TW202004165A - 石英坩堝的透過率測定方法及裝置 - Google Patents

石英坩堝的透過率測定方法及裝置 Download PDF

Info

Publication number
TW202004165A
TW202004165A TW108117069A TW108117069A TW202004165A TW 202004165 A TW202004165 A TW 202004165A TW 108117069 A TW108117069 A TW 108117069A TW 108117069 A TW108117069 A TW 108117069A TW 202004165 A TW202004165 A TW 202004165A
Authority
TW
Taiwan
Prior art keywords
quartz crucible
transmittance
light
crucible
light source
Prior art date
Application number
TW108117069A
Other languages
English (en)
Other versions
TWI736890B (zh
Inventor
清水泰順
高梨啓一
藤田剛司
北原江梨子
福井正徳
Original Assignee
日商Sumco股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Sumco股份有限公司 filed Critical 日商Sumco股份有限公司
Publication of TW202004165A publication Critical patent/TW202004165A/zh
Application granted granted Critical
Publication of TWI736890B publication Critical patent/TWI736890B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4707Forward scatter; Low angle scatter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本發明的課題係在於提供可正確測定石英坩堝的透過率的測定方法及測定裝置。 本發明的解決手段係從配置在石英坩堝的一方的牆面1Wa側的光源5,向石英坩堝的既定測定點照射平行光,在石英坩堝的另一方的牆面1Wb側,以另一方的牆面1Wb上的平行光的出射點P為中心的同心圓C0 上的複數位置配置檢測器6,以複數位置測定石英坩堝的穿透光的受光等級,基於上述複數位置所測定的穿透光的複數受光等級,求得在既定測定點的石英坩堝的透過率

