JP2017075715A - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
JP2017075715A
JP2017075715A JP2015202208A JP2015202208A JP2017075715A JP 2017075715 A JP2017075715 A JP 2017075715A JP 2015202208 A JP2015202208 A JP 2015202208A JP 2015202208 A JP2015202208 A JP 2015202208A JP 2017075715 A JP2017075715 A JP 2017075715A
Authority
JP
Japan
Prior art keywords
air
regeneration
processing target
supply unit
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015202208A
Other languages
English (en)
Other versions
JP6652806B2 (ja
Inventor
賢 糸山
Masaru Itoyama
賢 糸山
卓 坂東
Taku Bando
卓 坂東
岡野 浩志
Hiroshi Okano
浩志 岡野
井上 宏志
Hiroshi Inoue
宏志 井上
彩子 黒田
Ayako Kuroda
彩子 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Seibu Giken Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Seibu Giken Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Seibu Giken Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2015202208A priority Critical patent/JP6652806B2/ja
Priority to TW105133029A priority patent/TWI702367B/zh
Priority to CN201680059237.4A priority patent/CN108136320B/zh
Priority to PCT/JP2016/080377 priority patent/WO2017065215A1/ja
Priority to SG11201802965UA priority patent/SG11201802965UA/en
Publication of JP2017075715A publication Critical patent/JP2017075715A/ja
Application granted granted Critical
Publication of JP6652806B2 publication Critical patent/JP6652806B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Central Air Conditioning (AREA)
  • Gas Separation By Absorption (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】空調システムにおいて、室内の空気中の二酸化炭素を除去し、空気質を高める。【解決手段】吸収剤としてアミン担持固体吸収剤を含み、処理対象空気が通風された際に前記処理対象空気に含まれる二酸化炭素を前記吸収剤に吸収させる処理ゾーン2と、再生用空気が通風された際に、前記吸収剤が吸収した二酸化炭素を前記再生用空気に脱離させる再生ゾーン4とに区画されたロータ1と、室内Rの空気を前記処理対象空気として処理ゾーン2に供給する処理対象空気第一供給部14と、処理ゾーン2を通過した処理対象空気を室内Rに供給する処理対象空気第二供給部24と、外気を前記再生用空気として再生ゾーン4に供給する再生用空気供給部20と、を備え、処理ゾーン2に供給される処理対象空気と再生ゾーン4に供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になる空調システム10A。【選択図】図3

