TW201623695A - 電化電池所用之電極和製造方法,以及能量儲存製程和流動電池組 - Google Patents

電化電池所用之電極和製造方法,以及能量儲存製程和流動電池組 Download PDF

Info

Publication number
TW201623695A
TW201623695A TW104142584A TW104142584A TW201623695A TW 201623695 A TW201623695 A TW 201623695A TW 104142584 A TW104142584 A TW 104142584A TW 104142584 A TW104142584 A TW 104142584A TW 201623695 A TW201623695 A TW 201623695A
Authority
TW
Taiwan
Prior art keywords
electrode
bromine
battery
metal substrate
platinum
Prior art date
Application number
TW104142584A
Other languages
English (en)
Other versions
TWI682069B (zh
Inventor
克里斯多福J 艾倫
沙布哈 亞伯拉罕
肯尼斯L 哈德
Original Assignee
第諾拉工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第諾拉工業公司 filed Critical 第諾拉工業公司
Publication of TW201623695A publication Critical patent/TW201623695A/zh
Application granted granted Critical
Publication of TWI682069B publication Critical patent/TWI682069B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8615Bifunctional electrodes for rechargeable cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

本發明係關於電化電池和系統,諸如可再充電式電池組所用電極,包括金屬基材,和施加於該基材之觸媒塗料。觸媒塗料包括貴金屬或貴金屬氧化物之混合物,可用來改進電池之能量效率。

