WO2023238577A1 - 電極、電池セル、及びレドックスフロー電池 - Google Patents

電極、電池セル、及びレドックスフロー電池 Download PDF

Info

Publication number
WO2023238577A1
WO2023238577A1 PCT/JP2023/017410 JP2023017410W WO2023238577A1 WO 2023238577 A1 WO2023238577 A1 WO 2023238577A1 JP 2023017410 W JP2023017410 W JP 2023017410W WO 2023238577 A1 WO2023238577 A1 WO 2023238577A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
oxide
catalyst
base material
less
Prior art date
Application number
PCT/JP2023/017410
Other languages
English (en)
French (fr)
Inventor
博之 中石
眞一郎 向畠
和之 金本
Original Assignee
住友電気工業株式会社
カーリットホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, カーリットホールディングス株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023238577A1 publication Critical patent/WO2023238577A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells

Definitions

  • the present disclosure relates to electrodes, battery cells, and redox flow batteries.
  • This application claims priority based on Japanese Patent Application No. 2022-093332, which is a Japanese patent application filed on June 8, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Documents 1 and 2 disclose electrodes for redox flow batteries.
  • a catalyst is supported on a base material.
  • Catalysts are metal oxides.
  • the metal oxide that functions as a catalyst includes, for example, metal elements such as ruthenium, iridium, and palladium.
  • the battery cell of the present disclosure includes: A battery cell for a redox flow battery comprising a positive electrode and a negative electrode, At least one of the positive electrode and the negative electrode is the electrode of the present disclosure.
  • a catalyst-supported electrode activates a redox reaction at the electrode, thereby improving battery reactivity with an electrolyte.
  • an electrode including iridium oxide or palladium oxide as a catalyst charging and discharging reactions at the electrode are promoted.
  • using iridium oxide or palladium oxide as the electrode catalyst increases the cost of the electrode. It is necessary to increase the cell reactivity of the catalyst while reducing the amounts of iridium and palladium used as much as possible.
  • the electrode of the present disclosure has high battery reactivity at low cost.
  • the battery cells and redox flow batteries of the present disclosure have low cell resistivity.
  • the electrode of the present disclosure has a catalyst supported on the base material, it is possible to improve the cell reactivity with the electrolyte compared to a case without a catalyst.
  • the catalyst can function as both an oxidation catalyst and a reduction catalyst.
  • An electrode including such a catalyst has high battery reactivity because charging and discharging reactions in the electrode are promoted. Therefore, the electrode of the present disclosure can reduce cell resistivity.
  • the iridium content and palladium content contained in the catalyst are low, or the catalyst does not contain iridium and palladium. Therefore, the electrode of the present disclosure is low cost.
  • the first oxide may include at least one element selected from the group consisting of tin, antimony, and titanium.
  • An intermediate layer may be provided between the particles and the catalyst.
  • the intermediate layer includes a second oxide;
  • the second oxide is an oxide containing at least one element selected from the group consisting of ruthenium, tin, antimony, titanium, tungsten, and molybdenum,
  • the number of types of metal elements contained in the second oxide is smaller than the number of types of metal elements contained in the first oxide.
  • the above electrode including the intermediate layer can suppress the catalyst from falling off from the base material and can provide good electrical connection between the base material and the catalyst.
  • the first oxide may have a larger number of moles of ruthenium than the total number of moles of the first element.
  • the catalyst can have the functions of both an oxidation catalyst and a reduction catalyst in a well-balanced manner.
  • the porosity of the electrode may be 40 volume % or more and 75 volume % or less.
  • the above-mentioned electrode in which the porosity of the electrode is 40% by volume or more allows the electrolyte to easily flow through the electrode.
  • the porosity of the electrode in which the porosity of the electrode is 75% by volume or less the true volume of the electrode excluding voids is large, and a sufficient battery reaction can be performed.
  • the content of ruthenium contained in the catalyst per 1 m 2 of area of the electrode is 0.1 g or more and 90.0 g or less,
  • the total content of the first element contained in the catalyst per 1 m 2 of area of the electrode may be 0.1 g or more and 50.0 g or less.
  • the tensile strength of the electrode may be 4.0 MPa or more and 16.0 MPa or less.
  • the electrode When the tensile strength of the electrode satisfies the above range, the electrode is unlikely to be excessively deformed or broken. Such an electrode has high handling properties. In addition, when the electrode is assembled into a battery cell, it deforms appropriately and is less likely to be damaged.
  • the bending elastic modulus of the electrode may be 0.25 GPa or more and 3.0 GPa or less.
  • the electrode When the bending elastic modulus of the electrode satisfies the above range, the electrode is unlikely to be excessively deformed or broken. Such an electrode has high handling properties. In addition, when the electrode is assembled into a battery cell, it deforms appropriately and is less likely to be damaged.
  • the battery cell according to the embodiment of the present disclosure is A battery cell for a redox flow battery comprising a positive electrode and a negative electrode, At least one of the positive electrode and the negative electrode is the electrode according to any one of (1) to (8) above.
  • the battery cell of the present disclosure has low cell resistivity. Such a battery cell can improve the charging efficiency and discharging efficiency of a redox flow battery.
  • a battery cell for a redox flow battery comprising a positive electrode and a negative electrode,
  • One of the positive electrode and the negative electrode is the electrode according to any one of (1) to (8) above,
  • the other of the positive electrode and the negative electrode includes a base material made of an aggregate of a plurality of carbon fibers.
  • the battery cell has excellent assemblability.
  • An electrode including a base material made of an aggregate of carbon fibers has higher flexibility than an electrode of the present disclosure including a base material made of the sintered body. Therefore, when the positive electrode and the negative electrode are assembled into a battery cell, the other electrode is compressed and deformed, and the battery cell can be easily assembled.
  • the redox flow battery according to the embodiment of the present disclosure includes: The battery cell according to (9) or (10) above is provided.
  • the above redox flow battery has low cell resistivity. Since the redox flow battery includes the battery cell described above, it has high charging efficiency and high discharging efficiency.
  • the RF battery 1 is a storage battery that performs charging and discharging by circulating an electrolytic solution through the battery cell 100 using redox reactions of ions in the electrolytic solution.
  • the positive electrode electrolyte and the negative electrode electrolyte are electrolytic solutions containing, as active materials, ions whose valence changes due to redox.
  • the electrolytic solution is, for example, a vanadium-based electrolytic solution or a titanium-manganese-based electrolytic solution.
  • a vanadium-based electrolyte both the positive electrode electrolyte and the negative electrode electrolyte contain vanadium (V) ions.
  • the positive electrode electrolyte contains manganese (Mn) ions
  • the negative electrode electrolyte contains titanium (Ti) ions.
  • the RF battery 1 is typically connected to a power generation unit 8 and a load 9 via an AC/DC converter 7 and substation equipment 71.
  • the RF battery 1 can be charged with power generated by the power generation section 8 and can discharge the charged power to a load 9.
  • the power generation unit 8 is a power generation facility that utilizes natural energy such as solar power generation or wind power generation, or other general power plants.
  • the RF battery 1 is used, for example, for load leveling, momentary sag compensation, emergency power supply, and output smoothing of natural energy power generation.
  • the RF battery 1 includes a battery cell 100, tanks 106 and 107 in which electrolyte is stored, and a circulation channel that circulates the electrolyte between each tank 106 and 107 and the battery cell 100.
  • a positive electrode electrolyte is stored in the tank 106 .
  • a negative electrode electrolyte is stored in the tank 107 .
  • any known configuration can be used as appropriate.
  • the battery cell 100 includes a positive electrode 104, a negative electrode 105, and a diaphragm 101.
  • the diaphragm 101 is arranged between the positive electrode 104 and the negative electrode 105.
  • the battery cell 100 is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101.
  • a positive electrode 104 is placed in the positive cell 102 .
  • Negative electrode 105 is placed in negative cell 103 .
  • a positive electrode electrolyte is supplied to the positive electrode cell 102.
  • a negative electrode electrolyte is supplied to the negative electrode cell 103.
  • the positive electrode 104 and the negative electrode 105 are reaction fields where ions contained in each supplied electrolyte undergo a battery reaction.
  • the positive electrode 104 and the negative electrode 105 are made of, for example, a sheet-like porous body.
  • a circulation flow path for the positive electrode electrolyte is configured by pipes 108 and 110 that connect between the battery cell 100 and the tank 106.
  • a pump 112 is provided in the pipe 108.
  • the positive electrolyte is supplied from the tank 106 to the positive cell 102 by a pump 112 through piping 108 .
  • the positive electrolyte that has passed through the positive electrode cell 102 and has been discharged from the positive electrode cell 102 is returned to the tank 106 through a pipe 110.
  • the pipes 109 and 111 connecting the battery cell 100 and the tank 107 constitute a circulation flow path for the negative electrolyte.
  • a pump 113 is provided in the pipe 109.
  • the negative electrolyte is supplied from the tank 107 to the negative cell 103 by a pump 113 through a pipe 109 .
  • the negative electrode electrolyte that has passed through the negative electrode cell 103 and has been discharged from the negative electrode cell 103 is returned to the tank 107 through the pipe 111.
  • the RF battery 1 may have a configuration including a single battery cell 100 or a configuration including a plurality of battery cells 100.
  • the RF battery 1 of this example includes a cell stack 200 in which a plurality of battery cells 100 are stacked.
  • the cell stack 200 is configured by repeatedly stacking a cell frame 120, a positive electrode 104, a diaphragm 101, and a negative electrode 105 in this order.
  • End plates 210 are arranged at both ends of the cell stack 200.
  • the cell stack 200 is integrated by tightening the end plates 210 with the tightening member 230.
  • As the configuration of the cell stack 200 a known configuration can be used as appropriate.
  • the cell frame 120 has a bipolar plate 121 and a frame 122.
  • Bipolar plate 121 is arranged between positive electrode 104 and negative electrode 105.
  • a frame 122 is provided around the bipolar plate 121.
  • a recess is formed inside the frame 122 by the bipolar plate 121 and the frame 122 .
  • the recesses are provided on both sides of the bipolar plate 121, respectively.
  • a positive electrode 104 and a negative electrode 105 are housed in each recess with the bipolar plate 121 in between.
  • one battery cell 100 is formed by placing a positive electrode 104 and a negative electrode 105 between the bipolar plates 121 of adjacent cell frames 120 with the diaphragm 101 in between.
  • an annular sealing member 127 is arranged between the frames 122 of each cell frame 120.
  • the number of stacked battery cells 100 in the cell stack 200 can be selected as appropriate.
  • the frame 122 has a liquid supply manifold that supplies each electrolyte and a drain manifold that discharges each electrolyte.
  • Each manifold is provided so as to penetrate the frame 122, and the cell frames 120 are stacked to form a flow path for each electrolytic solution.
  • Each of these channels is connected to each pipe 108, 109, 110, and 111, respectively.
  • the electrode 10 for an RF battery includes a base material 20, as shown in FIG.
  • the base material 20 is made of a sintered body. This sintered body is an aggregate of a plurality of particles 21, as shown in FIG.
  • the electrode 10 includes a catalyst 30 supported on a base material 20, as shown in FIG.
  • FIG. 1 is an overall view of the electrode 10.
  • FIG. 2 is an enlarged sectional view schematically showing a portion surrounded by a dashed line shown in FIG.
  • FIG. 3 is an enlarged sectional view schematically showing a further enlarged version of FIG.
  • the catalyst 30 is supported on the base material 20, so that battery reactivity is improved.
  • the catalyst 30 since the catalyst 30 includes a specific oxide, it is possible to improve battery reactivity at low cost.
  • the electrode 10 is a sheet-like porous body.
  • the thickness of the electrode 10 is, for example, 0.1 mm or more and 5.0 mm or less. When the thickness of the electrode 10 is 0.1 mm or more, it is easy to ensure a contact area with the electrolytic solution, that is, a reaction area, and a sufficient battery reaction can be performed. Since the thickness of the electrode 10 is 5.0 mm or less, the battery cell can be made thin.
  • the thickness here refers to the thickness in a natural state where no external force is acting on the electrode 10.
  • the thickness of the electrode 10 may further be 0.2 mm or more and 2.5 mm or less, or 0.3 mm or more and 2.0 mm or less.
  • the porosity of the electrode 10 is, for example, 40 volume % or more and 75 volume % or less.
  • the porosity of the electrode 10 is 40% by volume or more, the electrolyte can easily flow through the electrode 10.
  • the porosity of the electrode 10 is 75% by volume or less, the true volume of the electrode 10 becomes large, making it possible to collect current with low electrical resistance. Therefore, if the porosity of the electrode 10 is 75% by volume or less, a sufficient battery reaction can be performed. Further, if the porosity of the electrode 10 is 75% by volume or less, the mechanical properties of the electrode 10 can be easily ensured.
  • the porosity of the electrode 10 may further be 50 volume % or more and 70 volume % or less, particularly 55 volume % or more and 65 volume % or less.
  • the porosity is a value calculated by [1- ⁇ W/( ⁇ Va) ⁇ ] expressed as a percentage.
  • is the true density of the material constituting the electrode 10.
  • W is the mass of the electrode 10.
  • Va is the apparent volume of the electrode 10.
  • the apparent volume is the volume that includes voids.
  • the electrode 10 has high mechanical properties such as strength and rigidity.
  • the electrode 10 with high mechanical properties is difficult to deform or crack excessively, and therefore has high handling properties.
  • Mechanical properties are, for example, tensile strength, tensile modulus, flexural strength and flexural modulus.
  • the tensile strength of the electrode 10 is, for example, 4.0 MPa or more and 16.0 MPa or less. When the tensile strength of the electrode 10 is 4.0 MPa or more, the mechanical properties are high. When the tensile strength of the electrode 10 is 16.0 MPa or less, the electrode 10 is appropriately deformed when assembled into the battery cell 100 (see FIG. 4), and the electrode 10 is not easily damaged. The tensile strength of the electrode 10 may further be 5.0 MPa or more and 13.0 MPa or less.
  • the tensile modulus of the electrode 10 is, for example, 1.0 GPa or more and 4.0 GPa or less. When the tensile modulus of the electrode 10 is 1.0 GPa or more, the mechanical properties are high.
  • the tensile modulus of the electrode 10 When the tensile modulus of the electrode 10 is 4.0 GPa or less, when the electrode 10 is assembled into the battery cell 100, it deforms appropriately and the electrode 10 is not easily damaged.
  • the tensile modulus of the electrode 10 may further be 1.5 GPa or more and 3.5 GPa or less.
  • the bending strength of the electrode 10 is, for example, 3.0 MPa or more and 30.0 MPa or less. When the bending strength of the electrode 10 is 3.0 MPa or more, the mechanical properties are high. When the bending strength of the electrode 10 is 30.0 MPa or less, the electrode 10 is appropriately deformed when assembled into the battery cell 100, and the electrode 10 is not easily damaged.
  • the bending strength of the electrode 10 may further be 10.0 MPa or more and 20.0 MPa or less.
  • the bending elastic modulus of the electrode 10 is, for example, 0.25 GPa or more and 3.0 GPa or less. When the bending elastic modulus of the electrode 10 is 0.25 GPa or more, the mechanical properties are high.
