TW201927695A - 製造透明導電膜的方法 - Google Patents

製造透明導電膜的方法 Download PDF

Info

Publication number
TW201927695A
TW201927695A TW107140737A TW107140737A TW201927695A TW 201927695 A TW201927695 A TW 201927695A TW 107140737 A TW107140737 A TW 107140737A TW 107140737 A TW107140737 A TW 107140737A TW 201927695 A TW201927695 A TW 201927695A
Authority
TW
Taiwan
Prior art keywords
transparent conductive
conductive film
substrate
manufacturing
thin film
Prior art date
Application number
TW107140737A
Other languages
English (en)
Other versions
TWI728278B (zh
Inventor
申東明
文鍾敏
Original Assignee
南韓商Lg化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商Lg化學股份有限公司 filed Critical 南韓商Lg化學股份有限公司
Publication of TW201927695A publication Critical patent/TW201927695A/zh
Application granted granted Critical
Publication of TWI728278B publication Critical patent/TWI728278B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本發明提供一種根據本申請案的例示性實施例的製造透明導電膜的方法,包括:製備基板;以及在基板上形成包括由式1表示的化合物的薄膜,其中藉由在250℃或低於250℃的溫度下的RF濺鍍製程來執行薄膜的形成。

Description

製造透明導電膜的方法
本申請案是關於一種製造透明導電膜的方法。
本申請案主張2017年12月22日向韓國智慧財產局申請的韓國專利申請案第10-2017-0177885號以及2018年11月13日向韓國智慧財產局申請的韓國專利申請案第10-2018-0139140號的優先權及權益,所述申請案的全部內容以引用的方式併入本文中。
透明導電膜為具有高透光率及電傳導性質的薄膜且廣泛用作電壓施加共同電極或像素電極,諸如液晶顯示器、電致變色顯示器(electrochromic display;ECD)、有機電致發光元件、太陽能電池、電漿顯示面板、可撓性顯示器、電子紙以及觸摸面板。
在透明導電氧化物(transparent conducting oxides;TCO)中,設計在透射可見光區域的光時具有高導電性的材料是重要的。為了使TCO在可見光區域(400奈米至700奈米波長)中為透明的,電子能量帶隙應為3.1電子伏特或大於3.1電子伏特,此為400奈米波長的電磁波能量。
符合此類特性的典型氧化物半導體為ZnO(3.3電子伏特)、In2 O3 (3.7電子伏特)以及SnO2 (3.6電子伏特)。大體而言,TCO在可見光區域中具有80%或大於80%的透光率,且作為電特性的電阻率具有約10-4 歐姆公分或小於10-4 歐姆公分的值。
為找出用於此類TCO的材料,迄今為止已主要進行對在各種材料中執行摻雜及合金化的方法的研究。特定而言,可看出In2 O3 比SnO2 或ZnO展現更低的比電阻值。出於此原因,已首先市售In2 O3 ,且迄今為止已使用ITO(摻Sn的In2 O3 )。