Description

電化電池所用之電極和製造方法,以及能量儲存製程和流動電池組
本發明係關於電化電池和系統,例如用於供能量儲存之可再充電式電池組所用電極。
電化電池和系統,例如可在充電式電池組和燃料電池,在能量儲存、轉化和管理等各項應用中,扮演重要角色,尤其是可採用來定址柵極穩定性議題,連同可更新和不可更新二種能量來源。
在可再充電式電池組當中,代表對上述應用特別有益的解決方案,因為其成本有限、效率高、有模組性、容易運送。
流動電池組通常包括複數電化電池,並經由溶入液體電解質內之一或以上電活性化物,提供能量儲存。在例如鋅溴流動電池組中,溴化鋅水溶液是儲存在二槽內,可循環通過系統。於電池組充電週期中,金屬鋅是由電解質溶液鍍著在負電極表面,而在正電極形成溴。放電時發生逆製程:溴還原成溴化物,而金屬鋅溶回入溶液內,可於此留到電池組次一充電週期。
好處是,鋅溴流動電池組可完全保留,無限期放電,不會損壞;並無實際上使用壽命限制,並且提供高電池電壓和能量密度,勝過他種流動電池組。
上述電化電池和系統益處日增,轉移到繼續努力針對此等裝置,在成本、效率和使用壽命之最適條件,及其對環境、健康和安全議題相關之潛在衝擊。
就此而言,發生電化反應的電極最適化,是改進加以實施的系統總體效益的關鍵。採用來評鑑再充電式電化電池效率的有用參數,是電壓效率,界定為電池平均放電電壓對平均充電壓之比,以%表示。所以, 電壓效率一方面是在儲存操作中系統在充電所需能量,另方面是系統在放電當中釋放能量的函數。電池的電壓效率愈高,愈方便操作成本和能量效益。
鋅溴流動電池組,可達成並維持電壓效率在66%以上,使用金屬電極,塗以觸媒組成物,包括銥和鉑之一或二者高莫耳百分比,例如分別為70%和23%,連同其他觸媒金屬。因為咸信鉑可促進溴還原反應,意料得到,塗佈較高鉑含量,應會顯示電壓效率令人滿意的效益,因有益於衝擊電池放電過程之能量。
然而,銥和鉑二者均為特別昂貴材料,其價格大大衝擊電極的生產成本。
再者,職業上暴露於選用含鉑化合物之危害,包含呼吸和皮膚疾病,需嚴格暴露限制和/或限制生產設備的日產量。在用於自動污染物轉化之觸媒轉化器領域裡,鉑通常是觸媒配方中豐富的貴金屬。所以,低又有效的鉑濃度塗料,所增加益處是,例如可增進鋅溴流動電池中的溴還原反應效益,並限制鉑暴露和相關疾病。
另外,採用電極表面鍍/解鍍金屬之電池組或電解製程(諸如鋅-鹵素電池組),益處在金屬雜質含量低。摻入電化製程中的此等雜質,會導到鍍金屬不均勻,成長金屬樹枝晶體和縮短電池壽命。金屬污染之電解質源自塗佈混合金屬混合物的基質溶解,在一些含鉑塗料情況下顯示特別普遍。例如,早期研究電解冶金法所用Pt-Ir(70:30重量%比)混合金屬氧化物塗料,透示鉑溶解優先於銥(參見D.Wensley和H.Warren〈塗佈貴金屬的鈦陽極在硫酸和酸性硫酸銅電解質內之逐漸降解〉,Hydrometallurgy,1(1976),pp.259-276.;以及D.Wensley和I.H.Warren〈塗佈貴金屬的陽極在銅電解質冶金應用中之腐蝕和鈍化行為〉,Metall.Trans.6..1OB(1979),pp.50S511)。混合氧化金屬腐蝕亦可利用有機添加劑加速。有機錯合劑常引進入含溴之電解質內,以控制此揮發性組份之溶解度。維持鉑在混合金屬氧化物矩陣內之低又有效重量比,可把鉑雜質在電解質內釋出之相關潛在危機減到最低。此舉有利於電池組系統,預計在其使用壽命當中需很少甚至根本無需保養,且具有一貫效能超過10年。
所以,在電化電池所用電極設計中應考慮到的參數,例如能 量儲存應用,是要兼顧界定電極效能(諸如電壓效率、電流密度、穩定性和使用壽命),和對成本與安全議題之衝擊(諸如構成電極的原物料成本,以及製造過程中所採用可能有害物料的管理和廢棄相關成本)。凡此參數會影響到系統整體經濟,應全局最適化。
所以,亟需製造一種電化電池用之電極,具備適當觸媒塗料組成物,得以達成高電壓效率,可能在70%以上,最好在73%以上,並且有良好穩定性,供操作壽命超過10年。此等觸媒塗料組成物,也應把原物料成本,及其製備所採用有害物質量,減到最少,不會牴觸反而可能增進電極之效率和耐用期限。
本發明諸項要旨,列於所附申請專利範圍內。
本發明之一要旨,係關於電化電池所用電極,包括金屬基材,和應用於基材上之觸媒塗料。觸媒塗料包括貴金屬或貴金屬氧化物之混合物,按照下列組成:60-85%釕、0-25%銥和1-15%鉑,其量係就元素以莫耳%表示,合計為100%。