  • the electrode 10 When the bending elastic modulus of the electrode 10 is 3.0 GPa or less, the electrode 10 is appropriately deformed when assembled into the battery cell 100, and the electrode 10 is not easily damaged.
  • the bending elastic modulus of the electrode 10 may further be 1.0 GPa or more and 2.5 GPa or less.
  • the base material 20 is a porous body that serves as the skeleton of the electrode 10.
  • the base material 20 has conductivity necessary for the electrode 10.
  • the base material 20 is made of a sintered body of titanium (Ti).
  • Ti sintered body constituting the base material 20 is composed of a plurality of Ti-containing particles 21 bonded to each other.
  • the sintered body has a three-dimensional network-like skeletal structure due to a plurality of particles 21 bonding to each other. There are voids between the particles 21.
  • the particles 21 containing Ti are made of pure Ti or a Ti alloy. Pure Ti contains 99% by mass or more of Ti, with the remainder consisting of unavoidable impurities. Examples of Ti alloys include ⁇ -type Ti alloys, ⁇ + ⁇ -type Ti alloys, ⁇ -type Ti alloys, and corrosion-resistant Ti alloys.
  • the base material 20 is in the form of a sheet.
  • the thickness of the base material 20 is substantially equal to the thickness of the electrode 10 described above.
  • the porosity of the base material 20 is substantially equal to the porosity of the electrode 10 described above. As shown in FIG. 3, since the catalyst 30 is supported on the base material 20, strictly speaking, the porosity of the base material 20 is slightly larger than the porosity of the electrode 10. Since the amount of catalyst 30 supported on base material 20 is small, the difference in porosity due to the presence or absence of catalyst 30 can be ignored.
  • the mass of the base material 20 per 1 m 2 of area of the electrode 10 is, for example, 300 g or more and 3000 g or less.
  • the area of the electrode 10 is the area when the electrode 10 is viewed from above, that is, the area projected onto the electrode 10.
  • the mass of the base material 20 per unit area is 300 g/m 2 or more, the true volume of the base material 20 excluding voids becomes large, making it easy to ensure conductivity and mechanical properties.
  • the mass of the base material 20 per unit area is 3000 g/m 2 or less, it is possible to prevent the void from becoming excessively small, and it is easy to ensure the flowability of the electrolytic solution.
  • the mass of the base material 20 per unit area may further be 400 g/m 2 or more and 2000 g/m 2 or less.
  • the true volume of the base material 20 is the value obtained by dividing the mass of the base material 20 by the density of the material that makes up the base material 20.
  • the average particle size of the particles 21 can be determined as follows. A cross section of the base material 20 is observed using a scanning electron microscope (SEM). The size of the observation field is preferably set so that 50 or more particles 21 are included in the observation field. The particle diameters of all particles 21 within the observation field are measured. The particle size of the particles 21 is the diameter of a circle having an area equal to the cross-sectional area of the particles 21. The cross-sectional area of the particles 21 can be determined by image processing. The average value of the measured particle diameters of the particles 21 is regarded as the average particle diameter of the particles 21.
  • the catalyst 30 is supported on the base material 20. As shown in FIG. 3, the catalyst 30 is formed in a layer on the surface of the particles 21 so as to cover the particles 21 constituting the base material 20.
  • the catalyst 30 may be provided on at least some of the particles 21 shown in FIG. 2 .
  • the catalyst 30 may be provided on 80% or more of all particles 21, or may be provided on all particles 21. This ratio is the ratio of the number of particles 21 with catalyst 30 to the total number of particles. In this embodiment, substantially all particles 21 are provided with catalysts 30.
  • the catalyst 30 may be in direct contact with the surface of the particles 21 or may be provided on the surface of the particles 21 with an intermediate layer 40 interposed therebetween.
  • the catalyst 30 has a function of activating the redox reaction at the electrode 10 and increasing the battery reactivity with the electrolyte.
  • Catalyst 30 has a first oxide.
  • the first oxide is an oxide containing ruthenium (Ru) and a first element.
  • the first element is at least one selected from the group consisting of tungsten (W), molybdenum (Mo), cerium (Ce), neodymium (Nd), and vanadium (V).
  • the first oxide is, for example, a complex oxide containing Ru and W, a complex oxide containing Ru and Mo, a complex oxide containing Ru and Ce, a complex oxide containing Ru and Nd, or It is a composite oxide containing Ru and V.
  • the first oxide may contain multiple types of first elements.
  • a composite oxide of Ru and the first element has an excellent function as the catalyst 30.
  • Such a composite oxide has both the functions of an oxidation catalyst and a reduction catalyst. Since the catalyst 30 has both the functions of an oxidation catalyst and a reduction catalyst, the charging reaction and the discharging reaction at the electrode 10 are promoted.
  • an oxide that contains Ru but does not contain the first element has a function as an oxidation catalyst, but has an inferior function as a reduction catalyst. It is thought that the function as a reduction catalyst is improved by combining Ru and the first element.
  • the first oxide may further contain at least one element selected from the group consisting of tin (Sn), antimony (Sb), and titanium (Ti).
  • Sn tin
  • Sb antimony
  • Ti titanium
  • the first oxide may have a larger number of moles of Ru than the total number of moles of the first elements. That is, the molar ratio of Ru to the total of the first elements may be more than 1.
  • the molar ratio of Ru to the total of the first elements may be, for example, 5 or more and 40 or less, and further 10 or more and 25 or less.
  • the Ru content is, for example, 50 mol% or more and 80 mol% or less, and further 55 mol% or more and 75 mol% or less.
  • the total content of the first elements is, for example, 2 mol% or more and 40 mol% or less, and further 2 mol% or more and 10 mol% or less.
  • the content of Ru contained in the catalyst 30 per 1 m 2 of area of the electrode 10 is 0.1 g or more and 90.0 g or less, and the total content of the first element contained in the catalyst 30 is 0.1 g or more. It may be 50.0g or less.
  • the Ru content per unit area and the total content of the first elements each satisfy the above ranges, the effect of improving battery reactivity by the catalyst 30 becomes high. If the Ru content and the total content of the first elements each satisfy the above ranges, an increase in the cost of the electrode 10 can be suppressed.
  • the Ru content per unit area may further be 0.1 g/m 2 or more and 40.0 g/m 2 or less, or 0.1 g/m 2 or more and 30.0 g/m 2 or less.
  • the total content of the first elements per unit area may further be 0.1 g/m 2 or more and 10.0 g/m 2 or less.
  • the mass of the catalyst 30 per 1 m 2 of area of the electrode 10 may be 1 g or more and 100 g or less. When the mass of the catalyst 30 per unit area is 1 g/m 2 or more, the catalyst 30 can fully function. When the mass of the catalyst 30 per unit area is 100 g/m 2 or less, the content of the catalyst 30 is small and the cost of the electrode 10 is reduced.
  • the mass of the catalyst 30 per unit area may further be 2 g/m 2 or more and 80 g/m 2 or less, or 2 g/m 2 or more and 60 g/m 2 or less.
  • the catalyst 30 may contain an oxide other than the first oxide described above and a metal element such as gold (Au) or platinum (Pt).
  • the oxide other than the first oxide is, for example, an oxide containing Sn, Sb, Ti, etc. alone.
  • the total content of Au and Pt per unit area may be 1 g/m 2 or less.
  • Au and Pt are expensive metals. The lower the Au content and the Pt content, the lower the cost.
  • the content of Au and the content of Pt per unit area may each be 0.5 g/m 2 or less, further 0.1 g/m 2 or less, and especially zero. That is, the electrode 10 does not need to contain Au and Pt.
  • the proportion of the first oxide contained in the catalyst 30 may be 60% by mass or more, and further may be 80% by mass or more. The proportion of the first oxide may be 100% by mass. That is, the catalyst 30 may consist only of the first oxide.
  • Ir content, Pd content The content of iridium (Ir) and the content of palladium (Pd) contained in the catalyst 30 per 1 m 2 of area of the electrode 10 are each 1 g or less.
  • the cost of the electrode 10 is reduced because the Ir content and Pd content per unit area are 1 g/m 2 or less.
  • the total content of Ir and Pd per unit area is 1 g/m 2 or less.
  • the Ir content and Pd content per unit area may each be 0.5 g/m 2 or less, further 0.1 g/m 2 or less, and especially zero. That is, the electrode 10 does not need to contain Ir and Pd.
  • Intermediate layer 40 includes a second oxide.
  • the second oxide is an oxide containing at least one element selected from the group consisting of Ru, Sn, Sb, Ti, W, and Mo.
  • the second oxide containing such a specific metal element can function as the intermediate layer 40.
  • the second oxide may contain at least one of Ru, Sn, and Ti among the above-mentioned group of elements, and may particularly contain Ru.
  • the first oxide contains Ru, which is highly effective in improving the adhesion between the intermediate layer 40 and the catalyst 30.
  • Sn easily diffuses into the Ti constituting the particles 21, which is highly effective in improving the adhesion between the particles 21 and the intermediate layer 40.
  • the second oxide contains Ti, the Ti in the second oxide combines with the Ti constituting the particles 21, which has a high effect of improving the adhesion between the particles 21 and the intermediate layer 40.
  • the intermediate layer 40 electrically connects the particles 21 and the catalyst 30, it is required to have higher conductivity than the catalyst 30. That is, the electrical resistivity of the intermediate layer 40 may be smaller than that of the catalyst 30.
  • the number of types of metal elements contained in the second oxide is smaller than the number of types of metal elements contained in the first oxide constituting the catalyst 30. It's okay. The smaller the number of types of metal elements contained in the second oxide, the higher the conductivity of the second oxide. Therefore, the electrical resistivity of the intermediate layer 40 is reduced. Furthermore, if the metal element contained in the second oxide has high conductivity among the above-mentioned group of elements, the electrical resistivity of the intermediate layer 40 will be lower.
  • the number of types of metal elements contained in the second oxide may be 3 or less, and further may be 2 or less.
  • the number of types of metal elements contained in the second oxide may be one.
  • the thickness of the intermediate layer 40 may be thinner than the thickness of the catalyst 30.
  • the mass of the intermediate layer 40 per 1 m 2 of area of the electrode 10 may be 1 g or more and 40 g or less. When the mass of the intermediate layer 40 per unit area is 1 g/m 2 or more, the function of the intermediate layer 40 can be fully exhibited. When the mass of the intermediate layer 40 per unit area is 40 g/m 2 or less, the content of the intermediate layer 40 is small, and the cost of the electrode 10 is reduced.
  • the mass of the intermediate layer 40 per unit area may further be 1.5 g/m 2 or more and 35 g/m 2 or less.
  • An electrode including a base material made of an aggregate of carbon fibers has higher flexibility than an electrode 10 including a base material 20 made of a sintered body of Ti. Therefore, when the positive electrode 104 and the negative electrode 105 are assembled into the battery cell 100, the battery cell 100 can be easily assembled by compressing and deforming the electrode including the base material made of an aggregate of carbon fibers.
  • the electrode 10 described above can be manufactured as follows.
  • a base material 20, a first solution, and a second solution are prepared.
  • the first solution contains a metal element that constitutes the first oxide that becomes the catalyst 30.
  • the second solution contains a metal element that constitutes the second oxide that will become the intermediate layer 40.
  • the intermediate layer 40 is formed on the base material 20 by applying the second solution to the base material 20 and performing heat treatment.
  • the catalyst 30 is formed on the base material 20 by applying a first solution to the base material 20 and performing heat treatment.
  • the method for manufacturing the electrode 10 will be described in detail below.
  • Mo raw materials include, for example, molybdenum (V) ethoxide, bis(acetylacetonate) molybdenum (IV) oxide, molybdenum (II) acetate, molybdenum (II) acetate dimer, carbonyl molybdenum, molybdenum 2-ethylhexanoate, molybdenum chloride.
  • V molybdenum
  • V molybdenum ethoxide
  • molybdenum (II) acetate molybdenum (II) acetate dimer
  • carbonyl molybdenum molybdenum 2-ethylhexanoate
  • molybdenum chloride There is (V).
  • Raw materials for Ce include, for example, cerium (III) nitrate, cerium (III) chloride, cerium (III) chloride heptahydrate, cerium (IV)-i-procoxide, cerium (IV)-methoxyethoxide, cerium (III) )-t-butoxide, cerium(III) 2-ethylhexanoate.
  • Raw materials for Nd include, for example, neodymium (III) isopropoxide, neodymium (III) 2,4-pentanedionate, neodymium (III) trifluoroacetylacetonate, neodymium nitrate hexahydrate, and neodymium acetate monohydrate.
  • Raw materials for V include, for example, vanadium (III) acetylacetonate, vanadium (IV) bis(acetylacetonate) oxide, vanadium (V) trichloride oxide, vanadium (IV) bis(2,4-pentanedioic acid) oxide.
  • vanadium(V) trifluoride oxide vanadium(III) chloride, triisopropoxyvanadium(V) oxide, vanadium(III) fluoride, vanadium(III) bromide, vanadyl(V) chloride, vanadyl oxalate n water vanadium dichloride, cyclopentadienyl vanadium tetracarbonyl, and vanadium 2-ethylhexanoate.
  • Raw materials for Sn include, for example, tin tetrachloride, tin (IV) chloride pentahydrate, tin (II) chloride, tin (II) chloride dihydrate, tin (II) bis(2-ethylhexanoate), Tin(II) bis(neodecanoate), n-butyltin(IV) trichloride, dibutyltinbis(acetylacetonate), tin(IV) di-n-butyl-di-n-budoxide, tin(IV)-n- Butoxide, tin(IV)-t-butoxide, tetramethyltin, tin(II) acetate, and tin(IV) acetate.
  • Raw materials for Sb include, for example, tri-i-propoxyantimony, tri-n-propoxyantimony, tri-n-butoxyantimony, tri-i-butoxyantimony, trimethoxyantimony, antimony acetate (III), antimony trichloride, and Antimony chloride, antimony (III) methoxide, antimony (III) ethoxide, and antimony (III) butoxide.
  • Raw materials for Ti include, for example, titanium tetrachloride, titanium (IV) ethoxide, titanium (IV)-n-butoxide, titanium (IV)-t-butoxide, titanium (IV)-i-propoxide, titanium (IV)- n-propoxide, titanium(IV) monochloride-i-tripropoxide, titanium(IV) methoxide, (bis-2,4-neodecanoic acid)-titanium(IV)-n-dibutoxide, titanium(IV) dichloride -diethoxide, (bis-2,4-pentanedionic acid)-titanium(IV)-i-dipropoxide, titanium(IV) 2-ethylhexanoate, titanium(IV) methylfethoxide, titanium(IV)-n-stearyl There's Sid.
  • organic solvents examples include trifluoroethanol, pentafluorinated propanol, 2,2,3,3,4,4,4-heptafluoro-1-butanol, methanol, ethanol, propyl alcohol, isopropanol, butanol, pentanol, These are hexanol, 3-methoxy-3-methyl-1-butanol, acetonitrile, propylene carbonate, and ethylene carbonate.
  • the content of the organic solvent is preferably 70% by mass or more and 95% by mass or less based on the entire solution.
  • the solution may also contain a stabilizer, if necessary.
  • the stabilizer is, for example, acetylacetone.
  • the stabilizer is preferably contained in a range of 1% by mass or more and 10% by mass or less based on the entire solution.
  • a first solution and a second solution are prepared by stirring a liquid containing the above-mentioned metal element raw material, an organic solvent, and a stabilizer in an inert gas atmosphere.
  • the inert gas is, for example, nitrogen or argon.
  • the raw materials for the metal elements are mixed so that the concentration of the metal elements is in a desired ratio.
  • the stirring time is, for example, approximately 1 hour or more and 5 hours or less.
  • the solution By applying the solution to the base material 20 made of a sintered body, the solution permeates into the interior of the base material 20 .
  • the solution is applied so as to cover the particles 21 constituting the base material 20 .
  • Methods for applying the solution include, for example, a brush coating method, a spraying method, a dipping method, a flow coating method, a roll coating method, and a dipping method.
  • the base material 20 coated with the solution is dried.
  • Heat treatment is performed on the base material 20 coated with the solution. This heat treatment includes a first heat treatment, a second heat treatment, and a final heat treatment.
