KR101348271B1 - 투명 화합물 반도체 및 그의 제조 방법 - Google Patents

투명 화합물 반도체 및 그의 제조 방법 Download PDF

Info

Publication number
KR101348271B1
KR101348271B1 KR1020120109812A KR20120109812A KR101348271B1 KR 101348271 B1 KR101348271 B1 KR 101348271B1 KR 1020120109812 A KR1020120109812 A KR 1020120109812A KR 20120109812 A KR20120109812 A KR 20120109812A KR 101348271 B1 KR101348271 B1 KR 101348271B1
Authority
KR
South Korea
Prior art keywords
sno
compound
compound semiconductor
transparent
present
Prior art date
Application number
KR1020120109812A
Other languages
English (en)
Other versions
KR20130113297A (ko
Inventor
차국린
Original Assignee
(주)알에프트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)알에프트론 filed Critical (주)알에프트론
Priority to US14/390,215 priority Critical patent/US9755025B2/en
Priority to PCT/KR2013/002866 priority patent/WO2013151378A1/ko
Priority to JP2015504502A priority patent/JP6017016B2/ja
Priority to EP13772003.3A priority patent/EP2835818A4/en
Publication of KR20130113297A publication Critical patent/KR20130113297A/ko
Application granted granted Critical
Publication of KR101348271B1 publication Critical patent/KR101348271B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

본 발명은 투명 화합물 반도체 및 그의 제조 방법에 관한 것으로, 투명하면서 안정성과 전하이동도가 높은 투명 화합물 반도체를 제공하기 위한 것이다. 본 발명에 따른 투명 화합물 반도체는 Ba1-XLaXSnO3(0<x<0.1)의 조성을 가지며, 10㎠/V sec 이상의 전하이동도를 갖는다.

