TW201828493A - 用於在紫外光照射下生長發光裝置的方法 - Google Patents

用於在紫外光照射下生長發光裝置的方法 Download PDF

Info

Publication number
TW201828493A
TW201828493A TW106137084A TW106137084A TW201828493A TW 201828493 A TW201828493 A TW 201828493A TW 106137084 A TW106137084 A TW 106137084A TW 106137084 A TW106137084 A TW 106137084A TW 201828493 A TW201828493 A TW 201828493A
Authority
TW
Taiwan
Prior art keywords
type layer
layer
group iii
iii nitride
light
Prior art date
Application number
TW106137084A
Other languages
English (en)
Other versions
TWI745465B (zh
Inventor
石川努
伊賽克 威德生
艾瑞克 查爾斯 尼爾森
派瑞傑特 戴伯
Original Assignee
美商亮銳公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/793,723 external-priority patent/US10541352B2/en
Application filed by 美商亮銳公司 filed Critical 美商亮銳公司
Publication of TW201828493A publication Critical patent/TW201828493A/zh
Application granted granted Critical
Publication of TWI745465B publication Critical patent/TWI745465B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities

Abstract

本文中描述用於在紫外光(UV)照射下生長發光裝置之方法。一方法包含在UV照射下於一III族氮化物p型層上方生長一III族氮化物n型層。另一方法包含在一生長基板上生長一發光裝置結構且在該發光裝置結構上生長一穿隧接面,其中在UV照射下生長特定層。另一方法包含在該III族氮化物p型層上方形成一III族氮化物穿隧接面n型層以形成一穿隧接面發光二極體。在一初始階段期間於照射下完成該III族氮化物穿隧接面n型層之一表面,且在無照射之情況下完成該形成之一剩餘部分。該UV光具有高於該III族氮化物p型層的帶隙能量之光子能量。該UV照射抑制Mg-H複合物因存在於一沈積室中之氫而形成於該III族氮化物p型層內。

Description

用於在紫外光照射下生長發光裝置的方法
本申請案係關於發光裝置。
半導體發光裝置(包含發光二極體(LED)、諧振腔發光二極體(RCLED)、垂直腔表面發射雷射(VCSEL)及邊緣發射雷射)係當前可用之最有效率光源之一。當前在製造能夠跨可見光譜操作之高亮度發光裝置時所關注之材料系統包含III-V族半導體,尤其是鎵、鋁、銦與氮之二元合金、三元合金及四元合金,亦稱為III族氮化物材料。 通常,藉由用金屬有機化學氣相沈積(MOCVD)、分子束磊晶法(MBE)或其他磊晶技術在一藍寶石、碳化矽、III族氮化物或其他適合基板上磊晶生長具不同組分及摻雜劑濃度之半導體層之一堆疊而製造III族氮化物發光裝置。該堆疊通常包含形成於基板上方之摻雜有例如Si之一或多個n型層、形成於該一或多個n型層上方之一活性區中之一或多個發光層,及形成於該活性區上方之摻雜有例如Mg之一或多個p型層。電接觸件形成於n型區及p型區上。 在商用III族氮化物LED中,通常藉由MOCVD生長半導體結構。在MOCVD期間使用之氮源通常為氨。在氨解離時產生氫。氫與鎂形成一複合物,即,Mg-H複合物,鎂在生長p型材料期間用作p型摻雜劑。氫複合物使鎂之p型特性失活,而有效地降低p型材料之活性摻雜劑(及電洞)濃度,此降低裝置之效率。在生長p型材料之後,使結構退火以藉由驅除氫而破壞氫-鎂複合物。
本文中描述用於在紫外光(UV)照射下生長發光裝置之方法。一方法包含在存在UV光之情況下於一III族氮化物p型層上方生長一III族氮化物n型層。另一方法包含在一生長基板上生長一發光裝置結構且在該發光裝置結構上生長一穿隧接面,其中在UV照射下生長特定層。另一方法包含確立在該III族氮化物p型層上方形成一III族氮化物穿隧接面n型層以形成一穿隧接面發光二極體。在一初始階段期間用光照射該III族氮化物穿隧接面n型層之一表面,且接著在無光照射之情況下完成該形成之一剩餘部分。該UV光具有高於該III族氮化物p型層的帶隙能量之一光子能量。該UV照射抑制Mg-H複合物因存在於一沈積室中之氫而形成於該III族氮化物p型層內。
相關申請案之交叉參考 本申請案主張於2016年10月28日申請之美國臨時申請案第62/414,612號、於2016年12月15日申請之歐洲臨時申請案第16204234.5號及於2017年10月25日申請之美國非臨時申請案第15/793,723號之權利,該等案之內容特此宛如全文闡述以引用的方式併入。 應瞭解,已簡化用於在紫外光照射下生長發光裝置之方法的圖及描述以繪示與一清楚理解相關之元件,同時為清晰起見消除在典型裝置處理中發現之許多其他元件。一般技術者可認識到,在實施本發明時可期望及/或需要其他元件及/或步驟。然而,因為此項技術中熟知此等元件及步驟,且其等並未促進本發明之一更佳理解,所以本文中未提供對此等元件及步驟之一論述。 在習知III族氮化物發光二極體(LED)中,首先在一基板上生長一n型層,其後接著一活性層(或發光層)及一p型層。如本文中使用,術語層指代經識別層之至少一個層,例如p型層或n型層可分別包含一或多個p型層或n型層。例如,在一生長基板(諸如藍寶石)上方生長一n型氮化鎵(GaN),接著在n型GaN層上方生長一多量子井(MQW)活性層且在活性層上方生長一p型GaN層。在p型GaN層上方生長一更重摻雜p+ GaN層以獲得與一陽極電極之良好歐姆接觸。對於具有一頂部電極及一底部電極之垂直LED,可視情況在p+ GaN層上方沈積一透明導體層(例如,氧化銦錫(ITO)或一極薄金層)用於電流散佈,其後接著在透明導體層上方沈積一或多個小金屬陽極電極。接著,將一載體晶圓附貼至頂表面,且諸如藉由雷射剝離而移除生長基板。接著,薄化「底部」n型GaN層,且在n型GaN層上沈積一反射性金屬陰極電極用於歐姆接觸。在自晶圓單粒化LED晶粒且封裝LED晶粒之後,將一正電壓施加至陽極電極且將一負電壓施加至陰極電極以使LED通電,其中大多數光穿過頂部p+ GaN層離開。 此一習知LED之一問題係不透明陽極電極及ITO電流散佈層在某種程度上阻擋且衰減光輸出,且薄ITO層之薄片電阻係顯著的。添加更多金屬用於更佳電流散佈阻擋甚至更多的光。另外,難以形成一重摻雜p+ GaN層(作為頂部層)用於與陽極電極之良好歐姆接觸。 此一習知設計之一替代方案係製造如圖1及圖2中展示之一穿隧接面LED (TJ LED) 100。一穿隧接面係容許電子在反向偏壓下自一p型層之價帶穿隧至一n型層之導帶之一結構。在一電子穿隧時,一電洞留在p型層中,使得在兩個層中產生載子。因此,在其中在反向偏壓下僅一小的洩漏電流流動之一電子裝置(如同一二極體)中,在反向偏壓下可跨一穿隧接面載送一大電流。一穿隧接面需要導帶及價帶在p/n穿隧接面處之一特定對準。此可藉由使用極高摻雜(例如,以p++/n++接面)而達成。另外,III族氮化物材料具有在不同合金組分之間的異質界面處產生一電場之一固有極化。亦可利用此極化場來達成穿隧所需之帶對準。 參考圖1及圖2,TJ LED 100包含生長於一藍寶石基板102上方之一n型GaN層105、活性層110、p型GaN層115及p+ GaN層120。一n+ GaN層125生長於p+ GaN層120上方,此建立、形成、導致或引起(統稱為「建立」) p+ GaN層120及n+ GaN層125為穿隧接面層,且適當時本文中將使用此術語來區別非穿隧接面層與穿隧接面層。例如,在圖1之例項中,在適當或適用時,可將n+ GaN層125及p+ GaN層120稱為穿隧接面n+ GaN層125及穿隧接面p+ GaN層120。接著,一陽極電極130形成於n+ GaN層125上方,如圖2中所展示。陽極電極130可為金屬或其他類似材料。一金屬電極與一n+ GaN層之間的歐姆接觸通常比一金屬電極與一p+ GaN層之間的歐姆接觸更佳。此外,n+ GaN層125之薄片電阻低於用於電流散佈之典型透明導體之薄片電阻且通常低於一p+ GaN層120之薄片電阻。由於n+ GaN層125及p+ GaN層120經高度摻雜且空乏層極薄,故即使接面經反向偏壓電極仍可隧穿接面。因此,n+ GaN層125有效率地使LED電流自陽極電極130散佈而具有極小光衰減。穿隧接面將一略高正向電壓降添加至LED,但由於光輸出增加,TJ LED 100之效率可高於一習知LED之效率。此外,針對與一習知LED相同之光輸出,穿隧接面容許以一較低電流驅動TJ LED 100,而使TJ LED 100能夠以其峰值效率操作。 此等TJ LED之一個問題係p型GaN層埋藏於一穿隧接面n+ GaN層125下方。因此,在用以從p型GaN層115及p+ GaN層120擴散出氫原子135之一退火程序期間,氫原子135被陷獲。此在圖3中予以繪示,其中在一金屬有機化學氣相沈積(MOCVD)室中使用氨(NH3 )作為氮源來生長一裝置300,而導致N及H併入至p型層(展示為pGaN層315及320)中。裝置300包含例如生長於一藍寶石基板302上方之一n型GaN層305、活性層310、p型GaN層315及320。氫原子作為p型GaN生長程序之一固有結果併入至p型GaN層315及320晶格中,其中「p型」Mg摻雜劑及氫原子鍵結以形成Mg-H複合物。Mg摻雜劑作為環戊二烯基鎂(Cp2Mg)氣體引入至MOCVD室中。Mg摻雜劑直至藉由退火步驟移除氫原子之後才被活化。由於氫原子未擴散穿過n型GaN,故難以形成一TJ LED。 已使用其他方法,但各種此技術具有問題。例如,已使用分子束磊晶法(MBE)來生長具有較少嵌入氫之p型GaN層,但此一MBE程序係緩慢的且昂貴的。另一方法使溝槽向下形成至p型GaN層且接著退火以橫向擴散出氫原子;然而,此一技術增添明顯複雜度。另外,顯著地提高退火溫度以橫向擴散出氫可熱損害TJ LED。儘管關於TJ LED描述上述問題,然其在首先在基板上方生長p型GaN層、其後接著生長活性層及n型GaN層時亦適用。一般而言,覆晶LED以及垂直LED存在此等問題。特定言之,在p型GaN層與陽極電極之間使用穿隧接面n+ GaN層之覆晶LED存在此等問題,其中使用n型陽極層來更佳地散佈電流。 因此,需要用於使用一MOCVD程序來製造一TJ LED之技術,其中產生較少Mg-H複合物且無需(廣泛)退火來活化Mg摻雜劑以產生p型GaN層。 本文中描述用於在紫外光(UV)照射下生長發光裝置之方法。一般而言,一MOCVD室經客製化以具有容許外部產生的UV光原位照射晶圓之頂部之一窗。UV光至少在生長p型GaN層期間照射晶圓且減少Mg-H複合物之形成。在磊晶生長期間p型GaN層中的雜質及點缺陷併入受費米(Fermi)能級效應影響。具有高於p型GaN的帶隙能量之一光子能量之UV光產生少數載子,此暫時改變在生長期間p型GaN的費米能級能量。因此,可抑制在p型GaN生長期間之氫併入及其他點缺陷產生,而導致p型GaN層中之較少Mg-H複合物。 提供其中在生長p型GaN層及/或穿隧接面n+ GaN層期間於MOCVD室中藉由UV光照射一TJ LED之例示性方法。例如,本文中描述之方法無需進行具侵害性的離位(ex-situ)熱退火以自一TJ LED中之一埋藏p-GaN層移除氫。由於存在較少氫雜質,故p型GaN層中之更多的Mg摻雜劑已被活化,而容許完全消除一活化退火。在另一實施方案中,可原位執行一活化退火,同時在形成一上覆穿隧接面n+ GaN層之前及/或期間用UV光照射晶圓。 在一一般例示性TJ LED方法中,在生長期間未藉由UV光照射在生長頂部穿隧接面n+ GaN層之前生長的層。在生長穿隧接面n+ GaN層之前,原位執行一除氣退火,同時視情況藉由UV光照射晶圓之生長表面以自p型GaN層移除大多數氫。接著,停止活化退火,且在藉由UV光照射時生長穿隧接面n+ GaN層。此防止穿隧接面n+ GaN層中之氫擴散至頂部p+ GaN層中且在穿隧接面附近形成Mg-H複合物。在部分生長n+ GaN之後,可關閉UV光(由於新的H原子無法再擴散至p型GaN層中)且生長穿隧接面n+ GaN層之剩餘部分。 可使用所描述方法來防止在形成其中首先於生長基板上方生長p型GaN層之裝置時形成Mg-H複合物。接著,在p型GaN層上方生長一活性層及n型GaN層而導致埋藏p型GaN層。亦可在彼此上方生長多個LED時使用該等方法,以在一單一晶粒中產生一串聯LED串。 圖4係根據特定實施方案之用於在存在紫外光(UV)照射之情況下於一裝置400中生長特定層之一說明圖。裝置400包含一晶圓之一基板402上方之一磊晶生長n型GaN層405及活性層410。例如,可在一MOCVD室中完成磊晶生長。例如,n型GaN層405可為多個層且可包含但不限於一成核層及用於提供晶格匹配之層。例如,活性層410可為但不限於一多量子井(MQW)層。裝置400可以多種波長及頻率(舉例而言,諸如藍光)發射。 裝置400進一步包含磊晶生長於活性層410上方之p型GaN層415及p+ GaN層420。在一實施方案中,至少在藉由將NH3 (及可能H2 )及Cp2Mg氣體引入至MOCVD室中而磊晶生長p型GaN層415及/或p+ GaN 420之時間期間,經由MOCVD室中之一窗引入來自一適合UV源455之UV光450以照射晶圓之生長表面。在一實施方案中,UV光450之功率可在自0.05 W/cm2 至50 W/cm2 之範圍內。在另一實施方案中,UV光450之功率可在自1 W/cm2 至10 W/cm2 之範圍內。在一實施方案中,產生具有高於p型GaN層415的帶隙能量之能量的光子之任何光源係足夠的。 如上文中描述,用於形成基於GaN的LED之一習知MOCVD程序使用氨(NH3 )作為氮源。NH3 在生長溫度下分解成氫基及氮之活性形式。在如圖3中展示之習知程序中,來自氨分解之氫在生長期間與Mg形成複合物(在圖3中展示為Mg-H複合物)。氫及Mg雜質併入於GaN膜中可受費米能級效應影響。例如,當Mg併入至GaN中時,費米能級偏移遠離費米能級穩定能量且朝向GaN之價帶,此係因為Mg在GaN中係一受體。氫併入隨著費米能級偏移更接近價帶而增加,且補償晶格中之Mg,而使Mg電性非活性,此繼而使費米能級移動遠離價帶且重新回至更接近穩定能量。因此,存在於習知MOCVD p型GaN生長期間達成、低於穩定能量且導致電非活性的Mg-H複合物之一高濃度之一平衡費米能階。此習知程序問題需要一高溫離位退火以擴散出氫,此歸因於如先前描述之埋藏p-GaN層而為TJ LED中之一問題。 然而,當在生長期間,具有高於p型GaN帶隙能量之一光子能量之UV光450照射p型GaN層415及/或p+ GaN層420表面時,藉由吸收UV光450而產生之少數載子使費米能級偏移更接近穩定能量而不涉及氫併入。因此,在p型GaN層415及/或p+ GaN層420中未形成或形成較少Mg-H複合物。因此,p型GaN層415及/或p+ GaN層420無需任何後續活化步驟以擴散出氫。 圖5係根據特定實施方案之一闡釋性系統500,該系統500包含金屬有機化學氣相沈積(MOCVD)室560,其具有用於UV照射至MOCVD室560的沈積室570中之一窗565。在生長特定層期間,窗565允許來自UV源555之UV光照射一晶圓之生長表面。例如,n型GaN層505生長於基板502上方且一活性層510生長於n型GaN層505上方。在一實施方案中,UV源555未照射生長表面,即,例如n型GaN層505或活性層510。一p型GaN層515生長於活性層510上方。在生長p型GaN層515期間,UV源555用UV光照射p型GaN層515之一生長表面。在生長p型GaN層515之後,可關閉UV源555。一穿隧接面n+型層517生長於p型GaN層515上方。在開始生長穿隧接面n+型層517期間,UV源555用UV光照射穿隧接面n+型層517之一生長表面。在部分生長穿隧接面n+型層517之後,可關閉UV源555。在一實施方案中,在生長全部層或特定層期間,窗565允許來自UV源555之UV光照射一晶圓之生長表面。 圖6係根據特定實施方案之一闡釋性垂直TJ LED 600。TJ LED 600包含一基板(未展示)上方之一磊晶生長n型GaN層605及生長於n型GaN層605上方之一活性層610。TJ LED 600進一步包含生長於活性層610上方之p型GaN層615。如上文中描述般在存在光之情況下生長p型GaN層615。在一實施方案中,p型GaN層615包含但不限於一p型GaN層617及一穿隧接面p+ GaN層619。一穿隧接面n+ GaN層620形成於p型GaN層615上方。在一實施方案中,如本文中描述般在存在光之情況下生長TJ LED 600中之全部層。無需活化退火以擴散出氫且活化p型GaN層615中之Mg摻雜劑,此係因為Mg摻雜劑並非Mg-H複合物之部分且已為活性。在一實施方案中,穿隧接面n+ GaN層620之一摻雜位準係1x10E20 cm-3 ,p+ GaN層619之摻雜位準係1.5x10E20 cm-3 ,p型GaN層617之摻雜位準係3x10E18 cm-3 ,且n型GaN層605之摻雜位準係3x10E18 cm-3 。 在磊晶生長完成之後,一陽極電極625經由金屬化形成於穿隧接面n+ GaN層620上。在一實施方案中,陽極電極625可僅在外邊緣周圍或以其他方式最低限度地使用頂部區域,此係因為穿隧接面n+ GaN層620係一良好電流散佈器。接著,將一載體晶圓附貼至頂表面用於機械支撐,且接著諸如藉由雷射剝離而移除生長基板。接著,在下面薄化經曝露n型GaN層605,且在底表面上形成一反射性陰極電極602。接著,單粒化晶圓且進行封裝以形成各TJ LED 600。光線635進行如圖6所示之發射。 圖7係根據特定實施方案之一闡釋性覆晶TJ LED 700。一般而言,一穿隧接面720形成於一下伏n+ GaN層725與一上覆p型GaN層715之接面處,其中n+ GaN層725用於更佳電流散佈。與p型層相比,一n+ GaN層725通常具有遠更低的薄片電阻及因此更佳電流散佈。一金屬陽極電極730接觸穿隧接面n+ GaN層725。n型GaN層705及725用作TJ LED 700之正端子及負端子兩者的接觸層。 n型GaN層705生長於一生長基板702上且一活性層710生長於n型GaN層705上。n型GaN層705可包含具不同組分、摻雜劑濃度(包含非有意摻雜及/或p型之摻雜劑)及厚度之多個層。活性層710可包括由障壁層分離之多個厚的或量子井發光層。如本文中描述般在存在光之情況下於活性層710上方生長一p型GaN層715。p型GaN層715可包含具不同組分、摻雜劑濃度(包含非有意摻雜及/或n型之摻雜劑)及厚度之多個層。穿隧接面720形成於p型GaN層715上方。 在一些實施方案中,穿隧接面720包含與p型GaN層715直接接觸之一高度摻雜p+ GaN層(亦稱為p++層)及與p++層直接接觸之一高度摻雜n+ GaN層(亦稱為n++層)。在一些實施方案中,穿隧接面720包含具不同於p++層及n++層之一組分且夾置於p++層與n++層之間的一層。在一些實施方案中,穿隧接面720包含夾置於p++層與n++層之間的氮化銦鎵(InGaN)層。在一些實施方案中,穿隧接面720包含夾置於p++層與n++層之間的氮化鋁(AlN)層。穿隧接面720與n+ GaN層725直接接觸而用作一歐姆接觸層,如下文描述。 穿隧接面720中之p++層可為例如用一受體(諸如Mg或Zn)摻雜至約1018 cm−3 至約5×1020 cm−3 之一濃度之InGaN或GaN。在一些實施方案中,p++層經摻雜至約2×1020 cm−3 至約4×1020 cm−3 之一濃度。穿隧接面720中之n++層可為例如用一受體(諸如Si或Ge)摻雜至約1018 cm−3 至約5×1020 cm−3 之一濃度之InGaN或GaN。在一些實施方案中,n++層經摻雜至約7×1019 cm−3 至約9×1019 cm−3 之一濃度。穿隧接面720通常極薄,例如具有在自約2 nm至約100 nm之範圍內之一總厚度,且p++層及n++層之各者可具有在自約1 nm至約50 nm之範圍內之一厚度。在一些實施方案中,p++層及n++層之各者可具有在自約25 nm至約35 nm之範圍內之一厚度。p++層及n++層可不一定為相同厚度。在一實施方案中,p++層係15 nm之Mg摻雜InGaN,且n++層係30 nm之Si摻雜GaN。p++層及n++層可具有一漸變摻雜劑濃度。例如,鄰近於下伏p型GaN層715之p++層之一部分可具有自p型GaN層715之摻雜劑濃度漸變為p++層中之所要摻雜劑濃度之一摻雜劑濃度。類似地,n++層可具有自鄰近於p++層之一最大值漸變為鄰近於形成於穿隧接面720上方之n+ GaN層725的一最小值之一摻雜劑濃度。穿隧接面720經製造為足夠薄且經充分摻雜使得當在反向偏壓模式中傳導電流時,穿隧接面720顯示一低串聯電壓降。在一些實施方案中,跨穿隧接面720之電壓降係約0.1 V至約1 V。 包含p++層與n++層之間的InGaN或AlN或其他適合層之實施方案可利用III族氮化物中之極化場來幫助對準帶用於穿隧。此極化效應可降低n++層及p++層中之摻雜要求且減小所需穿隧距離(可能容許更高電流)。p++層與n++層之間的層之組分可不同於p++層及n++層之組分,及/或可經選擇以歸因於存在於III族氮化物材料系統中之不同材料之間的極化電荷而引起帶重對準。在美國專利第8,039,352號中描述適合穿隧接面之實例,該案以引用的方式併入本文中。圖6之垂直TJ LED 600可以相同於TJ LED 700之方式形成。 一n+ GaN層725形成於穿隧接面720上方而與n++層直接接觸,以用作一歐姆接觸層。一金屬陽極電極730形成於n+ GaN層725上方。一台面經蝕刻以曝露n-GaN層705,且一金屬陰極電極735形成於n-GaN層705之曝露部分上。 圖8係在生長圖6之TJ LED 600、圖7之TJ LED 700及其中一p型GaN層經埋藏使得難以擴散出氫的其他裝置中之特定磊晶層期間使用UV照射之一闡釋性方法800。在一MOCVD室中在UV照射下或在具有高於p型層的帶隙能量之一光子能量之光下於一基板上生長全部GaN層,包含但不限於n型GaN層、活性層、p型GaN層、穿隧接面p+ GaN層及穿隧接面n+ GaN層,以抑制Mg-H複合物因存在於MOCVD室中之氫而形成於III族氮化物p型層內(805)。形成金屬電極(810),單粒化晶圓(815),且封裝LED (820)。對於一垂直LED實施方案,可移除生長基板以曝露n-GaN陰極層,如圖6中展示。對於一覆晶LED實施方案,可蝕刻一台面以曝露n-GaN陰極層以由陰極電極接觸,因此可保留生長基板,如圖7中展示。 圖9係在生長圖6之TJ LED 600、圖7之TJ LED 700及其中一p型GaN層經埋藏使得難以擴散出氫的其他裝置中之特定磊晶層期間使用UV照射之一闡釋性方法900。在未由一UV光照射之情況下於一生長基板上方生長一n-GaN層及活性層(905)。在生長全部p型GaN層(包含圖7中展示之穿隧接面中之任何p++層)期間以及開始穿隧接面n+ GaN層(包含穿隧接面中之任何n++層)時打開UV光以照射晶圓(910)。UV照射防止來自穿隧接面n+ GaN層生長之新的氫擴散至p型GaN層中以在穿隧接面附近形成Mg-H複合物。接著,可執行處理以完成一封裝TJ LED之製造,如例如圖8之區塊810至820中所展示(915)。 圖10係在生長圖6之TJ LED 600、圖7之TJ LED 700及其中一p型GaN層經埋藏使得難以擴散出氫的其他裝置中之特定磊晶層期間使用UV照射之一闡釋性方法1000。在未由一UV光照射之情況下於一生長基板上方生長n型GaN層、活性層及全部p型GaN層,包含如圖7中展示之穿隧接面中之任何p++層(1005)。在一無氫環境中執行一原位退火(在一MOCVD室中)以自全部p型GaN層擴散出氫原子而活化Mg摻雜劑(1010)。在一實施方案中,使用UV照射以使退火程序更有效率。 停止退火程序,且在UV光下生長穿隧接面n+ GaN層(包含如圖7中展示之穿隧接面中之任何n++層)直至一特定厚度(1015)。此防止在生長n+ GaN層期間存在之新的氫擴散至p型GaN層中及形成Mg-H複合物。 關閉UV光,且生長穿隧接面n+ GaN層之剩餘部分(1020)。新的H原子無法再穿過部分生長穿隧接面n+ GaN層擴散至埋藏p型GaN層中。接著,可執行處理以完成一封裝TJ LED之製造,如例如圖8之區塊810至820中所展示(1025)。 本文中描述之方法亦適用於在其中p-GaN層埋藏於另一層下方之情況中(諸如若p型GaN層首先生長於一基板上方,其後接著活性層及類似者)製造其他LED。此在圖11及圖12中展示之發光裝置中予以繪示。 圖11係根據特定實施方案之具有一p型GaN下部結構之一闡釋性LED 1100。LED 1100包含一基板1105上方之一磊晶生長p型GaN層1110。一活性層1115生長於p型GaN層1110上方且一n型GaN層1120生長於活性層1115上方。 圖12係根據特定實施方案之具有一p型GaN下部結構之另一闡釋性LED 1200。LED 1200包含生長於一基板1205上方之一磊晶生長未摻雜層1210。接著,一p型GaN層1215生長於未摻雜層1210上方,一活性層1220生長於p型GaN層1215上方,且一n型GaN層1225生長於活性層1220上方。 圖13係根據特定實施方案之用於製作圖11及圖12的發光裝置之一闡釋性方法1300。在一MOCVD室中在UV照射下或在具有高於p型層的帶隙能量之一光子能量之光下於一基板上生長全部GaN層(包含但不限於p型GaN層、活性層、n型GaN層及未摻雜GaN層),以抑制Mg-H複合物因存在於MOCVD室中之氫而形成於III族氮化物p型層內(1305)。接著,可執行處理以完成一封裝TJ LED之製造,如例如圖8之區塊810至820中所展示(1310)。 圖14係根據特定實施方案之用於製作發光裝置之一闡釋性方法1400。在一MOCVD室中在無UV照射之情況下於一基板上生長p型GaN層及未摻雜GaN層(1405)。在一無氫環境中執行一原位退火(在一MOCVD室中)以自全部p型GaN層擴散出氫原子而活化Mg摻雜劑(1410)。在一實施方案中,使用UV照射以使退火程序更有效率。停止退火程序,且接著在UV照射下至少生長活性層,如本文中描述(1415)。在一實施方案中,在UV照射下生長活性層之一第一部分且在無UV照射之情況下生長一剩餘部分。可在具有或不具UV照射之情況下生長n型層(1420),此係因為p型GaN層經埋藏於活性層下方。接著,可執行處理以完成一封裝LED之製造,如例如圖8之區塊810至820中所展示(1425)。 本文中描述之方法實現製造垂直堆疊LED以產生呈一串聯串之LED之一晶粒而獲得一所要正向電壓。在一實施方案中,此LED堆疊可以由一金屬陽極電極接觸之一p型GaN層終止。 儘管本文中描述之實施方案及實例使用GaN作為一實例,然該等方法適用於全部III族氮化物處理及材料。 基板通常為藍寶石但可為任何適合基板,舉例而言諸如SiC、Si、GaN或一複合基板。於其上生長一III族氮化物半導體結構之基板之一表面可在生長之前經圖案化、經粗糙化或經紋理化,此可改良來自LED之光提取。 一般而言,一種用於在一沈積室中形成一發光二極體(LED)之方法包含:磊晶生長一III族氮化物p型層;在照射下於該III族氮化物p型層上方磊晶生長一非p型層;及在一初始生長階段期間用具有高於該III族氮化物p型層的帶隙能量之一光子能量之光照射該非p型層之一表面,以抑制Mg-H複合物因存在於該沈積室中之氫而形成於該III族氮化物p型層內。在一實施方案中,透過該沈積室中之一窗提供該光。在一實施方案中,該沈積室係一MOCVD室。在一實施方案中,該光係紫外光或一更高能量光。在一實施方案中,該非p型層係一活性層。在一實施方案中,該非p型層係一III族氮化物n型層。在一實施方案中,用該光照射該非p型層之該表面在該非p型層之一整個生長階段內保持開啟。在一實施方案中,該III族氮化物p型層係一穿隧接面III族氮化物p型層且該非p型層係一III族氮化物穿隧接面n型層,且該方法進一步包含:在照射下磊晶形成該穿隧接面III族氮化物p型層及該III族氮化物穿隧接面n型層。在一實施方案中,該III族氮化物p型層係一穿隧接面III族氮化物p型層且該非p型層係一III族氮化物穿隧接面n型層,且該方法進一步包含:在照射下磊晶形成該III族氮化物穿隧接面n型層之一部分。在一實施方案中,該方法進一步包含:在無光照射之情況下磊晶形成該III族氮化物穿隧接面n型層之一剩餘部分。在一實施方案中,該方法進一步包含:在於照射下磊晶生長該III族氮化物穿隧接面n型層之一部分之前使該穿隧接面III族氮化物p型層退火。 一般而言,一種用於在一沈積室中形成一發光二極體(LED)之方法包含:在一生長基板上方磊晶生長一III族氮化物n型層;在該III族氮化物n型層上方磊晶生長一活性層;及在存在氫及鎂之情況下於該活性層上方磊晶生長一III族氮化物p型層。原位退火該III族氮化物p型層以活化該p型層中之鎂摻雜劑。接著停止該退火。該方法進一步包含:在該III族氮化物p型層上方磊晶形成一III族氮化物穿隧接面n型層之一第一部分以形成一穿隧接面發光二極體;在生長期間用具有高於該III族氮化物p型層的帶隙能量之一光子能量之光照射該III族氮化物穿隧接面n型層之該第一部分之一表面;及在生長期間在無光照射之情況下磊晶形成該III族氮化物穿隧接面n型層之一剩餘部分。用該光照射該III族氮化物穿隧接面n型層之該表面抑制Mg-H複合物形成於該III族氮化物p型層內。在一實施方案中,該光係UV光。在一實施方案中,該方法進一步包含:透過該沈積室中之一窗施加該光。在一實施方案中,該方法進一步包含:在該退火期間用該光進行照射。 一般而言,一種用於在一沈積室中形成一發光二極體(LED)之方法包含:在生長期間,在無光照射之情況下於一生長基板上方磊晶生長至少一個III族氮化物p型層;在該至少一個III族氮化物p型層上方磊晶生長一非p型層;及在非p型層生長期間用具有高於該III族氮化物p型層的帶隙能量之一光子能量之光照射該非p型層之一表面,以抑制Mg-H複合物因存在於該沈積室中之氫而形成於該III族氮化物p型層內。在一實施方案中,該至少一個非p型層係一III族氮化物n型層及一活性層之至少一者。在一實施方案中,在該非p型層之一初始生長之後停止用光照射該非p型層之該表面。在一實施方案中,在無光照射之情況下完成該非p型層之一剩餘生長。 上述生長技術係闡釋性的,且上文針對p型層、活性層及n型層描述之生長技術之組合在描述及申請專利範圍之範疇內。 本文中描述之裝置之任一者可與一波長轉換結構組合。波長轉換結構可含有一或多種波長轉換材料。波長轉換結構可直接連接至LED、安置成緊密靠近LED但未直接連接至LED,或與LED隔開。波長轉換結構可為任何適合結構。波長轉換結構可與LED分開形成,或與LED一起原位形成。與LED分開形成之波長轉換結構之實例包含可藉由燒結或任何其他合適程序而形成之陶瓷波長轉換結構;安置於經軋製、鑄造或以其他方式形成為一薄片之透明材料(諸如聚矽氧或玻璃)中且接著被單粒化成個別波長轉換結構之波長轉換材料(諸如粉末磷光體);及安置於形成為一撓性薄片之一透明材料(諸如聚矽氧)中且可層壓或以其他方式安置於一LED上方的波長轉換材料(諸如粉末磷光體)。 原位形成之波長轉換結構之實例包含與一透明材料(諸如聚矽氧)混合且經施配、網版印刷、模板印刷、模製或以其他方式安置於LED上方之波長轉換材料(諸如粉末磷光體);及藉由電泳沈積、氣相沈積或任何其他適合類型的沈積塗佈於LED上之波長轉換材料。 可在一單一裝置中使用多種形式之波長轉換結構。例如,一陶瓷波長轉換構件可與一模製波長轉換構件組合,其中在陶瓷構件及模製構件中具有相同或不同波長轉換材料。 波長轉換結構可包含例如習知磷光體、有機磷光體、量子點、有機半導體、II-VI族或III-V族半導體、II-VI族或III-V族半導體量子點或奈米晶體、染料、聚合物,或發冷光之其他材料。 波長轉換材料吸收由LED發射之光且發射一或多個不同波長之光。由LED發射之未經轉換光通常為自結構提取之光之最終光譜之部分,但其無需如此。常見組合之實例包含與一發黃光波長轉換材料組合之一發藍光LED;與發綠光及發紅光波長轉換材料組合之一發藍光LED;與發藍光及發黃光波長轉換材料組合之一UV發射LED;及與發藍光、發綠光及發紅光波長轉換材料組合之一UV發射LED。可添加發射其他色彩的光之波長轉換材料以定製自結構提取之光之光譜。 本文中描述之實施方案可併入至任何適合發光裝置中。本發明之實施方案不限於所繪示之特定結構,舉例而言諸如圖6之垂直裝置或圖7之覆晶裝置。 雖然在上文描述之實例及實施方案中,LED係發射藍光或UV光之一III族氮化物LED,但除LED外之發光裝置(諸如雷射二極體)在本發明之範疇內。另外,本文中描述之原理可適用於由其他材料系統(諸如其他III-V族材料、III族磷化物、III族砷化物、II-VI族材料、ZnO或Si基材料)製成之半導體發光裝置。 本文中描述之用於在生長特定層期間使用UV照射之非限制性方法可經修改用於多種應用及用途,同時保持在申請專利範圍之精神及範疇內。在本文中描述及/或在圖式中展示之實施方案及變動僅以實例方式呈現且不限制範疇及精神。儘管可能關於一特定實施方案描述本文中之描述,然其可適用於用於在生長特定層期間使用UV照射之方法之全部實施方案。 如本文中描述,本文中描述之方法不限於執行任何(若干)特定功能之任何(若干)特定元件,且所提出方法之一些步驟不一定以所展示之順序發生。例如,在一些情況中,兩個或更多個方法步驟可以一不同順序發生或同時發生。另外,所描述方法之一些步驟可為選用的(即使未明確陳述為選用的)且因此可省略。尤其鑑於如本文中描述之用於在生長特定層期間使用UV照射之方法之描述,將容易明白本文中揭示之方法之此等及其他變動,且該等變動被視為在本發明之全範疇內。 一些實施方案之一些特徵可省略或結合其他實施方案實施。本文中描述之裝置元件及方法元件可互換且於本文中描述之實例或實施方案之任一者中使用,或自本文中描述之實例或實施方案之任一者省略。 儘管上文以特定組合描述特徵及元件,然各特徵或元件可在無其他特徵及元件之情況下單獨使用,或在具有或不具其他特徵及元件之情況下以各種組合使用。
100‧‧‧穿隧接面發光二極體(TJ LED)
102‧‧‧藍寶石基板
105‧‧‧n型GaN層
110‧‧‧活性層
115‧‧‧p型GaN層
120‧‧‧p+ GaN層/穿隧接面p+ GaN層
125‧‧‧n+ GaN層/穿隧接面n+ GaN層
130‧‧‧陽極電極
135‧‧‧氫原子
300‧‧‧裝置
302‧‧‧藍寶石基板
305‧‧‧n型GaN層
310‧‧‧活性層
315‧‧‧pGaN層/p型GaN層
320‧‧‧pGaN層/p型GaN層
400‧‧‧裝置
402‧‧‧基板
405‧‧‧n型GaN層
410‧‧‧活性層
415‧‧‧p型GaN層
420‧‧‧p+ GaN層/p+ GaN
450‧‧‧UV光
455‧‧‧UV源
502‧‧‧基板
505‧‧‧n型GaN層
510‧‧‧活性層
515‧‧‧p型GaN層
517‧‧‧穿隧接面n+型層
555‧‧‧UV源
560‧‧‧金屬有機化學氣相沈積(MOCVD)室
565‧‧‧窗
570‧‧‧沈積室
600‧‧‧垂直穿隧接面發光二極體(TJ LED)
605‧‧‧n型GaN層
610‧‧‧活性層
615‧‧‧p型GaN層
617‧‧‧p型GaN層
619‧‧‧穿隧接面p+ GaN層
620‧‧‧穿隧接面n+ GaN層
625‧‧‧陽極電極
700‧‧‧覆晶穿隧接面發光二極體(TJ LED)
702‧‧‧生長基板
705‧‧‧n型GaN層/n-GaN層
710‧‧‧活性層
715‧‧‧p型GaN層
720‧‧‧穿隧接面
725‧‧‧n+ GaN層/穿隧接面n+ GaN層/n型GaN層
730‧‧‧金屬陽極電極
735‧‧‧金屬陰極電極
800‧‧‧方法
805‧‧‧在MOCVD室中在UV照射下於一基板上生長全部GaN層/區塊
810‧‧‧形成金屬電極/區塊
815‧‧‧單粒化晶圓/區塊
820‧‧‧封裝LED/區塊
900‧‧‧方法
905‧‧‧在未由UV光照射之情況下於生長基板上方生長n-GaN層及活性層
910‧‧‧在生長全部p型GaN層期間以及開始穿隧接面n++ GaN層時打開UV光以照射晶圓
915‧‧‧執行處理以完成封裝TJ LED之製造
1000‧‧‧方法
1005‧‧‧在未由UV光照射之情況下於生長基板上方生長n型GaN層、活性層及全部p型GaN層
1010‧‧‧在無氫環境中執行原位退火以自全部p型GaN層擴散出氫原子而活化Mg摻雜劑
1015‧‧‧停止退火程序,且在UV光下生長穿隧接面n+ GaN層直至特定厚度
1020‧‧‧關閉UV光,且生長穿隧接面n+ GaN層之剩餘部分
1025‧‧‧執行處理以完成封裝TJ LED之製造
1300‧‧‧方法
1400‧‧‧方法
1405‧‧‧在MOCVD室中在無UV照射之情況下於基板上生長p型GaN層及未摻雜GaN層
1410‧‧‧在無氫環境中執行原位退火以自全部p型GaN層擴散出氫原子而活化Mg摻雜劑
1415‧‧‧停止退火程序,且在UV照射下至少生長活性層
1420‧‧‧在具有或不具UV照射之情況下生長n型層
1425‧‧‧執行處理以完成封裝LED之製造
可自結合隨附圖式以實例方式給出之以下描述獲得一更詳細理解,其中: 圖1係繪示p型GaN層中之氫原子與Mg摻雜劑鍵結且防止Mg摻雜劑由一習知退火程序活化之一穿隧接面發光裝置(TJ LED)之一橫截面視圖; 圖2係TJ LED之一說明圖,其展示在TJ LED通電時一穿隧接面n+ GaN層及p+ GaN層如何經反向偏壓但傳導穿隧電流; 圖3繪示在生長p型GaN層期間之一TJ LED晶圓,其中氫雜質被引入至p型GaN層中且與Mg摻雜劑鍵結以防止Mg摻雜劑之活化且限制p型GaN層之有效p型摻雜; 圖4係根據特定實施方案用於在存在紫外光(UV)照射之情況下於一裝置中生長特定層之一說明圖; 圖5係根據特定實施方案之具有用於UV照射的一窗之一闡釋性金屬有機化學氣相沈積(MOCVD)室; 圖6係根據特定實施方案之一闡釋性垂直TJ LED; 圖7係根據特定實施方案之一闡釋性覆晶TJ LED; 圖8係根據特定實施方案之用於製作圖6及圖7的TJ LED之一闡釋性方法; 圖9係根據特定實施方案之用於製作圖6及圖7的TJ LED之另一闡釋性方法; 圖10係根據特定實施方案之用於製作圖6及圖7的TJ LED之另一闡釋性方法; 圖11係根據特定實施方案之具有一p型GaN下部結構之一闡釋性發光裝置; 圖12係根據特定實施方案之具有一p型GaN下部結構之另一闡釋性發光裝置; 圖13係根據特定實施方案之用於製作圖11及圖12的發光裝置之一闡釋性方法;及 圖14係根據特定實施方案之用於製作發光裝置之一闡釋性方法。

