CN113644146B - 一种用于太阳能电池的薄膜、太阳能电池及其制备方法 - Google Patents

一种用于太阳能电池的薄膜、太阳能电池及其制备方法 Download PDF

Info

Publication number
CN113644146B
CN113644146B CN202110906752.4A CN202110906752A CN113644146B CN 113644146 B CN113644146 B CN 113644146B CN 202110906752 A CN202110906752 A CN 202110906752A CN 113644146 B CN113644146 B CN 113644146B
Authority
CN
China
Prior art keywords
agin
sbs
film
solar cell
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110906752.4A
Other languages
English (en)
Other versions
CN113644146A (zh
Inventor
唐华
唐明睿
程江
李璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN202110906752.4A priority Critical patent/CN113644146B/zh
Publication of CN113644146A publication Critical patent/CN113644146A/zh
Application granted granted Critical
Publication of CN113644146B publication Critical patent/CN113644146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0272Selenium or tellurium
    • H01L31/02725Selenium or tellurium characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种用于太阳能电池的薄膜,其成分的化学表达为AgInxSbS(2+3x/2)(Se),其中x=0.25~1.0;本发明中AgInxSbS(2+3x/2)(Se)薄膜纯度高,结晶度好、晶粒尺寸大,孔洞、缝隙等缺陷少,本发明方法降低了Se对薄膜结构损害,制备的薄膜致密性、均匀性优异,以该薄膜作为吸收层的ITO/CdS/AgInxSbS(2+3x/2)(Se)/Au太阳能电池具有优异的电性能,Jsc达到20.65mA cm‑2,FF达到42.8%,PEC达到最大值为1.98%,EQE达到70%;均有优异的稳定性。

Description

一种用于太阳能电池的薄膜、太阳能电池及其制备方法
技术领域
本发明涉及光伏材料技术领域,具体涉及一种用于太阳能电池的薄膜、太阳能电池及其制备方法。
背景技术
与传统硅基太阳能电池相比,多复合薄膜太阳能电池由于对原料的需求量低、制备方法多样、重量轻等优点而备受关注。近年来,碲化镉(CdTe)和铜铟镓硒化物(CIGS)薄膜太阳能电池的功率转换效率(PCE)达到了极高的水平,但由于成本高、有害废物排放量大,这些电池还不适合进一步商业化。因此,许多研究者仍在寻找生产成本低、环保的光伏吸收材料。近年来,以硫锑为代表的新型吸收剂取得了长足的进展,但与CdTe、CIGS相比,仍有较大差距,而一些潜在吸收层材料如Cu2SnS3,CuSbS2,CuSbSe2 ZnSnN2也被研究开发,但其效率仍低于预期。目前,光电性能优良、制备方法合适的新型无机光伏薄膜还有待发现。
硫锑银(AgSbS2)作为锑基三元硫化合物材料,在近红外和可见光下具有合适的带隙1.4-1.7eV,在近红外和可见光下吸收系数高达104-105cm-1,且该材料生态友好无毒,是一种有前途的光伏吸收体。由于AgSbS2首次被用作P型吸收层,目前对AgSbS2太阳能电池的研究报道较少。P.K.Nair等人报道的禁带宽度为1.68eV,但薄膜的晶粒尺寸太小,限制了薄膜的光导性。由于器件的短路电流(JSC)较低,几乎没有光电性能,随后J.O.Gonzales等人发现,溶液法制备AgSb(SxSe1-x)2薄膜具有较好的光电性能。基于AgSb(SxSe1-x)2的器件,其PCE为2.7%,9.70mA cm-2,但应注意的是,尽管光电性能有所改善,薄膜制备过程非常复杂,耗时。
采用超声喷雾热解沉积(热喷涂法)来制备AgSbS2(Se)薄膜,操作简单、制备效率高,但是制备的薄膜孔洞、缝隙多,薄膜晶粒尺寸小,硒化后Se对于薄膜结构具有一定的损伤,导致薄膜性能较差,应用于太阳能电池是效率较低。
发明内容
