TW201703120A - Oxide semiconductor thin film transistor and manufacturing method thereof - Google Patents

Oxide semiconductor thin film transistor and manufacturing method thereof Download PDF

Info

Publication number
TW201703120A
TW201703120A TW104121643A TW104121643A TW201703120A TW 201703120 A TW201703120 A TW 201703120A TW 104121643 A TW104121643 A TW 104121643A TW 104121643 A TW104121643 A TW 104121643A TW 201703120 A TW201703120 A TW 201703120A
Authority
TW
Taiwan
Prior art keywords
layer
oxide semiconductor
hydrogen
patterned
thin film
Prior art date
Application number
TW104121643A
Other languages
Chinese (zh)
Other versions
TWI613706B (en
Inventor
王培筠
胡晉瑋
陳佳楷
黃雅琴
許庭毓
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW104121643A priority Critical patent/TWI613706B/en
Priority to CN201510580206.0A priority patent/CN105206677B/en
Publication of TW201703120A publication Critical patent/TW201703120A/en
Application granted granted Critical
Publication of TWI613706B publication Critical patent/TWI613706B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Abstract

An oxide semiconductor thin film transistor includes a patterned oxide semiconductor layer, a patterned gate insulation layer, a gate, a hydrogen diffusion control layer, a hydrogen source layer, a source, and a drain. The patterned oxide semiconductor layer is disposed on a substrate. The patterned gate insulation layer is disposed on the patterned oxide semiconductor layer. The gate is disposed on the patterned gate insulation layer. The hydrogen diffusion control layer is disposed on the gate and the patterned oxide semiconductor layer. The hydrogen diffusion control layer wraps the gate and the patterned gate insulation layer. The hydrogen source layer is disposed on the hydrogen diffusion control layer and the patterned oxide semiconductor layer. The source and the drain are disposed on the hydrogen source layer. A hydrogen concentration of the hydrogen source layer is higher than a hydrogen concentration of the hydrogen diffusion control layer.

Description

氧化物半導體薄膜電晶體及其製作方法Oxide semiconductor thin film transistor and manufacturing method thereof

本發明係關於一種氧化物半導體薄膜電晶體及其製作方法,尤指一種利用氫擴散控制層來控制氫進入氧化物半導體層之狀況的氧化物半導體薄膜電晶體及其製作方法。The present invention relates to an oxide semiconductor thin film transistor and a method of fabricating the same, and more particularly to an oxide semiconductor thin film transistor using a hydrogen diffusion control layer to control the state of hydrogen entering an oxide semiconductor layer and a method of fabricating the same.

近年來,各種顯示器之應用發展迅速,而薄膜電晶體(thin film transistor, TFT)係一種廣泛應用於顯示器技術之半導體元件,例如應用在液晶顯示器(liquid crystal display, LCD)、有機發光二極體(organic light emitting diode, OLED)顯示器及電子紙(electronic paper, E-paper)等顯示器中。薄膜電晶體係利用來提供電壓或電流的切換,以使得各種顯示器中的顯示畫素可呈現出亮、暗以及灰階的顯示效果。In recent years, the application of various displays has been rapidly developed, and thin film transistors (TFTs) are a semiconductor component widely used in display technology, such as liquid crystal display (LCD), organic light-emitting diodes. (organic light emitting diode, OLED) display and electronic paper (E-paper) and other displays. Thin film electro-crystal systems are utilized to provide switching of voltage or current such that display pixels in various displays can exhibit bright, dark, and grayscale display effects.

目前顯示器業界使用之薄膜電晶體可根據使用之半導體層材料來做區分,包括非晶矽薄膜電晶體(amorphous silicon TFT, a-Si TFT)、多晶矽薄膜電晶體(poly silicon TFT)以及氧化物半導體薄膜電晶體(oxide semiconductor TFT)。其中氧化物半導體薄膜電晶體是應用近年來新崛起的氧化物半導體材料,此類材料一般為非晶相(amorphous)結構,故較沒有應用於大尺寸面板上均勻性不佳的問題,且可利用多種方式成膜,例如濺鍍(sputter)、旋塗(spin-on)以及印刷(inkjet printing)等方式。由於氧化物半導體薄膜電晶體的電子遷移率一般可較非晶矽薄膜電晶體高數倍以上且具有上述之製程優勢,故目前市場上已逐漸有一些應用氧化物半導體薄膜電晶體之商品化產品上市。At present, thin film transistors used in the display industry can be distinguished according to the semiconductor layer materials used, including amorphous silicon TFTs (a-Si TFTs), polysilicon TFTs, and oxide semiconductors. Thin film transistor (oxide semiconductor TFT). Among them, the oxide semiconductor thin film transistor is a newly emerging oxide semiconductor material in recent years, and such a material is generally an amorphous structure, so it is less suitable for the problem of poor uniformity on a large-sized panel, and Film formation is performed in a variety of ways, such as sputtering, spin-on, and inkjet printing. Since the electron mobility of the oxide semiconductor thin film transistor is generally several times higher than that of the amorphous germanium thin film transistor and has the above-mentioned process advantages, there are some commercial products for the application of the oxide semiconductor thin film transistor on the market. Listing.

在一般氧化物半導體薄膜電晶體的結構中,氧化物半導體層與源極/汲極之材料間的接觸阻抗會明顯影響氧化物半導體薄膜電晶體的整體電性表現。如第1圖所示,在薄膜電晶體的尺寸固定通道寬度(W)的情況下,通道長度(L)越來越小時,可發現當L縮小到15微米以下時,氧化物半導體薄膜電晶體電性表現將會產生偏移。因此,為了提升氧化物半導體薄膜電晶體的效能,需對氧化物半導體層與源極/汲極間的接觸阻抗進行改善。目前一般的做法有使用電漿處理(plasma treatment)或使氧化物半導體層直接接觸含氫量高的材料而產生氫擴散,以使部分預計與源極/汲極接觸的氧化物半導體層之區域的電阻率降低。然而,上述之電漿處理方式容易造成被處理後之氧化物半導體層的阻值狀況不穩定,而直接接觸含氫量高的材料以產生氫擴散的方式則不易控制其擴散範圍,容易造成原本要當作傳導區之氧化物半導體層易受到擴散影響而嚴重地影響到薄膜電晶體之元件特性,特別是在短通道之薄膜電晶體的設計下。In the structure of a general oxide semiconductor thin film transistor, the contact resistance between the oxide semiconductor layer and the source/drain material can significantly affect the overall electrical performance of the oxide semiconductor thin film transistor. As shown in Fig. 1, in the case where the size of the thin film transistor is fixed by the channel width (W), the channel length (L) becomes smaller and smaller, and it can be found that when L is reduced to 15 μm or less, the oxide semiconductor thin film transistor is obtained. Electrical performance will shift. Therefore, in order to improve the performance of the oxide semiconductor thin film transistor, it is necessary to improve the contact resistance between the oxide semiconductor layer and the source/drain. At present, it is common practice to use plasma treatment or to directly contact an oxide semiconductor layer with a material having a high hydrogen content to generate hydrogen diffusion so that a portion of the oxide semiconductor layer which is expected to be in contact with the source/drain is partially formed. The resistivity is reduced. However, the above-mentioned plasma treatment method tends to cause unstable resistance of the treated oxide semiconductor layer, and direct contact with a material having a high hydrogen content to generate hydrogen diffusion is difficult to control the diffusion range, which is likely to cause the original The oxide semiconductor layer to be used as a conduction region is susceptible to diffusion and seriously affects the element characteristics of the thin film transistor, particularly in the design of a short-channel thin film transistor.

本發明之主要目的之一在於提供一種氧化物半導體薄膜電晶體及其製作方法,利用氫擴散控制層來控制氫進入氧化物半導體層之狀況,避免氫進入氧化物半導體層的傳導區中而影響到薄膜電晶體的元件特性,此處定義的傳導區為氧化物半導體薄膜電晶體理想上電子移動最短距離。One of the main objects of the present invention is to provide an oxide semiconductor thin film transistor and a method of fabricating the same, which utilizes a hydrogen diffusion control layer to control the state of hydrogen entering the oxide semiconductor layer, thereby preventing hydrogen from entering the conduction region of the oxide semiconductor layer and affecting it. To the element characteristics of the thin film transistor, the conduction region defined herein is the shortest distance that the oxide semiconductor thin film transistor ideally moves electrons.

