TW202016985A - 形成二維材料層的方法、場效電晶體及其製造方法 - Google Patents

形成二維材料層的方法、場效電晶體及其製造方法 Download PDF

Info

Publication number
TW202016985A
TW202016985A TW108132310A TW108132310A TW202016985A TW 202016985 A TW202016985 A TW 202016985A TW 108132310 A TW108132310 A TW 108132310A TW 108132310 A TW108132310 A TW 108132310A TW 202016985 A TW202016985 A TW 202016985A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
transition metal
metal dichalcogenide
item
Prior art date
Application number
TW108132310A
Other languages
English (en)
Other versions
TWI809188B (zh
Inventor
李明洋
李連忠
褚志彪
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202016985A publication Critical patent/TW202016985A/zh
Application granted granted Critical
Publication of TWI809188B publication Critical patent/TWI809188B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1077Magnetic diluted [DMS]
    • H01L2924/10772Indium manganese arsenide [InMnAs]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Bipolar Transistors (AREA)

Abstract

在形成二維材料層之方法中,形成成核圖案於基板之上,且形成過渡金屬二硫屬化物層,使得過渡金屬二硫屬化物層從成核圖案橫向地生長。在一或多個前述及以下實施例中,過渡金屬二硫屬化物層為單晶。

Description

使用過渡金屬二硫屬化物之場效電晶體 及其製造方法
作為二維(two-dimensional,2-D)之石墨烯已顯現為次10奈米技術節點之電晶體應用的可能材料。然而,由於石墨烯之零能隙性質,石墨烯電晶體之低開關比(ON/OFF ratio)已限制其實際應用。其他具有能隙之二維材料,例如過渡金屬二硫屬化物(transition metal dichalcogenide,TMD),已吸引電晶體應用的目光。
10‧‧‧基板
11、13‧‧‧基板
12‧‧‧介電材料層/介電層
15‧‧‧成核圖案/線圖案/圖案
16‧‧‧線缺陷
20‧‧‧單晶層/單晶膜/過渡金屬二硫屬化物層
20T‧‧‧三角形層/三角形片
25、26、27‧‧‧源極/汲極電極
30、31、32‧‧‧閘極介電層
35、36、37‧‧‧閘電極
40‧‧‧加蓋層
45‧‧‧第二基板
本揭露之實施例由以下參照所附圖式之詳細說明可得最佳理解。需強調的是,依據業界的標準實務,多個特徵未按比例繪製並僅用於說明目的。事實上,可任意增加或減少多個特徵之尺寸以使討論清楚。
〔圖1A〕與〔圖1B〕顯示依據本揭露一實施例之製造單晶過渡金屬二硫屬化物層的循序製程之多個階段之一。
〔圖2A〕與〔圖2B〕顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程之多個階段之一。
〔圖2C〕顯示製造過渡金屬二硫屬化物層的循序製程之多個階段之一。
〔圖3A〕與〔圖3B〕顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程之多個階段之一。
〔圖4A〕與〔圖4B〕顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程之多個階段之一。
〔圖5〕顯示依據本揭露之實施例之形成過渡金屬二硫屬化物層之製程與裝置的示意圖。
〔圖6〕顯示依據本揭露之實施例之過渡金屬二硫屬化物層的成核。
〔圖7A〕與〔圖7B〕顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程之多個階段之一。
〔圖8A〕、〔圖8B〕與〔圖8C〕顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程之多個階段之一。
〔圖9A〕與〔圖9B〕顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程之多個階段之一。
〔圖10A〕與〔圖10B〕顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程之多個階段之一。
〔圖11A〕與〔圖11B〕顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程之多個階段之一。
〔圖12A〕、〔圖12B〕、〔圖12C〕、〔圖12D〕、與〔圖12E〕顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程之多個階段。