Description

石英坩堝的透過率測定方法及裝置
本發明係關於測定矽單晶拉升用石英坩堝的透過率的方法及裝置。
在以柴可拉斯基法(以下稱為CZ法)製造矽單晶時使用石英坩堝。在CZ法上,係將矽原料填充在石英坩堝內,以配置在石英坩堝外側的加熱器的輻射熱將矽原料加熱使之熔融,使種晶對該矽融液浸漬,藉由邊旋轉坩堝邊逐步將種晶拉升,在種晶的下端成長很大的單晶。為了以低成本製造半導體裝置用的高品質矽單晶,需要提高在一次拉升步驟的單晶化率,為此需要可長時間穩定保持矽融液的坩堝。
關於石英坩堝,在專利文獻1記載一種石英坩堝,為了拉升單晶化率高,且氧溶解量多的矽單晶,在包含坩堝的側壁部、彎曲部及底部的任意部位的紅外線透過率為30~80%,彎曲部的平均紅外線透過率較側壁部及底部的平均紅外線透過率大。
此外,在專利文獻2上,記載一種應變測定裝置,其係以非破壞測定石英坩堝整體的應變分佈。該應變測定裝置,具備:從石英坩堝的外側投射的光源;配置在石英坩堝內的攝影機;配置在光源與石英坩堝的壁體間的第1偏光板及第1-1/4波長板,配置在攝影機與坩堝內表面之間的第2偏光板及第2-1/4波長板;控制攝影機的攝影方向的攝影機控制機構;藉由將從光源投射,依序穿透第1偏光板、第1-1/4波長板、坩堝壁體、第2-1/4波長板、第2的偏光板的光以攝影機拍攝,測定石英坩堝的殘留應變分佈。
此外,雖並不是石英坩堝的測定方法,在專利文獻3上記載一種電磁波的反射率或透過率的測定方法,其適於評估工業爐、焚化爐的隔熱材的電磁波在高溫下的反射特性。該測定方法,係對高溫的試料照射電磁波,邊以試料為中心使電磁波檢測手段以同心圓移動,檢測在試料反射的電磁波或穿透試料的電磁波。根據此測定方法,可不使用標準試料,測定高溫物體本身的電磁波的真的反射率及透過率。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開平9-157082號公報 [專利文獻2]日本特開2017-202974號公報 [專利文獻3]日本特開2009-85795號公報
[發明所欲解決的課題]
在矽單晶的拉升步驟中,由於石英坩堝的內面與矽融液接觸會逐漸溶損,故以CZ法製造的矽單晶會包含坩堝所提供的氧。矽單晶中的氧不僅可成為污染金屬的捕捉點,並且發揮使差排不動化而增加機械性強度的作用,惟氧濃度過高,則不是對裝置造成不良影響,亦反而成為降低機械性強度的原因。近幾年,由於製造技術的提升,比起捕捉特性,較重視裝置特性的提升,而要求晶格間氧濃度低的矽單晶。
為了製造低氧的矽單晶,需要抑制坩堝的加熱溫度,為此需要調整坩堝的透過率,但是當加熱溫度過低,則由於矽融液的溫度變低而變得難以控制拉晶,而有單晶化率惡化的問題。因此,需要精密控制在石英坩堝的每個部位的坩堝的透過率。在此,所謂透過率,係指從石英坩堝的牆面外側入射的某一波長的光可穿透到內側的比例。
如圖15所示,先前的透過率測定方法,係在從紅外燈61離一定距離的正面位置,相對配置功率計62(檢測器),進一步在紅外燈61與功率計62之間,配置從石英坩堝切出的坩堝片60(石英玻璃片),與功率計62緊密配置,藉由以功率計62接收從紅外燈61的紅外線,測定穿透坩堝壁的紅外線強度(受光等級)。
但是,由石英玻璃組成的坩堝壁,具有內包許多微小氣泡的氣泡層(不透明層),由於入射光會在坩堝壁的內部散射擴大,故以先前的透過率測定方法,穿透光會漏出檢測器的受光範圍外側,而有無法正確地測定透過率的問題。此外,先前的石英坩堝的透過率測定方法,係使用從坩堝產品切出數十mm四方的坩堝片的破壞檢測,只是以相同條件製造的坩堝當作相同透過率,無法將產品狀態的石英坩堝的真正的透過率以非破壞測定。
在專利文獻3,只是記載測定試料的透過率/反射率的角度依存性的方法,並非揭示正確測定來自在試料內散射的穿透光的透過率的方法。記載於專利文獻3的先前的透過率測定方法,並非以穿透光會在內部散色的試料作為測定對象,相對較容易檢測試料的全穿透光。再者,專利文獻3係破壞檢測,從幾何學配置的限制,非常難以測定如石英坩堝等的大型測定對象物。
因此,本發明係以提供可正確測定石英坩堝的透過率的透過率測定方法及測定裝置為目標。 [用於解決課題的手段]
為解決上述課題,本發明提出一種石英坩堝的透過率測定方法,其特徵在於:其係從配置在石英坩堝的一方的牆面側的光源,向上述石英坩堝的既定測定點照射平行光,在上述石英坩堝的另一方的牆面側,以上述另一方的牆面上的上述平行光的出射點為中心的同心圓上的複數位置配置檢測器,以上述複數位置測定上述石英坩堝的穿透光的受光等級,基於上述複數位置所測定的上述穿透光的複數受光等級,求得在上述既定測定點的上述石英坩堝的透過率。
根據本發明,能夠以廣泛的範圍測定在坩堝壁內部散射而具有擴散的穿透光,藉此能夠以非接觸正確地測定石英坩堝的透過率。
以本發明的透過率測定方法,藉由使單一檢測器沿著上述同心圓旋繞,將上述檢測器配置在上述複數位置為佳。此時,上述檢測器對上述平行光光軸的最大旋繞角度以45°以上為佳。藉此可使用單一受光手段正確測定石英坩堝的透過率。此外,可防止使用複數受光手段時因受光手段間所發生的輸出等級誤差的影響的透過率測定誤差。
根據本發明的透過率測定方法,使用預先配置在上述複數位置的複數檢測器,求得上述石英坩堝的透過率亦佳。藉此,可同時測定複數位置的透過率而提升產能。
根據本發明的透過率測定方法,在上述石英坩堝的外側配置上述光源,在上述石英坩堝的內側配置上述檢測器,藉由上述檢測器接收從上述光源照射上述石英坩堝的平行光,以非破壞測定上述石英坩堝的透過率為佳。藉此,可正確測定石英坩堝本身的透過率。
根據本發明的透過率測定方法,藉由使上述光源及上述檢測器的位置沿著上述石英坩堝的上述牆面在高度方向移動,在上述石英坩堝的高度方向的不同位置的複數測定點測定上述透過率為佳。藉此,可測定石英坩堝的側壁部、角部及底部的透過率。
根據本發明的透過率測定方法,藉由使上述光源及上述檢測器與上述石英坩堝的相對位置,沿著上述石英坩堝的牆面在圓周方向移動,在上述石英坩堝的圓周方向的不同位置的複數測定點測定上述透過率為佳。藉此,可在石英坩堝的圓周方向的任意位置配置投光手段及受光手段而測定透過率。
根據本發明的透過率測定方法,將分別在上述石英坩堝的高度方向的不同位置的複數測定點所測定的複數透過率,求平均值為佳。藉此,可提高在石英坩堝的高度方向的任意位置的透過率測定精度。
根據本發明的透過率測定方法,藉由將檢測器配置在上述同心圓上的上述光源的正面,直接接收來自上述光源的平行光,預先預先求得受光等級的空白值,從上述穿透光的受光等級相對於上述空白值的比求得上述透過率為佳。藉此,可求得石英坩堝的透過率。
在本發明,上述平行光,係將雷射光源所輸出的雷射束的光束徑擴大的為佳。此時,上述擴大的雷射束的光束徑以5mm以上為佳。根據本發明,可檢出將石英坩堝的氣泡分佈局部誤差的影響平均化的穿透光。因此,可穩定地測定在石英坩堝的任意測定點的透過率,而可縮短石英坩堝的測定時間。
在本發明,上述平行光,以將雷射光源所輸出的雷射束轉變成雷射線光為佳。此時,上述雷射線光的光點長度以10mm以上為佳。根據本發明,可檢出將石英坩堝的氣泡分佈局部誤差的影響平均化的穿透光。因此,可穩定地測定在石英坩堝的任意測定點的透過率,而可縮短石英坩堝的測定時間。
