TW201719083A - 空調系統 - Google Patents

空調系統 Download PDF

Info

Publication number
TW201719083A
TW201719083A TW105133029A TW105133029A TW201719083A TW 201719083 A TW201719083 A TW 201719083A TW 105133029 A TW105133029 A TW 105133029A TW 105133029 A TW105133029 A TW 105133029A TW 201719083 A TW201719083 A TW 201719083A
Authority
TW
Taiwan
Prior art keywords
air
regeneration
supply unit
supplied
conditioning system
Prior art date
Application number
TW105133029A
Other languages
English (en)
Other versions
TWI702367B (zh
Inventor
糸山賢
坂東卓
岡野浩志
井上宏志
黑田彩子
Original Assignee
清水建設股份有限公司
西部技研股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設股份有限公司, 西部技研股份有限公司 filed Critical 清水建設股份有限公司
Publication of TW201719083A publication Critical patent/TW201719083A/zh
Application granted granted Critical
Publication of TWI702367B publication Critical patent/TWI702367B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Central Air Conditioning (AREA)
  • Gas Separation By Absorption (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本發明提供一種空調系統(10A),具備:轉輪(1),具有處理區域(2)及再生區域(4),該處理區域(2)係使包含帶胺固態吸收劑的吸收劑吸收二氧化碳,該再生區域(4)係使吸收劑所吸收到的二氧化碳脫附至再生用空氣中;處理對象空氣第一供給部(14),用以將室內(R)的空氣作為處理對象空氣來供給至處理區域(2);處理對象空氣第二供給部(24),用以將通過處理區域後的處理對象空氣供給至室內(R);以及再生用空氣供給部(20),用以將外部空氣作為再生用空氣來供給至再生區域。供給至處理區域的處理對象空氣與供給至再生區域的再生用空氣的焓差為30kJ/kg(DA)以上。