Description

투명 화합물 반도체 및 그의 제조 방법{Transparent Compound Semiconductor And Its Manufacturing Method}
본 발명은 투명 화합물 반도체 및 그의 제조 방법에 관한 것으로, 더욱 상세하게는 투명하면서 안정성과 전하이동도가 높은 투명 화합물 반도체 및 그의 제조 방법에 관한 것이다.
현재 정보통신기술(information technology)의 추세 중에 하나는 전자 소자의 기능과 표시 소자의 기능을 융합하려는 것이다. 전자 소자와 표시 소자가 융합하려면 전자 소자는 투명해야 한다.
따라서 투명성을 만족하면서 전자 소자로서의 기능을 수행할 수 있는 투명 반도체와 투명 전도체, 그 들의 제조 방법에 대한 연구가 활발히 이루어지고 있다. 예컨대 이러한 투명 전도체로서 ITO(Indium Tin Oxide)이 개발되어 사용되고 있고, ZnO 등이 투명 반도체로 개발되어 있으나 안정성이 떨어져 투명 반도체로서의 응용 가능성이 극히 제한되어 있다.
따라서 본 발명의 목적은 투명하면서 안정성과 전하이동도가 높은 투명 화합물 반도체 및 그의 제조 방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 Ba화합물, La화합물 및 Sn화합물을 반응시켜 제조한 Ba1-XLaXSnO3(0<x<0.1)의 조성을 가지며, 10㎠/V sec 이상의 전하이동도를 갖는 투명 화합물 반도체을 제공한다.
본 발명에 따른 투명 화합물 반도체에 있어서, 상기 Ba1-XLaXSnO3는 상온에서 10㎠/V sec 이상의 전하이동도를 가질 수 있다.
본 발명에 따른 투명 화합물 반도체에 있어서, 상기 Ba1-XLaXSnO3는 상기 Ba화합물, La화합물 및 Sn화합물을 Ba1-XLaXSnO3(0<x<0.1)에 따라 혼합한 후 500도 내지 1500도에서 반응시켜 제조할 수 있다.
본 발명에 따른 투명 화합물 반도체에 있어서, 상기 Ba1-XLaXSnO3의 두께는 0.4nm 내지 400nm일 수 있다.
본 발명에 따른 투명 화합물 반도체에 있어서, 상기 Ba1-XLaXSnO3는 가시광선 대역에서 90% 이상의 광투과율을 가질 수 있다.
본 발명에 따른 투명 화합물 반도체에 있어서, 상기 Ba1-XLaXSnO3는 공기 상태에서 상온 내지 530도로 온도를 승강시켰을 때 저항의 변화가 2% 미만일 수 있다.
본 발명에 따른 투명 화합물 반도체에 있어서, 상기 Ba1-XLaXSnO3는 단결정 또는 에피텍셜 필름 형태를 가질 수 있다.
본 발명은 또한, Ba화합물, La화합물 및 Sn화합물을 반응시켜 Ba1-XLaXSnO3(0<x<0.1)의 조성을 가지며, 10㎠/V sec 이상의 전하이동도를 갖는 투명 화합물 반도체의 제조 방법을 제공한다.
본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 Ba1-XLaXSnO3는 상온에서 10㎠/V sec 이상의 전하이동도를 가질 수 있다.
본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 Ba화합물은 BaCO3 또는 BaO이고, 상기 La화합물은 La2O3이고, 상기 Sn화합물은 SnO2일 수 있다.
본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 Ba화합물, La화합물 및 Sn화합물을 Ba1-XLaXSnO3(0<x<0.1)에 따라 혼합한 후 500도 내지 1500도에서 반응시켜 상기 Ba1-XLaXSnO3를 제조할 수 있다.
본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 Ba1-XLaXSnO3를 베이스 기판 위에 물리 또는 화학적으로 증착하여 형성할 수 있다.
본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 베이스 기판은 격자상수가 0.37~045nm인 ABO3 구조를 갖는 페라브스카이트(perovskite) 금속산화물을 포함할 수 있다.
본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 ABO3는 SrTiO3, LaAlO3, SrZrO3, BaNbO3 중에 하나일 수 있다.
그리고 본 발명에 따른 투명 화합물 반도체의 제조 방법에 있어서, 상기 Ba1-XLaXSnO3의 두께는 0.4nm 내지 400nm일 수 있다.
본 발명에 따른 투명 화합물 반도체인 Ba1-XLaXSnO3(0<x<0.1)는 투명하면서 안정성과 전하이동도가 높은 특성을 갖고 있다. 즉 Ba1-XLaXSnO3는 가시광선대역에서 90% 이상의 광투과도를 갖는 투명성과, 공기 중에서 상온 내지 530도로 온도를 승강시켰을 때 저항의 변화가 2% 미만의 안정성과, 10㎠/V sec 이상의 전하이동도를 갖는 투명 화합물 반도체를 제공한다.
특히 본 발명에 따른 Ba1-XLaXSnO3(0<x<0.1)는 10㎠/V sec 이상의 높은 전하이동도를 갖는 투명 화합물 반도체이기 때문에, 표시 소자 등 다양한 전자 제품에 활용할 수 있다.