  • the temperature of the heat treatment is, for example, 300° C. or more and 600° C. or less.
  • the heat treatment time is, for example, 10 minutes or more and 5 hours or less.
  • the atmosphere for the heat treatment is an atmosphere containing an oxidizing gas.
  • the oxidizing gas is, for example, air.
  • the heat treatment oxidizes the metal elements contained in the solution and turns them into oxides. If a first solution is used, a first oxide is formed. If a second solution is used, a second oxide is formed.
  • the process of forming the catalyst 30 is performed after the process of forming the intermediate layer 40.
  • a second heat treatment is performed after applying the second solution to the base material 20.
  • the intermediate layer 40 containing the second oxide is formed, and the intermediate layer 40 is supported on the base material 20.
  • a series of operations of [applying second solution] ⁇ [drying] ⁇ [second heat treatment] are repeated until the desired amount of intermediate layer 40 is supported on the base material 20.
  • the second heat treatment makes it easier for the constituent elements in the second oxide to diffuse from the intermediate layer 40 into the particles 21 .
  • the conditions for the second heat treatment in this operation are, for example, 300° C.
  • the number of times the above operation is repeated may be, for example, from 1 to 5 times, and further from 1 to 4 times.
  • a first heat treatment is performed after applying a first solution to the base material 20 on which the intermediate layer 40 is formed.
  • the catalyst 30 having the first oxide is formed on the intermediate layer 40, and the catalyst 30 is supported on the base material 20 via the intermediate layer 40.
  • a series of operations of [first solution application] ⁇ [drying] ⁇ [first heat treatment] are repeated until the desired amount of catalyst 30 is supported on the base material 20.
  • the conditions for the first heat treatment in this operation are, for example, 300° C. or higher and 500° C.
  • the number of times the above operation is repeated may be, for example, 1 or more and 10 or less, or 2 or more and 8 or less.
  • the total number of times of heat treatment in both steps may be, for example, 10 times or less, further 8 times or less, and particularly 6 times or less.
  • the base material 20 on which the catalyst 30 and the intermediate layer 40 are formed may be subjected to a final heat treatment.
  • the conditions for the final heat treatment are, for example, 400° C. or higher and 600° C. or lower x 1 hour or more and 5 hours or less.
  • the temperature and time of the final heat treatment may be higher than the temperature in the first heat treatment and the second heat treatment, and longer than the time in the first heat treatment and the second heat treatment.
  • Test Example 1 An electrode including a base material, an intermediate layer, and a catalyst was prepared and evaluated.
  • the prepared base material is a sintered body of Ti.
  • the Ti sintered body was produced as follows. A mold was prepared by filling a mold with Ti powder. The particle size of the Ti particles constituting the Ti powder is 45 ⁇ m or less. The size of the molded body was 30 mm x 30 mm in area and 0.5 mm in thickness. This molded body was sintered in an argon gas atmosphere to produce a Ti sintered body. The porosity of the base material made of this Ti sintered body was about 60% by volume. The mass of the substrate per unit area was approximately 1300 g/m 2 . In this example, three types of sintered bodies A to C were produced by changing the sintering temperature. Sintered body A was sintered at 1000°C for 1 hour.
  • Sintered body B was sintered at 950° C. for 2 hours.
  • Sintered body C was sintered at 900°C for 3 hours.
  • sample No. The base material No. 12 is the sintered body B.
  • Sample No. The base material No. 13 is a sintered body C.
  • Sample No. 12 and no. The base material of the samples except No. 13 is sintered body A.
  • the intermediate layer and catalyst shown in Tables 1 and 2 were formed by applying a solution to the base material and subjecting it to heat treatment.
  • the column [mass (g/m 2 )] in the "intermediate layer” section of Tables 1 and 2 indicates the mass of the intermediate layer per unit area of the electrode.
  • the [Mass (g/m 2 )] column in the "Catalyst” section indicates the mass of the catalyst per unit area of the electrode.
  • a first solution for forming a catalyst and a second solution for forming an intermediate layer were prepared as solutions.
  • the first solution is a mixture of the raw materials of the metal elements constituting the first oxide shown in Tables 1 and 2 and an organic solvent.
  • the second solution is a mixture of the raw materials of the metal elements constituting the second oxide shown in Tables 1 and 2 and an organic solvent. Butanol to which 1% by mass of acetylacetone was added as a stabilizer was used as the organic solvent.
  • As raw materials for metal elements dibutyltin bisacetylacetonate, ruthenium (IV) oxide hydrate, antimony (III) ethoxide, tungsten (VI) ethoxide, molybdenum chloride, tri-i-propoxycerium, neodymium (III) chloride hexahydrate. Vanadium(III) chloride, iridium trichloride, and palladium dichloride were prepared. Each solution was prepared by stirring an organic solvent containing a stabilizer and a raw material of a metal element in a nitrogen atmosphere for 5 hours.
  • the first solutions were prepared by selecting the raw materials of the metal elements so that the metal elements in the first solutions were the metal elements constituting the first oxide shown in Tables 1 and 2.
  • the raw materials for the metal elements were prepared so that the molar concentration of the metal elements in the first solution was the molar ratio shown in Tables 1 and 2. Further, the first solution was prepared such that the total amount of metal elements in the first solution was 10% by mass. For example, sample No. shown in Table 1.
  • dibutyltin bisacetylacetonate, ruthenium (IV) oxide hydrate, and tungsten (VI) ethoxide were used as raw materials for the metal elements constituting the first oxide.
  • the raw materials for these metal elements were mixed so that the molar concentration of each metal element in the first solution was the molar ratio shown in Table 1.
  • the “first oxide” column is [Sn/Ru/W], and the “molar ratio” column is [30:65:5].
  • the first oxide contains Sn, Ru, and W, and the molar ratio of Sn, Ru, and W is 30:65:5.
  • the first solution contains a very small amount of antimony (III) ethoxide.
  • the first oxide of each sample contains less than 3 mol % of Sb.
  • the raw materials of the metal elements were selected so that the metal elements in the second solution were the metal elements constituting the second oxide shown in Tables 1 and 2.
  • the second solution was prepared such that the total amount of metal elements in the second solution was 5% by mass.
  • ruthenium (IV) oxide hydrate was used as the raw material for the metal element constituting the second oxide.
  • [Ru] is entered in the "Second oxide” column, it means that the second oxide contains Ru. .
  • the second solution was applied to the base material by a brush coating method. After applying the second solution, the substrate was allowed to dry. Thereafter, the substrate coated with the second solution was subjected to a second heat treatment. Specifically, [second solution application] ⁇ [drying] ⁇ [second heat treatment] was repeated until the mass of the intermediate layer per unit area reached the mass shown in Tables 1 and 2. The conditions for the second heat treatment were 400°C x 10 minutes.
  • the first solution was applied to the base material on which the intermediate layer was formed by a brush coating method. After applying the first solution, the substrate was allowed to dry. Thereafter, the substrate coated with the first solution was subjected to a first heat treatment. Specifically, [first solution application] ⁇ [drying] ⁇ [first heat treatment] was repeated until the mass of the catalyst per unit area reached the mass shown in Tables 1 and 2. The conditions for the first heat treatment were 400°C x 10 minutes.
  • sample No. shown in Table 1 was prepared. 1 to No. 17 electrodes and sample No. 1 shown in Table 2. From 101 to No. 118 electrodes were manufactured. Sample No. Electrode 109 does not form an intermediate layer.
  • composition analysis For each sample obtained, the composition of the cross section of the electrode was analyzed using SEM and EDX. Sample No. In all samples except No. 109, as shown in Tables 1 and 2, metal elements contained in the second oxide constituting the intermediate layer were confirmed. Furthermore, in all the samples, as shown in Tables 1 and 2, metal elements contained in the first oxide constituting the catalyst were confirmed. Furthermore, by analyzing the crystal structure with an X-ray diffraction device (XRD) and measuring the elemental composition with an X-ray microanalyzer (EPMA), we investigated the existence state of the intermediate layer and catalyst. It was confirmed that it was a thing. It was found that the intermediate layer consisted of the second oxide shown in Tables 1 and 2. It was found that the catalyst consisted of the first oxide shown in Tables 1 and 2.
  • XRD X-ray diffraction device
  • EPMA X-ray microanalyzer
  • a single battery cell was manufactured by using the electrode of each sample as a positive electrode of an RF battery. Carbon felt was used for the negative electrode. The area of each of the positive electrode and negative electrode is 9 cm 2 .
  • As the electrolytic solution a sulfuric acid aqueous solution in which 1M each of Ti and Mn was dissolved was used. A charge/discharge test was conducted on this battery cell to examine the cell resistivity. The test conditions were charging and discharging at a constant current with a current density of 140 mA/cm 2 .
  • Cell resistivity was determined as follows. The difference between the average voltage during charging and the average voltage during discharging in each cycle from 2nd cycle to 4th cycle is measured. This difference is defined as the average voltage difference. [Average voltage difference/(average current ⁇ 2) ⁇ electrode area] in each cycle is defined as the cell resistivity ( ⁇ cm 2 ) in that cycle. The average value of each cell resistivity from the 2nd cycle to the 4th cycle is defined as the cell resistivity.
  • the average voltage during charging is the battery voltage at which the charging capacity in the charging curve obtained by the charging/discharging test becomes 1/2.
  • the average voltage during discharge is the battery voltage at which the charging capacity in the discharge curve obtained by the charge/discharge test is 1/2.
  • a charging curve shows the relationship between voltage and capacity during charging.
  • a discharge curve shows the relationship between voltage and capacity during discharge.
  • the charging curve and the discharging curve are graphs of changes in charging and discharging states at the same current, with the horizontal axis representing the battery capacity (Ah) and the vertical axis representing the battery voltage (V).
  • the average current is the average value of the current during charging and discharging. In the charge/discharge test, charging and discharging are performed in constant current mode, so the current during charging and discharging is constant. Tables 1 and 2 show the cell resistivity of each sample.
  • the tensile strength and tensile modulus were measured using a tensile testing machine.
  • the test piece had a rectangular shape with a length of about 150 mm and a width of about 5 mm.
  • the test piece was prepared as follows. A Ti sintered body having an area larger than the test piece and a thickness of 5 mm was produced. Using this Ti sintered body as a base material, an intermediate layer and a catalyst were formed on the base material by the above-described formation method. The electrodes of each sample obtained were processed to the size of the above test piece.
  • As a tensile tester Tensilon UCT-30T manufactured by Orientec Co., Ltd. was used. The conditions for the tensile test are as follows.
  • the tensile modulus was calculated from the maximum slope value at 0.1% strain intervals.
  • the tensile strength and tensile modulus were determined by performing a tensile test three times and using the average value. Tables 1 and 2 show the tensile strength and tensile modulus of each sample.
  • Bending strength and bending modulus were measured by performing a three-point bending test.
  • the three-point bending test was conducted in accordance with JIS Z 2248:2014.
  • the size of the test piece is approximately 150 mm in length, approximately 30 mm in width, and approximately 0.5 mm in thickness.
  • the test piece was prepared as follows. A Ti sintered body having an area larger than the test piece and a thickness of 0.5 mm was produced. Using this Ti sintered body as a base material, an intermediate layer and a catalyst were formed on the base material by the above-described formation method. The electrodes of each sample obtained were processed to the size of the above test piece.
  • a composite material testing machine model 5966 manufactured by Instron was used for the bending test. The maximum load of this testing machine is 10 kN.
  • the conditions for the bending test are as follows.
  • Test speed 2mm/min Distance between fulcrums: 26.5mm Indenter radius: 5mm Radius of fulcrum: 5mm Test temperature: 23°C ⁇ 2°C
  • the first oxide constituting the catalyst is an oxide containing Ru and a first element.
  • the first oxide is a composite oxide of Sn, Ru, and W.
  • the first oxide is a composite oxide of Sn, Ru, and Mo.
  • the first oxide is a composite oxide of Sn, Ru, and Ce.
  • the first oxide is a composite oxide of Sn, Ru, and Nd.
  • the first oxide is a composite oxide of Sn, Ru, and V.
  • the first oxide does not contain Ir or Pd.
  • the second oxide constituting the intermediate layer does not contain Ir or Pd. Therefore, sample no. 1 to No.
  • Each of the 17 electrodes can be manufactured at low cost.
  • the first oxide constituting the catalyst contains Ru but does not contain the first element.
  • the first oxide constituting the catalyst is an oxide containing Ru and at least one of Ir and Pd. Therefore, sample no. From 101 to No. Each of the 117 electrodes is expensive.
  • the second oxide constituting the intermediate layer contains at least one of Ir and Pd. Therefore, sample no. From 101 to No. Each of the 108 electrodes is more expensive.
  • the first oxide is a composite oxide of Sn and Ru.
  • each cell resistivity and sample No. From 101 to No. each cell resistivity and sample No. From 101 to No.
  • Each cell resistivity of No. 118 is 1.2 ⁇ cm 2 or less. Due to the low cell resistivity, the electrodes of these samples have somewhat high cell reactivity.
  • 1.No. 14 and no. From 101 to No. Compare with 117. No. 1.No.
  • Each cell resistivity of No. 14 is No. From 101 to No.
  • the resistivity of each cell is equal to or lower than that of No. 117. Nos. 1 and 2 in which the composition of the first oxide constituting the catalyst is different.
  • the cell resistivity of each of No. 17 is approximately 0.5 ⁇ cm 2 .
  • Each cell resistivity of No. 17 is No. 118 cell resistivity. Therefore, sample no. 1.No. 14 to no.
  • Each of the 17 electrodes has a sample no. It has higher battery reactivity than the 118 electrode. From this, it can be seen that the first oxide containing Ru and the first element improves its function as a catalyst by combining Ru and the first element.
  • Sample No. with the same catalyst and intermediate layer configurations. 9 and no. 12 and no. Compare with 13. No. The cell resistivity of 9 is No. 12 and no. The cell resistivity is lower than that of No. 13. No. The tensile strength of No. 9 satisfies 4.0 MPa or more and 16.0 MPa or less. No. The tensile modulus of No. 9 satisfies 1.0 GPa or more and 4.0 GPa or less. Furthermore, No. The bending strength of No. 9 satisfies 3.0 MPa or more and 30.0 MPa or less. No. The bending elastic modulus of No. 9 satisfies 0.25 GPa or more and 3.0 GPa or less. No. 12 and no.
  • Each tensile strength and each tensile modulus of No. 13 are outside the above range. Also, No. The flexural modulus of No. 13 is outside the above range. From these facts, it is considered that an electrode whose mechanical properties are within a predetermined range can easily suppress an increase in cell resistivity. Electrodes that have a large amount of catalyst supported on the base material and have been heat-treated many times have high bending strength and/or bending elastic modulus, but tend to have microcracks and tend to have high cell resistivity.
  • Redox flow battery (RF battery), 7. AC/DC converter, 71. Substation equipment, 8. Power generation section, 9. Load, 10.
  • Electrode 20. Base material, 21. Particles, 30. Catalyst, 40. Intermediate layer, 100. Battery cell, 101 Diaphragm , 102 Positive electrode cell, 103 Negative electrode cell, 104 Positive electrode, 105 Negative electrode, 106, 107 Tank, 108, 109, 110, 111 Piping, 112, 113 Pump, 120 Cell frame, 121 Bipolar plate , 122 Frame, 127 Seal Members, 200 cell stack, 210 end plate, 230 tightening member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