本發明之一實施例提供一種氧化物半導體薄膜電晶體,包括一基板、一圖案化氧化物半導體層、一圖案化閘極介電層、一閘極、一氫擴散控制層、一氫來源層、一源極以及一汲極。圖案化氧化物半導體層設置於基板上。圖案化閘極介電層設置於圖案化氧化物半導體層上。閘極設置於圖案化閘極介電層上。氫擴散控制層設置於閘極與圖案化氧化物半導體層上,且氫擴散控制層係包覆閘極與圖案化閘極介電層。氫來源層設置於氫擴散控制層以及圖案化氧化物半導體層上,且氫來源層之含氫量大於氫擴散控制層之含氫量。源極與汲極設置於氫來源層上,且源極與汲極係與圖案化氧化物半導體層接觸且電性連接。An embodiment of the present invention provides an oxide semiconductor thin film transistor including a substrate, a patterned oxide semiconductor layer, a patterned gate dielectric layer, a gate, a hydrogen diffusion control layer, and a hydrogen source layer. , a source and a bungee. The patterned oxide semiconductor layer is disposed on the substrate. A patterned gate dielectric layer is disposed on the patterned oxide semiconductor layer. The gate is disposed on the patterned gate dielectric layer. The hydrogen diffusion control layer is disposed on the gate and the patterned oxide semiconductor layer, and the hydrogen diffusion control layer covers the gate and the patterned gate dielectric layer. The hydrogen source layer is disposed on the hydrogen diffusion control layer and the patterned oxide semiconductor layer, and the hydrogen source layer has a hydrogen content greater than a hydrogen content of the hydrogen diffusion control layer. The source and the drain are disposed on the hydrogen source layer, and the source and the drain are in contact with and electrically connected to the patterned oxide semiconductor layer.

本發明之另一實施例提供一種氧化物半導體薄膜電晶體的製作方法,包括下列步驟。於一基板上形成一圖案化氧化物半導體層;於圖案化氧化物半導體層上形成一圖案化閘極介電層;於圖案化閘極介電層上形成一閘極;於閘極與圖案化氧化物半導體層上形成一氫擴散控制層,其中氫擴散控制層係包覆閘極與圖案化閘極介電層;於氫擴散控制層以及圖案化氧化物半導體層上形成一氫來源層,其中氫來源層之含氫量大於氫擴散控制層之含氫量;以及於氫來源層上形成一源極與一汲極,其中源極與汲極係與圖案化氧化物半導體層接觸且電性連接。Another embodiment of the present invention provides a method of fabricating an oxide semiconductor thin film transistor, comprising the following steps. Forming a patterned oxide semiconductor layer on a substrate; forming a patterned gate dielectric layer on the patterned oxide semiconductor layer; forming a gate on the patterned gate dielectric layer; and forming a gate and a pattern Forming a hydrogen diffusion control layer on the oxide semiconductor layer, wherein the hydrogen diffusion control layer covers the gate and the patterned gate dielectric layer; forming a hydrogen source layer on the hydrogen diffusion control layer and the patterned oxide semiconductor layer Wherein the hydrogen source layer has a hydrogen content greater than the hydrogen diffusion control layer; and a source and a drain are formed on the hydrogen source layer, wherein the source and the drain are in contact with the patterned oxide semiconductor layer Electrical connection.

本發明之氧化物半導體薄膜電晶體係利用包覆閘極與圖案化閘極介電層之氫擴散控制層來控制氫來源層中的氫擴散至圖案化氧化物半導體層的狀況,且可避免氫來源層中的氫通過圖案化閘極介電層而擴散至圖案化閘極介電層中的傳導區,藉此可在圖案化氧化物半導體層中形成摻雜區的同時確保傳導區的電性狀況,進而可實現具有短通道設計之氧化物半導體薄膜電晶體。The oxide semiconductor thin film electro-crystal system of the present invention utilizes a hydrogen diffusion control layer covering the gate and the patterned gate dielectric layer to control the diffusion of hydrogen in the hydrogen source layer to the patterned oxide semiconductor layer, and can be avoided Hydrogen in the hydrogen source layer diffuses through the patterned gate dielectric layer to the conduction region in the patterned gate dielectric layer, whereby a doped region can be formed in the patterned oxide semiconductor layer while ensuring the conduction region The electrical condition, in turn, enables an oxide semiconductor thin film transistor having a short channel design.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第2圖至第6圖。第2圖至第6圖繪示了本發明第一實施例之氧化物半導體薄膜電晶體的製作方法示意圖。本實施例之氧化物半導體薄膜電晶體的製作方法包括下列步驟。首先,如第2圖所示,於基板10上形成圖案化氧化物半導體層20。基板10可包括硬質基板例如玻璃基板與陶瓷基板、可撓式基板(flexible substrate)例如塑膠基板或其他適合材料所形成之基板。圖案化氧化物半導體層20的材料可包括氧化銦鎵鋅、氧化鋅、氧化銦鋅、氧化銦鎵或其他適合之氧化物半導體材料,且圖案化氧化物半導體層20可藉由例如微影、蝕刻等製程達到圖案化效果或直接以轉印(roll to roll)方式形成,但並不以此為限。接著,於圖案化氧化物半導體層20上形成圖案化閘極介電層30與閘極40。圖案化閘極介電層30與閘極40可藉由同一個光阻圖案(未圖示)來定義形成,藉以使圖案化閘極介電層30的圖形與閘極40的圖形於垂直方向Z上可達到自對準(self-aligned)的效果,但並不以此為限。圖案化閘極介電層30可為單層或多層的介電材料層,且其材料可包括無機材料例如氮化矽(silicon nitride)、氧化矽(silicon oxide)、氮氧化矽(silicon oxynitride)、與金屬氧化物(例如氧化鋁)、有機材料例如丙烯酸類樹脂(acrylic resin)或其它適合之介電材料。此外,閘極40可包括金屬材料例如鋁、銅、銀、鉻、鈦、鉬之其中至少一者、上述材料之複合層或上述材料之合金,但並不以此為限而可使用其他具有導電性質之材料。Please refer to Figures 2 to 6. 2 to 6 are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to a first embodiment of the present invention. The manufacturing method of the oxide semiconductor thin film transistor of this embodiment includes the following steps. First, as shown in FIG. 2, the patterned oxide semiconductor layer 20 is formed on the substrate 10. The substrate 10 may include a rigid substrate such as a glass substrate and a ceramic substrate, a flexible substrate such as a plastic substrate or other suitable material. The material of the patterned oxide semiconductor layer 20 may include indium gallium zinc oxide, zinc oxide, indium zinc oxide, indium gallium oxide or other suitable oxide semiconductor material, and the patterned oxide semiconductor layer 20 may be formed by, for example, lithography. The etching process or the like achieves a patterning effect or is formed directly by a roll to roll method, but is not limited thereto. Next, the patterned gate dielectric layer 30 and the gate 40 are formed on the patterned oxide semiconductor layer 20. The patterned gate dielectric layer 30 and the gate 40 can be defined by the same photoresist pattern (not shown), so that the pattern of the patterned gate dielectric layer 30 and the pattern of the gate 40 are perpendicular. Self-aligned effects can be achieved on Z, but are not limited to this. The patterned gate dielectric layer 30 can be a single layer or multiple layers of dielectric material, and the material thereof can include inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride. And with a metal oxide (such as alumina), an organic material such as an acrylic resin or other suitable dielectric material. In addition, the gate 40 may include at least one of a metal material such as aluminum, copper, silver, chromium, titanium, molybdenum, a composite layer of the above materials, or an alloy of the above materials, but not limited thereto. A material of conductive nature.