因此,無銥存在時,塗料組成物是以85%釕和15%鉑表示,就元素之莫耳%而言。在一具體例中,本發明觸媒塗料包括貴金屬或貴金屬氧化物之混合物,按照下列組成份:60-85%釕、1-25%銥和1-15%鉑。
觸媒塗料可應用於金屬基材,無論是直接應用於金屬表面,或是經由觸媒塗料不同組成份、負載和厚度之一層或多層的中間層。塗料之應用可使用任何已知之應用方法,諸如刷塗、輥塗、電鍍、浸塗、凹版印塗、噴塗方法,或是化學或物理蒸氣沉積法。
本發明人等觀察到,所請求之觸媒塗料,儘管Ir/Ru和Pt/Ru比較低,仍顯示意外高度電壓效率,觸媒塗佈電極用於電化電池,諸如再充電式電池組時,通常會在70%以上。此等塗料組成物有益於原物料成本,因為銥和鉑含量較低。此外,含鉑量等於或低於15%(莫耳%)之組成物,具有減少鉑溶化問題的優點,以免導致電解質污染。又有優點是,減少職業暴露於塗料組成物製造過程中所用含母質化合物的鉑之危害。在一具體例中,觸媒塗料的釕、銥和鉑負載,就元素言,選擇在5-30g/m2。此範圍確保電極有所需之電壓效率性能,尤其是用在能量儲存應用之流動電池 組,諸如鋅溴流動電池組,同時又保持鉑和銥總量較低。
在一具體例中,觸媒塗料包括貴金屬或貴金屬氧化物之混合物,包含70-80%釕、17-25%銥和1-5%鉑,就元素言,以莫耳%表示。有如此塗料組成物之電極,意外顯示進一步改進電壓效率,超過73%,並且特別適於成本、穩定性和使用壽命。此外,特低鉑含量有利於減少鉑溶化問題和職業暴露之危害。
在另一具體例中,電極之金屬基材是由鈦材料製成。鈦材料可為結晶性、非晶性,或含有微晶物;可為結實或多孔性。鈦質電極顯示之優點是,材料在化學侵蝕性環境內之抵抗能力,具有良好傳導性質和機械穩定性,後者是因為容易加工成各種形狀,諸如網、片、管、線。
在另一具體例中,電極之金屬基材為多孔性,平均孔隙率40-60%,其中平均孔隙率意指空隙容積佔材料全容積之分率,以%表示。特點值是使用單點Brunauer、Emmett和Teller(BET)法測量。所請求孔隙率之優點是,提高表面積,減少電極表面之電流密度,以致改進電池電壓。此外,金屬基材之孔隙率,致使材料可讓在電化電池內循環之至少一種電解質溶液透過。此特點宜在少隔膜之系統開發,尤指少隔膜之流動電池組,諸如少隔膜之鋅溴流動電池組。
在觸媒塗料和多孔性電極的鈦質基材之間,可證明以介置包括鈦的一層或多層中間層為有利。其優點是抑制塗料潤濕,並在沉積之際,控制在電極斷面之分佈。視電池之流動形態,把塗料單離集中在電極表面最接近反應面積,有助於觸媒暴露最大化,從而負載要求最小化。
做為多孔性鈦的成本和性能有效性選項,電極之金屬基材可包括低氧化鈦。此等TixOy相中x和y通常分別在2-10和3-19範圍,提供固有成本和生產優點。可經由商品母質,像二氧化鈦,以合理的能量輸入還原製成,亦可含低pH氯化物和溴化物的電解質內,提供改進穩定性和抗腐蝕性,諸如在流動電池組電極表面所常見。特別是在溴反應,選用的低氧化物亦提供觸媒益處,勝於傳統鈦。
本發明另一要旨,係關於上述電極之製法。包括如下依序步驟:首先,含釕、鉑和視情形銥化合物的混合物之母質溶液,施塗於金屬基材一次或多次;其次,金屬基材在每次塗佈後,於溫度80℃至150℃乾 燥;最後,乾燥之金屬基材在溫度350℃至600℃熱處理。母質溶液可施塗於金屬基材3至8次,不論是直接塗於基材,或是塗在沉積於金屬基材之一層或多層中間層上。
本發明另一要旨係關於能量儲存製程,可使用至少一電化電池,含溴化鋅電解質溶液,並裝備至少一本發明電極。相對應於該電極,於電化電池之充電和放電循環中,發生Br2+2e2Br-可逆反應。電化電池之充電和放電製程,可利用連接於電池之外部電路,按週期性循環進行。於如此週期性循環之際,在單位電化電池中,本發明電極交替發生溴釋出/還原,而在電池內所含第二電極發生鋅之週期性電鍍/解鍍。
本發明又一要旨是關於一種流動電池組,包括至少一本發明電極。好處是流動電池組可為鋅溴、氫/溴或有機氧化還原物/溴流動電池,而電極可用於溴之交替釋出/還原。本發明流動電池組可有利採用於能量儲存應用,因其改進電壓效率、功率密度、穩定性和使用壽命之故。注意所請求流動電池組內所用電極的觸媒塗料組成物使用材料種類和量,可進一步提供增加利益,降低電極成本,把職業傷害危機減到最少。
又一要旨是,前述電極可採用於溴化電解質之電解,以生產溴,做為化學物商品。
