllers (ACR) 22 and 23 are input to the dq / 3-phase converter 24 as d-axis and q-axis voltage commands Vd and Vq, and the three-phase voltage commands Vu, Vv and Vw are PWMed. It is output to the circuit 25 and given as the gate signal of the switching element 10 of the inverse converter 9, and the permanent magnet type motor 1b is controlled.
  • the subtractor 20 calculates Pin-Pout of (Equation 2) and calculates the total loss Ploss of the motor.
  • the total loss Ploss of the motor is sent to the overload detection circuit 17b, and when the motor is determined to be overloaded from the accumulated heat amount of the motor, the state of heat dissipation per unit time, and the temperature rise of each part of the motor, an overload detection signal OL is sent to the protection processing circuit 18 to output a signal for overload display or overload notification to the outside, and further, the motor is stopped to perform overload protection.
  • FIG. 11 schematically shows another configuration example for detecting input power.
  • the input power Pin is calculated from the signal in the control logic circuit 15 by the input Pin calculator 35.
  • the phase voltages Vu, Vv, and Vw are detected from the motor terminal voltage.
  • the motor current is calculated by detecting Iuf and Iwf from the U-phase and W-phase current detectors CTu12 and CTw13.
  • the CPU of the control logic circuit 15 calculates (Equation 7) by calculating the instantaneous value product of the phase voltage and phase current for each of the U, V, and W phases.
  • the product operation of the phase voltage of 3) and the phase current of (Equation 9-1) to (Equation 9-3) is performed.
  • the CPU obtains “three-phase input power Pin” by adding the input power amounts of the U phase, V phase, and W phase of each phase.
  • FIG. 1 shows details of the overload detection device in the overload detection circuit 17a of the induction motor.
  • the overload detection circuit 17a is divided into four functional units.
  • the first portion 37 (dotted line) serving as a basic portion is used to process the amount of heat of the entire motor (motor electric part + housing).
  • the second to fourth parts are divided into motor parts.
  • the second portion 45 is a stator, and the calculated temperature rise is a stator winding.
  • the third portion 46 is a rotor, and the calculated temperature rise is a cage conductor. In addition, it is not limited to a squirrel-cage conductor, Other modes, such as a bar rotor, may be sufficient.
  • the last fourth portion 47 is a bearing or the like, and the calculated temperature rise is a bearing.
  • the first portion 37 processes the heat amount of the entire motor (motor electric part + housing), but naturally includes the heat amounts of the second to fourth portions.
  • the total amount of heat accumulated per unit time and the total amount of heat radiated from the motor per unit time are accurately calculated from the total loss input to the motor, and per unit time currently accumulated in the motor. , And this is taken as the total loss current value Pe (W).
  • the first part 37 will be specifically described.
  • the first part 37 is (motor electric part + housing), and the total loss Ploss (input power Pin ⁇ output power Pout) of the motor is input here. next.
  • the subtracter 20 subtracts the amount of heat Qf radiated from the motor per unit time from the total loss Ploss (the amount of heat accumulated in the motor per unit time).
  • the total loss current value Pe is input to the motor heat storage unit 42-1 (transfer function: 1 / (m1 ⁇ c1 ⁇ s)), the total heat amount Q1 of the motor is calculated, and the motor casing temperature rises by (Equation 13)
  • a value Tc1 (K) is calculated.
  • the motor housing temperature Tc1 (° C.) is given by adding the motor ambient temperature Ta (° C.) to the motor housing temperature rise value Tc1 (K).
  • the output of the first portion 37 to the overload determination circuit 43-1 and the subtracter 20 is a value of the motor casing temperature Tc1 (° C.) obtained by adding the motor ambient temperature Ta (° C.).
  • the motor housing temperature Tc1 (° C.) is subtracted from the ambient temperature Ta (° C.) by the subtracter 20, and the equation (17) is calculated by the motor heat radiation unit 40 (transfer function: ⁇ ⁇ kf ⁇ A).
  • the heat radiation amount Qf (J / s) per unit time is output.
  • kf represents a forced cooling coefficient
  • kf 1 in the case of natural cooling.
  • the total heat radiation amount Qf (J / s) per unit time which is the output of the motor heat radiating unit 40, returns to the subtractor 20 given the total loss Ploss, and forms a negative feedback feedback loop.
  • the motor temperature rise value is obtained by taking the motor as thermal resistance and giving a loss (W) with the motor housing as thermal resistance Rth (° C / W).
  • W loss
  • the temperature rise value can be obtained using the thermal resistance Rth after the transient state has elapsed and the temperature rise value in the thermal equilibrium state where the temperature is saturated, that is, in the steady state. Only the solution (value).
  • the total loss is given by changing, and the change in temperature rise value that handles an excessive state that repeats this cannot be calculated with the thermal resistance Rth. .
  • the accumulated heat amount, the radiated heat amount, and the temperature rise value are realized by a transfer function that can handle differentiation and integration.
  • the subtracter 20 is used to configure the difference in total heat dissipation per unit time from the total loss Ploss.
  • the heat radiation of the motor is diffused into the atmosphere from the cooling fins around the motor housing, or is conducted to the mating mounting base (surface plate) from the foot mounting portion where the motor is installed.
  • the temperature rise value of each part of the motor accurately detects the total loss to determine the accumulated heat, and further the heat dissipation per unit time from the motor Accurate temperature rise can be obtained by accurately grasping. Therefore, the total amount is accurately grasped from the input power Pin-output power Pout.
  • the total loss Ploss ⁇ the heat dissipation amount Qf per unit time can be constituted by the subtractor 20.
  • Total loss is integrated to determine the total heat quantity of the motor, and the temperature rise value is calculated.
  • the temperature rise value at this time is a value with respect to the ambient temperature of the motor.
  • the amount of heat released from the motor per unit time varies depending on the temperature difference from the ambient temperature. Actually, the total loss Ploss input in the motor is suddenly subtracted by the heat dissipation amount Qf per unit time and does not disappear. However, in the calculation in the microcomputer, the physical quantity of the natural world is released from the given electric quantity Ploss.
  • the overload determination circuit 43-1 of the first part receives the motor electrical unit + case temperature Tc1 (° C.) and compares it with a threshold at which the motor case temperature is overloaded.
  • the overload detection signal is output to the OR circuit 44. From the above, the accumulated heat amount of the motor, the heat dissipation amount per unit time, and the temperature rise value can be obtained from the total loss current value Pe per unit time remaining in the motor even if the applied load is a repetitive load. It can be handled easily including excessive operations.
  • FIG. 13 schematically shows the heat dissipation characteristics of the motor housing.
  • total heat dissipation is the amount of heat per unit time that radiates from the cooling fins around the motor frame to the atmosphere, and the unit time by heat conduction from the mating mounting base (surface plate) that contacts the foot mounting part where the motor is installed.
  • Each amount of heat means the total amount of heat released per unit time, which is the total amount (total value).
  • the motor may be natural cooling or forced cooling.
  • a temperature rise test is performed by changing the motor speed and the load factor and changing the motor housing temperature and the ambient temperature differences T ⁇ 1 to T ⁇ 3. Then, in the thermal equilibrium state where the temperature of the motor is saturated (temperature rise is saturated and settled to a constant temperature), the total loss Ploss applied to the motor and the total heat dissipation amount Qf from the motor per unit time are Will be equal. From this, the total heat radiation amount Qf per unit time from the motor can be accurately obtained by measuring the total loss amount Ploss applied to the motor when the motor is in a thermal equilibrium state.
  • the data shown in FIG. 13 is stored in a non-volatile memory for each motor output. If the motor has forced air cooling or natural cooling, the data of the motor housing temperature and the ambient temperature difference can be obtained. It is possible to read and calculate the heat radiation amount Qf per unit time from T ⁇ (K).
  • the loss of each part is input, the amount of heat is obtained from the loss, and the temperature rise value of each part is calculated. That is, the second part calculates the stator winding temperature rise, the third part calculates the rotor cage conductor or bar rotor temperature rise, and the fourth part calculates the bearing temperature rise.
  • Each overload determination circuit 43-2 to 43-4 compares the calculated individual temperature rise value with the second to fourth threshold values, and determines whether or not each part is overloaded based on the threshold values. .
  • the logic circuit 44 constitutes an OR circuit, and when any one of the four outputs including the first overload determination circuit 43-1 generates an overload output signal, the logic circuit 44 detects the overload detection signal OL of the motor. To the protection processing circuit 18.
  • FIG. 16 shows the contents of each loss calculation process in the second to fourth parts.
  • the classification column is classified into induction motors and permanent magnet motors, and the segment column is classified into three parts: stator, rotor, bearing, etc.
  • the loss is copper loss (primary copper loss, secondary copper loss) ),
  • a loss calculation processing content column is provided, classified into four types, stray load loss, iron loss, and mechanical loss.
  • “A”, “B”, and “-” are written in the frame of the portion marked with a circle in FIG. “A” is a part that calculates and processes a loss for each sampling.
  • “B” is preliminarily tabulated from simulation or detailed test data, and the loss value is used from the conditions. “-” Indicates a portion without corresponding loss.
  • copper loss is “A”, which occurs in the stator windings of induction motors and permanent magnet motors, and in cage motors or bar rotors of induction motors. Calculate (square of current) x (winding or squirrel-cage conductor resistance or resistance of end ring and bar conductor) by calculation.
  • iron loss occurs in the stator of the induction motor and the permanent magnet motor, the iron core of the rotor, and the permanent magnet of the permanent magnet motor. Since the iron loss data for each motor rotation speed is tabulated from the magnetic field analysis simulation and the detailed test data, the iron loss data is selected and input from the current rotation speed as a loss value.
  • stray load loss total loss ⁇ (copper loss + iron loss + mechanical loss).
  • the total loss (Ploss) i is the same as (Equation 2) calculated by Pin-Pout, and is for distinguishing the two types of motors.
  • p of (PM) is added to the end of the loss, and Psp, Pbp, Prp, (Ploss) p are used.
  • the loss calculation processing contents of the permanent magnet type motor are the same as those of the induction type motor, and the description thereof is omitted. However, since the rotor side is not a cage conductor, there is no copper loss.
  • the masses of the transfer functions of the motor heat storage unit 42-1, the stator 42-2, the rotor 42-3, and the bearing 42-4 are m1: motor mass, m2: stator mass, and m3: rotor. , M4: Enter the mass of the bearing.
  • Equivalent specific heat is always determined as one measurement point for each part in the temperature rise test at the rated rotation speed and rated torque at the time of detailed testing at the factory.
  • a total loss Ploss and a temperature rise value are measured at a rated point (rated rotational speed, rated torque) at a predetermined measurement point.
  • the above-described m1 to m4 are used.
  • the equivalent specific heat c1 of the motor electrical part + the casing is obtained by (Equation 12) from a value obtained by performing a specific heat measurement test.
  • the equivalent specific heat c2 of the stator winding, the equivalent specific heat c3 of the rotor cage conductor, and the equivalent specific heat c4 of the bearing are calculated in a specific heat measurement test.
  • This equivalent specific heat constant is registered in the memory as a motor constant, and is used when calculating the motor casing temperature Tc1, stator winding temperature Tc2, squirrel-cage conductor temperature Tc3, and bearing temperature Tc4.
  • the stator winding temperature rise value Tc2 (K) output to the stator 42-2, the rotor 42-3, and the bearing 42-4 is obtained when the total heat quantity of the stator is Q2.
  • the temperature rise value Tc2 (K) is (Expression 14).
  • the temperature rise value Tc3 (K) of the rotor cage conductor or bar rotor is expressed by Equation 15 when the total heat quantity of the rotor cage conductor or bar rotor is Q3.
  • the temperature rise value Tc4 (K) of the bearings and other bearings is expressed by (Equation 16), where Q4 is the total heat quantity of the bearings and other bearings.
  • the temperature rise values Tc2 to Tc4 (K) are given as the temperatures Tc2 to Tc4 (° C.) of the respective parts by adding the ambient temperature Ta (° C.) of the motor.
  • the individually calculated temperatures of the second to fourth portions are respectively compared with the second to fourth threshold values to be determined as overloads in the overload determination circuits 43-2 to 43-4 for each portion.
  • four overload detection signals including the first overload determination circuit 43-1 are output to the OR circuit 44.
  • the OR circuit 44 constitutes a 4-input OR circuit, and when any one of them generates an overload output signal, it is output to the protection processing circuit 18 as a motor overload detection signal OL.
  • the motor loss can be accurately obtained as a whole, and the amount of loss generated in each part and how much it is generated is accumulated individually each time depending on the rotation speed and load factor. Overload detection is possible. For this reason, even if repetitive load use is given, the part that has been overloaded first can output the motor overload detection signal.
  • the protection processing circuit 18 displays and notifies overload information to the outside, and further stops the motor to protect the motor from overload.
  • FIG. 12 is a diagram for explaining an overload detection circuit of a permanent magnet motor, which is an embodiment to which the present invention is applied.
  • FIG. 1 is an induction motor
  • FIG. 12 is a permanent magnet motor
  • the third part is a cage conductor of a rotor.
  • FIG. 12 shows a permanent magnet of the rotor.
  • the temperature rise value Tc3 (K) of the permanent magnet of the rotor of the permanent magnet motor is expressed by Equation 15 when the total heat quantity of the permanent magnet is Q3.
  • the temperature rise value Tc3 (K) is also the same as adding the motor ambient temperature Ta (° C.) to obtain the temperature Tc3 (° C.) of each part.
  • FIG. 14 is a diagram for explaining an equivalent circuit of an induction motor.
  • FIG. 14a shows the circuit of an induction motor in operation.
  • the resistance and leakage reactance for one phase of the stator (primary) winding are indicated by r1 ( ⁇ ) and x1 ( ⁇ ), and the excitation conductance and excitation susceptance are indicated by g0 and b0.
  • voltage E1 is applied to the primary winding of the transformer of the equivalent circuit
  • voltage E22 is induced in the secondary winding.
  • the secondary resistance and leakage reactance are represented by r22 ( ⁇ ) and X22 ( ⁇ )
  • the mechanical power is represented by a load resistance r ′.
  • the phase voltage for one phase of the motor is V1
  • the primary current is I1
  • the exciting circuits g0 and b0 are exciting current I0
  • the primary side of the transformer is I1 '.
  • a current I22 flows on the secondary side.
  • b) shows an equivalent circuit obtained by converting the secondary circuit quantities of a) to the primary side, and generally the circuit of b) is used. If the primary impedance due to the excitation current can be ignored, the equivalent circuit is c).
  • the copper loss of the induction motor includes a primary copper loss and a secondary copper loss.
  • the primary copper loss is m1 ⁇ (I1) 2 ⁇ r1
  • the secondary copper loss is m2 ⁇ (I1 ′) 2 ⁇ r2.
  • the motor constant, rated current If, and no-load (excitation) current I0 are confirmed by a detailed test, they are stored in a non-volatile memory mounted in the control circuit 15 of the motor power conversion circuit and are processed by the CPU and DSP. . Further, the motor current is detected by the U-phase and W-phase current detectors CTu12 and CTw13 in FIG. 9, and the current I1 ′ vector when calculating the secondary copper loss is the no-load (excitation) current from the primary current vector I1. It can be obtained by vector subtraction of the vector I0.
  • FIG. 15 is a diagram for explaining iron loss data of the motor in the form of a table according to the present embodiment.
  • Iron loss does not change with increasing or decreasing load.
  • the iron loss of the motor includes hysteresis loss and eddy current loss, and the relational expressions are shown in (Equation 3) and (Equation 4).
  • the carrier frequency by the PWM waveform from the motor power converter includes a high frequency component of several k to several tens of kHz, iron loss due to the PWM carrier frequency also occurs. Since it is difficult to directly measure the iron loss power, the iron loss relative to the rotation speed is tabulated from the magnetic field analysis simulation and the combined temperature rise test data of the motor and drive device (motor power converter) before product shipment. deep.
  • (1) is a hysteresis loss Ph that increases in proportion to the motor rotational speed
  • (2) is an eddy current loss Pe that is proportional to the square of the motor rotational speed
  • (3) is an iron loss due to PWM driving at a fixed carrier frequency ( Hysteresis loss due to carrier frequency + subtotal of eddy current loss due to carrier frequency).
  • the total iron loss value obtained by adding (1) to (3) is indicated by a solid line with Pfe. Further, this iron loss total value Pfe is divided into a stator and a rotor by magnetic field analysis simulation, and separated into a stator side iron loss Pfes and a rotor side iron loss Pfer.
  • the separation of the iron loss is calculated separately for the temperature of the stator side portion and the temperature of the rotor side portion, and is described above with reference to the table of FIG.
  • the iron loss values on the stator side and the rotor side are updated for each sampling with reference to this table from the current rotational speed.
  • FIG. 17 is a diagram for explaining the overload display, notification, and alarm output circuit of this embodiment.
  • FIG. 17 is a control logic circuit 15 shown in FIGS. 9 and 10 of the entire circuit of the induction type or permanent magnet type motor power conversion device, and shows a part of the overload output circuit of the hardware.
  • a digital operator 59 is prepared outside from the CPU 53 through the communication connector (CN 1) 58.
  • the digital operator 59 has five input keys 63 arranged below the display 60.
  • a speaker 61 is disposed on the upper right, and a light emitter 62 is disposed below the speaker 61.
  • the digital operator 59 informs the surroundings that an overload alarm has occurred by displaying or notifying the content of the overload detected by the light emitter 62, the display 60, and the speaker 61, and the overload alarm is detected. For protection, it has a role to inform the surroundings of the result of shutting off the motor from the main circuit. Further, the CPU 53 is connected to the external output device 64 via the inverter gate 54 and the relay coil 55 and its relay contact 57 via the external terminal outputs TM1 and TM2, and the motor is connected to the main circuit for warning of an overload or alarm protection. We report that we shut off from.
  • FIG. 18 is a diagram for explaining the overload display, notification, and alarm output contents of this embodiment.
  • “1” is an overload display
  • “2” is an overload notification
  • “3” is an overload alarm.
  • the column on the right is defined for the treatment of the main circuit power supply for overload detection.
  • the overload display of “1” and “2” and the overload notification are still supplied even if overload is detected.
  • the operation is continued immediately without protecting the motor, and the surrounding workers are prepared to stop the motor. This is because when the motor is suddenly stopped, for example, a defective product is generated in the product supplying the material, so that the motor is stopped after the supply of the material is stopped, or one product is processed. This is because the motor is stopped after completing the above.
  • the motor power converter 100 itself shuts off the main circuit power supply from the motor immediately to protect the motor from overload, stops the motor free-running, and the alarm reports after the fact. is there.
  • the light emitter 62 visually notifies an overload display, and the speaker 61 notifies a loud sound such as an imitation sound, a sound, an acoustic sound, and a buzzer.
  • FIG. 18 is described as a general one, it should be noted that it may vary depending on the surrounding environment.
  • the display 60 of the digital operator displays the details of the contents accurately in characters and is indicated by ⁇ because it is not intended to immediately and actively attract the attention of the surrounding workers.
  • the external terminal outputs TM1 and TM2 are 1, 2 overload indications
  • the overload notification is a warning contact output for warning
  • the 3 overload alarm is a contact output for reporting after the alarm is cut off.
  • the overload display, overload notification, and overload alarm can be selected by the user using parameters.
  • FIG. 19 is a schematic diagram for explaining an ambient temperature measuring device for detecting the ambient temperature of the motor according to this embodiment.
  • the figure shows a case where the ambient temperature of the motor 1 is detected by the ambient temperature measuring device 52 and inputted to the motor power converter 100.
  • a signal from the encoder 14 of the motor output shaft is taken into the motor power converter 100 and a speed command N is input from the host controller 51.
  • the control circuit power supply 50 is turned on, and after the AC main circuit power supply 2 is turned on, the speed command N is input from the host control device 51 to start the operation.
  • the motor power converter 100 is operated by presetting the maximum ambient temperature range of the motor to the ambient temperature.
  • FIG. 20 is a diagram for explaining a threshold for determining that the second region stator winding according to the present embodiment is overloaded.
  • (A) shows the heat resistance classes A to H of the motor, and the maximum allowable temperature of each class corresponds to (b).
  • the maximum allowable temperature is 105 ° C.
  • the higher the class H the higher the value is 180 ° C.
  • the resistance method is a method of calculating the temperature rise value from the resistance value before and after the temperature test using the fact that the temperature coefficient of resistance is known, and the average temperature of the winding can be measured.
  • a margin ⁇ of margin temperature is determined in advance, and a margin of (maximum allowable temperature ⁇ ) is seen as shown in (c).
  • the second threshold value is selected according to the motor class, such as the winding class, the insulating paper class protecting the winding, and the varnish material class ensuring the insulation life.
  • the winding margin ⁇ is generally 5 to 15 ° C., and is finally confirmed by actual measurement in a temperature test using a thermocouple or the like.
  • (d) shows the allowable temperature rise value of the motor stator winding, which is the second threshold value.
  • the initial value of the ambient temperature Ta of the motor is set as the upper limit value Ta (max) of the operating temperature range of the motor. For example, if the upper limit Ta (max) is 40 ° C., the initial value is set to 40 ° C. If the actual ambient temperature is 10 ° C., the control starts from 40 ° C. Therefore, the offset from the actual temperature is plus 30 (K), and there is a gap.
  • (C) shows a value obtained by subtracting only the margin from the maximum allowable temperature. Therefore, when the actual ambient temperature is 10 ° C., the overload protection trip operates at a temperature 30 (K) lower. At first glance, it seems that the AC motor 1 still has room and the overload protection trip starts too early. However, if the actual ambient temperature is not detected, it is more difficult to prevent a burnout accident. It can be said that the initial value of 40 ° C., which is the most severe condition in this example, is preferable. From the above, the allowable temperature rise value of the motor stator winding, which is the second threshold value of (d), is a value obtained by further subtracting Ta (max) from the value of (c) obtained by reducing the margin.
  • the upper limit of the stator winding temperature can be increased by the difference, and the overload protection trip operation starts under conditions that are more appropriate to the actual situation. Is done.
  • the second threshold value is lowered, so that the motor does not burn out. For this reason, a more accurate overload protection alarm can be realized.
  • FIG. 21 is a diagram for explaining the hysteresis of the overload detection signal according to the present embodiment.
  • the current square time integration method based on motor current detection by electronic thermal as the conventional overload protection
  • an overload detection signal is output to power the motor.
  • the operation of the overload detection circuit was terminated at that time.
  • the control circuit power supply is continuously energized, the heat dissipation calculation of the motor can be accurately continued as it is during operation. .
  • the overload release temperature of the motor is set and the motor drops to the return temperature, the main circuit is turned on, and the motor can be restarted while continuing the heat storage operation from the middle of heat dissipation.
  • This automatic return function is not a necessary function when 1 overload display output or 2 overload notification output described with reference to FIG. 18 is selected as a parameter because operation can be continued even after an overload is detected.
  • the overload alarm is selected as a parameter
  • the main circuit power supply is shut off when an overload is detected.
  • the gate signals of all the switching elements 10 of the inverter 9 are kept off until the motor falls to the overload release temperature.
  • the gate signals of all switching elements 10 of the reverse converter 9 are also released when the motor overload release temperature is reached. Since the alarm contact reporting contact output is released from the external terminal outputs TM1 and TM2, the operation can be restarted from this contact output.
  • the operation can be restarted and automatically returned.
  • Tcn Tc1 to Tc4 in FIGS. 1 and 12
  • the y axis is an overload detection signal, which is L level in a normal state, and H level in an overload state.
  • the threshold is overloaded at the overload detection temperature TcnH.
  • FIG. 22 is a diagram for explaining an example of a temperature rise test when a repetitive load is applied according to this embodiment.
  • the x-axis represents time
  • the y-axis represents the temperature of each part and the motor casing temperature, stator winding temperature, and rotor cage conductor temperature.
  • the motor is an induction motor and is cooled by ventilation at a constant rotational speed by another cooling fan.
  • the speed command according to FIG. 5 is input as the speed command. Since 100% of the effective torque of one cycle of the motor is repeatedly applied, a load exceeding the rated torque is applied as the peak torque to the motor.
  • the motor casing is directly forcibly cooled by another cooling fan, so the temperature rises slowly.
  • the rotor cage conductor of the third part according to the present embodiment detects an overload, indicating that the motor has been overloaded and burnout protected.
  • FIG. 23 is a diagram for explaining the automatic return operation after overload detection according to the present embodiment.
  • the temperature of each part and the external terminal outputs (TM1, TM2), the external main circuit power supply, and the control circuit power supply when the repetitive load is applied to the induction motor are monitored and output.
  • the temperature measurement locations are the motor housing temperature Tc1 of the first part, the stator winding temperature Tc2 of the second part, the rotor cage conductor temperature Tc3 of the third part, and the bearing temperature Tc4 of the fourth part.
  • Parameter setting is automatic return selection.
  • the rotor cage conductor temperature Tc3 of the third part reaches the overload detection temperature Tc3H, the overload is detected, and the gate signals of all the switching elements 10 of the reverse converter 9 are detected. Is turned off. Also, external terminal outputs (TM1, TM2) are output, indicating that the main circuit power supply is shut off externally. Even in this state, since the overload detection circuit 17a continues the calculation operation, the temperatures Tc1 to Tc4 of the respective parts are lowered while continuing the heat radiation.
  • the gate signal off of the switching element 10 is released and the external terminal outputs (TM1, TM2) are turned off.
  • the AC main circuit power supply is turned on again by this external terminal output, and the operation is restarted by giving a speed command from the host device.
  • the temperature Tc1 to Tc4 of each part is an operation in which the temperature at the time t1 is continued and the temperature is increased.
  • FIG. 24 is a diagram for explaining data transfer for tracing and displaying the temperature of each part of a plurality of motors.
  • the motor housing temperature Tc1 of the first part calculated at each part of the motor, the stator winding temperature Tc2 of the second part, the third
  • the rotor cage-shaped conductor temperature Tc3 of the part and the bearing temperature Tc4 of the fourth part can display a trace screen as shown in FIG. 23 on the external personal computer screen.
  • the CPU 53 in the control logic circuit 15 has a communication port capable of serial communication, and FIG. 17 explains that communication is performed with the digital operator 59 using this communication port. Further, a RAM memory 65 is connected to the CPU 53, and the CPU 53 is in charge of calculating the temperatures Tc1 to Tc4 of each part.
  • the operating operator turns on the start signal, operates the motor and performs the operation shown in FIG.
  • the CPU 53 ends the tracing while saving the data in the RAM 65, and turns the motor on. Stop.
  • the CPU 53 automatically communicates the trace data from the RAM 65 to the personal computer 66, and the trace screen is displayed on the personal computer side as shown in FIG. Since the overload detection temperature TcnH and overload release temperature TcnL of the temperatures Tc1 to Tc4 of each part are displayed in different colors on the trace screen, the operator can instantly check whether there is room in the temperature of each part of the motor. I can judge.
  • the overload state of the motor is managed in accordance with the amount of heat of each part such as a stator, a rotor, a bearing and the like constituting the motor, so that the accuracy of overload protection is improved.
  • the motor has different heat generation patterns depending not only on the rotational speed but also on the torque depending on the specification mode.
  • the configuration for monitoring the amount of heat for each motor element in this embodiment is an overload protection management. Can be provided with remarkable versatility.
  • the configuration in which the value of each element of the motor is derived from the calculation by software and a calculation device makes it possible to easily manage the heat quantity of the motor without the risk of a built-in work load or failure of sensors such as electronic thermal.
  • SYMBOLS 1 ... Motor, 1a ... Induction type motor, 1b ... Permanent magnet motor, 2 ... AC main circuit power supply, 3 ... DC power supply, 4 ... Forward converter with power regeneration function, 5 ... Full-wave rectification converter, 6 ... Power supply Converter for regeneration, 7 ... AC reactor for regeneration, 8 ... Smoothing capacitor, 9 ... Inverter, 10 ... Switching element, 11 ... Flywheel diode, 12 ... U-phase current detector CTu, 13 ... W-phase current detector CTw , 14 ... Encoder, 14a ... Position / velocity detector encoder, 14b ... Position / velocity / magnetic pole position detector encoder, 15 ... Control logic circuit, 16 ...
  • Total loss calculation circuit 17 ... Overload detection circuit, 17a ... Inductive type Motor overload detection circuit, 17b ... Permanent magnet motor overload detection circuit, 18 ... Protection processing circuit, 19 ... Adder, 20 ... Subtractor, 21 ... Speed controller (ASR) 22 ... d-axis current controller (ACR), 23 ... q-axis current controller (ACR), 24 ... dq / 3-phase converter, 25 ... PWM circuit, 26 ... 3-phase / dq converter, 27 ... position Speed calculator, 28 ... position / speed magnetic pole position calculator, 29 ... magnetic flux calculator, 30 ... slip frequency calculator, 31 ... angular frequency conversion constant, 32 ... torque calculator, 33 ... output Pout calculator, 34 ... Current calculator, 35 ...
  • Input Pin calculator 36 ... Integrator, 37 ... First part (motor electric part + housing), 40 ... Motor heat radiation part transfer function, 41-2 and 41-3 41-4: Ratio to total loss, 42-1: Transfer function of motor heat storage section, 42-2: Transfer function of stator, 42-3: Transfer function of rotor, 42-4: Transfer function of bearing 43-1 ... overload determination circuit for the first part, 43-2 ... overload determination circuit for the second part, 4 -3... 3rd part overload determination circuit, 43-4. 4th part overload determination circuit, 44... OR circuit, 45... Filter circuit, 46 .. inverting circuit, 47. Input addition calculator 49 ... motor power converter, 50 ... control circuit power supply, 51 ... high-order controller, 52 ... ambient temperature measuring device, 53 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