Description

本発明は、空調システムに関する。
近年、電力を使用しないで冷房領域の冷却空気を生成する空調システムの一つとして、例えばデシカント空調システムが提案されている(例えば、特許文献1参照)。
デシカント空調システムでは、デシカントロータ及びその調湿装置(以下、単にデシカントロータ装置という)によって調湿が行われる。
一般に、デシカントロータ装置では、円柱状のハニカム構造体に吸着材や収着材を担持させたデシカントロータが回転し、除湿すべき空気を回転中のデシカントロータの第一の送風口から例えば一方の半円部に通過させて、その水分を吸着・収着させる。また、デシカントロータ装置では、デシカントロータの第二の送風口から加熱空気(再生用空気)をデシカントロータの他方の半円部に通過させ、吸着材や収着材から水分を脱着させることにより、吸着材や収着材を再生する。これにより、空気が除湿される。
特開2002−126441号公報
しかしながら、一般にデシカントロータを用いた空調技術では、空調を行う対象の室内の除湿はなされるものの、室内の空気質の改善の余地が大きい。
特に、大気汚染が深刻化している所謂新興国では、室内に外気を直接供給することができず、室内の空気を活用することとなる。ところが、室内では活動している人間が二酸化炭素を排出するので、時間の経過に伴い、空気中の二酸化炭素の量が増え、室内の人間の不快感が高まる。従って、室内の空気から二酸化炭素を除去する技術が望まれている。
本発明は、上記事情に鑑みてなされたものであり、室内の空気中の二酸化炭素を除去し、空気質を高めることができる空調システムを提供する。
発明者らは、従来使用されている吸着剤・吸収剤のうち、アミン系の吸収剤として例えばアミン担持固体吸収剤を用いることで、室内の空気から二酸化炭素を吸収・脱離することができるという原理に着目し、この原理に基づいて空調を行う好適な構成及び条件等を新たに見出し、本発明を完成するに至った。
請求項1記載の空調システムは、アミン担持固体吸収剤である二酸化炭素の吸収剤を含み、処理対象空気が通風された際に前記処理対象空気に含まれる二酸化炭素を前記吸収剤に吸収させる処理ゾーンと、再生用空気が通風された際に、前記吸収剤が吸収した二酸化炭素を前記再生用空気に脱離させる再生ゾーンとに区画されたロータと、室内の空気を前記処理対象空気として前記処理ゾーンに供給する処理対象空気第一供給部と、前記処理ゾーンを通過した前記処理対象空気を前記室内に供給する処理対象空気第二供給部と、外気を前記再生用空気として前記再生ゾーンに供給する再生用空気供給部と、前記再生ゾーンを通過した前記再生用空気を室外に排出する再生用空気排出部と、を備え、前記処理ゾーンに供給される処理対象空気と前記再生ゾーンに供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成されていることを特徴とする。
図1は、上記構成を備えたロータにおける処理対象空気と再生用空気とのエンタルピー差と、二酸化炭素の除去効率との関係を示したグラフである。図1に示すように、処理対象空気と再生用空気とのエンタルピー差が大きくなる程、二酸化炭素の除去効率は向上する。そして、処理対象空気と再生用空気とのエンタルピー差が30kJ/kg(DA)以上であれば、二酸化炭素の除去効率は少なくとも30%以上になり、一般的な建物の室内における二酸化炭素の除去達成が期待できる。
上記の空調システムでは、ロータの処理ゾーンに供給される処理対象空気とロータの再生ゾーンに供給される再生用空気とのエンタルピー差が30kJ/kg以上に確保されているため、アミン担持固体吸収剤における二酸化炭素の吸収性能が向上する。従って、処理対象空気第一供給部によって室内からロータに供給された処理対象空気から二酸化炭素が良好に除去され、二酸化炭素が除去された空気(以下、処理済空気ともいう)が処理対象空気第二供給部によって室内に戻される。このような空気の循環により、室内の空気中の二酸化炭素は除去され、空気質が向上する。
請求項2記載の空調システムにおいて、前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、全熱交換器、冷却装置が順次設けられ、前記再生用空気供給部は前記全熱交換器を共有し、前記再生用空気供給部には、供給方向の上流側から下流側に向けて、前記全熱交換器、加熱装置が順次設けられていることを特徴とする。
また、請求項3記載の空調システムにおいて、前記処理対象空気第一供給部には、冷却装置が設けられ、前記再生用空気供給部には、加熱装置が設けられ、前記室内の空気の一部が前記加熱装置よりも上流側の前記再生用空気供給部に供給可能に構成されていることを特徴とする。
また、請求項4記載の空調システムにおいて、前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、エアハンドリングユニット、冷却装置が設けられ、前記エアハンドリングユニットから供給された空気の一部は前記室内に供給され、前記エアハンドリングユニットから供給された空気の残部は前記冷却装置に供給され、前記再生用空気供給部には、加熱装置が設けられていることを特徴とする。
また、請求項5記載の空調システムは、圧縮機と、膨張弁と、前記圧縮機及び前記膨張弁との間で循環する熱媒体を凝縮させる凝縮器と前記熱媒体を膨張させる蒸発器とを有するヒートポンプを備え、前記処理対象空気第一供給部において、前記処理対象空気は前記蒸発器を通過し、前記再生用空気供給部において、前記再生用空気は前記凝縮器を通過するように構成されていることを特徴とする。
上記の各空調システムには、既設又は新設の建物や室内の設備等を考慮して、上述のように処理対象空気と再生用空気とのエンタルピー差が確保される、或いは処理対象空気と再生用空気との温度差が大きくなるようにするための構成が設けられている。従って、室内の空気中の二酸化炭素は除去され、空気質が向上する。
本発明の空調システムによれば、処理対象空気と再生用空気とのエンタルピー差が確保されているため、ロータの吸収剤における二酸化炭素の吸収性能を向上させ、室内の空気中の二酸化炭素を除去し、室内の空気質を高めることができる。
本発明に係る空調システムが備えるロータ処理対象空気と再生用空気とのエンタルピー差と二酸化炭素の除去効率との関係を示したグラフである。 本発明に係る空調システムが備えるロータの概略図である。 本発明に係る空調システムの第一実施形態を示す概略図である。 本発明に係る空調システムの第二実施形態を示す概略図である。 本発明に係る空調システムの第三実施形態を示す概略図である。 本発明に係る空調システムの第四実施形態を示す概略図である。
以下、本発明に係る空調システム及びその実施形態について、図面を参照し、具体的に説明する。
本発明に係る空調システムは、先ず、図2に示すように、アミン担持固体吸収剤である二酸化炭素の吸収剤を含み、処理対象空気が通風された際に処理対象空気に含まれる二酸化炭素をアミン担持固体吸収剤に吸収させる処理ゾーン2と、再生用空気が通風された際に、アミン担持固体吸収剤が吸収した二酸化炭素を再生用空気に脱離させる再生ゾーン4とに区画されたロータ1を備えている。
ロータ1は、ハニカムロータであり、シートをコルゲート(波付け)加工し、ロータ状に巻き付け加工した円筒形の部材であり、軸線を中心として図2に示す黒矢印の方向に沿って回転するように構成されている。ロータ1は、アミン担持固体吸収剤、詳しくは一級アミン及び/又は二級アミンを官能基として有する弱塩基性イオン交換樹脂からなる固体吸収剤を含んでいる。
