TW201923504A - 開關穩壓器 - Google Patents
開關穩壓器 Download PDFInfo
- Publication number
- TW201923504A TW201923504A TW107133441A TW107133441A TW201923504A TW 201923504 A TW201923504 A TW 201923504A TW 107133441 A TW107133441 A TW 107133441A TW 107133441 A TW107133441 A TW 107133441A TW 201923504 A TW201923504 A TW 201923504A
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- output
- circuit
- error
- switching regulator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/461—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using an operational amplifier as final control device
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0045—Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/088—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/1563—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0025—Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/1566—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
- Control Of Eletrric Generators (AREA)
- Air Bags (AREA)
Abstract
開關穩壓器包括:開關元件,與輸出端子連接;第1誤差放大電路,將基於輸出電壓的電壓與第1基準電壓的差予以放大並輸出第1誤差電壓;箝位電路,基於第1誤差電壓與第2基準電壓而於輸出節點產生第2誤差電壓;脈衝頻率調變(Pulse Frequency Modulation,PFM)比較電路,將第2誤差電壓與第2基準電壓進行比較並輸出比較結果訊號;振盪電路,基於比較結果訊號而輸出或停止輸出規定頻率的時脈訊號;以及脈衝寬度調變(Pulse Width Modulation,PWM)轉換電路,基於第2誤差電壓與振盪電路的輸出而將開關元件接通/斷開;且箝位電路將第2誤差電壓的下限值箝位於自第2基準電壓的電壓值減去規定電壓值所得的電壓值。
Description
本發明是有關於一種開關穩壓器(Switching regulator)。
圖5表示先前的開關穩壓器500的電路圖。
先前的開關穩壓器500包括:電源端子501、接地端子502、基準電壓源510、誤差放大電路511、基準電壓源512、PFM比較電路513、振盪電路514、P型金屬氧化物半導體(P-Metal-Oxide-Semiconductor,PMOS)電晶體530、N型金屬氧化物半導體(N-Metal-Oxide-Semiconductor,NMOS)電晶體531、電感540、電容541、電阻543及電阻544、輸出端子542、以及包含電流電壓轉換電路520、斜波電壓產生電路521、PWM比較電路522、控制電路523、及逆流檢測電路524的PWM轉換電路550,將所述元件如圖示般連接而構成(例如,參照專利文獻1日本專利特開2010-68671號)。
藉由此種構成而負反饋環路發揮功能,開關穩壓器500以由電阻543與電阻544對輸出端子542的電壓予以分壓的電壓VFB與基準電壓源510的基準電壓VREF1相等的方式動作,而朝輸出端子542產生規定的輸出電壓VOUT。
在先前的開關穩壓器500中,藉由採用下述方式,即:PFM比較電路513將作為誤差放大電路511的輸出即誤差電壓VERR與基準電壓源512的基準電壓VREF2進行比較,且利用作為其輸出的比較結果訊號CMPF使振盪電路514啟用或停用而切換PWM動作與PFM動作,藉此可在朝連接於輸出端子542的外部的負載50流動的負載電流IOUT為小時轉移至PFM動作,從而提高電力轉換效率。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2010-68671號公報