Description

空調系統
本發明係關於一種空調系統。本案係基於2015年10月13日在日本所申請的特願2015-202208號而主張優先權,且將其內容援用於此。
近年來,已有提出一種除濕空調系統(desiccant air conditioning system),作為不使用電力就生成冷房區域的冷卻空氣的空調系統之一(例如,參照專利文獻1)。
在除濕空調系統中,係藉由除濕轉輪(desiccant rotor)及其調濕裝置(以下,簡稱為除濕轉輪裝置)來進行調濕。
一般而言,在除濕轉輪裝置中,使圓柱狀的蜂巢結構體(honeycomb structure body)帶有吸附材料(adsorption material)或吸收材料(sorption material)的除濕轉輪會旋轉,藉此使應除濕的空氣從旋轉中的除濕轉輪的第一送風口通過例如其中一方的半圓部,以吸附及吸收其水分。又,在除濕轉輪裝置中,使加熱空氣(再生用空氣)從除濕轉輪的第二送風口通過除濕轉輪的另一方的半圓部,且使水分從 吸附材料或吸收材料脫附,藉此再生吸附材料或吸收材料。藉由如此的循環就能使空氣除濕。
〔先前技術文獻〕
〔專利文獻〕
專利文獻1:日本特開2002-126441號公報。
如上述般,在使用習知除濕轉輪的空調技術中,雖然能達成進行空調的對象的室內除濕,但是被要求室內空氣品質的更進一步改善。
尤其是,在大氣汙染嚴重的國家或地域中無法將外部空氣直接供給至室內,而要活用室內的空氣。可是,由於在室內活動的人會排出二氧化碳,所以伴隨時間的經過,空氣中的二氧化碳的量會增加,而提高室內人的不適感。因此,期望有一種從室內的空氣中去除二氧化碳的技術。
本發明係有鑑於上述情況而開發完成,提供一種可以去除室內空氣中的二氧化碳,且可以提高空氣品質的空調系統。
發明人係新發現以下的較佳構成及條件,而完成本發明,亦即,著眼於以下的原理:例如使用帶胺(amine-bearing)固態吸收劑,作為以往所使用的吸附劑及吸收劑當中的胺 系吸收劑,藉此從室內的空氣中吸收二氧化碳並且將二氧化碳脫附,且基於該原理來進行空調。
第一方案的空調系統係具備:轉輪,劃分成處理區域(zone)及再生區域,該處理區域係包含屬於帶胺固態吸收劑的二氧化碳之吸收劑,且在處理對象空氣被導入時使前述吸收劑吸收前述處理對象空氣中所含的二氧化碳,該再生區域係在再生用空氣被導入時使前述吸收劑所吸收到的二氧化碳脫附至前述再生用空氣中;處理對象空氣第一供給部,用以將室內的空氣作為前述處理對象空氣來供給至前述處理區域;處理對象空氣第二供給部,用以將通過前述處理區域後的前述處理對象空氣供給至前述室內;再生用空氣供給部,用以將外部空氣作為前述再生用空氣來供給至前述再生區域;以及再生用空氣排出部,用以將通過前述再生區域後的前述再生用空氣排出至室外;且以供給至前述處理區域的處理對象空氣與供給至前述再生區域的再生用空氣的焓(enthalpy)(或稱熱含量,本文中採用焓)差成為30kJ/kg(DA)以上的方式所構成。
圖1係顯示具備有上述構成的轉輪中的處理對象空氣與再生用空氣的焓差、和二氧化碳的去除效率的關係的圖表。如圖1所示,處理對象空氣與再生用空氣的焓差變得越大,二氧化碳的去除效率就越提高。然後,若處理對象空氣與再生用空氣的焓差為30kJ/kg(DA)以上,二氧化碳的去除效率就 至少成為30%以上,藉此能期待一般建築物室內的二氧化碳的去除達成。
在上述的空調系統中,因供給至轉輪之處理區域的處理對象空氣與供給至轉輪之再生區域的再生用空氣的焓差為30kJ/kg(DA)以上,故而能提高帶胺固態吸收劑中的二氧化碳的吸收性能。因此,能藉由處理對象空氣第一供給部從室內供給至轉輪後的處理對象空氣中優異地去除二氧化碳,而二氧化碳被去除後的空氣(以下,亦稱為處理完空氣)能藉由處理對象空氣第二供給部回送至室內。藉由如此空氣的循環,室內空氣中的二氧化碳就能被去除而提高空氣品質。
在第二方案的空調系統中,在前述處理對象空氣第一供給部係從供給方向的上游側朝向下游側依順序地設置有全熱交換器、冷卻裝置;前述再生用空氣供給部係共有前述全熱交換器;在前述再生用空氣供給部係從供給方向的上游側朝向下游側依順序地設置有全熱交換器、加熱裝置。
又,在第三方案的空調系統中,在前述處理對象空氣第一供給部係設置有冷卻裝置;在前述再生用空氣供給部係設置有加熱裝置;前述室內的空氣的一部分係供給至比前述加熱裝置更靠上游側的前述再生用空氣供給部。
又,在第四方案的空調系統中,在前述處理對象空氣第一供給部係從供給方向的上游側朝向下游側設置有空氣調節單元(air handling unit)、冷卻裝置;從前述空氣調節單 元所供給來的空氣的一部分係供給至前述室內;從前述空氣調節單元所供給來的空氣的剩餘部分係供給至前述冷卻裝置;在前述再生用空氣供給部係設置有加熱裝置。
又,第五方案的空調系統係具備:熱泵(heat pump),具有壓縮機、膨脹閥、使在前述壓縮機與前述膨脹閥之間循環的加熱介質凝結的凝結器、以及使前述加熱介質膨脹的蒸發器;且構成為:在前述處理對象空氣第一供給部中,前述處理對象空氣係通過前述蒸發器;在前述再生用空氣供給部中,前述再生用空氣係通過前述凝結器。
在上述的各空調系統中係考慮既設或新設的建築物或是室內的設備等,而設置有供如上述般地能確保處理對象空氣與再生用空氣的焓差、或是使處理對象空氣與再生用空氣的溫度差變大所用的構成。因此,室內空氣中的二氧化碳能被去除,而提高空氣品質。
依據本發明的空調系統,因能確保處理對象空氣與再生用空氣的焓差,故而可以提高轉輪之吸收劑中的二氧化碳的吸收性能,且可以去除室內空氣中的二氧化碳,而可以提高室內的空氣品質。
1‧‧‧轉輪
2‧‧‧處理區域
4‧‧‧再生區域
10A至10D‧‧‧空調系統
12‧‧‧室內送風機
14‧‧‧處理對象空氣第一供給部
16‧‧‧全熱交換器
18‧‧‧冷卻裝置
20‧‧‧再生用空氣供給部
22‧‧‧加熱裝置
24‧‧‧處理對象空氣第二供給部
26‧‧‧再生用空氣排出部
28‧‧‧室內排氣部
30‧‧‧旁通部
32‧‧‧空氣調節單元
34‧‧‧加熱裝置
36‧‧‧加濕器
40‧‧‧熱泵
42‧‧‧壓縮機
44‧‧‧膨脹閥
46‧‧‧凝結器
48‧‧‧蒸發器
50‧‧‧蒸發器
52、54‧‧‧二通閥
R‧‧‧室內
圖1係本發明的空調系統所具備的轉輪處理對象空氣 與再生用空氣的焓差、和二氧化碳的去除效率的關係的圖表。
圖2係本發明的空調系統所具備的轉輪的概略圖。
圖3係顯示本發明的空調系統之第一實施形態的概略圖。
圖4係顯示本發明的空調系統之第二實施形態的概略圖。
圖5係顯示本發明的空調系統之第三實施形態的概略圖。
圖6係顯示本發明的空調系統之第四實施形態的概略圖。
以下,參照圖式具體地說明本發明的空調系統及其實施形態。