ロータ1の処理ゾーン2には、不図示のブロア等によって処理対象空気として室内の空気が供給される。処理対象空気が処理ゾーン2に通風されると、処理対象空気に含まれる二酸化炭素がロータ部分のアミン担持固体吸収剤に吸収されて処理対象空気から分離除去される。これにより、処理対象空気中の二酸化炭素の濃度は低減する。
再生用空気はヒータ等により適切に加温(及び/又は加湿)され、ロータ1の再生ゾーン4に供給される。再生用空気が再生ゾーン4に通風されると、ロータ部分のアミン担持固体吸収剤に吸収された二酸化炭素が再生用空気に脱離し、ゾーン内を通過するロータ部分の吸収剤は再生される。
アミン担持固体吸収剤による二酸化炭素の吸収及び脱離は、一級アミン(R−NH)の場合は次に示す(1)式及び(2)式の反応によって生じ、二級アミン(R−NH)の場合は(3)式及び(4)式の反応によって生じる。
Figure 2017075715
Figure 2017075715
Figure 2017075715
Figure 2017075715
上述の反応が起こると、アミン−二酸化炭素−水系の連続誘導体モデルができると推測されている。つまり、溶質としてのHCO 分子の周りに連続誘導体としての溶媒ができ、溶質分子の電荷分布が周りの溶媒に分極を引き起こす。連続誘導体モデルでは、このような溶質溶媒間の相互作用により、より低温条件下で(1)式から(4)式を促進させることで、吸収速度や放散速度等の反応性が高くなる。従って、低温度の再生温度で適度な湿度があれば、溶質溶媒間の相互作用が促進され、アミン担持固体吸収剤における二酸化炭素の吸収率(即ち、アミン担持固体吸収剤における二酸化炭素の除去性能)が高くなる。
本発明に係る空調システムは、上述したロータ1と、室内の空気を処理対象空気として処理ゾーン2に供給する処理対象空気第一供給部と、処理ゾーン2を通過した処理対象空気を室内に供給する処理対象空気第二供給部と、外気を再生用空気として再生ゾーン4に供給する再生用空気供給部と、再生ゾーンを通過した再生用空気を室外に排出する再生用空気排出部と、を備え、処理ゾーン2に供給される処理対象空気と再生ゾーン4に供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成されている。
即ち、本発明に係る空調システムでは、処理ゾーン2に供給される処理対象空気と再生ゾーン4に供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上となることで、溶質溶媒間の相互作用が促進され、アミン担持固体吸収剤における二酸化炭素の吸収率が高くなる。これにより、室内における二酸化炭素の除去率が少なくとも30%以上になる。また、処理対象空気と再生用空気とのエンタルピー差が45kJ/kg(DA)以上となれば、室内における二酸化炭素の除去率が40%以上になり、より好ましい。
上述のように処理対象空気と再生用空気とのエンタルピー差を少なくとも30kJ/kg(DA)以上とするために、例えば処理対象空気と再生用空気の湿度をふまえ、処理対象空気と再生用空気との温度差を好適に設定することが好ましい。以下、処理対象空気と再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成された空調システムの実施形態について、説明する。
(第一実施形態)
先ず、本発明に係る空調システムの第一実施形態について、説明する。
図3に示すように、第一実施形態の空調システム10Aは、室内Rの空気を循環させるファンコイルユニット12を備えている。但し、第一実施形態の空調システム10Aは、ファンコイルユニット12に替えて、パッケージエアコン等の室内Rの空気を循環させることが可能な設備を備えていてもよい。
室内Rとロータ1の処理ゾーン2の処理対象空気入口(供給)側とを接続する処理対象空気第一供給部14には、処理対象空気の供給方向の上流側から下流側に向けて、全熱交換器16、冷却装置18が順次設けられている。冷却装置18としては、例えば冷水コイル、冷却コイル等が挙げられる。室外とロータ1の再生ゾーン4の再生用空気入口(供給)側とを接続する再生用空気供給部20は全熱交換器16を共有し、再生用空気供給部20には、再生用空気の供給方向の上流側から下流側に向けて、全熱交換器16、加熱装置22が順次設けられている。加熱装置22としては、例えば電気ヒータ、温水コイル、蒸気コイル、加熱式加湿器(パン型加湿器、蒸気加湿器等)等が挙げられる。
また、第一実施形態の空調システム10Aは、ロータ1の処理ゾーン2の処理対象空気出口側と室内Rとを接続する処理対象空気第二供給部24と、ロータ1の再生ゾーン4の処理対象空気出口側と室外とを接続する再生用空気排出部26と、を備えている。
室内Rでは、処理対象空気第一供給部14及び処理対象空気第二供給部24による処理対象空気の循環とは独立して、外気の供給及び室内Rからの排気が行われる。これにより、室内Rの空気圧等が適切に調節される。なお、このような換気における空気の流量等は固定されている。
但し、図3に示す空調システム10Aの構成は、冬期のように室内Rの空気のエンタルピーよりも外気のエンタルピーの方が低い場合を想定しているものである。夏期のように室内Rの空気のエンタルピーよりも外気の温度の方が高い場合には、処理対象空気第一供給部14の全熱交換器16は省略する。以下の説明では、処理対象空気第一供給部14の全熱交換器16が設けられ、室内Rの空気のエンタルピーよりも外気のエンタルピーの方が低いものとする。
第一実施形態の空調システム10Aでは、室内Rの空気は、処理対象空気第一供給部14に排出され、処理対象空気第一供給部14によって処理対象空気として全熱交換器16に供給される。一方、室外から導入された外気は再生用空気供給部20によって再生用空気として全熱交換器16に供給される。全熱交換器16では、処理対象空気と再生用空気との間で全熱交換(即ち、顕熱(温度)と潜熱(湿度)の交換)が行われ、処理対象空気のエンタルピーは減少し、再生用空気のエンタルピーは増加する。
全熱交換器16でエンタルピーが減少した処理対象空気は、処理対象空気第一供給部14によって冷却装置18に供給され、ロータ1の処理ゾーン2に導入する所定の温度までさらに冷却され、ロータ1の処理ゾーン2に供給される。全熱交換器16でエンタルピーが増加した再生用空気は、再生用空気供給部20によって加熱装置22に供給され、ロータ1の再生ゾーン4に導入する所定の温度までさらに加温され、ロータ1の再生ゾーン4に供給される。処理ゾーン2に導入する処理対象空気の所定の温度、及び、再生ゾーン4に導入する再生用空気の所定の温度は、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上となるように設定する。
このように処理対象空気と再生用空気とのエンタルピー差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。
ロータ1の処理ゾーン2では、処理対象空気中の二酸化炭素がロータ1に含まれるアミン担持固体吸収剤に吸収され、処理対象空気から分離除去される。二酸化炭素を吸収したアミン担持固体吸収剤を含むロータ1の部分は回転により再生ゾーン4の領域に移動し、吸収した二酸化炭素が再生ゾーン4に通風される再生用空気に脱離する。このようにして、処理対象空気から二酸化炭素が除去され、該二酸化炭素は再生用空気に含有される。
ロータ1の処理ゾーン2から処理対象空気第二供給部24に排出された処理済空気は、処理対象空気第二供給部24によって、室内Rに供給される。ロータ1の再生ゾーン4から再生用空気排出部26に排出された再生用空気は、再生用空気排出部26によって室外へ排気される。