〔圖13A〕、〔圖13B〕與〔圖13C〕顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程之多個階段。
〔圖14A〕、〔圖14B〕與〔圖14C〕顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程之多個階段。
〔圖15〕顯示在矽(110)基板上之二硫化鉬單層之二定向(0°與180°)。
將了解的是,以下揭露提供許多不同的實施例或例子,以實施本揭露之實施例的不同特徵。部件及配置之特定實施例或例子描述如下以簡明本揭露之實施例。當然,這些僅是例子而非作為限制。舉例來說,元件的尺寸不限於所揭露的範圍或數值,而是可取決於製程條件及/或所需的元件性質。另外,在敘述中,第一特徵形成於第二特徵上或之上可包含第一特徵與第二特徵以直接接觸形成的實施例,亦可包含額外特徵形成於第一及第二特徵之間的實施例,使得第一特徵與第二特徵可非直接接觸。可以不同比例任意繪示多個特徵以達簡明目的。
此外,可在此使用空間關係的用語,例如「在…之下(beneath)」、「在…下面(below)」、「較低(lower)」、「在…上面(above)」、「較高(upper)」、或之類的用語,來簡明描述以描述如圖式所繪示之一元件或特徵與另一(另一些)元件或特徵的關係。空間關係的用語,除了圖式所描繪的定向之外,意欲包含元件在使用或操作中之不同的定向。元件/裝置可另外定向(旋轉90度或其他定向),並且在此使用的空間關係敘述可同樣地照此解釋。此外,用語「由…製成(made of)」可指「包含」或「由…組成」。在本揭露之實施例中,除非另有敘述,否則「A、B及C之其中一者」之用語意指「A、B及/或C」(A;B;C;A與B;A與C;B與C;或A、B與C),且非指來自A之一元件、來自B之一元件以及來自C之一元件。
以MX2表示的單層過渡金屬二硫屬化物已知為可用來作為主動電晶體通道之二維半導體層,其中M為鉬、鎢、鈀、鉑及或鉿,X為硫、硒及/或碲。於此,在一些實施例中,二維層一般指具有範圍約0.1-5奈米之厚度的原子陣列或網絡之一或一些層。
可利用化學氣相沉積(chemical vapor deposition,CVD)或氣相成長來形成單層過渡金屬二硫屬化物於基板之上。然而,如此生長的過渡金屬二硫屬化物層會產生多晶(polycrystalline)膜,其中每一區域的定向為隨機配置,並且晶界形成於相鄰錯向區域的邊界。這樣的晶界缺陷可能造成能隙內捕抓(in-gap trapping)狀態,這不 利於高性能電晶體的應用。在本揭露之實施例中,揭露得到較大面積之單晶過渡金屬二硫屬化物單層之製造方法。
在本揭露一些實施例中,使用控制生長之過渡金屬二硫屬化物單層之結晶度的成核圖案[成核點(nucleation site)]。舉例來說,在生長基板上製造金屬或金屬氧化物薄層之線狀圖案、或是線狀缺陷[例如刮痕(scratch)、溝槽(groove)或凹陷(recess)]。這些圖案的邊緣可作為成核點,成核點啟始過渡金屬二硫屬化物單層的生長。
此外,在本揭露一些實施例中,選擇過渡金屬二硫屬化物單層形成於其上之基板之表面的合適定向,以控制在基板與過渡金屬二硫屬化物單層之晶格結構之間的對稱性。選擇對的基板可達到實質完美對準之晶粒之生長,這產生沒有晶界的單晶層。
圖1A到圖4B顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程。需了解的是,在圖1A至圖4B所顯示的製程之前、期間及之後可提供額外的操作,並且對於本方法的附加實施例,可取代或省略以下所述之一些操作。操作/製程的順序是可交換的。在圖1A至圖4B中,圖號有「B」的圖為剖面圖,而圖號有「A」的圖為平面圖(上視圖)。
如圖1A及圖1B所示,形成成核圖案15於基板10之上。在一些實施例中,形成金屬層或金屬氧化層於基板10上,並且利用一或多個微影及蝕刻操作而形成線圖案 15。在一些實施例中,金屬為鉬且金屬氧化物為三氧化鉬。在其他實施例中,使用鎢、鈀、鉑或鉿、或其氧化物作為線圖案15之金屬層或金屬氧化層。在某些實施例中,使用金屬M或金屬M的氧化物來生長MX2。可使用其他材料。
可藉由化學氣相沉積、物理氣相沉積(physical vapor deposition,PVD)、或任何其他合適的膜形成方法來形成金屬層或金屬氧化層。在一些實施例中,金屬層或金屬氧化層之厚度的範圍從約20nm到約200nm,且在其他實施例中其範圍從約50nm到約100nm。在一些實施例中,成核圖案15之寬度的範圍從約50nm到約500nm,且在其他實施例中其範圍從約100nm到約200nm。在其他實施例中,成核圖案15為長方形或正方形。成核圖案的長度取決於過渡金屬二硫屬化物層的所需尺寸。在一些實施例中,成核圖案15之長度的範圍從約1微米到約100毫米,且在其他實施例中其範圍從約100微米到約10毫米。
然後,提供來源材料,例如來源氣體,於具有成核圖案15之基板10之上。在一些實施例中,於形成二硫化鉬層之化學氣相沉積的例子中,使用六羰基鉬(Mo(CO)6)氣體、五氯化鉬(MoCl5)氣體及/或四氯氧化鉬(MoOCl4)氣體作為鉬來源,並使用硫化氫(H2S)氣體及/或二甲基硫(dimethyl sulfide)氣體作為硫來源。在其他實施例中,如圖5所示,可使用從固態三氧化鉬昇華之三氧化鉬氣體、或五氯化鉬來源、及/或從固態硫來源昇華之硫氣體。如圖5所示,將鉬與硫的固態來源置放於反應腔內,且含有 例如氬氣、氮氣及/或氦氣之惰性氣體的載氣流入反應腔內。加熱固態來源以藉由昇華來產生氣態來源,且所產生的氣態來源反應而形成二硫化鉬分子。然後沉積二硫化鉬分子於基板上。在一些實施例中,將基板適當加熱。在其他實施例中,藉由感應加熱來加熱整個反應腔。藉由使用合適之來源氣體之化學氣相沉積亦可形成其他的過渡金屬二硫屬化物。舉例來說,金屬氧化物,例如三氧化鎢、二氧化鈀及二氧化鉑,可分別作為鎢、鈀及鉑的昇華來源,且金屬化合物,例如六羰基鉬、六氟化鎢、四氯氧化鎢(WOCl4)、二氯化鉑及二氯化鈀亦可作為金屬來源。