レドックスフロー電池用の電極であって、シート状の基材と、前記基材に担持された触媒とを備え、前記基材は、チタンを含む複数の粒子が互いに結合された焼結体からなり、前記触媒は、前記複数の粒子の少なくとも一部を覆うように設けられた第一の酸化物を含み、前記第一の酸化物は、タングステン、モリブデン、セリウム、ネオジウム及びバナジウムからなる群より選択される少なくとも一種の第一の元素と、ルテニウムとを含む酸化物であり、前記電極の面積1mあたりにおける前記触媒に含まれるイリジウムの含有量及びパラジウムの含有量がそれぞれ1g以下である、電極。

Description

電極、電池セル、及びレドックスフロー電池
 本開示は、電極、電池セル、及びレドックスフロー電池に関する。本出願は、2022年6月8日に出願した日本特許出願である特願2022-093332号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 特許文献1、2はレドックスフロー電池用電極を開示する。この電極は基材に触媒が担持されている。触媒は金属の酸化物である。触媒として機能する金属酸化物は、例えば、ルテニウム、イリジウム、パラジウムといった金属元素を含む。
特開2017-143002号公報 特開2019-164882号公報
 本開示の電極は、
 レドックスフロー電池用の電極であって、
 シート状の基材と、前記基材に担持された触媒とを備え、
 前記基材は、チタンを含む複数の粒子が互いに結合された焼結体からなり、
 前記触媒は、前記複数の粒子の少なくとも一部を覆うように設けられた第一の酸化物を含み、
 前記第一の酸化物は、タングステン、モリブデン、セリウム、ネオジウム及びバナジウムからなる群より選択される少なくとも一種の第一の元素と、ルテニウムとを含む酸化物であり、
 前記電極の面積1mあたりにおける前記触媒に含まれるイリジウムの含有量及びパラジウムの含有量がそれぞれ1g以下である。
 本開示の電池セルは、
 正極電極と負極電極とを備えるレドックスフロー電池の電池セルであって、
 前記正極電極及び前記負極電極の少なくとも一方が本開示の電極である。
 本開示のレドックスフロー電池は、
 本開示の電池セルを備える。
図1は、実施形態に係る電極を示す模式図である。 図2は、図1の一点鎖線で囲まれた部分の内部を拡大して示す概略断面図である。 図3は、図2を更に拡大して示す拡大断面図である。 図4は、実施形態に係るレドックスフロー電池の構成を示す概略図である。
[本開示が解決しようとする課題]
 レドックスフロー電池において、触媒が担持された電極は、電極での酸化還元反応が活性化されて、電解液との電池反応性を改善することができる。レドックスフロー電池用電極の低コスト化が求められている。イリジウム酸化物又はパラジウム酸化物を触媒として備える電極は、電極における充電反応及び放電反応が促進される。しかし、電極の触媒としてイリジウム酸化物又はパラジウム酸化物を使用することは、電極のコストを上昇させる。イリジウム及びパラジウムの使用量を極力低減しながら、触媒による電池反応性を高めることが必要である。
 本開示は、低コストで高い電池反応性を有する電極を提供することを目的の一つとする。また、本開示は、セル抵抗率が小さい電池セル及びレドックスフロー電池を提供することを別の目的の一つとする。
[本開示の効果]
 本開示の電極は低コストで高い電池反応性を有する。本開示の電池セル及びレドックスフロー電池はセル抵抗率が小さい。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示の実施態様に係る電極は、
 レドックスフロー電池用の電極であって、
 シート状の基材と、前記基材に担持された触媒とを備え、
 前記基材は、チタンを含む複数の粒子が互いに結合された焼結体からなり、
 前記触媒は、前記複数の粒子の少なくとも一部を覆うように設けられた第一の酸化物を含み、
 前記第一の酸化物は、タングステン、モリブデン、セリウム、ネオジウム及びバナジウムからなる群より選択される少なくとも一種の第一の元素と、ルテニウムとを含む酸化物であり、
 前記電極の面積1mあたりにおける前記触媒に含まれるイリジウムの含有量及びパラジウムの含有量がそれぞれ1g以下である。
 本開示の電極は、基材に触媒が担持されていることで、触媒を備えない場合に比べて電解液との電池反応性を改善できる。触媒は、第一の酸化物を含むことで、酸化触媒及び還元触媒の両方の機能を備えることができる。このような触媒を備える電極は、電極における充電反応及び放電反応が促進されることから、高い電池反応性を有する。そのため、本開示の電極はセル抵抗率を低減できる。
 本開示の電極では、触媒に含まれるイリジウムの含有量及びパラジウムの含有量が少ない、又は触媒がイリジウム及びパラジウムを含有しない。そのため、本開示の電極は低コストである。
 (2)上記(1)の電極において、
 前記第一の酸化物は、スズ、アンチモン及びチタンからなる群より選択される少なくとも一種の元素を含んでもよい。
 上記(2)の構成によれば、触媒としての機能を高めたり、基材から触媒が脱落することを抑制したりすることが可能となる場合がある。
 (3)上記(1)又は(2)の電極において、
 前記粒子と前記触媒との間に中間層を備えてもよい。
 前記中間層は第二の酸化物を含み、
 前記第二の酸化物は、ルテニウム、スズ、アンチモン、チタン、タングステン及びモリブデンからなる群より選択される少なくとも一種の元素を含む酸化物であり、
 前記第二の酸化物に含まれる金属元素の種類の数は、前記第一の酸化物に含まれる金属元素の種類の数に比べて少ない。
 中間層を備える上記電極は、基材から触媒が脱落することを抑制したり、基材と触媒との間を良好に電気的に接続したりすることができる。
 (4)上記(1)から(3)のいずれかの電極において、
 前記第一の酸化物は、前記第一の元素の合計のモル数に比べてルテニウムのモル数が多くてもよい。
 上記(4)の構成によれば、触媒が酸化触媒及び還元触媒の両方の機能をバランスよく備えることができる。
 (5)上記(1)から(4)のいずれかの電極において、
 前記電極の空隙率が40体積%以上75体積%以下であってもよい。
 電極の空隙率が40体積%以上である上記電極は、電極内に電解液を流通させ易い。電極の空隙率が75体積%以下である上記電極は、空隙を除く電極の真の体積が大きくなって、十分な電池反応を行うことができる。
 (6)上記(1)から(5)のいずれかの電極において、
 前記電極の面積1mあたりにおける前記触媒に含まれるルテニウムの含有量が0.1g以上90.0g以下であり、
 前記電極の面積1mあたりにおける前記触媒に含まれる前記第一の元素の合計の含有量が0.1g以上50.0g以下であってもよい。
 上記(6)の構成によれば、触媒による電池反応性の向上効果が高くなる。
 (7)上記(1)から(6)のいずれかの電極において、
 前記電極の引張強度が4.0MPa以上16.0MPa以下であってもよい。
 電極の引張強度が上記範囲を満たすことで、電極が過度に変形したり破断したりし難い。このような電極はハンドリング性が高い。また、電極が電池セルに組み込まれたときに適度に変形して、電極が損傷し難い。
 (8)上記(1)から(7)のいずれかの電極において、
 前記電極の曲げ弾性率が0.25GPa以上3.0GPa以下であってもよい。
 電極の曲げ弾性率が上記範囲を満たすことで、電極が過度に変形したり破断したりし難い。このような電極はハンドリング性が高い。また、電極が電池セルに組み込まれたときに適度に変形して、電極が損傷し難い。
 (9)本開示の実施態様に係る電池セルは、
 正極電極と負極電極とを備えるレドックスフロー電池の電池セルであって、
 前記正極電極及び前記負極電極の少なくとも一方が上記(1)から(8)のいずれか1つに記載の電極である。
 本開示の電池セルは、セル抵抗率が小さい。このような電池セルは、レドックスフロー電池の充電効率及び放電効率を向上させることができる。
 (10)また、本開示の別の実施形態に係る電池セルは、
 正極電極と負極電極とを備えるレドックスフロー電池の電池セルであって、
 前記正極電極及び前記負極電極の一方が上記(1)から(8)のいずれか1つに記載の電極であり、
 前記正極電極及び前記負極電極の他方が複数の炭素繊維の集合体からなる基材を備える。
 上記(10)の構成によれば、電池セルの組み立て性に優れる。炭素繊維の集合体からなる基材を備える電極は、上記焼結体からなる基材を備える本開示の電極に比べて、高い柔軟性を有する。そのため、正極電極及び負極電極を電池セルに組み込む際に上記他方の電極が圧縮変形して、電池セルが容易に組み立てられる。
 (11)本開示の実施態様に係るレドックスフロー電池は、
 上記(9)又は(10)に記載の電池セルを備える。
 上記レドックスフロー電池は、セル抵抗率が小さい。上記レドックスフロー電池は、上記電池セルを備えることから、高い充電効率及び放電効率を有する。
 [本開示の実施形態の詳細]
 以下、図面を参照して、本開示の実施形態に係る電極、電池セル、及びレドックスフロー電池の具体例を説明する。図中の同一符号は同一又は相当部分を示す。以下、レドックスフロー電池を「RF電池」と呼ぶ場合がある。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 まず、図4を参照して、実施形態のRF電池1の基本構成を説明する。次に、図1から図3を参照して、実施形態の電極10について詳しく説明する。
 <RF電池>
 RF電池1は、電池セル100に電解液が循環されることによって、電解液中のイオンの酸化還元反応を利用して充電及び放電を行う蓄電池である。RF電池1において、正極電解液及び負極電解液は、酸化還元により価数が変化するイオンを活物質として含有する電解液である。電解液は、例えば、バナジウム系電解液、チタン-マンガン系電解液である。バナジウム系電解液では、正極電解液及び負極電解液の双方がバナジウム(V)イオンを含有する。チタン-マンガン系電解液では、正極電解液がマンガン(Mn)イオンを含有し、負極電解液がチタン(Ti)イオンを含有する。
 RF電池1は、代表的には、交流/直流変換器7や変電設備71を介して発電部8及び負荷9に接続される。RF電池1は、発電部8で発電された電力を充電したり、充電した電力を負荷9に放電したりすることが可能である。発電部8は、太陽光発電や風力発電などの自然エネルギーを利用した発電設備やその他一般の発電所である。RF電池1は、例えば、負荷平準化用途、瞬低補償、非常用電源といった用途、自然エネルギー発電の出力平滑化用途に利用される。
 RF電池1は、電池セル100と、電解液が貯留されたタンク106、107と、各タンク106、107と電池セル100との間で電解液を循環させる循環流路とを備える。タンク106には正極電解液が貯留されている。タンク107には負極電解液が貯留されている。RF電池1の構成は、公知の構成を適宜利用できる。
 <電池セル>
 電池セル100は、正極電極104と負極電極105と隔膜101とを備える。隔膜101は正極電極104と負極電極105との間に配置されている。電池セル100は、隔膜101によって正極セル102と負極セル103とに分離されている。正極電極104は正極セル102に配置されている。負極電極105は負極セル103に配置されている。正極セル102には正極電解液が供給される。負極セル103には負極電解液が供給される。正極電極104及び負極電極105は、供給された各電解液に含まれるイオンが電池反応を行う反応場である。正極電極104及び負極電極105は、例えば、シート状の多孔質体で構成されている。
 本例では、電池セル100とタンク106との間を接続する配管108、110によって正極電解液の循環流路が構成されている。配管108にはポンプ112が設けられている。正極電解液は、タンク106からポンプ112によって配管108を通って正極セル102に供給される。正極セル102を通り正極セル102から排出された正極電解液は、配管110を通ってタンク106に戻される。また、本例では、電池セル100とタンク107との間を接続する配管109、111によって負極電解液の循環流路が構成されている。配管109にはポンプ113が設けられている。負極電解液は、タンク107からポンプ113によって配管109を通って負極セル103に供給される。負極セル103を通り負極セル103から排出された負極電解液は、配管111を通ってタンク107に戻される。
 RF電池1は、単数の電池セル100を備える構成でもよいし、複数の電池セル100を備える構成でもよい。本例のRF電池1は、図4に示すように、複数の電池セル100が積層されたセルスタック200を備える。セルスタック200は、セルフレーム120、正極電極104、隔膜101、負極電極105が順に繰り返し積層されて構成される。セルスタック200の両端にはエンドプレート210が配置されている。エンドプレート210間を締付部材230で締め付けることによりセルスタック200が一体化される。セルスタック200の構成は、公知の構成を適宜利用できる。
 セルフレーム120は双極板121と枠体122とを有する。双極板121は正極電極104と負極電極105との間に配置されている。枠体122は双極板121の周囲に設けられている。枠体122の内側には、双極板121と枠体122により凹部が形成される。凹部は、双極板121の両側にそれぞれ設けられている。各凹部には、双極板121を挟んで正極電極104と負極電極105とがそれぞれ収納される。
 図4に示すように、隣り合う各セルフレーム120の双極板121の間に、隔膜101を挟んで正極電極104及び負極電極105が配置されることにより、1つの電池セル100が形成される。各セルフレーム120の枠体122の間には、例えば環状のシール部材127が配置されている。セルスタック200における電池セル100の積層数は適宜選択できる。
 図示しないが、枠体122は、各電解液を供給する給液マニホールド及び各電解液を排出する排液マニホールドを有する。各マニホールドは、枠体122を貫通するように設けられており、セルフレーム120が積層されることで各電解液の流路を構成する。これら各流路は、各配管108、109、110、111とそれぞれつながっている。