処理対象空気第二供給部24によって室内Rに供給される処理済空気の温度を勘案して、ファンコイルユニット12により、主に室内Rの温度が調整され、必要に応じて室内Rの湿度も調節される。また、冬期と夏期との間、所謂中間期は、室内Rの空気のエンタルピーと外気のエンタルピーとの高低差を考慮し、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上となるように、冷却装置18及び加熱装置22の設定を適宜変更する。
空調システム10Aでの設定条件の一例を示す。ビル管理法に定められているように、オフィス等の室内Rの二酸化炭素濃度を1000PPM以下に設定する。例えば、室内Rは、床面積500m×高さ2.8mの1400mの大きさを有し、室内Rに75人が活動していると想定する。このような室内Rで発生する二酸化炭素の量は15m/h(=0.02m/人・h×75人)である。3200m/hで室内Rの二酸化炭素を30%除去することで、室内Rの二酸化炭素濃度を1000PPM以下に維持することができる。
なお、室内Rには、二酸化炭素濃度500PPM、不図示の送風機から1150CMH(m/h)で外気が供給されると共に、同じ条件で室内Rから室外に排気が行われるものとする。
上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから、処理対象空気第一供給部14に3200m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。
一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度0℃、相対湿度50%(エンタルピー5kJ/kg(DA))で導入すると想定する。全熱交換器16によって、処理対象空気のエンタルピーを14kJ/kg(DA)に減少し、再生用空気のエンタルピーを29kJ/kg(DA)に増加する。冷却装置18はOFF状態とし、エンタルピー14kJ/kg(DA)の処理対象空気をロータ1の処理ゾーン2に供給する。加熱装置22はON状態とし、エンタルピー29kJ/kg(DA)の再生用空気を45℃まで加温し、エンタルピーを58kJ/kg(DA)まで増加し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は39%となり、室内Rの二酸化炭素濃度は867PPMに低減する。
上述の条件において、夏期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度26℃、相対湿度50%(エンタルピー52kJ/kg(DA))の処理対象空気が排出されると想定する。
一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度34℃、相対湿度60%(エンタルピー86kJ/kg(DA))で導入すると想定する。前述のように夏期は全熱交換器16による熱交換は行わない。従って、処理対象空気のエンタルピーは52kJ/kg(DA)であり、再生用空気のエンタルピーは86kJ/kg(DA)である。冷却装置18はON状態とし、処理対象空気を14℃に冷却し、エンタルピーを38kJ/kg(DA)に減少し、ロータ1の処理ゾーン2に供給する。加熱装置22はOFF状態とし、エンタルピー86kJ/kg(DA)の再生用空気をロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%となり、室内Rの二酸化炭素濃度は837PPMに低減する。従って、夏期であっても、ビル管理法に定められているように、オフィス等の室内Rの二酸化炭素濃度を1000PPM以下とする基準は充分に達成される。
上記説明した第一実施形態の空調システム10Aによれば、処理対象空気第一供給部14において、ロータ1の処理ゾーン2に供給する処理対象空気のエンタルピーが減少し、再生用空気供給部20において、ロータ1の再生ゾーン4に供給する再生用空気のエンタルピーが増加する。特に冬期では、全熱交換器16を稼働させることで、処理対象空気のエンタルピーを減少させると同時に、再生用空気のエンタルピーを増加させる。これにより、処理対象空気と再生用空気との間にエンタルピー差が付与される。外気の温度や相対湿度を考慮して、全熱交換器16、冷却装置18及び加熱装置22の設定等を調整しながら、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上で確保することができる。その結果、ロータ1における(1)式から(4)式の反応が促進され、ロータ1に含まれるアミン担持固体吸収剤における二酸化炭素の吸収性能が向上する(図1参照)。従って、処理対象空気から二酸化炭素が良好に除去され、処理済空気が処理対象空気第二供給部24によって室内Rに戻される。このような空気の循環により、室内Rの空気中の二酸化炭素を除去し、空気質を向上させることができる。
また、第一実施形態の空調システム10Aは全熱交換器16を備えているので、再生用空気(即ち、外気)が処理対象空気(即ち、室内空気)とエンタルピー交換(温度及び湿度の双方)を行う。そのため、第一実施形態の空調システム10Aは、例えば後述する第二実施形態の空調システム10Bのように室内Rの空気を外気と混合しただけの空調システムよりも省電力化を図ることができる。そして、冬期は特に処理対象空気と再生用空気とのエンタルピー差が大きいので、冬期の二酸化炭素の除去性能を効率良く高めることができる。
(第二実施形態)
次いで、本発明に係る空調システムの第二実施形態について、説明する。なお、第二実施形態の空調システム10Bの構成要素において、第一実施形態の空調システム10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
図4に示すように、第二実施形態の空調システム10Bでは、処理対象空気第一供給部14には、冷却装置18が設けられ、再生用空気供給部20には、加熱装置22が設けられ、室内Rの空気の一部が加熱装置22よりも上流側の再生用空気供給部20に供給可能に構成されている。詳しくは、室内Rから処理対象空気第一供給部14とは独立して排気を行うための室内排気部28がバイパス部30を介して再生用空気供給部20と合流している。室内排気部28、バイパス部30及び再生用空気供給部20には、空気の流量を調節するためのダンパーが設けられている。
第二実施形態の空調システム10Bでは、室内Rの空気は、処理対象空気第一供給部14と室内排気部28に分けて排出される。室内排気部28に排出された空気は、バイパス部30によって再生用空気供給部20に直接供給可能とされている。季節や室外の環境に応じて、冬期等には室内排気部28に排出された空気全部を再生用空気供給部20に供給し、夏期等には室内排気部28に排出された空気全部を室外に排気する。室外から導入された外気は再生用空気供給部20において、バイパス部30からの室内Rの空気と混合され、エンタルピーが増加する。
室内Rから排出された処理対象空気は、処理対象空気第一供給部14によって冷却装置18に供給され、ロータ1の処理ゾーン2に導入する所定の温度までさらに冷却され、エンタルピーが減少し、ロータ1の処理ゾーン2に供給される。室内Rの空気と混合しエンタルピーが増加した再生用空気は、再生用空気供給部20によって加熱装置22に供給され、ロータ1の再生ゾーン4に導入する所定のエンタルピーまでさらに加温され、ロータ1の再生ゾーン4に供給される。