接著,如第3圖所示,於圖案化閘極介電層30上形成氫擴散控制層50。並且如第4圖所示,圖案化氫擴散控制層50,於此步驟中,氫擴散控制層50、圖案化閘極介電層30與閘極40係使用同一張光罩(mask)定義出圖形,利用曝光量來決定氫擴散控制層50覆蓋圖案化閘極介電層30的大小。詳細來說,氫擴散控制層50為ㄇ字形,完全覆蓋圖案化閘極介電層30與閘極40之側邊30S以及側邊30S與圖案化氧化物半導體層20之交界處30F,氫擴散控制層50係自閘極40之頂面S於垂直方向Z上沿側邊30S向圖案化氧化物半導體層20延伸,且延伸不超出氫擴散控制層50位於頂面S垂直投影於基板10的投影範圍。水平方向H較佳係與垂直方向Z正交,而垂直方向Z較佳係大體上與基板10之表面正交,但並不以此為限。在本實施例中,氫擴散控制層50除了包覆閘極40與圖案化閘極介電層30之外,僅覆蓋住圖案化閘極介電層30之側邊30S與圖案化氧化物半導體層20之交界處30F,故氫擴散控制層50未覆蓋圖案化氧化物半導體層20於水平方向H上之兩端,但本發明並不以此為限。在本發明之其他實施例中亦可視需要使全面覆蓋圖案化氧化物半導體層20或至少覆蓋圖案化氧化物半導體層20於水平方向H上之兩端。氫擴散控制層50可包括含氫量較氫來源層60低的絕緣材料,包括氮化矽、氧化矽、氮氧化矽或金屬氧化物等,金屬氧化物舉例而言可為氧化鋁(aluminium oxide)、氧化鈣(calcium oxide)、氧化鉬(molybdenum oxide)、氧化鋅(zinc oxide)、氧化銦(indium oxide)、氧化鎵(gallium oxide)、氧化銦鎵(indium gallium oxide)、氧化銦鎵鋅(indium gallium zinc oxide)、氧化銦鋅(indium zinc oxide)、氧化銦錫(indium tin oxide)、氧化鈦(titanium oxide),氧化錫(tin oxide)、第三族金屬氧化物、第四族金屬氧化物或第五族金屬氧化物,以及其它適合的金屬氧化物材料。此處的含氫量,是製程處理後氫擴散控制層50的含氫量,而本實施例之氫擴散控制層50較佳為結構較為緻密的氧化鋁,藉此達到較佳防止氫擴散之效果,但並不以此為限。氫擴散控制層50可利用化學氣相沉積或物理氣相沉積方式形成,並可藉由製程時之製程環境以及參數調整來降低含氫量。此外,氫擴散控制層50之厚度介於100埃(angstrom)至1000埃之間,較佳係介於100埃至500埃之間,但並不此為限。值得說明的是,本實施例之氫擴散控制層50係與閘極40以及圖案化閘極介電層30對應設置,故可利用於閘極40的製程中所使用的同一光罩來對氫擴散控制層50形成圖案化效果,即可利用同一光罩並搭配曝光量(exposure dose)的調整來形成對氫擴散控制層50進行圖案化所需之對應光阻圖案,藉此達到減少光罩需求量並降低生產成本的效果,但並不以此為限。Next, as shown in FIG. 3, a hydrogen diffusion control layer 50 is formed on the patterned gate dielectric layer 30. And as shown in FIG. 4, the hydrogen diffusion control layer 50 is patterned. In this step, the hydrogen diffusion control layer 50, the patterned gate dielectric layer 30 and the gate 40 are defined by the same mask. The pattern determines the size of the hydrogen diffusion control layer 50 covering the patterned gate dielectric layer 30 using the amount of exposure. In detail, the hydrogen diffusion control layer 50 has a U-shape, completely covering the side edge 30S of the patterned gate dielectric layer 30 and the gate 40, and the junction 30F of the side edge 30S and the patterned oxide semiconductor layer 20, and hydrogen diffusion. The control layer 50 extends from the top surface S of the gate 40 in the vertical direction Z along the side 30S toward the patterned oxide semiconductor layer 20, and extends no more than the hydrogen diffusion control layer 50 is vertically projected on the substrate 10 at the top surface S. Projection range. The horizontal direction H is preferably orthogonal to the vertical direction Z, and the vertical direction Z is preferably substantially orthogonal to the surface of the substrate 10, but is not limited thereto. In the present embodiment, the hydrogen diffusion control layer 50 covers only the side 30S of the patterned gate dielectric layer 30 and the patterned oxide semiconductor except for the gate electrode 40 and the patterned gate dielectric layer 30. At the junction 30F of the layer 20, the hydrogen diffusion control layer 50 does not cover both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H, but the invention is not limited thereto. In other embodiments of the present invention, it is also possible to cover the patterned oxide semiconductor layer 20 or at least both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H as needed. The hydrogen diffusion control layer 50 may include an insulating material having a lower hydrogen content than the hydrogen source layer 60, including tantalum nitride, hafnium oxide, hafnium oxynitride or a metal oxide, and the metal oxide may be, for example, aluminum oxide. ), calcium oxide, molybdenum oxide, zinc oxide, indium oxide, gallium oxide, indium gallium oxide, indium gallium zinc oxide (indium gallium zinc oxide), indium zinc oxide, indium tin oxide, titanium oxide, tin oxide, group III metal oxide, group IV metal An oxide or a Group 5 metal oxide, as well as other suitable metal oxide materials. The hydrogen content here is the hydrogen content of the hydrogen diffusion control layer 50 after the process, and the hydrogen diffusion control layer 50 of the present embodiment is preferably a densely structured alumina, thereby achieving better prevention of hydrogen diffusion. Effect, but not limited to this. The hydrogen diffusion control layer 50 can be formed by chemical vapor deposition or physical vapor deposition, and the hydrogen content can be reduced by the process environment during the process and parameter adjustment. Further, the thickness of the hydrogen diffusion control layer 50 is between 100 angstroms and 1000 angstroms, preferably between 100 angstroms and 500 angstroms, but is not limited thereto. It should be noted that the hydrogen diffusion control layer 50 of the present embodiment is disposed corresponding to the gate 40 and the patterned gate dielectric layer 30, so that the same mask used in the process of the gate 40 can be used for hydrogen. The diffusion control layer 50 forms a patterning effect, that is, the same mask can be used with the adjustment of the exposure dose to form a corresponding photoresist pattern required for patterning the hydrogen diffusion control layer 50, thereby reducing the mask. Demand and reduce production costs, but not limited to this.