Claims (20)

  1. 一種用於在一沈積室中形成一發光二極體(LED)之方法,該方法包括: 磊晶生長一III族氮化物p型層; 在照射下於該III族氮化物p型層上方磊晶生長一非p型層;及 在一初始生長階段期間用具有高於該III族氮化物p型層的帶隙能量之一光子能量之光照射該非p型層之一表面,以抑制Mg-H複合物因存在於該沈積室中之氫而形成於該III族氮化物p型層內。
  2. 如請求項1之方法,其中透過該沈積室中之一窗提供該光。
  3. 如請求項2之方法,其中該沈積室係一MOCVD室。
  4. 如請求項1之方法,其中該光係紫外光或一更高能量光。
  5. 如請求項1之方法,其中該非p型層係一活性層。
  6. 如請求項1之方法,其中該非p型層係一III族氮化物n型層。
  7. 如請求項1之方法,其中該用該光照射該非p型層之該表面在該非p型層之一整個生長階段內保持開啟。
  8. 如請求項1之方法,其中該III族氮化物p型層係一穿隧接面III族氮化物p型層,且該非p型層係一III族氮化物穿隧接面n型層,且該方法進一步包括: 在照射下磊晶形成該穿隧接面III族氮化物p型層及該III族氮化物穿隧接面n型層。
  9. 如請求項1之方法,其中該III族氮化物p型層係一穿隧接面III族氮化物p型層,且該非p型層係一III族氮化物穿隧接面n型層,且該方法進一步包括: 在照射下磊晶形成該III族氮化物穿隧接面n型層之一部分。
  10. 如請求項9之方法,其進一步包括: 在無光照射之情況下磊晶形成該III族氮化物穿隧接面n型層之一剩餘部分。
  11. 如請求項9之方法,其進一步包括: 在於照射下磊晶生長該III族氮化物穿隧接面n型層之一部分之前使該穿隧接面III族氮化物p型層退火。
  12. 一種用於在一沈積室中形成一發光二極體(LED)之方法,該方法包括: 在一生長基板上方磊晶生長一III族氮化物n型層; 在該III族氮化物n型層上方磊晶生長一活性層; 在存在氫及鎂之情況下於該活性層上方磊晶生長一III族氮化物p型層; 原位退火至少該III族氮化物p型層以活化該p型層中之鎂摻雜劑; 停止該退火; 在該III族氮化物p型層上方磊晶形成一III族氮化物穿隧接面n型層之一第一部分以形成一穿隧接面發光二極體; 在生長期間用具有高於該III族氮化物p型層的帶隙能量之一光子能量之光照射該III族氮化物穿隧接面n型層之該第一部分之一表面;及 在生長期間在無光照射之情況下磊晶形成該III族氮化物穿隧接面n型層之一剩餘部分。
  13. 如請求項12之方法,其中用該光照射該III族氮化物穿隧接面n型層之該表面抑制Mg-H複合物該形成於該III族氮化物p型層內。
  14. 如請求項12之方法,其中該光係UV光。
  15. 如請求項12之方法,其進一步包括: 透過該沈積室中之一窗施加該光。
  16. 如請求項12之方法,其進一步包括: 在該退火期間用該光進行照射。
  17. 一種用於在一沈積室中形成一發光二極體(LED)之方法,該方法包括: 在生長期間在無光照射之情況下於一生長基板上方磊晶生長至少一個III族氮化物p型層; 在該至少一個III族氮化物p型層上方磊晶生長一非p型層;及 在非p型層生長期間用具有高於該III族氮化物p型層的帶隙能量之一光子能量之光照射該非p型層之一表面,以抑制Mg-H複合物因存在於該沈積室中之氫而形成於該III族氮化物p型層內。
  18. 如請求項17之方法,其中該至少一個非p型層係一III族氮化物n型層及一活性層之至少一者。
  19. 如請求項17之方法,其中在該非p型層之一初始生長之後停止該用光照射該非p型層之該表面。
  20. 如請求項19之方法,其中在無光照射之情況下完成該非p型層之一剩餘生長。
TW106137084A 2016-10-28 2017-10-27 用於在紫外光照射下生長發光裝置的方法 TWI745465B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662414612P 2016-10-28 2016-10-28
US62/414,612 2016-10-28
EP16204234.5 2016-12-15
??16204234.5 2016-12-15
EP16204234 2016-12-15
US15/793,723 US10541352B2 (en) 2016-10-28 2017-10-25 Methods for growing light emitting devices under ultra-violet illumination
US15/793,723 2017-10-25