このように処理対象空気と再生用空気とのエンタルピー差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。
ロータ1における処理対象空気と再生用空気との間の二酸化炭素のやりとり、及びロータ1を通過後の処理済空気及び再生用空気の流れは、第一実施形態の空調システム10Aと同様である。
空調システム10Bでの設定条件の一例を示す。室内Rの大きさ及び給気排気等の条件は、第一実施形態の空調システム10Aの設計条件の一例と同様とする。
上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。
一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を1250m/h、温度0℃、相対湿度50%(エンタルピー5kJ/kg(DA))で導入すると想定する。室内排気部28に排出された室内Rの空気をバイパス部30に100%導入し、再生用空気供給部20に1150m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))で供給する。これにより、再生用空気のエンタルピーは17kJ/kg(DA)に増加する。冷却装置18はON状態とし、処理対象空気を9℃に冷却して、エンタルピーを25kJ/kg(DA)に減少し、ロータ1の処理ゾーン2に供給する。加熱装置22もON状態とし、再生用空気を45℃まで加温して、エンタルピーを55kJ/kg(DA)に増加し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は31%、室内Rの二酸化炭素濃度は968PPMに低減する。
上述の条件において、夏期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度26℃、相対湿度50%(エンタルピー52kJ/kg(DA))の処理対象空気が排出されると想定する。
一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度34℃、相対湿度60%(エンタルピー86kJ/kg(DA))で導入すると想定する。
夏期の場合は、室内排気部28からバイパス部30への室内Rの空気の導入は行わず、室内排気部28に導入された空気3を100%排気する。そして、第一実施形態の空調システム10Aの設計条件の一例と同様に、処理対象空気及び再生用空気をロータ1に供給する。処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%となり、室内Rの二酸化炭素濃度は837PPMに低減する。
上記説明した第二実施形態の空調システム10Bによれば、処理対象空気第一供給部14において冷却装置18で冷却され、ロータ1の処理ゾーン2に供給される処理対象空気と、室内排気部28からバイパスされた室内Rの空気との混合でエンタルピーが増加すると共に、再生用空気供給部20において加熱装置22で加温され、エンタルピーが増加し、ロータ1の再生ゾーン4に供給される再生用空気との間にエンタルピー差が付与される。外気の温度や相対湿度を考慮して、冷却装置18及び加熱装置22の設定等を調整しながら、処理対象空気と再生用空気とのエンタルピー差を少なくとも30kJ/kg(DA)以上で確保することができる。そのため、第一実施形態の空調システム10Aと同様の効果が得られる。
(第三実施形態)
次いで、本発明に係る空調システムの第三実施形態について、説明する。なお、第三実施形態の空調システム10Cの構成要素において、第一実施形態の空調システム10A又は第二実施形態の空調システム10Bの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
図5に示すように、第三実施形態の空調システム10Cでは、処理対象空気第一供給部14には、処理対象空気の供給方向の上流側から下流側に向けて、エアハンドリングユニット32、冷却装置18が設けられ、エアハンドリングユニット32から供給された空気の一部は室内Rに供給され、エアハンドリングユニット32から供給された空気の残部は冷却装置18に供給され、再生用空気供給部20には、加熱装置22が設けられている。
エアハンドリングユニット32としては、空調システムにおいて一般に使用されているものを適用することができる。
再生用空気供給部20には、加熱装置22の上流側に、再生用空気の供給方向の上流側から下流側に向けて、加熱装置34と、加湿器36が設けられている。これにより、例えば冬期であっても、ロータ1の寿命を縮めることなく、臭いの発生等も抑え、処理対象空気と再生用空気とのエンタルピー差を30kJ/kg(DA)以上にすることができる。
第三実施形態の空調システム10Cでは、室内Rの空気は、処理対象空気第一供給部14によってエアハンドリングユニット32に供給される。エアハンドリングユニット32から排出された処理対象空気の一部は、室内Rに戻される。エアハンドリングユニット32から室内Rに戻される空気により、主に室内Rの温度が調整され、必要に応じて室内Rの湿度も調節される。この点を考慮して、エアハンドリングユニット32から排出する処理対象空気の温度や湿度等の条件を適切に設定することが好ましい。
エアハンドリングユニット32から排出された処理対象空気の残部は、処理対象空気第一供給部14によって冷却装置18に供給され、ロータ1の処理ゾーン2に導入する所定の温度までさらに冷却され、ロータ1の処理ゾーン2に供給される。一方、再生用空気は、再生用空気供給部20によって加熱装置22に供給され、ロータ1の再生ゾーン4に導入する所定の温度までさらに加温され、ロータ1の再生ゾーン4に供給される。
このように処理対象空気と再生用空気とのエンタルピー差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。
ロータ1における処理対象空気と再生用空気との間の二酸化炭素のやりとり、及びロータ1を通過後の処理済空気及び再生用空気の流れは、第一実施形態の空調システム10Aと同様である。
空調システム10Cでの設定条件の一例を示す。室内Rの大きさ及び給気排気等の条件は、第一実施形態の空調システム10Aの設計条件の一例と同様とする。
上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に13600m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。
一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を2400m/h、温度0℃、相対湿度50%(エンタルピー5kJ/kg(DA))で導入すると想定する。エアハンドリングユニット32では、室内Rから処理対象空気第一供給部14に供給された処理対象空気の条件を保持する。冷却装置18はON状態とし、エアハンドリングユニット32で調整された後の22℃の処理対象空気を11℃(エンタルピー27kJ/kg(DA))に冷却して、ロータ1の処理ゾーン2に供給する。加熱装置34と加湿器36と加熱装置22もON状態とし、再生用空気のエンタルピーを75kJ/kg(DA)に増加し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%、室内Rの二酸化炭素濃度は842PPMに低減する。