如圖2A及圖2B所示,由於在成核圖案15之邊緣的較低成核能量,過渡金屬二硫屬化物(MX2)晶體之三角形層20T在成核圖案15之邊緣開始成核。特別地,當基板10(例如矽)之主表面(上表面)具有(110)定向時,過渡金屬二硫屬化物之三角形層20T對準基板10之定向。相對的,當基板10例如為氧化矽(silicon oxide)時,過渡金屬二硫屬化物之三角形層20T為隨機定向而形成多晶矽層,如圖2C所示。
在一些實施例中,過渡金屬二硫屬化物單晶層20之厚度的範圍從約0.6nm到約2nm。藉由繼續過渡金屬二硫屬化物層的形成,可得到如圖3A及圖3B所示之大面積的單晶層20。在一些實施例中,如圖4A及圖4B所示,在得到所需尺寸之過渡金屬二硫屬化物單晶層20之後,利用合適的蝕刻操作,例如濕蝕刻,去除成核圖案15。在一些實施 例中,過渡金屬二硫屬化物單晶層20之厚度的範圍從約0.5nm到約2nm。
在本揭露一些實施例中,如上所述,選擇合適基板以控制過渡金屬二硫屬化物層的生長。使用具不同晶格對稱性的基板可限制過渡金屬二硫屬化物材料的生長定向。舉例來說,C2對稱群(C2 symmetry group)中的基板可以引導並限制C3對稱群中之過渡金屬二硫屬化物層的定向。在一些實施例中,基板10為在其主表面具有C2對稱的結晶基板。在某些實施例中,使用矽(110)、γ-三氧化二鋁(110)、三氧化二鎵(110)及氧化鎂(110)之一作為基板10。為進一步說明此功效,圖15顯示在矽(110)基板上之二硫化鉬單層之兩種可能的定向(0°與180°)。基於密度泛函理論(density functional theory)的模擬結果顯示當二硫化鉬層為獨立式(free-standing)或在非晶基板上時,這兩種定向不具有能量差。在二硫化鉬單層生長於矽(110)基板上之後,對於0°與180°相分離之單位面積的能量障壁(energy barrier)為約4meV/Å2[具有局域密度近似(local-density approximation,LDA)交換泛函(exchange functional)],這數值已夠高而能導致生長期間的較佳單一定向(0°)。
在其他實施例中,六方氮化硼層(hexagonal boron nitride,h-BN)或石墨烯層形成於基板10之上。MX2晶體具有六角晶格結構,對橫向生長而言,六角晶格結構良好地晶格匹配於六方氮化硼或石墨烯。當使用六方氮化硼或 石墨烯之中間層時,由於六方氮化硼或石墨烯之原子薄層非常薄,使得MX2二維材料仍可受到下方的基板10影響。
在一些實施例中,複合基板,例如沉積於C3對稱基板上之六方氮化硼層或石墨烯基板層,C3對稱基板例如為碳化矽(0001)或鍺(111)、或矽(111)、銅(111)或鉑(111)。由於六方氮化硼或石墨烯與下方的基板強烈地互相作用而形成莫列圖案(Moiré pattern),其中複合基板的整體對稱性下降,複合基板例如為六方氮化硼/碳化矽(0001)或六方氮化硼/矽(111)、石墨烯/碳化矽(0001)、石墨烯/鍺(111)等等。在此例子中,複合基板可引導二維層之定向朝向單一定向。
圖6顯示過渡金屬二硫屬化物(MX2)層的成核。如圖6所示,基板(例如矽)的主表面(上表面)具有(110)定向。成核圖案15沿對應矽基板10之(100)面之方向延伸。如圖6所示,MX2單層的小三角形從成核圖案15的邊緣開始生長。矽(110)基板的表面晶格結構可控制MX2三角形片20T(小結晶單層片),以定向於給出最低系統能量之相同方向,如圖3A及圖3B所示。這些良好對準的片最終融合成無晶界之大面積單晶膜20,如圖3A及圖3B所示。在一些實施例中,可得到大於1mm*1mm之面積(至多達例如10mm*10mm)。
假如基板10上無成核圖案,三角形層會在不同地方隨機產生。同時,成核圖案的邊緣更有助於引導晶向。然而,在沒有合適基板,例如二氧化矽基板,的情況中,雖 然成核開始於成核圖案之邊緣,但三角形片的定向是隨機的,因而無法得到單晶層,如圖2C所示。
圖7A及圖7B顯示形成於基板10之表面上的線缺陷16。在一些實施例中,線缺陷16為溝槽。溝槽的形狀可為V形或U形。可藉由一或多個微影及蝕刻操作、利用鑽石尖進行的機械刻畫、或利用雷射蝕刻形成線缺陷16。線缺陷之深度的範圍從約20nm到約1000nm,在其他實施例中其範圍從約100nm到約500nm。線缺陷16實質作為類似於圖1A到圖3B及圖6所示之圖案15的成核圖案。
在圖2A、圖2B、圖3A及圖3B中,單晶過渡金屬二硫屬化物層20只形成於成核圖案15之一側。然而,在其他實施例中,單晶過渡金屬二硫屬化物層20形成於成核圖案15的兩側,如圖8A及圖8B所示。在一些實施例中,過渡金屬二硫屬化物層亦形成於成核圖案15之上。
此外,在一些實施例中,如圖8C所示,複數個(二或更多)成核圖案15形成於基板10之上,且形成多個區域之單晶過渡金屬二硫屬化物層20。
圖9A到圖11B顯示依據本揭露之實施例之利用單晶過渡金屬二硫屬化物層製造場效電晶體的循序製程。需了解的是,在圖9A至圖11B所顯示的製程之前、期間及之後可提供額外的操作,並且對於本方法的其他實施例,可取代或省略以下所述之一些操作。操作/製程的順序是可交換的。在圖9A至圖11B中,「B」圖式為剖面圖,而「A」圖式為平面圖(上視圖)。可將與前述實施例相同或相 似之材料、配置、結構、操作及/或製程應用於本實施例,而可省略詳細的解釋。在以下之實施例中,場效電晶體形成於半導體基板之上,半導體基板例如為(110)矽基板。