固定子・回転子等のモータを構成する各部位の温度管理を行い、特定部位に過負荷を検出したときに、それをモータの過負荷として報知又は特定の制御の契機とする。交流モータの入力電力及び出力電力の差である全損失を検出し、該全損失と、前記交流モータの単位時間当たりの全放熱量との偏差を積算して得られた熱量に基づいて前記交流モータの温度を算出し、該温度に応じて前記交流モータの過負荷を判定する制御部を有するモータ制御装置であって、前記制御部が、前記交流モータの固定子巻線の熱量から固定子巻線温度を算出し、前記交流モータの回転子の熱量から回転子温度を算出し、夫々の閾値と比較して何れか1の閾値に達するとき、前記交流モータが過負荷として外部報知信号の出力及び前記交流モータの電力供給の低減或いは停止の少なくとも一方を実行するものである。

Description

モータ制御装置
 本発明は、モータ制御装置に関し、交流モータの過負荷保護を行うモータ制御装置に関する。
 一般産業界では各種生産工場などでファンポンプの空調機器、搬送機械など、動力源としての速度制御用途において、インバータ駆動による汎用インダクションモータ(誘導型モータ)や、永久磁石式ブラシレスDCモータが使われている。
  また、半導体、電子部品製造組立機械、鍛造機械などで、速度、トルク、位置制御用途において、優れたサーボ性能を生かした急加減速や、位置決め制御などで永久磁石式ACサーボモータや、ベクトル制御インバータ駆動専用の誘導型モータが使用されている。
  鍛造機械では自動車のボディなどを板材から型抜き、絞り加工をプレス機で行うが、駆動モータには低速高トルク特性の優れたACサーボモータが使用されている。ACサーボモータを使用したプレス機の一例においては、スライドの急加速、減速や上下運動を繰り返すことが可能で、型絞りではスライドの高速動作から材料の直前で加工速度を急低速に減速して絞り加工することで、型の温度上昇による焼付き防止や、成形品内加工外径の寸法精度向上や、加圧中にスライドを一時停止し、油圧装置を作動することが可能とするなど、従来プレス機では難しい成形も容易にできるようになった。
 誘導型モータであっても永久磁石型モータであっても、高回転化や高トルクの反復負荷の要求によって、モータの高温化が増加する傾向にある。モータの温度は、出力の変動や部品の負荷に大きな影響を与えることから、温度管理は重要な課題である。
 モータ温度の管理手法として、例えば、特許文献1は、電子サーマルを固定子に設置し、これによって電流を監視し、モータの過負荷を監視する技術を開示する。また、特許文献2は、モータに、固定子巻線の温度上昇を検出する温度検出器を内蔵し、これの検出値を監視することで過負荷からモータを保護する技術を開示する。また、特許文献3は、モータの入力電力からモータの出力電力を減じた値から、更に放熱損失を差し引き、モータ巻線温度を推定してモータの過負荷保護を行うことを開示する。
 更に、非特許文献1は、モータの損失および損失低減策を開示する。例えば、頁32の図21では、損失として銅損、漂遊負荷損、鉄損、機械損の4種類を示す。銅損と漂遊負荷損は、負荷率の増加と共に増加し、鉄損と機械損は一定であり負荷率の変動に影響されない。鉄損はモータの磁気回路の磁束密度に依存する。銅損はモータの巻線抵抗による一次銅損と誘導型モータの回転子側で発生する二次銅損があり、回転子が永久磁石のACサーボモータ、DCブラシレスモータ(以下、DCBLモータと呼ぶ)の場合は除外される。
特開2011-188581号公報 特開平10-174276号公報 特開平11-089083号公報
特集IM&PM Motor「誘導電動機とPMモータ」資料提供 (株) 日立産機システム 編集 (株) オーム社 (新電気2012年1,2月号抜刷第66巻1,2号第841,842号)2012年3月1日発行
 ここで、誘導型モータは、回転子にかご形巻線、実際にはアルミ材のように、ダイカストで作業性の良い材料を使用したバーとエンドリングを一体成型するアルミダイカストロータ、または、鉄心のスロット内に導体バー(銅材)を差し込み、エンドリングとバーを接合するバーロータが構成されている。このかご形導体にはモータの二次電流が流れる。二次側のかご形導体に誘起される電圧は、固定子の一次巻線と、回転子の二次巻線との巻数比で定まる。一般に回転子側の巻数は上述したようにダイカスト構造又はエンドリングとバーを接合するバーロータであるため複雑な構造にすることが困難である。そのため、一次側巻き数に比べて二次側巻き数は少なく、誘起される電圧は低くなる。他方、一次側から二次側に流れる電力は、効率を無視するのに等しいため、二次電圧が下がった分、二次電流は一次側の電流よりその分大きくなる。モータの出力軸が可変速を伴う加速、減速、押し当て保持またはサーボロックを繰り返す反復負荷連続使用で、二次電流は一次電流より巻き数比に反比例して増大し、二次銅損は電流の二乗で発生することから、回転子側の温度は極めて高いものとなる。この熱は回転子から固定子を経由してモータ表面の冷却フィンまで熱伝導によって冷却する構造となるため冷却効率に課題が残る。
 また、永久磁石式モータは、誘導型モータと同様に、固定子側のモータ電流を監視した電子サーマルによるモータの過負荷保護や、固定子巻線に温度検出器を内蔵したモータの過負荷保護を行うことが行われてきた。しかしながら、永久磁石式モータは、高速域で負荷トルクが定格トルク以下でもモータの温度上昇が大きくなるという現象があり、鉄損による温度上昇の影響が大きい。鉄損は鉄心に生じる損失で、鉄心を通る磁束が変化することにより生じる。
 鉄心以外にも永久磁石の温度上昇がある。鉄損のヒステリシス損と渦電流損は、高速域で永久磁石の渦電流損が増大し磁石自体が発熱し高温となる。永久磁石が高温になると減磁レベルが低下する恐れがある。永久磁石は固定子巻線から、キャリア周波数が数k~数十kHzによるPWM駆動のインバータによって高周波成分を含むリップル電流で与えられる。この高周波リップルが含まれる電流はモータの鉄芯や永久磁石内にリップルを伴う磁束を作り、ヒステリシス損や渦電流損である鉄損を生む。
 また、この高周波リップルが含まれる電流は、永久磁石への減磁の影響も考慮する必要がある。鉄損はモータ電流の増減による電子サーマルでは過負荷保護ができない。また、鉄損の影響は高性能永久磁石であるほど顕著であり、従来の磁束密度の低い永久磁石では問題となっていなかった。この点、特許文献3は、モータの入力電力からモータの出力電力を引き算し、更にこの値から放熱損失を差し引いて、モータ巻線温度を推定してモータの過負荷保護を行うことが開示するものの誘導型モータの回転子の二次電流を監視した過負荷保護や、永久磁石式モータの回転子の永久磁石の温度上昇による過負荷保護についての開示はない。
 更に、サーボプレス機械における負荷は反復負荷使用や反復負荷連続使用(ここでは、これを「反復負荷」と呼ぶ。)であり、反復負荷で運転されるモータでは、繰り返される負荷印加の1周期中に、モータトルクのピークが定格トルクの数倍に達する場合、それに相当するモータ損失がモータ内に蓄えられる。モータ内部に蓄えられた熱量は、固定子側はモータ表面の冷却フィンから放熱する。しかし、回転子側は回転子と固定子間の空隙(ギャップ)があり、空気の介在があって固定子を通してモータ表面の冷却フィンより放熱せざるを得ない。このため、回転子側の冷却は固定子側に比較して効率は著しく落ちる。
 何れの形式のモータであっても回転子を含めた温度管理は重要であるが、回転子は静止状態に無いため、特許文献1や2が開示する電子サーマルや温度検出器を回転子に設置し、温度を管理することは困難である。
 このように固定子側の部位のみではなく、回転子側の部位も含めて、モータの過負荷検出を行う技術が望まれる。また、モータの形式や仕様態様に関わらず、モータの特定部位に過負荷を検出したときに、それをモータの過負荷として報知又は特定の制御の契機とする技術が望まれる。
 上記課題を解決するために、例えば、請求の範囲に記載の構成を適用する。即ち交流モータの入力電力及び出力電力の差である全損失を検出し、該全損失と、前記交流モータの単位時間当たりの全放熱量との偏差を積算して得られた熱量に基づいて前記交流モータの温度を算出し、該温度に応じて前記交流モータの過負荷を判定する制御部を有するモータ制御装置であって、前記制御部が、前記交流モータの固定子巻線の熱量から固定子巻線温度を算出し、前記交流モータの回転子の熱量から回転子温度を算出し、夫々の閾値と比較して何れか1の閾値に達するとき、前記交流モータが過負荷として外部報知信号の出力及び前記交流モータの電力供給の低減或いは停止の少なくとも一方を実行する構成である。
 本発明によれば、モータの過負荷保護を、固定子のみでなく回転子を始めとする他のモータ構成要素の温度を考慮して行うことができる。また、個々の構成要素単位で過負荷を管理することで、モータの形式や仕様態様に制限されず、汎用性に優れたモータ過負荷の管理を実現することができる。
  本発明の他の課題、構成、効果は、以下の記載から明らかになる。
本発明を適用した一実施の形態であるモータ制御装置を誘導型モータ用として適用した場合の過負荷検出回路を模式的に示すブロック図である。 本実施例によるモータ制御装置の力行時のモータ損失を示す模式図である。 本実施例によるモータ制御装置の回生時のモータ損失を示す模式図である。 本実施例によるモータ制御装置の直流電源による回生時のモータ損失を示す模式図である。 反復負荷使用の一例をプレス機用モータの回転速度とトルクとの関係から示す図である。 本実施例によるモータ制御装置の力行時におけるモータ回転速度-トルク特性上との関係で示す模式図である。 本実施例によるモータ制御装置の回生時におけるモータ回転速度-トルク特性上との関係で損失を示す模式図である。 モータの各部位に発生する損失の種類を示す図である。 本実施例によるモータ制御装置を、誘導型モータ用として適用した場合の全体回路を模式的に示すブロック図である。 本実施例よりモータ制御装置を、永久磁石式モータ用として適用した場合の全体回路を模式的に示すブロック図である。 本実施例の入力電力検出処理部の他の構成及び処理例を示す模式図である。 本実施例によるモータ制御装置を、永久磁石モータ用として適用した場合の過負荷検出回路を模式的に示すブロック図である。 モータ筐体の放熱特性を示す図である。 誘導型モータの等価回路を示す図である。 本実施例によるモータ制御装置のテーブル化したモータの鉄損データを示す図である。 モータ各部位の損失演算処理内容を示す図である。 本実施例による過負荷表示、報知、アラーム出力回路を示すブロック図である。 本実施例による過負荷表示、報知、アラーム出力の内容を示す図である。 本実施例によるモータ周囲温度を検出する周囲温度計測器の構成を示すブロック図である。 本実施例によるモータ制御装置が、第2部位固定子巻線を過負荷と判定する閾値を示す図である。 本実施例による過負荷検出信号のヒステリシスを示す図である。 本実施例による反復負荷印加時の温度上昇試験の一例を示す図である。 本実施例による過負荷検出後に自動復帰運転を実施する際の制御の流れを示す図である。 本実施例による複数のモータ各部位の温度をトレース表示するためのデータ転送構成を示す模式図である。
 以下、図面を用いて本発明を適用した実施例であるモータ電力変換装置100について説明する。なお本実施例において、モータ電力変換装置100には、ACサーボアンプやDCBLコントローラ、インバータ、ベクトル制御インバータ等を含み、演算装置等を備える構成であれば継電器等であってもよい。
 先ず、本実施例の過負荷保護の概要について述べる。
  誘導型(IM)モータや永久磁石式(PM)モータにかかわらず交流モータは、電気エネルギを仕事のエネルギに変える働きをする。しかしながら、交流モータに入力される入力電力Pinは、その全てが仕事のエネルギとして利用される訳ではなく、一部はモータの内部損失、熱、更には音として消費される。仕事エネルギの電力は出力電力Poutで、モータに連結された負荷にトルクTfと、回転速度Nfとを与える。入力及び出力はW(ワット)の単位で表すことができる。
 入力Pin(W)、出力Pout(W)とすると、モータ効率η及び損失Ploss(W)の関係式は(数1)、(数2)で表わすことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 本実施例では、モータの熱量の基となる物理量を、モータ電流ではなくモータの全損失量Plossとして捉える。個々の損失を積み上げて全損失量を算出することは複雑であるが、損失の内訳がわからなくても全損失は得ることができる。即ち(数2)に示す様に、モータの全損失量Plossを、モータの入力電力Pinから出力電力Poutを差し引いて得る。
 モータ損失において、鉄損はヒステリシス損と渦電流損に分類され、モータ電流が増加してもその損失は変わらない。よって、ヒステリシス損と渦電流損については、従来からスタインメッツの実験式が知られており、ヒステリシス損Phは、下記(数3)の関係となり、渦電流損Pecは、下記(数4)の関係となる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ヒステリシス損は周波数(モータ回転速度)に比例し、渦電流損は周波数(モータ回転速度)の二乗に比例するので、特に損失は高回転域で大きくなる。更に、モータがPWM(Pulse Width Modulation)波形で駆動されるモータ電力変換装置では、キャリア周波数が数k~数十kHzの高周波成分を含むリップル電流で与えられる。この高周波リップルが含まれる電流は、モータの鉄芯や永久磁石内にリップルを伴う磁束となり、ヒステリシス損や渦電流損である鉄損を招来する。鉄損は、固定子や回転子の鉄心又永久磁石式モータでは回転子の永久磁石の材質、板厚、断面穴形状により磁気回路が形成されることから磁界解析シミュレーションで求めること等ができる。
 モータ出力電力Poutは(数5)により求めることができる。ここで、モータの回転速度Nf及びトルクTfは、モータ電力変換装置100が制御する値であり、モータ電力変換装置100内で演算により得る。なお、インバータの場合は、センサーレスベクトル制御により、モータにエンコーダ等の速度センサーがなくても、モータの回転速度を推定して負荷変動率を小さく抑えた高精度の速度制御を行うことができ、このセンサーレスベクトル制御で利用するモータの推定回転速度Nfを使用して、モータ出力電力Poutを算出するようにしてもよい。
Figure JPOXMLDOC01-appb-M000005
 次に、モータ入力電力Pinは(数6)で表される。モータ入力電力Pinは、上記同様、モータ電力変換装置の出力であり、装置内で利用する値であり容易に演算することができる。