上述の条件において、夏期の場合は、エアハンドリングユニット32で、室内Rから処理対象空気第一供給部14に供給された処理対象空気の条件を適宜変更し、第一実施形態の空調システム10A及び第二実施形態の空調システム10Bの夏期における設計条件の一例と同様に、処理対象空気及び再生用空気をロータ1に供給する。処理対象空気と再生用空気とのエンタルピー差により、ロータ1の二酸化炭素の除去率は41%となり、室内Rの二酸化炭素濃度は837PPMに低減する。
上記説明した第三実施形態の空調システム10Cによれば、処理対象空気第一供給部14においてエアハンドリングユニット32を通過して冷却装置18で冷却され、ロータ1の処理ゾーン2に供給される処理対象空気と、再生用空気供給部20において加熱装置34と、加湿器36及び加熱装置22で加温され、ロータ1の再生ゾーン4に供給される再生用空気との間にエンタルピー差が付与される。
また、第三実施形態の空調システム10Cによれば、処理対象空気第一供給部14においてエアハンドリングユニット32を通過した処理対象空気の一部が室内Rに戻されるので、室内Rの空気循環が効率良く行われる。さらに、第三実施形態の空調システム10Cによれば、第二実施形態の空調システム10Bと同様に全熱交換器16を用いずに済み、加えてエアハンドリングユニット32がファンコイルユニット12の機能も兼ねるので、簡易な構成で空調システム10Bのより一層の省スペース化を図ることができる。また、ファンコイルユニット12も用いずに済む。
(第四実施形態)
次いで、本発明に係る空調システムの第四実施形態について、説明する。なお、第四実施形態の空調システム10Dの構成要素において、第一実施形態の空調システム10Aの構成要素と同一の構成要素については、同一の符号を付し、その説明を省略する。
図6に示すように、第四実施形態の空調システム10Dは、ファンコイルユニット12と、圧縮機42と、膨張弁44と、圧縮機42及び膨張弁44との間で循環する熱媒体(図示略)を凝縮させる凝縮器46と熱媒体を膨張させる蒸発器48とを有するヒートポンプ40を備えている。空調システム10Dでは、処理対象空気第一供給部14において、処理対象空気は蒸発器48を通過し、再生用空気供給部20において、再生用空気は凝縮器46を通過するように構成されている。
ヒートポンプ40としては、空調システムにおいて一般に使用されているものを適用することができる。
第四実施形態の空調システム10Dでは、室内Rの空気は、処理対象空気第一供給部14によって、処理対象空気としてヒートポンプ40の蒸発器48に供給され、蒸発器48を通過する。処理対象空気は、蒸発器48で膨張する熱媒体の温度低下によってロータ1の処理ゾーン2に導入する所定の温度まで冷却され、ロータ1の処理ゾーン2に供給される。一方、再生用空気は、再生用空気供給部20によって、ヒートポンプ40の凝縮器46に供給され、凝縮器46を通過する。再生用空気は、凝縮器46で凝縮される熱媒体の熱によってロータ1の再生ゾーン4に導入する所定の温度まで加温され、ロータ1の再生ゾーン4に供給される。
このように処理対象空気と再生用空気との温度差が付与された状態で、処理対象空気が処理ゾーン2に供給され、再生用空気が再生ゾーン4に供給される。圧縮機42はインバーターにより出力を調整することで、任意に、或いは最適な処理対象空気と再生用空気とのエンタルピー差をつくることができる。
また、図6に示すように、再生用空気供給部20において凝縮器46の下流側に加湿器36が設けられ、再生用空気排出部26にもヒートポンプ40の蒸発器50が設けられていることが好ましい。ヒートポンプ40において、二方弁52,54で量を調節しながら蒸発器48と蒸発器50から熱を回収して、凝縮器46に熱を供給することで、利用できる熱量が少ない冬期であっても、必要な分の熱を再生用空気に与えることができる。また、凝縮器46での加熱温度はヒートポンプ40の原理的に限界が有るが、加湿器36で加湿することにより、限界温度以下においてさらに再生用空気のエンタルピーを上げることができる。これにより、処理対象空気を冷やし過ぎず、処理対象空気と再生用空気とのエンタルピー差を適切に調節することができる。
ロータ1における処理対象空気と再生用空気との間の二酸化炭素のやりとり、及びロータ1を通過後の処理済空気及び再生用空気の流れは、第一実施形態の空調システム10Aと同様である。
空調システム10Dでの設定条件の一例を示す。室内Rの大きさ及び給気排気等の条件は、第一実施形態の空調システム10Aの設計条件の一例と同様とする。
上述の条件において、冬期の場合、不図示の送風機等を用いて、室内Rから処理対象空気第一供給部14に3200m/h、温度22℃、相対湿度40%(エンタルピー39kJ/kg(DA))の処理対象空気が排出されると想定する。一方、不図示の送風機等を用いて、室外から再生用空気供給部20に再生用空気を3200m/h、温度0℃、相対湿度50%で導入すると想定する。ヒートポンプ40の蒸発器48(熱量:27kJ/kg)では、22℃の処理対象空気を11℃に冷却して、ロータ1の処理ゾーン2に供給する。ヒートポンプ40の凝縮器46によって、0℃の再生用空気を50℃以上まで加温し、ロータ1の再生ゾーン4に供給する。このような処理対象空気と再生用空気とのエンタルピー差により、第一実施形態の空調システム10Aの設計条件の一例と同様に、ロータ1の二酸化炭素の除去率は30%以上となる。
上述の条件において、夏期の場合は、ヒートポンプ40の圧縮機42及び膨張弁44を用いて、蒸発器48及び凝縮器46の条件を適宜変更し、上述した第一実施形態の空調システム10A等の設計条件の一例と同様に、処理対象空気及び再生用空気をロータ1に供給する。処理対象空気と再生用空気とのエンタルピー差により、上述した第一実施形態の空調システム10A等の設計条件の一例と同様に、ロータ1の二酸化炭素の除去率は30%以上となる。言い換えれば、ロータ1の二酸化炭素の除去率が30%以上となるように、処理対象空気及び再生用空気の条件等を調節する。
上記説明した第四実施形態の空調システム10Dによれば、処理対象空気第一供給部14においてヒートポンプ40の蒸発器48で冷却され、ロータ1の処理ゾーン2に供給される処理対象空気と、ヒートポンプ40の凝縮器46で加温され、ロータ1の再生ゾーン4に供給される再生用空気との間にエンタルピー差が付与され、処理対象空気と再生用空気とのエンタルピー差が少なくとも30kJ/kg(DA)以上で確保される。そのため、第一実施形態の空調システム10Aと同様の効果が得られる。
また、既にヒートポンプが設けられた建物等に対しては、そのヒートポンプを上記説明したヒートポンプ40として活用することで、追加する設備数を抑えて空調システム10Aを後付で設置し、建物の室内Rの二酸化炭素を効果的に除去することができる。
以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変更が可能である。
例えば、本発明に係る空調システムの構成は、上述の各実施形態に限定されず、処理対象空気と再生用空気とのエンタルピー差が30kJ/kg(DA)以上になれば、適宜変更可能である。また、本発明に係る空調システムを設置する建築物の設備や種々の条件に応じて、上述の実施形態を適宜組み合わせてもよい。
1 ロータ
2 処理ゾーン
4 再生ゾーン
10A,10B,10C,10D 空調システム
14 処理対象空気第一供給部
16 全熱交換器
18 冷却装置
20 再生用空気供給部
22 加熱装置
24 処理対象空気第二供給部
26 再生用空気排出部
32 エアハンドリングユニット
40 ヒートポンプ
42 圧縮機
44 膨張弁
46 凝縮器
48 蒸発器