此外,根據本發明的石英坩堝的透過率測定裝置,其特徵在於:具備:配置在石英坩堝的一方的牆面,向上述石英坩堝的既定測定點照射平行光的光源;配置在上述石英坩堝的另一方的牆面,接收上述石英坩堝的穿透光的至少1個檢測器;及根據上述檢測器所測定的上述穿透光的受光等級計算出上述石英坩堝的透過率的透過率演算部,上述檢測器,測定在以上述另一方的牆面上的上述平行光的出射點為中心的同心圓上的複數位置的上述石英坩堝的穿透光的受光等級,上述透過率演算部,根據在上述複數位置測定的上述穿透光的複數受光等級,求得在上述既定測定點的上述石英坩堝的透過率。
根據本發明,能夠以廣泛的範圍測定在坩堝壁的內部散射而具有擴散的穿透光,藉此能夠以非接觸,正確測定石英坩堝的透過率。
根據本發明的透過率測定裝置,進一步具備沿著上述同心圓使單一檢測器旋繞的旋繞機構為佳。此時,上述檢測器相對於上述平行光的光軸的最大旋繞角度以45°以上為佳。藉此,可使用單一受光手段正確地測定石英坩堝的透過率。
在本發明,進一步具備分別配置在上述複數位置的複數檢測器為佳。藉此,可在旋繞角度不同的複數位置同時進行透過率的測定,可提升產能。
在本發明,上述光源係配置在上述石英坩堝的外側,上述檢測器係配置在上述石英坩堝的內側,藉由上述檢測器接收從上述光源照射上述石英坩堝的平行光,可將上述石英坩堝的透過率以非破壞測定為佳。藉此,可正確地測定石英坩堝本身的透過率。
本發明提出一種透過率測定裝置,進一步具備:使上述光源的位置,沿著上述石英坩堝的上述一方的牆面在高度方向移動的投光位置變更手段;及使上述檢測器的位置沿著上述石英坩堝的上述另一方的牆面在高度方向移動受光位置變更手段為佳。可測定石英坩堝的側壁部、角部及底部的透過率。
進一步具備使上述石英坩堝旋轉的坩堝旋轉機構為佳。藉此,可在石英坩堝的圓周方向的任意位置配置投光手段及受光手段測定透過率。
上述透過率演算部,將分別在上述石英坩堝的高度方向的位置相同而圓周方向的位置不同的複數測定點測定的複數透過率求得平均值為佳。藉此,可提高在石英坩堝的高度方向的任意位置的透過率的測定精度。
上述透過光檢算手段,藉由將檢測器配置在上述同心圓上的上述光源的正面,直接接收來自上述光源的平行光,預先求得受光等級的空白值,從上述穿透光的受光等級相對於上述空白值的比求得上述透過率為佳。藉此,可求得石英坩堝的透過率。
在本發明,上述光源,包含:輸出雷射束的雷射光源;及將從上述雷射光源輸出的上述雷射束的光束徑擴大的擴束器為佳。此時,上述擴大的雷射束的光束徑以5mm以上為佳。根據此構成,可檢出將石英坩堝的氣泡分佈局部誤差的影響平均化的穿透光。因此,可穩定地測定在石英坩堝的任意測定點的透過率,而可縮短石英坩堝的測定時間。
在本發明,上述光源,包含:輸出雷射束的雷射光源;及將從上述雷射光源輸出的上述雷射束轉變為雷射線光的線產生器為佳。此時,上述雷射線光的光點長度以10mm以上為佳。根據此構成,能檢出石英坩堝的氣泡分佈局部的誤差的影響或被平均化的穿透光。所以能穩定地測定在石英坩堝的任意的測定點方面的透過率,能縮短石英坩堝的測定時間。 [發明的效果]
根據本發明,可提供能能夠正確地測定石英坩堝的透過率的透過率測定方法及測定裝置。
以下邊參照添附圖面,詳細說明關於本發明的較佳的實施形態。
圖1係表示本發明的透過率測定對象的石英坩堝的構造的概略剖面圖。
如圖1所示,石英坩堝1係支持矽融液的有底圓筒狀的容器,具有:圓筒狀側壁部1a;緩慢彎曲的底部1b;具有比底部1b更大曲率而連接側壁部1a與底部1b的角部1c。
石英坩堝1,口徑以24英寸(大約600mm)以上為佳,以32英寸(大約800mm)以上為特佳。如此的大口徑的坩堝,係用於拉升直徑300mm以上的大型矽單晶晶柱,要求即使長時間使用,亦不會對單晶的品質造成影響。坩堝的壁厚,因其部位不同而多少不同,但是32英寸以上的大型坩堝的側壁部1a的壁厚,一般在10mm以上。
石英坩堝1,具備:由實質上不含氣泡的石英玻璃組成的透明層2(無氣泡層);及由含有許多微小氣泡的石英玻璃組成,設在坩堝的較透明層2外側的不透明層3(氣泡層)。
透明層2,係構成與矽融液接觸的坩堝內面1i的層,為了防止石英玻璃中的氣泡降低單晶化率而設。透明層2的厚度,以0.5~10mm為佳,為避免在單晶的拉升步驟中因溶損而完全消失,使不透明層3露出,在坩堝的每個部位設定適當的厚度。透明層2,設在從坩堝側壁部1a到底部1b的坩堝全體為佳,惟不與矽融液接觸的坩堝的上端部(邊緣部),亦可省略透明層2的形成。
所謂透明層2「實質上不含氣泡」,係指具有不會因起因於氣泡而降低單晶化率的程度的氣泡含有率及氣泡尺寸的意思。在坩堝的內面附近,只要存在些微的氣泡,會因為坩堝內面的溶損而無法將坩堝內面附近的氣泡封閉在石英玻璃中,而在拉晶時,石英玻璃中的氣泡會因熱膨脹而破裂,而有坩堝碎片(石英片)剝離之虞。釋出到融液中的坩堝碎片,會被融液對流帶到單晶成長界面,而被納到單晶中時,會成為單晶的有差排化的原因。此外,因坩堝內面的溶損而釋出到融液中的氣泡浮到固液界面而被納入單晶中時,會成為針孔的原因。透明層2的氣泡含有率,以0.1vo1%以下為佳,氣泡的平均直徑以100μm以下為佳。
透明層2的氣泡含有率,能夠使用光學檢測手段,以非破壞測定。光學檢測手段,具備接收照射在坩堝的穿透光或反射光的受光裝置。照射光的發光手段可內建在受光裝置,亦可利用外部發光手段。此外,光學檢測手段,可良好地使用可沿著坩堝內面轉動操作者。作為照射光,在可視光、紫外線及紅外線之外,亦可利用X射線或雷射等。受光裝置,可使用包含光學透鏡及攝像元件的數位相機。以光學檢測手段的測定結果,以影像處理裝置取入,算出每單位面積的氣泡含有率。
每單位體積的氣泡含有率,可藉由在深度方向累計每單位面積的氣泡含有率而求得。為了檢測從表面存在於一定深度的氣泡,只要將光學透鏡的焦點從表面向深度方向掃描即可。每單位面積的氣泡含有率,可將使用數位相機拍攝的坩堝內面的影像區分成每一定面積作為基準面積,求氣泡相對於該基準面積的佔有面積比。
不透明層3,係構成坩堝外面1o的層,為了提高坩堝內的矽融液的保溫性,同時在單晶拉升裝置內將來自以包圍坩堝而設的加熱器的輻射熱分散,而儘可能均勻地加熱坩堝內的矽融液。因此,不透明層3,設在坩堝側壁部1a到底部1b的坩堝全體。不透明層3的厚度,大致等於從坩堝壁的厚度扣除透明層2的厚度的值,依坩堝的部位不同而異。矽融液的溫度,由於取決於不透明層3,將來自加熱器的輻射熱穿透何等程度,故坩堝內部的氣泡狀態(氣泡的數目、大小、密度)很重要。
為了在CZ法控制矽單晶的氧濃度,石英坩堝1的每個部位需要具有適當的透過率,因此需要正確地測定石英坩堝1的各部位的透過率。
圖2及圖3用於說明本發明的石英坩堝的透過率測定方法的原理的示意圖。
如圖2所示,本發明的石英坩堝的透過率測定方法的特徵,係在石英坩堝1的壁體1w的一方的牆面1Wa(坩堝外面)側配置光源5,在另一方的牆面1Wb側與光源5相對配置攝影機等的檢測器6,從光源5照射平行光,用檢測器6測定穿透壁體1W的光的受光等級,同時使檢測器6沿著以另一方的牆面1Wb(坩堝內面)上的光出射點P為中心的同心圓旋繞,在複數測定位置測定石英坩堝的穿透光的受光等級的點。此時的透過率,能夠以穿透光的全能量相對於入射光的全能量的比求得,穿透光的全能量能夠以複數位置所測定的穿透光的受光等級的總和求得。
入射壁體1W的一方的牆面1Wa的光,會通過壁體1W的內部從另一方的牆面1Wb射出,但如上所述由於石英坩堝1具有內包許多微小氣泡的不透明層3(參照圖1),穿透光會在壁體1W內散射。因此,如圖3(a)所示,石英坩堝的穿透光的亮度在其中心非常高,而周圍亦依稀變亮,可知平行光被散射。如此的穿透光的能量分佈,將呈如圖3(b),以出射位置為中心以同心圓狀擴展的旋轉對稱分佈。