도 1은 본 발명의 실시예에 따른 Ba1-XLaXSnO3(0<x<0.1)의 광학적 전송 스펙트럼을 보여주는 그래프이다.
도 2는 본 발명의 실시예에 따른 Ba1-XLaXSnO3(0<x<0.1)의 온도 저항도를 보여주는 그래프이다.
도 3은 본 발명의 실시예에 따른 Ba1-XLaXSnO3(0<x<0.1)의 전하밀도, 저항 및 전하이동도를 보여주는 그래프이다.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 보다 상세하게 설명하고자 한다.
본 발명에 따른 투명 화합물 반도체는 Ba1-XLaXSnO3(0<x<0.1)의 조성을 갖는다. Ba1-XLaXSnO3는 (Ba+La):Sn=1:1의 조성비를 만족한다.
여기서 Ba1-XLaXSnO3가 0<x<0.1의 조성비를 갖는 이유는, Ba1-XLaXSnO3가 반도체성을 갖도록 하기 위해서이다. x=0 즉, La=0인 경우에는, BaSnO3는 절연체가 되기 때문에, La의 조성비는 0 보다는 커야한다. 또한 La를 도핑해서 10이 되는 경우에는, Ba0.9La0.1SnO3는 금속이 되기 때문에, La는 10 보다는 작은 조성비를 가져야 한다. 따라서 Ba1-XLaXSnO3가 반도체성을 갖기 위해서는, 0<x<0.1의 조성비를 갖는 것이다.
Ba1-XLaXSnO3는 양호한 투명성, 안정성 및 10㎠/V sec 이상의 전하이동도를 갖도록, 0.4nm 내지 400nm의 두께를 갖도록 형성하는 것이 바람직하다. 이와 같은 두께로 Ba1-XLaXSnO3를 형성하는 이유는 다음과 같다. 먼저 0.4nm가 원자층 하나의 두께에 해당되기 때문에, Ba1-XLaXSnO3를 0.4nm 보다는 얇게 형성할 수는 없다. 그리고 Ba1-XLaXSnO3의 두께가 400nm을 초과하면 투명성이 떨어지기 때문이다.
그리고 Ba1-XLaXSnO3는 단결정 또는 에피텍셜 필름 형태로 제조할 수 있다.
이러한 본 발명에 따른 투명 화합물 반도체로 사용되는 Ba1-XLaXSnO3는 다음과 같이 형성할 수 있다.
먼저 Ba1-XLaXSnO3는 BaSnO3에 La를 도핑하여 형성할 수 있다. BaSnO3는 격자상수가 0.41nm인 절연성 물질로서, 3eV보다 큰 밴드갭을 가지며, 투명하다.
이때 Ba1-XLaXSnO3의 기초 물질로 BaSnO3를 사용한 이유는 다음과 같다. 먼저 기초과학적인 측면에서 밴드갭이 4eV 가까이 되는 절연체에 금속 물질의 도핑이 1020/㎤ 이하가 되면서, 전하이동도가 클 수 있는 물질이 있다는 것에 대해서 예상하는 데는 무리가 있다. 하지만 본 발명에서는 BaSnO3와 같이 ABO3 구조를 갖는 페라브스카이트(perovskite) 금속산화물 구조에서 A-위치(site) 도핑을 통하여 높은 전하이동도의 구현이 가능하다는 것을 확인하였다. 즉 페라브스카이트 금속산화물은 결정화(crystallization) 온도가 다른 구조의 금속화합물에 비해 높은 점은 있지만, 두 개의 양이온(cation) 위치에 물질을 도핑할 수 있는 가능성을 제공하는 장점을 갖고 있다. 특히 본 발명에서는 3eV의 높은 밴드갭을 가진 페라브스카이트 금속산화물인 BaSnO3를 Ba1-XLaXSnO3의 기초 물질로 사용하였다.
BaSnO3는 3eV 보다 큰 밴드갭을 가지고 있으며, 이것은 투명성이 높다는 것을 의미한다. 또한 이러한 높은 밴드갭을 가진 BaSnO3를 이용한 Ba1-XLaXSnO3는 약 1.2eV의 밴드갭을 갖는 실리콘이나, 약 1.5eV의 밴드갭을 갖는 GaAs에 비해서 투명성 측면에서 장점들을 갖고 있다.
또는 Ba1-XLaXSnO3는 Ba화합물, La화합물 및 Sn화합물을 반응시켜 형성할 수 있다. 이때 Ba화합물로는 BaCO3 또는 BaO이 사용될 수 있다. La화합물로는 La2O3이 사용될 수 있다. 그리고 Sn화합물로는 SnO2이 사용될 수 있다. 예컨대 Ba화합물, La화합물 및 Sn화합물을 Ba1-XLaXSnO3(0<x<0.1)의 조성비에 따라 혼합한 후, 500도에서 내지 1500도로 반응시켜 Ba1-XLaXSnO3를 제조한다. 이때 500도 내지 1500도에서 반응을 수행하는 이유는, 500도 이하에서는 Ba1-XLaXSnO3의 결정구조가 형성되지 않고, 1500도 초과하는 경우에는 Ba1-XLaXSnO3의 결정구조가 깨지거나 투명 화합물 반도체로서의 특성이 떨어지기 때문이다.
Ba1-XLaXSnO3는 Ba화합물, La화합물 및 Sn화합물을 반응시켜 형성할 때, 베이스 기판을 제공하고 물리적 또는 화학적인 방법을 사용하여 베이스 기판 위에 형성할 수 있다. 베이스 기판으로는 ABO3 구조를 갖는 페라브스카이트 금속산화물로서, 격자상수가 0.41nm인 BaSnO3와 비슷한 물질이 사용될 수 있다. 예컨대 베이스 기판으로는 격자상수가 0.37~045nm인 SrTiO3, LaAlO3, SrZrO3, BaNbO3 등이 사용될 수 있으며, 이것에 한정되는 것은 아니다.