之後,如第5圖所示,於基板10、圖案化氧化物半導體層20以及氫擴散控制層50上形成一氫來源層60。氫來源層60之含氫量係大於氫擴散控制層50之含氫量。氫來源層60的材料可包括氮化矽、氧化矽、氮氧化矽或其他適合之具有高含氫量的絕緣材料,氫來源層60可包含製程反應後含氫量較高的氮化矽或製程反應後含氫量較氫擴散控制層50高的氧化矽。氫來源層60亦可利用化學氣相沉積或物理氣相沉積方式形成,並可藉由製程時之製程環境以及參數調整來提升含氫量。舉例來說,當使用化學氣相沉積來形成氮化矽之氫來源層60時,其製程溫度可為280℃,而通入的反應氣體可包括矽甲烷(SiH4 )與氨氣(NH3 ),且甲烷(SiH4 )與氨氣(NH3 )的通入量可分別為200sccm與1200sccm,藉此形成含氫量較氫擴散控制層50高之氮化矽,但並不以此為限。本實施例之氫來源層60之含氫量較佳係介於15 atoms/cm3 至27 atoms/cm3 之間,用以具有足夠的氫可擴散至圖案化氧化物半導體層20中來形成摻雜區20B,但並不以此為限。由於本實施例之氫擴散控制層50未覆蓋圖案化氧化物半導體層20於水平方向H上之兩端,故圖案化氧化物半導體層20於水平方向H上之兩端暴露於氫擴散控制層50之外而直接與氫來源層60接觸,藉此可加強氫來源層60中的氫成分擴散至對應之圖案化氧化物半導體層20的效果,進而降低摻雜區20B之電阻率。在本實施例中,圖案化氧化物半導體層20與氫來源層60直接接觸之處係形成兩個摻雜區20B,而與氫擴散控制層50、閘極40以及圖案化閘極介電層30對應之區域仍維持具有半導體特性之傳導區20A。換句話說,本實施例之圖案化氧化物半導體層20於氫來源層60形成之後可包括傳導區20A以及兩個摻雜區20B,閘極40係於垂直方向Z上與傳導區20A重疊,兩摻雜區20B於水平方向H上分別位於傳導區20A的兩側,且摻雜區20B之電阻率係小於傳導區20A之電阻率。Thereafter, as shown in FIG. 5, a hydrogen source layer 60 is formed on the substrate 10, the patterned oxide semiconductor layer 20, and the hydrogen diffusion control layer 50. The hydrogen content of the hydrogen source layer 60 is greater than the hydrogen content of the hydrogen diffusion control layer 50. The material of the hydrogen source layer 60 may include tantalum nitride, tantalum oxide, niobium oxynitride or other suitable insulating material having a high hydrogen content, and the hydrogen source layer 60 may include tantalum nitride or the like having a higher hydrogen content after the process reaction. After the process, the amount of hydrogen is higher than that of the hydrogen diffusion control layer 50. The hydrogen source layer 60 can also be formed by chemical vapor deposition or physical vapor deposition, and the hydrogen content can be increased by the process environment and parameter adjustment during the process. For example, when chemical vapor deposition is used to form the hydrogen nitride source layer 60 of tantalum nitride, the process temperature may be 280 ° C, and the introduced reaction gas may include germanium methane (SiH 4 ) and ammonia gas (NH 3 ). And the amount of methane (SiH 4 ) and ammonia (NH 3 ) can be 200 sccm and 1200 sccm, respectively, thereby forming a tantalum nitride having a higher hydrogen content than the hydrogen diffusion control layer 50, but not limit. The hydrogen source layer 60 of the present embodiment preferably has a hydrogen content of between 15 atoms/cm 3 and 27 atoms/cm 3 for having sufficient hydrogen to diffuse into the patterned oxide semiconductor layer 20 to form Doped region 20B, but not limited thereto. Since the hydrogen diffusion control layer 50 of the present embodiment does not cover both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H, both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H are exposed to the hydrogen diffusion control layer. In addition to 50, it is directly in contact with the hydrogen source layer 60, whereby the effect of diffusing the hydrogen component in the hydrogen source layer 60 to the corresponding patterned oxide semiconductor layer 20 can be enhanced, thereby reducing the resistivity of the doped region 20B. In the present embodiment, the patterned oxide semiconductor layer 20 is in direct contact with the hydrogen source layer 60 to form two doped regions 20B, and the hydrogen diffusion control layer 50, the gate 40, and the patterned gate dielectric layer. The region corresponding to 30 still maintains the conductive region 20A having semiconductor characteristics. In other words, the patterned oxide semiconductor layer 20 of the present embodiment may include a conductive region 20A and two doped regions 20B after the hydrogen source layer 60 is formed, and the gate 40 overlaps the conductive region 20A in the vertical direction Z. The two doped regions 20B are respectively located on both sides of the conductive region 20A in the horizontal direction H, and the resistivity of the doped region 20B is smaller than the resistivity of the conductive region 20A.

值得說明的是,由於本實施例之氫擴散控制層50包覆圖案化閘極介電層30,故可避免氫來源層60中的氫由側向穿過圖案化閘極介電層30而影響到傳導區20A的電性狀況。覆蓋於圖案化閘極介電層30之側邊30S與圖案化氧化物半導體層20之交界處30F之氫擴散控制層50亦可用以控制摻雜區20B的範圍,避免使摻雜區20B的範圍過大而使整個圖案化氧化物半導體層20呈現電性導通的狀態。在本實施例中,設置於閘極40上且包覆閘極40與圖案化閘極介電層30之氫擴散控制層50於水平方向H上具有第一寬度W1,閘極40於水平方向H上具有第二寬度W2,傳導區20A於水平方向H上具有第三寬度W3,而氫擴散控制層50之第一寬度W1係大於或等於傳導區20A之第三寬度W3。藉由調整氫來源層60之氫的擴散狀況可對傳導區20A之寬度進行控制,例如當氫來源層60之氫的擴散狀況較強時,傳導區20A之第三寬度W3亦可能小於閘極40之第二寬度W2。此外,本實施例之製作方法可視需要選擇性地更包括加熱處理製程,用以輔助氫來源層60之氫的擴散效果,但並不以此為限。It should be noted that since the hydrogen diffusion control layer 50 of the present embodiment encapsulates the patterned gate dielectric layer 30, hydrogen in the hydrogen source layer 60 can be prevented from laterally passing through the patterned gate dielectric layer 30. It affects the electrical condition of the conductive region 20A. The hydrogen diffusion control layer 50 covering the interface 30F of the patterned gate dielectric layer 30 and the patterned oxide semiconductor layer 20 can also be used to control the range of the doped region 20B to avoid the doping region 20B. The range is too large to cause the entire patterned oxide semiconductor layer 20 to be electrically conductive. In the present embodiment, the hydrogen diffusion control layer 50 disposed on the gate 40 and covering the gate 40 and the patterned gate dielectric layer 30 has a first width W1 in the horizontal direction H and the gate 40 in the horizontal direction. H has a second width W2, the conductive region 20A has a third width W3 in the horizontal direction H, and the first width W1 of the hydrogen diffusion control layer 50 is greater than or equal to the third width W3 of the conductive region 20A. The width of the conductive region 20A can be controlled by adjusting the diffusion state of the hydrogen of the hydrogen source layer 60. For example, when the hydrogen diffusion state of the hydrogen source layer 60 is strong, the third width W3 of the conductive region 20A may be smaller than the gate. The second width of 40 is W2. In addition, the manufacturing method of the embodiment may optionally further include a heat treatment process to assist the diffusion effect of hydrogen of the hydrogen source layer 60, but is not limited thereto.

然後,如第6圖所示,於氫來源層60中形成複數個接觸開孔V,接觸開孔V貫穿氫來源層60而暴露出部分之摻雜區20B。之後,於氫來源層60上形成一源極70S以及一汲極70D,藉此完成如第5圖所示之氧化物半導體薄膜電晶體101。源極70S與汲極70D係透過接觸開孔V與兩摻雜區20B接觸且電性連接,源極70S與汲極70D可分別包括金屬材料例如鋁、銅、銀、鉻、鈦、鉬之其中至少一者、上述材料之複合層或上述材料之合金,但並不以此為限而可使用其他具有導電性質之材料。Then, as shown in FIG. 6, a plurality of contact openings V are formed in the hydrogen source layer 60, and the contact openings V extend through the hydrogen source layer 60 to expose portions of the doped regions 20B. Thereafter, a source 70S and a drain 70D are formed on the hydrogen source layer 60, whereby the oxide semiconductor thin film transistor 101 as shown in Fig. 5 is completed. The source 70S and the drain 70D are in contact with and electrically connected to the two doped regions 20B through the contact opening V. The source 70S and the drain 70D may respectively comprise a metal material such as aluminum, copper, silver, chromium, titanium, molybdenum. At least one of them, a composite layer of the above materials or an alloy of the above materials, but not limited thereto, other materials having conductive properties may be used.