如先前的透過率測定方法,僅以將檢測器6固定在光源5的正對面測定,則如圖15所示,散射光會漏到檢測器6的外側,而無法接收到全穿透光。但在本發明,由於在以穿透光的出射點P為中心的同心圓C0 上的複數位置配置檢測器6而測定穿透光,故可正確地測定石英坩堝1的透過率,能夠以非接觸及非破壞測定。以下,詳細說明關於本發明的石英坩堝的透過率測定方法。
圖4及圖5係表示本發明的較佳的實施形態的石英坩堝的透過率測定裝置的構成的圖,圖4為概略側面剖面圖,圖5為概略俯視圖。
如圖4及圖5所示,本實施形態的石英坩堝的透過率測定裝置10,具備:以3點支持石英坩堝1的支持裝置11;配置在石英坩堝1外側的投光裝置20;配置在石英坩堝1內側的受光裝置30;及基於受光裝置30所測定的石英坩堝1的穿透光的受光等級算出透過率的透過率演算部40。
支持裝置11,具備:支持台12;立設在支持台12上的3支支柱13;分別設在3支支柱13的尖端部的旋轉滾輪14。各旋轉滾輪14的旋轉軸為斜向傾斜,藉此三個旋轉滾輪14的圓周面,以可自由旋轉地支持石英坩堝1的角部1c的外周面的3點。石英坩堝1的旋轉動作,可以手動進行,亦可使用馬達等等的驅動機構旋轉旋轉滾輪14而自動進行。
此外,支持裝置11,具備:立設在支持台12上的上部框15;及從上部框15的上端部向水平方向延伸的梁部16,梁部16將受光裝置30從其上方支持。此外,上部框15支持投光裝置20。
投光裝置20,具備:輸出雷射的雷射裝置21;及沿著石英坩堝1的外面設置的導軌22。雷射裝置21係輸出平行光的光源,構成為可沿著導軌22自由滑動。藉此,雷射裝置21可沿著石英坩堝1的外面1o,從坩堝的邊緣上端到底部1b的中心移動,而可設置在任意位置使雷射光的出射方向對坩堝牆面一直呈垂直。雷射裝置21的滑動動作,可以手動進行,亦可使用馬達等的驅動機構自動進行。導軌22及驅動機構,構成將雷射裝置21的位置按照石英坩堝1的外壁面的高度方向移動的投光位置變更手段。再者,藉由使雷射光對坩堝牆面以垂直射入射,可使其在牆面的反射及折射最小,而提高入射位置的精度,惟沒有必要嚴密地垂直。
受光裝置30,具備:作為檢測器的攝影機31;使攝影機31升降的攝影機升降機構32;使攝影機31以包含石英坩堝1的旋轉中心軸的垂直面內轉動的攝影機轉動機構33;及以石英坩堝1內面1i上的雷射光的出射點(即,雷射光軸與石英坩堝1內面1i的交點)為中心,使攝影機31沿著同心圓旋繞的攝影機旋繞機構34。藉由使用CCD攝影機等的受光範圍廣的裝置作為檢測器,能夠在廣泛的範圍接收穿透光的能量。
藉由攝影機升降機構32及攝影機轉動機構33的合作動作,攝影機31與投光裝置20同樣,構成為可沿著石英坩堝1內面1i,從其邊緣上端到底部1b的中心移動。即,攝影機升降機構32及攝影機轉動機構33,構成使攝影機31的位置沿著石英坩堝的內牆面在高度方向移動的受光位置變更手段。此外,如圖5所示,攝影機旋繞機構34,可藉由使攝影機31沿著導軌35移動而使攝影機31旋繞,無論移到任何位置,均可將攝影機31的攝影方向設置成一直朝向雷射的出射點。再者,攝影機31的旋繞動作,亦能夠以手動進行。
攝影機31,係與包含圓弧狀導軌35的攝影機旋繞機構34一起被驅動,調整攝影機31的上下方向的方向(傾斜角)。此外,攝影機31,與攝影機轉動機構33及攝影機旋繞機構34一起被升降驅動而調整其高度方向的位置。攝影機31的旋繞角度,可從攝影機升降機構32及攝影機轉動機構33的動作獨立而任意設定。即使將雷射裝置21及攝影機31沿著坩堝的牆面在高度方向移動到任意位置,將從坩堝表面出射的雷射光中心點到攝影機31的距離一直控制成固定的距離。
攝影機31所拍攝的影像數據,會被透過率演算部40處理,從各像素的亮度等級的累計值算出透過率T。以沒有配置石英坩堝1,以攝影機31直接拍攝從雷射裝置21出射的光線時的影像數據所求得的入射光的全能量(空白值)為I0 ,以攝影機31拍攝石英坩堝1的穿透光時的影像數據所求得的穿透光的全能量為I時,透過率能夠以T=I/I0 求得。
雷射裝置21及攝影機31的定位以電腦控制進行為佳,亦可手動進行。通常,石英坩堝1的透過率測定處會預先決定,大多測定例如側壁部1a、角部1c、底部1b的3處,或者側壁部1a的上部、側壁部1a的下部、角部1c、底部1b的4處。因此,在對應該等處的位置設記號,可將雷射裝置21及攝影機31,以自動或手動移動到該位置而設定,可將透過率測定裝置10作成簡單的構成。
圖6~圖8係用於說明雷射裝置21及攝影機31沿著坩堝牆面的升降動作的概略側面剖面圖。
如圖6所示,雷射裝置21及攝影機31,可配置在石英坩堝1的側壁部1a下部的測定位置。測定位置從圖4所示石英坩堝1的側壁部1a的上部變更到圖6所示側壁部1a下部的測定位置,係如箭頭d1 所示,可藉由將雷射裝置21及攝影機31單純地向下方移動而進行。
如圖7所示,雷射裝置21及攝影機31,可配置在石英坩堝1的角部1c的測定位置。此時,雷射裝置21的位置及方向,可藉由使雷射裝置21沿著導軌22移動而設定。此外,攝影機31的位置及方向,可藉由攝影機升降機構32使攝影機31向下方移動(參照箭頭d1 )的同時,攝影機轉動機構33將攝影機31向正下方轉向(參照箭頭d2 )而設定。
如圖8所示,雷射裝置21及攝影機31,可配置在石英坩堝1的底部1b的測定位置。此時,雷射裝置21的位置及方向,可藉由將雷射裝置21沿著導軌22移動而設定。此外,攝影機31的位置及方向,可藉由攝影機升降機構32使攝影機31向下方移動(參照箭頭d1)的同時,攝影機轉動機構33將攝影機31向斜下方轉向(參照箭頭d2)而設定。
圖9係用於說明攝影機31的旋繞動作及石英坩堝1的旋轉動作的概略側面剖面圖。
如圖9所示,攝影機31,藉由沿著導軌35向箭頭d4 的方向滑動,可在包含雷射光軸Z1 的平面內旋繞。藉此,可使攝影機31移動到以雷射光的出射點P為中心的同心圓上的任意位置測定石英坩堝1的透過率。為了提高透過率的測定精度,攝影機31的最大旋繞角度θ以45°以上為佳。
此外,石英坩堝1可如箭頭d3 所示在支持台12上旋轉。因此,可改變石英坩堝1透過率在圓周方向的測定位置(高度方向的測定線),例如,可在坩堝的旋轉角度呈0°、90°、180°、270°的4個方向進行測定。
圖10及圖11係用於說明使用本實施形態的透過率測定裝置的石英坩堝1的透過率測定方法的一例的流程圖。
如圖10所示,在本實施形態的透過率測定,首先將石英坩堝1設置在支持台12上。藉此,設定石英坩堝1的圓周方向的初期測定位置(坩堝旋轉角度0°的位置)(步驟S11)。
接著,調整雷射裝置21及攝影機31的高度方向的位置,設定坩堝的高度方向的初期測定位置(步驟S12)。例如,如圖4所示,將雷射裝置21及攝影機31的高度方向的設定位置,對準石英坩堝1的側壁部1a的上部。之後,在此測定位置測定石英坩堝1的透過率(步驟S13)。關於在各個測定位置的透過率測定方法將於後述。
在上述測定後,石英坩堝1的高度方向的全測定位置尚未完成測定透過率時,使雷射裝置21及攝影機31沿著坩堝牆面在高度方向移動,改變坩堝的高度方向的測定位置。具體而言,依序測定坩堝側壁部1a的上部(初期測定位置)、側壁部1a的下部、角部1c、底部1b,4處的透過率(步驟S14N、S15、S13)。再者,坩堝的高度方向的測定處的數量,並不限定於4處,幾處都可。如果增加測定處的數量可更詳細地測定坩堝內的透過率的分佈,但產能會變低。