[發明所欲解決之課題]
然而,在如所述的先前的開關穩壓器500中,存在若在PFM動作中負載電流IOUT劇增則輸出電壓VOUT會較大地降低的課題。
通常而言,開關穩壓器的誤差放大電路的增益設定為非常大,其原因在於在PFM動作中,作為誤差放大電路511的輸出即誤差電壓VERR會低至0 V。由於誤差電壓VERR低至0 V,因此誤差電壓VERR自0 V至超過基準電壓VREF2而PWM動作為止會產生大幅度的延遲,在此期間輸出電壓VOUT會較大地降低。
以下利用圖6的波形圖針對所述原因詳細地進行說明。
圖6表示先前的開關穩壓器500的負載電流IOUT、自PMOS電晶體530的汲極輸出的電壓VSW、在電感540中流動的電感電流IL、輸出電壓VOUT、電壓VFB、誤差電壓VERR、以及比較結果訊號CMPF的波形。又,與電壓VFB的波形重合,而利用一點鏈線表示基準電壓VREF1,與誤差電壓VERR的波形重合,而利用一點鏈線表示基準電壓VREF2,利用虛線表示0 V。
於時刻t0,比較結果訊號CMPF變為高位準,而開關穩壓器500進行PFM動作。因此,PMOS電晶體530及NMOS電晶體531停止開關動作而關斷。在所述狀態下,於時刻t0當負載電流IOUT劇增時,與其相應而輸出電壓VOUT逐漸降低,電壓VFB亦逐漸降低。然後,當電壓VFB低於基準電壓VREF1時,誤差電壓VERR自0 V開始上升。其後,於時刻t1,當誤差電壓VERR超過基準電壓VREF2時,比較結果訊號CMPF反轉為低位準。藉此,PMOS電晶體530及NMOS電晶體531開始進行開關動作,電感電流IL流動而輸出電壓VOUT轉為上升。如此般,產生自時刻t0至時刻t1,即自負載電流IOUT劇增後至PMOS電晶體530及NMOS電晶體531開始進行開關動作的延遲時間DT。因此,輸出電壓VOUT會較大地降低。
本發明是為了解決如上所述的課題而完成者,其目的在於提供一種即便在PFM動作中負載電流劇增,亦能夠抑制輸出電壓大幅度降低的開關穩壓器。 [解決課題之手段]
本發明的開關穩壓器是一種自供給至電源端子的電源電壓朝輸出端子產生規定的輸出電壓者,其特徵在於包括:電感,一端與所述輸出端子連接;開關元件,連接於所述電源端子與所述電感的另一端之間;第1誤差放大電路,將基於所述輸出電壓的電壓與第1基準電壓的差予以放大並輸出第1誤差電壓;箝位電路,基於輸入於第1輸入節點的所述第1誤差電壓與輸入於第2輸入節點的第2基準電壓而於輸出節點產生第2誤差電壓;PFM比較電路,將輸入於第1輸入端子的所述第2誤差電壓與輸入於第2輸入端子的所述第2基準電壓進行比較並輸出第1或第2位準的比較結果訊號;振盪電路,在所述比較結果訊號為所述第1位準時輸出規定頻率的時脈訊號,在所述比較結果訊號為所述第2位準時停止所述時脈訊號的輸出;以及PWM轉換電路,基於所述第2誤差電壓與所述振盪電路的輸出而將所述開關元件以所期望的脈衝寬度接通/斷開;且所述箝位電路將所述第2誤差電壓的下限值箝位於自所述第2基準電壓的電壓值減去規定電壓值所得的電壓值。 [發明的效果]
根據本發明的開關穩壓器,將朝PFM比較電路的第1輸入端子輸入的第2誤差電壓的下限值箝位於自第2基準電壓的電壓值減去規定電壓值所得的電壓值。即,可將朝PFM比較電路的第1輸入端子輸入的電壓的下限值設定為較0 V更接近於第2基準電壓的電壓。藉此,即便在PFM動作中負載電流劇增時,亦可在短時間內自PFM動作朝PWM動作轉移。因此,能夠抑制輸出電壓大幅度地降低。
以下,參照圖式對本發明的實施形態進行說明。
圖1是本發明的第1實施形態的開關穩壓器100的電路圖。
本實施形態的開關穩壓器100包含:電源端子101,供給有電源電壓VDD1;電源端子102,供給有電源電壓VDD2;接地端子103;基準電壓源110;誤差放大電路111;基準電壓源112;PFM比較電路113;振盪電路114;PMOS電晶體130(亦稱為「開關元件」);NMOS電晶體131(亦稱為「同步整流元件」);電感140;電容141;電阻143及電阻144;輸出端子142;PWM轉換電路150,包含電流電壓轉換電路120、斜波電壓產生電路121、PWM比較電路122、控制電路123、及逆流檢測電路124;以及箝位電路160。
箝位電路160具有:緩衝電路161,輸入與輸入節點NI1連接;恒定電壓產生部162,一端與緩衝電路的輸出及輸出節點NO連接;誤差放大電路163,反轉輸入端子與恒定電壓產生部162的另一端連接,且非反轉輸入端子與輸入節點NI2連接;以及NMOS電晶體164,閘極與誤差放大電路163的輸出連接,汲極與電源端子102連接,源極與輸入節點NI1連接。