ITO為目前應用於顯示器(諸如發光二極體(light emitting diode;LED)、液晶顯示器(liquid crystal display;LCD)以及電漿顯示面板(plasma display panel;PDP))及太陽能電池的電極的材料,大體而言為約10-4 歐姆公分且在實驗室水準上為約10-5 歐姆公分,且具有類似於金屬的水準的低比電阻值。
然而,此類ITO的缺陷在於In為昂貴的稀有元素,且當ITO暴露於時常用於平板顯示器製造製程的氧電漿時,ITO具有以下缺陷:In或Sn氧化導致電特性及光學特性劣化。此外,ITO為n型半導體且已知為不可轉換成p型半導體的材料。因此,存在以下限制:同質結電路元件不可僅由ITO製成。
[技術問題]
在所屬領域中,要求研究製造具有極佳特性的透明導電膜的方法及簡單的製造製程。
[技術解決方案]
本申請案的例示性實施例提供一種製造透明導電膜的方法,方法包括:
製備基板;以及
在基板上形成包括由下式1表示的化合物的薄膜,
其中藉由在250℃或低於250℃的溫度下的RF濺鍍製程來執行薄膜的形成。
[式1]
Bap Laq Snm On
在式1中,
p、q、m以及n為原子量比,
p、m以及n各自獨立地為大於0且小於或等於6,且
q為0或1。
[有利功效]
根據本申請案的例示性實施例的透明導電膜包括由式1表示的化合物,由此具有極佳導電性及光學透射率。另外,根據本申請案的例示性實施例的製造透明導電膜的方法的特徵在於,能夠藉由使用RF濺鍍製程在250℃或低於250℃下執行低溫沈積且能夠大面積執行高速沈積。
[發明模式]
在下文中,將詳細地描述本申請案。
本申請案不僅可應用於諸如液晶顯示器(LCD)及電漿顯示面板(PDP)的平板顯示器產業,亦可應用於下一代可撓性裝置、透明主動矩陣有機發光二極體(active matrix organic light emitting diodes;AMOLED)、有機發光二極體(organic light emitting diode;OLED)照明以及太陽能電池。
過去的30年來已進行克服光電效能的限制的努力,所述限制諸如金屬氧化物材料的不穩定性及矽類半導體的電遷移率。特定而言,直至近來才可以見到對金屬氧化物的狀態不穩定性從何而來的基礎問題的學術懷疑或有效證據。
更詳細而言,金屬陽離子由氧陰離子(2-)包圍的結構為立方體或六邊形,且金屬部位具有典型的八面體(6配位)或四面體(4配位)組態。其各種結晶形(岩鹽、剛玉、金紅石、纖維鋅礦、氟石、鈣鈦礦以及尖晶石)亦可引起電變化及光學變化。通常在自由電子結構中的氧2p軌域及金屬3d軌域構成的價帶至由4s、5s等等組成的導電帶的躍遷中發現原始問題。
d軌域的存在引起不合需要的非彈性散射,且此是因為d軌域的存在導致能量帶之間產生聲子而引起能量損失。
因此,找到或合成無d軌域的金屬氧化物材料可以是吾人所欲的解決不穩定性的答案。可認為Ruddlesden-Popper(RP)型超晶格材料是可經選擇用於所需高遷移率或光電子技術領域中的磁性裝置的製造的金屬氧化物。
比一般二元金屬氧化物材料更複雜一級的鈣鈦礦(perovskite)展示了作為超導體的可能性。舉例而言,當使用4d或5d軌域材料的摻雜劑時,可確保各種磁性性質。上文提及的RP型超晶格材料可執行進一步添加於鈣鈦礦中的調製。RP型超晶格材料可將偶合自旋用於電光功能及磁性,且具有比一般金屬氧化物多得多的規則三維結構。
本申請案提供一種製造含有作為鈣鈦礦結構的材料的錫酸鋇(barium tin oxide;BSO)的透明導電膜的方法。在圖1中示意性地示出作為錫酸鋇的BaSnO3 的結構。更具體而言,圖1繪示考慮缺陷的氫存在於晶格中的氧部位的四個不同位置處。
表1繪示使用BSO及ITO生產的薄膜(約120奈米至140奈米厚度參考)的物理性質。
[表1]
如表1中所繪示,其特徵在於BSO為在室溫下具有高遷移率的鈣鈦礦材料且具有極高的光學透射率。
因此,一種根據本申請案的例示性實施例的製造透明導電膜的方法包括:製備基板;以及在基板上形成包括由下式1表示的化合物的薄膜,其中藉由在250℃或低於250℃的溫度下的RF濺鍍製程來執行薄膜的形成。
[式1]
Bap Laq Snm On
在式1中,
p、q、m以及n為原子量比,
p、m以及n各自獨立地為大於0且小於或等於6,且
q為0或1。