在形成如圖4A及圖4B所示之大面積過渡金屬二硫屬化物單晶層20之後,利用一或多個微影及蝕刻操作來修整(trim)過渡金屬二硫屬化物單晶層20,如圖9A及圖9B所示。
然後,如圖10A及圖10B所示,形成源極/汲極電極25於過渡金屬二硫屬化物層單晶層20之部分之上。源極/汲極電極25由一或多層金屬材料製成。在一些實施例中,源極/汲極電極25由鈦層與形成於鈦層上之金層的堆疊金屬層形成。在某些實施例中,金層的厚度之範圍從約30nm到約70nm,且鈦層的厚度之範圍從約3nm到約10nm。可使用其他金屬,例如銀、鋁或銅,來替代金。可藉由物理氣相沉積、化學氣相沉積或原子層沉積(ALD),以及一或多個微影及蝕刻操作來形成源極/汲極電極25之一或多個金屬層。在其他實施例中,可使用其他導電材料,例如鎢、鈦、鈷、鎳、鉭、氮化鈦(TiN)、鈦鋁(TiAl)、氮化鋁鈦(TiAlN)、矽化鎳(NiSi)或矽化鈷(CoSi)以及其他導電材料作為源極/汲極電極25。在一些實施例中,源極/汲極電極25只形成於過渡金屬二硫屬化物層20之上而未接觸基板10。
此外,如圖11A及圖11B所示,形成閘極介電層30於過渡金屬二硫屬化物單晶層20之上,以及形成閘電極35於閘極介電層30上。閘極介電層30例如由氧化矽、氧 化鋁、二氧化鉿、二氧化鋯、氮氧化矽(SiON)或氮化矽製成,並可利用化學氣相沉積、原子層沉積或物理氣相沉積形成。閘極介電層30的厚度之範圍在一些實施例中從約5nm到約200nm,在其他實施例中其範圍從約10nm到約50nm。閘電極35例如由多晶矽,或例如鈦、鉭、銅或鋁之金屬材料製成。利用化學氣相沉積、原子層沉積或物理氣相沉積,來沉積導電材料的毯覆層於閘極介電層30上,且進行圖案化操作以得到所需之閘電極圖案。隨後,形成一或多個介電層於閘電極35與其餘結構之上,且形成閘電極35與源極/汲極電極25之接觸(contacts)(圖未顯示)。閘電極35在源極-汲極方向之寬度的範圍在一些實施例中從約5nm到約50nm,在其他實施例中其範圍從約10nm到約30nm。
當使用如圖8C所示之多個區域之過渡金屬二硫屬化物層20時,在此多個區域中分別形成多個場效電晶體。
圖12A到圖12E顯示依據本揭露之實施例之製造單晶過渡金屬二硫屬化物層的循序製程。需了解的是,在圖12A至圖12E所顯示的製程之前、期間及之後可提供額外的操作,且對於本方法的其他實施例,可取代或省略以下所述之一些操作。操作/製程的順序是可交換的。可將與前述實施例相同或相似之材料、配置、結構、操作及/或製程應用於本實施例,而可省略詳細的解釋。
在以下之實施例中,形成單晶過渡金屬二硫屬化物層於虛置(第一)基板之上,然後轉移至元件基板以製造 場效電晶體。依據關於圖1A至圖4B所解釋的操作,形成單晶過渡金屬二硫屬化物層20於第一基板10之上,如圖12A所示。在一些實施例中,第一基板為γ-三氧化二鋁(110)、三氧化二鎵(110)及氧化鎂(110)之一。在其他實施例中,使用(110)矽基板。
然後,如圖12B所示,形成代替聚二甲基矽氧烷(polydimethylsiloxane,PDMS)之加蓋層(stamp layer)於過渡金屬二硫屬化物層20與第一基板10之上。在一些實施例中,加蓋層40由聚二甲基矽氧烷製成。聚二甲基矽氧烷層壓設於過渡金屬二硫屬化物層20上,然後如圖12C所示剝離聚二甲基矽氧烷加蓋層40。由於過渡金屬二硫屬化物層20與聚二甲基矽氧烷加蓋層40之間的強黏著力,過渡金屬二硫屬化物層20亦與聚二甲基矽氧烷加蓋層40一起從第一基板10剝離。在一些實施例中,將圖12B之結構浸沒於去離子水中,並將第一基板10分離。可對水施加超音波振動。
在其他實施例中,將含有聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)之聚合物溶液旋轉塗佈於過渡金屬二硫屬化物層20與第一基板10之上,如圖12B所示。然後,在一些實施例中,乾燥並固化聚甲基丙烯酸甲酯加蓋層40。固化製程包含熱固化、紫外光固化、電子束固化或其組合。在一些實施例中,聚甲基丙烯酸甲酯加蓋層40與過渡金屬二硫屬化物層20一起從第一基板10機械剝離。在其他實施例中,濕蝕刻基板10,藉以釋放聚甲基 丙烯酸甲酯加蓋層40與過渡金屬二硫屬化物層20。當基板10為厚時,進行研磨操作以從基板10的後側去除基板10的主要部分,然後再進行濕蝕刻操作以去除基板10之剩餘層。在一些實施例中,形成例如為銅層的金屬層於過渡金屬二硫屬化物層20與加蓋層40之間。在這樣的例子中,銅層的厚度之範圍從約200nm到約400nm,且加蓋層40的厚度之範圍從約400nm到約600nm。
然後,如圖12D所示,將由加蓋層40所支撐之分離的過渡金屬二硫屬化物層20轉移到第二基板45。此外,如圖12E所示,去除加蓋層40。在一些實施例中,使用濕蝕刻以去除加蓋層40。舉例來說,當加蓋層40由例如聚甲基丙烯酸甲酯及聚二甲基矽氧烷之有機材料製成時,例如丙酮之有機溶劑可溶解有機材料,藉以去除加蓋層40。當使用銅層時,利用硝酸鐵(Fe(NO3)3)溶液去除銅層。
接著,進行一或多個微影與蝕刻操作以將轉移的過渡金屬二硫屬化物層20修整為所需尺寸及形狀。
在將過渡金屬二硫屬化物層20轉移到第二基板45與進行選擇性的修整製程之後,利用關於圖9A至圖11A所解釋之操作形成場效電晶體。
圖13A至圖13C顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層來製造場效電晶體的循序製程。需了解的是,在圖13A至圖13C所顯示的製程之前、期間及之後可提供額外的操作,且對於本方法的其他實施例,可取代或省略以下所述之一些操作。操作/製程的順序是可 交換的。可將與前述實施例相同或相似之材料、配置、結構、操作及/或製程應用於本實施例,且可省略詳細的解釋。
