CN105789349A - 化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法 - Google Patents

化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法 Download PDF

Info

Publication number
CN105789349A
CN105789349A CN201410826046.9A CN201410826046A CN105789349A CN 105789349 A CN105789349 A CN 105789349A CN 201410826046 A CN201410826046 A CN 201410826046A CN 105789349 A CN105789349 A CN 105789349A
Authority
CN
China
Prior art keywords
sulfide
single crystal
solar cell
electrode
cushion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410826046.9A
Other languages
English (en)
Inventor
谢东坡
林伟圣
张仁铨
刘永宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN105789349A publication Critical patent/CN105789349A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法。所述化合物太阳能电池包括基板、位于基板上的第一电极、位于第一电极上的VI族吸收层与位于VI族吸收层上的第二电极。而且,在第二电极与VI族吸收层之间有一层第一缓冲层,其中所述第一缓冲层是硫化物单晶纳米粒子所构成的薄膜。

Description

化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法
技术领域
本发明涉及一种化合物太阳能电池技术,更特别地涉及一种化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法。
背景技术
近年来,由于新兴国家的快速发展导致各种能源短缺,全球的气候变异、环境污染及生态浩劫情况也到了危急的情况,无污染、不用担心匮乏并足够全世界长期使用的太阳能备受各界的瞩目与期待。就现况而言,太阳能所产生的电力仍无法取代现有的石化能源,主因在于成本较高及供电时间的不稳定性,但是长远来看,导致温室效应的二氧化碳必须减量以及石化燃料总有耗尽的一天,让世界各国无不卯足全力补助太阳能产业的发展,希望能借助太阳能制作技术的进步,使其成为未来能源的主流。
目前,降低成本是太阳能电池的重要课题之一,所以具备低成本优势的VI族化合物太阳能电池成为近来颇受瞩目的太阳能电池。
VI族太阳能电池由字面的解释即是材料中含有元素周期表中VIA族的材料,包含:氧(O)、硫(S)、硒(Se)、鍗(Te)等元素,II族的材料以IIB族材料锌(Zn)、镉(Cd)为主,其中化合物碲化镉(CdTe)可说是最具代表性的II-VI族太阳能电池材料,结构属于闪锌矿(zincblende),而I-III-VI族材料则是II-VI族的变化型,是II-VI族化合物衍生而来,用第IB族元素(Cu、Ag)及第IIIA族元素(In、Ga、Al)来取代第IIB族元素所形成的所谓黄铜矿(chalcopyrite)结构,以铜铟硒(CuInSe2)、铜铟镓硒(CuInGaSe2)、铜锌锡硒硫(Cu2ZnSn(S,Se)4)等化合物为代表性的电池材料,经过数十年的发展,VI族的太阳能电池材料研究已相当成熟。
而这种薄膜太阳能电池的吸收层大都利用n型CdS层或n型ZnS层来当作半导体的接合界面,其制备工艺包括近空间升华沉积法(Closespacedsublimation,简称CSS)、气相沉积、化学水浴沉积(chemicalbathdeposition,简称CBD)等。然而,最常使用的是化学水浴沉积因为温度大多控制在65℃~75℃,后续的工艺温度若过高会导致组件严重裂化,导致上述接合界面被破坏,所以连带后续工艺都无法采用较高的温度(譬如透明电极的形成)。此外,上述化学水浴沉积还有废液问题,导致废水处理十分昂贵且麻烦,甚至增加对环境污染及生态冲击的隐忧。