首先,如圖2所示,本發明的空調系統係具備:轉輪1,劃分成處理區域2及再生區域4,該處理區域2係包含屬於帶胺固態吸收劑的二氧化碳之吸收劑,且在處理對象空氣被導入時使帶胺固態吸收劑吸收處理對象空氣中所含的二氧化碳,該再生區域4係在再生用空氣被導入時使帶胺固態吸收劑所吸收到的二氧化碳脫附至再生用空氣中。
轉輪1,為蜂巢式轉輪(honeycomb rotor),且為將薄板 (sheet)進行波狀(corrugate)(帶波形)加工,並盤繞加工成轉輪狀的圓筒形構件,以軸線為中心並沿著圖2所示的黑色箭頭的方向旋轉的方式所構成。轉輪1係包含帶胺固態吸收劑,詳言之包含由具有將一級胺和二級胺之至少一方作為官能基的弱鹼性離子交換樹脂所構成的固態吸收劑。
在轉輪1的處理區域2係藉由未圖示的送風機(blower)等來供給室內的空氣作為處理對象空氣。當處理對象空氣被導入處理區域2時,處理對象空氣中所含的二氧化碳就由轉輪部分的帶胺固態吸收劑所吸收並從處理對象空氣中分離去除。藉此,能減低處理對象空氣中的二氧化碳的濃度。
再生用空氣係能藉由加熱器等來適當地加溫或加濕、或是加溫及加濕,且供給至轉輪1的再生區域4。當再生用空氣被導入再生區域4時,由轉輪部分的帶胺固態吸收劑所吸收到的二氧化碳就會脫附至再生用空氣中,而通過區域內的轉輪部分的吸收劑則能再生。
藉由帶胺固態吸收劑而致使的二氧化碳的吸收及脫附,在一級胺(R-NH2)的情況下係依以下所示的化學式(1)及化學式(2)的反應而產生,在二級胺(R1R2-NH)的情況下係依以下所示的化學式(3)及化學式(4)的反應而產生。
[化學式1] R-NH2+CO2+H2OR-NH3 ++HCO3 -...(1)
[化學式2]R-NH-COO-+H2OR-NH2+HCO3 -...(2)
[化學式3]R1R2-NH+CO2+H2OR1R2-NH2 ++HCO3 -...(3)
[化學式4]R1R2-N-COO-+H2OR1R2-NH+HCO3 -...(4)
當發生上述的反應時,就能推測可以形成胺-二氧化碳-水系的連續性衍生物模型(derivative model)。換句話說,在作為溶質的HCO3 -分子的周圍生成有作為連續性衍生物的溶媒,而溶質分子的電荷分布會在周圍的溶媒中引起分極。在連續性衍生物模型中,係利用如此的溶質溶媒間的相互作用,在更低溫條件下促進上述的化學式(1)至(4),藉此,吸收速度或擴散速度(diffusion speed)的反應性會變高。因此,只要具有低溫度的再生溫度且適度的濕度,就能促進溶質溶媒間的相互作用,且帶胺固態吸收劑中的二氧化碳的吸收率(即帶胺固態吸收劑中的二氧化碳的去除性能)會變高。
本發明的空調系統係具備:上面所述的轉輪1;處理對象空氣第一供給部,用以將室內的空氣作為處理對象空氣來供給至處理區域2;處理對象空氣第二供給部,用以將通過處理區域2後的處理對象空氣供給至室內;再生用空氣供給部,用以將外部空氣作為再生用空氣來供給至再生區域4;以及再生用空氣排出部,用以將通過再生區域後的再生用空氣排出至室外。又,本發明的空調系統係以供給至處理區域2的處理對象空氣與供給至再生區域4的再生用空氣的焓差成為30kJ/kg(DA)以上的方式所構成。
亦即,在本發明的空調系統中,係藉由供給至處理區域2的處理對象空氣與供給至再生區域4的再生用空氣的焓差成為30kJ/kg(DA)以上,就能促進溶質溶媒間的相互作用,且帶胺固態吸收劑中的二氧化碳的吸收率會變高。藉此,室內的二氧化碳的去除率至少成為30%以上。又,更佳是只要處理對象空氣與再生用空氣的焓差成為45kJ/kg(DA)以上,室內的二氧化碳的去除率就成為40%以上。
如上述般,為了將處理對象空氣與再生用空氣的焓差設為30kJ/kg(DA)以上,例如較佳是根據處理對象空氣與再生用空氣的濕度,而適當地設定處理對象空氣與再生用空氣的溫度差。以下,針對以處理對象空氣與再生用空氣的焓差成為30kJ/kg(DA)以上的方式所構成的空調系統的實施形態加以說明。
〔第一實施形態〕
首先,針對本發明的空調系統的第一實施形態加以說明。
如圖3所示,第一實施形態的空調系統10A係具備使室內R的空氣循環的室內送風機(fan coil unit)12。另外,第一實施形態的空調系統10A,亦可具備櫃式空調機(package air conditioner)等能夠使室內R的空氣循環的設備,來取代室內送風機12。
在用以連接室內R和轉輪1之處理區域2的處理對象空氣之入口側的處理對象空氣第一供給部14,係從處理對象空氣的供給方向的上游側朝向下游側,依順序地設置有全熱交換器16、冷卻裝置18。作為冷卻裝置18,例如可列舉冷水盤管(coolwater coil)、冷卻盤管(cooling coil)。用以連接室外、和轉輪1之再生區域4的再生用空氣入口側的再生用空氣供給部20係共有全熱交換器16,在再生用空氣供給部20係從再生用空氣的供給方向的上游側朝向下游側,依順序地設置有全熱交換器16、加熱裝置22。作為加熱裝置22,例如可列舉溫水盤管、蒸氣盤管、加熱式加濕器(盤式(pan)加濕器、蒸氣加濕器等)。
又,第一實施形態的空調系統10A係具備:處理對象空氣第二供給部24,用以連接轉輪1之處理區域2的處理對象空氣出口側和室內R;以及再生用空氣排出部26,用以連接轉1之再生區域4的處理對象空氣出口側和室外。
在室內R係能與藉由處理對象空氣第一供給部14及 處理對象空氣第二供給部24而致使的處理對象空氣的循環獨立,而進行外部空氣的供給以及來自室內R的排氣。藉此,能適當地調節室內R的空氣壓力等。另外,如此換氣中的空氣的流量等係被固定。
另外,圖3所示的空調系統10A的構成係假定如冬季期間外部空氣的焓比室內R的空氣的焓更低來考量。在如夏季期間外部空氣的溫度比室內R的空氣的焓更高的情況下,係省略處理對象空氣第一供給部14的全熱交換器16。在以下的說明中係假定設置有處理對象空氣第一供給部14的全熱交換器16,且外部空氣的焓比室內R的空氣的焓更低。
在第一實施形態的空調系統10A中,室內R的空氣係排出至處理對象空氣第一供給部14,且作為處理對象空氣藉由處理對象空氣第一供給部14而供給至全熱交換器16。另一方面,從室外所導入的外部空氣係作為再生用空氣藉由再生用空氣供給部20而供給至全熱交換器16。在全熱交換器16中,係在處理對象空氣與再生用空氣之間進行全熱交換。亦即,進行顯熱(溫度)與潛熱(濕度)的交換。為此,處理對象空氣的焓會減少,再生用空氣的焓會增加。