涵蓋下述實施例,以證明本發明特殊具體例,其實用性在申請專利範圍所請求數值範圍內,已大致獲得實證。技術專家均知,遵循實施例內所揭示組成物和技術,即本發明人等所發現代表組成份和技術,在實施本發明時可充分發揮功用;然而技術專家有鑑於本案內容,可知在所揭露特別具體例內,可進行許多變化,仍能獲得相同或相似結果,不違本發明範圍。
實施例1
製備一種塗料溶液,取下列化合物溶入17毫升0.1M HCl和1毫升對-辛基苯氧基聚乙氧基乙醇溶液內,由套陶氏化學公司商品化,商標名稱Triton® X-100: 0.641克RuCl3.xH2O;0.395克H2IrCl6.xH2O;0.038克H2PtCl6.xH2O。
此溶液刷塗在2.0mm厚的多孔性鈦基材上(4cm2投影面積),平均孔隙容積等於50%,安裝在鈦片架上。樣本在110℃乾燥10分鐘,再在470℃烘焙10分鐘。總共塗三次,提供RuO2、IrO2和Pt塗佈,標稱組成份為75% Ru、23% Ir和2% Pt,以莫耳百分比計。塗佈樣本置於電化電池內,與鈦片電極對立。由ZnBr2、ZnCl2、Br2和甲乙基溴化吡咯烷(MEP)組成的電解質,用泵循環通過電池。維持電解質溫度在40-45℃。於電池施以電流200mA,經10分鐘,釋出溴,鍍鋅於鈦片電極。電池再置於開放電路30秒,然後在532mA放電,直到鋅全部除去。於測試當中,監督電池電壓。所得電壓效率79%。進行50次充電/放電循環,並監督電池電壓,評鑑短期穩定性;會合後,電壓效率保持在初期效率的99.0%以上。進行5000次充電/放電循環,並監督電池電壓,評鑑長期穩定性;在整個實驗期間,顯示電壓效率保持在初期效率的95.0%以上。
實施例2
製備一種塗料溶液,取下列化合物溶入17毫升0.1M HCl和1毫升辛基苯氧基聚乙氧基乙醇溶液內,由套陶氏化學公司商品化,商標名稱Triton® X-100:0.7815克RuCl3.xH2O;0.30489克H2PtCl6.xH2O。
此溶液刷塗在2.0mm厚的多孔性鈦基材上(4cm2投影面積),安裝在鈦片架上。樣本在110℃乾燥10分鐘,再在470℃烘焙10分鐘。總共塗四次,提供RuO2和Pt塗佈,標稱組成份為85% Ru和15% Pt,以莫耳百分比計,就元素而言。塗佈樣本置於電化電池內,與鈦片電極對立。由ZnBr2、ZnCl2、Br2和MEP錯合劑組成的電解質溶液,用泵循環通過電池。維持電解質溫度在40-45℃。於電池施以電流200mA,經10分鐘,釋出溴,鍍鋅於鈦片電極。電池再置於開放電路30秒,然後在532mA放電,直到鋅全部除去。於測試當中,監督電池電壓。所得電壓效率78.5%。進行50次充電/放電循環,並監督電池電壓,評鑑短期穩定性;會合後, 發現電壓效率保持在初期效率的99.0%以上。進行4500次充電/放電循環,並監督電池電壓,評鑑長期穩定性;在整個實驗期間,電壓效率保持在初期效率的95.0%以上。
比較例1
製備一種塗料溶液,取下列化合物溶入17毫升0.1M HCl和1毫升辛基苯氧基聚乙氧基乙醇溶液內,由套陶氏化學公司商品化,商標名稱Triton® X-100:RuCl3:0.641195克
H2IrCl6:0.429062克
此溶液刷塗在2.0mm厚的多孔性鈦基材上(4cm2投影面積),安裝在鈦片架上。樣本在110℃乾燥10分鐘,再在470℃烘焙10分鐘。總共塗四次,提供RuO2和Pt塗佈,標稱組成份為75% Ru和25% Ir,以莫耳百分比計,就元素而言。塗佈樣本置於電化電池內,與鈦片電極對立。由ZnBr2、ZnCl2、Br2和MEP錯合劑組成的電解質溶液,用泵循環通過電池。維持電解質溫度在40-45℃。於電池施以電流200mA,經10分鐘,釋出溴,鍍鋅於鈦片電極。電池再置於開放電路30秒,然後在532mA放電,直到鋅全部除去。於測試當中,監督電池電壓。所得電壓效率71%。進行50次充電/放電循環,並監督電池電壓,評鑑短期穩定性;會合後,發現電壓效率保持在初期效率的99.0%以上。進行4500次充電/放電循環,並監督電池電壓,評鑑長期穩定性;在整個實驗期間,電壓效率保持在初期效率的95.0%以上。
前面所述無意限制本發明,可按照不同具體例使用,不違其範圍,其程度純以所附申請專利範圍為準。
在本案說明書和申請專利範圍中,「包括」一辭字樣並不排除其他元件、組件或附加製程步驟存在。
本說明書所含文件、法規、材料、裝置、文章等之論述,純為提供本發明文脈。並非倡議或代表任何或全部此等物件,均形成先前技術基礎之組成部份,或是本發明相關領域在本案各項申請專利範圍優先權日以前之一般常識。