그리고 Ba화합물, La화합물 및 Sn화합물을 반응시켜 형성한 Ba1-XLaXSnO3는 10㎠/V sec 이상의 전하이동도를 갖는다. 특히 Ba1-XLaXSnO3는 상온에서 10㎠/V sec 이상의 전하이동도를 갖는다.
이와 같은 본 발명에 따른 Ba1-XLaXSnO3가 양호한 투명성, 안정성 및 전하이동도를 갖고 있음을 도 1 내지 도 3의 그래프를 통해서 확인할 수 있다.
도 1은 본 발명의 실시예에 따른 Ba1-XLaXSnO3(0<x<0.1)의 광학적 전송 스펙트럼을 보여주는 그래프이다.
도 1을 참조하면, 도핑되지 않은 BaSnO3와 본 발명의 실시예에 따른 Ba1-XLaXSnO3 단결정의 광학적 전송 스펙트럼을 보여준다. 여기서 (a)는 도핑되지 않은 BaSnO3와 도핑된 BaSnO3(본 발명에 따른 Ba1-XLaXSnO3) 단결정의 전송 스펙트럼이다. (b)는 도핑되지 않은 BaSnO3와 도핑된 BaSnO3의 흡수계수(Absorption coefficient (α))를 포톤 에너지의 기능으로 나타낸 그래프이다.
도핑되지 않은 BaSnO3와 도핑된 BaSnO3(n=2.39x1020cm-3)의 흡수계수(α)는 두께가 다른 같은 견본의 전송 스펙트럼 측정으로 추출하였다. α와 포톤 에너지의 관계로부터 예측된 도핑되지 않은 BaSnO3와 도핑된 BaSnO3(n=2.39x1020cm-3)의 광학적 밴드갭은 각각 3.03eV과 3.01eV이었다.
즉 본 발명의 실시예에 따른 Ba1-XLaXSnO3는 가시광선 대역에서 일반적 두께의 박막의 경우 90% 이상의 광투과도를 갖고 있는 것을 확인할 수 있다.
도 2는 본 발명의 실시예에 따른 Ba1-XLaXSnO3(0<x<0.1)의 온도 저항도를 보여주는 그래프이다.
도 2를 참조하면, 본 발명의 실시예에 따른 Ba0.96La0.04SnO3-δ 박막필름의 산소(O2), 아르곤(Ar) 및 공기 상태에서의 온도 저항도를 보여준다. Ba0.96La0.04SnO3-δ 박막필름을 산소, 아르곤 또는 공기 상태에서 상온 내지 530도로 온도를 승강시켰을 때 저항의 변화율을 측정하였다. Ba0.96La0.04SnO3-δ 박막필름은 에피텍셜 필름일 수 있다.
여기서 (a)에서 위 그래프는 온도와 가스 환경에서 변하는 것을 보여주고, 아래의 그래프는 그것에 따른 결과적인 저항 변화치를 나타낸다. 필름은 100nm 두께, 온도는 5시간 동안 섭씨 530도에서 유지하였다.
(b)는 저항도와 온도와의 관계를 보여주며, 저항도는 공기에서는 1.7% 정도 변화했고, 섭씨 530도에서 5시간 동안 8% 정도 아르곤에서는 내려갔고, 섭씨 530도에서 5시간 동안 8% 정도 산소에서는 올라간 것을 확인할 수 있다.
이와 같이 본 발명에 따른 Ba1-XLaXSnO3는 공기, 산소, 아르곤 상태에서 상온 내지 530도로 온도를 승강시키더라도 저항의 변화가 크지 않는 안정성을 갖고 있음을 확인할 수 있다. 특히 본 발명에 따른 Ba1-XLaXSnO3는 공기 상태에서 상온 내지 530도로 온도를 승강시켰을 때 저항의 변화가 2% 미만인 안정성을 갖고 있음을 확인할 수 있다.
도 3은 본 발명의 실시예에 따른 Ba1-XLaXSnO3(0<x<0.1)의 전하밀도, 저항 및 전하이동도를 보여주는 그래프이다.
도 3을 참조하면, 본 발명의 실시예에 따른 Ba1-XLaXSnO3의 박막필름의 온도 변화에 따른 전하밀도(n), 저항(ρ) 및 전하이동도(μ)의 변화를 보여준다. 전하밀도(n), 저항(ρ) 및 전하이동도(μ)는 온도에 영향을 받는 계수이다. 여기서 (a,b,c)는 Ba1-XLaXSnO3 박막필름의 전하밀도(n), 저항(ρ) 및 전하이동도(μ)를 보여준다.
본 발명의 실시예에 따른 Ba1-XLaXSnO3는 10㎠/V sec 이상의 전하이동도를 갖는 것을 확인할 수 있다. Ba1-XLaXSnO3는 상온에서 10㎠/V sec 이상의 전하이동도를 갖는 것을 확인할 수 있다. 더욱이 x의 값이 0.04, 0.07인 경우, Ba1-XLaXSnO3는 50㎠/V sec 이상의 전하이동도를 갖는 것을 확인할 수 있다.
이와 같이 본 발명에 따른 Ba1-XLaXSnO3는 투명하면서 안정성과 전하이동도가 높은 특성을 갖고 있다. 즉 Ba1-XLaXSnO3는 가시광선대역에서 90% 이상의 광투과도를 갖는 투명성과, 공기 상태에서 상온 내지 530도로 온도를 승강시켰을 때 저항의 변화가 2% 미만의 안정성과, 50㎠/V sec 이상(상온에서 ~1020/㎤ 도핑 레벨 수준에서)의 전하이동도를 갖는 우수한 투명 화합물 반도체로서의 특성을 나타내는 것을 확인할 수 있다.
또한 본 발명에 따른 Ba1-XLaXSnO3는 양호한 투명성, 안정성 및 전하이동도를 갖기 때문에, 전자 및 통신기기 산업 등 다양한 산업 분야에서 사용될 수 있다. 특히 본 발명에 따른 Ba1-XLaXSnO3는 산화물의 안정성과 큰 밴드갭 때문에, 높은 온도에서 작동할 수 있고, 방사선에 영향을 덜 받으며, 높은 전력량을 취급해야하는 우주산업이나 군용산업 등에 사용될 수 있다.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.