焓在全熱交換器16減少後的處理對象空氣係藉由處理對象空氣第一供給部14而供給至冷卻裝置18,進一步冷卻至導入轉輪1的處理區域2的指定溫度為止,且供給至轉輪1的處理區域2。焓在全熱交換器16增加後的再生 用空氣係藉由再生用空氣供給部20而供給至加熱裝置22,進一步加溫至導入轉輪1的再生區域4的指定溫度為止,且供給至轉輪1的再生區域4。導入處理區域2的處理對象空氣的指定溫度、以及導入再生區域4的再生用空氣的指定溫度係以處理對象空氣與再生用空氣的焓差至少成為30kJ/kg(DA)以上的方式所設定。
在第一實施形態的空調系統10A中,係在如上面所述般已賦予處理對象空氣與再生用空氣的焓差的狀態下,使處理對象空氣供給至處理區域2,使再生用空氣供給至再生區域4。
在轉輪1的處理區域2中係使處理對象空氣中的二氧化碳由轉輪1中所含的帶胺固態吸收劑所吸收,且從處理對象空氣中分離去除。包含已吸收二氧化碳的帶胺固態吸收劑的轉輪1的部分係藉由旋轉而移動至再生區域4的區域,且所吸收到的二氧化碳則脫附至導入再生區域4的再生用空氣中。如此,二氧化碳就能從處理對象空氣中去除,而二氧化碳則包含於再生用空氣中。
從轉輪1的處理區域2排出至處理對象空氣第二供給部24的處理完空氣,係藉由處理對象空氣第二供給部24而供給至室內R。從轉輪1的再生區域4排出至再生用空氣排出部26的再生用空氣,係藉由再生用空氣排出部26而排出至室外。
斟酌藉由處理對象空氣第二供給部24而供給至室內R的處理完空氣的溫度,藉由室內送風機12,主要能調整室內R的溫度,亦能依需要而調節室內R的濕度。又,在冬季期間與夏季期間之間、所謂中間期係考慮室內R的空氣的焓與外部空氣的焓的高低差,而適當變更冷卻裝置18及加熱裝置22的設定,以使處理對象空氣與再生用空氣的焓差至少成為30kJ/kg(DA)以上。
顯示空調系統10A的設定條件之一例。如大廈管理法所規定般,將辦公室等室內R的二氧化碳濃度設定在1000PPM以下。例如,假定室內R係具有地板面積500m2×高度2.8m之1400m3的大小,且有75人在室內R活動。在如此室內R產生的二氧化碳的量為15m3/h(=0.02m3/人˙h×75人)。以320m3/h將室內R的二氧化碳去除30%,藉此可以將室內R的二氧化碳濃度維持在1000PPM以下。
另外,在室內R係能從未圖示的送風機以1150CMH(m3/h)供給二氧化碳濃度500PPM的外部空氣,並且以相同的條件從室內R朝向室外進行排氣。
在上述的條件中,假定在冬季期間的情況下使用未圖示的送風機等,從室內R對處理對象空氣第一供給部14排出3200m3/h、溫度22℃、相對濕度40%(焓39kJ/kg(DA))的處理對象空氣。
另一方面,假定使用未圖示的送風機等,從室外對再 生用空氣供給部20以3200m3/h、溫度0℃、相對濕度50%(焓5kJ/kg(DA))導入再生用空氣。藉由全熱交換器16,將處理對象空氣的焓減少至14kJ/kg(DA),且將再生用空氣的焓增加至29kJ/kg(DA)。
冷卻裝置18係設為OFF(斷開)狀態,且將焓14kJ/kg(DA)的處理對象空氣供給至轉輪1的處理區域2。加熱裝置22係設為ON(接通)狀態,將焓29kJ/kg(DA)的再生用空氣加溫至45℃,將焓增加至58kJkg(DA),且供給至轉輪1的再生區域4。藉由如此的處理對象空氣與再生用空氣的焓差,轉輪1的二氧化碳的去除率就變成39%,且室內R的二氧化碳濃度減低至867PPM。
在上述的條件中,假定在夏季期間的情況下使用未圖示的送風機等,從室內R對處理對象空氣第一供給部14排出3200m3/h、溫度26℃、相對濕度50%(焓52kJ/kg(DA))的處理對象空氣。
另一方面,假定使用未圖示的送風機等,從室外對再生用空氣供給部20以3200m3/h、溫度34℃、相對濕度60%(焓86kJ/kg(DA))導入再生用空氣。如前述般,夏季期間不進行藉由全熱交換器16的熱交換。因此,處理對象空氣的焓為52kJ/kg(DA),而再生用空氣的焓為86kJ/kg(DA)。冷卻裝置18係設為ON狀態,將處理對象空氣冷卻至14℃,將焓減少至38kJ/kg(DA),且供給至轉輪1的處理區域2。加熱裝置22係設為OFF狀態,且將焓86kJ/kg(DA)的再 生用空氣供給至轉輪1的再生區域4。藉由如此的處理對象空氣與再生用空氣的焓差,轉輪1的二氧化碳的去除率就變成41%,且室內R的二氧化碳濃度減低至837PPM。因此,即便是在夏季期間,仍如大廈管理法所規定般,能充分地達成將辦公室等室內R的二氧化碳濃度設為1000PPM以下的基準。
依據上面所述的第一實施形態的空調系統10A,則在處理對象空氣第一供給部14中,供給至轉輪1的處理區域2的處理對象空氣的焓會減少,而在再生用空氣供給部20中,供給至轉輪1的再生區域4的再生用空氣的焓會增加。尤其是在冬季期間,係藉由使全熱交換器16運轉,來使處理對象空氣的焓減少,同時使再生用空氣的焓增加。藉此,就能在處理對象空氣與再生用空氣之間賦予焓差。可以考慮外部空氣的溫度或相對濕度,一邊調整全熱交換器16、冷卻裝置18及加熱裝置22的設定等,一邊確保處理對象空氣與再生用空氣的焓差至少為30kJ/kg(DA)以上。結果,能促進轉輪1中的化學式(1)至化學式(4)的反應,且提高轉輪1中所含的帶胺固態吸收劑中的二氧化碳的吸收性能(參照圖1)。因此,能從處理對象空氣中優異地去除二氧化碳,且處理完空氣能藉由處理對象空氣第二供給部24回送至室內R。藉由如此的空氣的循環,可以去除室內R的空氣中的二氧化碳,且提高空氣品質。
又,由於第一實施形態的空調系統10A係具備全熱交 換器16,所以再生用空氣(即外部空氣)會與處理對象空氣(即室內空氣)進行焓交換(溫度及濕度的雙方)。為此,第一實施形態的空調系統10A,例如可以如後面所述的第二實施形態的空調系統10B般,比僅將室內R的空氣與外部空氣混合的空調系統更謀求省電力化。然後,由於冬季期間的處理對象空氣與再生用空氣的焓差較大,所以可以效率佳地提高冬季期間的二氧化碳的去除性能。
〔第二實施形態〕
其次,針對本發明的空調系統的第二實施形態加以說明。另外,在第二實施形態的空調系統10B的構成要素中,有關與第一實施形態的空調系統10A的構成要素為相同的構成要素係附記同一符號,且省略其說明。
如圖4所示,在第二實施形態的空調系統10B中,係在處理對象空氣第一供給部14設置有冷卻裝置18,在再生用空氣供給部20設置有加熱裝置22,且構成室內R的空氣的一部分能夠供給至比加熱裝置22更靠上游側的再生用空氣供給部20。詳言之,用以從室內R與處理對象空氣第一供給部14獨立進行排氣的室內排氣部28係透過旁通(bypass)部30來與再生用空氣供給部20匯流。在室內排氣部28、旁通部30及再生用空氣供給部20,係設置有用以調節空氣的流量的擋板(damper)。