Claims (5)

  1. アミン担持固体吸収剤である二酸化炭素の吸収剤を含み、処理対象空気が通風された際に前記処理対象空気に含まれる二酸化炭素を前記吸収剤に吸収させる処理ゾーンと、再生用空気が通風された際に、前記吸収剤が吸収した二酸化炭素を前記再生用空気に脱離させる再生ゾーンとに区画されたロータと、
    室内の空気を前記処理対象空気として前記処理ゾーンに供給する処理対象空気第一供給部と、
    前記処理ゾーンを通過した前記処理対象空気を前記室内に供給する処理対象空気第二供給部と、
    外気を前記再生用空気として前記再生ゾーンに供給する再生用空気供給部と、
    前記再生ゾーンを通過した前記再生用空気を室外に排出する再生用空気排出部と、
    を備え、
    前記処理ゾーンに供給される処理対象空気と前記再生ゾーンに供給される再生用空気とのエンタルピー差が30kJ/kg(DA)以上になるように構成されていることを特徴とする空調システム。
  2. 前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、全熱交換器、冷却装置が順次設けられ、
    前記再生用空気供給部は前記全熱交換器を共有し、
    前記再生用空気供給部には、供給方向の上流側から下流側に向けて、前記全熱交換器、加熱装置が順次設けられていることを特徴とする前記請求項1に記載の空調システム。
  3. 前記処理対象空気第一供給部には、冷却装置が設けられ、
    前記再生用空気供給部には、加熱装置が設けられ、
    前記室内の空気の一部が前記加熱装置よりも上流側の前記再生用空気供給部に供給されることを特徴とする前記請求項1に記載の空調システム。
  4. 前記処理対象空気第一供給部には、供給方向の上流側から下流側に向けて、エアハンドリングユニット、冷却装置が設けられ、
    前記エアハンドリングユニットから供給された空気の一部は前記室内に供給され、
    前記エアハンドリングユニットから供給された空気の残部は前記冷却装置に供給され、
    前記再生用空気供給部には、加熱装置が設けられていることを特徴とする前記請求項1に記載の空調システム。
  5. 圧縮機と、膨張弁と、前記圧縮機及び前記膨張弁との間で循環する熱媒体を凝縮させる凝縮器と前記熱媒体を膨張させる蒸発器とを有するヒートポンプを備え、
    前記処理対象空気第一供給部において、前記処理対象空気は前記蒸発器を通過し、
    前記再生用空気供給部において、前記再生用空気は前記凝縮器を通過するように構成されていることを特徴とする前記請求項1に記載の空調システム。
JP2015202208A 2015-10-13 2015-10-13 空調システム Active JP6652806B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015202208A JP6652806B2 (ja) 2015-10-13 2015-10-13 空調システム
TW105133029A TWI702367B (zh) 2015-10-13 2016-10-13 空調系統
CN201680059237.4A CN108136320B (zh) 2015-10-13 2016-10-13 空气调节系统
PCT/JP2016/080377 WO2017065215A1 (ja) 2015-10-13 2016-10-13 空調システム
SG11201802965UA SG11201802965UA (en) 2015-10-13 2016-10-13 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202208A JP6652806B2 (ja) 2015-10-13 2015-10-13 空調システム