Figure JPOXMLDOC01-appb-M000006
 なお、モータ入力電力Pinを求める別の方法としては、モータに印加される夫々の相電圧と、相電流との瞬時値積を演算し、モータのU、V、W相の各相電力の和を(数7)で求めるようにしてもよい。
Figure JPOXMLDOC01-appb-M000007
 ここで、それぞれの瞬時値相電圧をVu、Vv、Vwとし、相電圧実効値をVrms、電源の角周波数をω、時間をtで表すと、より詳細には、(数7)に以下の(数8-1)~(数8-3)及び(数9-1)~(数9-3)を代入して計算し、(数10)でモータの入力電力Pinを求めることができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 また、それぞれの瞬時値相電流をIu、Iv、Iwとし、相電流実効値をIrms、位相角をφで表すと
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
となる。
Figure JPOXMLDOC01-appb-M000014
 上記(数2)で求められるモータの全損失Plossは、従来のモータ電流に変わる量として(モータ入力電力)-(モータ出力電力)としてPin-Poutで演算する。モータの全熱量をQ1(J)とすると、全損失Plossを時間積分し(数11)として表わすことができる。
Figure JPOXMLDOC01-appb-M000015
 なお、モータは、実際には各種部品で構成され、それぞれの材質も異なる事から、モータ電気部+筐体の比熱c1は一律とならない虞がある。そこで、モータ電気部+筐体の比熱c1の測定は、(冷却ファンは回さずに)モータの温度の測定場所を定め、周囲に対して断熱状態を維持しながら、モータ固定子巻線に一定の損失Ploss(熱量)を与え、モータ筐体の温度上昇ΔTc1を計測して(数12)で求めるのがよい。なお、モータの比熱を等価比熱としたのは、各種材料で構成されているため、測定場所を変えると温度上昇値が変わるので、測定場所を特定しその場所での比熱という意味で等価比熱として表現するものとする。
Figure JPOXMLDOC01-appb-M000016
 モータの等価比熱c1が(数12)で求められると、モータの巻線(コア等を含む)内部から発生する全熱量Q1は、(数11)でモータ筐体に蓄積され、モータ筐体(蓄熱部)の温度上昇Tc1は
(数13)で求めることができる。
Figure JPOXMLDOC01-appb-M000017
 モータの固定子巻線の温度上昇Tc2(K)は、固定子の熱量をQ2(J)、固定子の質量m2(kg)、固定子巻線の等価比熱c2(J/kg・K)とすると(数14)のようになる。
Figure JPOXMLDOC01-appb-M000018
 誘導型モータの回転子かご形導体の温度上昇Tc3(K)は、回転子の熱量をQ3(J)、回転子の質量m3(kg)、回転子のかご形導体の等価比熱c3(J/kg・K)とすると(数15)のようになる。
 また、永久磁石式モータの回転子の永久磁石の温度上昇Tc3(K)(誘導モータと同記号で示す。)の場合、回転子の熱量をQ3(J)、回転子の質量m3(kg)、回転子の永久磁石の等価比熱c3(J/kg・K)とすると、温度上昇値は(数15)として同じ数式として表すことができる。
Figure JPOXMLDOC01-appb-M000019
 同様に、モータの軸受の温度上昇Tc4(K)は、軸受他の熱量をQ4(J)、軸受他の質量m4(kg)、軸受の等価比熱c4(J/kg・K)とすると(数16)のようになる。
Figure JPOXMLDOC01-appb-M000020
 ここで、モータの損失のほとんどは、熱としてモータの各部位に拡散(伝播)する。例えば、据付冶具など金属の固体を通して伝導するし、モータ表面の冷却フィンから自然又は強制対流して大気中に放射もする。或いは一部が音として周囲に発散もされる。いずれの場合も熱伝達は(数17)で表現することができる。
Figure JPOXMLDOC01-appb-M000021
 なお、冷却フィン等で温度上昇値を算出する数式としては、熱抵抗Rth(℃/W)がある。この熱抵抗は定常状態での損失値(W)を与えて、温度が飽和した状態の温度上昇値は何度(K)になるということを算出できるが、モータに印加される負荷がリアルタイムで変化する場合、瞬時に変化する損失値(W)を熱抵抗に乗じても過度的な温度は得られない。
 そこで、本実施例では、モータを熱的な伝達関数で表現し、モータ筐体の温度上昇値は(数13)より算出し、このモータ筐体の温度上昇値は周囲温度との差をとり、モータ筐体の温度差よりモータから放熱する単位時間当たりの放熱量を(数17)で演算することを特徴の1つとする。これらより、モータから発生する全損失Plossと、モータから放熱する単位時間当たりの放熱量Qfとの差から、モータが保有している全損失現在値を算出し、この全損失現在値からモータ固定子巻線の温度上昇値を(数14)より算出、モータ回転子の温度上昇値は(数15)より算出、また、モータの固定子で回転子を支える軸受部の温度上昇値は(数16)で算出し、各部の温度上昇値は過負荷と判定する閾値と比較して、いずれかの部位が先に過負荷を検出したとき、それをモータの過負荷として出力するようになっている。
  以上が、本実施例のモータ電力変換装置100による過負荷保護処理の概要である。以下、各実施例について、図面を参照しながら詳細に説明する。
 図2に、モータ電力変換装置100が「力行時」のモータ損失の様を模式的に示す。1はモータで、交流電源2から供給された電源を電源回生機能付順変換器4の全波整流用コンバータ5で整流し、平滑コンデンサ8で平滑して、直流電圧に変換する。次に、この直流電源から逆変換器9により再び交流に変換し、モータ1に電力を供給するようになっている。逆変換器9は、スイッチング素子10及びフライホイルダイオード11が逆並列接続され、更に、上(P側)、下(N側)に直列接続された1アームをnアーム即ちn相分を備える。本図では、3アームの3相分を例示する。スイッチング素子10はパワー回路のスイッチングによるPWM(Pulse Width Modulation)制御を行う。そして、モータ1は回転速度Nf、トルクTfをモータ出力軸に動力として負荷に与え、機械を駆動する。
 ここで、図2に示すモータ1の矢印の幅は、電力の大きさの程度を示す。力行状態ではモータ1が入力電力Pinを得て、モータ出力Poutを出力するので、その大小関係は、入力電力Pin>出力電力Poutとなり、小さくなった量は損失Plossとなる。その損失Plossのほとんどは、モータの発熱となる。なお、力行動作中は、電源回生機能付順変換器4の電源回生用コンバータ6は休止状態となる。
 図3に、モータ電力変換装置100が「回生時」のモータ損失の様を模式的に示す。本図は、例えばモータ1が四象限運転を行うエレベータ用モータ等の場合を示す。エレベータ用モータは垂直方向に昇降動作を行い、下降時は重力方向に乗り物ケージが落下するのを抑えながら、モータトルクは上昇方向に出力し、速度は下降方向にスムーズに動かすので回生動作となる。回生動作は重力により乗り物ケージが落下することで、モータ出力軸が外部から回される。このため、モータは発電状態となり、発電(回生)されたエネルギがモータ1から逆変換器9を通り、平滑コンデンサ8に発電(回生)エネルギを充電する。4は電源回生機能付順変換器で6の電源回生用コンバータで、平滑コンデンサ8に蓄積された発電(回生)エネルギを7の回生用交流リアクトルを通して交流電源2に回生する。このときモータ入力電力Pinと出力電力Poutの関係をエネルギの流れで見ると、負荷(機械)側からモータを通って、逆変換器9、平滑コンデンサ8、電源回生機能付順変換器4の電源回生コンバータ6、回生用交流リアクトル7を経て、交流電源2に回生される。このとき、モータ1のPinとPoutの矢印の方向は図2とは逆となり、矢印の幅(電力の大きさの程度)はモータ出力Poutが最も大きく、入力電力Pinが小となり、その大小関係は、(入力電力Pinの絶対値)<(出力電力Poutの絶対値)となり、小さくなった量は損失Plossとなる。
  この損失Plossの殆どは、モータの発熱となる。なお、回生動作中は、電源回生機能付順変換器4の全波整流用コンバータ5は休止状態となる。
 なお、図2、図3では入力電力Pin、出力電力Poutを四象限動作で扱うため、図2の力行状態の場合を正の方向と規定する。この場合、回生状態である図3では入力電力Pin、出力電力Poutは負の値となる。ここで(数2)式により、図3に示したモータ損失の方向が正の値になるかを検証する。図3は、入力電力Pin、出力電力Poutは負の値で、(入力電力Pinの絶対値)<(出力電力Poutの絶対値)であるから、絶対値はPoutが大きい。Pinを(-小)、Poutを(-大)として表現すると、(数2)式Ploss=Pin-Pout=(-小)-(-大)=(-小+大)>0となり、Plossは正の値になる。以上から、図3のPlossの方向は、図2と同じ方向になることがわかる。
 図4に、直流電源によるモータ電力変換装置の回生時のモータ損失の様を模式的に示す。図2、図3は交流電源による供給のため、順変換器を通して直流電源を得て、再び逆変換器で交流に変換したが、直流電源(バッテリ)による供給では電源回生機能付順変換器4が不要となる。本図は回生状態であるから、発電(回生)されたエネルギがモータ1から逆変換器9を通り、平滑コンデンサ8に発電(回生)エネルギを充電するので、モータ1と逆変換器9は図3と同じである。図3と異なる部分は、交流電源2が直流電源(バッテリ)3に変わり、平滑コンデンサ8に発電(回生)エネルギを充電すると同時に、直流電源(バッテリ)3に直接回生され充電される。入力電力Pin、出力電力Poutの正負の極性及び絶対値の大小については、図3と同じため説明は省略する。また、力行時のモータ損失の説明は、図2の電源回生機能付順変換器4が直流出力であるため、図2の逆変換器9の場合と同様である。
 図5は反復負荷使用の一例をプレス機用モータの回転速度、トルクより説明する図である。プレス機械はモータの回転運動をクランク機構により往復運動に変える構造で、スライドを上下して下死点で薄板絞り加工を行う一例を示している。図5の上図はモータ回転速度を示し、スライドは上死点から正転で運転し、型の焼付き防止のため下死点手前の薄板材料の直前で停止し位置を保持した後、再度下降して押し当て絞り加工を行う。十分に押し当て加工後、モータは同じ正転方向に運転し、スライドは上昇して上死点に戻り1/2サイクルが終了する。図5の下図はモータのトルクを示し、下降1で力行方向に加速し、一定速、減速停止時は回生トルクで運転し、押し当て絞りは力行運転となる。スライドが上死点に戻る時は、モータは正転方向のまま加速、一定速は力行で運転し、減速時は回生運転で停止する。
 この動作を繰り返す場合は、モータは逆転方向でスライドを下降し、型の焼付き防止のため下死点手前の薄板材料の直前で停止して位置を保持した後、再度下降して押し当て絞り加工を行う。十分に押し当て加工後、モータは同じ逆転回転方向に運転し、スライドは上昇して上死点に戻り残りの1/2サイクルが終了する。モータは正転運転で1回まわり、逆転運転で1回戻り、スライドは2回絞り加工を行うことができる。
 この動作を高速で行う場合、スライドを上死点と下死点の中間点から正転スタートし、下死点で絞り加工し、反対側の中間点に正転で運転後停止する。戻りは逆転でスタートし下死点で絞り加工し逆転で元の中間点に戻る。この運転は、円運動を行うフライホイルにクランク軸の支点が固定され、その支点が時計の振り子のように動くため振り子運転と言われる。この支点の回転角度を180°より小とするとタクトタイムが小さくなり、モータの負荷率は上昇し反復負荷連続使用としては過負荷の方向に向かうため、十分な過負荷保護が求められる。
 図6は、本実施例の「力行時」の「モータ回転速度-トルク特性」上で損失を説明する図である。図は横軸が回転速度Nf、縦軸が(力行)トルクTfで、モータの最大トルクを点A-B-C-Dを接続したラインで示す。また、モータの定格トルクTf0、定格回転速度Nf0とする定格出力点P0を図上に示す。次に、定格出力点を通る定格出力曲線(Tf=9.55×P0/Nf)を図上に示す。この曲線が回転速度-トルクで示すモータ出力Pout一定曲線である。次に(数2)よりPin=Ploss+Poutであるから、モータ出力Pout一定曲線にモータ損出を加算すると入力電力Pin一定曲線になる。なお、図中に機械損、鉄損、漂遊負荷損、銅損の一例を示している。銅損は低速高トルク領域で、電流増加により全損失に占める割合が支配的となる。鉄損は電流に影響されないがヒステリシス損は周波数に比例し、渦電流損が周波数の二乗で増加する。このため、特に永久磁石式モータで、高速領域でモータ電圧が飽和し最大トルクが低下する中で、急に全損失に占める鉄損の割合が増加し支配する。
 図7は、本実施例の回生時の「モータ回転速度-トルク特性」上で損失を説明する図である。本図は横軸が回転速度Nf、縦軸が回生トルクTfであり、力行トルクを正の目盛とするのに対し、負の目盛で記載している。回生運転は機械側からモータ軸が回転させられ、出力電力Poutが最も大きくなり、このエネルギを入力電源に回生し、その入力電力Pinが最も小さくなる。なお、図に個々の損失は省略しているが、入力電力Pinと出力Poutに挟まれた部分が全損失Plossである。全損失は低速領域の最大トルク域で銅損が支配的になり、高速域の最大トルクが制限された領域で鉄損が増加する。また、誘導型モータにおいて回生時、回生エネルギにより直流電圧(PN間電圧)が上昇時、モータに与える(電圧)V/(周波数)Fが一定となるようPWM波形のパルス幅が制御されていない場合は、鉄損が増加する。
 図8に、モータの各部位に発生する損失の種類を示す。誘導型モータと永久磁石式モータの各部位について発生する損失は、固定損と負荷損に大別される。固定損は負荷の大小に関係しない鉄損、機械損があり、負荷損は負荷の大小によって増減する銅損、漂遊負荷損である。本図に示す銅損は一次巻線及び二次巻線で生じ、(電流二乗)×(巻線抵抗)の関係で発生する。銅損は、誘導型並びに永久磁石式モータの固定子巻線と、誘導型モータのかご形導体並びにバー導体とで発生する。
 漂遊負荷損は、負荷電流が流れることで導体や鉄心以外の金属部に渦電流が流れて生じる損失である。漂遊負荷損は、モータ筐体やカバー等で発生し、測定や計測が困難な部分である。