 <電極>
 実施形態のRF電池用の電極10は、図1に示すように、基材20を備える。基材20は、焼結体からなる。この焼結体は、図2に示すように、複数の粒子21の集合体である。電極10は、図3に示すように、基材20に担持された触媒30を備える。図1は電極10の全体図である。図2は図1に示す一点鎖線で囲まれた部分を模式的に示す拡大断面図である。図3は、図2を更に拡大して模式的に示す拡大断面図である。電極10は、基材20に触媒30が担持されていることで、電池反応性が改善される。本実施形態の電極10は、触媒30が特定の酸化物を有することで、低コストでありながら、電池反応性を高めることができる。
  〈厚さ〉
 電極10はシート状の多孔質体である。電極10の厚さは、例えば0.1mm以上5.0mm以下である。電極10の厚さが0.1mm以上であることで、電解液との接触面積、即ち反応面積を確保し易く、十分な電池反応を行うことができる。電極10の厚さが5.0mm以下であることで、電池セルを薄型にできる。ここでいう厚さとは、電極10に外力が作用していない自然状態での厚さである。電極10の厚さは、更に0.2mm以上2.5mm以下、0.3mm以上2.0mm以下であってもよい。
  〈空隙率〉
 電極10の空隙率は、例えば40体積%以上75体積%以下である。電極10の空隙率が40体積%以上であることで、電極10内に電解液を流通させ易い。電極10の空隙率が75体積%以下であることで、電極10の真の体積が大きくなって、低い電気抵抗で集電することが可能となる。よって、電極10の空隙率が75体積%以下であれば、十分な電池反応を行うことができる。また、電極10の空隙率が75体積%以下であれば、電極10の機械的特性を確保し易い。電極10の空隙率は、更に50体積%以上70体積%以下、特に55体積%以上65体積%以下であってもよい。空隙率は、[1-{W/(ρ×Va)}]により求められた値を百分率で表した値である。ρは電極10を構成する材料の真密度である。Wは電極10の質量である。Vaは電極10の見かけの体積である。見かけの体積は空隙を含む体積である。
  〈機械的特性〉
 電極10は、強度、剛性などの機械的特性が高いことが好ましい。機械的特性が高い電極10は、過度に変形したり割れたりし難いため、ハンドリング性が高い。機械的特性は、例えば、引張強度、引張弾性率、曲げ強度及び曲げ弾性率である。
 電極10の引張強度は、例えば4.0MPa以上16.0MPa以下である。電極10の引張強度が4.0MPa以上であることで、機械的特性が高い。電極10の引張強度が16.0MPa以下であると、電極10が電池セル100(図4参照)に組み込まれたときに適度に変形して、電極10が損傷し難い。電極10の引張強度は、更に5.0MPa以上13.0MPa以下であってもよい。電極10の引張弾性率は、例えば1.0GPa以上4.0GPa以下である。電極10の引張弾性率が1.0GPa以上であることで、機械的特性が高い。電極10の引張弾性率が4.0GPa以下であると、電極10が電池セル100に組み込まれたときに適度に変形して、電極10が損傷し難い。電極10の引張弾性率は、更に1.5GPa以上3.5GPa以下であってもよい。
 電極10の曲げ強度は、例えば3.0MPa以上30.0MPa以下である。電極10の曲げ強度が3.0MPa以上であることで、機械的特性が高い。電極10の曲げ強度が30.0MPa以下であると、電極10が電池セル100に組み込まれたときに適度に変形して、電極10が損傷し難い。電極10の曲げ強度は、更に10.0MPa以上20.0MPa以下であってもよい。電極10の曲げ弾性率は、例えば0.25GPa以上3.0GPa以下である。電極10の曲げ弾性率が0.25GPa以上であることで、機械的特性が高い。電極10の曲げ弾性率が3.0GPa以下であると、電極10が電池セル100に組み込まれたときに適度に変形して、電極10が損傷し難い。電極10の曲げ弾性率は、更に1.0GPa以上2.5GPa以下であってもよい。
 (基材)
 基材20は、電極10の骨格となる多孔質体である。基材20は、電極10として必要な導電性を有する。本実施形態では、基材20はチタン(Ti)の焼結体からなる。基材20を構成するTiの焼結体は、図2に示すように、Tiを含む複数の粒子21が互いに結合されて構成されている。焼結体は、複数の粒子21が互いに結合することによって3次元ネットワーク状の骨格構造を有する。粒子21同士の間には空隙がある。Tiを含む粒子21は、純Ti又はTi合金からなる。純Tiは、Tiを99質量%以上含み、残部が不可避不純物からなる。Ti合金は、α型Ti合金、α+β型Ti合金、β型Ti合金、耐食Ti合金などがある。
  〈厚さ〉
 基材20はシート状である。基材20の厚さは、上述した電極10の厚さと実質的に等しい。
  〈空隙率〉
 基材20の空隙率は、上述した電極10の空隙率と実質的に等しい。図3に示すように基材20には触媒30が担持されていることから、厳密には、基材20の空隙率は電極10の空隙率よりも若干大きい。基材20に担持された触媒30は少量であるため、触媒30の有無による空隙率の差は無視できる。
 電極10の面積1mあたりにおける基材20の質量は、例えば300g以上3000g以下である。ここで、電極10の面積とは、電極10を平面視したときの面積すなわち電極10への投影面積である。単位面積あたりの基材20の質量が300g/m以上であることで、空隙を除く基材20の真の体積が大きくなって、導電性及び機械的特性を確保し易い。単位面積あたりの基材20の質量が3000g/m以下であることで、空隙が過度に小さくなることを抑制でき、電解液の流通性を確保し易い。単位面積あたりの基材20の質量は、更に400g/m以上2000g/m以下であってもよい。基材20の真の体積は、基材20の質量を、基材20を構成する材料の密度で割った値である。
  〈粒子の平均粒径〉
 粒子21の平均粒径は、例えば3μm以上500μm以下である。粒子21の平均粒径が3μm以上であることで、粒子21を取り扱い易い。粒子21の平均粒径が500μm以下であることで、基材20を構成する焼結体の表面積を大きくでき、反応面積を確保し易い。粒子21の平均粒径は、更に4μm以上300μm以下、5μm以上50μm以下であってもよい。なお、粒子21の粒径は、粒子21の体積をVpとしたとき、[2×(3Vp/4π)1/3]となる。この値の平均値が粒子21の平均粒径となる。
 粒子21の平均粒径は次のようにして求めることができる。基材20の断面を走査型電子顕微鏡(SEM)で観察する。観察視野のサイズは、観察視野内に粒子21が50個以上含まれるように設定するとよい。観察視野内の全ての粒子21の粒径を測定する。粒子21の粒径は粒子21の断面積と等しい面積を有する円の直径とする。粒子21の断面積は画像処理により求めることができる。測定した粒子21の粒径の平均値を粒子21の平均粒径とみなす。
 (触媒)
 触媒30は基材20に担持されている。触媒30は、図3に示すように、基材20を構成する粒子21を覆うように、粒子21の表面上に層状に形成されている。触媒30は、図2に示す複数の粒子21のうち、少なくとも一部の粒子に設けられていればよい。触媒30は、全ての粒子21の80%以上の粒子に設けられていてもよく、全ての粒子21に設けられていてもよい。この割合は、全ての粒子数に対する触媒30を備える粒子21の数の割合である。本実施形態では、実質的に全ての粒子21に触媒30が設けられている。触媒30は、粒子21の表面に直接接してもよいし、粒子21の表面上に中間層40を介して設けられていてもよい。触媒30は、電極10での酸化還元反応を活性化させて、電解液との電池反応性を高める機能を有する。
  〈材質〉
 触媒30は第一の酸化物を有する。第一の酸化物は、ルテニウム(Ru)と、第一の元素とを含む酸化物からなる。第一の元素は、タングステン(W)、モリブデン(Mo)、セリウム(Ce)、ネオジウム(Nd)及びバナジウム(V)からなる群より選択される少なくとも一種である。第一の酸化物は、例えば、RuとWとを含む複合酸化物、RuとMoとを含む複合酸化物、RuとCeとを含む複合酸化物、RuとNdとを含む複合酸化物、又はRuとVとを含む複合酸化物である。第一の酸化物は、複数種の第一の元素を含んでもよい。本発明者らが鋭意研究した結果、Ruと第一の元素との複合酸化物は、触媒30としての機能が優れていることを見出した。このような複合酸化物は、酸化触媒及び還元触媒の両方の機能を兼ね備えている。触媒30が酸化触媒及び還元触媒の両方の機能を兼ね備えることで、電極10における充電反応及び放電反応が促進される。一般に、Ruを含むが、第一の元素を含まない酸化物は、酸化触媒としての機能を備えるが、還元触媒としての機能が劣る。Ruと第一の元素とが複合化されることによって、還元触媒としての機能が向上するものと考えられる。
 第一の酸化物は、更にスズ(Sn)、アンチモン(Sb)及びチタン(Ti)からなる群より選択される少なくとも一種の元素を含んでもよい。第一の酸化物がSn、Sb及びTiの少なくとも一種の元素を含むことで、触媒としての機能を高めたり、基材から触媒が脱落することを抑制したりすることが可能となる場合がある。
  〈Ruのモル比〉
 第一の酸化物は、第一の元素の合計のモル数に比べてRuのモル数が多くてもよい。つまり、第一の元素の合計に対するRuのモル比は1超であってもよい。第一の元素の合計に対するRuのモル比が大きいことで、酸化触媒及び還元触媒の両方の機能をバランスよく備えることができる。第一の元素の合計に対するRuのモル比は、例えば5以上40以下、更に10以上25以下であってもよい。第一の酸化物に含まれる全ての金属元素の合計を100モル%としたとき、Ruの含有率は、例えば50モル%以上80モル%以下、更に55モル%以上75モル%以下である。第一の元素の合計の含有率は、例えば2モル%以上40モル%以下、更に2モル%以上10モル%以下である。
  〈Ruの含有量〉
 電極10の面積1mあたりにおける触媒30に含まれるRuの含有量は0.1g以上90.0g以下であり、かつ、触媒30に含まれる第一の元素の合計の含有量は0.1g以上50.0g以下であってもよい。単位面積あたりのRuの含有量、並びに、第一の元素の合計の含有量がそれぞれ上記範囲を満たすことで、触媒30による電池反応性の向上効果が高くなる。Ruの含有量、並びに、第一の元素の合計の含有量がそれぞれ上記範囲を満たせば、電極10のコストアップを抑えることができる。単位面積あたりのRuの含有量は、更に0.1g/m以上40.0g/m以下、0.1g/m以上30.0g/m以下であってもよい。単位面積あたりの第一の元素の合計の含有量は、更に0.1g/m以上10.0g/m以下であってもよい。
 電極10の面積1mあたりにおける触媒30の質量は1g以上100g以下であってもよい。単位面積あたりの触媒30の質量が1g/m以上であることで、触媒30としての機能を十分に発揮できる。単位面積あたりの触媒30の質量が100g/m以下であることで、触媒30の含有量が少なく、電極10のコストが低下する。単位面積あたりの触媒30の質量は、更に2g/m以上80g/m以下、2g/m以上60g/m以下であってもよい。
 触媒30は、上記した第一の酸化物以外の酸化物、及び金(Au)、白金(Pt)などの金属元素を含んでいてもよい。第一の酸化物以外の酸化物は、例えば、Sn、Sb、Tiなどを単独で含む酸化物である。単位面積あたりのAu及びPtの合計の含有量は1g/m以下であってもよい。Au及びPtは高価な金属である。Auの含有量及びPtの含有量が少ないほど、コストを低減できる。単位面積あたりのAuの含有量及びPtの含有量はそれぞれ0.5g/m以下、更に0.1g/m以下、特にゼロであってもよい。つまり、電極10にはAu及びPtが含まれていなくてもよい。触媒30に含まれる第一の酸化物の割合は、60質量%以上、更に80質量%以上であってもよい。第一の酸化物の割合は100質量%でもよい。つまり、触媒30は第一の酸化物のみからなっていてもよい。
  〈Irの含有量、Pdの含有量〉
 電極10の面積1mあたりにおける触媒30に含まれるイリジウム(Ir)の含有量及びパラジウム(Pd)の含有量がそれぞれ1g以下である。単位面積あたりのIrの含有量及びPdの含有量が1g/m以下であることで、電極10のコストが低下する。好ましくは、単位面積あたりのIr及びPdの合計の含有量が1g/m以下である。単位面積あたりのIrの含有量及びPdの含有量が少ないほど、コスト低減効果が高い。単位面積あたりのIrの含有量及びPdの含有量はそれぞれ0.5g/m以下、更に0.1g/m以下、特にゼロであってもよい。つまり、電極10にはIr及びPdが含まれていなくてもよい。
 (中間層)
 電極10は、図3に示すように、基材20を構成する粒子21と触媒30との間に中間層40を備えていてもよい。中間層40は、粒子21を覆うように設けられている。中間層40は粒子21の表面に直接接している。触媒30は中間層40を介して粒子21に担持されている。中間層40は、粒子21から触媒30が脱落することを抑制すると共に、粒子21と触媒30との間を電気的に接続する機能を有する。
  〈材質〉
 中間層40は第二の酸化物を有する。第二の酸化物は、Ru、Sn、Sb、Ti、W及びMoからなる群より選択される少なくとも一種の元素を含む酸化物からなる。このような特定の金属元素を含む第二の酸化物は、中間層40としての機能を発揮できる。
 第二の酸化物に含まれる金属元素は、触媒30を構成する第一の酸化物に含まれる金属元素と同種の元素を1つ以上含んでいてもよい。第二の酸化物と第一の酸化物とが同種の金属元素を含むことで、中間層40と触媒30との界面で同種の金属元素同士が結合する。これにより、中間層40と触媒30との密着性が向上すると共に、中間層40と触媒30との間の導電性が向上する。また、粒子21と中間層40との界面では、第二の酸化物中の酸素(O)が粒子21を構成するTi中に拡散して結合する。これにより、粒子21と中間層40との密着性が向上して、粒子21と中間層40との間の導電性が向上する。したがって、第二の酸化物と第一の酸化物とが同種の金属元素を含むことで、触媒30が粒子21から脱落し難くなると共に、粒子21と触媒30との間を良好に電気的に接続することができる。第二の酸化物は、上記元素の群のうち、Ru、Sn及びTiの少なくとも一種を含んでいてもよく、特にRuを含んでいてもよい。第二の酸化物がRuを含む場合、第一の酸化物はRuを含むことから、中間層40と触媒30との密着性が向上する効果が高い。また、第二の酸化物がSnを含む場合、Snは粒子21を構成するTi中に拡散し易いため、粒子21と中間層40との密着性が向上する効果が高い。第二の酸化物がTiを含む場合、第二の酸化物中のTiが粒子21を構成するTiと結合して、粒子21と中間層40との密着性が向上する効果が高い。