如第6圖所示,本實施例之氧化物半導體薄膜電晶體101包括圖案化氧化物半導體層20、圖案化閘極介電層30、閘極40、氫擴散控制層50、氫來源層60、源極70S以及汲極70D。圖案化氧化物半導體層20設置於基板10上。圖案化閘極介電層30設置於圖案化氧化物半導體層20上。閘極40設置於圖案化閘極介電層30上。氫擴散控制層50設置於閘極40與圖案化氧化物半導體層20上,且氫擴散控制層50係包覆閘極40與圖案化閘極介電層30。氫來源層60設置於氫擴散控制層50以及圖案化氧化物半導體層20上,且氫來源層60之含氫量大於氫擴散控制層50之含氫量。源極70S與汲極70D設置於氫來源層60上,源極70S與汲極70D係透過接觸開孔V與兩摻雜區20B接觸且電性連接。氧化物半導體薄膜電晶體101中各元件的材料特性已於上述製作方法中說明,故在此並不再贅述。值得注意的是,本實施例之氫擴散控制層50較佳係直接接觸圖案化氧化物半導體層20,氫來源層60較佳係直接接觸氫擴散控制層50,且氫來源層60係直接接觸摻雜區20B,但並不以此為限。藉由本實施例之氫擴散控制層50可控制氫來源層60中的氫擴散至圖案化氧化物半導體層20的狀況,並同時可避免氫來源層60中的氫通過圖案化閘極介電層30而擴散至圖案化氧化物半導體層20中的傳導區20A。在此設計下,即使閘極40以及圖案化閘極介電層30因短通道設計而需縮小,仍可藉由氫擴散控制層50來控制摻雜區20B的範圍大小並避免傳導區20A的電性受到影響,藉此提升氧化物半導體薄膜電晶體101之元件特性。As shown in FIG. 6, the oxide semiconductor thin film transistor 101 of the present embodiment includes a patterned oxide semiconductor layer 20, a patterned gate dielectric layer 30, a gate 40, a hydrogen diffusion control layer 50, and a hydrogen source layer 60. , source 70S and bungee 70D. The patterned oxide semiconductor layer 20 is disposed on the substrate 10. The patterned gate dielectric layer 30 is disposed on the patterned oxide semiconductor layer 20. The gate 40 is disposed on the patterned gate dielectric layer 30. The hydrogen diffusion control layer 50 is disposed on the gate 40 and the patterned oxide semiconductor layer 20, and the hydrogen diffusion control layer 50 covers the gate 40 and the patterned gate dielectric layer 30. The hydrogen source layer 60 is provided on the hydrogen diffusion control layer 50 and the patterned oxide semiconductor layer 20, and the hydrogen source layer 60 has a hydrogen content greater than that of the hydrogen diffusion control layer 50. The source 70S and the drain 70D are disposed on the hydrogen source layer 60, and the source 70S and the drain 70D are in contact with and electrically connected to the two doped regions 20B through the contact opening V. The material properties of the respective elements in the oxide semiconductor thin film transistor 101 have been described in the above-described manufacturing method, and thus will not be described herein. It should be noted that the hydrogen diffusion control layer 50 of the present embodiment preferably directly contacts the patterned oxide semiconductor layer 20, and the hydrogen source layer 60 preferably directly contacts the hydrogen diffusion control layer 50, and the hydrogen source layer 60 is in direct contact. Doped region 20B, but not limited thereto. The hydrogen diffusion control layer 50 of the present embodiment can control the diffusion of hydrogen in the hydrogen source layer 60 to the patterned oxide semiconductor layer 20 while avoiding hydrogen in the hydrogen source layer 60 passing through the patterned gate dielectric layer. 30 is diffused into the conductive region 20A in the patterned oxide semiconductor layer 20. Under this design, even if the gate 40 and the patterned gate dielectric layer 30 need to be reduced due to the short channel design, the range of the doped region 20B can be controlled by the hydrogen diffusion control layer 50 and the conduction region 20A can be avoided. The electrical properties are affected, thereby enhancing the element characteristics of the oxide semiconductor thin film transistor 101.

舉例來說,請參考第6圖至第9圖。第7圖繪示了第一實施例之氧化物半導體薄膜電晶體101的通道寬度(W)與通道長度(L)均為5微米的設計狀況下之汲極電流-閘極電壓的關係圖。第8圖繪示了一對照例之氧化物半導體薄膜電晶體200的示意圖。第9圖繪示了對照例之氧化物半導體薄膜電晶體200於通道寬度與通道長度均為5微米的設計狀況下之汲極電流-閘極電壓關係圖。此對照例之氧化物半導體薄膜電晶體200除了未包括第一實施例之氫擴散控制層50,其餘部件均與氧化物半導體薄膜電晶體101相似。如第6圖與第7圖所示,第一實施例之氧化物半導體薄膜電晶體101在設置有氫擴散控制層50的狀況下可於通道寬度與通道長度比值相對較高的狀況下仍具有良好的薄膜電晶體特性,且其載子遷移率(mobility)可達約22 cm2 /VS。相對來說,如第8圖與第9圖所示,由於未設置氫擴散控制層,故在通道寬度與通道長度比值相對較高的狀況下此對照例之氧化物半導體薄膜電晶體會偏向導通而不具有薄膜電晶體特性。For example, please refer to Figures 6 to 9. Fig. 7 is a graph showing the relationship between the gate current (W) and the gate current (gate voltage) of the oxide semiconductor thin film transistor 101 of the first embodiment in a design condition in which the channel width (W) and the channel length (L) are both 5 μm. Fig. 8 is a schematic view showing an oxide semiconductor thin film transistor 200 of a comparative example. Fig. 9 is a graph showing the relationship between the gate current and the gate voltage of the oxide semiconductor thin film transistor 200 of the comparative example under the design conditions of a channel width and a channel length of 5 μm. The oxide semiconductor thin film transistor 200 of this comparative example is similar to the oxide semiconductor thin film transistor 101 except that the hydrogen diffusion controlling layer 50 of the first embodiment is not included. As shown in FIGS. 6 and 7, the oxide semiconductor thin film transistor 101 of the first embodiment can still have a relatively high ratio of the channel width to the channel length in the case where the hydrogen diffusion control layer 50 is provided. Good film crystal properties with a carrier mobility of up to about 22 cm 2 /VS. In contrast, as shown in FIGS. 8 and 9, since the hydrogen diffusion control layer is not provided, the oxide semiconductor thin film transistor of the comparative example is biased in a relatively high ratio of the channel width to the channel length. Without thin film transistor properties.

下文將針對本發明的不同實施例進行說明,且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。The different embodiments of the present invention are described below, and the following description is mainly for the sake of simplification of the description of the embodiments, and the details are not repeated. In addition, the same elements in the embodiments of the present invention are denoted by the same reference numerals to facilitate the comparison between the embodiments.

請參考第10圖。第10圖繪示了本發明第二實施例之氧化物半導體薄膜電晶體102的示意圖。與上述第一實施例不同的地方在於,本實施例之傳導區20A的第三寬度W3係小於氫擴散控制層50之第一寬度W1,且傳導區20A的第三寬度W3係大體上與閘極40之第二寬度W2相同,但並不以此為限。Please refer to Figure 10. Fig. 10 is a view showing the oxide semiconductor thin film transistor 102 of the second embodiment of the present invention. The difference from the first embodiment described above is that the third width W3 of the conductive region 20A of the present embodiment is smaller than the first width W1 of the hydrogen diffusion control layer 50, and the third width W3 of the conductive region 20A is substantially related to the gate. The second width W2 of the pole 40 is the same, but is not limited thereto.

請參考第11圖。第11圖繪示了本發明第三實施例之氧化物半導體薄膜電晶體103的示意圖。與上述第一實施例不同的地方在於,本實施例可藉由加強氫來源層60中氫的擴散效應來使得傳導區20A的第三寬度W3小於閘極40之第二寬度W2,藉此達到更進一步縮短氧化物半導體薄膜電晶體103之通道寬度的目的。上述之加強氫來源層60中氫擴散效應的方式可包括提高強氫來源層60中氫的濃度(例如於沉積氫來源層60時額外通入氫氣)、施加一輔助處理例如加熱處理或其他適合可用來加強氫擴散效應之方式。Please refer to Figure 11. Fig. 11 is a view showing the oxide semiconductor thin film transistor 103 of the third embodiment of the present invention. The difference from the first embodiment described above is that the third width W3 of the conductive region 20A can be made smaller than the second width W2 of the gate 40 by enhancing the diffusion effect of hydrogen in the hydrogen source layer 60. The purpose of further shortening the channel width of the oxide semiconductor thin film transistor 103 is further achieved. The manner of enhancing the hydrogen diffusion effect in the hydrogen source layer 60 may include increasing the concentration of hydrogen in the strong hydrogen source layer 60 (for example, introducing hydrogen into the hydrogen source layer 60), applying an auxiliary treatment such as heat treatment or other suitable. A way to enhance the hydrogen diffusion effect.