基準電壓源110的一端與誤差放大電路111的非反轉輸入端子連接,另一端與接地端子103連接。誤差放大電路111的反轉輸入端子與電阻143和電阻144的連接點連接,輸出與箝位電路160的輸入節點NI1連接。箝位電路160的輸入節點NI1與誤差放大電路111的輸出連接,輸入節點NI2與基準電壓源112的一端連接,輸出節點NO與PFM比較電路113的反轉輸入端子及PWM比較電路122的反轉輸入端子連接。基準電壓源112的一端與PFM比較電路113的非反轉輸入端子連接,另一端與接地端子103連接。PFM比較電路113的輸出與振盪電路114的輸入連接。振盪電路114的輸出與控制電路123的輸入連接。
斜波電壓產生電路121的輸入與電流電壓轉換電路120的輸出連接,輸出與PWM比較電路122的非反轉輸入端子連接。PWM比較電路122的輸出與控制電路123的輸入連接。PMOS電晶體130的源極與電源端子101及電流電壓轉換電路120的輸入連接,閘極與控制電路123的輸出連接,汲極與電感140的一端、逆流檢測電路124的非反轉輸入端子、及NMOS電晶體131的汲極連接。NMOS電晶體131的閘極與控制電路123的輸出連接,源極與接地端子103連接。逆流檢測電路124的反轉輸入端子與接地端子103連接,輸出與控制電路123的輸入連接。
電感140的另一端與電容141的一端、電阻143的一端、及輸出端子142連接。電容141的另一端與接地端子103連接。電阻144的另一端與接地端子103連接。
以下,對如上文所述般構成的開關穩壓器100的動作進行說明。
誤差放大電路111將由電阻143與電阻144對輸出端子142的輸出電壓VOUT予以分壓的電壓VFB與基準電壓源110的基準電壓VREF1進行比較並輸出誤差電壓VERR1。
箝位電路160基於輸入於輸入節點NI1的誤差電壓VERR1與輸入於輸入節點NI2的基準電壓源112的基準電壓VREF2而於輸出節點NO產生誤差電壓VERR2。具體而言,緩衝電路161的輸出阻抗設定為低於誤差放大電路111的輸出阻抗,而緩衝電路161於輸出節點NO產生與誤差電壓VERR1成比例的誤差電壓VERR2。恒定電壓產生部162產生恒定電壓VOS。誤差放大電路163將於誤差電壓VERR2上加上恒定電壓VOS的電壓VM與基準電壓VREF2進行比較且朝NMOS電晶體164的閘極輸入輸出電壓。藉此,在電壓VM小於基準電壓VREF2時,箝位電路160將誤差電壓VERR2箝位於較基準電壓VREF2低恒定電壓VOS部分的電壓。
電流電壓轉換電路120將PMOS電晶體130的源極電流轉換為電壓,且朝斜波電壓產生電路121輸出。斜波電壓產生電路121在電流電壓轉換電路120的輸出上加上鋸齒波而輸出電壓VCS。PWM比較電路122將誤差電壓VERR2與電壓VCS進行比較,且將比較結果訊號CMPW朝控制電路123輸出。
PFM比較電路113將基準電壓源112的基準電壓VREF2與誤差電壓VERR2進行比較,且將比較結果訊號CMPF朝振盪電路114輸出。振盪電路114在比較結果訊號CMPF為低位準時,以規定的頻率振盪(被啟用),而輸出時脈訊號作為輸出訊號CLK。又,振盪電路114在比較結果訊號CMPF為高位準時,停止振盪(被停用),而將輸出訊號CLK固定於低位準。
逆流檢測電路124將NMOS電晶體131的汲極電壓與源極電壓進行比較,若汲極電壓高於源極電壓,則將逆電流檢測訊號朝控制電路123輸出。
控制電路123依照被輸入之各訊號,控制PMOS電晶體130與NMOS電晶體131的導通/關斷。
電感140與電容141使自PMOS電晶體130的汲極輸出的電壓VSW平滑。
藉由此種電路構成而負反饋環路發揮功能,開關穩壓器100以電壓VFB與基準電壓VREF1相等的方式動作,而於輸出端子142產生輸出電壓VOUT。
在開關穩壓器100中,根據朝與輸出端子142連接的負載10流動的負載電流IOUT的大小,如下文所述般,切換PWM(Pulse Width Modulation)動作與PFM(Pulse Frequency Modulation)動作。
在負載電流為大時,誤差電壓VERR1,即誤差電壓VERR2上升以補償輸出電壓VOUT的降低。因此,誤差電壓VERR2穩定地大於基準電壓VREF2,而振盪電路114持續輸出規定頻率的時脈訊號作為輸出訊號CLK。與所述時脈訊號的上升同步地,PWM轉換電路150使PMOS電晶體130導通且使NMOS電晶體131關斷,此時,控制PMOS電晶體130的導通時間的訊號的脈衝寬度是由PWM轉換電路150決定。如此般,在負載電流IOUT為大時,開關穩壓器100變為PWM動作。