  鉄損は、ヒステリシス損と渦電流損があり、これらは周波数(モータ回転速度)の増大や最大磁束密度に関係し、固定子並びに回転子の鉄心や永久磁石式モータの永久磁石で発生する。鉄損は、(数3)(数4)で得られる。また、PWM波形で駆動されるインバータ、コントローラ、サーボアンプでは、モータに与えられる高周波のキャリア周波数に起因する鉄損が、鉄心、永久磁石で生じる。機械損は軸と軸受の間で発生する摩擦損や、回転子が周囲の空気と摩擦することによって生じる風損がある。他冷却ファンでモータを冷却する場合はファンの消費電力も機械損に加算する。図8では、これらの損失は、誘導型モータと永久磁石式モータで区分し、その部位として、固定子は鉄心、巻線及びその他に、回転子は鉄心、かご形導体(誘導型モータ)、永久磁石(永久磁石式モータ)及びその他に、固定子/回転子以外は、軸受及びファンに分類し、銅損(一次、二次)、漂遊負荷損、鉄損、機械損の4種類の損失について発生する部位を丸印で示している。
 図9に、モータ電力変換装置100を、誘導型モータに適用する場合の回路構成を模式的に示す。モータ電力変換装置100で、モータ1を駆動するインバータ、ベクトル制御インバータ、誘導型ACサーボアンプ等である。
 先ず主回路から説明する。交流電源2から供給された電源を電源回生機能付順変換器4の全波整流用コンバータ5で整流し、平滑コンデンサ8で平滑して直流電圧(PN電圧)に変換する。逆変換器9は、この直流電源を再び交流に変換し、U相、W相電流検出器CTu12、CTw13を介して誘導型モータ1aと接続するようになっている。なお、逆変換器9は、スイッチング素子10及びフライホイルダイオード11が逆並列接続され、PN間に上下直列接続された1アームがnアーム(図では3アームの3相分)を備える。
 スイッチング素子10は、スイッチングによるPWM制御を行い、誘導型モータ1aを速度、位置制御して、動力を負荷に与えて機械を駆動する。また、モータ1が回生動作中は発電状態となり、回生エネルギをモータ1から逆変換器9を介して平滑コンデンサ8に充電するようになっている。また、回生エネルギは、平滑コンデンサ8から電源回生用コンバータ6を介し、回生用交流リアクトル7を介して交流電源2に戻るようになっている。
 誘導型モータ1aは、位置、速度検出用のエンコーダ14aをモータ軸に備える。なお、モータ電力変換装置がセンサーレスベクトル制御インバータである場合には、エンコーダ14aは必須ではない。センサーレスベクトル制御の場合は、内部演算処理されるモータの推定回転速度Nfを使用することができる為である。エンコーダ14a付の場合、モータ軸に取り付けられたエンコーダ14aの出力は制御ロジック回路15の位置・速度演算器27に送られ、モータの回転速度Nfを出力する。ここで、回転速度Nfは減算器20で速度指令Nとの差ε(=N-Nf)を出力し、速度制御器(ASR)21で増幅されトルク電流指令Iqとなる。トルク電流指令Iqは、トルク電流フィードバック信号Iqfとの差を演算する減算器20に出力されると共に、すべり周波数演算器30に送られる。
 また、回転速度Nf信号は磁束演算器29に送られ、基底回転速度以下は一定磁束、基底回転速度以上で定出力制御となるように、磁束弱め制御パターンとなる磁束電流指令Idを出力する。磁束電流指令Idは、すべり周波数演算器30において、基底回転速度以下ではその出力のすべり角周波数ωsをトルク電流に比例して出力される。また、31は角周波数変換定数(2π/60)で角周波数ωrに変換し、加算器19で角周波数ω1=ωr+ωsを演算する。角周波数ω1は積分器36により位相θに変換され、dq/3相変換器24及び3相/dq変換器26に送られる。
 U相電流検出器CTu12とW相電流検出器CTw13は、誘導型モータ1aの電流を検出し、電流フィードバックIuf、Iwf信号として制御ロジック回路15の3相/dq変換器26に入力する。3相/dq変換器26は、3相Iuf、Iwf信号からd、q軸直交で表されるIdf、Iqf信号に変換する。磁束電流指令Idは、減算器20で磁束電流フィードバック信号Idfとの差をとりd軸電流制御器(ACR)22で増幅される。また、磁束電流指令Idに直交するトルク電流指令Iqは、減算器20でトルク電流フィードバック信号Iqfとの差をとりq軸電流制御器(ACR)23で増幅される。d軸、q軸電流制御器(ACR)22、23の出力はd軸、q軸電圧指令Vd、Vqとしてdq/3相変換器24に入力し、3相電圧指令Vu、Vv、VwをPWM回路25に出力し、逆変換器9のスイッチング素子10のゲート信号として与えられ、誘導型モータ1aが制御されるようになっている。
 次に、全損失演算回路16(破線)について説明する。モータ電流フィードバックIuf、Iwf信号は、3相/dq変換器26で直交するIdf、Iqf信号に変換され、トルク演算器32でモータのトルクTfがベクトル演算される。このトルク信号Tfと位置・速度演算器27からの回転速度Nfを入力して、出力Pout演算器33で(数5)を演算し、出力電力Poutを得る。
  電流演算器34は電流実効値Iを算出し、相電圧実効値はdq/3相変換器24より入力して相電圧、電流および力率cosθをベクトル演算から求め、入力Pin演算器35で(数6)により入力電力Pinを算出する。
 上記から出力Pout演算器33、入力Pin演算器35で算出されたPout、Pinは、減算器20で(数2)のPin-Poutが演算され、モータの全損失Plossが算出される。モータの全損出Plossは過負荷検出回路17aに送られ、モータが過負荷か否かが判定される。過負荷検出回路17aは、モータの蓄積熱量、単位時間当たりの放熱量の状態やモータ各部位の温度上昇からモータが過負荷と判定すると、過負荷検出信号OLを保護処理回路18に送り、外部に過負荷表示や過負荷報知の信号を出力し、更には、モータを停止して過負荷保護を行うようになっている。
 なお、以上で説明した制御ロジック回路15内の速度制御器(ASR)21、d軸及びq軸電流制御器(ACR)22、23、PWM回路25他のブロック図は、CPUやDSPといった演算装置と、ソフトウェアとの協働によって実現される。全損失演算回路16内の各ブロック図も同様に演算装置と、ソフトウェアとの協働で実現されるものである。
 図10に、モータ電力変換装置を、永久磁石式モータに適用する場合の回路構成を模式的に示す。モータ電力変換装置100は、ACサーボアンプやDCBLコントローラ、インバータを含む。先ず、主回路については電源回生機能付順変換器4、逆変換器9、U相、W相電流検出器CTu12、CTw13は誘導型モータ(図9)に適用する場合と同一である。永久磁石式モータ1bは、位置・速度・磁極位置検出用のエンコーダ14bをモータ軸に備える。なお、モータ電力変換装置49が、DCBLコントローラ、インバータの場合には、エンコーダ14bは必須構成では無い、センサーレスDCBLモータの場合、ベクトル制御で速度制御ができるためである。なお、磁極位置検出はモータの回転子に取り付けられている永久磁石の磁極の位置を検出するためのものである。
 エンコーダ付の場合、モータ軸に取り付けられたエンコーダ14bの出力は制御ロジック回路15の位置・速度磁極位置演算器28に送られ、モータの回転速度Nfを出力する。また、位置・速度磁極位置演算器28から磁極位置信号θが、dq/3相変換器24、3相/dq変換器26へ出力される。回転速度Nfは減算器20で速度指令Nとの差ε(=N-Nf)を出力し、速度制御器(ASR)21で増幅され、トルク電流指令Iqとなる。
 永久磁石式モータ1bの電流は、U相電流検出器CTu12とW相電流検出器CTw13で検出され、電流フィードバックIuf、Iwf信号となって制御ロジック回路15の3相/dq変換器26に入力される。3相/dq変換器26では3相Iuf、Iwf信号からd、q軸直交で表されるIdf、Iqf信号に変換される。
 トルク電流指令Iqは、トルク電流フィードバック信号Iqfとの差を演算する減算器20に出力され、その偏差はq軸電流制御器(ACR)23で増幅される。d軸電流指令Idは弱め界磁を行う場合等の電流指令で、減算器20でd軸電流フィードバック信号Idfとの差をとり、その偏差をd軸電流制御器(ACR)22で増幅される。d軸、q軸電流制御器(ACR)22、23の出力はd軸、q軸電圧指令Vd、Vqとしてdq/3相変換器24に入力し、3相電圧指令Vu、Vv、VwをPWM回路25に出力し、逆変換器9のスイッチング素子10のゲート信号として与えられ、永久磁石型モータ1bが制御されるようになっている。
 次に、全損失演算回路16(破線)について説明する。出力電力Pout及び入力電力Pinの算出は、図9と同様のため省略する。減算器20は、(数2)のPin-Poutを演算し、モータの全損失Plossを算出する。モータの全損出Plossは過負荷検出回路17bに送られ、モータの蓄積熱量、単位時間当たりの放熱量の状態やモータ各部位の温度上昇からモータが過負荷と判定されると過負荷検出信号OLが保護処理回路18に送られ、外部に過負荷表示又は過負荷報知の為の信号を出力し、更に、モータを停止して過負荷保護を行う。
 なお、Pin及びPoutの演算は、上記図9、図10の例に限定するものではない。
  図11に、入力電力の検出について、他の構成例を模式的に示す。図9及び図10では、制御ロジック回路15内の信号から入力Pin演算器35で入力電力Pinを演算したが、図11の例では、モータの端子電圧から相電圧Vu、Vv、Vwを検出し、モータ電流はU相、W相電流検出器CTu12、CTw13よりIuf、Iwfを検出して演算を行う。具体的には、相電流Ivfは、三相電流Iuf+Ivf+Iwf=0から、Ivf=-(Iuf+Iwf)となるように構成される。制御ロジック回路15のCPUは、上記(数7)の演算をU、V、W相毎の相電圧、相電流の瞬時値積を演算することで、(数8-1)~(数8-3)の相電圧と(数9-1)~(数9-3)の相電流の積演算を行う。これによりCPUは、各相のU相、V相、W相の入力電力量を加算することで「3相入力電力Pin」を得る。
 以上が本実例の回路構成を概要である。
  次いで、本実施例の特徴部分の1つである過負荷検出回路について説明する。先ず、誘導型モータに適用する場合(図9)のモータ過負荷検出回路17aについて述べる。
 図1に、誘導型モータの過負荷検出回路17aにおける過負荷検出装置の詳細を示す。過負荷検出回路17aは4つの機能部に分かれる。
  先ずは基本部分となる第1部位37(点線)で、モータ全体を含む(モータ電気部+筐体)の熱量を処理する。次に第2~4の部位はモータの各部位に分かれる。
  第2部位45は固定子で、算出する温度上昇は固定子巻線である。
  第3部位46は回転子で、算出する温度上昇はかご形導体である。なお、かご形導体に限定されず、バーロータ等の他の態様でもよい。
  最後の第4部位47は軸受他で、算出する温度上昇は軸受である。
  なお、第1部位37は、モータ全体(モータ電気部+筐体)の熱量の処理を行うが、当然ながら第2~4の部位の熱量も含まれる。第1部位37ではモータに入力される全損失から、単位時間当たり蓄積される全熱量及びモータから単位時間当たりに放熱される全熱量を正確に演算し、現時点でモータに蓄積される単位時間当たりの全熱量、これを全損失現在値Pe(W)として捉える。
 第1部位37について具体的に説明する。第1部位37は(モータ電気部+筐体)で、ここにモータの全損失Ploss(入力電力Pin-出力電力Pout)が入力される。次に。減算器20で全損失Ploss(モータに単位時間当たり蓄積される熱量)から、モータから単位時間当たりに放熱される熱量Qfを減算する。これの出力はモータに現在蓄積される単位時間当たりの熱量であり、全損失現在値Pe=Ploss-Qfで求められる。全損失現在値Peは、モータ蓄熱部42-1(伝達関数:1/(m1・c1・s))に入力され、モータの全熱量Q1が演算され、(数13)によってモータ筐体温度上昇値Tc1(K)が算出される。なお、モータの筐体温度Tc1(℃)は、モータ筐体温度上昇値Tc1(K)にモータの周囲温度Ta(℃)を加算して与えられる。第1部位37の過負荷判定回路43-1及び減算器20への出力は、モータの周囲温度Ta(℃)を加算したモータの筐体温度Tc1(℃)の値である。
 次に、モータ筐体温度Tc1(℃)は、減算器20によって周囲温度Ta(℃)との差をとり、モータ放熱部40(伝達関数:α・kf・A)で(数17)を演算し、単位時間当たりの放熱量Qf(J/s)を出力する。ここでkfは強制冷却係数を示し、自然冷却の場合はkf=1である。モータ放熱部40の出力である単位時間当たりの全放熱量Qf(J/s)は、全損失Plossを与えられた減算器20に戻り、負帰還フィードバックループを構成する。
 なお、モータを熱抵抗と捉えて、モータ筐体を熱抵抗Rth(℃/W)として損失(W)を与えることで、モータの温度上昇値が得られ、この値と閾値を比較して過負荷に対して保護することもできるが、熱抵抗Rthを使用して温度上昇値が得られるのは、過度状態を経過後、温度が飽和した熱平衡状態での温度上昇値、即ち定常状態での解(値)のみである。
  これに対し、反復負荷のように時々刻々変化する負荷の損失を扱う場合には、全損失が変化して与えられ、これが連続繰り返す過度状態を扱う温度上昇値の変化は熱抵抗Rthでは算出できない。これを解決するために、本実施例では蓄積熱量、放熱熱量や温度上昇値を、微分、積分が扱える伝達関数で実現することとした。
 また、第1部位37の特徴の1つとして、全損失Plossから単位時間当たりの全放熱量の差を減算器20で構成したことが挙げられる。モータの放熱はモータ筺体周囲の冷却フィンから大気中に発散したり、モータが設置される足取付部から相手側取付ベース(定盤)に熱伝導したりもする。どこにどの位の量が発散しているかを計測するのは困難であるが、モータ各部の温度上昇値は、全損失を正確に検出して蓄積熱量を求め、更にモータから単位時間当たりの放熱量を正確に掴むことで、正確な温度上昇が得られるものである。そこで、入力電力Pin-出力電力Poutとから全体量として正確に把握するようになっている。
 仮にモータから単位時間当たりの放熱量が正確に検出できたとして、全損失Ploss-単位時間当たりの放熱量Qfを、減算器20で構成してよいかを考える。全損失は積算してモータの全熱量を求め、温度上昇値を算出する。この時の温度上昇値はモータの周囲温度に対しての値である。他方、モータからの単位時間当たりの放熱量は、周囲温度との温度差よって変化する。実際には、モータ内で入力された全損失Plossが、いきなり単位時間当たりの放熱量Qfによって差し引かれ、消える訳ではないがマイコン内の演算上において、与えた電気量Plossから自然界の物理量の放熱量Qfを差し引いて、モータに残存している単位時間当たりの全損失現在値Peのシミュレーションを行うためである。これはモータの周囲温度が基準となっていることから可能となる。その結果から負帰還フィードバック構成になったものである。なお、第1の部位の過負荷判定回路43-1はモータ電気部+筐体温度Tc1(℃)を入力し、モータ筐体温度が過負荷となる閾値と比較し、閾値を超えた時、過負荷検出信号を論理和回路44に出力する。以上から、モータに残存している単位時間当たりの全損失現在値Peにより、印加される負荷が反復負荷使用であっても、モータの蓄積熱量、単位時間当たりの放熱量、温度上昇値を、過度的演算を含めて容易に扱うことができる。