在第二實施形態的空調系統10B中,室內R的空氣係 被分開成處理對象空氣第一供給部14和室內排氣部28來排出。被排出至室內排氣部28的空氣係假設能夠藉由旁通部30而直接供給至再生用空氣供給部20。依季節或室外的環境,在冬季期間等係將被排出至室內排氣部28的空氣全部供給至再生用空氣供給部20,在夏季期間等係將被排出至室內排氣部28的空氣全部排出至室外。從室外所導入的外部空氣係在再生用空氣供給部20中,與來自旁通路30的室內R的空氣混合,且增加焓。
從室內R所排出的處理對象空氣係藉由處理對象空氣第一供給部14而供給至冷卻裝置18,進一步冷卻至導入轉輪1的處理區域2的指定溫度為止,且減少焓,供給至轉輪1的處理區域2。與室內R的空氣混合且增加焓後的再生用空氣,係藉由再生用空氣供給部20而供給至加熱裝置22,進一步加溫至導入轉輪1的再生區域4的指定焓為止,且供給至轉輪1的再生區域4。
在如此賦予有處理對象空氣與再生用空氣的焓差的狀態下,處理對象空氣被供給至處理區域2,再生用空氣被供給至再生區域4。
轉輪1中的處理對象空氣與再生用空氣之間的二氧化碳的互換、以及通過轉輪1後的處理完空氣及再生用空氣的流動係與第一實施形態的空調系統10A同樣。
顯示空調系統10B中的設定條件之一例。室內R的大 小及供氣排氣等的條件係設為與第一實施形態的空調系統10A的設計條件之一例同樣。
在上述的條件中,假定在冬季期間的情況下使用未圖示的送風機等,從室內R對處理對象空氣第一供給部14排出3200m3/h、溫度22℃、相對濕度40%(焓39kJ/kg(DA))的處理對象空氣。
另一方面,假定使用未圖示的送風機等,從室外對再生用空氣供給部20以1250m3/h、溫度0℃、相對濕度50%(焓5kJ/kg(DA))導入再生用空氣。將被排出至室內排氣部28的室內R的空氣100%導入旁通部30,且以1150m3/h、溫度22℃、相對濕度40%(焓39kJ/kg(DA))供給至再生用空氣供給部20。藉此,再生用空氣的焓係增加至17kJ/kg(DA)。冷卻裝置18係設為ON狀態,將處理對象空氣冷卻至9℃,將焓減少至25kJ/kg(DA),且供給至轉輪1的處理區域2。加熱裝置22亦設為ON狀態,將再生用空氣加溫至45℃,將焓增加至55kJkg(DA),且供給至轉輪1的再生區域4。藉由如此的處理對象空氣與再生用空氣的焓差,轉輪1的二氧化碳的去除率就減低至31%,且室內R的二氧化碳濃度減低至968PPM。
在上述的條件中,假定在夏季期間的情況下使用未圖示的送風機等,從室內R對處理對象空氣第一供給部14排出3200m3/h、溫度26℃、相對濕度50%(焓52kJ/kg(DA))的處理對象空氣。
另一方面,假定使用未圖示的送風機等,從室外對再生用空氣供給部20以3200m3/h、溫度34℃、相對濕度60%(焓86kJ/kg(DA))導入再生用空氣。
在夏季期間的情況,不進行從室內排氣部28至旁通部30的室內R的空氣的導入,而是將被導入室內排氣部28的空氣排出100%。然後,與第一實施形態的空調系統10A的設計條件之一例同樣,將處理對象空氣及再生用空氣供給至轉輪1。藉由處理對象空氣與再生用空氣的焓差,轉輪1的二氧化碳的去除率就變成41%,且室內R的二氧化碳濃度減低至837PPM。
依據上述說明的第二實施形態的空調系統10B,則能在處理對象空氣第一供給部14中用冷卻裝置18來冷卻且供給至轉輪1的處理區域2的處理對象空氣、與從室內排氣部28所旁通的室內R的空氣的混合來增加焓並且在再生用空氣供給部20中用加熱裝置22來加溫且增加焓而供給至轉輪1的再生區域4的再生用空氣之間賦予焓差。可以考慮外部空氣的溫度或相對濕度,一邊調整冷卻裝置18及加熱裝置22的設定等,一邊確保處理對象空氣與再生用空氣的焓差至少為30kJ/kg(DA)以上。為此,能獲得與第一實施形態的空調系統10A同樣的功效。
〔第三實施形態〕
其次,針對本發明的空調系統的第三實施形態加以說 明。在第三實施形態的空調系統10C的構成要素中,有關與第一形態的空調系統10A或第二實施形態的空調系統10B的構成要素為相同的構成要素,係附記同一符號,且省略其說明。
如圖5所示,在第三實施形態的空調系統10C中,在處理對象空氣第一供給部14係從處理對象空氣的供給方向的上游側朝向下游側,設置有空氣調節單元32、冷卻裝置18,從空氣調節單元32所供給來的空氣的一部分係供給至室內R,從空氣調節單元32所供給來的空氣的剩餘部分係供給至冷卻裝置18,而在再生用空氣供給部20係設置有加熱裝置22。
作為空氣調節單元32,係可以應用一般在空調系統中所使用。
在再生用空氣供給部20係在加熱裝置22的上游側,從再生用空氣的供給方向的上游側朝向下游側,設置有加熱裝置34和加濕器36。藉此,例如即便是在冬季期間,不縮短轉輪1的壽命,仍可以抑制臭氣的產生等,且可以將處理對象空氣與再生用空氣的焓差設為30kJ/kg(DA)以上。
在第三實施形態的空調系統10C中,室內R的空氣係藉由處理對象空氣第一供給部14而供給至空氣調節單元32。從空氣調節單元32所排出的處理對象空氣的一部分係回送至室內R。藉由從空氣調節單元32而回送至室內R的 空氣,主要能調整室內R的溫度,亦能依需要而調節室內R的濕度。較佳是考慮此點,而適當地設定從空氣調節單元32排出的處理對象空氣的溫度或濕度等的條件。
從空氣調節單元32所排出的處理對象空氣的剩餘部分,係藉由處理對象空氣第一供給部14而供給至冷卻裝置18,進一步冷卻至導入轉輪1的處理區域2的指定溫度為止,且供給至轉輪1的處理區域2。另一方面,再生用空氣係藉由再生用空氣供給部20而供給至加熱裝置22,進一步加溫至導入轉輪1的再生區域4的指定溫度為止,且供給至轉輪1的再生區域4。
在如此賦予有處理對象空氣與再生用空氣的焓差的狀態下,處理對象空氣被供給至處理區域2,再生用空氣被供給至再生區域4。
轉輪1中的處理對象空氣與再生用空氣之間的二氧化碳的互換、以及通過轉輪1後的處理完空氣及再生用空氣的流動,係與第一實施形態的空調系統10A同樣。
顯示空調系統10C中的設定條件之一例。室內R的大小及供氣排氣等的條件係設為與第一實施形態的空調系統10A的設計條件之一例同樣。
在上述的條件中,假定在冬季期間的情況下使用未圖示的送風機等,從室內R對處理對象空氣第一供給部14排出13600m3/h、溫度22℃、相對濕度40%(焓39kJ/kg(DA))的處理對象空氣。
另一方面,假定使用未圖示的送風機等,從室外對再生用空氣供給部20以2400m3/h、溫度0℃、相對濕度50%(焓5kJ/kg(DA))導入再生用空氣。在空氣調節單元32中係保持從室內R供給至處理對象空氣第一供給部14的處理對象空氣的條件。冷卻裝置18係設為ON狀態,將空氣調節單元32所調整後的22℃的處理對象空氣冷卻至11℃(焓27kJ/kg(DA)),且供給至轉輪1的處理區域2。加熱裝置34、加濕器36及加熱裝置22亦設為ON狀態,將再生用空氣的焓增加至75kJkg(DA),且供給至轉輪1的再生區域4。藉由如此的處理對象空氣與再生用空氣的焓差,轉輪1的二氧化碳的去除率就減低至41%,且室內R的二氧化碳濃度減低至842PPM。