另一方面,完成石英坩堝1在高度方向的全測定位置的透過率測定時,判斷是否完成測定坩堝的圓周方向的全測定位置(步驟S16)。然後,完成坩堝的圓周方向的全測定位置測定時,結束坩堝全體的透過率測定(步驟S14Y、步驟S16Y)。
在上述測定後,尚未完成測定石英坩堝1的圓周方向的全測定位置時,使石英坩堝1旋轉變更坩堝的圓周方向的測定位置,同時使雷射裝置21及攝影機31回歸坩堝的高度方向的初期測定位置(步驟S16N、S17、S12)。具體而言,藉由使坩堝旋轉90°,使雷射裝置21及攝影機31向下一位置移動,依序測定0°(初期測定位置)、90°、180°、270°的4處透過率。再者,坩堝的圓周方向的測定處的數量,並不限定於4處,幾處都可。如果增加測定處的數量可更詳細地測定坩堝內的透過率的分佈,但產能會變低。
接著,詳細說明關於在各個的測定位置的透過率測定方法。
如圖11所示,在各個測定位置的透過率測定,首先進行雷射裝置21及攝影機31的中心對位(步驟S21)。具體而言,將雷射裝置21設定在既定的測定位置,向坩堝射出雷射,將通過坩堝壁的雷射用攝影機31拍攝,微調整攝影機31的位置使雷射光的中心配置在拍攝影像的大致中心。此時,攝影機31的旋繞角度為0°,攝影機31與雷射裝置21相對。
接著,邊維持雷射從雷射裝置21射出的狀態,使攝影機31沿著第2導軌35旋繞,從複數角度拍攝穿透光的影像(步驟S22)。攝影機31的旋繞角度的間距,只要可沒有遺漏地接收到坩堝的穿透光全體,並無特別限定,只要根據攝影機31的透鏡大小(視角)與測定點的距離等的條件選擇適當的間距即可。具體而言,攝影機31的旋繞角度的間距以10°為佳。攝影機31從基準位置(0°)在一定的角度範圍內的複數位置拍攝雷射的影像,而此時的最大旋繞角度以較±45°大為佳。儘可能擴大旋繞角度,可藉由拍攝更多的散射光來求總和,而可提高透過率的測定精度。再者,攝影機31的角度範圍亦可僅在正方向或負方向的任一側的範圍。
接著,從複數角度拍攝的複數穿透光影像計算穿透光的全能量(步驟S23)。穿透光,由於在坩堝壁內的散射,而以出射位置為中心以同心圓狀擴展(參照圖3(a))。因此,在穿透光的能量計算,將拍攝影像線掃算出從穿透光的出射位置中心的距離相對於亮度的輪廓(參照圖14(a)、(b))。由於可假設該亮度輪廓係以出射位置為中心以等向擴展,故將亮度輪廓向圓周方向旋轉時所得的體積(參照圖3(b)),會變為從某個角度拍攝的穿透光的能量。因此,從拍攝角度不同的複數影像分別求得的複數穿透光的能量的總和成為穿透光的總能量I。透過率T係以穿透光的全能量I相對於對入射光的全能量I0 (空白值)的比(T=I/I0 )求得(步驟S24)。再者,穿透光的全能量I,亦可合計從複數角度拍攝的影像求得的複數穿透光的亮度輪廓之後,藉由積份求得,計算順序並無特別限定。
接著,將雷射的照射位置(雷射裝置21在高度方向的位置)沿著坩堝牆面,例如向圓周方向錯開既定間隔(例如1cm)之後,如上所述使攝影機31旋繞再度拍攝影像(步驟S25N、S26、S21~S24)。藉由將如此的透過率的測定與雷射照射位置的變更輪流反覆既定次數(例如4次),結束在1個測定點(例如側壁部1a的上部)的透過率測定(步驟SS25Y)。最後,求得複數透過率的測定值的平均值(步驟S27)。如此,藉由在1個測定處內稍微改變雷射照射位置測定透過率,求得該透過率的平均值,可控制透過率的測定值的局部誤差的影響。再者,為了平均化處理而使雷射照射位置錯開的方向並不限於圓周方向,可為任意方向。
如以上,在石英坩堝1的高度方向的複數處的透過率測定,藉由使雷射裝置21及攝影機31在坩堝的高度方向移動,測定例如側壁部1a的上部、側壁部1a的下部、角部1c、底部1b,4處的透過率。再者,將石英坩堝1旋轉既定角度(例如90度)變更在坩堝的圓周方向的透過率測定位置之後,藉由反複在上述坩堝的高度方向測定步驟,測定例如石英坩堝1的圓周方向的複數處,例如0°、90°、180°、270°的4個方向的透過率。如此,藉由求得在圓周方向的4處的透過率的平均值,可提高在坩堝的各部位(側壁部1a的上部、側壁部1a的下部、角部1c、及底部)的透過率測定精度。
如以上所說明,根據本實施形態的石英坩堝的透過率測定方法,係從石英坩堝的外面測照射平行光,在以石英坩堝內面上的光的出射點為中心在同心圓上的複數位置配置攝影機接收穿透光,以廣泛的範圍在測定在石英坩堝壁內散射的穿透光的光量,由於根據在複數位置的穿透光光量測定結果求得石英坩堝的透過率,故可正確地求得石英坩堝的透過率。
此外,根據本實施形態的石英玻璃坩堝的透過率測定裝置,由具備使攝影機沿著以石英坩堝內面上的光出射點為中心的同心圓旋繞的攝影機旋繞機構,可使攝影機移動到以石英坩堝內面上的光出射點為中心的同心圓上的複數位置接收穿透光,故可根據在複數位置的穿透光的光量測定結果求得石英坩堝的透過率。因此,能夠以廣泛的範圍測定在石英坩堝壁內散射的穿透光的光量,藉此可正確地求得石英坩堝的透過率。
圖12係用於說明本發明的其他的較佳的實施形態的石英坩堝的透過率測定裝置的特徵的示意圖。
如圖12所示,該透過率測定裝置的特徵,並不是使1台攝影機31旋繞,而是使用設置在以出射點為中心的同心圓上的複數台攝影機(在此為5台攝影機31a~31e)同時測定在複數測定位置(在此為5個測定位置)的透過率。其他的點,與第1實施形態相同。在使用該透過率測定裝置的透過率測定方法,雖需準備與測定位置的數量相同數量的攝影機31,但由於沒有需要旋繞攝影機31,故可提高產能。
圖13(a)~(c)係表示投光裝置20的實施形態的示意圖。
圖13(a)所示投光裝置20,係構成為雷射裝置21內的雷射光源21a(雷射振盪器)所輸出的雷射束B0 直接對石英坩堝1的壁體1W照射。通常,從雷射光源21a輸出的雷射束B0 的光束徑為1mm前後。光束徑如此細時,雖然可測定石英坩堝1的局部透過率,但會受到坩堝內部的局部的氣泡密度的影響而容易使透過率的測定值變動。欲抑制氣泡密度的局部變動的影響而求得穩定的測定值時,需要將雷射束B0 的照射位置局部地改變幾處測定,求得複數測定值的平均值。但是,進行複數次測定時,測定時間會變長。
圖13(b)所示投光裝置20的雷射裝置21,進一步具備擴大從雷射光源21a所輸出的雷射束B0 的光束徑的束擴張器21b。藉由使用束擴張器21b,可擴大照射在石英坩堝1的的壁體1W的雷射束B1 的光束徑,可降低石英坩堝1壁體1W內部的氣泡密度的局部變動的影響而穩定地測定透過率。特別是氣泡密度越少的坩堝,藉由擴大光束徑降低氣泡密度局部變動的影響的效果越大。此外,能夠以1次測定求得降低氣泡密度局部變動的影響的透過率,而可縮短測定時間。
使用束擴張器21b擴大光束徑時,光束徑的擴大率(D1 /D0 )為2倍以上,以5~50倍為佳,以10~20倍為特佳。或者,擴大的光束徑(束的光點徑)為2mm以上,以5~50mm為佳,以10~20mm為特佳。因為光束徑的擴大率未滿2倍或光束徑未滿2mm,無法得到擴大光束徑的實質效果。光束徑或其擴大率的上限,可考慮測定目的與裝置上的限制自由設定。例如,光束徑的上限可為50mm,光束徑的擴大率的上限可為50倍。
圖13(c)所示投光裝置20的雷射裝置21,進一步具備:從雷射光源21a輸出的雷射束B0 變更為雷射線光B2 的線產生器21c。相對於束擴張器21b係將光束徑向2維方向擴大,線產生器21c係將光束徑向1維方向擴大。藉由使用線產生器21c,可降低石英坩堝1壁體1W內部的氣泡密度的局部變動的影響而穩定地測定透過率。此外,能夠以1次測定求得降低氣泡密度局部變動的影響的透過率,而可縮短測定時間。