除了化学水浴沉积工艺外,还有许多工艺技术可制作n型CdS层或n型ZnS层,譬如真空工艺。然而,真空设备成本高昂、产率较低且技术瓶颈高,造成难以用于商业量产,限缩市场发展。
发明内容
本发明提供一种化合物太阳能电池,能提升整体组件特性。
本发明另提供一种硫化物单晶纳米粒子薄膜的制造方法,能形成单晶纳米粒子组成的高覆盖率薄膜,厚度可精确控制在纳米级厚度,并且达到材料无损耗、低化学废液、制备工艺简单等效果。
本发明的化合物太阳能电池包括基板、位于基板上的第一电极、位于第一电极上的VI族吸收层与位于VI族吸收层上的第二电极。而且,在第二电极与VI族吸收层之间有一层第一缓冲层,其中所述第一缓冲层是硫化物单晶纳米粒子所构成的薄膜。
本发明的硫化物单晶纳米粒子薄膜的制造方法,包括将硫化物前驱物溶液滴在VI族吸收层的表面,再在一预定温度下热裂解上述硫化物前驱物溶液,以在VI族吸收层的表面形成由硫化物单晶纳米粒子所构成的薄膜。
由上可知,本发明使用热裂解形成的单晶纳米粒子所构成的薄膜,所以没有高温裂化问题,可解决衰减问题,有效增强化合物太阳能电池的高温稳定性,同时可提高后段的工艺温度,进一步增加化合物太阳能电池的组件特性。而且本发明在制备工艺上具有低成本优势,可同时缩短工艺时间增加产能,还能减少废液的产生。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附附图作详细说明如下。
附图说明
图1是依照本发明的一实施例的一种化合物太阳能电池的立体示意图;
图2A至图2C是依照本发明的另一实施例的一种硫化物单晶纳米粒子薄膜的制造流程示意图;
图3是制备实施例1的CIGS薄膜三阶段共蒸镀的曲线图;
图4是制备实施例2的ZnS的SEM影像;
图5是实施例1的ZnS的SEM影像;
图6是实施例1的ZnS的TEM影像;
图7是比较例的太阳能电池断面的SEM影像;
图8是比较例的太阳能电池的光电转换效率曲线图;
图9是实施例2-1的CIGS太阳能电池的示意图;
图10是实施例2-1的太阳能电池断面的SEM影像;
图11是比较例和实施例2-1的太阳能电池的光电转换效率曲线图;
图12是实施例2-1的太阳能电池的I-V曲线图;
图13是实施例2-3的太阳能电池的I-V曲线图。
附图标记说明:
100、200:基板;
102、202:第一电极;
104、204:VI族吸收层;
106:第二电极;
108、210:第一缓冲层;
110:透明电极;
112:金属栅线;
206:硫化物前驱物溶液;
208:硫化物单晶纳米粒子。
具体实施方式
下面将参照所附附图以更全面地叙述本发明的各实施例。本发明的各实施例也可表现为许多不同的形态,而不应理解为局限于本文所列举的实施例。确切地讲,提供这些实施例是为了使公开的内容更透彻更完整,且将各实施例的概念全面传达给所属技术领域中具有通常知识者。在这些附图中,为清楚起见,各层或各区域的厚度被放大。
图1是依照本发明的一实施例的一种化合物太阳能电池的立体示意图。
请参照图1,本实施例的化合物太阳能电池包括基板100、第一电极102、VI族吸收层104与第二电极106。VI族吸收层104可为I-III-VI族化合物或II-VI族化合物,如铜铟镓硒(CIGS)、铜锌锡硫(CZTS)或碲化镉(CdTe)。第一电极102例如为金属电极,而第二电极106可包括透明电极110和金属栅线112。而且,在第二电极106与VI族吸收层104之间有一第一缓冲层108,其是硫化物单晶纳米粒子所构成的薄膜。由于第一缓冲层108是单晶构造所组成的薄膜,所以可耐高温,因此在后续形成第二电极106,能采用较高温的溅镀与沉积工艺等,以获得导电性和穿透性较佳的透明电极。上述第一缓冲层108的厚度约在1nm~150nm之间;较佳是2nm~30nm之间,当第一缓冲层108的厚度在1nm以上,能在电池后续制备工艺中扮演保护VI族吸收层104表面的角色,以避免受到电浆损伤;当第一缓冲层108的厚度在150nm以下,可防止串联电阻过大而使电池效率下降,当第一缓冲层108小于1nm时容易出现覆盖不完全而导致电池漏电流的情况,当第一缓冲层108大于150nm时会使得电池串联阻值增加并降低光的穿透率。构成第一缓冲层108的硫化物单晶纳米粒子的材料例如ZnS、CdS、InS、PbS、FeS、CoS2、Cu2S、MoS2等;所述硫化物单晶纳米粒子的颗粒大小例如为1nm~20nm之间。在一实施例中,更可包括第二缓冲层(图中未示出),例如是i-ZnO层,设置在第一缓冲层108与透明电极110之间,所述第二缓冲层的厚度约在0.1nm~100nm之间。