 中間層40は、粒子21と触媒30との間を電気的に接続することから、触媒30に比べて導電性が高いことが求められる。つまり、中間層40の電気抵抗率は触媒30の電気抵抗率よりも小さくてもよい。中間層40の導電性を高めるために、第二の酸化物に含まれる金属元素の種類の数は、触媒30を構成する第一の酸化物に含まれる金属元素の種類の数に比べて少なくてもよい。第二の酸化物に含まれる金属元素の種類の数が少ないほど、第二の酸化物の導電性が高くなる。そのため、中間層40の電気抵抗率が小さくなる。更に、第二の酸化物に含まれる金属元素が、上記元素の群の中でも高い導電性を有するものであれば、中間層40の電気抵抗率がより小さくなる。中間層40の電気抵抗率が小さいほど、粒子21と触媒30との間を低抵抗でつなぐことができる。第二の酸化物に含まれる金属元素の種類の数は、3以下であってもよく、更に2以下であってもよい。第二の酸化物に含まれる金属元素の種類の数は1でもよい。
 中間層40の厚さは触媒30の厚さよりも薄くてよい。電極10の面積1mあたりにおける中間層40の質量は1g以上40g以下であってもよい。単位面積あたりの中間層40の質量が1g/m以上であることで、中間層40としての機能を十分に発揮できる。単位面積あたりの中間層40の質量が40g/m以下であることで、中間層40の含有量が少なく、電極10のコストが低下する。単位面積あたりの中間層40の質量は、更に1.5g/m以上35g/m以下であってもよい。
 なお、本発明者らが鋭意研究した結果、中間層40の上に触媒30が設けられることで、触媒30が少量であっても、電池反応性の向上効果が十分に発揮されることを見出した。そのため、電極10が中間層40を備える場合、中間層40を備えない場合に比べて触媒30の含有量が少なくて済む。例えば、単位面積あたりの触媒30の質量が60g/m以下、更に50g/m以下であってもよい。
 本実施形態のRF電池用の電極10は、RF電池1の正極電極104と負極電極105の両方に使用することが可能である。電極10は、特に正極電極104に使用することが好ましい。電極10を負極電極105に用いた場合、基材20を構成するTiの焼結体が負極電解液との接触により劣化するおそれがある。また、電池セル100において、正極電極104及び負極電極105の一方が本実施形態の電極10である場合、他方は、複数の炭素繊維の集合体からなる基材を備える電極であってもよい。炭素繊維の集合体とは、複数の炭素繊維が互いに絡み合って構成されたものである。炭素繊維の集合体は、代表的には、カーボンフェルトである。炭素繊維の集合体からなる基材を備える電極は、Tiの焼結体からなる基材20を備える電極10に比べて、高い柔軟性を有する。そのため、正極電極104及び負極電極105を電池セル100に組み込む際に、炭素繊維の集合体からなる基材を備える電極が圧縮変形することにより、電池セル100が容易に組み立てられる。
 <電極の製造方法>
 上述した電極10は次のようにして製造できる。基材20と第一の溶液と第二の溶液とを準備する。第一の溶液は、触媒30となる第一の酸化物を構成する金属元素を含有する。第二の溶液は、中間層40となる第二の酸化物を構成する金属元素を含有する。基材20に第二の溶液を塗布して熱処理を施すことで、基材20に中間層40を形成する。中間層40を形成した後、基材20に第一の溶液を塗布して熱処理を施すことで、基材20に触媒30を形成する。以下、電極10の製造方法を詳細に説明する。
 (基材の準備)
 基材20として、Tiの焼結体を準備する。この焼結体の大きさや形状は、所望の電極10の大きさや形状となるように適宜選択すればよい。基材20は次のようにして作製できる。Tiの粉末を成形型に充填して成形体を作製する。Tiの粉末は、Tiを含む粒子21からなる。この成形体を焼結することで、複数の粒子21が互いに結合された焼結体からなる基材20が作製される。焼結する際の焼結温度は、例えば800℃以上1500℃以下である。焼結温度に保持する保持時間は、例えば30分以上3時間以下である。焼結温度が高いほど、焼結体の強度が高くなる傾向がある。
 (溶液の準備)
 第一の溶液は、第一の酸化物を構成する金属元素の原料と有機溶媒とを含有する溶液である。第二の溶液は、第二の酸化物を構成する金属元素の原料と有機溶媒とを含有する溶液である。上記金属元素の原料は、有機化合物、塩化物、金属アルコキシド、酢酸塩などがある。
 Ruの原料は、例えば、塩化ルテニウム(III)水和物、硝酸ルテニウム(III)、酸化ルテニウム(IV)水和物、酢酸ルテニウム(III)、トリス(アセチルアセトナート)ルテニウム(III)、ヘキサアンミンルテニウム(III)クロライドがある。
 Wの原料は、例えば、タングステン(VI)エトキシド、タングステン(VI)フェノキシド、ビス(シクロペンタジエニル)タングステン(IV)ジクロリド、ヘキサカルボニルタングステン、塩化タングステンがある。
 Moの原料は、例えば、モリブデン(V)エトキシド、ビス(アセチルアセトナート)酸化モリブデン(IV)、酢酸モリブデン(II)、酢酸モリブデン(II)ダイマー、カルボニルモリブデン、2-エチルヘキサン酸モリブデン、塩化モリブデン(V)がある。
 Ceの原料は、例えば、硝酸セリウム(III)、塩化セリウム(III)、塩化セリウム(III)七水和物、セリウム(IV)-i-プロコキシド、セリウム(IV)-メトキシエトキシド、セリウム(III)-t-ブトキシド、2-エチルヘキサン酸セリウム(III)がある。
 Ndの原料は、例えば、ネオジウム(III)イソプロポキシド、2,4-ペンタンジオン酸ネオジウム(III)、ネオジウム(III)トリフルオロアセチルアセトナート、硝酸ネオジウム六水和物、酢酸ネオジウム一水和物、塩化ネオジウム一水和物、塩化ネオジウム六水和物、フッ化ネオジウム、2-エチルヘキサン酸ネオジウム(III)がある。
 Vの原料は、例えば、アセチルアセトナートバナジウム(III)、バナジウム(IV)ビス(アセチルアセトナート)オキシド、酸化三塩化バナジウム(V)、ビス(2,4-ペンタンジオン酸)酸化バナジウム(IV)、酸化三フッ化バナジウム(V)、塩化バナジウム(III)、トリイソプロポキシ酸化バナジウム(V)、フッ化バナジウム(III)、臭化バナジウム(III)、塩化バナジル(V)、しゅう酸バナジルn水和物、ビス(シクロペンタジエニル)バナジウムジクロリド、シクロペンタジエニルバナジウムテトラカルボニル、2-エチルヘキサン酸バナジウムがある。
 Snの原料は、例えば、四塩化スズ、塩化スズ(IV)五水和物、塩化スズ(II)、塩化スズ(II)二水和物、ビス(2‐エチルヘキサン酸)スズ(II)、ビス(ネオデカン酸)スズ(II)、三塩化-n-ブチルスズ(IV)、ジブチルスズビス(アセチルアセトネート)、ジ-n-ブチル-ジ-n-ブドキシドスズ(IV)、スズ(IV)-n-ブトキシド、スズ(IV)-t-ブトキシド、テトラメチルスズ、酢酸スズ(II)、酢酸スズ(IV)がある。
 Sbの原料は、例えば、トリ-i-プロポキシアンチモン、トリ-n-プロポキシアンチモン、トリ-n-ブトキシアンチモン、トリ-i-ブトキシアンチモン、トリメトキシアンチモン、酢酸アンチモン(III)、三塩化アンチモン、五塩化アンチモン、アンチモン(III)メトキシド、アンチモン(III)エトキシド、アンチモン(III)ブトキシドがある。
 Tiの原料は、例えば、四塩化チタン、チタン(IV)エトキシド、チタン(IV)-n-ブトキシド、チタン(IV)-t-ブトキシド、チタン(IV)-i-プロポキシド、チタン(IV)-n-プロポキシド、一塩化チタン(IV)-i-トリプロポキシド、チタン(IV)メトキシド、(ビス-2,4-ネオデカン酸)-チタン(IV)-n-ジブトキシド、二塩化チタン(IV)-ジエトキシド、(ビス-2,4-ペンタンジオン酸)-チタン(IV)-i-ジプロポキシド、2-エチルヘキサン酸チタン(IV)、チタン(IV)メチルフェトキシド、チタン(IV)-n-ステアリルシドがある。
 有機溶媒は、例えば、トリフルオロエタノール、五フッ化プロパノール、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール、メタノール、エタノール、プロピルアルコール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、3-メトキシ-3-メチル-1-ブタノール、アセトニトリル、炭酸プロピレン、炭酸エチレンである。有機溶媒は、溶液全体に対して70質量%以上95質量%以下含有するとよい。また、溶液は、必要に応じて、安定化剤を含有してもよい。安定化剤は、例えばアセチルアセトンである。安定化剤は、溶液全体に対して1質量%以上10質量%以下含有するとよい。上述した金属元素の原料と有機溶媒、更に安定化剤を含有した液を、不活性ガス雰囲気中で攪拌することで、第一の溶液及び第二の溶液が作製される。不活性ガスは、例えば窒素、アルゴンである。金属元素の原料は、金属元素の濃度が所望の比率となるように調合する。攪拌時間は、例えば1時間以上5時間以下程度とする。
 (塗布及び熱処理)
 焼結体からなる基材20に溶液を塗布することで、溶液が基材20の内部に浸透する。基材20を構成する粒子21を覆うように溶液が塗布される。溶液の塗布方法には、例えば、刷毛塗法、噴霧法、浸漬法、フローコート法、ロールコート法、ディップ法がある。溶液を塗布した基材20を乾燥する。溶液が塗布された基材20に熱処理を行う。この熱処理には、第一の熱処理、第二の熱処理、最終熱処理がある。熱処理の温度は、例えば300℃以上600℃以下とする。熱処理の時間は、例えば10分以上5時間以下とする。熱処理の雰囲気は、酸化性ガスが含まれる雰囲気とする。酸化性ガスは、例えば空気である。熱処理によって、溶液に含まれる金属元素が酸化されて酸化物となる。第一の溶液を用いた場合は、第一の酸化物が形成される。第二の溶液を用いた場合は、第二の酸化物が形成される。
 触媒30と中間層40とを備える電極10を製造する場合は、中間層40を形成する工程の後、触媒30を形成する工程を行う。中間層40を形成する工程では、基材20に第二の溶液を塗布した後に第二の熱処理を行う。この工程により、第二の酸化物を有する中間層40が形成されて、中間層40が基材20に担持される。具体的には、基材20に中間層40が所望の量担持されるまで、〔第二の溶液の塗布〕→〔乾燥〕→〔第二の熱処理〕という一連の操作を繰り返し行う。第二の熱処理によって、第二の酸化物中の構成元素が中間層40から粒子21に拡散する現象が生じ易くなる。この操作における第二の熱処理の条件は、例えば300℃以上500℃以下×10分以上2時間以下とする。上記操作を繰り返す回数が多いほど、中間層40が厚くなり、中間層40の重量が増加する。この操作を繰り返す回数は、電極10の単位面積あたりの中間層40の質量が所望の質量となるように適宜選択する。中間層40の形成工程では、上記操作を繰り返す回数は、例えば1回以上5回以下、更に1回以上4回以下でもよい。
 触媒30を形成する工程では、中間層40が形成された基材20に第一の溶液を塗布した後に第一の熱処理を行う。この工程により、中間層40の上に第一の酸化物を有する触媒30が形成されて、触媒30が中間層40を介して基材20に担持される。具体的には、基材20に触媒30が所望の量担持されるまで、〔第一の溶液の塗布〕→〔乾燥〕→〔第一の熱処理〕という一連の操作を繰り返し行う。第一の熱処理によって、中間層40と触媒30との間で第二の酸化物中の構成元素と第一の酸化物中の構成元素とが相互拡散して、同種の金属元素同士が結合する現象が生じ易くなる。この操作における第一の熱処理の条件は、例えば300℃以上500℃以下×10分以上2時間以下とする。上記操作を繰り返す回数が多いほど、触媒30が厚くなり、触媒30の重量が増加する。この操作を繰り返す回数は、電極10の単位面積あたりの触媒30の質量が所望の質量となるように適宜選択する。触媒30の形成工程では、上記操作を繰り返す回数は、例えば1回以上10回以下、更に2回以上8回以下でもよい。
 上記した中間層40を形成する工程及び触媒30を形成する工程の両工程において、上記操作を繰り返す回数が多くなると、熱処理の回数が増え、熱処理によって基材20の機械的特性が低下するおそれがある。基材20の機械的特性を維持する観点から、両工程を合わせた熱処理の回数は、例えば10回以下、更に8回以下、特に6回以下であってもよい。
 触媒30を形成する工程の後、触媒30と中間層40とが形成された基材20に最終熱処理を施してもよい。最終熱処理の条件は、例えば400℃以上600℃以下×1時間以上5時間以下とする。最終熱処理の温度及び時間は、上記第一の熱処理及び第二の熱処理での温度に比べて高く、かつ上記第一の熱処理及び第二の熱処理での時間に比べて長くてもよい。これにより、第一の酸化物中の金属元素及び第二の酸化物中の金属元素が十分に酸化され易い。
 [試験例1]
 基材と中間層と触媒とを備える電極を作製し、その評価を行った。
 用意した基材は、Tiの焼結体である。Tiの焼結体は次のようにして作製した。Tiの粉末を成形型に充填して成形体を作製した。Tiの粉末を構成するTi粒子の粒径は45μm以下である。成形体のサイズは、面積が30mm×30mm、厚さが0.5mmとした。この成形体をアルゴンガス雰囲気中で焼結を行って、Tiの焼結体を作製した。このTiの焼結体からなる基材の空隙率は約60体積%であった。単位面積あたりの基材の質量は約1300g/mであった。この例では、焼結温度を変えて3種類の焼結体AからCを作製した。焼結体Aは1000℃×1時間の焼結を行ったものである。焼結体Bは950℃×2時間の焼結を行ったものである。焼結体Cは900℃×3時間の焼結を行ったものである。表1及び表2に示す試料のうち、試料No.12の基材は焼結体Bである。試料No.13の基材は焼結体Cである。試料No.12及びNo.13を除く試料の基材は焼結体Aである。