Publications (2)

Publication Number Publication Date
JP2017075715A true JP2017075715A (ja) 2017-04-20
JP6652806B2 JP6652806B2 (ja) 2020-02-26

Family

ID=58518336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202208A Active JP6652806B2 (ja) 2015-10-13 2015-10-13 空調システム

Country Status (5)

Country Link
JP (1) JP6652806B2 (ja)
CN (1) CN108136320B (ja)
SG (1) SG11201802965UA (ja)
TW (1) TWI702367B (ja)
WO (1) WO2017065215A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154063A (ja) * 2016-03-01 2017-09-07 株式会社西部技研 吸収式除去・濃縮装置
JP2019052808A (ja) * 2017-09-15 2019-04-04 清水建設株式会社 空調装置及び空調システム
CN111023505A (zh) * 2019-12-20 2020-04-17 青岛海信日立空调系统有限公司 一种中央加湿系统
JP2021094485A (ja) * 2019-12-13 2021-06-24 株式会社西部技研 ガス除去濃縮装置
WO2021181579A1 (ja) * 2020-03-11 2021-09-16 株式会社西部技研 吸収式除去・濃縮装置
JP7265103B1 (ja) * 2022-07-15 2023-04-25 三菱電機株式会社 二酸化炭素回収システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6970522B2 (ja) * 2017-04-27 2021-11-24 川崎重工業株式会社 空気浄化システム
EP3878541A1 (en) * 2020-03-09 2021-09-15 Molecule RND Limited Carbon dioxide and humidity capture system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315694A (ja) * 2006-05-26 2007-12-06 Mayekawa Mfg Co Ltd デシカント空調システム及びその運転方法
WO2010100739A1 (ja) * 2009-03-05 2010-09-10 株式会社西部技研 空気調和機
JP2011058676A (ja) * 2009-09-08 2011-03-24 Shimizu Corp 空調システム
JP2011094821A (ja) * 2009-10-27 2011-05-12 Seibu Giken Co Ltd 空気調和装置
JP5795423B1 (ja) * 2014-12-19 2015-10-14 株式会社西部技研 吸収式除去・濃縮装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638413Y2 (ja) * 1984-11-08 1988-03-14
TWI541478B (zh) * 2009-10-27 2016-07-11 Seibu Giken Kk Air conditioning unit
JP5635886B2 (ja) * 2010-11-29 2014-12-03 アズビル株式会社 デシカント空調システムおよびその運転方法
US9474999B2 (en) * 2011-05-11 2016-10-25 Maohong Fan Bi-directional reactor and supported monoethenalamine for CO2 separation
EP2764296B1 (en) * 2011-09-12 2018-03-21 Bry-Air (Asia) Pvt. Ltd. Apparatus and method for control of solid desiccant dehumidifiers
KR101542334B1 (ko) * 2011-09-29 2015-08-05 다이킨 고교 가부시키가이샤 제습 시스템
US8597411B2 (en) * 2012-02-17 2013-12-03 Archon Technologies Ltd. Sorbents for the recovery and stripping of acid gases

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315694A (ja) * 2006-05-26 2007-12-06 Mayekawa Mfg Co Ltd デシカント空調システム及びその運転方法
WO2010100739A1 (ja) * 2009-03-05 2010-09-10 株式会社西部技研 空気調和機
JP2011058676A (ja) * 2009-09-08 2011-03-24 Shimizu Corp 空調システム
JP2011094821A (ja) * 2009-10-27 2011-05-12 Seibu Giken Co Ltd 空気調和装置
JP5795423B1 (ja) * 2014-12-19 2015-10-14 株式会社西部技研 吸収式除去・濃縮装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154063A (ja) * 2016-03-01 2017-09-07 株式会社西部技研 吸収式除去・濃縮装置
JP2019052808A (ja) * 2017-09-15 2019-04-04 清水建設株式会社 空調装置及び空調システム
JP2021094485A (ja) * 2019-12-13 2021-06-24 株式会社西部技研 ガス除去濃縮装置
JP7455566B2 (ja) 2019-12-13 2024-03-26 株式会社西部技研 ガス除去濃縮装置
CN111023505A (zh) * 2019-12-20 2020-04-17 青岛海信日立空调系统有限公司 一种中央加湿系统
WO2021181579A1 (ja) * 2020-03-11 2021-09-16 株式会社西部技研 吸収式除去・濃縮装置
US20220274051A1 (en) * 2020-03-11 2022-09-01 Seibu Giken Co., Ltd. Absorption-type removal and concentration device
JP7265103B1 (ja) * 2022-07-15 2023-04-25 三菱電機株式会社 二酸化炭素回収システム
WO2024013967A1 (ja) * 2022-07-15 2024-01-18 三菱電機株式会社 二酸化炭素回収システム

Also Published As

Publication number Publication date
JP6652806B2 (ja) 2020-02-26
SG11201802965UA (en) 2018-05-30
TW201719083A (zh) 2017-06-01
CN108136320A (zh) 2018-06-08
WO2017065215A1 (ja) 2017-04-20
CN108136320B (zh) 2021-11-02
TWI702367B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2017065215A1 (ja) 空調システム
JP5795423B1 (ja) 吸収式除去・濃縮装置
KR102546428B1 (ko) 환기 공조 장치
JP5417213B2 (ja) 間接蒸発冷却型外調機システム
JP4729409B2 (ja) デシカント換気装置
JP2005525528A (ja) 収着式熱交換器及び関連する冷却収着方法
JP2009275955A (ja) デシカント空調装置
TW201910690A (zh) 換氣空調裝置
KR20110132234A (ko) 데시칸트 공조기
JP2017154063A (ja) 吸収式除去・濃縮装置
JP2009097837A (ja) 調湿調温デシカントロータ及びこれを用いたデシカント換気システム
CN110871014A (zh) 具有移动床结构的co2洗涤器
JP2000291978A (ja) 空気調和装置
JP2011089665A (ja) 調湿装置
WO2010100739A1 (ja) 空気調和機
JP2011033302A (ja) 調湿換気装置
JP5089254B2 (ja) 自動車用調湿空調システム
JP2020089891A (ja) 吸収式除去・濃縮装置
JP2009121698A (ja) デシカント空調装置
JP4011724B2 (ja) デシカント空調方法
JP2001056132A (ja) 空気調和装置
JP2007170786A (ja) 換気システム
JP2008304113A (ja) 調湿空調システム
JP2009030974A (ja) 小型デシカント空調装置
JP2012006415A (ja) 鉄道車両用空調装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200124

R150 Certificate of patent or registration of utility model

Ref document number: 6652806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250