图2A至图2C是依照本发明的另一实施例的一种硫化物单晶纳米粒子薄膜的制造流程示意图。
本实施例以化合物太阳能电池为例;也就是说,所欲形成的硫化物单晶纳米粒子薄膜是作为第一缓冲层。因此,请参照图2A,先准备包括基板200、第一电极202和VI族吸收层204的结构,并将硫化物前驱物溶液206滴在VI族吸收层204的表面。上述硫化物前驱物溶液206包括溶剂与硫化物前驱物,其中硫化物前驱物例如二乙基二硫代氨基甲酸锌(zincdiethyldithiocarbamate,化学式是[(C2H5)2NC52]2Zn)、二乙基二硫代氨基甲酸镉、二乙基二硫代氨基甲酸铟、二乙基二硫代氨基甲酸铅、二乙基二硫代氨基甲酸铁、二乙基二硫代氨基甲酸钴、二乙基二硫代氨基甲酸铜等。而硫化物前驱物溶液206内的溶剂的沸点例如在220℃以上;如220℃~350℃之间,可耐高温处理。这种溶剂例如三正锌基膦(Trioctylphosphine,TOP)或其他适合的溶剂。至于硫化物前驱物溶液206的浓度例如在0.01M~0.6M之间,当所述浓度在0.01M以上,形成硫化物单晶纳米粒子的速度不会过慢;当所述浓度在0.6M以下,则所形成的薄膜不至于颗粒过大而不均。
然后,请参照图2B,在第一预定温度下热裂解硫化物前驱物溶液206,此时会有硫化物单晶纳米粒子208逐渐形成。上述热裂解的步骤优选是在惰性气体中进行(如氮气或氩气)或在真空中进行,而第一预定温度例如在220℃~350℃之间。
之后,请参照图2C,在VI族吸收层204的表面会形成由硫化物单晶纳米粒子所构成的薄膜210。
除上述步骤之外,在图2A的步骤之前可先预热到第二预定温度,如100℃~200℃,并且在硫化物前驱物溶液206滴在VI族吸收层204的表面之后升温至上述第一预定温度。而在形成薄膜210之后,可以待降温至室温后,以丙酮或酒精洗去剩余的硫化物前驱物并以惰性气体(如氮气)吹干。之后,如有需要,可在高温如150℃~300℃下进行烘烤,以完全去除硫化物前驱物溶液206内的溶剂。
以下列举诸项实验用以验证本发明的功效,但本发明的范围并不局限于以下实验。
制备例1
在含钠的玻璃基板(SolidLimeGlass,SLG)上溅镀一层钼金属层(厚度约800nm~1μm)当做第一电极,接着在钼金属上沉积厚度约在2μm~2.5μm左右的CIGS薄膜作为VI族吸收层。在本制备例中,CIGS薄膜是通过NREL三阶段共蒸镀(Co-evaporation)的方法生长的。在第一阶段中先蒸镀In2Se3与Ga2Se3的化合物,接着在第二阶段中只有Cu、Se的流量下,使其成为富铜(Cu-rich)的CIGS薄膜,此时将会形成CuXSe1-X的化合物以有助于薄膜晶粒的生长,最后第三阶段再蒸镀In、Ga和Se使其薄膜反转回富铟(In-rich)的情况,具三阶段共蒸镀曲线如图3所示。
制备例2
以化学水浴沉积(CBD)步骤,在制备例1的CIGS薄膜上形成ZnS第一缓冲层(厚度约在50nm左右)。
本制备例的化学水浴沉积的流程如下:
1.配置2M硫脲溶液,以及0.16M硫酸锌溶液。
2.先将硫脲溶液倒入锅内,加热至70℃~80℃。
3.可视情况以5%的KCN溶液去除CIGS表面Cu2-XSe,再以去离子水冲净KCN。
4.混合150ml的7M氨水溶液及硫酸锌溶液到玻璃锅内。
5.将整个玻璃基板浸泡约20分钟,且反应温度保持80℃~85℃。
6.沉积结束后,将玻璃基板取出,用去离子水冲洗CIGS表面反应溶液,并用压缩空气吹干,完成第一缓冲层镀膜。
实施例1
以本发明的方法,在制备例1的CIGS薄膜上形成由ZnS单晶纳米粒子所构成的第一缓冲层。