在本申請案的例示性實施例中,基板不受特定限制,且可將先前技術中的基板應用於其中。更具體而言,基板可為玻璃基板、矽基板、塑膠基板或類似者,但不限於此。另外,塑膠基板可包括聚對苯二甲酸乙二酯(polyethylene terephthalate;PET)、聚萘二甲酸乙二酯(polyethylene naphthalate;PEN)、環烯烴聚合物(cyclo-olefin polymer;COP)、聚醯亞胺(polyimide;PI)以及類似者中的一者或多者,但不限於此。
根據本申請案的例示性實施例,薄膜的形成可藉由在250℃或低於250℃的溫度下的RF濺鍍製程來執行,且可藉由在100℃至250℃的溫度下的RF濺鍍製程來執行。
按照慣例,在錫酸鋇(BSO)或摻La錫酸鋇(La doped barium tin oxide;BLSO)的生產中,使用分子束磊晶法及脈衝雷射沈積,且要求550℃或大於550℃的高溫。然而,在本申請案的例示性實施例中,其特徵在於可藉由在250℃或小於250℃的低溫下的RF濺鍍製程來生產包括BSO或BLSO的薄膜。
為了在一般塑膠(PET、COP、PEN)基板上沈積BLSO,約200℃或過度低於250℃的溫度必不可少。此是因為,在高於此溫度的溫度下,塑膠基板引起變形,且難以保持諸如形狀及光學透射率的物理性質。為了克服此問題,本發明提出一種不同於其它沈積法地在不增加基板的溫度的情況下藉由物理衝擊(blow)移除BLSO標靶的原子的方法。本發明的重要優點為,即使在低溫下使用濺鍍,亦可形成與在高溫下執行的其它沈積法相同水準的高遷移率BLSO透明導電薄膜。由此,存在以下優點:可在不受基板種類及使用範圍限制的情況下生產高遷移率薄膜。
在RF濺鍍製程中,可將由式1表示的化合物標靶(compound target)安裝於室中(通常保持10-3 托至10-8 托),且可將諸如Ar的操作氣體注入至所述室中且使用。特定而言,RF磁控濺鍍可以卷對卷(roll-to-roll)製程來應用。在此情況下,含有由式1表示的化合物的薄膜的厚度可調節至200奈米至1,000奈米。
在本申請案的例示性實施例中,RF濺鍍製程可以0.5埃/秒至1.5埃/秒的沈積速率來執行。另外,RF濺鍍製程可使用由式1表示的化合物標靶。
在本申請案的例示性實施例中,含有由式1表示的化合物的薄膜的薄層電阻可為10歐姆/平方(Ω/sq)至14歐姆/平方,且薄膜在350奈米至1000奈米的厚度下的光學透射率可為92%或大於92%。
薄膜的薄層電阻可經由接觸型量測裝置(例如,4探針點量測)或非接觸型量測裝置(本發明中的EP-80P非接觸電阻率試驗器,NAPSON株式會社)來量測。光學透射率使用UV可見分光計來量測,且在光學帶隙量測中,可藉由使用托克(Tauc)關係式執行繪製成如圖3中所繪示的hv 的(αhv )n (n=1/2至2)且藉由對其執行外插近似來獲得波長基礎上的光學透射率值。
特性薄層電阻及光學透射率僅為BLSO薄膜的特性。玻璃或塑膠基板的薄層電阻為無限高,但當在形成BLSO薄膜之後量測薄層電阻時,可判定10歐姆/平方至14歐姆/平方或小於10歐姆/平方至14歐姆/平方的值。另外,藉由使用基線校正玻璃基板或塑膠基板且接著僅擷取BLSO的透射率來獲得光學透射率,且根據透明薄膜光學透射率量測方法的一般形式來獲得光學透射率。
根據本申請案的例示性實施例生產的透明導電膜可應用於電子裝置。根據本申請案的例示性實施例的透明導電膜在下文圖7中示意性地繪示。更具體而言,根據本申請案的透明導電膜可用於共同電極或像素電極,諸如液晶顯示器(LCD)、電致變色顯示器(ECD)、有機電致發光元件、太陽能電池、電漿顯示面板、可撓性顯示器、電子紙以及觸摸面板。
近年來,BLSO已受到關注,因為當將BLSO用作鈣鈦礦太陽能電池的電子傳遞層(electron transporting layer;ETL)時,可大大提高其總效率。儘管使用呈液態的膠態BLSO,其塗佈條件極差,但有鈣鈦礦太陽能電池的能量效率自19.7%至21.2%提高了約1.5%的科學論文(申(shin)等人,《科學(Science)》第356卷,167頁-171頁,2017年)。當如在本發明中使用具有高結晶度及更精確的化學量化式的薄膜時,存在以下優點:鈣鈦礦太陽能電池的能量效率可提高至至少2倍至3倍或至多4倍至5倍。此為常識範疇,其中電阻值降至膠態薄膜、非晶形薄膜、混合結晶薄膜以及單晶薄膜的水準。