使用線產生器21c將光束徑向一方向擴大時,光束徑的擴大率(L/D0 )為5倍以上,以10~200倍為佳,以50~100倍為特佳。或者,雷射線光的光點長度(光束光點的最大寬幅)L為5mm以上,以10~200mm為佳,以50mm~100mm為特佳。光束徑的擴大率未滿5倍或光束徑未滿5mm,無法得到擴大光束徑的實質效果。光束徑或其擴大率的上限,可考慮測定目的與裝置上的限制自由設定。例如,雷射線光的光點長度的上限可為200mm,光束徑的擴大率的上限可為200倍。
線產生器使用21c時,雷射線光的長邊方向,可為石英坩堝1的圓周方向,亦可為朝石英坩堝1的高度方向。通常,在石英坩堝1的高度方向的氣泡含有率的變化相對較大,在石英坩堝1內的圓周方向的氣泡含有率的變化相對較小。因此,將雷射線光的長邊方向設定為平行於圓周方向時,可不受透過率起因於氣泡含有率變化的影響而可正確地測定測定點的透過率。另一方面,將雷射線光的長邊方向設定為平行於高度方向時,可求得將透過率起因於氣泡含有率而相對較大變化平均化之值。
從雷射光源21a輸出的雷射束的光束徑,一開始就較粗時,無須另外準備如上所述的束擴張器21b或線產生器21c,可圖謀透過率的平均化與縮短測定時間。但是,使用光束徑粗在雷射光源21a時,難以使用功率計測定雷射束的功率。石英坩堝1的透過率,係從穿透光相對於入射光的功率比求得,需要入射光的功率與穿透光的功率雙方的測定值。入射光的功率,能夠以功率計直接接收從雷射光源21a輸出的雷射束而測定,但由於功率計的接收口口徑較小,故難以測定大口徑的光束功率。從如此的理由,比一開始就使用光束徑很大的雷射光源21a,使用光束徑小的雷射光源21a較佳,準備從雷射光源21a獨立的束擴張器21b或線產生器21c,擴大雷射光的光點尺寸為佳。
如以上,在投光裝置20採用束擴張器21b與線產生器21c,對石英坩堝1照射擴大光束徑的雷射束時,可檢測平均化石英坩堝1的氣泡分佈局部變動的影響的穿透光。因此,可穩定地測定在石英坩堝1的任意測定點的透過率,可縮短石英坩堝1的透過率的測定時間。
以上,雖說明關於本發明的較佳的實施形態,惟本發明並非限定於上述實施形態,在不脫離本發明的主旨的範圍可做各種變更,這些亦包含於本發明的範圍內,不言而喻。
例如,在上述實施形態,進行石英坩堝的高度方向的4點,圓周方向的4點,合計4×4=16點的透過率測定,惟測定點的數量亦可更詳細地測定。
此外,在上述實施形態,測定石英坩堝1的長邊方向的測定線上的複數測定處之後,使坩堝在圓周方向旋轉既定角度測定下一測定線上的複數測定處,亦可將石英坩堝1的圓周方向的測定線上的複數測定處連續測定之後,改變雷射裝置及攝影機的高度方向的位置。此外,作為透過率測定裝置的構成,可考慮在石英坩堝1的內側及外側配置多關節型機器人,在各個多關節手臂的尖端部配置攝影機與光源等,各式各樣的構成。
此外,在上述實施形態,列舉以非破壞檢測石英坩堝的情形為例子,惟亦可對從石英坩堝1切出的坩堝片進行上述測定,進行破壞檢測亦無妨。此外,在本發明光的波長並無限定,可使用紅外線或其附近波長的雷射,可測定紅外線的透過率,惟亦可適用於可見光線或紫外線等的其他波長的透過率測定。 [實施例]
使用圖4等所示透過率測定裝置測定口徑32英寸的石英坩堝的紅外線穿透光的亮度輪廓。在此測定,準備2種坩堝樣品,側壁部的不透明層的厚度為大約10mm的第1坩堝樣品,與側壁部的不透明層的厚度為約15mm的第2坩堝樣品。然後,遵照圖11所示步驟進行透過率測定。
圖14(a)及(b)係表示石英坩堝的穿透光的亮度輪廓的圖表,橫軸係表示從穿透光的出射位置的距離(mm),縱軸係表示穿透光的亮度(相對值)。再者,在圖14(a)及(b),僅顯示角度差較大的0°與50°這2種。
如圖14(a)所示,第1坩堝樣品的亮度輪廓,可知在出射位置中心具有高峰,在從出射位置中心的±10mm以內,亮度隨著遠離波峰急劇地變小,在其外側逐漸變小,而呈大致左右對稱的圖案。
此外第1坩堝樣品,由於不透明層的厚度大約10mm而較薄,拍攝角度為0°時的穿透光的亮度波峰等級超過90,可知透過率高。另一方面,拍攝角度為50°時的穿透光的亮度波峰等級為大約70,故與拍攝角度為0°時的穿透光亮度輪廓相比,則可知從出射位置中心在±10mm以內的亮度水準較低。但是,從出射位置中心超過±10mm的外側,可知幾乎沒有拍攝角度差。
如圖14(b)所示,第2坩堝樣品的亮度輪廓,亦與第1坩堝樣品同樣呈左右對稱的圖案,但不透明層的厚度為大約15mm而較厚,可知亮度波峰等級較低。詳言之,拍攝角度為0°時,穿透光的亮度的波峰等級為82,此外,拍攝角度為50°時的穿透光的亮度的波峰等級為大約61,可知透過率較第1坩堝樣品低。
如以上,雖根據不透明層的條件的差異而亮度輪廓多少有所差異,但可知入射石英坩堝的光穿透光呈以出射位置為中心以同心圓狀擴展的亮度分佈。
1‧‧‧石英坩堝 1W‧‧‧石英坩堝的壁體 1Wa‧‧‧石英坩堝的一方的牆面 1Wb‧‧‧石英坩堝的另一方的牆面 1a‧‧‧石英坩堝的側壁部 1b‧‧‧石英坩堝的底部 1c‧‧‧石英坩堝的角部 1i‧‧‧石英坩堝的內面 1o‧‧‧石英坩堝的外面 2‧‧‧透明層(無氣泡層) 3‧‧‧不透明層(氣泡層) 5‧‧‧光源 6‧‧‧檢測器 10‧‧‧透過率測定裝置 11‧‧‧支持裝置 12‧‧‧支持台 13‧‧‧支柱 14‧‧‧旋轉滾輪 15‧‧‧上部框 16‧‧‧梁部 20‧‧‧投光裝置 21‧‧‧雷射裝置 21a‧‧‧雷射光源(雷射振蕩器) 21b‧‧‧束擴張器 21c‧‧‧線產生器 22‧‧‧導軌 30‧‧‧受光裝置 31、31a~31e‧‧‧攝影機 32‧‧‧攝影機升降機構 33‧‧‧攝影機轉動機構 34‧‧‧攝影機旋繞機構 35‧‧‧導軌 40‧‧‧透過率演算部 60‧‧‧坩堝片(石英玻璃片) 61‧‧‧紅外燈 62‧‧‧檢測器(功率計) C0‧‧‧同心圓
圖1係表示本發明的透過率測定對象的石英坩堝的構造的概略剖面圖。 圖2係用於說明本發明的石英坩堝的透過率測定方法的原理的示意圖。 圖3(a)及(b)係用於說明本發明的石英坩堝的透過率測定方法的原理的圖,特別是(a)係穿透石英坩堝的雷射的拍攝影像,(b)係表示穿透光強度的空間分佈的示意圖。 圖4係表示本發明的較佳的實施形態的石英坩堝的透過率測定裝置的構成的概略側面剖面圖。 圖5係表示本發明的較佳的實施形態的石英坩堝的透過率測定裝置的構成的概略俯視圖。 圖6係用於說明雷射裝置及攝影機沿著坩堝牆面的升降動作的概略側面剖面圖。 圖7係用於說明雷射裝置及攝影機沿著坩堝牆面的升降動作的概略側面剖面圖。 圖8係用於說明雷射裝置及攝影機沿著坩堝牆面的升降動作的概略側面剖面圖。 圖9係用於說明攝影機的旋繞動作及石英坩堝的旋轉動作的概略側面剖面圖。 圖10係用於說明使用本實施形態的透過率測定裝置的石英坩堝的透過率測定方法的一例的流程圖。 圖11係用於說明使用本實施形態的透過率測定裝置的石英坩堝的透過率測定方法的一例的流程圖。 圖12係表示本發明的其他的較佳的實施形態的石英坩堝的透過率測定裝置的構成的示意圖。 圖13(a)~(c)係表示投光裝置20的實施形態的示意圖。 圖14(a)及(b)係表示石英坩堝的穿透光的亮度輪廓的圖表,特別是(a)係表示不透明層較薄的情形,(b)係表示不透明層較厚的情形。 圖15係用於說明先前的透過率測定方法的示意圖。
C0‧‧‧同心圓
1W‧‧‧石英坩堝的壁體
1Wa‧‧‧石英坩堝的一方的牆面
1Wb‧‧‧石英坩堝的另一方的牆面
5‧‧‧光源
6‧‧‧檢測器
P‧‧‧出射點