Claims (15)

  1. Ba화합물, La화합물 및 Sn화합물을 혼합한 후 500도 내지 1500도에서 반응시켜 제조한 Ba1-XLaXSnO3(0<x<0.1)의 조성을 가지며, 상기 Ba1-XLaXSnO3의 두께는 0.4nm 내지 400nm이고, 10㎠/V sec 이상의 전하이동도를 갖는 것을 특징으로 하는 투명 화합물 반도체.
  2. 제1항에 있어서,
    상기 Ba1-XLaXSnO3는 상온에서 10㎠/V sec 이상의 전하이동도를 갖는 것을 특징으로 하는 투명 화합물 반도체.
  3. 삭제
  4. 삭제
  5. 제1항에 있어서,
    상기 Ba1-XLaXSnO3는 가시광선 대역에서 90% 이상의 광투과율을 갖는 것을 특징으로 하는 투명 화합물 반도체.
  6. 제1항에 있어서,
    상기 Ba1-XLaXSnO3는 공기 상태에서 상온 내지 530도로 온도를 승강시켰을 때 저항의 변화가 2% 미만인 것을 특징으로 하는 투명 화합물 반도체.
  7. 제1항에 있어서,
    상기 Ba1-XLaXSnO3는 단결정 또는 에피텍셜 필름 형태를 갖는 것을 특징으로 하는 투명 화합물 반도체.
  8. Ba화합물, La화합물 및 Sn화합물을 혼합한 후 500도 내지 1500도에서 반응시켜 제조한 Ba1-XLaXSnO3(0<x<0.1)의 조성을 가지며, 상기 Ba1-XLaXSnO3의 두께는 0.4nm 내지 400nm이고, 10㎠/V sec 이상의 전하이동도를 갖는 것을 특징으로 하는 투명 화합물 반도체의 제조 방법.
  9. 제8항에 있어서,
    상기 Ba1-XLaXSnO3는 상온에서 10㎠/V sec 이상의 전하이동도를 갖는 것을 특징으로 하는 투명 화합물 반도체의 제조 방법.
  10. 제8항에 있어서,
    상기 Ba화합물은 BaCO3 또는 BaO이고, 상기 La화합물은 La2O3이고, 상기 Sn화합물은 SnO2인 것을 특징으로 하는 투명 화합물 반도체의 제조 방법.
  11. 삭제
  12. 제8항에 있어서,
    상기 Ba1-XLaXSnO3를 베이스 기판 위에 물리 또는 화학적으로 증착하여 형성하는 것을 특징으로 하는 투명 화합물 반도체의 제조 방법.
  13. 제12항에 있어서,
    상기 베이스 기판은 격자상수가 0.37~045nm인 ABO3 구조를 갖는 페라브스카이트(perovskite) 금속산화물을 포함하는 것을 특징으로 하는 투명 화합물 반도체의 제조 방법.
  14. 제13항에 있어서,
    상기 ABO3는 SrTiO3, LaAlO3, SrZrO3, BaNbO3 중에 하나인 것을 특징으로 하는 투명 화합물 반도체의 제조 방법.
  15. 삭제
KR1020120109812A 2012-04-05 2012-10-04 투명 화합물 반도체 및 그의 제조 방법 KR101348271B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/390,215 US9755025B2 (en) 2012-04-05 2013-04-05 Transparent compound semiconductor and production method therefor
PCT/KR2013/002866 WO2013151378A1 (ko) 2012-04-05 2013-04-05 투명 화합물 반도체 및 그의 제조 방법
JP2015504502A JP6017016B2 (ja) 2012-04-05 2013-04-05 透明化合物半導体及びその製造方法
EP13772003.3A EP2835818A4 (en) 2012-04-05 2013-04-05 TRANSPARENT SEMICONDUCTOR COMPOUND AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120035582 2012-04-05
KR20120035582 2012-04-05