請參考第12圖與第13圖。第12圖與第13圖繪示了本發明第四實施例之氧化物半導體薄膜電晶體的製作方法示意圖。與上述第一實施例不同的地方在於,如第12圖所示,本實施例之氫擴散控制層50可完全覆蓋圖案化氧化物半導體層20、圖案化閘極介電層30以及閘極40,故氫擴散控制層50覆蓋圖案化氧化物半導體層20於水平方向H上之兩端,而氫來源層60則未直接接觸圖案化氧化物半導體層20以及後續形成之摻雜區20B。藉此方式可避免當氫來源層60中的氫擴散效應過強而使得對應形成之摻雜區20B的範圍過大,並因此影響到傳導區20A的電性狀況。如第13圖所示,在形成本實施例之氧化物半導體薄膜電晶體104時,由於摻雜區20B係被氫擴散控制層50以及氫來源層60所覆蓋,故接觸開孔V需貫穿氫來源層60與氫擴散控制層50以部分暴露出兩摻雜區20B,並使得源極70S與汲極70D可通過接觸開孔V與摻雜區20B接觸而形成電性連接。此外,本實施例之氫擴散控制層50更具有一延伸部50A,延伸部50A覆蓋圖案化氧化物半導體層20於水平方向H之兩端。Please refer to Figure 12 and Figure 13. 12 and 13 are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to a fourth embodiment of the present invention. The difference from the first embodiment described above is that, as shown in FIG. 12, the hydrogen diffusion control layer 50 of the present embodiment can completely cover the patterned oxide semiconductor layer 20, the patterned gate dielectric layer 30, and the gate 40. Therefore, the hydrogen diffusion control layer 50 covers both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H, and the hydrogen source layer 60 does not directly contact the patterned oxide semiconductor layer 20 and the subsequently formed doped region 20B. In this way, it is possible to avoid that the hydrogen diffusion effect in the hydrogen source layer 60 is too strong, so that the range of the correspondingly formed doping region 20B is too large, and thus affects the electrical condition of the conduction region 20A. As shown in FIG. 13, when the oxide semiconductor thin film transistor 104 of the present embodiment is formed, since the doping region 20B is covered by the hydrogen diffusion controlling layer 50 and the hydrogen source layer 60, the contact opening V needs to penetrate the hydrogen. The source layer 60 and the hydrogen diffusion control layer 50 partially expose the two doped regions 20B, and the source 70S and the drain 70D can be electrically connected to the doped region 20B through the contact opening V. Further, the hydrogen diffusion control layer 50 of the present embodiment further has an extension portion 50A covering the both ends of the patterned oxide semiconductor layer 20 in the horizontal direction H.

請參考第14圖,並請一併參考第13圖。第14圖繪示了本實施例之氧化物半導體薄膜電晶體104於通道寬度與通道長度均為5微米的設計狀況下之汲極電流-閘極電壓的關係圖。如第14圖與第13圖所示,本實施例之氧化物半導體薄膜電晶體104在設置有氫擴散控制層50的狀況下可於通道寬度與通道長度比值相對較高的狀況下仍具有良好的薄膜電晶體特性,且其載子遷移率(mobility)可達約13 cm2 /VS。雖然本實施例之氧化物半導體薄膜電晶體104的載子遷移率較上述第一實施例低,但由於本實施例之氫擴散控制層50覆蓋圖案化氧化物半導體層20而使氫來源層60未直接接觸圖案化氧化物半導體層20,故對於氫來源層60的氫濃度控制精準度上可相對較為寬鬆而有利於製程的進行。相對來說,如第8圖與第9圖所示,由於未設置氫擴散控制層,故在通道寬度與通道長度比值相對較高的狀況下此對照例之氧化物半導體薄膜電晶體會偏向導通而不具有薄膜電晶體特性。Please refer to Figure 14, and please refer to Figure 13 together. Fig. 14 is a view showing the relationship between the gate current and the gate voltage of the oxide semiconductor thin film transistor 104 of the present embodiment in a design condition in which the channel width and the channel length are both 5 μm. As shown in FIGS. 14 and 13, the oxide semiconductor thin film transistor 104 of the present embodiment can be excellent in a condition in which the ratio of the channel width to the channel length is relatively high in the case where the hydrogen diffusion control layer 50 is provided. The properties of the thin film transistor, and its carrier mobility can reach about 13 cm 2 /VS. Although the carrier mobility of the oxide semiconductor thin film transistor 104 of the present embodiment is lower than that of the first embodiment described above, since the hydrogen diffusion control layer 50 of the present embodiment covers the patterned oxide semiconductor layer 20, the hydrogen source layer 60 is provided. Since the patterned oxide semiconductor layer 20 is not directly contacted, the hydrogen concentration control of the hydrogen source layer 60 can be relatively loosely controlled to facilitate the process. In contrast, as shown in FIGS. 8 and 9, since the hydrogen diffusion control layer is not provided, the oxide semiconductor thin film transistor of the comparative example is biased in a relatively high ratio of the channel width to the channel length. Without thin film transistor properties.

綜上所述,本發明之氧化物半導體薄膜電晶體係利用氫擴散控制層來控制氫來源層中的氫擴散至圖案化氧化物半導體層的狀況,並同時避免氫來源層中的氫通過圖案化閘極介電層而擴散至圖案化閘極介電層中的傳導區而影響到傳導區的電性狀況。因此,即使氧化物半導體薄膜電晶體中的閘極以及圖案化閘極介電層為了符合短通道設計而需縮小,仍可藉由氫擴散控制層來控制摻雜區的形成範圍並避免傳導區的電性受到影響,故可達到提升氧化物半導體薄膜電晶體之元件特性的目的。此外,本發明之氧化物半導體薄膜電晶體的製作方法可利用同一張光罩定義氫擴散控制層、圖案化閘極介電層與閘極的圖形,藉此達到降低製作成本之目的。   以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the oxide semiconductor thin film electromorphic system of the present invention utilizes a hydrogen diffusion control layer to control the diffusion of hydrogen in the hydrogen source layer to the patterned oxide semiconductor layer while avoiding hydrogen passing through the pattern in the hydrogen source layer. The gate dielectric layer is diffused into the conductive region in the patterned gate dielectric layer to affect the electrical condition of the conductive region. Therefore, even if the gate electrode and the patterned gate dielectric layer in the oxide semiconductor thin film transistor need to be reduced in order to conform to the short channel design, the formation range of the doped region can be controlled by the hydrogen diffusion control layer and the conduction region can be avoided. The electrical properties are affected, so that the purpose of improving the component characteristics of the oxide semiconductor thin film transistor can be achieved. In addition, the method for fabricating the oxide semiconductor thin film transistor of the present invention can define the hydrogen diffusion control layer, the patterned gate dielectric layer and the gate pattern by using the same mask, thereby achieving the purpose of reducing the manufacturing cost. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧基板
20‧‧‧圖案化氧化物半導體層
20A‧‧‧傳導區
20B‧‧‧摻雜區
30‧‧‧圖案化閘極介電層
30F‧‧‧交界處
30S‧‧‧側邊
40‧‧‧閘極
50‧‧‧氫擴散控制層
50A‧‧‧延伸部
60‧‧‧氫來源層
70D‧‧‧汲極
70S‧‧‧源極
101-104‧‧‧氧化物半導體薄膜電晶體
200‧‧‧氧化物半導體薄膜電晶體
H‧‧‧水平方向
S‧‧‧頂面
V‧‧‧接觸開孔
W1‧‧‧第一寬度
W2‧‧‧第二寬度
W3‧‧‧第三寬度
Z‧‧‧垂直方向
10‧‧‧Substrate
20‧‧‧ patterned oxide semiconductor layer
20A‧‧‧Transduction zone
20B‧‧‧Doped area
30‧‧‧ patterned gate dielectric layer
30F‧‧‧ Junction
30S‧‧‧ side
40‧‧‧ gate
50‧‧‧ Hydrogen diffusion control layer
50A‧‧‧Extension
60‧‧‧ Hydrogen source layer
70D‧‧‧Bungee
70S‧‧‧ source
101-104‧‧‧Oxide semiconductor thin film transistor
200‧‧‧Oxide semiconductor thin film transistor
H‧‧‧ horizontal direction
S‧‧‧ top surface
V‧‧‧Contact opening
W1‧‧‧ first width
W2‧‧‧ second width
W3‧‧‧ third width
Z‧‧‧Vertical direction

第1圖繪示了習知技術之氧化物半導體薄膜電晶體的汲極電流-閘極電壓關係圖。 第2圖至第6圖繪示了本發明第一實施例之氧化物半導體薄膜電晶體的製作方法示意圖。 第7圖繪示了本發明第一實施例之氧化物半導體薄膜電晶體的汲極電流-閘極電壓關係圖。 第8圖繪示了一對照例之氧化物半導體薄膜電晶體的示意圖。 第9圖繪示了對照例之氧化物半導體薄膜電晶體的汲極電流-閘極電壓關係圖。 第10圖繪示了本發明第二實施例之氧化物半導體薄膜電晶體的示意圖。 第11圖繪示了本發明第三實施例之氧化物半導體薄膜電晶體的示意圖。 第12圖與第13圖繪示了本發明第四實施例之氧化物半導體薄膜電晶體的製作方法示意圖。 第14圖繪示了本發明第四實施例之氧化物半導體薄膜電晶體的汲極電流-閘極電壓關係圖。FIG. 1 is a diagram showing the relationship between the gate current and the gate voltage of an oxide semiconductor thin film transistor of the prior art. 2 to 6 are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to a first embodiment of the present invention. Fig. 7 is a view showing the relationship between the gate current and the gate voltage of the oxide semiconductor thin film transistor of the first embodiment of the present invention. Fig. 8 is a schematic view showing an oxide semiconductor thin film transistor of a comparative example. Fig. 9 is a graph showing the relationship between the gate current and the gate voltage of the oxide semiconductor thin film transistor of the comparative example. Fig. 10 is a view showing the oxide semiconductor thin film transistor of the second embodiment of the present invention. Fig. 11 is a view showing the oxide semiconductor thin film transistor of the third embodiment of the present invention. 12 and 13 are schematic views showing a method of fabricating an oxide semiconductor thin film transistor according to a fourth embodiment of the present invention. Fig. 14 is a view showing the relationship between the gate current and the gate voltage of the oxide semiconductor thin film transistor of the fourth embodiment of the present invention.

10‧‧‧基板 10‧‧‧Substrate

20‧‧‧圖案化氧化物半導體層 20‧‧‧ patterned oxide semiconductor layer

20A‧‧‧傳導區 20A‧‧‧Transduction zone

20B‧‧‧摻雜區 20B‧‧‧Doped area

30‧‧‧圖案化閘極介電層 30‧‧‧ patterned gate dielectric layer

30F‧‧‧交界處 30F‧‧‧ Junction

30S‧‧‧側邊 30S‧‧‧ side

40‧‧‧閘極 40‧‧‧ gate

50‧‧‧氫擴散控制層 50‧‧‧ Hydrogen diffusion control layer

60‧‧‧氫來源層 60‧‧‧ Hydrogen source layer

70D‧‧‧汲極 70D‧‧‧Bungee

70S‧‧‧源極 70S‧‧‧ source

101‧‧‧氧化物半導體薄膜電晶體 101‧‧‧Oxide semiconductor thin film transistor

H‧‧‧水平方向 H‧‧‧ horizontal direction

S‧‧‧頂面 S‧‧‧ top surface

V‧‧‧接觸開孔 V‧‧‧Contact opening

W1‧‧‧第一寬度 W1‧‧‧ first width

W2‧‧‧第二寬度 W2‧‧‧ second width

W3‧‧‧第三寬度 W3‧‧‧ third width

Z‧‧‧垂直方向 Z‧‧‧Vertical direction

Claims (17)

一種氧化物半導體薄膜電晶體,包括: 一基板; 一圖案化氧化物半導體層,設置於該基板上; 一圖案化閘極介電層,設置於該圖案化氧化物半導體層上; 一閘極,設置於該圖案化閘極介電層上; 一氫擴散控制層,設置於該閘極與該圖案化氧化物半導體層上,其中該氫擴散控制層係包覆該閘極與該圖案化閘極介電層; 一氫來源層,設置於該氫擴散控制層以及該圖案化氧化物半導體層上,其中該氫來源層之含氫量大於該氫擴散控制層之含氫量;以及 一源極與一汲極,設置於該氫來源層上,其中該源極與該汲極係與該圖案化氧化物半導體層接觸且電性連接。An oxide semiconductor thin film transistor comprising: a substrate; a patterned oxide semiconductor layer disposed on the substrate; a patterned gate dielectric layer disposed on the patterned oxide semiconductor layer; a gate Provided on the patterned gate dielectric layer; a hydrogen diffusion control layer disposed on the gate and the patterned oxide semiconductor layer, wherein the hydrogen diffusion control layer encapsulates the gate and the patterning a gate dielectric layer; a hydrogen source layer disposed on the hydrogen diffusion control layer and the patterned oxide semiconductor layer, wherein the hydrogen source layer has a hydrogen content greater than a hydrogen content of the hydrogen diffusion control layer; A source and a drain are disposed on the hydrogen source layer, wherein the source and the drain are in contact with and electrically connected to the patterned oxide semiconductor layer. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫擴散控制層係直接接觸該圖案化氧化物半導體層,且該氫來源層係直接接觸該氫擴散控制層。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen diffusion control layer directly contacts the patterned oxide semiconductor layer, and the hydrogen source layer directly contacts the hydrogen diffusion control layer. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫來源層係直接接觸該圖案化氧化物半導體層。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen source layer directly contacts the patterned oxide semiconductor layer. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫擴散控制層覆蓋該圖案化閘極介電層與該閘極,該氫擴散控制層係自該閘極之一頂面沿該閘極之一側邊向該圖案化氧化物半導體層延伸,且延伸不超出該氫擴散控制層位於該頂面垂直投影於該基板的投影範圍。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen diffusion control layer covers the patterned gate dielectric layer and the gate, and the hydrogen diffusion control layer is from a top surface of the gate One side of the gate extends toward the patterned oxide semiconductor layer and extends beyond a projection range in which the hydrogen diffusion control layer is vertically projected on the substrate. 如請求項4所述之氧化物半導體薄膜電晶體,其中該氫擴散控制層於一水平方向上更具有一延伸部,該延伸部覆蓋該圖案化氧化物半導體層於該水平方向之兩端。The oxide semiconductor thin film transistor according to claim 4, wherein the hydrogen diffusion control layer further has an extension portion in a horizontal direction, the extension portion covering the patterned oxide semiconductor layer at both ends in the horizontal direction. 如請求項1所述之氧化物半導體薄膜電晶體,更包括複數個接觸開孔,貫穿該氫來源層,其中該源極與該汲極係透過該等接觸開孔與該圖案化氧化物半導體層接觸且電性連接。The oxide semiconductor thin film transistor of claim 1, further comprising a plurality of contact openings extending through the hydrogen source layer, wherein the source and the drain pass through the contact openings and the patterned oxide semiconductor The layers are in contact and electrically connected. 如請求項6所述之氧化物半導體薄膜電晶體,其中該等接觸開孔更貫穿該氫擴散控制層。The oxide semiconductor thin film transistor of claim 6, wherein the contact openings further extend through the hydrogen diffusion control layer. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫擴散控制層包括金屬氧化物、氮化矽、氧化矽或氮氧化矽。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen diffusion controlling layer comprises a metal oxide, tantalum nitride, hafnium oxide or hafnium oxynitride. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫擴散控制層之厚度係介於100埃(angstrom)至500埃。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen diffusion control layer has a thickness of from 100 angstroms to 500 angstroms. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫來源層包括氮化矽、氧化矽或氮氧化矽。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen source layer comprises tantalum nitride, hafnium oxide or hafnium oxynitride. 如請求項1所述之氧化物半導體薄膜電晶體,其中該圖案化氧化物半導體層包括氧化銦鎵鋅、氧化鋅、氧化銦鋅或氧化銦鎵。The oxide semiconductor thin film transistor according to claim 1, wherein the patterned oxide semiconductor layer comprises indium gallium zinc oxide, zinc oxide, indium zinc oxide or indium gallium oxide. 如請求項1所述之氧化物半導體薄膜電晶體,其中該氫來源層之該含氫量係介於15 atoms/cm3 至27 atoms/cm3 之間。The oxide semiconductor thin film transistor according to claim 1, wherein the hydrogen source layer has a hydrogen content of between 15 atoms/cm 3 and 27 atoms/cm 3 . 一種氧化物半導體薄膜電晶體的製作方法,包括: 於一基板上形成一圖案化氧化物半導體層; 於該圖案化氧化物半導體層上形成一圖案化閘極介電層; 於該圖案化閘極介電層上形成一閘極; 於該閘極與該圖案化氧化物半導體層上形成一氫擴散控制層,其中該氫擴散控制層係包覆該閘極與該圖案化閘極介電層; 於該氫擴散控制層以及該圖案化氧化物半導體層上形成一氫來源層,其中該氫來源層之含氫量大於該氫擴散控制層之含氫量;以及 於該氫來源層上形成一源極與一汲極,其中該源極與該汲極係與該圖案化氧化物半導體層接觸且電性連接。A method for fabricating an oxide semiconductor thin film transistor, comprising: forming a patterned oxide semiconductor layer on a substrate; forming a patterned gate dielectric layer on the patterned oxide semiconductor layer; Forming a gate on the gate layer; forming a hydrogen diffusion control layer on the gate and the patterned oxide semiconductor layer, wherein the hydrogen diffusion control layer encapsulates the gate and the patterned gate dielectric Forming a hydrogen source layer on the hydrogen diffusion control layer and the patterned oxide semiconductor layer, wherein the hydrogen source layer has a hydrogen content greater than a hydrogen content of the hydrogen diffusion control layer; and on the hydrogen source layer A source and a drain are formed, wherein the source and the drain are in contact with and electrically connected to the patterned oxide semiconductor layer. 如請求項13所述之氧化物半導體薄膜電晶體的製作方法,該氫擴散控制層覆蓋該圖案化閘極介電層與該閘極,該氫擴散控制層係自該閘極之一頂面沿該閘極之一側邊向該圖案化氧化物半導體層延伸,且延伸不超出該氫擴散控制層位於該頂面垂直投影於該基板的投影範圍。The method of fabricating an oxide semiconductor thin film transistor according to claim 13, wherein the hydrogen diffusion control layer covers the patterned gate dielectric layer and the gate, and the hydrogen diffusion control layer is from a top surface of the gate The patterned oxide semiconductor layer extends along a side of the gate and extends beyond a projection range in which the hydrogen diffusion control layer is perpendicularly projected onto the substrate. 如請求項14所述之氧化物半導體薄膜電晶體的製作方法,其中該氫擴散控制層、該圖案化閘極介電層與該閘極係使用同一張光罩(mask)定義出圖形。The method of fabricating an oxide semiconductor thin film transistor according to claim 14, wherein the hydrogen diffusion control layer, the patterned gate dielectric layer and the gate system define a pattern using a same mask. 如請求項13所述之氧化物半導體薄膜電晶體的製作方法,其中該氫擴散控制層包括金屬氧化物、氮化矽、氧化矽或氮氧化矽。The method of fabricating an oxide semiconductor thin film transistor according to claim 13, wherein the hydrogen diffusion controlling layer comprises a metal oxide, tantalum nitride, hafnium oxide or hafnium oxynitride. 如請求項13所述之氧化物半導體薄膜電晶體的製作方法,其中該氫來源層之該含氫量係介於15 atoms/cm3 至27 atoms/cm3 之間。The method for fabricating an oxide semiconductor thin film transistor according to claim 13, wherein the hydrogen source layer has a hydrogen content of between 15 atoms/cm 3 and 27 atoms/cm 3 .
TW104121643A 2015-07-03 2015-07-03 Oxide semiconductor thin film transistor and manufacturing method thereof TWI613706B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104121643A TWI613706B (en) 2015-07-03 2015-07-03 Oxide semiconductor thin film transistor and manufacturing method thereof
CN201510580206.0A CN105206677B (en) 2015-07-03 2015-09-14 Oxide semiconductor thin film transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104121643A TWI613706B (en) 2015-07-03 2015-07-03 Oxide semiconductor thin film transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201703120A true TW201703120A (en) 2017-01-16
TWI613706B TWI613706B (en) 2018-02-01