如圖13A所示,形成一或多個介電材料層12於基板11之上。在一些實施例中,基板11包含單晶半導體層至少位於其表面部分上。基板11可包含單晶半導體材料,例如但不限於矽、鍺、矽鍺(SiGe)、砷化鎵、銻化銦、磷化鎵、銻化鎵、砷化銦鋁(InAlAs)、砷化銦鎵(InGaAs)、磷化鎵銻(GaSbP)、銻砷化鎵(GaAsSb)及磷化銦。在一實施例中,基板11由結晶矽製成。基板11可在其表面區域包含一或多個緩衝層(圖未顯示)。緩衝層可用來將晶格常數從基板之晶格常數逐漸改變到源極/汲極區域之晶格常數。緩衝層可由磊晶生長的單晶半導體材料形成,例如但不限於矽、鍺、鍺錫(GeSn)、矽鍺、砷化鎵、銻化銦、磷化鎵、銻化鎵、砷化銦鋁、砷化銦鎵、磷化鎵銻、銻砷化鎵、氮化鎵、磷化鎵及磷化銦。在特別的實施例中,基板11包含磊晶生長於矽基板11上之矽鍺緩衝層。矽鍺緩衝層的鍺濃度可從最底部緩衝層之30原子百分比(atomic%)鍺增加到最高緩衝層之70atomic%鍺。基板11可包含已合適地以雜質(例如p型或n型導電性)摻雜之多個區域。
介電層12包含氧化矽、氮化矽、氮氧化矽、氮碳氧化矽(SiOCN)、氮碳化矽(SiCN)、摻氟之矽酸鹽玻璃(fluorine-doped silicate glass,FSG)、或低介電常數(k)介電材料之一或多者,且由低壓化學氣相沉積(low pressure chemical vapor deposition,LPCVD)、電漿 化學氣相沉積或流動式(flowable)化學氣相沉積形成。在一些實施例中,進行平坦化操作,例如化學機械研磨(chemical mechanical polishing,CMP)方法及/或回蝕(etch-back)方法。
然後,形成源極/汲極電極26於介電層12之上。源極/汲極電極26包含一或多層導電材料,例如金、銀、鋁、銅、鎢、鈷、鎳、鈦、鉭、氮化鈦、鈦鋁(TiAl)、氮化鋁鈦(TiAlN)、氮化鉭、矽化鎳、矽化鈷、或其他合適的導電材料。在一些實施例中,利用鑲嵌(damascene)技術將源極/汲極電極26嵌入介電層12。形成溝槽於介電層12之表面中,並形成一或多個導電材料層於溝槽與介電層12之上表面中。然後,進行化學機械研磨製程以去除導電材料層的多餘部分,藉以留下導電材料層於溝槽內。
接著,如圖13B所示,依據關於圖12A至圖12E所解釋的轉移操作,將過渡金屬二硫屬化物單晶層20轉移至源極/汲極電極26與介電層12之上。在一些實施例中,在轉移過渡金屬二硫屬化物層20之後,進行一或多個微影與蝕刻操作以將過渡金屬二硫屬化物層20圖案化成所需形狀。
然後,如圖13C所示,形成閘極介電層31於過渡金屬二硫屬化物層20之上,且形成閘電極36於閘極介電層31之上。在一些實施例中,閘極介電層31包含氧化矽、氮化矽、氮氧化矽、或高K介電材料之一或多層。高K介電材料包含金屬氧化物。用於高K介電材料之金屬氧化物的例 子包含鋰、鈹、鎂、鈣、鍶、鈧、釔、鋯、鉿、鋁、鑭、鈰、鐠、釹、釤、銪、釓、鋱、鏑、鈥、鉺、銩、鐿、鎦之氧化物、及/或其混合物。在一些實施例中,閘極介電層31的厚度之範圍從約1nm到約20nm,且在其他實施例中其範圍從2nm到約10nm。在一些實施例中,閘極介電層31包含單層或多層結構。可用合適製程,例如化學氣相沉積、物理氣相沉積、原子層沉積或其組合,來形成閘極介電層31的材料。
在一些實施例中,閘電極36包含具有均勻或不均勻之摻雜濃度的摻雜多晶矽。在其他實施例中,閘電極36包含金屬,例如為鋁、銅、鎢、鈦、鈷、鎳、鉭、氮化鈦、鈦鋁、氮化鋁鈦、氮化鉭、矽化鎳、矽化鈷,及其他具有相容於基板材料之工作函數的導電材料,或其組合。可使用合適製程,例如化學氣相沉積、物理氣相沉積、原子層沉積、電鍍、或其組合,來形成閘電極36之電極層,且使用一或多個微影及蝕刻操作來圖案化閘電極36。
圖14A至圖14C顯示依據本揭露之實施例之使用單晶過渡金屬二硫屬化物層來製造場效電晶體的循序製程。需了解的是,在圖14A至圖14C所顯示的製程之前、期間及之後可提供額外的操作,且對於本方法的其他實施例,可取代或省略以下所述之一些操作。操作/製程的順序是可交換的。可將與前述實施例相同或相似之材料、配置、結構、操作及/或製程應用於本實施例,且可省略詳細的解釋。在以下之實施例中,製造背閘極式(back gate type)場效電晶體。
如圖14A所示,形成閘電極37於基板13之上,且更形成閘極介電層32於閘電極37與基板13之上。在一些實施例中,基板13由絕緣材料製成,例如玻璃板。在其他實施例中,基板13為導電基板或半導體基板,其上形成有一或多層絕緣材料,且閘電極37形成於絕緣材料層上。
在一些實施例中,閘電極37包含具有均勻或不均勻之摻雜濃度的摻雜多晶矽。在其他實施例中,閘電極37包含金屬,例如鋁、銅、鎢、鈦、鈷、鎳、鉭、氮化鈦、鈦鋁、氮化鋁鈦、氮化鉭、矽化鎳、矽化鈷,及其他具有相容於基板材料之工作函數的導電材料,或其組合。可使用合適製程,例如化學氣相沉積、物理氣相沉積、原子層沉積、電鍍、或其組合,來形成閘電極37之電極層,且使用一或多個微影及蝕刻操作來圖案化閘電極37。
在一些實施例中,閘極介電層32包含氧化矽、氮化矽、氮氧化矽、或高K介電材料之一或多層。高K介電材料包含金屬氧化物。用於高K介電材料之金屬氧化物的例子包含鋰、鈹、鎂、鈣、鍶、鈧、釔、鋯、鉿、鋁、鑭、鈰、鐠、釹、釤、銪、釓、鋱、鏑、鈥、鉺、銩、鐿、鎦之氧化物、及/或其混合物。在一些實施例中,閘極介電層32的厚度之範圍從約1nm到約20nm,且在其他實施例中其範圍從2nm到約10nm。在一些實施例中,閘極介電層32包含單層或多層結構。可用合適製程,例如化學氣相沉積、物理氣相沉積、原子層沉積或其組合,來形成閘極介電層32的材料。在一些實施例中,利用鑲嵌技術將閘電極37嵌入絕緣基板 13或下方的絕緣層。形成溝槽於絕緣基板13或下方絕緣層的表面內,且形成一或多個導電材料層於溝槽與絕緣基板或下方絕緣層之上表面中。然後,進行化學機械研磨製程以去除導電材料層的多餘部分,藉以留下導電材料層於溝槽內。