 図13に、モータ筐体の放熱特性を模式的に示す。本例では、モータから単位時間当たりの全放熱量を試験データから測定する方法を示す。全放熱量という表現は、モータ枠周囲の冷却フィンから大気中へ発散する単位時間当たりの熱量と、モータが設置される足取付部に接する相手側取付ベース(定盤)から熱伝導による単位時間当たりの熱量又はモータがフランジ形の場合はフランジ面に接する相手側取付ベースに熱伝導する単位時間当たりの熱量とを含む。それぞれ個々の熱量は、その総量(合計値)である単位時間当たりの全放熱量であることを意味する。また、モータは自然冷却又は強制冷却であっても良い。
 モータ筐体の放熱特性の測定は、モータの設置条件他を確認し、駆動装置(モータ電力変換装置100)とモータを組み合わせて温度上昇試験で測定する。モータの回転速度、負荷率を変えて図13のx軸に示すモータ筐体温度と周囲温度差Tθ1~Tθ3・・・を変えて温度上昇試験を行う。そして、モータの温度が飽和した熱平衡状態(温度上昇が飽和し、一定温度に落ち着いた状態)で、モータに印加している全損失Plossと、単位時間当たりのモータからの全放熱量Qfとが等しくなる。このことからモータからの単位時間当たりの全放熱量Qfは、モータが熱平衡状態においてモータに印加される全損失量Plossを測定することで正確に求められる。モータの出力毎に図13のデータを不揮発性メモリに保存しておき、モータが強制空冷であっても自然冷却であっても、両者のデータがあればモータ筐体温度と周囲温度差の値Tθ(K)から単位時間当たりの放熱量Qfを読み取って演算することが可能である。
 図1に戻り、第2~第4部位について説明する。第2~4の部位には、夫々の部位の損失を入力し、損失から熱量を求め、個々の部位の温度上昇値を演算する。即ち第2の部位は固定子巻線温度上昇、第3の部位は回転子のかご形導体またはバーロータの温度上昇、第4の部位は軸受の温度上昇を個々に算出する。各過負荷判定回路43-2~43-4は、算出された個々の温度上昇値と、第2~4の閾値とを比較し、閾値に基づいて各部位が過負荷か否かを判定する。論理回路44はOR回路を構成し、第1の過負荷判定回路43-1を含めた4つの出力のうちいずれか1つが過負荷出力信号を発したとき、それをモータの過負荷検出信号OLとして保護処理回路18に出力する。
 図16に、第2~4部位の各損失演算処理内容を示す。本図では、区分欄として、誘導モータと永久磁石式モータに分類し、部位欄として固定子、回転子、軸受他の3部位に分類し、損失は銅損(一次銅損、二次銅損)、漂遊負荷損、鉄損、機械損の4種類に分類して、損失演算処理内容の欄が設けられている。また、この欄には図8で○印が表示された部分の枠に「A」、「B」、「-」を記載する。「A」は、サンプリング毎に毎回損失を演算し処理を行う部分である。「B」は予めシミュレーション又は詳細試験データからテーブル化しておき、その条件から損失値を利用する。「-」は該当する損失がない部分である。
 先ず、銅損については「A」であり、誘導型モータ及び永久磁石式モータの固定子巻線と、誘導型モータのかご形導体またはバーロータとで発生し、サンプリング毎に毎回損失を演算で求め(電流二乗)×(巻線または、かご形導体抵抗または、エンドリングとバー導体の抵抗)を演算で求める。
 「B」については、鉄損は誘導型モータ及び永久磁石式モータの固定子、回転子の鉄心、また永久磁石式モータの永久磁石で損失が発生する。鉄損は磁界解析シミュレーション及び詳細試験データから、モータの回転速度毎の鉄損データがテーブル化されているので、現時点の回転速度から鉄損データを損失値として選択し、入力する。
 機械損は誘導型モータ及び永久磁石式モータの軸受や風損で発生し、詳細試験データからモータの回転速度ごとのデータがテーブル化されており、現時点の回転速度の機械損失データを損失値として選択し、入力する。漂遊負荷損は、誘導型モータ及び永久磁石式モータ共に、詳細試験データより全損失値と銅損、鉄損、機械損を評価後、電流値に対する漂遊負荷損をテーブル化して選択し、入力する。或いは漂遊負荷損=全損失-(銅損+鉄損+機械損)で算出して求める。
 つぎに図の右列側に損失の小計欄E列があり、誘導型モータの固定子の行は各損失の小計Psiが計算される。この小計は固定子内の全損失Psiである。軸受他の行は固定子と回転子の繋ぎの部分であり、軸受や風損を含む軸受他の小計の全損失Pbiである。また、回転子の行は回転子内の小計の全損失Priである。Psi、Pbi、Priの末尾は誘導型モータ(IM)のiを示す。また、右列の全損失F列(Ploss)のiも誘導型モータであることを示す。
 図1に再び戻り、ブロック41-2、41-3、41-4のk2、k3、k4で示す全損失に対する比率は図16の最右列E/Fに示す。k2=Psi/(Ploss)i、k3=Pri/(Ploss)i、k4=Pbi/(Ploss)iで計算する。この全損失に対する比率k2、k3、k4は、サンプリング毎に毎回比率を再計算することが重要である。モータの回転速度、トルクによってモータの発生する損失の種類が変わるからである。なお、全損失(Ploss)iは、Pin-Poutで演算される(数2)と同じもので、2種類のモータを区別するためである。永久磁石式モータでは損失の末尾に(PM)のpをつけPsp、Pbp、Prp、(Ploss)pとしている。なお、損失演算処理内容は永久磁石式モータについても、誘導型モータと同様のため説明は省略するが、回転子側はかご形導体ではないため銅損は存在しない。
 また、モータ蓄熱部42-1、固定子42-2、回転子42-3、軸受42-4の伝達関数の質量は、それぞれ、m1:モータ質量、m2:固定子の質量、m3:回転子の質量、m4:軸受の質量を入力する。
 つぎに比熱はモータ又は各部位の等価比熱を入力する。等価比熱は工場で詳細試験実施時、定格回転速度、定格トルクにおいて、温度上昇試験で温度を測定する測定点を各部位毎常に1点を定める。温度上昇試験は、所定の測定点で定格点(定格回転速度、定格トルク)で全損失Plossと、温度上昇値とを測定する。質量は上述のm1~m4を用いる。また、モータ電気部+筐体の等価比熱c1は、比熱の計測試験をした値から(数12)で求める。固定子巻線の等価比熱c2、回転子かご形導体の等価比熱c3及び軸受の等価比熱c4についても同様に、比熱の計測試験で算出する。この等価比熱の定数はモータ定数としてメモリに登録しておき、モータの筐体温度Tc1、固定子巻線温度Tc2、かご形導体温度Tc3、軸受温度Tc4を演算するときに使用する。
 ここで、固定子42-2、回転子42-3、軸受42-4に入力される損失を記号Plo2、Plo3、Plo4としてまとめると(数18)となる。
Figure JPOXMLDOC01-appb-M000022
 この結果、固定子42-2、回転子42-3、軸受42-4に出力される固定子巻線温度上昇値Tc2(K)は、固定子の全熱量をQ2とすると、固定子巻線温度上昇値Tc2(K)は(数14)となる。また、回転子かご形導体又はバーロータの温度上昇値Tc3(K)は、回転子かご形導体又はバーロータの全熱量をQ3とすると、(数15)となる。また、軸受他の軸受は、温度上昇値Tc4(K)は、軸受他の軸受の全熱量をQ4とすると、(数16)となる。ここで、温度上昇値Tc2~Tc4(K)はモータの周囲温度Ta(℃)を加算して、各部位の温度Tc2~Tc4(℃)として与えられる。
 つぎに第2~4の部位の個々に算出された温度は、過負荷と判定するそれぞれ第2~4の閾値と比較する各部位毎の過負荷判定回路43-2~43-4で、各部位が過負荷となる閾値と比較し、閾値を超えた時、第1の過負荷判定回路43-1を含めた4つの過負荷検出信号を論理和回路44に出力する。論理和回路44では4入力OR回路を構成し、いずれか一つが過負荷出力信号を発したとき、それをモータの過負荷検出信号OLとして保護処理回路18に出力される。
 以上より、モータの損失は全損失が正確に得られる他、各部位にどんな損失がどのくらいの量で発生するかが、回転速度、負荷率によって個別に毎回積算されているので、各部位毎に過負荷検出ができる。このため反復負荷使用が与えられても、先に過負荷となった部位がモータの過負荷検出信号を出力することができる。保護処理回路18は過負荷情報を外部に表示、報知し、更にモータを停止してモータの過負荷保護を行うものである。
 図12は、本発明を適用した一実施形態である永久磁石式モータの過負荷検出回路を説明する図である。構成は図1と同じであり説明は省略するが、図1は誘導型モータで、図12は永久磁石式モータのため、第3の部位が図1は回転子のかご形導体であるのに対し、図12は回転子の永久磁石となる。永久磁石式モータの固定子42-2、回転子42-3、軸受42-4に入力される損失を記号Plo2、Plo3、Plo4としてまとめると(数19)となる。
Figure JPOXMLDOC01-appb-M000023
 なお、永久磁石式モータの回転子の永久磁石の温度上昇値Tc3(K)は、永久磁石の全熱量をQ3とすると(数15)となる。ここでも、温度上昇値Tc3(K)はモータの周囲温度Ta(℃)を加算して、各部位の温度Tc3(℃)とするのも同様である。
 図14は誘導型モータの等価回路を説明する図である。図14a)は運転中の誘導型モータの回路を示す。固定子(一次)巻線の1相分の抵抗、漏れリアクタンスをr1(Ω)、x1(Ω)、また、励磁コンダクタンス、励磁サセプタンスをg0、b0で示す。等価回路の変圧器の一次巻線に電圧E1を与えると二次巻線に電圧E22が誘起される。二次抵抗、漏れリアクタンスをr22(Ω)、X22(Ω)とし、機械動力を負荷抵抗r’で表している。モータの1相分の相電圧をV1、一次電流はI1が流れ励磁回路g0、b0には励磁電流I0、変圧器の一次側にはI1’が流れる。また二次側には電流I22が流れる。b)はa)の二次側回路諸量を一次側へ換算した等価回路を示し一般にはb)の回路が使われる。また、励磁電流による一次インピーダンスが無視できる場合は等価回路はc)となる。ここで、等価回路b)において、誘導型モータの銅損は一次銅損と二次銅損がある。モータの一次、二次巻線の相数をm1、m2とすれば、一次銅損はm1×(I1)×r1、二次銅損はm2×(I1’)×r2となる。モータ定数、定格電流If、無負荷(励磁)電流I0は詳細試験で確認されれば、モータ電力変換回路の制御回路15に搭載される不揮発性メモリに記憶され、CPU、DSPで演算処理される。また、モータ電流は図9のU相、W相電流検出器CTu12、CTw13で検出しており、二次銅損算出の際の電流I1’ベクトルは、一次電流ベクトルI1から無負荷(励磁)電流ベクトルI0のベクトル引き算で求めることができる。
 図15は本実施例によるテーブル化したモータの鉄損データを説明する図である。鉄損は負荷の増減では変化しない。モータの鉄損にはヒステリシス損と渦電流損があり、関係式を(数3)(数4)に示した。また、モータ電力変換装置からPWM波形によるキャリア周波数が数k~数十kHzの高周波成分を含むため、PWMキャリア周波数による鉄損も生じる。鉄損電力を直接実測するのは困難であるため、磁界解析シミュレーション及び製品出荷前のモータ、駆動装置(モータ電力変換装置)の組み合わせ温度上昇試験のデータから、回転速度に対する鉄損をテーブル化しておく。図15はテーブル化したモータの鉄損データをグラフ化したものである。(1)はモータ回転速度に比例して増加するヒステリシス損Ph、(2)はモータ回転速度の二乗に比例する渦電流損Pe、(3)は固定されたキャリヤ周波数のPWM駆動による鉄損(キャリヤ周波数によるヒステリシス損+キャリヤ周波数による渦電流損の小計)を示す。なお、(1)~(3)を合計した鉄損合計値がPfeで実線で示している。また、この鉄損合計値Pfeを磁界解析シミュレーションで固定子と回転子に分け、固定子側鉄損Pfesと回転子側鉄損Pferに分離する。鉄損の分離は固定子側の部位の温度、回転子側の部位の温度にそれぞれ個別に算出するためで図16の表で先に説明した。固定子側および回転子側の鉄損は、現時点の回転速度からこのテーブルを参照してサンプリング毎に鉄損値が更新される。
 図17は本実施例の過負荷表示、報知、アラーム出力回路を説明する図である。図17は誘導型、又は永久磁石式モータ電力変換装置の全体回路の図9、図10に示す制御ロジック回路15であり、ハードウェアの一部の過負荷出力回路を示す。制御ロジック回路15には、CPU53から通信コネクタ(CN1)58を通して外部にデジタルオペレータ59が用意されている。デジタルオペレータ59には入力キー63が5個、表示器60の下に並んでいる。右上にはスピーカ61、その下に発光器62が配置されている。デジタルオペレータ59では過負荷検出した内容を、発光器62、表示器60、スピーカ61で、表示又は報知することで過負荷アラームが発生したことを周囲に知らせ、また、過負荷アラームは過負荷検出し保護のため、モータを主回路から遮断した結果を周囲に知らせる役割を持つ。更に、CPU53よりインバータゲート54を通して、リレーコイル55とそのリレー接点57より外部端子出力TM1、TM2を経由して外部出力装置64に接続され、過負荷状態を警告又はアラーム保護のためモータを主回路から遮断したことを報告するものである。
 図18は本実施例の過負荷表示、報知、アラーム出力内容を説明する図である。「1」は過負荷表示、「2」は過負荷報知、「3」は過負荷アラームである。右隣の列は過負荷検出の主回路電源の処置について定義されており、「1」及び「2」の過負荷表示、過負荷報知は、過負荷検出しても主回路電源は供給したままで直ちにモータを保護せず運転を継続し、周囲の作業者にモータを停止する準備をさせることである。これは、モータをいきなり停止させると、例えば材料を供給している製品に不良品が発生したりするので、材料の供給を停止した後でモータを停止するためであったり、1つの製品の加工が完了してからモータを停止するためである。
  「3」の過負荷アラームはモータ電力変換装置100自身が、モータの過負荷保護のために直ちにモータから主回路電源を遮断し、モータをフリーラン停止させ、アラームは事後の報告を行うものである。