Claims (15)

  1. 一種電化電池所用電極,包括:●金屬基材;●觸媒塗料,包括貴金屬或其氧化物之混合物,其中該混合物包括60-85%釕、0-25%銥,和1-15%鉑,就元素言,以莫耳%表示者。
  2. 如申請專利範圍第1項之電極,其中該貴金屬或其氧化物之混合物,包括70-80%釕、17-25%銥,和1-5%鉑,就元素言,以莫耳%表示者。
  3. 如前述申請專利範圍任一項之電極,其中釕、銥和鉑之負載為諸元素合計之5-30g/m2者。
  4. 如前述申請專利範圍任一項之電極,其中該金屬基材係由鈦材料組成者。
  5. 如申請專利範圍第4項之電極,又包括中間層,含鈦材料,施加於該金屬基材和該觸媒塗料之間者。
  6. 如前述申請專利範圍任一項之電極,其中該基材之平均孔隙率為40%至60%者。
  7. 如申請專利範圍第4項之電極,其中該鈦材料包括鈦低氧化物,其式為TixOy,其中x在2至10之範圍,y在3至19之範圍者。
  8. 一種如申請專利範圍第2至7項任一項電極之製造方法,包括下列依序步驟:●施加母質溶液,包括釕、銥和鉑化合物之混合物,於該金屬基材上塗佈一次或多次;●該金屬基材在每次塗佈後,在溫度80℃至150℃乾燥;●該乾燥金屬基材,在溫度350℃至600℃熱處理者。
  9. 如申請專利範圍第8項之方法,其中母質溶液施於該金屬基材是塗3至8次者。
  10. 一種能量儲存製程,包括如下步驟:●令溴化鋅溶液在至少一電化電池內循環;●該溶液在該電化電池內進行水解;該電化電池裝設有申請專利範圍第1-7項之任一項電極,其中該電極交替釋放和還原溴者。
  11. 如申請專利範圍第10項之製程,又包括利用外部電路,在該電化電池執行征期性充電和放電循環者。
  12. 一種流動電池組,包括申請專利範圍第1至7項任一項之至少一電極者。
  13. 如申請專利範圍第12項之流動電池組,其中該流動電池組係鋅/溴流動電池組,而該至少一電極則交替釋放和還原溴者。
  14. 如申請專利範圍第12項之流動電池組,其中該流動電池組係氫/溴流動電池組,而該至少一電極則交替釋放和還原溴者。
  15. 如申請專利範圍第12項之流動電池組,其中該流動電池組係有機氧化還原物/溴流動電池組,而該至少一電極則交替釋放和還原溴者。
TW104142584A 2014-12-19 2015-12-18 電化電池所用之電極和製造方法,以及能量儲存製程和流動電池組 TWI682069B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462094206P 2014-12-19 2014-12-19
US62/094,206 2014-12-19