其後,在負載電流IOUT自所述狀態變小時,在負載電流IOUT剛變小後的時點,誤差電壓VERR2持續穩定地大於基準電壓VREF2的狀態。然而,由於負載電流IOUT變小,因負載電流IOUT所致的輸出電壓VOUT的降低為小,故而藉由使PMOS電晶體130導通所致的輸出電壓VOUT的上升變大。因此,誤差電壓VERR2降低以補償所述輸出電壓VOUT的上升,並成為低於基準電壓VREF2的電壓值。因此,PMOS電晶體130關斷,而輸出電壓VOUT不斷降低。
然後,在誤差電壓VERR2上升,並大於基準電壓VREF2時,振盪電路114輸出時脈訊號作為輸出訊號CLK。與所述時脈訊號的上升同步地,PWM轉換電路150使PMOS電晶體130導通且使NMOS電晶體131關斷。此時,由於負載電流IOUT為小,因藉由將PMOS電晶體130導通而輸出電壓VOUT立即超過所期望的電壓值,故而誤差電壓VERR2降低。如是,PWM轉換電路150使PMOS電晶體130關斷,且使NMOS電晶體131導通。又,振盪電路114將輸出訊號CLK固定為低位準。如此般,在負載電流IOUT為小時,振盪電路114反復進行振盪與停止振盪。即,開關穩壓器100變為PFM動作。
藉此,本實施形態的開關穩壓器100可在負載電流IOUT為小時轉移至PFM動作,從而提高電力轉換效率。
為了說明所述本實施形態的開關穩壓器100的特徵上的構成,以下,對開關穩壓器100在進行PFM動作時,負載電流IOUT為劇增時的電路動作進行詳述。
圖2表示本實施形態的開關穩壓器100中的負載電流IOUT、電壓VSW、在電感140中流動的電感電流IL、輸出電壓VOUT、電壓VFB、誤差電壓VERR2、以及比較結果訊號CMPF的波形。又,與電壓VFB的波形重合,而利用一點鏈線表示基準電壓VREF1,與誤差電壓VERR2的波形重合,而利用一點鏈線表示基準電壓VREF2,利用虛線表示0 V。
於時刻t0,比較結果訊號CMPF變為高位準,而開關穩壓器100進行PFM動作。因此,PMOS電晶體130及NMOS電晶體131停止開關動作而關斷。此時,由於電壓VFB高於基準電壓VREF1,故而誤差放大電路111欲輸出低的電壓(0 V)作為誤差電壓VERR1。然而,如上文所述般,由於箝位電路160在電壓VM小於基準電壓VREF2時,將誤差電壓VERR2箝位於較基準電壓VREF2低恒定電壓VOS部分的電壓,故而誤差電壓VERR2(誤差電壓VERR1)成為低於基準電壓VREF2,且高於0 V的電壓。
在所述狀態下,於時刻t0當負載電流IOUT劇增時,與其相應而輸出電壓VOUT逐漸降低,電壓VFB亦逐漸降低。然後,當電壓VFB低於基準電壓VREF1時,誤差電壓VERR2自較基準電壓低恒定電壓VOS部分的電壓開始上升。
其後,於時刻t1,當誤差電壓VERR2超過基準電壓VREF2時,比較結果訊號CMPF反轉為低位準。藉此,PMOS電晶體130及NMOS電晶體131開始進行開關動作,電感電流IL流動且輸出電壓VOUT轉為上升。
如此般,本實施形態的開關穩壓器100藉由以將誤差電壓VERR2的下限值箝位於自基準電壓VREF2的電壓值減去恒定電壓VOS部分所得的電壓值的方式進行動作,而可縮短時刻t0至時刻t1,即在PFM動作中自負載電流IOUT劇增後至轉移至PWM動作的延遲時間DT。因此,能夠抑制輸出電壓VOUT較大地降低。
其次,參照圖3對本發明的第2實施形態的開關穩壓器200進行說明。
本實施形態的開關穩壓器200構成為:在第1實施形態的開關穩壓器100的箝位電路160中,削除連接於誤差放大電路163的反轉輸入端子與輸出節點NO之間的恒定電壓產生部162,而取代地,於緩衝電路161的輸出與輸出節點NO之間連接有恒定電壓產生部262。由於其他構成與圖1的開關穩壓器100相同,故而對同一構成元素賦予同一符號,並適當省略重複的說明。
根據所述構成,本實施形態的開關穩壓器200亦與第1實施形態的開關穩壓器100同樣地,以將誤差電壓VERR2的下限值箝位於自基準電壓VREF2的電壓值減去恒定電壓VOS部分所得的電壓值的方式進行動作。藉此,即便在PFM動作中負載電流IOUT劇增時,仍可縮短自負載電流IOUT劇增後至轉移至PWM動作的延遲時間DT,從而可抑制輸出電壓VOUT較大地降低。
圖4表示第1及第2實施形態的緩衝電路161的一具體例。緩衝電路161包含:NMOS電晶體161t,汲極與電源端子102連接,源極與箝位電路160的輸出節點NO連接,閘極與箝位電路160的輸入節點NI1連接;以及恒定電流源161c,連接於輸出節點NO與接地端子103之間。即,緩衝電路161是由源極隨耦(Source follower)電路構成。
根據所述構成,可利用較少的元件數實現輸出阻抗為低的緩衝電路。
以上,對本發明的實施形態進行了說明,當然本發明並不限定於所述實施形態,在不脫離本發明的主旨的範圍內可進行各種變更。