基于上述问题,本发明目的在于提供一种用于太阳能电池的薄膜。
本发明第二个目的是提供上述薄膜的制备方法。
本发明第三个目的是提供一种以上述薄膜为吸收层的太阳能电池。
本发明第四个目的是提供上述太阳能电池的制备方法。
本发明目的通过如下技术方案实现:
一种用于太阳能电池的薄膜,其特征在于:所述薄膜的成分的化学表达式为AgInxSbS(2+3x/2)(Se),其中x=0.25~1.0。
优选x=0.55。
进一步,上述薄膜是以硝酸银、硝酸铟、乙酸锑和硫脲为原料制备喷涂液,通过热喷涂沉积制备出AgInxSbS2薄膜,再在硒蒸汽环境下硒化制得。
其中硒化后,用(Se)表示Se取代了部分S。
进一步,上述喷涂液是将硝酸银和硝酸铟溶解在乙二醇甲醚中形成溶液A,乙酸锑溶解于乙酸中形成溶液B,溶液A与溶液B混合后加入浓硝酸,最后加入乙酸和硫脲形成。
进一步,上述硫脲和乙酸的摩尔体积比为7.7~8mmol:1mL。
进一步,上述溶液A中硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.25~1mmol:13~15mL。
进一步,上述溶液B中乙酸锑和乙酸的摩尔体积比是1mmol:3.5~4mL。
进一步,喷涂液中硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL。
区别于一般的掺杂化学元素中原来的结构整体不变,只是极少量位置点的某些元素被掺杂元素或粒子代替,本发明中铟元素(In)以直接添加的方式加入Ag-Sb-S-Se体系中,In添加进入AgSbS2的晶格间隙中进行填充,对AgSbS2中的元素产生挤压,改变了Ag和Sb在晶格中的位置,从而改变了薄膜最终的性能,由于大量的In填充了AgSbS2的晶格缝隙,在硒化过程中,In与Se发生位点竞争,且Se蒸汽热扩散时受到阻碍,抑制了Se蒸汽进入晶格缝隙,减少了Se嵌入晶格对薄膜造成损伤;此外,Se对于S的取代,会导致Sb和S的连接减弱,薄膜受损,缺陷增多,相较于无铟添加的AgSbS2(Se),铟的添加调节了Se对S的取代程度,使得Sb对S的取连接更紧密,减少了薄膜的结构缺陷。此外,In的添加,薄膜的价带起到了调节作用。
上述AgInxSbS(2+3x/2)(Se)薄膜的制备方法,其特征在于:是将硝酸银和硝酸铟溶解于乙二醇甲醚中,形成溶液A,将乙酸锑溶解于乙酸中形成溶液B,溶液A与溶液B混合后加入浓硝酸,最后加入乙酸和硫脲形成喷涂液,在N2环境下,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,然后将AgInxSbS(2+3x/2)薄膜置于380℃高温区,将硒粉置于350℃低温区,进行硒化6~9min。
本发明通过将硝酸银和硝酸铟配制溶液A,将乙酸锑单独溶解成溶液B再进行混合,确保生成In添加的前驱体,而不是In取代Sb的结构,最后加入硫脲的同时,也加入了少量的乙酸起到pH缓冲作用,对喷涂液中的前驱体生成形成了调节作用,促进In更均匀、充分地嵌入晶格缝隙,使得在热喷涂过程中沉积的薄膜的均匀性、致密性得到提高。
优选硒化时间为8min。
进一步,上述N2气流量为20~24L/min,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃。
进一步,上述硫脲和乙酸的摩尔体积比为7.7~8mmol:1mL。
进一步,上述溶液A中硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.25~1mmol:13~15mL。
进一步,上述溶液B中乙酸锑和乙酸的摩尔体积比是1mmol:3.5~4mL。
进一步,喷涂液中硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL。
最具体的,一种AgInxSbS(2+3x/2)(Se)薄膜的制备方法,其特征在于,按如下步骤进行:
(一)配制喷涂液:
(1)硝酸银、硝酸铟溶解于乙二醇甲醚中,形成溶液A,硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.25~1mmol:13~15mL;
(2)乙酸锑溶解于乙酸中形成溶液B,乙酸锑和乙酸的摩尔体积比是1mmol:3.5~4mL;
(3)将溶液A和溶液B混合,加入质量浓度为68%的浓硝酸,最后加入乙酸和硫脲,混合形成喷涂液,硫脲和乙酸的摩尔体积比为7.7~8mmol:1mL,硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL;
(二)沉积AgInxSbS(2+3x/2)薄膜
在N2环境下,N2气流量为20~24L/min,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃;
(三)硒化