Publications (2)

Publication Number Publication Date
TW201623695A true TW201623695A (zh) 2016-07-01
TWI682069B TWI682069B (zh) 2020-01-11

Family

ID=55022462

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104142584A TWI682069B (zh) 2014-12-19 2015-12-18 電化電池所用之電極和製造方法,以及能量儲存製程和流動電池組

Country Status (12)

Country Link
US (1) US10283780B2 (zh)
EP (1) EP3235040B1 (zh)
JP (1) JP6590931B2 (zh)
KR (1) KR102562867B1 (zh)
CN (1) CN107109669B (zh)
AU (1) AU2015367383B2 (zh)
CA (1) CA2968640C (zh)
DK (1) DK3235040T3 (zh)
ES (1) ES2698532T3 (zh)
IL (1) IL252248B (zh)
TW (1) TWI682069B (zh)
WO (1) WO2016097217A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238577A1 (ja) * 2022-06-08 2023-12-14 住友電気工業株式会社 電極、電池セル、及びレドックスフロー電池

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954502A (en) 1973-08-31 1976-05-04 Energy Development Associates Bipolar electrode for cell of high energy density secondary battery
US3982960A (en) * 1973-09-19 1976-09-28 Ppg Industries, Inc. Secondary electrochemical cell having non-consumable silicon cathode
DE2658852A1 (de) * 1976-12-24 1978-06-29 Vielstich Wolf Anode zur elektrochemischen umsetzung von aethylenglykol und verfahren zu ihrer herstellung
US4540639A (en) * 1982-12-01 1985-09-10 Exxon Research & Engineering Company Method and apparatus for maintaining the pH in zinc-bromine battery systems
US5173215A (en) * 1991-02-21 1992-12-22 Atraverda Limited Conductive titanium suboxide particulates
JP2002358971A (ja) * 2001-05-31 2002-12-13 Japan Storage Battery Co Ltd 燃料電池用電極とその製造方法およびそれを用いた燃料電池
US6838205B2 (en) * 2001-10-10 2005-01-04 Lynntech, Inc. Bifunctional catalytic electrode
US6982128B2 (en) 2002-01-28 2006-01-03 Hewlett-Packard Development Company, L.P. Co-catalyst proton exchange membrane fuel cell utilizing borohydride fuels
JP4025615B2 (ja) 2002-10-08 2007-12-26 勇 内田 燃料再生可能な燃料電池、発電方法及び燃料の再生方法
JP2005108798A (ja) * 2003-09-09 2005-04-21 Yoshio Takasu 燃料電池用触媒
JP5082187B2 (ja) * 2003-10-06 2012-11-28 日産自動車株式会社 固体高分子型燃料電池用電極触媒粒子の製造方法
WO2005035444A2 (en) 2003-10-10 2005-04-21 Ohio University Electro-catalysts for the oxidation of ammonia in alkaline media
US7318977B2 (en) * 2006-01-06 2008-01-15 Honda Motor Co., Ltd. Platinum and titanium containing electrocatalysts
US7704628B2 (en) * 2006-05-08 2010-04-27 Honda Motor Co., Ltd. Platinum, titanium, cobalt and palladium containing electrocatalysts
US20070161501A1 (en) * 2006-01-10 2007-07-12 Atomic Energy Council - Institute Of Nuclear Energy Research Method for making carbon nanotube-supported platinum alloy electrocatalysts
DK2181476T3 (da) * 2007-08-22 2015-05-18 Hexis Ag Elektrode til fastoxidreaktor og fastoxidreaktor
US8273230B2 (en) * 2008-02-15 2012-09-25 Atomic Energy Council—Institute of Nuclear Research Method for making membrane fuel cell electrodes by low-voltage electrophoretic deposition of carbon nanomaterial-supported catalysts
JP2010244972A (ja) * 2009-04-09 2010-10-28 Sharp Corp レドックスフロー電池
CN101922016A (zh) * 2009-06-09 2010-12-22 明达实业(厦门)有限公司 一种用于氯发生器的钛电极及其制备方法
GB2471017B (en) * 2009-06-10 2012-02-15 Friedrich Wilhelm Wieland Improved fuel cell cathode and fuel cell
CA2787467C (en) * 2010-01-25 2014-10-21 Ramot At Tel-Aviv University Ltd Bipolar plates of a regenerative fuel cell stack assembly having flow field designs and shunt current suppression channels
KR20140012016A (ko) * 2010-07-28 2014-01-29 마그네토 스페셜 아노즈 비. 브이. 전극촉매
US20140246304A1 (en) * 2011-10-10 2014-09-04 3M Innovative Properties Company Catalyst electrodes, and methods of making and using the same
CN103173835B (zh) * 2011-12-22 2016-01-06 中国科学院大连化学物理研究所 一种金属钛材料的处理方法
KR101437322B1 (ko) * 2012-11-30 2014-09-02 롯데케미칼 주식회사 레독스 흐름 전지의 전극 제조용 슬러리 조성물 및 레독스 흐름 전지의 전극의 제조 방법
KR20140085148A (ko) * 2012-12-27 2014-07-07 현대자동차주식회사 연료 전지용 촉매, 이를 포함하는 연료 전지용 전극, 연료 전지용 막-전극 어셈블리 및 연료 전지 시스템
JP2014130778A (ja) * 2012-12-28 2014-07-10 Tohoku Techno Arch Co Ltd 静止型バナジウムレドックス電池