 基材に溶液を塗布して熱処理を施すことで、表1及び表2に示す中間層と触媒とを形成した。表1、表2の「中間層」の項目における[質量(g/m)]の欄は電極の単位面積あたりの中間層の質量を示している。「触媒」の項目における[質量(g/m)]の欄は電極の単位面積あたりの触媒の質量を示している。溶液として、触媒を形成するための第一の溶液と、中間層を形成するための第二の溶液とを用意した。第一の溶液は、表1及び表2に示す第一の酸化物を構成する金属元素の原料と有機溶媒とが混合されたものである。第二の溶液は、表1及び表2に示す第二の酸化物を構成する金属元素の原料と有機溶媒とが混合されたものである。有機溶媒には、安定化剤としてアセチルアセトンが1質量%添加されたブタノールを用いた。金属元素の原料として、ジブチルスズビスアセチルアセトネート、酸化ルテニウム(IV)水和物、アンチモン(III)エトキシド、タングステン(VI)エトキシド、塩化モリブデン、トリ-i-プロポキシセリウム、塩化ネオジウム(III)六水和物、塩化バナジウム(III)、三塩化イリジウム、二塩化パラジウムを用意した。各溶液は、安定化剤が添加された有機溶媒中と金属元素の原料とを窒素雰囲気中にて5時間撹拌して作製した。
 第一の溶液として、第一の溶液中の金属元素が表1及び表2に示す第一の酸化物を構成する金属元素となるように金属元素の原料を選択したものをそれぞれ作製した。金属元素の原料は、第一の溶液中の金属元素のモル濃度が表1及び表2に示すモル比率となるように調合した。また、第一の溶液は、第一の溶液中の金属元素の総量が10質量%となるように調合した。例えば、表1に示す試料No.1の触媒の場合、第一の酸化物を構成する金属元素の原料として、ジブチルスズビスアセチルアセトネート、酸化ルテニウム(IV)水和物、タングステン(VI)エトキシドを用いた。これら金属元素の原料を、第一の溶液中の各金属元素のモル濃度が表1に示すモル比率となるように調合した。表1及び表2の「触媒」の項目において、例えば、「第一の酸化物」の欄が[Sn/Ru/W]であって、「モル比率」の欄が[30:65:5]と記入されている場合、第一の酸化物がSnとRuとWとを含有し、SnとRuとWとのモル比率が30:65:5であることを意味する。なお、第一の溶液には、極微量のアンチモン(III)エトキシドを混ぜている。表1中及び表2中には記載していないが、各試料の第一の酸化物はSbを3モル%未満含有している。
 第二の溶液として、第二の溶液中の金属元素が表1及び表2に示す第二の酸化物を構成する金属元素となるように金属元素の原料を選択したものをそれぞれ作製した。第二の溶液は、第二の溶液中の金属元素の総量が5質量%となるように調合した。例えば、表1に示す試料No.1の中間層の場合、第二の酸化物を構成する金属元素の原料として、酸化ルテニウム(IV)水和物を用いた。表1及び表2の「中間層」の項目において、例えば、「第二の酸化物」の欄が[Ru]と記入されている場合、第二の酸化物がRuを含有することを意味する。
 まず、中間層を形成するために、刷毛塗法により、基材に第二の溶液を塗布した。第二の溶液を塗布した後、基材を乾燥させた。その後、第二の溶液が塗布された基材に第二の熱処理を施した。具体的には、単位面積あたりの中間層の質量が表1及び表2に示す質量となるまで、〔第二の溶液の塗布〕→〔乾燥〕→〔第二の熱処理〕を繰り返し行った。第二の熱処理の条件は400℃×10分とした。
 次に、触媒を形成するために、刷毛塗法により、中間層が形成された基材に第一の溶液を塗布した。第一の溶液を塗布した後、基材を乾燥させた。その後、第一の溶液が塗布された基材に第一の熱処理を施した。具体的には、単位面積あたりの触媒の質量が表1及び表2に示す質量となるまで、〔第一の溶液の塗布〕→〔乾燥〕→〔第一の熱処理〕を繰り返し行った。第一の熱処理の条件は400℃×10分とした。
 最後に、中間層及び触媒が形成された基材に500℃×1時間の最終熱処理を行った。以上のようにして、表1に示す試料No.1からNo.17の電極と、表2に示す試料No.101からNo.118の電極を製造した。試料No.109の電極は中間層を形成していない。
 (組成分析)
 得られた各試料について、電極の断面を、SEM及びEDXを用いて組成分析した。試料No.109を除く全ての試料において、表1及び表2に示すように、中間層を構成する第二の酸化物に含まれる金属元素が確認された。また、全ての試料において、表1及び表2に示すように、触媒を構成する第一の酸化物に含まれる金属元素が確認された。更に、X線回析装置(XRD)で結晶構造を分析し、X線マイクロアナライザー(EPMA)で元素組成を測定することで、中間層及び触媒の存在状態を調べたところ、金属元素を含む酸化物であることが確認された。中間層は表1及び表2に示す第二の酸化物からなることがわかった。触媒は表1及び表2に示す第一の酸化物からなることがわかった。
 各試料の組成分析の結果から、電極の単位面積あたりのRuと第一の元素の各含有量(g/m)を求めた。また、電極の単位面積あたりのIr及びPdの各元素の含有量(g/m)を求めた。その結果を表1及び表2に示す。なお、第一の元素の含有量は、W、Mo、Ce、Nd及びVの合計の含有量として示す。
 (セル抵抗率)
 作製した各試料の電極をRF電池の正極電極に用いて、単セルの電池セルを作製した。負極電極には、カーボンフェルトを用いた。正極電極及び負極電極の各面積は9cmである。電解液には、Ti及びMnがそれぞれ1Mずつ溶解された硫酸水溶液を用いた。この電池セルで充放電試験を実施して、セル抵抗率を調べた。試験条件は、電流密度が140mA/cmの定電流で充電及び放電を行った。この試験では、上限電圧1.6Vに達したら充電から放電に切り替え、下限電圧0.9Vに達したら放電から充電に切り替えて、4サイクルの充放電を行った。セル抵抗率は次のようにして求めた。2サイクルから4サイクルの各サイクルにおける充電時の平均電圧と放電時の平均電圧との差を測定する。この差を平均電圧差とする。各サイクルにおける[平均電圧差/(平均電流×2)×電極面積]をそのサイクルでのセル抵抗率(Ωcm)とする。2サイクルから4サイクルまでの各セル抵抗率の平均値をセル抵抗率とする。充電時の平均電圧は、充放電試験によって得られた充電曲線における充電容量が1/2となる電池電圧とする。放電時の平均電圧は、充放電試験によって得られた放電曲線における充電容量が1/2となる電池電圧とする。充電曲線は充電時の電圧と容量との関係を示す。放電曲線は放電時の電圧と容量との関係を示す。充電曲線及び放電曲線は、横軸に電池容量(Ah)、縦軸に電池電圧(V)をとり、同じ電流での充電と放電の状態の推移をグラフ化したものである。平均電流は充電時と放電時の電流の平均値である。充放電試験では、定電流モードで充電及び放電を行っているため、充電時と放電時の電流は一定である。各試料のセル抵抗率を表1及び表2に示す。
 (機械的特性)
 各試料の機械的特性を評価した。ここでは、電極の機械的特性として、引張強度、引張弾性率、曲げ強度及び曲げ弾性率をそれぞれ測定した。
 引張強度及び引張弾性率は、引張試験機を用いて測定した。試験片の形状は長さが約150mm、幅が約5mmの短冊形状とした。試験片は次のようにして作製した。試験片より大きい面積で厚さが5mmのTiの焼結体を作製した。このTiの焼結体を基材に用いて、上述した形成方法で中間層及び触媒を基材に形成した。得られた各試料の電極を上記試験片のサイズに加工した。引張試験機には、株式会社オリエンテック製テンシロンUCT-30T型を使用した。引張試験の条件は次のとおりである。
 ひずみ測定 :クロスヘッド移動量法
 掴み具間距離:10mm
 試験速度  :1mm/min
 試験温度  :23℃±2℃
 引張弾性率は0.1%ひずみ間隔による最大勾配値から算出した。引張強度及び引張弾性率は、引張試験を3回行い、その平均値とした。各試料の引張強度及び引張弾性率を表1及び表2に示す。
 曲げ強度及び曲げ弾性率は、三点曲げ試験を行って測定した。三点曲げ試験は、JIS Z 2248:2014に準拠して行った。試験片のサイズは長さが約150mm、幅が約30mm、厚さが約0.5mmである。試験片は次のようにして作製した。試験片より大きい面積で厚さが0.5mmのTiの焼結体を作製した。このTiの焼結体を基材に用いて、上述した形成方法で中間層及び触媒を基材に形成した。得られた各試料の電極を上記試験片のサイズに加工した。曲げ試験には、インストロン社製の複合材料試験機5966型を使用した。この試験機の最大荷重は10kNである。曲げ試験の条件は次のとおりである。
 試験速度  :2mm/min
 支点間距離 :26.5mm
 圧子の半径:5mm
 支点の半径:5mm
 試験温度  :23℃±2℃
 各試料の曲げ強度及び曲げ弾性率を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示す試料No.1からNo.17の各電極は、触媒を構成する第一の酸化物がRuと第一の元素とを含む酸化物からなる。No.1からNo.13では、第一の酸化物がSnとRuとWとの複合酸化物である。No.14では、第一の酸化物がSnとRuとMoとの複合酸化物である。No.15では、第一の酸化物がSnとRuとCeとの複合酸化物である。No.16では、第一の酸化物がSnとRuとNdとの複合酸化物である。No.17では、第一の酸化物がSnとRuとVとの複合酸化物である。これらの試料はいずれも、第一の酸化物がIr及びPdを含んでいない。更に、試料No.1からNo.17の各電極は、中間層を構成する第二の酸化物がIr及びPdを含んでいない。よって、試料No.1からNo.17の各電極は低コストに製造可能である。
 表2に示す試料No.101からNo.118の各電極はいずれも、触媒を構成する第一の酸化物がRuを含むが、第一の元素を含まない。No.101からNo.117では、触媒を構成する第一の酸化物が、Ruと、Ir及びPdの少なくとも一方とを含む酸化物からなる。よって、試料No.101からNo.117の各電極は高コストである。これらの試料のうち、No.101からNo.108では、中間層を構成する第二の酸化物がIr及びPdの少なくとも一方を含んでいる。そのため、試料No.101からNo.108の各電極はより高コストである。No.118では、第一の酸化物がSnとRuとの複合酸化物である。
 試料No.1からNo.17の各セル抵抗率及び試料No.101からNo.118の各セル抵抗率はいずれも1.2Ωcm以下である。セル抵抗率が低いことから、これらの試料の電極は電池反応性がある程度高い。単位面積あたりの触媒の質量が100g/mであるNo.1、No.14とNo.101からNo.117とを比較する。No.1、No.14の各セル抵抗率はNo.101からNo.117の各セル抵抗率と同等又はそれ以下である。触媒を構成する第一の酸化物の組成が異なるNo.1、No.14からNo.17のそれぞれのセル抵抗率は、0.5Ωcm程度である。
 試料No.1、No.14からNo.17の各電極は、触媒を構成する第一の酸化物がIr及びPdを含んでいないが、試料No.101からNo.117の各電極と同等以上の電池反応性を有している。このことから、Ruと第一の元素とを含む第一の酸化物は、触媒としての機能が優れていることがわかる。
 また、No.1、No.14からNo.17の各セル抵抗率はNo.118のセル抵抗率よりも低い。よって、試料No.1、No.14からNo.17の各電極は、試料No.118の電極よりも高い電池反応性を有している。このことから、Ruと第一の元素とを含む第一の酸化物は、Ruと第一の元素とが複合化されることによって、触媒としての機能が向上することがわかる。
 No.5からNo.11のセル抵抗率の結果から、単位面積あたりの触媒の質量が80g/m以下であっても、触媒としての機能を十分に発揮できることがわかる。
 試料No.1からNo.11を比較すると、単位面積あたりの触媒の質量が少ないほど、電極の機械的特性が高いことが分かる。基材に担持させる触媒の量が少ないほど、電極の製造時における触媒を形成する工程での熱処理の回数が少なくて済む。単位面積あたりの触媒の質量が少ない電極は、熱処理による基材の機械的特性の低下が抑えられることから、高い機械的特性を確保し易い。更に、熱処理の回数が少ない電極は、弾性が高く、ハンドリング性に優れるため、電池セルに組み込む際の歩留まりの向上が期待できる。
 触媒及び中間層の各構成が同じである試料No.9とNo.12とNo.13とを比較する。No.9のセル抵抗率はNo.12とNo.13のセル抵抗率よりも低い。No.9の引張強度は4.0MPa以上16.0MPa以下を満たす。No.9の引張弾性率は1.0GPa以上4.0GPa以下を満たす。更に、No.9の曲げ強度は3.0MPa以上30.0MPa以下を満たす。No.9の曲げ弾性率は0.25GPa以上3.0GPa以下を満たす。No.12及びNo.13の各引張強度及び各引張弾性率は上記範囲外である。また、No.13の曲げ弾性率は上記範囲外である。これらのことから、機械的特性が所定の範囲内である電極は、セル抵抗率の上昇を抑制し易いと考えられる。基材に担持される触媒の量が多く、熱処理の回数が多い電極は、曲げ強度および曲げ弾性率の少なくとも一方が高いがマイクロクラックが入り易く、セル抵抗率が高くなり易い傾向がある。
 1 レドックスフロー電池(RF電池)、 7 交流/直流変換器、71 変電設備、 8 発電部、9 負荷、 10 電極、 20 基材、21 粒子、 30 触媒、 40 中間層、 100 電池セル、 101 隔膜、102 正極セル、103 負極セル、 104 正極電極、105 負極電極、 106、107 タンク、 108,109、110,111 配管、 112,113 ポンプ、 120 セルフレーム、 121 双極板、122 枠体、 127 シール部材、 200 セルスタック 210 エンドプレート、230 締付部材。