Claims (22)

  1. 一種石英坩堝的透過率測定方法,其特徵在於:其係從配置在石英坩堝的一方的牆面側的光源,向上述石英坩堝的既定測定點照射平行光, 在上述石英坩堝的另一方的牆面側,以上述另一方的牆面上的上述平行光的出射點為中心的同心圓上的複數位置配置接收器,以上述複數位置測定上述石英坩堝的穿透光的受光等級, 基於上述複數位置所測定的上述穿透光的複數受光等級,求得在上述既定測定點的上述石英坩堝的透過率。
  2. 如申請專利範圍第1項之透過率測定方法,其中藉由使單一檢測器沿著上述同心圓旋繞,將上述檢測器配置在上述複數位置。
  3. 如申請專利範圍第2項之透過率測定方法,其中述檢測器相對於上述平行光光軸的最大旋繞角度為45°以上。
  4. 如申請專利範圍第1項之透過率測定方法,其中使用預先配置在上述複數位置的複數檢測器,求得上述石英坩堝的透過率。
  5. 如申請專利範圍第1至4項之任何一項之透過率測定方法,其中在上述石英坩堝的外側配置上述光源, 在上述石英坩堝的內側配置上述檢測器, 藉由上述檢測器接收從上述光源照射上述石英坩堝的平行光,以非破壞測定上述石英坩堝的透過率。
  6. 如申請專利範圍第1至5項之任何一項之透過率測定方法,其中藉由使上述光源及上述檢測器的位置沿著上述石英坩堝的上述牆面在高度方向移動,在上述石英坩堝的高度方向的不同位置的複數測定點測定上述透過率。
  7. 如申請專利範圍第1至6項之任何一項之透過率測定方法,其中藉由使上述光源及上述檢測器與上述石英坩堝的相對位置,沿著上述石英坩堝的牆面在圓周方向移動,在上述石英坩堝的圓周方向的不同位置的複數測定點測定上述透過率。
  8. 如申請專利範圍第1至7項之任何一項之石英坩堝的透過率測定方法,其中上述平行光,係將雷射光源所輸出的雷射束的光束徑擴大。
  9. 如申請專利範圍第8項之石英坩堝的透過率測定方法,其中上述擴大的雷射束的光束徑為5mm以上。
  10. 如申請專利範圍第1至7項之任何一項之石英坩堝的透過率測定方法,其中上述平行光,係將雷射光源所輸出的雷射束轉變成雷射線光。
  11. 如申請專利範圍第10項之石英坩堝的透過率測定方法,其中上述雷射線光的光點長度為10mm以上。
  12. 一種石英坩堝的透過率測定裝置,其特徵在於:具備: 配置在石英坩堝的一方的牆面,向上述石英坩堝的既定測定點照射平行光的光源; 配置在上述石英坩堝的另一方的牆面,接收上述石英坩堝的穿透光的至少1個檢測器;及 根據上述檢測器所測定的上述穿透光的受光等級計算出上述石英坩堝的透過率的透過率演算部, 上述檢測器,測定在以上述另一方的牆面上的上述平行光的出射點為中心的同心圓上的複數位置的上述石英坩堝的穿透光的受光等級, 上述透過率演算部,根據在上述複數位置測定的上述穿透光的複數受光等級,求得在上述既定測定點的上述石英坩堝的透過率。
  13. 如申請專利範圍第12項之透過率測定裝置,其中進一步具備沿著上述同心圓使單一檢測器旋繞的旋繞機構。
  14. 如申請專利範圍第13項之透過率測定裝置,其中上述檢測器相對於上述平行光的光軸的最大旋繞角度為45°以上。
  15. 如申請專利範圍第12項之透過率測定裝置,其中進一步具備分別配置在上述複數位置的複數檢測器。
  16. 如申請專利範圍第12至15項之任何一項之透過率測定裝置,其中 上述光源係配置在上述石英坩堝的外側, 上述檢測器係配置在上述石英坩堝的內側, 藉由上述檢測器接收從上述光源照射上述石英坩堝的平行光,可將上述石英坩堝的透過率以非破壞測定。
  17. 如申請專利範圍第12至16項之任何一項之透過率測定裝置,其中進一步具備: 使上述光源的位置,沿著上述石英坩堝的上述一方的牆面在高度方向移動的投光位置變更手段;及 使上述檢測器的位置沿著上述石英坩堝的上述另一方的牆面在高度方向移動受光位置變更手段。
  18. 如申請專利範圍第12至17項之任何一項之透過率測定裝置,其中進一步具備使上述石英坩堝旋轉的坩堝旋轉機構。
  19. 如申請專利範圍第12至18項之任何一項之透過率測定裝置,其中上述光源,包含: 輸出雷射束的雷射光源;及 將從上述雷射光源輸出的上述雷射束的光束徑擴大的擴束器。
  20. 如申請專利範圍第19項之透過率測定裝置,其中上述擴大的雷射束的光束徑為5mm以上。
  21. 如申請專利範圍第12至18項之任何一項之透過率測定裝置,其中上述光源,包含: 輸出雷射束的雷射光源;及 將從上述雷射光源輸出的上述雷射束轉變為雷射線光的線產生器。
  22. 如申請專利範圍第21項之透過率測定裝置,其中上述雷射線光的光點長度為10mm以上。
TW108117069A 2018-05-17 2019-05-17 石英坩堝的透過率測定方法及裝置 TWI736890B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018095299 2018-05-17
JP2018-095299 2018-05-17

Publications (2)

Publication Number Publication Date
TW202004165A true TW202004165A (zh) 2020-01-16
TWI736890B TWI736890B (zh) 2021-08-21

Family

ID=68539691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108117069A TWI736890B (zh) 2018-05-17 2019-05-17 石英坩堝的透過率測定方法及裝置

Country Status (6)

Country Link
US (1) US11703452B2 (zh)
JP (1) JP7196913B2 (zh)
KR (2) KR102513746B1 (zh)
CN (1) CN112243493B (zh)
TW (1) TWI736890B (zh)
WO (1) WO2019221191A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202146882A (zh) * 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統
CN113176223A (zh) * 2021-03-23 2021-07-27 中山大学新华学院 一种红外分光光度检测仪
CN114202533A (zh) * 2021-12-14 2022-03-18 西安奕斯伟材料科技有限公司 检测单晶炉同轴度的方法、装置、设备及计算机存储介质
CN114295074B (zh) * 2022-01-12 2023-06-27 重庆医科大学 一种测量单泡声致发光中气泡形状的方法及装置
CN115078543B (zh) * 2022-07-19 2022-11-04 江苏圣锦硅业新材料有限公司 一种石英坩埚表面在线检测装置
JP2024102497A (ja) 2023-01-19 2024-07-31 株式会社Sumco 石英ガラスルツボ
CN116518894B (zh) * 2023-07-05 2023-09-12 西安地山视聚科技有限公司 一种双层复合石英坩埚透明层厚度检测方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825833B2 (ja) * 1990-04-27 1996-03-13 東芝セラミックス株式会社 シリコン単結晶の製造方法
JP2936392B2 (ja) 1995-12-12 1999-08-23 三菱マテリアルクォーツ株式会社 シリコン単結晶引上げ用石英ルツボ
JPH09210848A (ja) 1996-01-31 1997-08-15 Kao Corp 透過散乱能測定方法及び装置
JP3942252B2 (ja) * 1997-12-19 2007-07-11 Juki株式会社 3次元測定装置
JP2000065644A (ja) * 1998-08-25 2000-03-03 Toshiba Ceramics Co Ltd 輻射透過率測定方法とその測定装置およびこれを用いて測定される石英ガラスルツボ
JP2000146533A (ja) 1998-11-12 2000-05-26 Sumitomo Metal Ind Ltd 透光体の厚み測定装置及び測定方法
KR100596048B1 (ko) 2002-07-08 2006-07-03 삼성코닝정밀유리 주식회사 유리기판의 에지 검사시스템
US7010863B1 (en) * 2004-01-26 2006-03-14 Owens-Brockway Glass Container Inc. Optical inspection apparatus and method for inspecting container lean
US20100089308A1 (en) 2008-10-15 2010-04-15 Japan Super Quartz Corporation Silica glass crucible and method for pulling single-crystal silicon
JP2009085795A (ja) 2007-09-28 2009-04-23 Nichias Corp 高温における電磁波の反射率または透過率測定方法
JP5223478B2 (ja) 2008-06-11 2013-06-26 株式会社島津製作所 散乱特性評価装置
JP5069663B2 (ja) * 2008-10-31 2012-11-07 ジャパンスーパークォーツ株式会社 多層構造を有する石英ガラスルツボ
JP4987029B2 (ja) * 2009-04-02 2012-07-25 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用石英ガラスルツボ
JP2011033449A (ja) 2009-07-31 2011-02-17 Sumco Corp ウェーハの欠陥検査方法及び欠陥検査装置
KR20120077330A (ko) * 2010-12-30 2012-07-10 삼성코닝정밀소재 주식회사 패턴드 유리기판 투과율 측정장치
CN104145051B (zh) * 2011-12-22 2018-08-10 株式会社Sumco 氧化硅玻璃坩埚的评价方法、单晶硅的制造方法
CN104704608B (zh) 2012-09-13 2017-03-22 松下知识产权经营株式会社 氮化物半导体结构物
EP3088573B1 (en) 2013-12-28 2020-07-15 SUMCO Corporation Quartz glass crucible and strain measurement device therefor
CN106868583B (zh) * 2015-12-10 2019-06-14 有研半导体材料有限公司 一种石英坩埚
WO2017158655A1 (ja) 2016-03-18 2017-09-21 株式会社Sumco ルツボ測定装置、ルツボ測定方法、ルツボの製造方法
WO2017158656A1 (ja) 2016-03-18 2017-09-21 株式会社Sumco シリカガラスルツボ、シリカガラスルツボの製造方法
JP6935790B2 (ja) 2018-10-15 2021-09-15 株式会社Sumco 石英るつぼ内周面の評価方法及び石英るつぼ内周面の評価装置

Also Published As

Publication number Publication date
TWI736890B (zh) 2021-08-21
JP7196913B2 (ja) 2022-12-27
JPWO2019221191A1 (ja) 2021-05-20
CN112243493A (zh) 2021-01-19
CN112243493B (zh) 2024-08-27
US11703452B2 (en) 2023-07-18
WO2019221191A1 (ja) 2019-11-21
US20210181106A1 (en) 2021-06-17
KR102513746B1 (ko) 2023-03-24
KR102468217B1 (ko) 2022-11-16
KR20220132064A (ko) 2022-09-29
KR20200142063A (ko) 2020-12-21

Similar Documents

Publication Publication Date Title
TWI736890B (zh) 石英坩堝的透過率測定方法及裝置
TWI480505B (zh) 氧化矽玻璃坩堝的評價方法、單晶矽的製造方法
KR101438311B1 (ko) 열처리 장치
KR101485192B1 (ko) 유리 시트 형태 결정 시스템 및 방법
KR101688125B1 (ko) 실리카 유리 도가니의 삼차원 형상 측정 방법, 실리콘 단결정의 제조 방법
KR100720660B1 (ko) 멜트 레벨 검출 장치 및 검출 방법
JP2007223879A (ja) 位置測定方法
JP5614857B2 (ja) シリカガラスルツボの評価方法
JPH0386249A (ja) 石英ルツボの光学的非破壊検査法とその装置
TW201738528A (zh) 坩堝測量裝置、坩堝測量方法以及坩堝的製造方法
JP2000230816A (ja) 角度測定装置
TW201738414A (zh) 氧化矽玻璃坩堝和氧化矽玻璃坩堝的製造方法
TW201602552A (zh) 體積的基板掃描器
KR20240115731A (ko) 석영 유리 도가니
JP2003050180A (ja) 欠陥検査方法および欠陥検査装置
CN115980084A (zh) 一种光学零件的表面检测方法
JP2017215325A (ja) シリカガラスルツボの測定方法
JPH0640079B2 (ja) 熱定数測定装置
JP2015169441A (ja) ガラスびんの口部検査装置