Also Published As

Publication number Publication date
CN107109669B (zh) 2019-05-10
CA2968640C (en) 2023-06-27
DK3235040T3 (en) 2018-12-03
CA2968640A1 (en) 2016-06-23
ES2698532T3 (es) 2019-02-05
US10283780B2 (en) 2019-05-07
AU2015367383B2 (en) 2020-03-12
EP3235040A1 (en) 2017-10-25
AU2015367383A1 (en) 2017-06-01
EP3235040B1 (en) 2018-09-12
KR20170096192A (ko) 2017-08-23
US20180040903A1 (en) 2018-02-08
IL252248A0 (en) 2017-07-31
WO2016097217A1 (en) 2016-06-23
JP6590931B2 (ja) 2019-10-16
KR102562867B1 (ko) 2023-08-04
IL252248B (en) 2020-04-30
CN107109669A (zh) 2017-08-29
TWI682069B (zh) 2020-01-11
JP2018506142A (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Zhang et al. Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning
Sun et al. High electrochemical activity of a Ti/SnO2–Sb electrode electrodeposited using deep eutectic solvent
JP4673628B2 (ja) 水素発生用陰極
CN101528985B (zh) 用于电解的阳极
CA2859936C (en) Anode for oxygen generation and manufacturing method for the same
DE2720291C3 (de) Akkumulator mit einem wäßrigen Bromid-Elektrolyt
Bi et al. Physicochemical characterisation of electrosynthesized lead dioxide coatings on Ti/SnO2-Sb substrates
DE102013202143A1 (de) Katalysatorbeschichtung und Verfahren zu ihrer Herstellung
JP2931812B1 (ja) 電解用電極およびその製造方法
CA2859941A1 (en) Anode for oxygen generation and manufacturing method for the same
JP2000110000A (ja) 電解プロセスにおける酸素発生用アノ―ド
TWI682069B (zh) 電化電池所用之電極和製造方法,以及能量儲存製程和流動電池組
NO793526L (no) Elektrolysecelleelektrode og fremgangsmaate ved fremstilling derav
JP2007142222A (ja) 電気化学キャパシタ電極およびその製造方法
JP5456744B2 (ja) 金属電解採取方法
ZHANG Development of Amorphous RuO2-Ta2O5/Ti Anode for Oxygen Evolution in Electrowinning
張天 et al. Development of amorphous RuO2-Ta2O5/Ti anode for oxygen evolution in electrowinning
Lu et al. Electro-chemical properties comparison and application in water-treatment of different DSA anodes