将AgInxSbS(2+3x/2)薄膜置于热处理炉的380℃高温区,将硒粉置于350℃低温区,进行硒化6~9min。
一种基于上述AgInxSbS(2+3x/2)(Se)薄膜的太阳能电池,其特征在于:所述太阳能电池以ITO为基材,CdS为缓冲层,所述AgInxSbS(2+3x/2)(Se)薄膜作为太阳能电池的吸收层,Au层为电极层,所述太阳能电池的结构为ITO/CdS/AgInxSbS(2+3x/2)(Se)/Au。
上述基于AgInxSbS(2+3x/2)(Se)薄膜的太阳能电池的制备方法,其特征在于,按如下步骤进行:
S1、清洗基材:以ITO玻璃为基材,用碱性洗涤剂超声波清洗,然后去离子水进行超声洗涤;
S2、沉积CdS缓冲层:采用化学镀法在ITO基材上沉积了约150nm厚的CdS缓冲层,然后在400℃退火5min;
S3、沉积AgInxSbS(2+3x/2)(Se)吸收层:
(一)配制喷涂液:
(1)硝酸银、硝酸铟溶解于乙二醇甲醚中,形成溶液A,硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.25~1mmol:13~15mL;
(2)乙酸锑溶解于乙酸中形成溶液B,乙酸锑和乙酸的摩尔体积比是1mmol:3.5~4mL;
(3)将溶液A和溶液B混合,加入质量浓度为68%的浓硝酸,最后加入乙酸和硫脲,混合形成喷涂液,硫脲和乙酸的摩尔体积比为7.7~8mmol:1mL,硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL;
(二)沉积AgInxSbS(2+3x/2)薄膜
在N2环境下,N2气流量为20~24L/min,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃,沉积厚度约为600nm;
(三)硒化
将AgInxSbS(2+3x/2)薄膜置于热处理炉的380℃高温区,将硒粉置于350℃低温区,进行硒化6~9min,得厚度约为950nm的AgInxSbS(2+3x/2)(Se)薄膜;
S4、沉积Au电极层:用离子溅射镀膜机将约60nm厚的Au溅射到AgInxSbS(2+3x/2)(Se)表面。
本发明具有如下技术效果:
本发明中AgInxSbS(2+3x/2)(Se)薄膜纯度高,结晶度好、晶粒尺寸大,孔洞、缝隙等缺陷少,本发明方法降低了Se对薄膜结构损害,制备的薄膜致密性、均匀性优异,以该薄膜作为吸收层的ITO/CdS/AgInxSbS(2+3x/2)(Se)/Au太阳能电池具有优异的电性能,Jsc达到20.65mA cm-2,FF达到42.8%,PEC达到最大值为1.98%,EQE达到70%;均有优异的稳定性,在空气环境中放置7周后,在湿热环境中放置7天,PCE从1.92%略降至1.85%,恶劣的环境对设备性能几乎没有损害,这位我们后续的研究奠定了基础。
附图说明
图1:AgSbS2添加In前后的X衍射图对比图。
图2:本发明实施例1制备的元素分布图。
图3:本发明制备的AgInxSbS(2+3x/2)(Se)薄膜的SEM图。
图4:本发明制备的AgInxSbS(2+3x/2)(Se)薄膜作为吸收层的太阳能电池的J-V曲线图。
图5:本发明制备的AgInxSbS(2+3x/2)(Se)薄膜作为吸收层的太阳能电池的EQE曲线图。
图6:本发明制备的AgInxSbS(2+3x/2)(Se)薄膜作为吸收层的太阳能电池的交流阻抗图
图7:本发明制备的AgInxSbS(2+3x/2)(Se)薄膜作为吸收层的太阳能电池的稳定性曲线图。
具体实施方式
下面通过实施例对本发明进行具体的描述,有必要在此指出的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术人员可以根据上述本发明内容对本发明作出一些非本质的改进和调整。
本发明中使用到的化学药品:阿拉丁化工(上海)生产的硝酸银(AgNO3,纯度99.95%)、硝酸铟(InN3O9,纯度99.99%)、乙酸锑(C6H9O6Sb,纯度99.99%)、硫脲(N2H4CS,纯度99%)、乙二醇甲醚(C3H8O2,质量浓度99.7%)、乙酸(C2H4O2,质量浓度99.7%)和硝酸(HNO3,质量浓度68%)。
实施例1
一种AgInxSbS(2+3x/2)(Se)薄膜的制备方法,按如下步骤进行:
(一)配制喷涂液:
(1)硝酸银、硝酸铟溶解于乙二醇甲醚中,形成溶液A,硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:1mmol:15mL;
(2)乙酸锑溶解于乙酸中形成溶液B,乙酸锑和乙酸的摩尔体积比是1mmol:3.8mL;
(3)将溶液A和溶液B混合,加入质量浓度为68%的浓硝酸,最后加入乙酸和硫脲,混合形成喷涂液,硫脲和乙酸的摩尔体积比为7.8mmol:1mL,硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL;