在上述的條件中,假定在夏季期間的情況下,用空氣調節單元32適當地變更從室內R供給至處理對象空氣第一供給部14的處理對象空氣的條件,且與第一實施形態的空調系統10A及第二實施形態的空調系統10B之夏季期間中的設計條件之一例同樣,將處理對象空氣及再生用空氣供給至轉輪1。依據處理對象空氣與再生用空氣的焓差,轉輪1的二氧化碳的去除率就變成41%,且室內R的二氧化碳濃度減低至837PPM。
依據上述說明的第三實施形態的空調系統10C,則能在處理對象空氣第一供給部14中通過空氣調節單元32並 用冷卻裝置18來冷卻且供給至轉輪1的處理區域2的處理對象空氣、與在再生用空氣供給部20中用加熱裝置34、加熱器36及加熱裝置22來加熱且供給至轉輪1的再生區域4的再生用空氣之間賦予焓差。
又,依據第三實施形態的空調系統10C,由於在處理對象空氣第一供給部14中通過空氣調節單元32後的處理對象空氣之一部分被回送至室內R,所以能效率佳地進行室內R的空氣循環。再者,依據第三實施形態的空調系統10C,則與第二實施形態的空調系統10B同樣不使用全熱交換器16就可以解決,此外,空氣調節單元32亦兼作室內送風機12的功能,所以可以用簡易的構成來謀求空調系統10B之更進一步的省空間化。又,不需要室內送風機12。
〔第四實施形態〕
其次,針對本發明的空調系統的第四實施形態加以說明。另外,在第四實施形態的空調系統10D的構成要素中,有關與第一實施形態的空調系統10A的構成要素為相同的構成要素係附記同一符號,且省略其說明。
如圖6所示,第四實施形態的空調系統10D係具備:熱泵40,具有室內送風機12、壓縮機42、膨脹閥44、凝結器46及蒸發器48,該凝結器46係使在壓縮機42及膨脹閥44之間循環的加熱介質(省略圖示)凝結,該蒸發器48係使加熱介質膨脹。在空調系統10D中,係以在處理對象空氣第一供給部14中,使處理對象空氣通過蒸發器48, 在再生用空氣供給部20中,使再生用空氣通過凝結器46的方式所構成。
就熱泵40而言係可以應用一般在空調系統中所使用者。
在第四實施形態的空調系統10D中,室內R的空氣係作為處理對象空氣並藉由處理對象空氣第一供給部14而供給至熱泵40的蒸發器48,且通過蒸發器48。處理對象空氣係依在蒸發器48膨脹的加熱介質之溫度降低而冷卻至導入轉輪1的處理區域2的指定溫度為止,且供給至轉輪1的處理區域2。另一方面,再生用空氣係藉由再生用空氣供給部20而供給至熱泵40的凝結器46,且通過凝結器46。再生用空氣係依在凝結器46所凝結的加熱介質之熱而加溫至導入轉輪1的再生區域4的指定溫度為止,且供給至轉輪1的再生區域4。
在如此賦予有處理對象空氣與再生用空氣的溫度差的狀態下,處理對象空氣被供給至處理區域2,再生用空氣被供給至再生區域4。壓縮機42係利用變流器(inverter)來調整輸出,藉此可以製造出任意或是最佳的處理對象空氣與再生用空氣的焓差。
又,如圖6所示,較佳是在再生用空氣供給部20中的凝結器46的下游側設置有加濕器36,亦在再生用空氣排出部26設置有熱泵40的蒸發器50。在熱泵40中,一邊 用二通閥52、54來調節量一邊從蒸發器48和蒸發器50回收熱,並將熱供給至凝結器46,藉此,即便是在可以利用的熱量較少的冬季期間仍可以將需要份量的熱提供給再生用空氣。又,雖然凝結器46的加熱溫度在熱泵40的原理上具有界限,但是藉由用加濕器36來加濕就可以在界限溫度以下進一步提高再生用空氣的焓。藉此,不會使處理對象空氣過冷而可以適當地調節處理對象空氣與再生用空氣的焓差。
轉輪1中的處理對象空氣與再生用空氣之間的二氧化碳的互換、以及通過轉輪1後的處理完空氣及再生用空氣的流動係與第一實施形態的空調系統10A同樣。
顯示空調系統10D中的設定條件之一例。室內R的大小及供氣排氣等的條件係設為與第一實施形態的空調系統10A的設計條件之一例同樣。
在上述的條件中,假定在冬季期間的情況下使用未圖示的送風機等,從室內R對處理對象空氣第一供給部14排出3200m3/h、溫度22℃、相對濕度40%(焓39kJ/kg(DA))的處理對象空氣。另一方面,假定使用未圖示的送風機等,從室外對再生用空氣供給部20以3200m3/h、溫度0℃、相對濕度50%導入再生用空氣。在熱泵40的蒸發器48(熱量:27kJ/kg)中,將22℃的處理對象空氣冷卻至11℃,且供給至轉輪1的處理區域2。藉由熱泵40的凝結器46,將0℃ 的再生用空氣加溫至50℃以上,且供給至轉輪1的再生區域4。藉由如此的處理對象空氣與再生用空氣的焓差,與第一實施形態的空調系統10A的設計條件之一例同樣,轉輪1的二氧化碳的去除率就成為30%以上。
在上述的條件中,假定在夏季期間的情況下使用熱泵40的壓縮機42及膨脹閥44,適當地變更蒸發器48及凝結器46的條件,且與上面所述的第一實施形態的空調系統10A等的設計條件之一例同樣,將處理對象空氣及再生用空氣供給至轉輪1。藉由處理對象空氣與再生用空氣的焓差,與第一實施形態的空調系統10A的設計條件之一例同樣,轉輪1的二氧化碳的去除率就成為30%以上。換言之,以轉輪1的二氧化碳的去除率成為30%以上的方式來調節處理對象空氣及再生用空氣的條件等。
依據上面所述的第四實施形態的空調系統10D,則能在處理對象空氣第一供給部14中用熱泵40的蒸發器48來冷卻且供給至轉輪1的處理區域2的處理對象空氣與用熱泵40的凝結器46來加溫且供給至轉輪1的再生區域4的再生用空氣之間賦予焓差,且確保處理對象空氣與再生用空氣的焓差至少為30kJ/kg(DA)以上。為此,能獲得與第一實施形態的空調系統10A同樣的功效。
又,對已設置有熱泵的建築物等而言,藉由將該熱泵作為上述所說明的熱泵40來活用就可以抑制追加的設備 數並追隨設置空調系統10A,且有效地去除建築物的室內R的二氧化碳。
以上,雖然已針對本發明的較佳實施形態加以詳述,但是本發明並非被限定於上面所述的特定實施形態,亦可在申請專利範圍內所記載的本發明的要旨的範圍內進行變更。
例如,本發明的空調系統的構成並未被限定於上述的各實施形態,只要處理對象空氣與再生用空氣的焓差成為30kJ/kg(DA)以上,就能夠適當變更。又,亦可依設置本發明的空調系統的建築物之設備或條件,而適當組合上述的實施形態。
1‧‧‧轉輪
2‧‧‧處理區域
4‧‧‧再生區域
10A‧‧‧空調系統
12‧‧‧室內送風機
14‧‧‧處理對象空氣第一供給部
16‧‧‧全熱交換器
18‧‧‧冷卻裝置
20‧‧‧再生用空氣供給部
22‧‧‧加熱裝置
24‧‧‧處理對象空氣第二供給部
26‧‧‧再生用空氣排出部
R‧‧‧室內