Publications (2)

Publication Number Publication Date
KR20130113297A KR20130113297A (ko) 2013-10-15
KR101348271B1 true KR101348271B1 (ko) 2014-01-09

Family

ID=49633953

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120109812A KR101348271B1 (ko) 2012-04-05 2012-10-04 투명 화합물 반도체 및 그의 제조 방법

Country Status (5)

Country Link
US (1) US9755025B2 (ko)
EP (1) EP2835818A4 (ko)
JP (1) JP6017016B2 (ko)
KR (1) KR101348271B1 (ko)
WO (1) WO2013151378A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886033B2 (en) * 2017-09-28 2021-01-05 Regents Of The University Of Minnesota Conductive films
JP2020537321A (ja) * 2017-12-22 2020-12-17 エルジー・ケム・リミテッド 透明伝導性膜の製造方法
NL2024408B1 (en) 2019-12-09 2021-08-31 Univ Twente Transparent conductive oxide on a substrate
JP7427505B2 (ja) 2020-03-31 2024-02-05 三井金属鉱業株式会社 スパッタリングターゲット材及びその製造方法並びに薄膜
US11840772B2 (en) 2021-01-26 2023-12-12 Clemson University Research Foundation Hydrothermal method for growth of alkaline earth metal stannate bulk single crystals and crystals formed thereby
KR102619845B1 (ko) * 2021-12-17 2024-01-02 국방과학연구소 페로브스카이트 전도체를 포함하는 투명 전도성 세라믹 적층체