(二)沉积AgInxSbS(2+3x/2)薄膜
在N2环境下,N2气流量为24L/min,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃;
(三)硒化
将AgInxSbS(2+3x/2)薄膜置于热处理炉的380℃高温区,将硒粉置于350℃低温区,进行硒化6min。
实施例2
一种AgInxSbS(2+3x/2)(Se)薄膜的制备方法,按如下步骤进行:
(一)配制喷涂液:
(1)硝酸银、硝酸铟溶解于乙二醇甲醚中,形成溶液A,硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.25mmol:13mL;
(2)乙酸锑溶解于乙酸中形成溶液B,乙酸锑和乙酸的摩尔体积比是1mmol:3.5mL;
(3)将溶液A和溶液B混合,加入质量浓度为68%的浓硝酸,最后加入乙酸和硫脲,混合形成喷涂液,硫脲和乙酸的摩尔体积比为8mmol:1mL,硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL;
(二)沉积AgInxSbS(2+3x/2)薄膜
在N2环境下,N2气流量为20L/min,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃;
(三)硒化
将AgInxSbS(2+3x/2)薄膜置于热处理炉的380℃高温区,将硒粉置于350℃低温区,进行硒化6~9min。
实施例3
一种AgInxSbS(2+3x/2)(Se)薄膜的制备方法,按如下步骤进行:
(一)配制喷涂液:
(1)硝酸银、硝酸铟溶解于乙二醇甲醚中,形成溶液A,硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.55mmol:14mL;
(2)乙酸锑溶解于乙酸中形成溶液B,乙酸锑和乙酸的摩尔体积比是1mmol:4mL;
(3)将溶液A和溶液B混合,加入质量浓度为68%的浓硝酸,最后加入乙酸和硫脲,混合形成喷涂液,硫脲和乙酸的摩尔体积比为7.7mmol:1mL,硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL;
(二)沉积AgInxSbS(2+3x/2)薄膜
在N2环境下,N2气流量为22L/min,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃,沉积的AgInxSbS(2+3x/2)薄膜厚度为600nm;
(三)硒化
将AgInxSbS(2+3x/2)薄膜置于热处理炉的380℃高温区,将硒粉置于350℃低温区,进行硒化8min,硒化后得厚度为950nm的AgInxSbS(2+3x/2)(Se)薄膜。
从图1的XRD衍射图中可以看出,对比In添加前后,SRD图谱均显示相同的晶形结构,没有添加In的AgSbS2薄膜纯度不高,薄膜的三个衍射峰出现分裂,但是添加In后,衍射峰的分裂消失,薄膜显示出高纯度的相,且衍射峰强度更高,(200)衍射峰更窄,表明其具有较低的半宽度(FWHM),晶粒尺寸增大,结晶度变好。
图2是化学成分分布图(EDS),从图中可以看出,薄膜的组成成分中含有Ag、In、Sb、S和Se,通过能谱数据的对比分析,其为AgIn0.55SbS2.825(Se),与XRD结果一致。
图3中,(a)、(b)依次是不添加In的AgSbS2(Se)薄膜、x=0.55的AgIn0.55SbS2.825(Se)薄膜的SEM图,(c)是沉积在ITO/CdS表面上的AgIn0.55SbS2.825(Se)的截面的SEM图。可以看见,没有添加In时,表面缝隙大,致密性差,添加In后,致密性改善,薄膜均匀性优异。
实施例4
一种基于AgInxSbS(2+3x/2)(Se)薄膜的太阳能电池的制备方法,其特征在于,按如下步骤进行:
S1、清洗基材:以ITO玻璃为基材,用碱性洗涤剂超声波清洗,然后去离子水进行超声洗涤;
S2、沉积CdS缓冲层:采用化学镀法在ITO基材上沉积了约150nm厚的CdS缓冲层,然后在400℃退火5min;
S3、沉积AgInxSbS(2+3x/2)(Se)吸收层:
按照实施例3制备出总厚度为950nm的AgIn0.55SbS2.825(Se);
S4、沉积Au电极层:用离子溅射镀膜机将约60nm厚的Au溅射到AgInxSbS(2+3x/2)(Se)表面。
表1:不同In添加量的AgInxSbS(2+3x/2)(Se)薄膜中各元素原子百分比
Figure BDA0003201963890000101
从表1可知,随着In的增加,AgInxSbS(2+3x/2)(Se)薄膜中Se的原子占比减少,而S的原子占比逐渐增加,表明随着In的添加,填充了晶格缝隙,阻碍了Se向晶格缝隙中的渗透,同时减少了Se对S的取代,减少了Se对薄膜的破坏作用,性能得到提升,这与SEM图表现一致。
