TW201615597A - 陶瓷粉體與其形成方法及雷射燒結成型方法 - Google Patents

陶瓷粉體與其形成方法及雷射燒結成型方法 Download PDF

Info

Publication number
TW201615597A
TW201615597A TW104133651A TW104133651A TW201615597A TW 201615597 A TW201615597 A TW 201615597A TW 104133651 A TW104133651 A TW 104133651A TW 104133651 A TW104133651 A TW 104133651A TW 201615597 A TW201615597 A TW 201615597A
Authority
TW
Taiwan
Prior art keywords
ceramic
core
particles
forming
ceramic powder
Prior art date
Application number
TW104133651A
Other languages
English (en)
Other versions
TWI546272B (zh
Inventor
吳禹函
邱國創
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Publication of TW201615597A publication Critical patent/TW201615597A/zh
Application granted granted Critical
Publication of TWI546272B publication Critical patent/TWI546272B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本揭露提供陶瓷粉體的形成方法,包括:將第一陶瓷粒子、黏結劑、與水混合後之漿料噴霧乾燥,形成第一陶瓷之核心,並熱處理定型第一陶瓷之核心。第一陶瓷之抗折強度介於350MPa至700MPa之間,且第一陶瓷之熱膨脹係數介於7.0×10-6/℃至11.0×10-6/℃之間。混合該第一陶瓷之核心、第二陶瓷之多個粒子、黏結劑、與水後形成漿料;噴霧乾燥漿料,使第二陶瓷之粒子形成第二陶瓷之殼層包覆第一陶瓷之核心,其中第二陶瓷之抗折強度介於50MPa至350MPa之間,且該第二陶瓷之熱膨脹係數介於-1.0×10-6/℃至3.0×10-6/℃之間;以及熱定型處理該第一陶瓷之核心與該第二陶瓷之殼層,以形成陶瓷粉體。上述陶瓷粉體可用於雷射燒結成型方法。