Claims (5)

  1. 一種空調系統,具備:轉輪,劃分成處理區域及再生區域,該處理區域係包含屬於帶胺固態吸收劑的二氧化碳之吸收劑,且在處理對象空氣被導入時使前述吸收劑吸收前述處理對象空氣中所含的二氧化碳,該再生區域係在再生用空氣被導入時使前述吸收劑所吸收到的二氧化碳脫附至前述再生用空氣中;處理對象空氣第一供給部,用以將室內的空氣作為前述處理對象空氣來供給至前述處理區域;處理對象空氣第二供給部,用以將通過前述處理區域後的前述處理對象空氣供給至前述室內;再生用空氣供給部,用以將外部空氣作為前述再生用空氣來供給至前述再生區域;以及再生用空氣排出部,用以將通過前述再生區域後的前述再生用空氣排出至室外;且以供給至前述處理區域的處理對象空氣與供給至前述再生區域的再生用空氣的焓差成為30kJ/kg(DA)以上的方式所構成。
  2. 如請求項1所記載之空調系統,其中在前述處理對象空氣第一供給部係從供給方向的上游側朝向下游側依順序地設置有全熱交換器、冷卻裝置;前述再生用空氣供給部係共有前述全熱交換器; 在前述再生用空氣供給部係從供給方向的上游側朝向下游側依序設置有全熱交換器、加熱裝置。
  3. 如請求項1所記載之空調系統,其中在前述處理對象空氣第一供給部係設置有冷卻裝置;在前述再生用空氣供給部係設置有加熱裝置;前述室內的空氣的一部分係供給至比前述加熱裝置更靠上游側的前述再生用空氣供給部。
  4. 如請求項1所記載之空調系統,其中在前述處理對象空氣第一供給部係從供給方向的上游側朝向下游側設置有空氣調節單元、冷卻裝置;從前述空氣調節單元所供給來的空氣的一部分係供給至前述室內;從前述空氣調節單元所供給來的空氣的剩餘部分係供給至前述冷卻裝置;在前述再生用空氣供給部係設置有加熱裝置。
  5. 如請求項1所記載之空調系統,其中具備:熱泵,具有壓縮機、膨脹閥、使在前述壓縮機與前述膨脹閥之間循環的加熱介質凝結的凝結器、以及使前述加熱介質膨脹的蒸發器;且構成為:在前述處理對象空氣第一供給部中,前述處理對象空氣係通過前述蒸發器;在前述再生用空氣供給部中,前述再生用空氣係通過前述凝結器。
TW105133029A 2015-10-13 2016-10-13 空調系統 TWI702367B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015202208A JP6652806B2 (ja) 2015-10-13 2015-10-13 空調システム
JP2015-202208 2015-10-13