为了研究添加In对AgSbS2(Se)薄膜电性能的影响,在室温下进行了霍尔效应测量,结果如下表2所示。
表2:AgInxSbS(2+3x/2)(Se)的电参数(x=0,0.25,0.40,0.55,0.70,1.0)
Figure BDA0003201963890000102
添加In后,所有薄膜的载流子浓度(Carrier concentration)均有所增加,其中AgIn0.55SbS2.825(Se)薄膜的载流子浓增加了两个数量级,从2.41×1016cm-3到9.61×1018cm-3,与未添加的In相比,该薄膜的电阻率(Resistivity)下降到4.75×103Ω,串联电阻(Rs)如表3所示,从15.86Ωcm2降低至3.32Ωcm2,可以大大提高器件的Jsc和光伏性能。
表3:AgInxSbS(2+3x/2)(Se)作为吸收层的太阳能电池器件性能数据
Cell(ratio) V<sub>OC</sub>(V) J<sub>SC</sub>(mA cm<sup>-2</sup>) FF PCE(%) R<sub>S</sub>(Ωcm<sup>2</sup>)
AgSbS<sub>2</sub>(Se) 0.36±0.01 6.37±0.53 0.30±0.01 0.71±0.03 13.22±2.64
AgIn<sub>0.25</sub>SbS<sub>2</sub>(Se) 0.23±0.01 14.22±0.31 0.39±0.01 1.25±0.06 8.68±0.84
AgIn<sub>0.40</sub>SbS<sub>2</sub>(Se) 0.22±0.01 17.16±0.21 0.35±0.01 1.32±0.11 8.90±0.57
AgIn<sub>0.55</sub>SbS<sub>2</sub>(Se) 0.22±0.01 19.95±0.70 0.42±0.06 1.85±0.13 4.62±1.30
AgIn<sub>0.70</sub>SbS<sub>2</sub>(Se) 0.21±0.01 16.96±0.09 0.34±0.01 1.20±0.10 9.44±0.52
AgInSbS<sub>2</sub>(Se) 0.26±0.01 10.93±0.21 0.40±0.01 1.13±0.01 12.78±1.69
如表3和图4所示,未添加In的AgSbS2(Se)做吸收层的太阳能电池器件的开路电压(Voc)为0.37V,短路电流密度(Jsc)为6.9mA cm-2,填充因子(FF)为0.29,导致其光电转换效率PEC为0.74%,而添加了In的AgInxSbS(2+3x/2)(Se),随着In含量的增加,Voc略微下降,当x=0.55时,Jsc达到20.65mA cm-2,FF达到42.8%,PEC达到最大值为1.98%。光响应和载流子运输性能可以用EQE(光子吸收率)图谱来证明,如图5所示,不添加In的太阳能电池器件具有较窄的光响应波长范围(350-750nm)和较差的光响应,EQE较低,仅为40%,添加了In后,在350-1200nm波长范围内均有响应,尤其在x=0.55时,EQE达到70%,这表明载流子复合率较低,In的添加,降低了复合损耗,改善了界面质量。为了研究In对载流子运输的影响,扫描频率在1Hz~1MHz下对材料进行了阻抗分析,如图6所示,随着In的增加,器件的实际阻抗Z′呈现出一致的变化趋势,说明铟的加入提高了器件的电导率,其中AgIn0.55SbS2.825(Se)作为吸收层的器件的电导率最高,结果表明,In的添加,使得载流子浓度的增加,导致了薄膜性能的提高。
与AgSbS2(Se)薄膜作为吸收层的太阳能电池器件作对比,AgInxSbS(2+3x/2)(Se)薄膜作为吸收层的太阳能电池器件的效率不但获得了提升,其稳定性也变好,将制备的太阳能电池常温空气环境下储存7周,随后转移到湿热条件下(温度为85℃、湿度为85%)放置7天。本发明制备的以AgIn0.55SbS2(Se)作为吸收层的太阳能电池器件的效率PCE随贮存时间的变化如图所示,AgIn0.55SbS2(Se)器件在空气环境中放置7周后,在湿热环境中放置7天,PCE从1.92%略降至1.85%,恶劣的环境对设备性能几乎没有损害。相比之下,AgSbS2(Se)作为吸收层的太阳能电池器件的PCE在同一环境中存放同一时间后发生了严重的退化。很明显,制备的AgInxSbS(2+3x/2)(Se)为吸收层的太阳能电池比AgSbS2(Se)作为吸收层具有更好的稳定性,这得益于AgInxSbS(2+3x/2)(Se)薄膜具有更好的微观形貌和结晶性。我们分别尝试过采用与In化学性质类似的金属Ga(镓)、Sn(锡)等代替In参与制备薄膜,但是制备的薄膜性能依然很差,薄膜晶粒尺寸较没有添加时变化不大,缺陷改善不明显,作为吸收层制备的太阳能电池性能较无添加的AgSbS2(Se)提升不明显。

Claims (1)