 デジタルオペレータの欄において、発光器62は視覚によって過負荷表示を報知するものであり、スピーカ61は擬音、音声、音響音、ブザーなど大きな音を発して報知するものである。なお、図18は一般的なものとして記載したが、周囲の環境により異なる場合もあるので注意が必要である。デジタルオペレータの表示器60は、詳細の内容を文字で正確に表示するもので、周囲の作業者に直ちに積極的に作業者の注意を引くためのものではないので△としている。つぎに外部端子出力TM1、TM2は1,2の過負荷表示、過負荷報知は警告のための警告接点出力であり、3の過負荷アラームはアラーム遮断後の報告のための接点出力である。これらの過負荷表示、過負荷報知、過負荷アラームは、ユーザーがパラメータで選択できるようになっている。
 図19は本実施例によるモータの周囲温度を検出する周囲温度計測器を説明する模式図である。図はモータ1の周囲温度を周囲温度計測器52で検出しモータ電力変換装置100に入力する場合を示す。モータ出力軸のエンコーダ14の信号はモータ電力変換装置100に取り込み、上位制御装置51から速度指令Nを入力する。運転開始は制御回路電源50を投入し、次に交流主回路電源2を投入後、上位制御装置51から速度指令Nを入力して運転スタートする。なお、モータの周囲温度を周囲温度計測器52で検出しない場合は、モータ電力変換装置100はモータの周囲温度範囲の最大温度を周囲温度にプリセットして運転する。
 図20は本実施例による第2の部位固定子巻線が過負荷と判定する閾値を説明する図である。先ず、(1)のモータの周囲温度Taを検出しない場合を説明する。(a)はモータの耐熱クラスA~Hを示し、各クラスの最高許容温度が(b)に対応する。例えば、クラスAは、最高許容温度が105℃で、クラスHに行くほど180℃と高くなり、これらは規格で定められている。
 ここで、モータの固定子巻線の温度測定方法には抵抗法がある。抵抗法は、抵抗温度係数が既知であることを利用して、温度試験前後の抵抗値から温度上昇値を算出する方法であり、巻線の平均温度が測定できる。しかし、1つの巻線で、冷却風の影響を受けている部分と、いない部分との温度差は抵抗法では測定できない。そこで、余裕温度のマージンδを予め定め、(c)に示す如く、(最高許容温度-δ)の余裕を見る。なお、第2の閾値は巻線自身のクラスや、巻線を保護する絶縁紙のクラス、絶縁寿命を確保するワニス材のクラスなどモータのクラスに合わせて選定される。なお、巻線のマージンδは、一般的に5~15℃とし、熱電対等を用いた温度試験で実測することで最終確認するものとする。(d)は第2の閾値となるモータ固定子巻線の許容温度上昇値を示す。モータ1の周囲温度Taを検出しない場合には、モータの周囲温度Taの初期値をモータの使用温度範囲の上限値Ta(max)として設定する。例えば、上限値Ta(max)が40℃であれば、初期値は40℃にセットされる。もし、ここで実際の周囲温度が10℃の場合、制御上は40℃からスタートするので、実際の温度とはオフセットがプラス30(K)となりギャップがある。(c)では最高許容温度からマージンのみをマイナスした値が示されているから、実際の周囲温度が10℃の場合、30(K)低い温度で過負荷保護トリップが動作することとなる。一見、交流モータ1にはまだ余裕があり、過負荷保護トリップの開始が早期に過ぎるとも思えるが、実際の周囲温度を検出するようになっていない場合、焼損事故防止上からは、より厳しい条件(本例では最も厳しい条件である初期値40℃)とすることが好ましいともいえる。以上から、(d)の第2の閾値となるモータ固定子巻線の許容温度上昇値は、マージンを減じた(c)の値から更にTa(max)を減じた値としている。
 次に、図20(2)のモータの周囲温度Taを検出する場合について説明する。(2)の(a)~(c)は(1)と同様である。(2)の場合、交流モータ1の実際の周囲温度を検出できるようになっている。よって、第2の閾値であるモータ固定子巻線の許容温度上昇値(d)は、(数20)で示される。
Figure JPOXMLDOC01-appb-M000024
 周囲温度が交流モータ1の使用温度範囲の上限値より低い場合、固定子巻線温度の上限値をその差の分だけ大きくすればよく、過負荷保護トリップ動作が、実状により適った条件で開始される。逆に、周囲温度が交流モータ1の使用温度範囲の上限値より高い場合、第2の閾値が下がるので、モータが焼損することはない。このため、より正確な過負荷保護アラームが実現できる。
 なお、(数13)(数14)にはモータ筐体とモータ固定子巻線の温度が示されている。モータの全損失、固定子側損失の変動を受け、モータ筐体と固定子巻線の(質量×比熱)の違いを考慮すると、モータ筐体は質量が大きく、固定子巻線は極めて小さく差は顕著である。このことから、固定子巻線の温度は、損失の変動に対して感度が高く急峻に反応するため、過負荷保護トリップ動作の精度を更に高くするという効果が得られ、より現実に近いモータ温度管理を実現することができる。また、第2の閾値の設定ではモータの周囲温度について、固定値及び周囲温度値の両方に対応し、夫々交流モータ1の保守、且つ効率的な運用に適う温度をもって過負荷保護トリップ動作を実現することができる。
 図21は、本実施例による過負荷検出信号のヒステリシスを説明する図である。従来の過負荷保護として電子サーマルによるモータ電流検出による電流二乗時間積算方式では、カウンタによる積算値が、過負荷となる閾値に達した時、過負荷検出信号を出力して、モータへの動力を停止するため、過負荷検出回路の動作はその時点で終了となった。本実施例では、過負荷検出してモータへの動力を停止した後であっても、制御回路電源が継続して通電されていれば、モータの放熱演算は運転中と変わりなく正確に継続できる。このためモータの過負荷解除温度を設定し、モータが復帰温度まで下がれば、主回路を投入してモータの温度が放熱途中から蓄熱動作に継続しながら再運転が可能である。
 この自動復帰機能は図18で説明した1の過負荷表示出力又は2の過負荷報知出力をパラメータで選択した場合は、過負荷を検出した後も運転継続できるため必要な機能ではないが、3の過負荷アラームをパラメータ選択した場合、過負荷検出したとき主回路電源を遮断する。具体的な動作としては逆変換器9のすべてのスイッチング素子10のゲート信号を、モータが過負荷解除温度迄下がるまでオフを継続する。ここで、設定パラメータで自動復帰を選択しておくと、外部アラームリセット入力がなくてもモータの過負荷解除温度以下になれば、逆変換器9のすべてのスイッチング素子10のゲート信号オフも解除され、外部端子出力TM1、TM2からアラーム遮断の報告接点出力が解除されるので、この接点出力より運転を再スタートすることができる。
 例えば、無人工場で動作するロボット用モータでは、過負荷検出で停止すると次にメンテナンス作業員が来るまで停止したままであるが、図21の過負荷検出信号にヒステリシスを持つ過負荷解除機能を有することにより、運転再起動し自動復帰することができる。図はx軸に各部位の温度Tcn(図1、図12ではTc1~Tc4)、y軸は過負荷検出信号で正常状態ではLレベル、過負荷状態はHレベルである。閾値は過負荷検出温度TcnHで過負荷状態となる。モータが冷却して過負荷解除温度TcnLに下がると、運転パラメータが自動復帰であれば運転開始する。手動復帰の場合は作業員が一旦リセットしてから運転ボタンオンで運転開始となる。このヒステリシスは各部位で設定されているので、安全な温度まで低下するまで運転することはない。
 図22は本実施例による反復負荷印加時の温度上昇試験の一例を説明する図である。x軸は時間、y軸は各部の温度上昇でモータ筐体温度と固定子巻線温度、回転子かご形導体の温度を示す。モータは誘導型モータで他冷却ファンによる一定回転速度による通風冷却されている。負荷は反復負荷使用が印加され、速度指令は図5による速度指令が入力される。モータの1サイクルの実効トルクは100%が繰り返し印可されるため、モータへのピークトルクは定格トルクを超える負荷が印可される。図ではモータ筐体は直接、他冷却ファンにより強制冷却されるので、温度はゆっくりと上昇する。固定子巻線はモータ筐体が冷却されているため、温度は抑えられながら上昇する。しかし、回転子のかご形導体はモータ中心部にあり、冷却効率が悪いため温度は急上昇を続ける。やがて、時間t0で本実施例による第3部位の回転子かご形導体が過負荷検出するため、モータの過負荷トリップとなり焼損保護されたことを示す。
 固定子巻線の電流検出による過負荷保護検出のみでは、時間t0を超えてから固定子巻線が過負荷保護レベルまで上昇するが、それでは回転子側かご形導体は焼損してしまう。このため、過負荷検出時間t0以前に過負荷動作するよう閾値を下げて現実的な対応をしている。その結果、過負荷保護時間が早めに動作する仕様になっているため、反復負荷使用でない一定負荷使用においても、過負荷でないにもかかわらず同様に早めの保護が働く。
 図23は、本実施例による過負荷検出後自動復帰運転を説明する図である。図は誘導型モータに反復負荷を与えた場合の各部位の温度と外部端子出力(TM1、TM2)、外部主回路電源、制御回路電源をモニタ出力したものである。温度測定個所は第1の部位のモータ筐体温度Tc1、第2の部位の固定子巻線温度Tc2、第3の部位の回転子かご形導体温度Tc3、第4の部位の軸受温度Tc4である。パラメータ設定は自動復帰選択である。先ず、時間0からスタートし、時間t0で第3部位の回転子かご形導体温度Tc3が過負荷検出温度Tc3Hに達し、過負荷を検出して逆変換器9のすべてのスイッチング素子10のゲート信号がオフされる。また、外部端子出力(TM1、TM2)が出力され、主回路電源が外部で遮断されたことを示している。この状態でも過負荷検出回路17aは演算動作を続けるため、各部位の温度Tc1~Tc4は放熱を続けながら低下する。つぎに時間t1で回転子かご形導体温度Tc3が過負荷解除温度Tc3Lまで低下したため、スイッチング素子10のゲート信号オフが解除され、外部端子出力(TM1、TM2)がオフとなる。この外部端子出力により交流主回路電源を再び投入し、上位装置から速度指令を与えることで運転が再スタートする。そして各部位の温度Tc1~Tc4は、時間t1時点の温度を継続して温度上昇に転じた動作となる。
 図24は、複数のモータ各部位の温度をトレース表示するためのデータ転送を説明する図である。誘導型又は永久磁石式モータの過負荷検出回路17a、17bで、モータの各部位で演算される第1の部位のモータ筐体温度Tc1、第2の部位の固定子巻線温度Tc2、第3の部位の回転子かご形導体温度Tc3、第4の部位の軸受温度Tc4は、図23で示したようなトレース画面を外部のパソコン画面に表示することができるようになっている。
 ここでは、図23に示される過負荷検出後自動復帰運転時のトレースデータ転送について述べる。制御ロジック回路15内のCPU53にはシリアル通信ができる通信ポートがあり、図17ではこの通信ポートを使用してデジタルオペレータ59と通信することを説明した。また、CPU53にはRAMメモリ65が接続されており、CPU53は各部位の温度Tc1~Tc4の演算を担当している。先ずモータを運転する前にパソコン66で、トレースする測定点、スタートトリガ信号やI/O信号の測定点を選択し、パソコンからモータ電力変換装置51のCPU53にトレースデータ準備ができたことを送信する。つぎに運転オペレータは、スタート信号オンしてモータを運転し図23の運転を行いながら、一定時間の間隔をあけてトレースし、CPU53はそのデータをRAM65に保存しながらトレースを終了し、モータを停止する。トレースが終了すると自動的にトレースデータを、CPU53がRAM65からパソコン66にシリアル通信し、パソコン側でトレース画面が図23のように表示される。トレース画面には各部位の温度Tc1~Tc4の過負荷検出温度TcnH、過負荷解除温度TcnLも色分けされて表示されるので、作業者はモータ各部位の温度に余裕があるか否かを瞬時に判断できる。
 このように、本実施例によれば、モータを構成する固定子、回転子及び軸受等といった各部の熱量に応じてモータの過負荷状態を管理するため、過負荷保護の精度が向上する。特に、モータはその仕様態様によって、回転速度のみならずトルクとの関係でも発熱パターンが異なるものであり、この点、本実施例の各モータ要素毎に熱量を監視する構成は、過負荷保護管理に著しい汎用性を持たせることができるものである。
  また、モータの各要素の値をソフトウェアと演算装置による演算から導く構成により、電子サーマルといったセンサ類の組み込み作業負荷や故障等の虞がなく、簡易にモータ熱量を管理することができる。
 以上、本発明を実施するための形態について説明したが、本発明は上記構成に限定されるものではなく、その趣旨を逸脱しない範囲で種々の変更が可能である。
1…モータ、1a…誘導型モータ、1b…永久磁石式モータ、2…交流主回路電源、3…直流電源、4…電源回生機能付順変換器、5…全波整流用コンバータ、6…電源回生用コンバータ、7…回生用交流リアクトル、8…平滑コンデンサ、9…逆変換器、10…スイッチング素子、11…フライホイルダイオード、12…U相電流検出器CTu、13…W相電流検出器CTw、14…エンコーダ、14a…位置・速度検出器用エンコーダ、14b…位置・速度・磁極位置検出器用エンコーダ、15…制御ロジック回路、16…全損失演算回路、17…過負荷検出回路、17a…誘導型モータの過負荷検出回路、17b…永久磁石式モータの過負荷検出回路、18…保護処理回路、19…加算器、20…減算器、21…速度制御器(ASR)、22…d軸電流制御器(ACR)、23…q軸電流制御器(ACR)、24…dq/3相変換器、25…PWM回路、26…3相/dq変換器、27・・・位置・速度演算器、28・・・位置・速度磁極位置演算器、29…磁束演算器、30…すべり周波数演算器、31…角周波数変換定数、32…トルク演算器、33…出力Pout演算器、34…電流演算器、35…入力Pin演算器、36…積分器、37・・・第1部位(モータ電気部+筐体)、40…モータ放熱部の伝達関数、41-2・41-3・41-4…全損出に対する比率、42-1…モータ蓄熱部の伝達関数、42-2…固定子の伝達関数、42-3…回転子の伝達関数、42-4…軸受の伝達関数、43-1…第1部位の過負荷判定回路、43-2…第2部位の過負荷判定回路、43-3…第3部位の過負荷判定回路、43-4…第4部位の過負荷判定回路、44…論理和回路、45…フィルタ回路、46…反転回路、47…掛算演算器、48…3入力加算演算器、49…モータ電力変換装置、50…制御回路電源、51…上位制御装置、52…周囲温度計測器、53…CPU、54…インバータゲート、55…リレーコイル、56…ダイオード、57…リレー接点、58…通信コネクタ、59…デジタルオペレータ、60…表示器、61…スピーカ、62…発光器、63…入力キー、64…外部出力装置、65…RAMメモリ、66・・・パソコン、100…モータ電力変換装置