Publications (2)

Publication Number Publication Date
TW201719083A true TW201719083A (zh) 2017-06-01
TWI702367B TWI702367B (zh) 2020-08-21

Family

ID=58518336

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133029A TWI702367B (zh) 2015-10-13 2016-10-13 空調系統

Country Status (5)

Country Link
JP (1) JP6652806B2 (zh)
CN (1) CN108136320B (zh)
SG (1) SG11201802965UA (zh)
TW (1) TWI702367B (zh)
WO (1) WO2017065215A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713301B2 (ja) * 2016-03-01 2020-06-24 株式会社西部技研 吸収式除去・濃縮装置
JP6970522B2 (ja) 2017-04-27 2021-11-24 川崎重工業株式会社 空気浄化システム
JP2019052808A (ja) * 2017-09-15 2019-04-04 清水建設株式会社 空調装置及び空調システム
JP7455566B2 (ja) * 2019-12-13 2024-03-26 株式会社西部技研 ガス除去濃縮装置
CN111023505A (zh) * 2019-12-20 2020-04-17 青岛海信日立空调系统有限公司 一种中央加湿系统
EP3878541A1 (en) * 2020-03-09 2021-09-15 Molecule RND Limited Carbon dioxide and humidity capture system and method
CN114270106A (zh) * 2020-03-11 2022-04-01 株式会社西部技研 吸收式去除/浓缩装置
JP7265103B1 (ja) * 2022-07-15 2023-04-25 三菱電機株式会社 二酸化炭素回収システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638413Y2 (zh) * 1984-11-08 1988-03-14
JP2007315694A (ja) * 2006-05-26 2007-12-06 Mayekawa Mfg Co Ltd デシカント空調システム及びその運転方法
WO2010100739A1 (ja) * 2009-03-05 2010-09-10 株式会社西部技研 空気調和機
JP2011058676A (ja) * 2009-09-08 2011-03-24 Shimizu Corp 空調システム
JP5627870B2 (ja) * 2009-10-27 2014-11-19 株式会社西部技研 空気調和装置
TWI541478B (zh) * 2009-10-27 2016-07-11 Seibu Giken Kk Air conditioning unit
JP5635886B2 (ja) * 2010-11-29 2014-12-03 アズビル株式会社 デシカント空調システムおよびその運転方法
US9474999B2 (en) * 2011-05-11 2016-10-25 Maohong Fan Bi-directional reactor and supported monoethenalamine for CO2 separation
DK2764296T3 (en) * 2011-09-12 2018-06-18 Bry Air Asia Pvt Ltd APPARATUS AND PROCEDURE FOR MANAGING AIR DRY AIR DRUGS
CN103827589B (zh) * 2011-09-29 2016-10-19 大金工业株式会社 除湿系统
US8597411B2 (en) * 2012-02-17 2013-12-03 Archon Technologies Ltd. Sorbents for the recovery and stripping of acid gases
JP5795423B1 (ja) * 2014-12-19 2015-10-14 株式会社西部技研 吸収式除去・濃縮装置

Also Published As

Publication number Publication date
JP2017075715A (ja) 2017-04-20
JP6652806B2 (ja) 2020-02-26
WO2017065215A1 (ja) 2017-04-20
CN108136320B (zh) 2021-11-02
TWI702367B (zh) 2020-08-21
CN108136320A (zh) 2018-06-08
SG11201802965UA (en) 2018-05-30

Similar Documents

Publication Publication Date Title
TWI702367B (zh) 空調系統
US10948202B2 (en) Air conditioner capable of controlling heating and humidity, and control method therefor
US10823437B2 (en) Air conditioner capable of controlling cooling and humidity, and control method therefor
US10775059B2 (en) Air conditioning capable of controlling ventilation and humidity, and control method therefor
EP3617606B1 (en) Ventilation system
JP2010078193A (ja) デシカント空調装置
JP2009097837A (ja) 調湿調温デシカントロータ及びこれを用いたデシカント換気システム
US10876749B2 (en) Air conditioner and controlling method thereof
JP2003139350A (ja) 除湿空調装置
JP5089254B2 (ja) 自動車用調湿空調システム
JP2009019788A (ja) デシカント空調機
KR20220110097A (ko) 다중 공기 접촉기들을 갖는 전기화학적 제습기
JP6898138B2 (ja) デシカント式調湿装置及びその制御方法
KR101420595B1 (ko) 데시칸트 에어컨
JP3881067B2 (ja) 低露点空気供給システム
JP4011724B2 (ja) デシカント空調方法
KR20190024394A (ko) 공기조화기와 그 제어방법
JP2001056132A (ja) 空気調和装置
JP2007170786A (ja) 換気システム
JP2008201199A (ja) 車両用空調装置
KR20190024395A (ko) 공기조화기와 그 제어방법
JP2012006415A (ja) 鉄道車両用空調装置
JP2010121783A (ja) 塗装ブースの排気除湿リサイクル空調システム
JP2010145007A (ja) デシカント空調システム、及びこれを使用したデシカント空調方法
JP3147097U (ja) 空調機の一体型ユニット