Claims (11)

  1.  レドックスフロー電池用の電極であって、
     シート状の基材と、前記基材に担持された触媒とを備え、
     前記基材は、チタンを含む複数の粒子が互いに結合された焼結体からなり、
     前記触媒は、前記複数の粒子の少なくとも一部を覆うように設けられた第一の酸化物を含み、
     前記第一の酸化物は、タングステン、モリブデン、セリウム、ネオジウム及びバナジウムからなる群より選択される少なくとも一種の第一の元素と、ルテニウムとを含む酸化物であり、
     前記電極の面積1mあたりにおける前記触媒に含まれるイリジウムの含有量及びパラジウムの含有量がそれぞれ1g以下である、
     電極。
  2.  前記第一の酸化物は、スズ、アンチモン及びチタンからなる群より選択される少なくとも一種の元素を含む、請求項1に記載の電極。
  3.  前記粒子と前記触媒との間に中間層を備え、
     前記中間層は第二の酸化物を含み、
     前記第二の酸化物は、ルテニウム、スズ、アンチモン、チタン、タングステン及びモリブデンからなる群より選択される少なくとも一種の元素を含む酸化物であり、
     前記第二の酸化物に含まれる金属元素の種類の数は、前記第一の酸化物に含まれる金属元素の種類の数に比べて少ない、請求項1または請求項2に記載の電極。
  4.  前記第一の酸化物は、前記第一の元素の合計のモル数に比べてルテニウムのモル数が多い、請求項1から請求項3のいずれか1項に記載の電極。
  5.  前記電極の空隙率が40体積%以上75体積%以下である、請求項1から請求項4のいずれか1項に記載の電極。
  6.  前記電極の面積1mあたりにおける前記触媒に含まれるルテニウムの含有量が0.1g以上90.0g以下であり、
     前記電極の面積1mあたりにおける前記触媒に含まれる前記第一の元素の合計の含有量が0.1g以上50.0g以下である、請求項1から請求項5のいずれか1項に記載の電極。
  7.  前記電極の引張強度が4.0MPa以上16.0MPa以下である、請求項1から請求項6のいずれか1項に記載の電極。
  8.  前記電極の曲げ弾性率が0.25GPa以上3.0GPa以下である、請求項1から請求項7のいずれか1項に記載の電極。
  9.  正極電極と負極電極とを備えるレドックスフロー電池の電池セルであって、
     前記正極電極及び前記負極電極の少なくとも一方が請求項1から請求項8のいずれか1項に記載の電極である、
     電池セル。
  10.  正極電極と負極電極とを備えるレドックスフロー電池の電池セルであって、
     前記正極電極及び前記負極電極の一方が請求項1から請求項8のいずれか1項に記載の電極であり、
     前記正極電極及び前記負極電極の他方が複数の炭素繊維の集合体からなる基材を備える、
     電池セル。
  11.  請求項9または請求項10に記載の電池セルを備える、
     レドックスフロー電池。
PCT/JP2023/017410 2022-06-08 2023-05-09 電極、電池セル、及びレドックスフロー電池 WO2023238577A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-093332 2022-06-08
JP2022093332 2022-06-08

Publications (1)

Publication Number Publication Date
WO2023238577A1 true WO2023238577A1 (ja) 2023-12-14

Family

ID=89118180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017410 WO2023238577A1 (ja) 2022-06-08 2023-05-09 電極、電池セル、及びレドックスフロー電池

Country Status (2)

Country Link
TW (1) TW202410524A (ja)
WO (1) WO2023238577A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178283A (zh) * 2011-12-22 2013-06-26 中国科学院大连化学物理研究所 一种氢溴储能电池结构
US20130252041A1 (en) * 2012-03-26 2013-09-26 Primus Power Corporation Electrode for High Performance Metal Halogen Flow Battery
US20160293963A1 (en) * 2013-11-22 2016-10-06 Dwi An Der Rwth Aachen E.V. Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JP2018506142A (ja) * 2014-12-19 2018-03-01 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ 電気化学セルのための電極及びその組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178283A (zh) * 2011-12-22 2013-06-26 中国科学院大连化学物理研究所 一种氢溴储能电池结构
US20130252041A1 (en) * 2012-03-26 2013-09-26 Primus Power Corporation Electrode for High Performance Metal Halogen Flow Battery
US20160293963A1 (en) * 2013-11-22 2016-10-06 Dwi An Der Rwth Aachen E.V. Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JP2018506142A (ja) * 2014-12-19 2018-03-01 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ 電気化学セルのための電極及びその組成物

Also Published As

Publication number Publication date
TW202410524A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
Kim et al. Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction
CN105518922B (zh) 全固体电池
EP2797147B1 (en) Solid oxide fuel cell
US11069901B2 (en) Electrode for redox flow battery, and redox flow batteries
JP5217434B2 (ja) 燃料電池、その触媒及びその電極
JP5728452B2 (ja) 電気化学セル用触媒層、膜電極接合体及び電気化学セル
WO2018025737A1 (ja) レドックスフロー電池、及びレドックスフロー電池の運転方法
CN103456968A (zh) 适用于燃料电池的电极催化剂及其制备方法
WO2023238577A1 (ja) 電極、電池セル、及びレドックスフロー電池
JP6971944B2 (ja) 触媒積層体、膜電極複合体、電気化学セル、スタック、水電解装置および水利用システム
Luo et al. Lithiated interface of Pt/TiO 2 enables an efficient wire-shaped Zn–Air solar micro-battery
Pathan et al. Electrocatalytic overall water splitting based on (ZnNiCoFeY) xOy high-entropy oxide supported on MoS2
JP2009259492A (ja) 直接アルコール型燃料電池用触媒、直接アルコール型燃料電池および電子機器
US11515552B2 (en) Catalyst laminate, membrane electrode assembly, electrochemical cell, stack, water electrolyzer, and hydrogen utilizing system
JP2007042519A (ja) 燃料電池用触媒及びその製造方法並びに燃料電池用電極及び燃料電池
JP6826621B2 (ja) 電気化学セル
RU2276430C2 (ru) Активный материал из смешанного оксида, электрод, способ изготовления электрода и электрохимическая ячейка, содержащая этот электрод
JP5823438B2 (ja) ガス拡散電極およびその製法
US20210126263A1 (en) Redox flow battery electrode and redox flow battery
JP5217236B2 (ja) RuTe2及びN元素を含む燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極材料及び燃料電池
JP2021077469A (ja) 燃料電池用の電極触媒材料及び燃料電池用の電極触媒層
JP7003016B2 (ja) 水電解の陽極に用いる酸素発生用触媒、陽極、膜電極複合体、水電解用セル、スタック及び水電解装置
US20240254639A1 (en) Catalyst, method for producing catalyst, and intermediate product
JP7572882B2 (ja) 空気二次電池用の空気極及びこの空気極を含む空気二次電池
JP2008287927A (ja) RuTe2を含む燃料電池用触媒と、この燃料電池用触媒を用いた燃料電池用電極材料及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23819563

Country of ref document: EP

Kind code of ref document: A1