Publications (2)

Publication Number Publication Date
TW201828493A true TW201828493A (zh) 2018-08-01
TWI745465B TWI745465B (zh) 2021-11-11

Family

ID=67255788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137084A TWI745465B (zh) 2016-10-28 2017-10-27 用於在紫外光照射下生長發光裝置的方法

Country Status (5)

Country Link
EP (1) EP3533088B1 (zh)
JP (1) JP7050060B2 (zh)
KR (1) KR102281223B1 (zh)
CN (1) CN110168752B (zh)
TW (1) TWI745465B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023175830A1 (ja) * 2022-03-17 2023-09-21 三菱電機株式会社 半導体素子及び半導体素子の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3324312C2 (de) * 1983-04-20 1985-11-28 Komet Stahlhalter- Und Werkzeugfabrik Robert Breuning Gmbh, 7122 Besigheim Werkzeugmaschine mit Werkzeugwechselvorrichtung
JPS61247686A (ja) * 1985-04-26 1986-11-04 Toshiba Corp 半導体単結晶の製造方法
JPH01215014A (ja) * 1988-02-24 1989-08-29 Toshiba Corp 半導体結晶の成長方法
JPH0766136A (ja) * 1993-08-30 1995-03-10 Matsushita Electric Ind Co Ltd Iii −v族化合物半導体のエピタキシャル成長方法
JP3347002B2 (ja) * 1996-11-08 2002-11-20 株式会社東芝 半導体発光素子の製造方法
JPH11126758A (ja) * 1997-10-24 1999-05-11 Pioneer Electron Corp 半導体素子製造方法
JPH11238692A (ja) * 1998-02-23 1999-08-31 Nichia Chem Ind Ltd 窒化物半導体の低抵抗化方法
US6537838B2 (en) * 2001-06-11 2003-03-25 Limileds Lighting, U.S., Llc Forming semiconductor structures including activated acceptors in buried p-type III-V layers
KR20050123422A (ko) * 2004-06-25 2005-12-29 삼성전기주식회사 p형 질화물 반도체 형성방법 및 질화물 반도체 발광소자제조방법
JP2006045642A (ja) * 2004-08-06 2006-02-16 Sumitomo Electric Ind Ltd 水素脱離方法および水素脱離装置
JP4451811B2 (ja) * 2005-05-09 2010-04-14 ローム株式会社 窒化物半導体素子の製法
JP4948134B2 (ja) * 2006-11-22 2012-06-06 シャープ株式会社 窒化物半導体発光素子
JP4827706B2 (ja) * 2006-12-04 2011-11-30 シャープ株式会社 窒化物半導体発光素子
JP2008226906A (ja) * 2007-03-08 2008-09-25 Sharp Corp 窒化物半導体発光素子
DE102008056371A1 (de) * 2008-11-07 2010-05-12 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip
US8592309B2 (en) * 2009-11-06 2013-11-26 Ultratech, Inc. Laser spike annealing for GaN LEDs
KR20130007032A (ko) * 2011-06-28 2013-01-18 (주)세미머티리얼즈 질화물계 반도체 제조용 열처리 장치 및 이를 이용한 질화물계 반도체의 열처리 방법
WO2015065684A1 (en) * 2013-10-29 2015-05-07 The Regents Of The University Of California (Al, In, Ga, B)N DEVICE STRUCTURES ON A PATTERNED SUBSTRATE
CN103855263A (zh) * 2014-02-25 2014-06-11 广东省工业技术研究院(广州有色金属研究院) 一种具有极化隧道结的GaN基LED外延片及其制备方法
JP6561367B2 (ja) * 2014-02-26 2019-08-21 学校法人 名城大学 npn型窒化物半導体発光素子の製造方法
CN104638070B (zh) * 2015-03-06 2017-08-18 天津三安光电有限公司 一种光电器件的制备方法
US9748113B2 (en) * 2015-07-30 2017-08-29 Veeco Intruments Inc. Method and apparatus for controlled dopant incorporation and activation in a chemical vapor deposition system

Also Published As

Publication number Publication date
JP7050060B2 (ja) 2022-04-07
CN110168752B (zh) 2022-02-22
TWI745465B (zh) 2021-11-11
KR102281223B1 (ko) 2021-07-22
EP3533088A1 (en) 2019-09-04
CN110168752A (zh) 2019-08-23
EP3533088B1 (en) 2021-08-25
KR20190076011A (ko) 2019-07-01
JP2020501345A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US7569863B2 (en) Semiconductor light emitting device
US11069525B2 (en) Methods for using remote plasma chemical vapor deposition (RP-CVD) and sputtering deposition to grow layers in light emitting devices
TWI416757B (zh) 多波長發光二極體及其製造方法
EP3459117B1 (en) Method of forming a p-type layer for a light emitting device
US11069836B2 (en) Methods for growing light emitting devices under ultra-violet illumination
JP6745361B2 (ja) 発光デバイスのp型層を形成する方法
TWI745465B (zh) 用於在紫外光照射下生長發光裝置的方法
JP6936358B2 (ja) 発光デバイスにおいて層を成長させるためにリモートプラズマ化学気相堆積およびスパッタリング堆積を使用するための方法