Claims (13)

  1.  交流モータの入力電力及び出力電力の差である全損失を検出し、該全損失と、前記交流モータの単位時間当たりの全放熱量との偏差を積算して得られた熱量に基づいて前記交流モータの温度を算出し、該温度に応じて前記交流モータの過負荷を判定する制御部を有するモータ制御装置であって、
     前記制御部が、
     前記交流モータの固定子巻線の熱量から固定子巻線温度を算出し、
     前記交流モータの回転子の熱量から回転子温度を算出し、
     夫々に対応する閾値と比較して、少なくとも何れか1つが該閾値に達するとき、前記交流モータが過負荷として外部報知信号の出力及び前記交流モータの電力供給の低減或いは停止の少なくとも一方を実行するものであるモータ制御装置。
  2.  請求項1に記載のモータ制御装置であって、
     前記制御部が、更に、
     前記交流モータの少なくとも軸受を含む他の構成要素の熱量から該他の構成要素の温度を算出し、対応する閾値に達するとき、前記交流モータが過負荷として外部報知信号の出力及び前記交流モータの電力供給の低減或いは停止の少なくとも一方を実行するものであるモータ制御装置。
  3.  請求項1に記載のモータ制御装置であって、
     前記回転子の熱量が、導体又は磁石の熱量であるモータ制御装置。
  4.  請求項1~3の何れか一項に記載のモータ制御装置であって、
     前記制御部が、前記固定子巻線温度及び回転子温度から前記交流モータの周囲温度を差し引いた温度を前記閾値と比較するものであるモータ制御装置。
  5.  請求項1又は2に記載のモータ制御装置であって、
     前記制御部が、
     前記前記交流モータの単位時間当たりの全放熱量との偏差を積算して得られた熱量に、前記固定子巻線、前記回転子及び前記他の構成要素の夫々の対応する損失の割合を乗じて、夫々の熱量を算出するものであるモータ制御装置。
  6.  請求項5に記載のモータ制御装置であって、
     前記夫々の対応する損失の割合が、前記固定子巻線、回転子及び前記他の構成要素の各全損失を、前記交流モータの全損失で除算したものであるモータ制御装置。
  7.  請求項6に記載のモータ制御装置であって、
     前記夫々の対応する損失の割合が、前記交流モータの損失の種類ごとに、所定サンプリング周期で演算するものであるモータ制御装置。
  8.  請求項1又は2に記載のモータ制御装置であって、
     前記制御部が、
     前記固定子巻線の温度上昇値、前記回転子の温度上昇値、前記他の構成要素の温度上昇値を、夫々の熱量に対して、夫々の質量に等価比熱を乗じた値で除算することで算出するものであるモータ制御装置。
  9.  請求項1又は2に記載のモータ制御装置であって、
     前記閾値が、前記交流モータの耐熱クラスの最高許容温度値から前記交流モータの使用温度範囲の上限値を減じた温度値であるモータ制御装置。
  10.  請求項9に記載のモータ制御装置であって、
     前記制御部が、
     前記交流モータの周囲温度値を更に受信するものであり、
     前記閾値が、前記最高許容温度値から前記交流モータの使用温度範囲の上限値を減じた温度値に、該上限値から前記周囲温度値を減じた温度値を加算したものであるモータ制御装置。
  11.  請求項9又は10に記載のモータ制御装置であって、
     前記制御部が、マージン温度値を予め記憶するものであり、
     前記閾値が、最高許容温度値から更に該マージン温度値を減じたものであるモータ制御装置。
  12.  請求項1又は2に記載のモータ制御装置であって、
     前記制御部が、
     前記交流モータが過負荷解除温度値を更に記憶するものであり、
     過負荷によって前記交流モータの電力供給の低減或いは停止の少なくとも一方を実行した後、前記過負荷解除温度値に応じて前記電力供給の復帰を実行するものであるモータ制御装置。
  13.  請求項12に記載のモータ制御装置であって、
     前記制御部が、
     過負荷の場合に前記電力供給の低減或いは停止をするか否かの設定値を、入力手段を介して更に受信するものであり、
     該設定値が、前記電力供給の低減或いは停止をする設定値であるときに、前記過負荷解除温度値に応じて前記電力供給の復帰を実行するものであるモータ制御装置。
PCT/JP2016/051764 2016-01-22 2016-01-22 モータ制御装置 WO2017126093A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/051764 WO2017126093A1 (ja) 2016-01-22 2016-01-22 モータ制御装置
JP2017562393A JPWO2017126093A1 (ja) 2016-01-22 2016-01-22 モータ制御装置
TW106102261A TWI617107B (zh) 2016-01-22 2017-01-20 Motor control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051764 WO2017126093A1 (ja) 2016-01-22 2016-01-22 モータ制御装置

Publications (1)

Publication Number Publication Date
WO2017126093A1 true WO2017126093A1 (ja) 2017-07-27

Family

ID=59362519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051764 WO2017126093A1 (ja) 2016-01-22 2016-01-22 モータ制御装置

Country Status (3)

Country Link
JP (1) JPWO2017126093A1 (ja)
TW (1) TWI617107B (ja)
WO (1) WO2017126093A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921767B2 (en) 2018-10-23 2021-02-16 Kabushiki Kaisha Toshiba Encoder system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219351B (zh) * 2018-07-02 2024-02-09 日本制铁株式会社 载波频率设定方法、马达驱动系统以及载波频率设定装置
JP7302518B2 (ja) * 2020-03-31 2023-07-04 ブラザー工業株式会社 数値制御装置
TWI763287B (zh) * 2021-01-29 2022-05-01 凌華科技股份有限公司 具有偵錯功能之馬達命令輸出模組及馬達命令偵錯方法
CN113910268B (zh) * 2021-09-29 2023-07-18 珠海格力电器股份有限公司 工业机器人的零部件损耗检测方法、装置、设备和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189083A (ja) * 1997-09-10 1999-03-30 Toyoda Mach Works Ltd モータ制御装置
JP2008109816A (ja) * 2006-10-27 2008-05-08 Nissan Motor Co Ltd モータの温度保護装置、およびモータ温度保護方法
JP2012210036A (ja) * 2011-03-29 2012-10-25 Advics Co Ltd 温度推定装置及び温度推定方法
JP2014150357A (ja) * 2013-01-31 2014-08-21 Brother Ind Ltd 画像読取装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51146110A (en) * 1975-06-11 1976-12-15 Oki Electric Ind Co Ltd Narrow band television system
JP5268096B2 (ja) * 2008-08-07 2013-08-21 Ckd株式会社 電動アクチュエータ
CN102735358B (zh) * 2011-03-29 2016-03-30 株式会社爱德克斯 温度推定装置以及温度推定方法
CN106031024B (zh) * 2014-02-10 2018-07-03 株式会社日立产机系统 电动机电力转换装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189083A (ja) * 1997-09-10 1999-03-30 Toyoda Mach Works Ltd モータ制御装置
JP2008109816A (ja) * 2006-10-27 2008-05-08 Nissan Motor Co Ltd モータの温度保護装置、およびモータ温度保護方法
JP2012210036A (ja) * 2011-03-29 2012-10-25 Advics Co Ltd 温度推定装置及び温度推定方法
JP2014150357A (ja) * 2013-01-31 2014-08-21 Brother Ind Ltd 画像読取装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921767B2 (en) 2018-10-23 2021-02-16 Kabushiki Kaisha Toshiba Encoder system

Also Published As

Publication number Publication date
JPWO2017126093A1 (ja) 2018-10-18
TW201728030A (zh) 2017-08-01
TWI617107B (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6298835B2 (ja) モータ電力変換装置
WO2017126093A1 (ja) モータ制御装置
Bae et al. Implementation of sensorless vector control for super-high-speed PMSM of turbo-compressor
US8967857B2 (en) Temperature detection device that detects temperature of rotor of motor
Ficheux et al. Axial-flux permanent-magnet motor for direct-drive elevator systems without machine room
CN105372075B (zh) 具有故障诊断功能的无刷直流电子水泵控制器及诊断方法
US8716965B2 (en) Synchronous motor control device for controlling synchronous motor to carry out power regenerative operation and stop synchronous motor at the time of power failure
US10353014B2 (en) Watchdog scheme for monitoring a power electronic inverter and determining a manner of operating a load
CN104898055A (zh) 电机状态判断方法及装置
US20150066213A1 (en) Controller having function for displaying motor load
CN105144554A (zh) 永磁电动机降级诊断系统
EP3576292B1 (en) Motor power conversion device, and motor power conversion system using same
JP2016187250A (ja) 電動機制御装置
WO2018198185A1 (ja) 回転電機管理装置及び回転電機の管理方法
US9893669B2 (en) Motor efficiency analysis method for motor inverter
JP2015029395A (ja) 空気調和機
Mamizadeh et al. Designing of induction motor efficiency monitoring system without using torque meter and speed sensor
Chao-yu et al. Research on real-time losses for sensorless motor temperature identification based on thermal network model
Jiang et al. A new thermal protection approach for permanent magnet synchronous motor
Dmitrievskii et al. Development and experimental study of the high efficient synchronous reluctance motor
Blanuša et al. Efficiency optimized control of elevator drive
Kim et al. Development of PMSM Drive for Water Supply System
Liao et al. Real time efficiency observor of induction motor under a model considering iron loss
Austermann et al. High efficient modular drive system—An ideal approach for green intralogistics applications
JP2011041362A (ja) 電動機冷却制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886334

Country of ref document: EP

Kind code of ref document: A1