如在本發明的實例3及實例4中所提及,已藉由化學計量方程式得知,可在如本發明中的低溫及高速濺鍍的條件下獲得BLSO薄膜沈積,所述BLSO薄膜沈積已知可在550℃或大於550℃及10-5 托或小於10-5 托的高溫及高真空狀態下獲得。最理想的為,其為Ba/Sn/O(較佳為將10%或小於10%的摻雜劑La取代Ba)的比為1/1/3的鈣鈦礦晶體,但實際元素比即使在任何沈積方法中亦無法避免不同。在此意義上,本發明中的化學計量方程式處於未極大偏離理想的摻La的BaSnO3 結構的水準上。
[進行本發明的模式]
在下文中,給出例示性實施例以便於對本申請案的理解。然而,以下例示性實施例意欲示出本申請案,且本申請案的範圍不受此限制。
實例
實例 1>
在具有0.5毫米厚度的玻璃基板上,使用摻5%La的BaSnO3 標靶及RF濺鍍製程形成薄膜。摻5%La的BaSnO3 標靶使用3吋圓形標靶(泰園科學(Taewon Science)),且RF濺鍍製程的條件如下。
RF功率控制:gun#3組(set)150瓦特,前向功率:148瓦特,反射功率1瓦特,偏壓:66伏特,RF匹配負載指示508,調諧指示-154,
設定溫度:107℃,濺鍍時間:1,200秒,真空退火5分鐘
沈積速率:0.7埃/秒
氣體:Ar 5毫托~10毫托
所生產薄膜的厚度為360奈米。
實例 2>
除RF濺鍍製程的條件中的濺鍍時間改變成3,000秒之外,執行與實例1中相同的程序。所生產薄膜的厚度為912奈米,且薄膜的組成物為Ba1.0 La0.087 Sn2.22 O4.83
薄膜的厚度量測可藉由諸如橢偏儀(ellipsometer)的光學方法或諸如電子顯微鏡(electron microscope;FE-SEM)的影像量測來執行,或量測可使用諸如測微計(micrometer)的簡單儀器來執行。可藉由將單色XPS(x射線光電子光譜分析,埃斯卡(ESCA))量測的每一元素的光譜面積除以化學靈敏度因子且接著藉由其比率,以獲得薄膜的組成物。
圖2中繪示實例1及實例2中生產的透明導電膜的光學透射率。如在圖2的結果中,玻璃基板上的摻La的BaSnO3 在550奈米波長處具有約94%的光學透射率,且在650奈米波長處具有92%或大於92%的光學透射率。可見光區域中的透射曲線圖的波狀看起來是因玻璃基板與薄膜之間的折射率不同所致。儘管薄膜的厚度相差約2.5倍,但可見光區域中的透射率看起來幾乎相同。
可藉由在如圖2中所繪示的UV可見光譜中將y軸透射率值(%)代入至x軸波長來獲得光學透射率。
圖3中繪示實例2的透明導電膜的帶隙能量。當藉由應用托克關係推導出直接隙時,可看出Eg近似於3.85電子伏特。因此,亦藉由帶隙量測證明,與透明導體材料(Eg>3.1電子伏特)相比,實例2的透明導電膜可不遜色於透明導體材料。
在光學帶隙量測中,可藉由使用托克關係式執行繪製成如圖3中所繪示的hv 的(αhv )n (n=1/2至2)且藉由對其執行外插近似來獲得波長基礎上的光學透射率值。此處,h 為普朗克(planck)常數,v 為波數,α 為光吸收係數,且n為可自外插近似斜率看出的直接帶隙(1或2)或間接帶隙(0.5或1.5)的值。
實例 3>
在實例1中,除使用硼摻雜矽100單晶基板代替玻璃基板且在RF濺鍍製程的條件中設定溫度為250℃之外,與實例1相同地執行實例3。所生產薄膜的厚度為約1,000奈米且薄膜的組成物為Ba1.0 La0.11 Sn2.18 O5.43
實例 4>
除使用未摻La的BaSnO3 標靶代替摻5%La的BaSnO3 標靶之外,執行與實例3相同的程序。所生產薄膜的厚度為約1,000奈米,且薄膜的組成物為Ba1.0 Sn1.54 O3.96
圖4至圖6中繪示實例3及實例4的透明導電膜的XPS分析結果。更具體而言,圖4繪示BSO及BLSO的全譜掃描譜(survey scan spectra)。為了檢查BSO及BLSO兩者的結晶度,將BSO及BLSO兩者沈積至1000奈米,此在某種程度上為高厚度。BSO膜藉由使O2 氣體以50:1的比流動至Ar氣體來產生電漿,以便獲得p型摻雜的效應。經由非接觸薄層電阻率試驗器(EP-80P非接觸電阻率試驗器,NAPSON株式會社)獲得約11歐姆/平方。
在位於圖5的上部曲線圖的原子內部中的軌域電子的光譜中,由於Sb3d5/2 存在於與O1s重疊的部分中,故不易區別,但雜質銻的存在可判定為在539電子伏特點處Sb33/2 軌域光譜的存在。另外,在圖5的下部曲線圖中,可繪示摻5%La的BSO的價帶光譜及內部軌域,且特定而言,清晰地表示作為n型摻雜劑的La的存在。La3d5/2 譜及La3d3/2 譜可各自分成解譯為La2 O3 及LaH2 兩者的存在的,所述La2 O3 及LaH2 為副反應材料,但可在電子躍遷之後由穩定化製程的LaO振起輔助物(shake-up satellite)產生。
圖6示出BSO及BLSO的價帶光譜,且使用外插判定在La摻雜之後價帶邊緣值移動多少。可看出,當VBM向左移位了約平均0.1電子伏特時,La充當n型摻雜的因子。
比較例 1>
作為比較例的分子束磊晶法為始於美國的貝爾實驗室(Bell Lab)的半導體磊晶方法的典型高真空(空閒時10-9 托,工作時10-5 托至10-6 托)單晶薄膜生長的技術,且藉由將矽基板或YSZ及Al2 O3 單晶基板的溫度升高至最小550℃及最大800℃至900℃,以生長BLSO薄膜。此時使用的源材料為99.99%或大於99.99%的Ba、99.99%或大於99.99%的Sn,以及氧電漿(處於注入且保持約10-5 托氧氣,藉由以13.56兆赫茲RF源調諧來產生電漿的狀態)。摻雜劑材料La(或LaO或La2 O3 )亦使用99%或大於99%的級別。基板的大小為約4吋至12吋,此為Si晶圓的大小。代表性研究小組包括美國的康奈爾大學(Cornell University)的Schlom及耶魯大學(Yale University)的Ahn。
比較例 2>
在使用脈衝雷射沈積技術沈積BLSO的技術中,沈積室的水準為高真空(空閒時10-7 托至10-8 托,工作時10-4 托至10-5 托),可將Al2 O3 單晶基板或Si單晶基板用作基板,且其大小可為2吋至3吋。使用呈BaSnO3 :La形式的固態合成類糰粒(pellets)(藉由以高熱量處理BaCo3 、SnO2 以及La2 O3 粉末來生產)來製備標靶材料,且藉由在室中使用諸如Nd-YAG的雷射束產生電漿懸錘(plumb)來在基板中執行沈積。不同於分子束磊晶法,與濺鍍標靶一起具有的問題為,難以精確地調節脈衝雷射中所使用的BLSO標靶的示性式。眾所周知,精確示性式的標靶有助於最終沈積的薄膜的化學示性式,且對各種沈積條件進行最佳化以克服此問題是沈積技術的核心。
本發明的極佳效應為應用了可執行低溫高速卷對卷沈積的RF磁控。另外,本發明可容易地應用於大型顯示器或大型太陽能電池,因為可以550毫米或大於550毫米的寬度沈積較大面積。在具有諸如典型的ITO及ZnO的透明電極材料的水準的1018 每立方公分至1020 每立方公分的載子密度中,遷移率等於或大於約200平方公分/伏特秒,且在1011 每立方公分的載子密度中,繪示至多約最大3,000平方公分/伏特秒的遷移率。本發明的薄層電阻為10歐姆/平方至14歐姆/平方,亦為極佳的。光學透射率量測為92%或大於92%的平均值,此優於任何習知透明電極材料的光學透射率。帶隙井對可見光波長帶的光進行透射,為約3.1電子伏特至最大3.85電子伏特,由此展現作為透明電極材料的極佳效能。另外,學術界已確認,所述材料為在潮濕或惡劣溫度條件下幾乎不隨時間進行改變的材料。所述材料作為即使在烘烤高麗(Goryeo)青瓷的2,500℃的惡劣條件下亦不改變的穩定材料而聞名,且其可具有與半導體技術的防氧化材料相對應的較大優點。
100‧‧‧基板
200‧‧‧薄膜
圖1為示意性地示出根據本申請案的例示性實施例的BaSnO3 的結構的簡圖。
圖2為示出根據本申請案的例示性實施例的透明導電膜的光學透射率的曲線圖。
圖3為示出根據本申請案的例示性實施例的透明導電膜的帶隙能量的曲線圖。
圖4至圖6為示出根據本申請案的例示性實施例的透明導電膜的XPS分析結果的曲線圖。
圖7為示意性地示出根據本申請案的例示性實施例的透明導電膜的簡圖。

Claims (8)

  1. 一種製造透明導電膜的方法,所述方法包括: 製備基板;以及 在所述基板上形成包括由下式1表示的化合物的薄膜, 其中藉由在250℃或低於250℃的溫度下的RF濺鍍製程來執行所述薄膜的形成, [式1] Bap Laq Snm On 在式1中, p、q、m以及n為原子量比, p、m以及n各自獨立地為大於0且小於或等於6,且 q為0或1。
  2. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述基板為玻璃基板、矽基板或塑膠基板。
  3. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述RF濺鍍製程在100℃至250℃的溫度下執行。
  4. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述RF濺鍍製程以0.5埃/秒至1.5埃/秒的沈積速率執行。
  5. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述RF濺鍍製程使用由式1表示的化合物標靶。
  6. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述薄膜的厚度為200奈米至1,000奈米。
  7. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述薄膜具有10歐姆/平方至14歐姆/平方的薄層電阻。
  8. 如申請專利範圍第1項所述的製造透明導電膜的方法,其中所述薄膜在350奈米至1,000奈米的厚度下的光學透射率為92%或大於92%。
TW107140737A 2017-12-22 2018-11-16 製造透明導電膜的方法 TWI728278B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0177885 2017-12-22
KR20170177885 2017-12-22
??10-2017-0177885 2017-12-22
KR10-2018-0139140 2018-11-13
KR1020180139140A KR20190076844A (ko) 2017-12-22 2018-11-13 투명 전도성막의 제조방법
??10-2018-0139140 2018-11-13

Publications (2)

Publication Number Publication Date
TW201927695A true TW201927695A (zh) 2019-07-16
TWI728278B TWI728278B (zh) 2021-05-21

Family

ID=66993685

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140737A TWI728278B (zh) 2017-12-22 2018-11-16 製造透明導電膜的方法

Country Status (7)

Country Link
US (1) US11624109B2 (zh)
EP (1) EP3730669A4 (zh)
JP (1) JP2020537321A (zh)
KR (1) KR20190076844A (zh)
CN (1) CN111225993B (zh)
TW (1) TWI728278B (zh)
WO (1) WO2019124743A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7427505B2 (ja) 2020-03-31 2024-02-05 三井金属鉱業株式会社 スパッタリングターゲット材及びその製造方法並びに薄膜
CN112695380B (zh) 2020-11-19 2021-12-28 中国科学院宁波材料技术与工程研究所 一种透明导电氧化物薄膜的制备方法及其应用

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597411A (en) * 1991-02-19 1997-01-28 Energy Conversion Devices, Inc. Method of forming a single crystal material
JP3770194B2 (ja) * 2001-04-27 2006-04-26 松下電器産業株式会社 プラズマディスプレイパネル及びその製造方法
JP4591705B2 (ja) 2006-01-20 2010-12-01 セイコーエプソン株式会社 ターゲット材料
US20080153280A1 (en) * 2006-12-21 2008-06-26 Applied Materials, Inc. Reactive sputter deposition of a transparent conductive film
TW200927972A (en) 2007-10-03 2009-07-01 Mitsui Mining & Smelting Co Method for making indium oxide tranparent conductive film
CN101960551A (zh) * 2007-12-26 2011-01-26 松下电器产业株式会社 等离子体显示面板
KR101141008B1 (ko) * 2008-06-18 2012-05-02 캐논 아네르바 가부시키가이샤 상 변화 메모리 소자, 상 변화 메모리 셀, 진공 처리 장치 및 상 변화 메모리 소자의 제조 방법
JP5296468B2 (ja) 2008-09-19 2013-09-25 富士フイルム株式会社 成膜方法及び成膜装置
JP2010245366A (ja) 2009-04-08 2010-10-28 Fujifilm Corp 電子素子及びその製造方法、並びに表示装置
US8221909B2 (en) * 2009-12-29 2012-07-17 Ut-Battelle, Llc Phase-separated, epitaxial composite cap layers for electronic device applications and method of making the same
US20110308580A1 (en) * 2010-01-22 2011-12-22 The Regents Of The University Of California Ferroic materials having domain walls and related devices
KR101672346B1 (ko) 2010-12-02 2016-11-03 삼성전자주식회사 투명 전도성 물질의 설계 방법 및 안티몬이 도핑된 바륨 주석 산화물 단결정의 제조방법
KR101348271B1 (ko) * 2012-04-05 2014-01-09 (주)알에프트론 투명 화합물 반도체 및 그의 제조 방법
KR101337297B1 (ko) 2012-09-14 2013-12-05 서울대학교산학협력단 높은 전하 이동도를 갖는 산화물 반도체 제조 시스템 및 방법
WO2014174811A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
KR101463234B1 (ko) 2013-07-29 2014-11-25 서울대학교산학협력단 Ba-Su―M―O 반도체막을 포함하는 염료감응 태양전지 광전극
CN105493304B (zh) * 2013-08-06 2020-01-31 新南创新私人有限公司 高效堆叠的太阳能电池
CN103762227B (zh) 2014-01-22 2016-05-04 北京大学 一种氧化物薄膜、含有该薄膜的晶体管及其制备方法
US9927667B2 (en) * 2014-08-11 2018-03-27 Sci Engineered Materials, Inc. Display having a transparent conductive oxide layer comprising metal doped zinc oxide applied by sputtering
KR20160115076A (ko) 2015-03-25 2016-10-06 서울대학교산학협력단 높은 전계 효과 이동도를 가지는 BaSnO3 박막 트랜지스터 및 그의 제조 방법
CN105489270B (zh) * 2016-01-20 2017-07-25 东莞理工学院 一种夹层结构透明导电薄膜及其制备方法
JP6657992B2 (ja) * 2016-01-22 2020-03-04 富士通株式会社 薄膜積層体とその製造方法、及び水分解システム
KR101804173B1 (ko) 2016-04-04 2017-12-05 한국화학연구원 BaSnO3 박막 및 이의 저온 제조 방법
WO2017212842A1 (ja) * 2016-06-07 2017-12-14 富士フイルム株式会社 光触媒電極、人工光合成モジュール及び人工光合成装置
JP6880404B2 (ja) * 2017-06-29 2021-06-02 富士通株式会社 酸素発生電極及び酸素発生装置
KR101912735B1 (ko) 2017-11-06 2018-10-30 한국화학연구원 BaSnO3 박막 및 이의 저온 제조 방법

Also Published As

Publication number Publication date
CN111225993A (zh) 2020-06-02
US20210040598A1 (en) 2021-02-11
EP3730669A1 (en) 2020-10-28
CN111225993B (zh) 2022-04-01
KR20190076844A (ko) 2019-07-02
JP2020537321A (ja) 2020-12-17
WO2019124743A1 (ko) 2019-06-27
US11624109B2 (en) 2023-04-11
TWI728278B (zh) 2021-05-21
EP3730669A4 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
Zi-qiang et al. Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO: Al thin films
Jun et al. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films
Pan et al. Structural, optical and electrical properties of cerium and gadolinium doped CdO thin films
Dewan et al. Zn doping induced conductivity transformation in NiO films for realization of pn homo junction diode
Wang et al. Deposition of F-doped ZnO transparent thin films using ZnF 2-doped ZnO target under different sputtering substrate temperatures
Lei et al. Flexible organic light-emitting diodes on a polyestersulfone (PES) substrate using Al-doped ZnO anode grown by dual-plasma-enhanced metalorganic deposition system
US9577109B2 (en) Transparent conducting film and preparation method thereof
Gong et al. Aluminum-doped zinc oxide formed by atomic layer deposition for use as anodes in organic light emitting diodes
Bose et al. Modification of surface morphology of sputtered AZO films with the variation of the oxygen
Hussein et al. Enhancements of p-Si/CdO thin films solar cells with doping (Sb, Sn, Se)
Ni et al. Structural, electrical and optical properties of p-Type transparent conducting SnO 2: Zn film
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
Alias et al. Investigation the effect of thickness on the structural and optical properties of nano ZnO films prepared by dc magnetron sputtering
TWI728278B (zh) 製造透明導電膜的方法
Zhao et al. Optical and electrical characterization of gradient AZO thin film by magnetron sputtering
Silva et al. High optoelectronic quality of AZO films grown by RF-magnetron sputtering for organic electronics applications
Wang et al. Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering
Gultepe et al. Al and B co-doped ZnO samples as an alternative to ITO for transparent electronics applications
Wang et al. Optical and Electrical Properties of the Different Magnetron Sputter Power 300° C Deposited Ga2O3‐ZnO Thin Films and Applications in p‐i‐n α‐Si: H Thin‐Film Solar Cells
Das et al. The growth of ZnO: Ga: Cu as new TCO film of advanced electrical, optical and structural quality
US9546415B2 (en) Composite transparent electrodes
Houng et al. Effect of discharge power density on the properties of Al and F co-doped ZnO thin films prepared at room temperature
Melnichuk et al. Optical, structural and electrical characterization of pure ZnO films grown on p-type Si substrates by radiofrequency magnetron sputtering in different atmospheres
He et al. Tungsten-doped barium stannate as a transparent conducting film
Kim Transparent conducting oxide films