TW201923475A - 用於將物場成像至像場的成像光學單元 - Google Patents

用於將物場成像至像場的成像光學單元 Download PDF

Info

Publication number
TW201923475A
TW201923475A TW107133406A TW107133406A TW201923475A TW 201923475 A TW201923475 A TW 201923475A TW 107133406 A TW107133406 A TW 107133406A TW 107133406 A TW107133406 A TW 107133406A TW 201923475 A TW201923475 A TW 201923475A
Authority
TW
Taiwan
Prior art keywords
mirror
imaging
optical unit
mirrors
beam path
Prior art date
Application number
TW107133406A
Other languages
English (en)
Other versions
TWI805619B (zh
Inventor
喬哈尼斯 勞夫
蘇珊納 貝德
漢斯 喬根 洛斯托斯基
亞歷安卓 渥夫
Original Assignee
德商卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商卡爾蔡司Smt有限公司 filed Critical 德商卡爾蔡司Smt有限公司
Publication of TW201923475A publication Critical patent/TW201923475A/zh
Application granted granted Critical
Publication of TWI805619B publication Critical patent/TWI805619B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0647Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors
    • G02B17/0663Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using more than three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Telescopes (AREA)
  • Studio Devices (AREA)
  • Endoscopes (AREA)

Abstract

揭露用於將一物場(4)成像至一像場(8)的成像光學單元(7)。在此處,複數個反射鏡(M1至M10)用以沿一成像光束路徑導引成像光(3)。複數個反射鏡(M1至M10)包含用於切線入射的數個反射鏡(GI反射鏡)(M2至M8),其偏轉具有大於45°的一入射角的一中心物場點的一主射線(16)。GI反射鏡(M2至M8)中的其中至少兩個配置於成像光束路徑中作為基本GI反射鏡(M2至M7),使得其偏轉效果針對主射線加總。至少一另外的GI反射鏡(M2至M8)配置在成像光束路徑中作為一反GI反射鏡(M8),使得其偏轉效果相對基本GI反射鏡(M2至M7)的偏轉效果以減法的方式對主射線(16)作用。這產生了一成像光學單元,其相對於成像光學單元的反射鏡的反射鏡主體所要求的安裝空間的配置靈活性增加。

Description

用於將物場成像至像場的成像光學單元 【相關專利參照】
德國專利申請案DE 10 2017 216 893.5的內容以引用的方式併入本文。
本發明關於用於將物場成像至像場的成像光學單元或投射光學單元。此外,本發明關於包含此一成像光學單元及用以照明物場的照明光學單元的光學系統(物場位於其中或其與物場重合)、包含此一光學系統及EUV光源的投射曝光裝置、用以使用此一投射曝光裝置產生微結構或奈米結構組件的方法、以及使用此方法所產生的微結構或奈米結構組件。
一開始所提出的類型的投射光學單元已揭露於WO 2016/166 080 A1(特別是其中根據圖26的具體實施例)、JP 2002/048977 A、US 5,891,806(其描述「近距離式」投射曝光裝置)、以及揭露於WO 2008/141 686 A1及WO 2015/014 753 A1。
本發明的一目的為發展在一開始所提出之類型的成像光學 單元,使得相對於成像光學單元的反射鏡的反射鏡主體所要求的安裝空間,增加了其配置靈活性。
根據本發明,此目的由具有在申請專利範圍第1項所述特徵的成像光學單元來實現。
根據本發明,已認識到使用至少一反GI反射鏡可用以影響整體GI反射鏡所產生的整體偏轉效果,其中相對於由成像光束路徑所預先決定的光管,至少一反GI反射鏡的反射鏡表面在與基本GI反射鏡的反射鏡表面相對的一側上反射成像光。在採用預定數量的GI反射鏡的情況下,有可能獲得GI反射鏡的校正效果與GI反射鏡的整體偏轉效果的理想組合。在給定的針對成像光學單元的反射鏡的反射鏡本體的成像品質和安裝空間規定的最低要求的情況下,通過使用至少一個反GI反射鏡所開啟的額外設計自由度可用於設計具有良好整體傳輸的成像光學單元。反GI反射鏡可實施為純偏轉反射鏡,即平面反射鏡。或者,反GI反射鏡也可對成像光學單元的成像特性產生影響。
根據申請專利範圍第2項的剛好一個反GI反射鏡從許多設計輸出中證明了它的價值。
多於三個的基本GI反射鏡有助於良好的校正,同時具有較低的總傳輸損耗。
這特別適用於根據申請專利範圍第4項的剛好六個基本GI反射鏡。
根據申請專利範圍第5項的反GI反射鏡的配置使得有可能求助於用於前面的GI反射鏡的現有設計。
包含至少一個下游基本GI反射鏡的反GI反射鏡有助於反GI反射鏡相對於直接跟隨的基本GI反射鏡和相對於可能配置在上游的基本GI反射鏡的緊湊佈置(compact arrangement)。原則上,所有基本GI反射鏡也可設置在反GI反射鏡的下游,然後在光束路徑中引導。
根據申請專利範圍第7項的反GI反射鏡的配置已發現特別適合於某些安裝空間要求。
這特別適用於根據申請專利範圍第8項的反射鏡配置。
包含至少一另外的NI反射鏡的成像光學單元已證明其價值。成像光學單元的成像光束路徑中的最終反射鏡可組態為NI反射鏡。成像光學單元的成像光束路徑中的第一反射鏡可組態為NI反射鏡。成像光學單元的成像光束路徑中的倒數第二個反射鏡可組態為NI鏡子。成像光學單元的成像光束路徑中的最終反射鏡可包含用於成像光的通道開口。成像光學單元的成像光束路徑中的倒數第二個反射鏡可組態成不具此一通道開口。
根據申請專利範圍第10項的反射鏡配置避免了成像光學單元的第一和倒數第二個反射鏡在成像光學單元的最終反射鏡和像場之間配置在光管的同一側。這可避免安裝空間衝突。
申請專利範圍第11項所述的光學系統、申請專利範圍第12項所述的投射曝光裝置、申請專利範圍第13項所述的製造方法以及申請專利範圍第14項所述的微結構或奈米結構組件的優點對應在前文中已參照成像光學單元進行描述的優點。照明場可與物體重合。特別地,可使用投射曝光裝置生產半導體組件,例如記憶體晶片。成像光學單元可設計用於EUV投射微影。
成像光學單元的反射鏡可具有對EUV成像光具有高反射性的塗層。此塗層可實施為單層或多層塗層。
1‧‧‧微影投射曝光裝置
2‧‧‧光源
3‧‧‧照明光
4‧‧‧物場
5‧‧‧物體平面
6‧‧‧照明光學單元
7‧‧‧投射光學單元
8‧‧‧像場
9‧‧‧影像平面
10‧‧‧遮罩
10a‧‧‧遮罩保持器
10b‧‧‧遮罩位移驅動器
11‧‧‧基板
12‧‧‧基板保持器
12a‧‧‧基板位移驅動器
13‧‧‧射線光束
14‧‧‧射線光束
15‧‧‧射線
16‧‧‧主射線
17‧‧‧通道開口
18‧‧‧光管
19‧‧‧投射光學單元
20‧‧‧投射光學單元
21‧‧‧投射光學單元
AS‧‧‧孔徑光闌
CRA‧‧‧角度
M1-M10‧‧‧反射鏡
下文將參照圖式更詳細地解釋本發明的範例具體實施例。其中:圖1示意性地顯示用於EUV微影的投射曝光裝置; 圖2顯示了成像光學單元的具體實施例的示意側視圖,其可用作根據圖1的投射曝光裝置中的投射透鏡,其中顯示了成像光學單元的反射鏡本體而無保持器,用以說明物場和像場之間的成像光束路徑;以及圖3至圖5以類似於圖2的圖式顯示了成像光學單元的另外的具體實施例,其可用於代替圖1所示的投射曝光裝置中的根據圖2的成像光學單元。
微影投射曝光裝置1具有用以提供照明光或成像光3的光源2。光源2為EUV光源,其產生波長範圍在例如5nm和30nm之間、特別是在5nm和15nm之間的光。光源2可為基於電漿的光源(雷射產生電漿(LPP))、氣體放電產生電漿(GDP))或基於同步加速器的光源,例如自由電子雷射(FEL)。特別地,光源2可為波長為13.5nm的光源或波長為6.9nm的光源。其他EUV波長也是可能的。一般來說,對於在投射曝光裝置1中導引的照明光3,甚至任意波長也是可能的,例如可見光波長或可在微影中使用(例如DUV、深紫外光)並有可使用的合適雷射光源及/或LED光源的其他波長(例如365nm、248nm、193nm、157nm、129nm、109nm)。圖1以非常示意性的方式顯示照明光3的光束路徑。
照明光學單元6用以將來自光源2的照明光3導引到物體平面5中的物場4。使用投射光學單元或成像光學單元7,將物場4以預定的縮小比例成像至影像平面9中的像場8。
為了便於描述投射曝光裝置1和投射光學單元7的各種具體實施例,在圖式中顯示了笛卡爾xyz座標系統,從該系統可清楚看出圖中所示組件的相應位置關係。在圖1中,x方向垂直於繪圖平面並延伸進入繪圖平面。y方向向左,且z方向向上。
在投射光學單元7中,物場4和像場8具有彎曲或弧形的具體 實施例,特別是形狀像部分環形的具體實施例。物場4或像場8的邊界輪廓的基本形式具有相應的彎曲。或者,有可能將物場4和像場8實施為矩形。物場4和像場8具有大於1的x/y外觀比。因此,物場4在x方向上具有較長的物場尺寸,而在y方向上具有較短的物場尺寸。這些物場尺寸沿場座標x和y延伸。
因此,物場4由第一笛卡爾物場座標x和第二笛卡爾物場座標y展開。垂直於這兩個物場座標x和y的第三笛卡爾座標z在下文中也稱作法線座標。
根據圖2的投射光學單元7在矢狀平面(sagittal plane)xz中縮小4倍並且在子午平面(meridional plane)yz中縮小-8倍。投射光學單元7是變形投射光學單元。兩個成像光平面xz、yz中的其他縮小比例也是可能的,例如3x、5x、6x、7x或者大於8x的縮小比例。或者,投射光學單元7也可在兩個成像光平面xz、yz中具有相應的相同縮小比例,例如縮小8倍。然後,其他縮小比例也是可能的,例如4x、5x或甚至大於8x的縮小比例。相應的縮小比例可伴隨或不伴隨影像翻轉,其隨後也通過縮小比例的適當符號說明進行闡明。
在根據圖2的投射光學單元7的具體實施例中,影像平面9配置為平行於物體平面5。在此情況下所成像的是與物場4重合的反射光罩10(也稱作遮罩)的一部分。遮罩10由遮罩保持器10a所承載。遮罩保持器10a由遮罩位移驅動器10b來位移。
透過投射光學單元7的成像實現於形式為晶圓的基板11的表面上,其中基板11由基板保持器12承載。基板保持器12由晶圓或基板位移驅動器12a來位移。
圖1示意性地顯示在遮罩10和投射光學單元7之間進入該投射光學單元的照明光3的射線光束13,以及在投射光學單元7和基板11之間從投射光學單元7所發出的照明光3的射線光束14。投射光學單元7的像場側 數值孔徑(NA)在圖1中未按比例再現。
投射曝光裝置1為掃描器類型。在投射曝光裝置1的操作期間,在y方向上掃描遮罩10和基板11。步進式的投射曝光裝置1也是可能的,其中在基板11的各個曝光之間實現遮罩10和基板11在y方向上的逐步位移。藉由位移驅動器10b和12a的適當致動,這些位移將彼此同步地進行。
圖2顯示投射光學單元7的側視圖。圖2的繪圖平面平行於對應於圖1的yz平面。成像光3的光束路徑包含中心場點的主射線16,並包含(作為另外的個別射線)孔徑或彗差射線,其限定了yz平面(也稱作子午平面)中光束路徑的邊緣。圖中顯示了物場4和像場8之間的成像光3的成像光束路徑的範圍。
主射線16延伸穿過投射光學單元7的光瞳平面中的光瞳的中心。從物場4出發,主射線16包含與物體平面5的法線成5.0°的一角度CRA。範圍在例如3°到8°之間的其他這類角度CRA也是可能的。
投射光學單元7具有例如0.55的影像側數值孔徑。範圍在例如0.4到0.7之間的影像側數值孔徑也是可能的。
圖2所示的投射光學單元7一共有十個反射鏡,其從物場4開始,按照成像光3的光束路徑的順序編號為M1到M10。
圖2顯示了反射鏡M1至M10的反射鏡本體。這些反射鏡本體承載用於反射成像光3的反射鏡反射表面。反射鏡M1至M10的反射鏡表面以平面的方式示意性地示出,但它們實際上通常具有彎曲的組態。
在圖2所示的投射光學單元7的例子中,反射鏡M1、M9及M10係實施為法線入射反射鏡,即成像光3以小於45°的入射角入射於其上的反射鏡。整體而言,圖2所示的投射光學單元7具有三個法線入射反射鏡M1、M9及M10。這些用於法線入射的反射鏡也稱作NI(法線入射(normal incidence))反射鏡。
反射鏡M2到M8為用於照明光3的切線入射的反射鏡,即成 像光3以大於45°、特別是大於60°的入射角入射於其上的反射鏡。在用於切線入射的反射鏡M2至M8上的成像光3的個別射線15的典型入射角落在80°的範圍。整體而言,圖2中的投射光學單元7具有剛好七個反射鏡M2至M8用於切線入射。這些用於切線入射的反射鏡也稱作GI(切線入射(grazing incidence))反射鏡。
反射鏡M2到M7反射成像光3,使得個別射線15在相應的反射鏡M2至M7上的反射角加總。因此,除了影響投射光學單元7的成像特性的效果之外,反射鏡M2至M7都具有相同的反射鏡偏轉效果方向。因此,針對反射鏡M2至M7,主射線16的偏轉效果在各個情況下加總在一起。在下文中,這些反射鏡M2至M7也稱作基本GI反射鏡。
反射鏡M8配置使得其偏轉效果相對於基本GI反射鏡M2至M7的偏轉效果以減法的方式對主射線16作用。因此,反射鏡M8也稱作反GI反射鏡。
投射光學單元7具有剛好一個反GI反射鏡,即反射鏡M8。
反GI反射鏡M8為投射影光學單元7在像場8上游的成像光束路徑中的的最終GI反射鏡。
用於切線入射的反射鏡M2至M8各自具有非常大的半徑絕對值,也就是說它們與平面表面具有相對小的偏差。這些用於切線入射的反射鏡M2至M8各自具有相對較弱的折射率,亦即與整體上為凹形或凸形的反射鏡相比具有較低的光束形成效果。反射鏡M2至M8有助於特定的成像像差校正,特別是有助於局部的成像像差校正。
反射鏡M1至M10帶有塗層,其最佳化了反射鏡M1至M10對成像光3的反射率。在此處,這可為單層釕塗層、或在各個情況下具有由例如釕製成的最上層的多層。在切線入射反射鏡M2至M8的例子中,可使用包括例如鉬或釕層的塗層。這些高反射層(特別是用於法線入射的反射鏡M1、M9和M10)可組態為多層層,其中連續層可以由不同材料製造。也可使用交 替材料層。典型的多層層可具有五十個雙層,其分別由鉬層和矽層製成。這些可包含由例如C(碳)、B4C(碳化硼)製成的額外分離層,且可由朝向真空的保護層或保護層系統來終止。
為了計算投射光學單元7的整體反射率,系統傳輸係計算如下:根據導引射線(即中心物場點(central object field point)的主射線(chief ray))的入射角,決定在每個反射鏡表面的反射鏡反射率,並通過乘法組合而形成系統傳輸。
WO 2015/014 753 A1解釋了關於計算反射率的細節。
關於在GI反射鏡(用於切線入射的反射鏡)處的反射的進一步資訊可在WO 2012/126 867 A1中找到。關於NI反射鏡(法線入射反射鏡)的反射率的進一步資訊可以在DE 101 55 711 A1中找到。
舉例來說,投射光學單元7的整體反射率或系統傳輸為R=6.5%,其為投射光學單元7的所有反射鏡M1至M10的反射率的乘積。
反射鏡M10(即成像光束路徑中的像場8上游的最終反射鏡)具有供成像光3通過的通道開口17,其中成像光3從倒數第三個反射鏡M8反射朝向倒數第二反射鏡M9。反射鏡M10圍繞通道開口17以反射的方式使用。其他反射鏡M1至M9中沒有一個具有通道開口(passage opening),且該些反射鏡在無間隙的連續區域中以反射的方式使用。
投射光學單元7的整個成像光束路徑預定義一光管18,成像光3在光管18內被導引。相對於由成像光3的成像光束路徑所預先決定的光管18,反GI反射鏡M8的反射鏡或反射表面在與基本GI反射鏡M2至M7的反射鏡表面相對的一側上反射成像光3。
特別地,倒數第二個反射鏡M9在無間隙的連續區域中以反射的方式使用,其將通過通道開口17導引的成像光3反射朝向預先決定影像側數值孔徑的反射鏡M10。此倒數第二個反射鏡M9配置在最終反射鏡M10和像場8之間的光管18一側上的成像光束路徑中,該側背離第一反射鏡M1。 因此,在投射光學單元7的成像光束路徑中的最終反射鏡M10與像場8之間的光管18位於成像光束路徑中的第一反射鏡M1和成像光束路徑中的倒數第二反射鏡M9之間。
反射鏡M1到M10實施為自由形式表面,其無法由旋轉對稱方式描述。反射鏡M1到M10的其中至少一個實施為旋轉對稱非球面的投射光學單元7的其他具體實施例也是可能的。DE 10 2010 029 050 A1揭露了用於這種旋轉對稱非球面的非球面方程式。所有反射鏡M1到M10也有可能都實施為這樣的非球面
自由形式的表面可由以下的自由形式表面方程式(1)來描述:
以下適用於此方程式(1)的參數:Z為自由形式表面在點x、y的弛度,其中x2+y2=r2。在此處,r為與自由形式方程式的參考軸(x=0;y=0)之間的距離。
在自由形式表面方程式(1)中,C1,C2,C3...表示以x及y的冪次展開的自由形式表面級數的係數。
在錐形底面積的情況下,cx、cy為對應至相應非球面的頂點曲率的常數。因此,適用cx=1/Rx及cy=1/Ry。在此處,kx及ky每一者對應相應非球面的錐形常數。因此,方程式(1)描述雙錐自由形式表面。
另一可能的自由形式表面可由旋轉對稱的參考表面產生。用於微影投射曝光裝置的投射光學單元的反射鏡的反射表面的這類自由形式表面已揭露於US 2007 0 058 269 A1。
或者,也可使用二維樣條曲面來描述自由形式表面。其範例為Bezier曲線或非均勻有理的基本樣條曲線(NURBS)。舉例來說,二維樣條曲面可由在xy平面中的點的網格及相關z數值、或由這些點及與其相關的斜率來描述。取決於樣條曲面的相應類型,使用例如在其連續性及可微分性方面具有特定特性的多項式或函數,藉由網格點之間的內插來獲得完整的表面。其範例為解析函數。
光瞳定義孔徑光闌AS配置於投射光學單元7中的反射鏡M9和M10之間的成像光束路徑中。除了此孔徑光闌AS之外,投射光學單元7也可仍包含至少一個另外的孔徑光闌和至少一個遮蔽光闌,用於預先決定投射光學單元7的光瞳遮蔽(pupil obscuration)。
參考圖3,下文將描述投射光學單元19的另一具體實施例,其可用以取代投射曝光裝置1中的投射光學單元7。對應於已經在關於圖1及圖2(特別是關於圖2)的前文中進行解釋的那些組件的組件將以相同的元件符號表示,且不再詳細討論。
在投射光學單元19中,反GI反射鏡M8在空間上非常接近前面的基本GI反射鏡M7,因此在yz平面中看到的光管18在反射鏡M7及M8的偏轉區域中非常窄。反射鏡M7和M8的反射表面之間的距離小於這些反射鏡M7和M8在yz平面中的較小反射表面的反射表面尺寸的一半。實際上,該距離小於此反射表面尺寸的四分之一、甚至小於五分之一。反射鏡M7和M8的相互相對的反射表面與兩個反射鏡M7和M8在yz平面中的較大者的反射表面尺寸的三分之一重疊。此重疊可大於兩個反射鏡在yz平面中的較大者的反射表面尺寸的40%。
投射光學單元19的反射鏡M1至M10的反射表面的光學設計 資料可從以下表格收集。這些光學設計資料在各個情況下從影像平面9開始,亦即在影像平面9和物體平面5之間沿成像光3的反向傳播方向描述相應的投射光學單元。
這些表格中的第一個提供了投射光學單元19的設計資料的概述,並總結數值孔徑NA、成像光3的計算設計波長、兩個成像光平面xz及yz中的縮小因子βx和βy、x方向和y方向上的像場的尺寸、影像像差值rms、像場曲率和光闌位置。此曲率係定義為場的曲率的反向半徑。影像像差值以mλ(ml)表示,即取決於設計波長。在此處,這是波前像差(wavefront aberration)的rms(均方根)值。
這些表格中的第二個提供光學組件的光學表面的頂點半徑(Radius_x=Rx,Radius_y=Ry)以及折射率數值(Power_x,Power_y)。負的半徑值表示在具有考慮平面(xz,yz)的相應表面的區段中朝入射照明光3成凹形的曲線,其由在頂點的表面法線與相應的曲率方向(x,y)展開。兩個半徑Radius_x、Radius_y可明確地具有不同的正負號。
在每一光學表面的頂點係定義為導引射線的入射點,其中導引射線沿對稱平面x=0(即圖3的繪圖平面(子午平面))從物場中心行進至像場8。
在頂點的折射率Power_x(Px)、Power_y(Py)定義為:
在此處,AOI表示導引射線相對表面法線的入射角。
第三表格指定了以毫米為單位的反射鏡M1到M10的圓錐常數kx及ky、頂點半徑Rx(=Radius_x)及自由形式表面係數Cn。表格中未列出的係數Cn的值皆為0。
第四表格仍指定相應反射鏡從參考表面開始在y方向上的 離心(DCY)、在z方向上的位移(DCZ)及傾斜(TLA、TLB、TLC)的大小。這對應在自由表面設計方法情況下的平行偏移及傾斜。在此處,位移在y方向及在z方向上以毫米為單位進行,且傾斜相對x軸、相對y軸且相對z軸進行。在此情況下,旋轉角度以度為單位。先偏離中心,再進行傾斜。偏離中心期間的參考表面在各個情況下為指定光學設計資料的第一表面。在y方向及z方向上的偏離中心也指定用於物場4。除了指派給個別反射鏡的表面,第四表格也將影像平面列表為第一表面、物體平面列表為最後表面及選擇性地列表光闌表面(具有標記「AS」)。
參考圖4,下文將解釋投射光學單元20的另一具體實施例,其可用於代替投射曝光裝置1中的投射光學單元7。對應於已經在關於圖1至圖3(特別是關於圖2及圖3)的前文中進行解釋的那些組件的組件將以相同的元件符號表示,且不再詳細討論。
關於反射鏡M7和M8的空間接近度以及關於其反射表面重疊,投射光學單元20可以理解為在投射光學單元7和19的具體實施例之間的一具體實施例。投射光學單元20的反射鏡M7和M8的空間接近度比在投射光學單元7中更明顯,但不如在投射光學單元19中那樣明顯。投射光學單元20的反射表面重疊比在投射光學單元7中更明顯,但不如在投射光學單元19中那樣明顯。
總體而言,投射光學單元19和20具有剛好六個基本GI反射鏡M2至M7。
投射光學單元20的光學設計資料可從下面的表格中獲得,這些表格在其設計方面對應於根據圖3的投射光學單元19的表格。
參考圖5,下文將描述投射光學單元21的另一具體實施例,其可用於代替投射曝光裝置1中的投射光學單元7。對應於已經在關於圖1至圖4(特別是關於圖2至圖4)的前文中進行解釋的那些組件的組件將以相同的元件符號表示,且不再詳細討論。
在投射光學單元21中,反射鏡M5實施為反GI反射鏡。在成像光束路徑中配置於反射鏡M5上游的基本GI反射鏡M2至M4最初對主射線 16具有附加的偏轉效果。然後接下來的反GI反射鏡M5的偏轉效果相對基本GI反射鏡M2至M4的偏轉效果為削減的。隨後的GI反射鏡M6至M8的偏轉效果再次與基本GI反射鏡M2至M4的偏轉效果相加,因此這些反射鏡也是基本GI反射鏡。
因此,投射光學單元21也具有剛好六個基本GI反射鏡,特別是反射鏡M2至M4以及M6至M8。在投射光學單元21中,三個另外的基本反射鏡(即GI反射鏡M6至M8)仍配置在反GI反射鏡M5下游的成像光束路徑中。
在投射光學單元21中,反GI反射鏡M5配置在非常靠近兩個反射鏡M4和M6的位置,其中反射鏡M4和M6在成像光束路徑中彼此接近地配置。一方面反射鏡M4和M5的反射表面之間的距離以及另一方面反射鏡M5和M6之間的距離僅是三個反射鏡M4、M5、M6在yz平面的最小反射表面的尺寸的一部分,且其小於這個尺寸的一半,實際上也小於這個尺寸的五分之一。一方面反射鏡M4和M5以及另一方面反射鏡M5和M6都具有在yz平面中彼此重疊的反射表面。在成像光束路徑中與反GI反射鏡M5相鄰的基本GI反射鏡M4和M6配置為非常地接近,因此這些反射鏡M4和M6的兩個反射鏡本體之間的距離小於較小的反射鏡M6的反射鏡本體在yz平面中的尺寸的一半。實際上,此距離小於反射鏡M6的此尺寸的四分之一。
投射光學單元21的光學設計資料可從下面的表格中獲得,這些表格在其設計方面對應於根據圖3的投射光學單元19的表格。
針對圖5的表格4a
在此處未示出的可用以代替所示的投射曝光裝置1中的投射光學單元7和19至21的投射光學單元的其他具體實施例中,GI反射鏡M2至M4、M6或M7中的另一個實施為反GI反射鏡。
由於反GI反射鏡的作用,主射線16的主射線範圍出現在反射鏡M8和M9之間,其相對物體平面5的法線的角度大於主射線角度CRA。
為了產生微結構或奈米結構組件,投射曝光裝置1係使用如下:首先,提供反射光罩10或遮罩及基板或晶圓11。接著,在投射曝光裝置1的協助下,將遮罩10上的結構投射至晶圓11的光感層上。接著,藉由顯 影光感層而在晶圓11上產生微結構或奈米結構,並因此產生微結構化組件。

Claims (14)

  1. 一種用於將一物場成像至一像場的成像光學單元,包含用以沿一成像光束路徑從該物場至該像場導引成像光的複數個反射鏡,其中該複數個反射鏡包含用於切線入射的數個GI反射鏡,其偏轉具有大於45°的一入射角的一中心物場點的一主射線,其中該等GI反射鏡中的其中至少兩個配置於該成像光束路徑中作為基本GI反射鏡,使得其偏轉效果針對該主射線加總,其中至少一另外的GI反射鏡配置在該成像光束路徑中作為一反GI反射鏡,使得其偏轉效果相對該基本GI反射鏡的偏轉效果以減法的方式對該主射線作用。
  2. 如申請專利範圍第1項所述的成像光學單元,其特徵在於剛好一個反GI反射鏡。
  3. 由如申請專利範圍第1項或第2項所述的成像光學單元,其特徵在於多於三個基本GI反射鏡。
  4. 如申請專利範圍第3項所述的成像光學單元,其特徵在於剛好六個基本GI反射鏡。
  5. 如申請專利範圍第1項至第4項的其中任一項所述的成像光學單元,其特徵在於該反GI反射鏡為在該成像光束路徑中在該像場上游的最終GI反射鏡。
  6. 如申請專利範圍第1項至第4項的其中任一項所述的成像光學單元,其特徵在於至少一另外的基本GI反射鏡仍配置於該成像光束路徑中的該反GI反射鏡的下游。
  7. 如申請專利範圍第6項所述的成像光學單元,其特徵在於數個另外的基本GI反射鏡仍配置於該成像光束路徑中的該反GI反射鏡的下游。
  8. 如申請專利範圍第7項所述的成像光學單元,其特徵在於剛好三個基本GI反射鏡配置於該成像光束路徑中的該反GI反射鏡的下游。
  9. 如申請專利範圍第1項至第8項的其中任一項所述的成像光學單元,其特徵在於至少一個用於法線入射的NI反射鏡,其偏轉具有小於45°的一入射角的一中心物場點的一主射線。
  10. 如申請專利範圍第1項至第9項的其中任一項所述的成像光學單元,其特徵在於一倒數第二個反射鏡不具有用於該成像光的一通道開口,該倒數第二個反射鏡在一光管的一側上配置於該成像光束路徑中,該光管由在該成像光束路徑中的一最終反射鏡與該像場之間的該成像光束路徑所預先決定,其中該倒數第二個反射鏡配置於其上的該光管的該側背離該第一反射鏡。
  11. 一種光學系統,包含如申請專利範圍第1項至第10項的其中任一項所述的一成像光學單元以及用以照明一照明場的一照明光學單元,其中該物場配置於該照明場中。
  12. 一種投射曝光裝置,包含如申請專利範圍第11項所述的一光學系統並包含用以產生該成像光的一EUV光源。
  13. 一種用以產生一結構化組件的方法,包含以下方法步驟:提供一遮罩及一晶圓;在如申請專利範圍第12項所述的投射曝光裝置的協助下,將該遮罩上的一結構投射至該晶圓的一光敏感層上,以及產生一微結構或奈米結構於該晶圓上。
  14. 一種結構化組件,由如申請專利範圍第13項所述的一方法所生產。
TW107133406A 2017-09-25 2018-09-21 用於將物場成像至像場的成像光學單元 TWI805619B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??102017216893.5 2017-09-25
DE102017216893.5 2017-09-25
DE102017216893.5A DE102017216893A1 (de) 2017-09-25 2017-09-25 Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld

Publications (2)

Publication Number Publication Date
TW201923475A true TW201923475A (zh) 2019-06-16
TWI805619B TWI805619B (zh) 2023-06-21

Family

ID=63667923

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133406A TWI805619B (zh) 2017-09-25 2018-09-21 用於將物場成像至像場的成像光學單元

Country Status (6)

Country Link
US (1) US11119413B2 (zh)
JP (1) JP7411542B2 (zh)
CN (1) CN111133358B (zh)
DE (1) DE102017216893A1 (zh)
TW (1) TWI805619B (zh)
WO (1) WO2019057803A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019208961A1 (de) 2019-06-19 2020-12-24 Carl Zeiss Smt Gmbh Projektionsoptik und Projektionsbelichtungsanlage mit einer solchen Projektionsoptik

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2766385A (en) * 1952-09-11 1956-10-09 Herrnring Gunther Optical image-forming plural reflecting mirror systems
US5891806A (en) 1996-04-22 1999-04-06 Nikon Corporation Proximity-type microlithography apparatus and method
EP0955641B1 (de) * 1998-05-05 2004-04-28 Carl Zeiss Beleuchtungssystem insbesondere für die EUV-Lithographie
JP2002048977A (ja) 2000-08-01 2002-02-15 Nikon Corp 反射光学系及びこの光学系を用いたプロキシミティ露光装置
DE10155711B4 (de) 2001-11-09 2006-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Im EUV-Spektralbereich reflektierender Spiegel
TWI366004B (en) 2005-09-13 2012-06-11 Zeiss Carl Smt Gmbh Microlithography projection optical system, microlithographic tool comprising such an optical system, method for microlithographic production of microstructured components using such a microlithographic tool, microstructured component being produced by s
DE102007023884A1 (de) 2007-05-23 2008-11-27 Carl Zeiss Ag Spiegeloptik und Abbildungsverfahren zum seitenrichtigen und aufrechten Abbilden eines Objektes in ein Bildfeld
WO2010049076A2 (de) * 2008-10-20 2010-05-06 Carl Zeiss Smt Ag Optische baugruppe zur führung eines strahlungsbündels
DE102009008644A1 (de) * 2009-02-12 2010-11-18 Carl Zeiss Smt Ag Abbildende Optik sowie Projektionsbelichtungsanlage für die Mikrolithografie mit einer derartigen abbildenden Optik
CN102341738B (zh) * 2009-03-06 2015-11-25 卡尔蔡司Smt有限责任公司 成像光学部件以及具有该类型成像光学部件的用于微光刻的投射曝光装置
JP5597246B2 (ja) * 2009-03-30 2014-10-01 カール・ツァイス・エスエムティー・ゲーエムベーハー 結像光学系及びこの種の結像光学系を備えたマイクロリソグラフィ用の投影露光装置
DE102010029050A1 (de) 2010-05-18 2011-03-31 Carl Zeiss Smt Gmbh Vergrößernde abbildende Optik sowie Metrologiesystem mit einer derartigen abbildenden Optik
DE102010039745A1 (de) * 2010-08-25 2012-03-01 Carl Zeiss Smt Gmbh Abbildende Optik
DE102011075579A1 (de) 2011-05-10 2012-11-15 Carl Zeiss Smt Gmbh Spiegel und Projektionsbelichtungsanlage für die Mikrolithographie mit einem solchen Spiegel
DE102011083888A1 (de) * 2011-09-30 2013-04-04 Carl Zeiss Smt Gmbh Abbildende katoptrische EUV-Projektionsoptik
DE102012202675A1 (de) * 2012-02-22 2013-01-31 Carl Zeiss Smt Gmbh Abbildende Optik sowie Projektionsbelichtungsanlage für die Projektionslithografie mit einer derartigen abbildenden Optik
DE102012208793A1 (de) * 2012-05-25 2013-11-28 Carl Zeiss Smt Gmbh Abbildende Optik sowie Projektionsbelichtungsanlage für die Projektionslithographie mit einer derartigen abbildenden Optik
DE102012213515A1 (de) * 2012-08-01 2014-02-06 Carl Zeiss Smt Gmbh Verfahren zum Betreiben einer mikrolithographischen Projektionsbelichtungsanlage
DE102014208770A1 (de) * 2013-07-29 2015-01-29 Carl Zeiss Smt Gmbh Projektionsoptik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen Projektionsoptik
DE102013012956A1 (de) * 2013-08-02 2015-02-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kollektoranordnung für EUV- und/oder weiche Röntgenstrahlung
TWI676083B (zh) * 2013-09-25 2019-11-01 荷蘭商Asml荷蘭公司 光束傳遞裝置及方法
DE102013224435A1 (de) * 2013-11-28 2015-05-28 Carl Zeiss Smt Gmbh Messanordnung zur Messung optischer Eigenschaften eines reflektiven optischen Elements, insbesondere für die Mikrolithographie
WO2016078818A1 (en) * 2014-11-18 2016-05-26 Carl Zeiss Smt Gmbh Optical subsystem for projection lithography and illumination optical unit for projection lithography
DE102015226531A1 (de) 2015-04-14 2016-10-20 Carl Zeiss Smt Gmbh Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik
DE102015221984A1 (de) * 2015-11-09 2017-05-11 Carl Zeiss Smt Gmbh Abbildende Optik zur Abbildung eines Objektfeldes in ein Bildfeld sowie Projektionsbelichtungsanlage mit einer derartigen abbildenden Optik
DE102016218996A1 (de) * 2016-09-30 2017-09-07 Carl Zeiss Smt Gmbh Abbildende Optik für die Projektionslithographie

Also Published As

Publication number Publication date
CN111133358A (zh) 2020-05-08
CN111133358B (zh) 2024-02-13
US11119413B2 (en) 2021-09-14
JP7411542B2 (ja) 2024-01-11
US20200218045A1 (en) 2020-07-09
DE102017216893A1 (de) 2019-03-28
WO2019057803A1 (en) 2019-03-28
TWI805619B (zh) 2023-06-21
JP2020535466A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102648040B1 (ko) 이미지 필드내에 오브젝트 필드를 이미징하기 위한 이미징 광학 유닛 및 이러한 이미징 광학 유닛을 포함하는 투영 노광 장치
JP6688219B2 (ja) 物体視野を像視野内に結像するための投影光学ユニット及びそのような投影光学ユニットを含む投影露光装置
JP5319789B2 (ja) 結像光学系及びこの種の結像光学系を有するマイクロリソグラフィ用の投影露光装置
CN108292032B (zh) 将物场成像到像场中的成像光学单元,以及包括这种成像光学单元的投射曝光设备
CN109478020B (zh) 用于euv投射光刻的投射光学单元
TWI820129B (zh) 用以轉移微影光罩之原初結構部分的光學系統、用以將可配置微影光罩之至少一原初結構部分的物場進行成像的投射光學單元、微影光罩、投射曝光裝置、結構化組件、以及用以產生結構化組件的方法
TW201621473A (zh) 投影微影的光學次系統與投影微影的照明光學單元
TWI461733B (zh) 成像光學系統、具有此類型成像光學系統之用於微影的投射曝光設備以及用於製造結構化組件的方法
CN108351499B (zh) 将物场成像到像场中的成像光学单元以及包括这样的成像光学单元的投射曝光设备
TW202401170A (zh) 用於將物場成像到像場的成像euv光學單元
WO2023247170A1 (en) Imaging euv optical unit for imaging an object field into an image field
TWI805619B (zh) 用於將物場成像至像場的成像光學單元
CN117441122A (zh) 成像光学单元
CN117441116A (zh) 成像光学单元