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020340A (ko) * 2003-08-22 2005-03-04 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR20100080601A (ko) * 2007-09-25 2010-07-09 퍼스트 솔라, 인코포레이티드 헤테로접합을 포함하는 광기전 장치
KR20110046905A (ko) * 2009-10-29 2011-05-06 한국과학기술연구원 은 및 iii족 원소에 의해 상호 도핑된 산화아연계 박막의 형성 방법 및 이를 이용하여 형성된 박막

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0915376D0 (en) * 2009-09-03 2009-10-07 Isis Innovation Transparent conducting oxides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050020340A (ko) * 2003-08-22 2005-03-04 엘지이노텍 주식회사 발광소자 및 그 제조방법
KR20100080601A (ko) * 2007-09-25 2010-07-09 퍼스트 솔라, 인코포레이티드 헤테로접합을 포함하는 광기전 장치
KR20110046905A (ko) * 2009-10-29 2011-05-06 한국과학기술연구원 은 및 iii족 원소에 의해 상호 도핑된 산화아연계 박막의 형성 방법 및 이를 이용하여 형성된 박막

Also Published As

Publication number Publication date
US20150048282A1 (en) 2015-02-19
US9755025B2 (en) 2017-09-05
JP2015529002A (ja) 2015-10-01
EP2835818A4 (en) 2015-12-02
EP2835818A1 (en) 2015-02-11
KR20130113297A (ko) 2013-10-15
JP6017016B2 (ja) 2016-10-26
WO2013151378A1 (ko) 2013-10-10

Similar Documents

Publication Publication Date Title
KR101348271B1 (ko) 투명 화합물 반도체 및 그의 제조 방법
Sheng et al. Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes
Jin et al. Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD
Gogova et al. Lanthanum-doped barium stannate-a new type of critical raw materials-free transparent conducting oxide
Wang et al. Low temperature synthesized quaternary chalcogenide Cu2ZnSnS4 from nano-crystallite binary sulfides
Liu et al. Shallow acceptor state in Mg-doped CuAlO2 and its effect on electrical and optical properties: an experimental and first-principles study
Yim et al. Lanthanum doping enabling high drain current modulation in a p-type tin monoxide thin-film transistor
Lee et al. Systematic band gap tuning of BaSnO3 via chemical substitutions: the role of clustering in mixed-valence perovskites
Illiberi et al. Atmospheric spatial atomic layer deposition of In-doped ZnO
Zhang et al. p-Type semiconduction in oxides with cation lone pairs
KR20150051069A (ko) 투명 전도성 박막
Wei et al. Growth, Microstructures, and Optoelectronic Properties of Epitaxial BaSn1–x Sb x O3− δ Thin Films by Chemical Solution Deposition
Ambrosini et al. Zinc Doping in Cosubstituted In2-2 x Sn x Zn x O3-δ
Mude et al. High performance of solution-processed amorphous p-channel copper-tin-sulfur-gallium oxide thin-film transistors by UV/O3 photocuring
Sugiyama et al. Electrical properties of undoped and Li-doped NiO thin films deposited by RF sputtering without intentional heating
Felizco et al. Enhanced thermoelectric transport and stability in atomic layer deposited-HfO2/ZnO and TiO2/ZnO-sandwiched multilayer thin films
Harada et al. Preparation of transparent CuI–CuBr alloy thin films by solution processing
Kykyneshi et al. Transparent conducting oxides based on tin oxide
KR101434327B1 (ko) 투명 화합물 반도체 및 그의 p-타입 도핑 방법
Sun et al. Properties of low indium content Al incorporated IZO (indium zinc oxide) deposited at room temperature
Ziti et al. Advancement of stannite Cu2CoSnS4 thin films deposited by sol gel dip-coating route
Hassan et al. Influence of precursor concentration on the optoelectronic properties of spray deposited SnO2/Si heterojunction
Parmar et al. BaTiO3 perovskite for optoelectronics application: A DFT study
Li et al. Sr: F co-doping of In2O3 thin film and its dual inhibition effect on trap states to achieve a high stability thin film transistor deposited by solution process
Bolbol et al. Impact of Sb-insertion on structural, optical, and dielectric characteristics of the PbI2 thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190930

Year of fee payment: 6

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 7