1.一种太阳能电池的制备方法,其特征在于,所述太阳能电池结构为ITO/CdS/AgInxSbS(2+3x/2)(Se) /Au,按如下步骤进行:
S1、清洗基材:以ITO玻璃为基材,用碱性洗涤剂超声波清洗,然后去离子水进行超声洗涤;
S2、沉积CdS缓冲层:采用化学镀法在ITO基材上沉积了150nm厚的CdS缓冲层,然后在400℃退火5min;
S3、沉积AgInxSbS (2+3x/2) (Se)吸收层:
(一)配制喷涂液:
(1)硝酸银、硝酸铟溶解于乙二醇甲醚中,形成溶液A,硝酸银、硝酸铟和乙二醇甲醚的摩尔体积比为1mmol:0.25~1mmol:13~15mL;
(2)乙酸锑溶解于乙酸中形成溶液B,乙酸锑和乙酸的摩尔体积比是1mmol:3.5~4mL;
(3)将溶液A和溶液B混合,加入质量浓度为68%的浓硝酸,最后加入乙酸和硫脲,混合形成喷涂液,硫脲和乙酸的摩尔体积比为7.7~8mmol:1mL,硝酸银、乙酸锑、硫脲和浓硝酸的摩尔体积比例为1mmol:1mmol:4mmol:80μL;
(二)沉积AgInxSbS(2+3x/2)薄膜
在N2环境下,N2气流量为20~24L/min,采用超声波喷涂热解沉积AgInxSbS(2+3x/2)薄膜,喷涂液进料速率为0.3mL/min,沉积速率为150nm/min,沉积温度为330℃,沉积厚度为600nm,x=0.25~1.0;
(三)硒化
将AgInxSbS(2+3x/2)薄膜置于热处理炉的380℃高温区,将硒粉置于350℃低温区,进行硒化6~9min,得厚度为950nm的AgInxSbS(2+3x/2)(Se)薄膜;
S4、沉积Au电极层:用离子溅射镀膜机将60 nm厚的Au溅射到AgInxSbS (2+3x/2) (Se)表面。
CN202110906752.4A 2021-08-09 2021-08-09 一种用于太阳能电池的薄膜、太阳能电池及其制备方法 Active CN113644146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110906752.4A CN113644146B (zh) 2021-08-09 2021-08-09 一种用于太阳能电池的薄膜、太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110906752.4A CN113644146B (zh) 2021-08-09 2021-08-09 一种用于太阳能电池的薄膜、太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN113644146A CN113644146A (zh) 2021-11-12
CN113644146B true CN113644146B (zh) 2022-10-18

Family

ID=78420131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110906752.4A Active CN113644146B (zh) 2021-08-09 2021-08-09 一种用于太阳能电池的薄膜、太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN113644146B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115101611B (zh) * 2022-06-17 2024-02-13 电子科技大学 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802977B2 (en) * 2008-05-09 2014-08-12 International Business Machines Corporation Techniques for enhancing performance of photovoltaic devices
TWI500170B (zh) * 2011-11-22 2015-09-11 Lu Chung Hsin 製造摻雜Bi之IB-IIIA-VIA化合物之光吸收層的方法與包含其之太陽能電池
US20150050816A1 (en) * 2013-08-19 2015-02-19 Korea Atomic Energy Research Institute Method of electrochemically preparing silicon film
KR101503043B1 (ko) * 2014-04-14 2015-03-25 한국에너지기술연구원 박막 태양전지의 광흡수층의 제조방법 및 이를 이용한 박막 태양전지
JP2017212404A (ja) * 2016-05-27 2017-11-30 東京応化工業株式会社 均一系塗布液の製造方法、太陽電池用光吸収層の製造方法、及び太陽電池の製造方法