接著,如圖14B所示,依據關於圖12A至圖12E所解釋的轉移操作,將過渡金屬二硫屬化物單晶層20轉移至閘極介電層32之上。在一些實施例中,在轉移過渡金屬二硫屬化物層20之後,進行一或多個微影與蝕刻操作以將過渡金屬二硫屬化物層20圖案化成所需形狀。
然後,如圖14C所示,形成源極/汲極電極27於過渡金屬二硫屬化物層20之上。源極/汲極電極27包含一或多層導電材料,例如為金、銀、鋁、銅、鎢、鈷、鎳、鈦、鉭、氮化鈦、鈦鋁、氮化鋁鈦、氮化鉭、矽化鎳、矽化鈷、或其他合適的導電材料。
在此所敘述的多個實施例或例子提供有別於既有技藝的一些優點。舉例來說,在本揭露之實施例中,利用成核圖案與C-2對稱結晶基板,可得到大面積的過渡金屬二硫屬化物材料之單晶層。此外,由於成核圖案控制成核的位置,因此可在所需位置選擇性地生長過渡金屬二硫屬化物之單晶層。當基板為(110)矽時,可不使用膜轉移操作而製造例如場效電晶體之電子元件,藉以降低製造成本。
需了解的是,在此無需討論所有的優點,所有的實施例或例子不需要特定優點,並且其他實施例或例子可提供不同的優點。
依據本揭露之一方面,在形成二維材料層之方法中,形成成核圖案於基板之上,且形成過渡金屬二硫屬化物層,使得過渡金屬二硫屬化物層從成核圖案橫向地生長。在一或多個前述及以下實施例中,過渡金屬二硫屬化物層為單晶。在一或多個前述及以下實施例中,藉由形成膜於基板之上、以及將膜圖案化成線圖案,來形成成核圖案。在一或多個前述及以下實施例中,膜由金屬或金屬氧化物製成。在一或多個前述及以下實施例中,膜由鉬或三氧化鉬製成。在一或多個前述及以下實施例中,基板為單晶,且成核圖案所形成於其上之基板的上表面非對稱於過渡金屬二硫屬化物層。在一或多個前述及以下實施例中,基板為其上表面具有C2對稱成核圖案之矽、γ-三氧化二鋁、三氧化二鎵及氧化鎂之一,或為包含一層六方氮化硼或石墨烯基板沉積於C3對稱基板上之複合基板,其中C3對稱基板包含碳化矽(0001)、鍺(111)、矽(111)、銅(111)或鉑(111)。在一或多個前述及以下實施例中,基板為(110)矽。在一或多個前述及以下實施例中,成核圖案沿對應(001)之方向延伸。在一或多個前述及以下實施例中,成核圖案為溝槽。在一或多個前述及以下實施例中,過渡金屬二硫屬化物層包含MX2,其中M為鉬、鎢、鈀、鉑及鉿之一,X為硫、硒及碲之一。在一或多個前述及以下實施例中,過渡金屬二硫屬化物層包含二硫化鉬。在一或多個前述及以下實施例中,藉由化學氣相沉積方法形成二硫化鉬。在一或多個前述及以下實 施例中,形成中間層於基板之上。在一或多個前述及以下實施例中,中間層為氮化硼層或石墨烯層。
依據本案之另一方面,在製造場效電晶體之方法中,形成成核圖案於基板之上。形成過渡金屬二硫屬化物層使得過渡金屬二硫屬化物層從成核圖案橫向生長。在形成過渡金屬二硫屬化物層之後,去除成核圖案。形成源極與汲極電極於過渡金屬二硫屬化物層上。形成閘極介電層。形成閘電極於閘極介電層之上。在一或多個前述及以下實施例中,過渡金屬二硫屬化物層為二硫化鉬單晶層。在一或多個前述及以下實施例中,基板為(110)矽,且成核圖案沿對應(001)之方向延伸。
依據本案之另一方面,在製造場效電晶體的方法中,形成複數個成核圖案於基板之上。分別從此些成核圖案之邊緣形成過渡金屬二硫屬化物層的複數個區域。形成源極與汲極電極於過渡金屬二硫屬化物層的每一區域之上。形成閘極介電層於過渡金屬二硫屬化物層的此些區域之上。形成閘電極於在過渡金屬二硫屬化物層之每一區域之上之閘極介電層之上。在一或多個前述及以下實施例中,基板為(110)矽,且成核圖案沿對應(001)之方向延伸。
依據本案之另一方面,在製造場效電晶體之方法中,形成成核圖案於第一基板上。形成過渡金屬二硫屬化物層使得過渡金屬二硫屬化物層從成核圖案橫向生長。將過渡金屬二硫屬化物層從第一基板分離,且將所分離的過渡金屬二硫屬化物層附著於第二基板。在一或多個前述及以下實 施例中,過渡金屬二硫屬化物層為單晶。在一或多個前述及以下實施例中,藉由形成膜於第一基板之上、以及將膜圖案化成線圖案來形成成核圖案。在一或多個前述及以下實施例中,基板為上表面為(110)或具有C2對稱成核圖案之γ-三氧化二鋁、三氧化二鎵及氧化鎂之一。在一或多個前述及以下實施例中,形成源極/汲極電極於第二基板之上。在一或多個前述及以下實施例中,使源極/汲極電極嵌入形成於第二基板之上之絕緣層內。在一或多個前述及以下實施例中,在使所分離的過渡金屬二硫屬化物層附著於第二基板之後,形成閘極介電層於過渡金屬二硫屬化物層之上,且形成閘電極於閘極介電層之上。在一或多個前述及以下實施例中,形成由閘極介電層覆蓋之閘電極於第二基板之上。在一或多個前述及以下實施例中,將閘電極嵌入絕緣材料內。在一或多個前述及以下實施例中,在使分離的過渡金屬二硫屬化物層附著於第二基板之後,形成閘極介電層於閘電極之上,且形成源極/汲極電極於閘極介電層之上。
依據本揭露之一方面,場效電晶體包含作為通道之二維過渡金屬二硫屬化物層、源極/汲極電極、閘極介電層以及閘電極。二維過渡金屬二硫屬化物層為不具晶界之單晶。在一些實施例中,過渡金屬二硫屬化物層包含二硫化鉬。
前面概述一些實施例或例子的特徵,以使熟習此技藝者可更好地理解本揭露之實施例的各方面。熟習此技藝者應理解他們可輕易地使用本揭露之實施例作為基準來 設計或改良其他製程與結構,以實現在此所介紹之實施例或例子之相同目的及/或達到相同優點。熟習此技藝者亦應理解這種均等的構造並未偏離本揭露之實施例之精神及範圍,且他們可在不偏離本揭露之實施例之精神及範圍而在此作出許多改變、替換及變化。
10‧‧‧基板
15‧‧‧成核圖案/線圖案/圖案
20‧‧‧單晶層/單晶膜/過渡金屬二硫屬化物層

Claims (20)

  1. 一種形成二維材料層之方法,該方法包含:
    形成一成核圖案於一基板之上;以及
    形成一過渡金屬二硫屬化物層,使得該過渡金屬二硫屬化物層從該成核圖案橫向地生長。
  2. 如申請專利範圍第1項所述之方法,其中該過渡金屬二硫屬化物層為單晶。
  3. 如申請專利範圍第1項所述之方法,其中形成該成核圖案係藉由:
    形成一膜於該基板之上;以及
    將該膜圖案化成一線圖案。
  4. 如申請專利範圍第3項所述之方法,其中該膜由金屬或金屬氧化物製成。
  5. 如申請專利範圍第3項所述之方法,其中該膜由鉬或三氧化鉬製成。
  6. 如申請專利範圍第1項所述之方法,其中:
    該基板為單晶,以及
    該成核圖案所形成於其上之該基板之一上表面非對稱於該過渡金屬二硫屬化物層。
  7. 如申請專利範圍第6項所述之方法,其中該基板為其上表面具有一C2對稱成核圖案之矽、γ-三氧化二鋁、三氧化二鎵及氧化鎂之一,或為包含一六方氮化硼層或一石墨烯基板層沉積於一C3對稱基板上之一複合基板,其中該C3對稱基板包含碳化矽(0001)、鍺(111)、矽(111)、銅(111)或鉑(111)。
  8. 如申請專利範圍第6項所述之方法,其中該基板為(110)矽。
  9. 如申請專利範圍第6項所述之方法,其中該成核圖案沿對應(001)之一方向延伸。
  10. 如申請專利範圍第1項所述之方法,其中該成核圖案為一溝槽。
  11. 如申請專利範圍第1項所述之方法,其中該過渡金屬二硫屬化物層包含MX2,其中M為鉬、鎢、鈀、鉑及鉿之一,X為硫、硒及碲之一。
  12. 如申請專利範圍第1項所述之方法,其中該過渡金屬二硫屬化物層包含二硫化鉬。
  13. 如申請專利範圍第12項所述之方法,其中藉由化學氣相沉積形成該二硫化鉬。
  14. 如申請專利範圍第13項所述之方法,其中形成一中間層於該基板之上。
  15. 如申請專利範圍第14項所述之方法,其中該中間層為一氮化硼層或一石墨烯層。
  16. 一種製造場效電晶體之方法,包含:
    形成一成核圖案於一基板之上;
    形成一過渡金屬二硫屬化物層,使得該過渡金屬二硫屬化物層從該成核圖案橫向生長;
    在形成該過渡金屬二硫屬化物層之後,去除該成核圖案;
    形成源極與汲極電極於該過渡金屬二硫屬化物層上;
    形成一閘極介電層;以及
    形成一閘電極於該閘極介電層之上。
  17. 如申請專利範圍第16項所述之方法,其中該過渡金屬二硫屬化物層為一二硫化鉬單晶層。
  18. 如申請專利範圍第16項所述之方法,其中:
    該基板為(110)矽,以及
    該成核圖案沿對應(001)之一方向延伸。
  19. 一種場效電晶體,包含:
    作為一通道之一二維過渡金屬二硫屬化物層;
    源極/汲極電極;
    一閘極介電層;以及
    一閘電極,
    其中該二維過渡金屬二硫屬化物層為不具晶界之單晶。
  20. 如申請專利範圍第19項所述之場效電晶體,其中該過渡金屬二硫屬化物層包含二硫化鉬。
TW108132310A 2018-09-25 2019-09-06 形成二維材料層的方法、場效電晶體及其製造方法 TWI809188B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862736335P 2018-09-25 2018-09-25
US62/736,335 2018-09-25
US16/415,463 US11037783B2 (en) 2018-09-25 2019-05-17 Field effect transistor using transition metal dichalcogenide and a method for forming the same
US16/415,463 2019-05-17