例如,在所述實施形態中,恒定電壓產生部162、恒定電壓產生部262只要能夠產生恒定電壓,則並不特別限定於所述構成。
又,在所述實施形態中,以電流模式控制方式的開關穩壓器為例進行了說明,但本發明亦可應用於電壓模式控制方式的開關穩壓器。
又,在所述實施形態中,對將金屬氧化物半導體(Metal-Oxide-Semiconductor,MOS)電晶體用作開關元件及同步整流元件的例子進行了說明,但亦可使用雙極電晶體等。
又,在所述實施形態中,以同步整流方式的開關穩壓器為例進行了說明,但本發明亦可應用於二極體整流方式的開關穩壓器。再者,在採用二極體整流方式時,無需逆流檢測電路。
10、50‧‧‧負載
100、200、500‧‧‧開關穩壓器
101、102、501‧‧‧電源端子
103、502‧‧‧接地端子
110、112、510、512‧‧‧基準電壓源
111、511‧‧‧誤差放大電路
113、513‧‧‧PFM比較電路
114、514‧‧‧振盪電路
120、520‧‧‧電流電壓轉換電路
121、521‧‧‧斜波電壓產生電路
122、522‧‧‧PWM比較電路
123、523‧‧‧控制電路
124、524‧‧‧逆流檢測電路
130、530‧‧‧PMOS電晶體(開關元件)
131、531‧‧‧NMOS電晶體(同步整流元件)
140、540‧‧‧電感
141、541‧‧‧電容
142、542‧‧‧輸出端子
143、144、543、544‧‧‧電阻
150、550‧‧‧PWM轉換電路
160‧‧‧箝位電路
161‧‧‧緩衝電路
161c‧‧‧恒定電流源
161t‧‧‧NMOS電晶體
162、262‧‧‧恒定電壓產生部
163‧‧‧誤差放大電路
164‧‧‧NMOS電晶體
CLK‧‧‧輸出訊號
CMPW、CMPF‧‧‧比較結果訊號
DT‧‧‧延遲時間
IL‧‧‧電感電流
IOUT‧‧‧負載電流
NI1、NI2‧‧‧輸入節點
NO‧‧‧輸出節點
t0、t1‧‧‧時刻
VCS、VFB、VSW、VM‧‧‧電壓
VDD、VDD1、VDD2‧‧‧電源電壓
VERR、VERR1、VERR2‧‧‧誤差電壓
VOS‧‧‧恒定電壓
VOUT‧‧‧輸出電壓
VREF1、VREF2‧‧‧基準電壓
圖1是表示本發明的第1實施形態的開關穩壓器的電路圖。 圖2是表示圖1所示的開關穩壓器的各節點的訊號波形的圖。 圖3是表示本發明的第2實施形態的開關穩壓器的電路圖。 圖4是表示圖1及圖3所示的緩衝電路的一具體例的電路圖。 圖5是先前的開關穩壓器的電路圖。 圖6是表示圖5的開關穩壓器的各節點的訊號波形的圖。
Claims (5)
- 一種開關穩壓器,其自供給至第1電源端子的電源電壓朝輸出端子產生規定的輸出電壓,且所述開關穩壓器的特徵在於包含: 電感,一端與所述輸出端子連接; 開關元件,連接於所述第1電源端子與所述電感的另一端之間; 第1誤差放大電路,將基於所述輸出電壓的電壓與第1基準電壓的差予以放大並輸出第1誤差電壓; 箝位電路,基於輸入於第1輸入節點的所述第1誤差電壓與輸入於第2輸入節點的第2基準電壓而於輸出節點產生第2誤差電壓; 脈衝頻率調變比較電路,將輸入於第1輸入端子的所述第2誤差電壓與輸入於第2輸入端子的所述第2基準電壓進行比較並輸出第1或第2位準的比較結果訊號; 振盪電路,相對於所述第1位準的比較結果訊號而輸出規定頻率的時脈訊號,相對於所述第2位準的比較結果訊號而停止所述時脈訊號的輸出;以及 脈衝寬度調變轉換電路,基於所述第2誤差電壓與所述振盪電路的輸出而將所述開關元件以所期望的脈衝寬度接通/斷開;且 所述箝位電路將所述第2誤差電壓的下限值箝位於自所述第2基準電壓的電壓值減去規定電壓值所得的電壓值。
- 如申請專利範圍第1項所述的開關穩壓器,其中所述箝位電路具有: 緩衝電路,輸入與所述第1輸入節點連接,輸出與所述輸出節點連接; 恒定電壓產生部,一端與所述輸出節點連接並產生恒定電壓; 第2誤差放大電路,將所述恒定電壓產生部的另一端的電壓與所述第2基準電壓的差予以放大;以及 金屬氧化物半導體電晶體,連接於第2電源端子與所述第1輸入節點之間,且閘極與所述第2誤差放大電路的輸出連接;且 所述規定電壓值為所述恒定電壓。
- 如申請專利範圍第2項所述的開關穩壓器,其中所述恒定電壓產生部連接於所述第2誤差放大電路的所述恒定電壓產生部的另一端的電壓輸入的端子與所述輸出節點之間。
- 如申請專利範圍第2項所述的開關穩壓器,其中所述恒定電壓產生部連接於所述緩衝電路的輸出與所述輸出節點之間。
- 如申請專利範圍第1項至第4項中任一項所述的開關穩壓器,其中所述緩衝電路是由源極隨耦電路構成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-196188 | 2017-10-06 | ||
JP2017196188A JP6932056B2 (ja) | 2017-10-06 | 2017-10-06 | スイッチングレギュレータ |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201923504A true TW201923504A (zh) | 2019-06-16 |
TWI784054B TWI784054B (zh) | 2022-11-21 |
Family
ID=65993519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107133441A TWI784054B (zh) | 2017-10-06 | 2018-09-21 | 開關穩壓器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10468989B2 (zh) |
JP (1) | JP6932056B2 (zh) |
KR (1) | KR102560435B1 (zh) |
CN (1) | CN109639142A (zh) |
TW (1) | TWI784054B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI749906B (zh) * | 2020-11-25 | 2021-12-11 | 台達電子工業股份有限公司 | 電源系統及其適用之脈寬調變方法 |
US11611291B2 (en) | 2020-11-25 | 2023-03-21 | Delta Electronics, Inc. | Power system and pulse width modulation method therefor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10726881B1 (en) * | 2019-04-08 | 2020-07-28 | Texas Instruments Incorporated | Supply voltage clamping for improved power supply rejection ratio |
KR102238846B1 (ko) * | 2019-11-05 | 2021-04-09 | 현대모비스 주식회사 | Dc-dc 컨버터 전류모드 제어용 보조장치 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005210335A (ja) * | 2004-01-22 | 2005-08-04 | Nec Electronics Corp | 相関二重サンプリング回路、信号処理回路及び固体撮像装置 |
TW200525869A (en) * | 2004-01-28 | 2005-08-01 | Renesas Tech Corp | Switching power supply and semiconductor IC |
JP4578198B2 (ja) * | 2004-09-30 | 2010-11-10 | 株式会社リコー | スイッチングレギュレータ |
US7382114B2 (en) * | 2005-06-07 | 2008-06-03 | Intersil Americas Inc. | PFM-PWM DC-DC converter providing DC offset correction to PWM error amplifier and equalizing regulated voltage conditions when transitioning between PFM and PWM modes |
US7378827B2 (en) * | 2005-08-24 | 2008-05-27 | Micrel, Incorporated | Analog internal soft-start and clamp circuit for switching regulator |
US7868602B2 (en) * | 2006-01-10 | 2011-01-11 | Rohm Co., Ltd. | Power supply device and electronic appliance therewith |
JP4836624B2 (ja) * | 2006-03-23 | 2011-12-14 | 株式会社リコー | スイッチングレギュレータ |
GB2437556B (en) * | 2006-04-26 | 2011-03-23 | Wolfson Microelectronics Plc | Improvements in switching regulator circuits |