CN108123000B (zh) * 2017-12-08 2021-07-20 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法

Also Published As

Publication number Publication date
CN113644146A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
Fang et al. Perovskite-based tandem solar cells
Ravindiran et al. Status review and the future prospects of CZTS based solar cell–A novel approach on the device structure and material modeling for CZTS based photovoltaic device
Kondrotas et al. Sb2S3 solar cells
Sinha et al. Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review
TWI520366B (zh) 用於大規模cigs基薄膜光伏材料的艙內摻雜鈉的方法和系統
US9178097B2 (en) Absorbers for high efficiency thin-film PV
Saji et al. CIGS thin film solar cells by electrodeposition
US20140113403A1 (en) High efficiency CZTSe by a two-step approach
US20130164918A1 (en) Absorbers For High-Efficiency Thin-Film PV
US8110428B2 (en) Thin-film photovoltaic devices
US20130164885A1 (en) Absorbers For High-Efficiency Thin-Film PV
Sinha et al. A review on atomic layer deposited buffer layers for Cu (In, Ga) Se2 (CIGS) thin film solar cells: Past, present, and future
Liu et al. Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells
WO2011040645A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
US20140110813A1 (en) Absorbers for High Efficiency Thin-Film PV
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
Chu et al. Semi-transparent thin film solar cells by a solution process
CN113644146B (zh) 一种用于太阳能电池的薄膜、太阳能电池及其制备方法
Sun et al. Effect of TiN diffusion barrier layer on residual stress and carrier transport in flexible CZTSSe solar cells
Nandi et al. One-Step Vapor Transport Deposition for Tuning the Photovoltaic Performance of SnS x Se1–x Solar Cells: Analysis of the Improved V oc and J sc
TW201624751A (zh) 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法
CN105118883B (zh) 一种低镉cigs基薄膜太阳能电池及其制备方法
US20140170803A1 (en) CIGS Absorber Formed By Co-Sputtered Indium
Brémaud Investigation and development of CIGS solar cells on flexible substrates and with alternative electrical back contacts
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant