TW201624751A - 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法 - Google Patents

化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法 Download PDF

Info

Publication number
TW201624751A
TW201624751A TW103144688A TW103144688A TW201624751A TW 201624751 A TW201624751 A TW 201624751A TW 103144688 A TW103144688 A TW 103144688A TW 103144688 A TW103144688 A TW 103144688A TW 201624751 A TW201624751 A TW 201624751A
Authority
TW
Taiwan
Prior art keywords
sulfide
single crystal
solar cell
electrode
group
Prior art date
Application number
TW103144688A
Other languages
English (en)
Other versions
TWI502762B (zh
Inventor
謝東坡
林偉聖
張仁銓
劉永宗
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103144688A priority Critical patent/TWI502762B/zh
Priority to JP2014262737A priority patent/JP6143737B2/ja
Priority to CN201410826046.9A priority patent/CN105789349A/zh
Priority to US14/583,192 priority patent/US20160181452A1/en
Application granted granted Critical
Publication of TWI502762B publication Critical patent/TWI502762B/zh
Publication of TW201624751A publication Critical patent/TW201624751A/zh
Priority to US15/479,289 priority patent/US20170207362A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種化合物太陽能電池,包括基板、位於基板上的第一電極、位於第一電極上的VI族吸收層與位於VI族吸收層上的第二電極。而且,在第二電極與VI族吸收層之間有一層第一緩衝層,其中所述第一緩衝層是硫化物單晶奈米粒子所構成之薄膜。

Description

化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
本發明是有關於一種化合物太陽能電池技術,且特別是有關於一種化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法。
近年來,由於新興國家的快速發展導致各種能源短缺,全球的氣候變異、環境污染及生態浩劫情況也到了危急的情況,無污染、無虞匱乏並足夠全世界長期使用的太陽能備受各界的矚目與期待。就現況而言,太陽能所產生的電力仍無法取代現有的石化能源,主因在於成本較高及供電時間的不穩定性,但是長遠來看,導致溫室效應的二氧化碳必須減量以及石化燃料總有耗盡的一天,讓世界各國無不卯足全力補助太陽能產業的發展,希望能藉由太陽能製作技術的進步,使其成為未來能源的主流。
目前,降低成本是太陽能電池的重要課題之一,所以具備低成本優勢的VI族化合物太陽能電池成為近來頗受矚目的太陽能電池。
VI族太陽電池由字面的解釋即是材料中含有元素週期表中VIA族的材料,包含:氧(O)、硫(S)、硒(Se)、鍗(Te)等元素,II族的材料以IIB族材料鋅(Zn)、鎘(Cd)為主,其中化合物碲化鎘(CdTe)可說是最具代表性的II-VI族太陽電池材料,結構屬於閃鋅礦(zinc blende),而I-III-VI族材料則是II-VI族的變化型,是II-VI族化合物衍生而來,用第IB族元素(Cu,Ag)及第IIIA族元素(In,Ga,Al)來取代第IIB族元素所形成所謂黃銅礦(chalcopyrite)結構,以銅銦硒(CuInSe2)、銅銦鎵硒(CuInGaSe2)、銅鋅錫硒硫(Cu2ZnSn(S,Se)4)等化合物為代表性的電池材料,經過數十年的發展,VI族的太陽能電池材料研究已相當成熟。
而這種薄膜太陽電池的吸收層大都利用n型CdS或ZnS層來當作半導體的接合界面,其製程包括近距離昇華沈積法(Close spaced sublimation,簡稱CSS)、氣相沈積、化學浴鍍膜(chemical bath deposition,簡稱CBD)等。然而,最常使用的是化學浴鍍膜因為溫度大多控制在65℃~75℃,後續的製程溫度若過高會導致元件嚴重裂化,導致上述接合界面被破壞,所以連帶後續製程都無法採用較高的溫度(譬如透明電極的形成)。此外,上述化學浴鍍膜還有廢液問題,導致廢水處理十分昂貴且麻煩,甚至增加對環境汙染及生態衝擊的隱憂。
除了化學浴鍍膜製程外,還有許多製程技術可製作n型CdS或ZnS層,譬如真空製程。然而,真空設備成本高昂、產率較低且技術瓶頸高,造成難以用於商業量產,限縮市場發展。
本發明提供一種化合物太陽能電池,能提升整體元件特性。
本發明另提供一種硫化物單晶奈米粒子薄膜的製造方法,能形成單晶奈米粒子組成的高覆蓋率薄膜,厚度可精確控制在奈米級厚度,並且達到材料無損耗、低化學廢液、製程簡單等效果。
本發明的化合物太陽能電池包括基板、位於基板上的第一電極、位於第一電極上的VI族吸收層與位於VI族吸收層上的第二電極。而且,在第二電極與VI族吸收層之間有一層第一緩衝層,其中所述第一緩衝層是硫化物單晶奈米粒子所構成之薄膜。
本發明的硫化物單晶奈米粒子薄膜的製造方法,包括將硫化物前驅物溶液滴在VI族吸收層的表面,再於一預定溫度下熱裂解上述硫化物前驅物溶液,以於VI族吸收層的表面形成由硫化物單晶奈米粒子所構成之薄膜。
基於上述,本發明使用熱裂解形成的單晶奈米粒子所構成之薄膜,所以沒有高溫裂化問題,可解決衰減問題,有效增強化合物太陽能電池的高溫穩定性,同時可提高後段的製程溫度, 進一步增加化合物太陽能電池的元件特性。而且本發明在製程上具有低成本優勢,可同時縮短製程時間增加產能,還能減少廢液的產生。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100、200‧‧‧基板
102、202‧‧‧第一電極
104、204‧‧‧VI族吸收層
106‧‧‧第二電極
108、210‧‧‧第一緩衝層
110‧‧‧透明電極
112‧‧‧金屬柵線
206‧‧‧硫化物前驅物溶液
208‧‧‧硫化物單晶奈米粒子
圖1是依照本發明的一實施例的一種化合物太陽能電池的立體示意圖。
圖2A至圖2C是依照本發明的另一實施例的一種硫化物單晶奈米粒子薄膜的製造流程示意圖。
圖3是製備例1的CIGS薄膜三階段共蒸鍍之曲線圖。
圖4是製備例2的ZnS之SEM影像。
圖5是實例1的ZnS之SEM影像。
圖6是實例1的ZnS之TEM影像。
圖7是比較例的太陽能電池斷面之SEM影像。
圖8是比較例的太陽能電池之光電轉換效率曲線圖。
圖9是實例2-1的CIGS太陽能電池的示意圖。
圖10是實例2-1的太陽能電池斷面之SEM影像。
圖11是比較例和實例2-1的太陽能電池之光電轉換效率曲線圖。
圖12是實例2-1的太陽能電池之I-V曲線圖。
圖13是實例2-3的太陽能電池之I-V曲線圖。
下面將參照所附圖式以更全面地敍述本揭露的各實施例。本揭露的各實施例也可表現為許多不同的形態,而不應理解為侷限於本文所列舉的實施例。確切地講,提供這些實施例是為了使揭露的內容更透徹更完整,且將各實施例之概念全面傳達給所屬技術領域中具有通常知識者。在這些圖式中,為清楚起見,各層或各區域的厚度被放大。
圖1是依照本發明的一實施例的一種化合物太陽能電池的立體示意圖。
請參照圖1,本實施例的化合物太陽能電池包括基板100、第一電極102、VI族吸收層104與第二電極106。VI族吸收層104可為I-III-VI族化合物或II-VI族化合物,如銅銦鎵硒(CIGS)、銅鋅錫硫(CZTS)或碲化鎘(CdTe)。第一電極102例如金屬電極,而第二電極106可包括透明電極110和金屬柵線112。而且,在第二電極106與VI族吸收層104之間有一第一緩衝層108,其是硫化物單晶奈米粒子所構成之薄膜。由於第一緩衝層108是單晶構造所組成的薄膜,所以可耐高溫,因此在後續形成第二電極106,能採用較高溫的濺鍍與沉積製程等,以獲得導電性和穿透性較佳的透明電極。上述第一緩衝層108的厚度約在1nm~150nm 之間;較佳是2nm~30nm之間,當第一緩衝層108的厚度在1nm以上,能於電池後續製程扮演保護VI族吸收層104表面的角色,以避免受到電漿損傷;當第一緩衝層108的厚度在150nm以下,可防止串聯電阻過大而使電池效率下降,當第一緩衝層108小於1nm時容易會有覆蓋不完全而導致電池漏電流之情況,當第一緩衝層108大於150nm時會使得電池串聯阻值增加並降低光的穿透率。構成第一緩衝層108的硫化物單晶奈米粒子之材料例如ZnS、CdS、InS、PbS、FeS、CoS2、Cu2S、MoS2等;所述硫化物單晶奈米粒子的顆粒大小例如為1nm~20nm之間。在一實施例中,更可包括第二緩衝層(未繪示),例如是i-ZnO層,設置在第一緩衝層108與透明電極110之間,所述第二緩衝層的厚度約在0.1nm~100nm之間。
圖2A至圖2C是依照本發明的另一實施例的一種硫化物單晶奈米粒子薄膜的製造流程示意圖。
本實施例以化合物太陽能電池為例;也就是說,所欲形成的硫化物單晶奈米粒子薄膜是作為第一緩衝層。因此,請參照圖2A,先準備包括基板200、第一電極202和VI族吸收層204的結構,並將硫化物前驅物溶液206滴在VI族吸收層204的表面。上述硫化物前驅物溶液206包括溶劑與硫化物前驅物,其中硫化物前驅物例如二乙基二硫代氨基甲酸鋅(zinc diethyldithiocarbamate,化學式是[(C2H5)2NCS2]2Zn)、二乙基二硫代氨基甲酸鎘、二乙基二硫代氨基甲酸銦、二乙基二硫代氨基甲 酸鉛、二乙基二硫代氨基甲酸鐵、二乙基二硫代氨基甲酸鈷、二乙基二硫代氨基甲酸銅等。而硫化物前驅物溶液206內的溶劑的沸點例如在220℃以上;如220℃~350℃之間,可耐高溫處理。這種溶劑例如三正鋅基膦(Trioctylphosphine,TOP)或其他適合的溶劑。至於硫化物前驅物溶液206的濃度例如在0.01M~0.6M之間,當所述濃度在0.01M以上,形成硫化物單晶奈米粒子的速度不會過慢;當所述濃度在0.6M以下,則所形成的薄膜不至於顆粒過大而不均。
然後,請參照圖2B,在第一預定溫度下熱裂解硫化物前驅物溶液206,此時會有硫化物單晶奈米粒子208逐漸形成。上述熱裂解的步驟較佳是在惰性氣體中進行(如氮氣或氬氣)或在真空中進行,而第一預定溫度例如在220℃~350℃之間。
之後,請參照圖2C,於VI族吸收層204的表面會形成由硫化物單晶奈米粒子所構成之薄膜210。
除上述步驟之外,在圖2A的步驟之前可先預熱到第二預定溫度,如100℃~200℃,並且在硫化物前驅物溶液206滴在VI族吸收層204的表面之後升溫至上述第一預定溫度。而在形成薄膜210之後,可以待降溫至室溫後,以丙酮或酒精洗去剩餘的硫化物前驅物並以惰性氣體(如氮氣)吹乾。之後,如有需要,可在高溫如150℃~300℃下進行烘烤,以完全去除硫化物前驅物溶液206內的溶劑。
以下列舉諸項實驗用以驗證本發明的功效,但本發明之 範圍並不侷限於以下實驗。
製備例1
在含鈉之玻璃基板(Solid Lime Glass,SLG)上一層濺鍍鉬金屬層(厚度約800nm~1μm)當做第一電極,接著於鉬金屬上沉積厚度約在2μm~2.5μm左右的CIGS薄膜作為VI族吸收層。在本製備例中,CIGS薄膜為NREL三階段共蒸鍍(Co-evaporation)之方法成長的。在第一階段中先蒸鍍In2Se3與Ga2Se3之化合物,接著於第二階段中只有Cu、Se的流量下,使其成為富銅(Cu-rich)的CIGS薄膜,此時將會形成CuXSe1-X之化合物有助於薄膜晶粒之成長,最後第三階段再蒸鍍In、Ga和Se使其薄膜反轉回富銦(In-rich)之情況,其三階段共蒸鍍曲線如圖3所示。
製備例2
以化學浴鍍膜(CBD)步驟,在製備例1的CIGS薄膜上形成ZnS第一緩衝層(厚度約在50nm左右)。
本製備例之化學浴鍍膜的流程如下:
1.配置硫脲溶液2M,以及硫酸鋅溶液0.16M。
2.先將硫脲溶液倒入鍋內,加熱至70℃~80℃。
3.可視情況以5%的KCN溶液去除CIGS表面Cu2-XSe,再以去離子水沖淨KCN。
4.混合150ml的7M氨水溶液及硫酸鋅溶液至玻璃鍋內。
5.將整個玻璃基板浸泡約20分鐘,且反應溫度保持80℃~85℃。
6.鍍膜結束後,將玻璃基板取出,用去離子水沖洗CIGS表面反應溶液,並用壓縮空氣吹乾,完成第一緩衝層鍍膜。
實例1
以本發明之方法,在製備例1的CIGS薄膜上形成由ZnS單晶奈米粒子所構成之第一緩衝層。
本實例之第一緩衝層的製作是在通氮氣的環境下,先利用熱板(Hotplate)預熱100℃、時間3分鐘,讓玻璃基板均勻受熱。接著,滴取0.28ml的0.1M二乙基二硫代氨基甲酸鋅([(C2H5)2NCS2]2Zn)之奈米晶體前驅物(溶劑為TOP)於CIGS層上,進行熱裂解,此時加熱溫度升高至290℃,加熱時間約5至7分鐘。
接著,降溫至室溫約25℃約10分鐘。熱裂解製程完成後將試片取出,以丙酮、酒精加以清洗後,以氮氣吹乾試片表面,目的是將殘存的有機物清除。
最後將試片以熱板在大氣環境下加熱150℃~200℃約10分鐘,或是將試片置於1SUN光強度的太陽光源模擬器下照光約1~2小時完成第一緩衝層的製作。在本實施例中第一緩衝層的厚度約在50nm。
分析一
利用SEM取得製備例2和實例1的ZnS的表面影像,分別顯示於圖4和圖5。
經比較可知,圖4以CBD製備的ZnS表面為晶粒所堆疊成一薄膜,但是圖5利用熱裂解形成之ZnS表面為奈米粒子堆疊 排列,不同於圖4所成長之ZnS薄膜。
然後,利用TEM(JOEL 2100F)分析實例1中的ZnS晶體,由試片上取出部分溶液,經離心、清洗後,可觀察到約1nm~3nm大小之ZnS奈米粒子,藉由高解析TEM可確認為單晶粒子,如圖6圈起來的部位就代表一個單晶奈米粒子。圖6雖只繪示幾個圓圈,但應知高解析TEM所拍攝的影像中,較暗的點即為單晶粒子結構,例如圖6右上即顯示其單晶粒子之晶格。
比較例
在製備例2的ZnS第一緩衝層上,於室溫下以濺鍍方式成長約50nm的i-ZnO作為第二緩衝層。接著,在室溫下成長約500nm的AZO作為透明電極。經SEM觀察可得到圖7。最後,以濺鍍方式完成Ni-Al的製作當做上電極。
由於CBD製程之鍍膜對溫度穩定性差,當後段製程溫度超過150℃,預期元件特性會衰減。因此,量測上述兩個不同AZO製程溫度的太陽能電池之光電轉換效率,結果顯示於圖8。
從圖8可明顯觀察到,以CBD製程形成ZnS緩衝層的CIGS太陽能電池,一旦AZO製程溫度上升,其光電轉換效率會大幅衰退。
實例2-1
為了製作出圖9所示的CIGS太陽能電池,在實例1的ZnS第一緩衝層上,於室溫下以濺鍍方式成長約50nm的i-ZnO層作為第二緩衝層。接著,在高溫約150℃的環境下成長約500nm 的AZO作為透明電極。經SEM觀察得到圖10,從圖10可以觀察到ZnS第一緩衝層(ZnS)是由粒子構成的薄膜。最後,於AZO透明電極上製作Ni/Al金屬電極。
將本實例2-1之CIGS太陽能電池和比較例的CIGS太陽能電池(AZO製程溫度同樣為150℃),經量測其轉換效率特性,結果顯示於圖11。
由圖11可知,實例2-1之ZnS單晶奈米粒子所構成之薄膜搭配高溫製程(150℃)形成的AZO,在轉換效率方面並無明顯變化,大約是10.9%左右。但是,跟比較例(圖8)相比,其後續AZO製程溫度一旦增加至150℃,就會降到只有6.3%,因此與CBD方式製作得到的緩衝層相比,本發明的結構及方法能使轉換效率由6.3%提升至10.9%,因此具有提升元件效率之功效。
同時請參閱圖12,如實例2-1的CIGS太陽能電池亦可調整各層的厚度以達到較高效率約12.2%。
實例2-2
與實例2-1一樣的方式製作化合物太陽能電池,只是將CIGS改為CZTS,其中CZTS吸收層厚度約2μm,組成比例為Cu/(Zn+Sn)~0.8,Zn/Sn~1.05。經測量,目前元件轉換效率在light soaking後可達2.46%(Voc:0.35V,Jsc:25.51mA/cm2,F.F.:28%)。
實例2-3
與實例2-1一樣的方式製作化合物太陽能電池,只是將ZnS單晶奈米粒子改為硫化鎘(CdS)單晶奈米粒子來構成第一緩衝 層,其製程與實例2-1之差異在於使用二乙基二硫代氨基甲酸鎘([(C2H5)2NCS2]2Cd)作為奈米晶體前驅物,之後搭配150℃的AZO製程並完成化合物太陽能電池的製作,此CdS第一緩衝層的厚度約為88nm,元件效率約為9.6%,請參閱圖13。
綜上所述,本發明藉由硫化物單晶奈米粒子構成之薄膜作為化合物太陽能電池的第一緩衝層,所以不但在製程上具有低成本優勢,同時縮短製程時間增加產能,還能減少廢液的產生。另外,因為第一緩衝層為單晶結構,所以後續的製程溫度能提高,進而提升整體元件特性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
100‧‧‧基板
102‧‧‧第一電極
104‧‧‧VI族吸收層
106‧‧‧第二電極
108‧‧‧第一緩衝層
110‧‧‧透明電極
112‧‧‧金屬柵線

Claims (16)

  1. 一種化合物太陽能電池,包括:基板;第一電極,位於該基板上;VI族吸收層,位於該第一電極上;第二電極,位於該VI族吸收層上;以及第一緩衝層,位於該VI族吸收層與該第二電極之間,其中該第一緩衝層是由多數個硫化物單晶奈米粒子所構成之薄膜。
  2. 如申請專利範圍第1項所述之化合物太陽能電池,其中該第一緩衝層的厚度在1nm~150nm之間。
  3. 如申請專利範圍第1項所述之化合物太陽能電池,其中該些硫化物單晶奈米粒子的材料包括ZnS、CdS、InS、PbS、FeS、CoS2、Cu2S或MoS2
  4. 如申請專利範圍第1項所述之化合物太陽能電池,其中該VI族吸收層包括I-III-VI族化合物或II-VI族化合物。
  5. 如申請專利範圍第4項所述之化合物太陽能電池,其中該VI族吸收層包括銅銦鎵硒(CIGS)、銅鋅錫硫(CZTS)或碲化鎘(CdTe)。
  6. 如申請專利範圍第1項所述之化合物太陽能電池,更包括一第二緩衝層設置在該第一緩衝層與該第二電極之間,其中該第二緩衝層的厚度約在0.1nm~100nm之間。
  7. 如申請專利範圍第1項所述之化合物太陽能電池,其中該 第一電極包括金屬電極以及該第二電極包括透明電極。
  8. 一種硫化物單晶奈米粒子薄膜的製造方法,包括:將硫化物前驅物溶液滴在VI族吸收層的表面;以及在第一預定溫度下熱裂解該硫化物前驅物溶液,以於該VI族吸收層的該表面形成由多數個硫化物單晶奈米粒子所構成之薄膜。
  9. 如申請專利範圍第8項所述之硫化物單晶奈米粒子薄膜的製造方法,其中該硫化物前驅物溶液包括溶劑與硫化物前驅體。
  10. 如申請專利範圍第9項所述之硫化物單晶奈米粒子薄膜的製造方法,其中該硫化物前驅物包括二乙基二硫代氨基甲酸鋅、二乙基二硫代氨基甲酸鎘、二乙基二硫代氨基甲酸銦、二乙基二硫代氨基甲酸鉛、二乙基二硫代氨基甲酸鐵、二乙基二硫代氨基甲酸鈷或二乙基二硫代氨基甲酸銅。
  11. 如申請專利範圍第9項所述之硫化物單晶奈米粒子薄膜的製造方法,其中該溶劑的沸點在220℃以上。
  12. 如申請專利範圍第9項所述之硫化物單晶奈米粒子薄膜的製造方法,其中該溶劑包括三正鋅基膦(Trioctylphosphine,TOP)。
  13. 如申請專利範圍第8項所述之硫化物單晶奈米粒子薄膜的製造方法,其中該硫化物前驅物溶液的濃度在0.01M~0.6M之間。
  14. 如申請專利範圍第8項所述之硫化物單晶奈米粒子薄膜 的製造方法,其中該熱裂解的步驟是在惰性氣體或真空中進行。
  15. 如申請專利範圍第8項所述之硫化物單晶奈米粒子薄膜的製造方法,其中該第一預定溫度在220℃~350℃之間。
  16. 如申請專利範圍第8項所述之硫化物單晶奈米粒子薄膜的製造方法,其中將該硫化物前驅物溶液滴在該材料層的該表面之前,更包括預熱至第二預定溫度,其中該第二預定溫度在100°C~200℃;以及將該硫化物前驅物溶液滴在該材料層的該表面之後,升溫至該第一預定溫度約為220℃~350℃之間。
TW103144688A 2014-12-22 2014-12-22 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法 TWI502762B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW103144688A TWI502762B (zh) 2014-12-22 2014-12-22 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
JP2014262737A JP6143737B2 (ja) 2014-12-22 2014-12-25 化合物太陽電池および硫化物単結晶ナノ粒子を有する薄膜の形成方法
CN201410826046.9A CN105789349A (zh) 2014-12-22 2014-12-26 化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法
US14/583,192 US20160181452A1 (en) 2014-12-22 2014-12-26 Compound solar cell and method for forming thin film having sulfide single-crystal nanoparticles
US15/479,289 US20170207362A1 (en) 2014-12-22 2017-04-05 Method for forming thin film having sulfide single-crystal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103144688A TWI502762B (zh) 2014-12-22 2014-12-22 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法

Publications (2)

Publication Number Publication Date
TWI502762B TWI502762B (zh) 2015-10-01
TW201624751A true TW201624751A (zh) 2016-07-01

Family

ID=54851750

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144688A TWI502762B (zh) 2014-12-22 2014-12-22 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法

Country Status (4)

Country Link
US (2) US20160181452A1 (zh)
JP (1) JP6143737B2 (zh)
CN (1) CN105789349A (zh)
TW (1) TWI502762B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859451B2 (en) * 2015-06-26 2018-01-02 International Business Machines Corporation Thin film photovoltaic cell with back contacts
CN107104164A (zh) * 2017-06-07 2017-08-29 深圳众厉电力科技有限公司 一种高效化合物太阳能电池
CN110752266A (zh) * 2018-07-24 2020-02-04 领凡新能源科技(北京)有限公司 铜铟镓硒薄膜太阳能电池芯片的缓冲层及其制备方法、铜铟镓硒薄膜太阳能电池芯片
KR102223738B1 (ko) * 2019-07-02 2021-03-04 성균관대학교산학협력단 일차원 나노 사슬 구조체 및 이의 제조 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9518910D0 (en) * 1995-09-15 1995-11-15 Imperial College Process
JP3640716B2 (ja) * 1995-10-05 2005-04-20 石原産業株式会社 CdS超微結晶が存在してなる無機材料およびその製造方法ならびにそれを用いた光電気化学素子
JP2001156314A (ja) * 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd 光電変換素子および太陽電池
JP4012957B2 (ja) * 2002-06-07 2007-11-28 本田技研工業株式会社 化合物薄膜太陽電池の製造方法
AU2003279708A1 (en) * 2002-09-05 2004-03-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
TWI406890B (zh) * 2004-06-08 2013-09-01 Sandisk Corp 奈米結構之沉積後包封:併入該包封體之組成物、裝置及系統
JP2009513018A (ja) * 2005-10-20 2009-03-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 溶液から調製されるナノクリスタル太陽電池
EP2140498B1 (en) * 2007-04-18 2018-04-04 Nanoco Technologies Limited Fabrication of electrically active films based on multiple layers
GB0723539D0 (en) * 2007-12-01 2008-01-09 Nanoco Technologies Ltd Preparation of nonoparticle material
US20120060922A1 (en) * 2008-03-03 2012-03-15 The Regents Of The University Of California Layered inorganic nanocrystal photovoltaic devices
JP4745450B2 (ja) * 2009-10-06 2011-08-10 富士フイルム株式会社 バッファ層とその製造方法、反応液、光電変換素子及び太陽電池
US8889469B2 (en) * 2009-12-28 2014-11-18 Aeris Capital Sustainable Ip Ltd. Multi-nary group IB and VIA based semiconductor
JP2013544938A (ja) * 2010-11-22 2013-12-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 半導体インク、膜、コーティングされた基板および製造方法
JP5874645B2 (ja) * 2010-12-27 2016-03-02 凸版印刷株式会社 化合物半導体薄膜太陽電池及びその製造方法
US8647897B2 (en) * 2011-03-21 2014-02-11 The Board Of Trustees Of The Leland Stanford Junior University Air-stable ink for scalable, high-throughput layer deposition
WO2014009815A2 (en) * 2012-07-09 2014-01-16 Nanoco Technologies, Ltd. Group xiii selenide nanoparticles
JP2014216479A (ja) * 2013-04-25 2014-11-17 富士フイルム株式会社 光電変換素子の製造方法

Also Published As

Publication number Publication date
JP6143737B2 (ja) 2017-06-07
CN105789349A (zh) 2016-07-20
JP2016119441A (ja) 2016-06-30
TWI502762B (zh) 2015-10-01
US20160181452A1 (en) 2016-06-23
US20170207362A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
TWI520366B (zh) 用於大規模cigs基薄膜光伏材料的艙內摻雜鈉的方法和系統
CN102569508B (zh) 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
Ghosh et al. Solution-processed Cd free kesterite Cu2ZnSnS4 thin film solar cells with vertically aligned ZnO nanorod arrays
CN105826425B (zh) 一种铜锌锡硫薄膜太阳电池的制备方法
TWI502762B (zh) 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
KR20130016528A (ko) 태양전지용 CZT(S,Se)계 박막의 제조방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막
CN103346215A (zh) 一种均相溶液法制备铜锌锡硫太阳能电池吸收层薄膜的方法
WO2014035865A1 (en) Absorbers for high efficiency thin-film pv
CN102694077B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
KR101210171B1 (ko) 태양전지 및 이의 제조방법
Peksu et al. Synthesis of ZnO nanowires and their photovoltaic application: ZnO nanowires/AgGaSe 2 thin film core-shell solar cell
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
CN102709393A (zh) 用铜锌锡硫化合物单一靶材制备薄膜太阳能电池的方法
US10134930B2 (en) Solar cell having three-dimensional P-N junction structure and method for manufacturing same
CN104952982B (zh) 通过合适的热处理制造光伏器件的方法
KR101807118B1 (ko) 등급 크기 및 S:Se 비율을 갖는 광전 소자
Jang et al. Controlled post-sulfurization process for higher efficiency nontoxic solution-deposited CuIn0. 7Ga0. 3Se2 absorber thin films with graded bandgaps
KR20190010483A (ko) Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지
KR102212042B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
Deokate The Recent Research and Growth in Energy Efficiency in Cu 2 ZnSnS 4 (CZTS) Solar Cells
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods
Punathil et al. Annealing Temperature and Post Sulphurizaton/Seleniation Effects on Solution-Based CZTS Devices
Hassan et al. Multi band gap Cu (In, Ga)(S, Se) 2 thin films deposited by spray pyrolysis for high performance solar cell devices