US20090079408A1 (en) * | 2007-09-21 | 2009-03-26 | Nexem, Inc. | Voltage mode pwmff-pfm/skip combo controller |
JP4618339B2 (ja) * | 2008-06-20 | 2011-01-26 | ミツミ電機株式会社 | Dc−dcコンバータ |
JP5211959B2 (ja) * | 2008-09-12 | 2013-06-12 | 株式会社リコー | Dc−dcコンバータ |
JP5504685B2 (ja) * | 2009-04-27 | 2014-05-28 | 株式会社リコー | スイッチングレギュレータ及びその動作制御方法 |
US8169205B2 (en) * | 2009-05-26 | 2012-05-01 | Silergy Technology | Control for regulator fast transient response and low EMI noise |
JP5785814B2 (ja) * | 2011-08-18 | 2015-09-30 | ローム株式会社 | スイッチング電源の制御回路、制御方法ならびにそれを用いたスイッチング電源および電子機器 |
JP2013168880A (ja) * | 2012-02-16 | 2013-08-29 | Sony Corp | 比較器、ad変換器、固体撮像装置、カメラシステム、および電子機器 |
JP6168793B2 (ja) * | 2013-03-04 | 2017-07-26 | エスアイアイ・セミコンダクタ株式会社 | スイッチングレギュレータ及び電子機器 |
JP6161339B2 (ja) * | 2013-03-13 | 2017-07-12 | ラピスセミコンダクタ株式会社 | 昇圧型スイッチングレギュレータおよび半導体装置 |
US9287776B2 (en) * | 2013-07-30 | 2016-03-15 | Texas Instruments Incorporated | Low power switching mode regulator having automatic PFM and PWM operation |
JP6211916B2 (ja) * | 2013-12-24 | 2017-10-11 | エスアイアイ・セミコンダクタ株式会社 | スイッチングレギュレータ |
JP6257363B2 (ja) * | 2014-02-06 | 2018-01-10 | エスアイアイ・セミコンダクタ株式会社 | スイッチングレギュレータ制御回路及びスイッチングレギュレータ |
JP6253436B2 (ja) * | 2014-02-13 | 2017-12-27 | エスアイアイ・セミコンダクタ株式会社 | Dc/dcコンバータ |
US9667146B1 (en) * | 2015-02-11 | 2017-05-30 | Marvell International Ltd. | Fast transient response for switching regulators |
CN104993701B (zh) * | 2015-07-22 | 2017-05-24 | 无锡中感微电子股份有限公司 | 一种pwm/pfm控制电路 |
DE102015219307B4 (de) * | 2015-10-06 | 2018-07-19 | Dialog Semiconductor (Uk) Limited | Schaltleistungswandler mit einer Strombegrenzungsschaltung |
US10551859B2 (en) * | 2016-05-17 | 2020-02-04 | Texas Instruments Incorporated | Methods and apparatus for overshoot, undershoot and delay reduction of a voltage regulator output by dynamically offsetting a reference voltage |
CN106130325B (zh) * | 2016-07-13 | 2019-06-18 | 成都芯源系统有限公司 | 一种降噪开关变换器以及控制电路和方法 |