Family

ID=54954235

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104121643A TWI613706B (en) 2015-07-03 2015-07-03 Oxide semiconductor thin film transistor and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN105206677B (en)
TW (1) TWI613706B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818008B (en) * 2018-04-04 2023-10-11 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183650A (en) * 2014-09-10 2014-12-03 六安市华海电子器材科技有限公司 Oxide semiconductor thin film transistor
CN105655353A (en) * 2016-01-21 2016-06-08 武汉华星光电技术有限公司 TFT array substrate structure and manufacturing method thereof
CN105977306A (en) * 2016-06-21 2016-09-28 北京大学深圳研究生院 Self-aligned thin-film transistor and preparation method thereof
TW201808628A (en) 2016-08-09 2018-03-16 Semiconductor Energy Lab Manufacturing method of semiconductor device
US11923459B2 (en) * 2020-06-23 2024-03-05 Taiwan Semiconductor Manufacturing Company Limited Transistor including hydrogen diffusion barrier film and methods of forming same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08242000A (en) * 1995-03-03 1996-09-17 Sharp Corp Semiconductor device and fabrication thereof
JP5213422B2 (en) * 2007-12-04 2013-06-19 キヤノン株式会社 Oxide semiconductor element having insulating layer and display device using the same
JP2012015436A (en) * 2010-07-05 2012-01-19 Sony Corp Thin film transistor and display device
TW201322341A (en) * 2011-11-21 2013-06-01 Ind Tech Res Inst Semiconductor device and manufacturing method thereof
TWI596778B (en) * 2012-06-29 2017-08-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
CN105409003B (en) * 2013-07-24 2019-03-08 Imec 非营利协会 Method for improving the conductivity of metal oxide semiconductor layer
KR20150033155A (en) * 2013-09-23 2015-04-01 삼성디스플레이 주식회사 Thin film transistor and method of the same
TWI528564B (en) * 2013-09-23 2016-04-01 友達光電股份有限公司 Thin film transistor and fabricating method thereof
TWI527201B (en) * 2013-11-06 2016-03-21 友達光電股份有限公司 Pixel structure and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818008B (en) * 2018-04-04 2023-10-11 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TWI613706B (en) 2018-02-01
CN105206677A (en) 2015-12-30
CN105206677B (en) 2018-10-12

Similar Documents

Publication Publication Date Title
USRE48290E1 (en) Thin film transistor array panel
TWI613706B (en) Oxide semiconductor thin film transistor and manufacturing method thereof
US10615266B2 (en) Thin-film transistor, manufacturing method thereof, and array substrate
US7727824B2 (en) Liquid crystal display device and fabricating method thereof
JP5015471B2 (en) Thin film transistor and manufacturing method thereof
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
US9246007B2 (en) Oxide thin film transistor and method for manufacturing the same, array substrate, and display apparatus
US9337346B2 (en) Array substrate and method of fabricating the same
US20150171224A1 (en) Thin film transistor and manufacturing method thereof, array substrate and display device
EP1536482A1 (en) Thin film transistor with tapered edges
US20170077271A1 (en) Array substrate for liquid crystal display device and method of manufacturing the same
CN110993610A (en) Array substrate, preparation method thereof and display panel
US10243004B2 (en) Low-temperature polycrystalline silicon thin film transistor, and manufacturing method for fabricating the same, array substrate, display panel and display device
US6869834B2 (en) Method of forming a low temperature polysilicon thin film transistor
WO2018196289A1 (en) Thin-film transistor and preparation method therefor
KR101326134B1 (en) Thin film transistor array panel and method for manufacturing the same
US10115745B2 (en) TFT array substrate and method of forming the same
US7923312B2 (en) Fabricating method of thin film transistor
US20170294544A1 (en) Thin film transistor and method thereof, array substrate, and display apparatus
KR20100030995A (en) Thin film transistor and manufacturing methof of the same
TW201810682A (en) Thin film transistor and manufacturing method thereof
KR20180005311A (en) Thin film transistor, thin film transistor array panel including the same and manufacturing method thereof
KR20120067108A (en) Array substrate and method of fabricating the same
US10283533B2 (en) Transistor array panel including transistor with top electrode being electrically connected to source electrode and manufacturing method thereof
US20210217978A1 (en) Transistor array