本实施例的第一缓冲层的制作是在通氮气的环境下,先利用热板(Hotplate)预热100℃、时间3分钟,让玻璃基板均匀受热。接着,滴取0.28ml的0.1M二乙基二硫代氨基甲酸锌([(C2H5)2NC82]2Zn)的纳米晶体前驱物(溶剂为TOP)在CIGS层上,进行热裂解,此时加热温度升高至290℃,加热时间约5至7分钟。
接着,降温至室温约25℃约10分钟。热裂解工艺完成后将试片取出,以丙酮、酒精加以清洗后,以氮气吹干试片表面,目的是将残存的有机物清除。
最后将试片以热板在大气环境下加热150℃~200℃约10分钟,或是将试片置于1SUN光强度的太阳光源仿真器下光照约1~2小时完成第一缓冲层的制作。在本实施例中第一缓冲层的厚度约在50nm。
分析一
利用SEM取得制备例2和实施例1的ZnS的表面影像,分别显示在图4和图5中。
经比较可知,图4以CBD制备的ZnS表面为晶粒堆叠成一薄膜,但是图5利用热裂解形成的ZnS表面为纳米粒子堆叠排列,不同于图4所生长的ZnS薄膜。
然后,利用TEM(JOEL2100F)分析实施例1中的ZnS晶体,由试片上取出部分溶液,经离心、清洗后,可观察到约1nm~3nm大小的ZnS纳米粒子,借助高解析TEM可确认为单晶粒子,如图6圈起来的部位就代表一个单晶纳米粒子。图6虽只绘出几个圆圈,但应知高解析TEM所拍摄的影像中,较暗的点即为单晶粒子结构,例如图6右上即显示其单晶粒子的晶格。
比较例
在制备例2的ZnS第一缓冲层上,在室温下以溅镀方式生长约50nm的i-ZnO作为第二缓冲层。接着,在室温下生长约500nm的AZO作为透明电极。经SEM观察可得到图7。最后,以溅镀方式完成Ni-Al的制作作为上电极。
由于CBD工艺的沉积对温度稳定性差,当后段工艺温度超过150℃,预期组件特性会衰减。因此,测量上述两个不同AZO工艺温度的太阳能电池的光电转换效率,结果显示在图8。
从图8可明显观察到,以CBD工艺形成ZnS缓冲层的CIGS太阳能电池,一旦AZO工艺温度上升,其光电转换效率会大幅衰退。
实施例2-1
为了制作出图9所示的CIGS太阳能电池,在实施例1的ZnS第一缓冲层上,在室温下以溅镀方式生长约50nm的i-ZnO层作为第二缓冲层。接着,在高温约150℃的环境下生长约500nm的AZO作为透明电极。经SEM观察得到图10,从图10可以观察到ZnS第一缓冲层(ZnS)是由粒子构成的薄膜。最后,在AZO透明电极上制作Ni/Al金属电极。
将本实施例2-1的CIGS太阳能电池和比较例的CIGS太阳能电池(AZO工艺温度同样为150℃)进行比较,经测量其转换效率特性,结果显示于图11。
由图11可知,实施例2-1的ZnS单晶纳米粒子所构成的薄膜搭配高温工艺(150℃)形成的AZO,在转换效率方面并无明显变化,大约是10.9%左右。但是,跟比较例(图8)相比,其后续AZO工艺温度一旦增加至150℃,就会降到只有6.3%,因此与CBD方式制作得到的缓冲层相比,本发明的结构及方法能使转换效率由6.3%提升至10.9%,因此具有提升组件效率的功效。
同时请参阅图12,如实施例2-1的CIGS太阳能电池亦可调整各层的厚度以达到较高效率约12.2%。
实施例2-2
与实施例2-1一样的方式制作化合物太阳能电池,只是将CIGS改为CZTS,其中CZTS吸收层厚度约2μm,组成比例为Cu/(Zn+Sn)~0.8,Zn/Sn~1.05。经测量,目前组件转换效率在光辐照(lightsoaking)后可达2.46%(Voc:0.35V,Jsc:25.51mA/cm2,F.F.:28%)。
实施例2-3
与实施例2-1一样的方式制作化合物太阳能电池,只是将ZnS单晶纳米粒子改为硫化镉(CdS)单晶纳米粒子来构成第一缓冲层,其制备工艺与实施例2-1的差异在于使用二乙基二硫代氨基甲酸镉([(C2H5)2NCS2]2Cd)作为纳米晶体前驱物,之后搭配150℃的AZO工艺并完成化合物太阳能电池的制作,此CdS第一缓冲层的厚度约为88nm,组件效率约为9.6%,请参阅图13。
综上所述,本发明借助硫化物单晶纳米粒子构成的薄膜作为化合物太阳能电池的第一缓冲层,所以不但在制备工艺上具有低成本优势,同时缩短工艺时间增加产能,还能减少废液的产生。另外,因为第一缓冲层为单晶结构,所以后续的工艺温度能提高,进而提升整体组件特性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

1.一种化合物太阳能电池,其特征在于,所述化合物太阳能电池包括:
基板;
第一电极,位于该基板上;
VI族吸收层,位于该第一电极上;
第二电极,位于该VI族吸收层上;以及
第一缓冲层,位于该VI族吸收层与该第二电极之间,其中该第一缓冲层是由多数个硫化物单晶纳米粒子所构成的薄膜。
2.如权利要求1所述的化合物太阳能电池,其中该第一缓冲层的厚度在1nm~150nm之间。
3.如权利要求1所述的化合物太阳能电池,其中该硫化物单晶纳米粒子的材料包括ZnS、CdS、InS、PbS、FeS、CoS2、Cu2S或MoS2
4.如权利要求1所述的化合物太阳能电池,其中该VI族吸收层包括1-III-VI族化合物或II-VI族化合物。
5.如权利要求4所述的化合物太阳能电池,其中该VI族吸收层包括铜铟镓硒、铜锌锡硫或碲化镉。
6.如权利要求1所述的化合物太阳能电池,还包括一第二缓冲层设置在该第一缓冲层与该第二电极之间,其中该第二缓冲层的厚度约在0.1nm~100nm之间。
7.如权利要求1所述的化合物太阳能电池,其中该第一电极包括金属电极以及该第二电极包括透明电极。
8.一种硫化物单晶纳米粒子薄膜的制造方法,其特征在于,所述制造方法包括:
将硫化物前驱物溶液滴在VI族吸收层的表面;以及
在第一预定温度下热裂解该硫化物前驱物溶液,以在该VI族吸收层的该表面形成由多数个硫化物单晶纳米粒子所构成的薄膜。
9.如权利要求8所述的硫化物单晶纳米粒子薄膜的制造方法,其中该硫化物前驱物溶液包括溶剂与硫化物前驱体。
10.如权利要求9所述的硫化物单晶纳米粒子薄膜的制造方法,其中该硫化物前驱物包括二乙基二硫代氨基甲酸锌、二乙基二硫代氨基甲酸镉、二乙基二硫代氨基甲酸铟、二乙基二硫代氨基甲酸铅、二乙基二硫代氨基甲酸铁、二乙基二硫代氨基甲酸钴或二乙基二硫代氨基甲酸铜。
11.如权利要求9所述的硫化物单晶纳米粒子薄膜的制造方法,其中该溶剂的沸点在220℃以上。
12.如权利要求9所述的硫化物单晶纳米粒子薄膜的制造方法,其中该溶剂包括三正锌基膦。
13.如权利要求8所述的硫化物单晶纳米粒子薄膜的制造方法,其中该硫化物前驱物溶液的浓度在0.01M~0.6M之间。
14.如权利要求8所述的硫化物单晶纳米粒子薄膜的制造方法,其中该热裂解的步骤是在惰性气体或真空中进行。
15.如权利要求8所述的硫化物单晶纳米粒子薄膜的制造方法,其中该第一预定温度在220℃~350℃之间。
16.如权利要求8所述的硫化物单晶纳米粒子薄膜的制造方法,其中将该硫化物前驱物溶液滴在该材料层的该表面之前,还包括预热至第二预定温度,其中该第二预定温度在100℃~200℃;以及将该硫化物前驱物溶液滴在该材料层的该表面之后,升温至该第一预定温度,约为220℃~350℃之间。
CN201410826046.9A 2014-12-22 2014-12-26 化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法 Pending CN105789349A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103144688 2014-12-22
TW103144688A TWI502762B (zh) 2014-12-22 2014-12-22 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法

Publications (1)

Publication Number Publication Date
CN105789349A true CN105789349A (zh) 2016-07-20

Family

ID=54851750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410826046.9A Pending CN105789349A (zh) 2014-12-22 2014-12-26 化合物太阳能电池与硫化物单晶纳米粒子薄膜的制造方法

Country Status (4)

Country Link
US (2) US20160181452A1 (zh)
JP (1) JP6143737B2 (zh)
CN (1) CN105789349A (zh)
TW (1) TWI502762B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104164A (zh) * 2017-06-07 2017-08-29 深圳众厉电力科技有限公司 一种高效化合物太阳能电池
WO2020020217A1 (zh) * 2018-07-24 2020-01-30 领凡新能源科技(北京)有限公司 铜铟镓硒薄膜太阳能电池芯片的缓冲层及其制备方法、铜铟镓硒薄膜太阳能电池芯片

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859451B2 (en) 2015-06-26 2018-01-02 International Business Machines Corporation Thin film photovoltaic cell with back contacts
KR102223738B1 (ko) * 2019-07-02 2021-03-04 성균관대학교산학협력단 일차원 나노 사슬 구조체 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005495A1 (en) * 1995-09-15 2001-06-28 Paul O'brien Process for preparing a nanocrystalline material
CN101681938A (zh) * 2007-04-18 2010-03-24 纳米技术有限公司 基于多层的电活性膜的制造
US20110081744A1 (en) * 2009-10-06 2011-04-07 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640716B2 (ja) * 1995-10-05 2005-04-20 石原産業株式会社 CdS超微結晶が存在してなる無機材料およびその製造方法ならびにそれを用いた光電気化学素子
JP2001156314A (ja) * 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd 光電変換素子および太陽電池
JP4012957B2 (ja) * 2002-06-07 2007-11-28 本田技研工業株式会社 化合物薄膜太陽電池の製造方法
US6878871B2 (en) * 2002-09-05 2005-04-12 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
TWI406890B (zh) * 2004-06-08 2013-09-01 Sandisk Corp 奈米結構之沉積後包封:併入該包封體之組成物、裝置及系統
WO2007065039A2 (en) * 2005-10-20 2007-06-07 The Regents Of The University Of California Nanocrystal solar cells processed from solution
GB0723539D0 (en) * 2007-12-01 2008-01-09 Nanoco Technologies Ltd Preparation of nonoparticle material
US20120060922A1 (en) * 2008-03-03 2012-03-15 The Regents Of The University Of California Layered inorganic nanocrystal photovoltaic devices
US8889469B2 (en) * 2009-12-28 2014-11-18 Aeris Capital Sustainable Ip Ltd. Multi-nary group IB and VIA based semiconductor
JP2013544938A (ja) * 2010-11-22 2013-12-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 半導体インク、膜、コーティングされた基板および製造方法
JP5874645B2 (ja) * 2010-12-27 2016-03-02 凸版印刷株式会社 化合物半導体薄膜太陽電池及びその製造方法
US8647897B2 (en) * 2011-03-21 2014-02-11 The Board Of Trustees Of The Leland Stanford Junior University Air-stable ink for scalable, high-throughput layer deposition
JP6371764B2 (ja) * 2012-07-09 2018-08-08 ナノコ テクノロジーズ リミテッド セレン化13族ナノ粒子
JP2014216479A (ja) * 2013-04-25 2014-11-17 富士フイルム株式会社 光電変換素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010005495A1 (en) * 1995-09-15 2001-06-28 Paul O'brien Process for preparing a nanocrystalline material
CN101681938A (zh) * 2007-04-18 2010-03-24 纳米技术有限公司 基于多层的电活性膜的制造
US20110081744A1 (en) * 2009-10-06 2011-04-07 Fujifilm Corporation Buffer layer and manufacturing method thereof, reaction solution, photoelectric conversion device, and solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104164A (zh) * 2017-06-07 2017-08-29 深圳众厉电力科技有限公司 一种高效化合物太阳能电池
WO2020020217A1 (zh) * 2018-07-24 2020-01-30 领凡新能源科技(北京)有限公司 铜铟镓硒薄膜太阳能电池芯片的缓冲层及其制备方法、铜铟镓硒薄膜太阳能电池芯片

Also Published As

Publication number Publication date
JP6143737B2 (ja) 2017-06-07
TW201624751A (zh) 2016-07-01
TWI502762B (zh) 2015-10-01
US20170207362A1 (en) 2017-07-20
JP2016119441A (ja) 2016-06-30
US20160181452A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
Cao et al. Towards high efficiency inverted Sb2Se3 thin film solar cells
Li et al. Cation substitution in earth‐abundant kesterite photovoltaic materials
Jiang et al. Cu2ZnSnS4 polycrystalline thin films with large densely packed grains prepared by sol-gel method
CN102569508B (zh) 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法
CN102054897B (zh) 多元素合金单一靶材制备薄膜太阳能电池的方法
Ghosh et al. Solution-processed Cd free kesterite Cu2ZnSnS4 thin film solar cells with vertically aligned ZnO nanorod arrays
Tian et al. A robust and low-cost strategy to prepare Cu 2 ZnSnS 4 precursor solution and its application in Cu 2 ZnSn (S, Se) 4 solar cells
CN104505423A (zh) 一种溶液法加工的倒置结构CdTe纳米晶异质结高效太阳电池及其制备方法
CN104143579A (zh) 一种锑基化合物薄膜太阳能电池及其制备方法
US20170207362A1 (en) Method for forming thin film having sulfide single-crystal nanoparticles
JP2014160812A (ja) 太陽電池、および太陽電池の製造方法
CN103400903A (zh) 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
CN102637755A (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
Sun et al. Effect of evaporated Sb layer on performance of flexible CZTSSe thin film solar cell
CN102694077B (zh) 一种铜铟镓硒薄膜太阳能电池的制备方法
CN104064618A (zh) 一种p-i-n结构CdTe电池及其制备方法
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
CN105470113A (zh) 一种CZTSSe薄膜太阳电池吸收层的制备方法
Wu et al. Characterization of Cu (In, Ga) Se2 thin films prepared via a sputtering route with a following selenization process
Peksu et al. Synthesis of ZnO Nanowires and Their Photovoltaic Application: ZnO Nanowires/AgGaSe2 Thin Film Core‐Shell Solar Cell
CN113644146B (zh) 一种用于太阳能电池的薄膜、太阳能电池及其制备方法
US10134930B2 (en) Solar cell having three-dimensional P-N junction structure and method for manufacturing same
CN104952982B (zh) 通过合适的热处理制造光伏器件的方法
Cui et al. Novel Cu2BaSn (S, Se) 4 thin film fabricated by solution process and its application in solar cells
CN105529243A (zh) 一种硫酸盐体系两步法制备铜铟硒光电薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160720

WD01 Invention patent application deemed withdrawn after publication