Publications (2)

Publication Number Publication Date
TW202016985A true TW202016985A (zh) 2020-05-01
TWI809188B TWI809188B (zh) 2023-07-21

Family

ID=69725217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108132310A TWI809188B (zh) 2018-09-25 2019-09-06 形成二維材料層的方法、場效電晶體及其製造方法

Country Status (5)

Country Link
US (2) US11037783B2 (zh)
KR (1) KR102282219B1 (zh)
CN (1) CN110942980B (zh)
DE (1) DE102019114131A1 (zh)
TW (1) TWI809188B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736389B (zh) * 2020-08-06 2021-08-11 國立臺灣大學 生成過渡金屬硫化物的方法
TWI801990B (zh) * 2020-10-29 2023-05-11 台灣積體電路製造股份有限公司 電晶體裝置與其製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11348786B2 (en) * 2018-12-04 2022-05-31 The Regents Of The University Of Michigan Rubbing-induced site-selective growth of device patterns
US11888034B2 (en) 2019-06-07 2024-01-30 Intel Corporation Transistors with metal chalcogenide channel materials
US11777029B2 (en) 2019-06-27 2023-10-03 Intel Corporation Vertical transistors for ultra-dense logic and memory applications
US11171243B2 (en) 2019-06-27 2021-11-09 Intel Corporation Transistor structures with a metal oxide contact buffer
US11688605B2 (en) 2020-05-28 2023-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with two-dimensional materials
DE102020128628A1 (de) * 2020-05-28 2021-12-02 Taiwan Semiconductor Manufacturing Co. Ltd. Halbleiterbauelement mit zweidimensionalen materialien
WO2022058799A1 (en) * 2020-09-18 2022-03-24 King Abdullah University Of Science And Technology Ledge-directed epitaxy of continuous self-aligned single-crystalline nanoribbons of 2d layered materials
US20220102499A1 (en) * 2020-09-25 2022-03-31 Intel Corporation Transistors including two-dimensional materials
US20220199812A1 (en) * 2020-12-21 2022-06-23 Intel Corporation Transistors with monocrystalline metal chalcogenide channel materials
EP4053879A1 (en) * 2021-03-01 2022-09-07 Imec VZW Deposition of highly crystalline 2d materials
KR20220130448A (ko) * 2021-03-18 2022-09-27 삼성전자주식회사 박막 구조체, 이를 포함하는 반도체 소자 및 박막 구조체 제조 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110147840A1 (en) * 2009-12-23 2011-06-23 Cea Stephen M Wrap-around contacts for finfet and tri-gate devices
CN104846434B (zh) * 2015-04-10 2017-03-15 武汉大学 一种二维过渡金属二硫族化合物单晶及其制备方法和应用
CN106328535B (zh) * 2015-07-02 2019-08-27 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其形成方法
KR101881304B1 (ko) 2016-07-25 2018-08-27 한국표준과학연구원 고균일 2차원 전이금속 디칼코지나이드 박막의 제조 방법
KR101770235B1 (ko) * 2015-07-29 2017-08-22 한국표준과학연구원 2 차원 전이금속 디칼코지나이드의 제조 방법
US10309011B2 (en) 2015-07-29 2019-06-04 Korea Research Institute Of Standards And Science Method for manufacturing two-dimensional transition metal dichalcogemide thin film
US9768313B2 (en) * 2015-10-05 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Devices having transition metal dichalcogenide layers with different thicknesses and methods of manufacture
JP6589552B2 (ja) * 2015-10-22 2019-10-16 富士通株式会社 電子デバイス及び電子デバイスの製造方法
US9842734B2 (en) * 2015-12-21 2017-12-12 Imec Vzw Method of forming a feature of a target material on a substrate
US10147603B2 (en) * 2016-06-29 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a FET using a two dimensional transition metal dichalcogenide including a low power oxygen plasma treatment
US10510903B2 (en) * 2016-11-29 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Impact ionization semiconductor device and manufacturing method thereof
US10199474B2 (en) * 2016-12-12 2019-02-05 Samsung Electronics Co., Ltd. Field effect transistor with decoupled channel and methods of manufacturing the same
US10147609B2 (en) * 2016-12-15 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor epitaxy bordering isolation structure
US10269803B2 (en) * 2017-08-31 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid scheme for improved performance for P-type and N-type FinFETs
KR102506444B1 (ko) * 2017-11-29 2023-03-06 삼성전자주식회사 이차원 tmd 박막의 성장방법 및 이를 포함하는 소자의 제조방법
US11121258B2 (en) * 2018-08-27 2021-09-14 Micron Technology, Inc. Transistors comprising two-dimensional materials and related semiconductor devices, systems, and methods
KR102637107B1 (ko) * 2018-09-18 2024-02-15 삼성전자주식회사 전자 소자 및 그 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI736389B (zh) * 2020-08-06 2021-08-11 國立臺灣大學 生成過渡金屬硫化物的方法
TWI801990B (zh) * 2020-10-29 2023-05-11 台灣積體電路製造股份有限公司 電晶體裝置與其製造方法
US11955527B2 (en) 2020-10-29 2024-04-09 Taiwan Semiconductor Manufacturing Co., Ltd. Nano transistors with source/drain having side contacts to 2-D material

Also Published As

Publication number Publication date
US11581185B2 (en) 2023-02-14
CN110942980A (zh) 2020-03-31
DE102019114131A1 (de) 2020-03-26
US20200098564A1 (en) 2020-03-26
US11037783B2 (en) 2021-06-15
US20210305046A1 (en) 2021-09-30
KR20200035338A (ko) 2020-04-03
KR102282219B1 (ko) 2021-07-28
CN110942980B (zh) 2022-08-16
TWI809188B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
TWI809188B (zh) 形成二維材料層的方法、場效電晶體及其製造方法
US9327982B2 (en) Method of forming graphene on a surface
US6465782B1 (en) Strongly textured atomic ridges and tip arrays
TWI310990B (en) Quantum well transistor using high dielectric constant dielectric layer
US7569470B2 (en) Method of forming conducting nanowires
Jeong et al. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors
US20220344330A1 (en) Field-Effect Transistors Having Transition Metal Dichalcogenide Channels and Methods of Manufacture
TWI590444B (zh) 包含具不同厚度的過渡金屬二硫族化物層的裝置和製造方法
JP6043022B2 (ja) 半導電性グラフェン構造、このような構造の形成方法およびこのような構造を含む半導体デバイス
US8193032B2 (en) Ultrathin spacer formation for carbon-based FET
CN102097297B (zh) 一种电场诱导的在石墨烯表面原子层淀积高k栅介质的方法
US10084066B2 (en) Semiconductor device and manufacturing method thereof
CN104979402B (zh) 碳纳米管三维鳍状场效应晶体管及其制备方法
US10541135B2 (en) Source and drain formation using self-aligned processes
CN110323277B (zh) 场效应晶体管及其制备方法
Xu Graphoepitaxially Side‐By‐Side Nanofins Along Atomic Terraces for Enhancement‐Mode FinFETs with 108 On/Off Ratio
WO2014164878A1 (en) Forming graphene devices using self-limited reactions
WO2006125826A1 (en) Electrically conducting nanowires
JPH03187214A (ja) 半導体装置の製造方法