US10148177B2 (en) * | 2016-12-28 | 2018-12-04 | Texas Instruments Incorporated | Multiphase converter with phase interleaving |
-
2017
- 2017-10-06 JP JP2017196188A patent/JP6932056B2/ja active Active
-
2018
- 2018-09-21 TW TW107133441A patent/TWI784054B/zh active
- 2018-09-26 CN CN201811121320.7A patent/CN109639142A/zh active Pending
- 2018-10-04 KR KR1020180118290A patent/KR102560435B1/ko active IP Right Grant
- 2018-10-04 US US16/151,954 patent/US10468989B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI749906B (zh) * | 2020-11-25 | 2021-12-11 | 台達電子工業股份有限公司 | 電源系統及其適用之脈寬調變方法 |
US11611291B2 (en) | 2020-11-25 | 2023-03-21 | Delta Electronics, Inc. | Power system and pulse width modulation method therefor |
Also Published As
Publication number | Publication date |
---|---|
KR20190039868A (ko) | 2019-04-16 |
JP6932056B2 (ja) | 2021-09-08 |
TWI784054B (zh) | 2022-11-21 |
US20190109541A1 (en) | 2019-04-11 |
CN109639142A (zh) | 2019-04-16 |
KR102560435B1 (ko) | 2023-07-27 |
JP2019071715A (ja) | 2019-05-09 |
US10468989B2 (en) | 2019-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI784054B (zh) | 開關穩壓器 | |
KR101048779B1 (ko) | Dc-dc 컨버터 | |
US11205959B2 (en) | Switching regulator including PFM detector | |
JP2006158067A (ja) | 電源ドライバ回路 | |
TWI751370B (zh) | 切換調整器 | |
JP4341698B2 (ja) | スイッチング電源とその制御回路及び制御方法 | |
WO2014167938A1 (ja) | パワーデバイスの駆動回路 | |
TW201445858A (zh) | 用於電源轉換器的時間產生器及時間信號產生方法 | |
JP2013025577A (ja) | 半導体集積回路 | |
TWI766061B (zh) | 開關調節器 | |
JP2002119053A (ja) | スイッチングレギュレータ | |
JP5130944B2 (ja) | Dc−dcコンバータおよび電源制御用半導体集積回路 | |
TWI646766B (zh) | 振盪器及使用該振盪器之關聯的直流轉直流轉換器 | |
JP4464263B2 (ja) | スイッチング電源装置 | |
TW201117541A (en) | Dc-dc converter | |
JP2004040859A (ja) | Dc/dcコンバータ | |
CN109980930B (zh) | 振荡器及使用该振荡器之关联的直流转直流转换器 | |
JP2008067531A (ja) | スイッチング制御回路 | |
TW201931749A (zh) | 切換調節器 | |
JP5071145B2 (ja) | 制御回路および電源制御用半導体集積回路並びにdc−dcコンバータ | |
CN118041047A (zh) | 具有过冲保护的开关电源 | |
JP2005143197A (ja) | Pwm信号の時比率制御方法、時比率制御回路およびdc−dcコンバータ | |
JP2012196092A (ja) | 電源回路及びその動作制御方法 | |
JP2014057469A (ja) | 半導体集積回路およびその動作方法 |