Description

陶瓷粉體與其形成方法及雷射燒結成型方法
本揭露關於核殼結構之陶瓷粉體,更特別關於其形成方法與採用其之雷射燒結成型方法。
大部分的陶瓷成品都是透過射出成形、壓製成形、刮刀成形、或者是注漿成形後進行高溫燒結。但這些製程需要昂貴的模具及冗長的生產準備時間。若將雷射積層製造技術應用在陶瓷產品上則可降低成本及縮短生產準備時間,但陶瓷材料具有相當高的熔點(例:ZrO2熔點為2700℃),雷射瞬間僅1800~1900℃,因此純的陶瓷粉末難以直接進行液態燒結。換言之,以雷射燒結成型的陶瓷成品不夠緻密且機械強度差。另一方面,陶瓷粉體經雷射區域性快速高溫燒結時,比起傳統爐體整體燒結,需符合更嚴苛的抗熱震要求。若陶瓷材料的抗熱震性能不佳,則成品易產生裂縫而降低成品強度。
綜上所述,目前亟需新的陶瓷材料用於雷射燒結成型方法,以同時達到高產品性質與減少製程成本等需求。
本揭露一實施例提供之陶瓷粉體,包括:第一陶瓷之核心,第一陶瓷之抗折強度介於350MPa至700MPa之間, 且第一陶瓷之熱膨脹係數介於7.0×10-6/℃至11.0×10-6/℃之間;以及第二陶瓷之殼層,包覆該第一陶瓷之核心,第二陶瓷之抗折強度介於50MPa至350MPa之間,且第二陶瓷之熱膨脹係數介於-1.0×10-6/℃至3.0×10-6/℃之間。
本揭露一實施例提供之雷射燒結成型方法,包括:形成陶瓷粉體層,且陶瓷粉體層包括上述之陶瓷粉體;施加雷射至部份陶瓷粉體層,以燒結陶瓷粉體;以及移除未施加雷射之部份陶瓷粉體。
本揭露一實施例提供之陶瓷粉體的形成方法,包括:提供第一陶瓷之核心,其中第一陶瓷之抗折強度介於350MPa至700MPa之間,且第一陶瓷之熱膨脹係數介於7.0×10-6/℃至11.0×10-6/℃之間;混合第一陶瓷之核心、第二陶瓷之多個粒子、第一黏結劑、與水後,形成第二漿料;噴霧乾燥第二漿料,使第二陶瓷之粒子形成第二陶瓷之殼層包覆第一陶瓷之核心,其中第二陶瓷之抗折強度介於50MPa至350MPa之間,且第二陶瓷之熱膨脹係數介於-1.0×10-6/℃至3.0×10-6/℃之間;以及熱定型處理第一陶瓷之核心與第二陶瓷之殼層,以形成陶瓷粉體。
在本揭露一實施例中,申請人提供陶瓷粉體的形成方法如下。首先提供第一陶瓷之核心。第一陶瓷之抗折強度 介於350MPa至700MPa之間,且第一陶瓷之熱膨脹係數介於7.0×10-6/℃至11.0×10-6/℃之間。若第一陶瓷之抗折強度過低,則機械強度不高,無應用價值,無論是應用在製作功能性原型模型,或具生醫相容性客製化醫材等,強度不足都會造成使用上的風險。在本揭露一實施例中,第一陶瓷可為氧化鋁或掺雜氧化釔之氧化鋯。當第一陶瓷為掺雜氧化釔之氧化鋯時,則氧化釔與氧化鋯之莫耳比例介於2.5:100至3.5:100之間。若氧化釔之比例過低或過高,則第一陶瓷之機械強度較低。上述第一陶瓷具有高抗折強度、無毒性、且生物相容性高。不過第一陶瓷之熔點極高(大於2000℃)且抗熱震性不足(成品易產生龜裂)而不適於直接用於雷射燒結成層。
在本揭露一實施例中,提供第一陶瓷之核心的步驟包括:提供第一陶瓷之粒子,且該第一陶瓷之粒子的粒徑介於40nm至5μm之間。若第一陶瓷之粒子的粒徑過小,則粉體成本較高。若第一陶瓷粒子的粒徑過大,可能無法形成適當粒徑之核心。接著混合第一陶瓷之粒子、黏結劑、與水以形成漿料。在本揭露一實施例中,上述混合步驟可採用球磨法。在本揭露一實施例中,黏結劑可為水性高分子如聚乙烯醇(PVA)、聚乙二醇(PEG)、或聚甲基丙烯酸甲酯(PMMA,壓克力)。在本揭露一實施例中,黏結劑之重量百分比約為第一陶瓷粒子的1~3%。若黏結劑之比例過低,則第一陶瓷粒子無法造粒成形預期中所要的粒徑大小。若黏結劑之比例過高,則有機物含量過高,影響後續雷射燒結之效果。在本揭露一實施例中,上述漿料中的第一陶瓷粒子之固體含量介於30%~60%之間。若水之 比例過高,則漿料黏度低,在造粒過程中無法完全乾燥,使得造粒粉體互相黏結、真圓度低、粉體粒徑小等現象。若水之比例過低,則漿料黏度高,在造粒過程中容易造成機台阻塞,粉體造粒效率低。之後噴霧乾燥漿料,使第一陶瓷之粒子聚集成第一陶瓷之核心。接著熱定型處理第一陶瓷之核心。上述熱定型處理的溫度介於1100~1300℃之間。若熱定型溫度過低,則無法使第一陶瓷之核心定型,在後續製程中易粉碎或再聚集成過大或過小的核心。若熱定型溫度過高,則第一陶瓷行燒結反應,晶粒成長粉體間互相黏結,使後續雷射無法再使之燒結。上述製程所形成之第一陶瓷之核心,係由多個第一陶瓷之粒子聚集而成,且核心中的粒子之間具有孔洞。在本揭露另一實施例中,可直接挑選適當尺寸之第一陶瓷粒子作為核心,則核心中不具有孔洞。在本揭露一實施例中,第一陶瓷之核心粒徑介於10μm至20μm之間。若第一陶瓷之核心過小,則粉體流動性差,後續粉體鋪層不緻密,雷射燒結後孔隙率大,成品強度差。若第一陶瓷之核心過大,則雷射難以使之燒結融熔。
接著混合第一陶瓷之核心、第二陶瓷之粒子、黏結劑、與水後,形成另一漿料。在本揭露一實施例中,第二陶瓷之抗折強度介於50MPa至350MPa之間,且第二陶瓷之熱膨脹係數介於-1.0×10-6/℃至3.0×10-6/℃之間。與第一陶瓷相較,第二陶瓷之抗折強度與熱膨脹係數均低於第一陶瓷。若第二陶瓷之抗折強度過低,則拉低整體材料之強度。若第二陶瓷之熱膨脹係數過高,則在雷射瞬間,會因為溫度的急遽變化,造成成品產生裂痕,使成品抗折強度低。若第二陶瓷之熱膨脹係數過 低,則與第一陶瓷的熱膨脹係數差距過大,加熱時體積變化差異大,使第二陶瓷無法完整包覆第一陶瓷。在本揭露一實施例中,第二陶瓷可為Li2O、Al2O3與SiO2所組成或MgO、Al2O3與SiO2所組成。在本揭露一實施例中,第二陶瓷為Li2O(5-40mol%).Al2O3(5-25mol%).SiO2(45-90mol%)如鋰霞石(Li2O.Al2O3.2SiO2)或鋰輝石(Li2O.Al2O3.4SiO2)。在本揭露一實施例中,第二陶瓷為MgO(15-45mol%).Al2O3(5-25mol%).SiO2(45-70mol%)如堇青石(2MgO.2Al2O3.5SiO2)。第二陶瓷具有低熱膨脹特性且抗熱震效果佳。第二陶瓷為均勻成核結晶,燒結後之產品的孔隙度及裂縫小,且具低玻璃轉換溫度。不過第二陶瓷的機械強度(如抗折強度)不如第一陶瓷,且在雷射燒結後即熔融而無法有效積層,因此無法單獨使用於雷射燒結成型。在本揭露一實施例中,第二陶瓷之粒子的粒徑介於1μm至3μm之間。若第二陶瓷之粒子的粒徑過大,則無法緻密包覆第一陶瓷,使真圓度不高或第一陶瓷裸露。
上述混合第一陶瓷之核心、第二陶瓷之粒子、黏結劑、與水之步驟可為球磨製程。在本揭露一實施例中,第一陶瓷之核心與第二陶瓷之粒子的重量比例介於90:10至60:40之間。若第一陶瓷之比例過高,則形成之陶瓷粉體在雷射燒結後的產品具有較大的表面粗糙度與裂縫(寬度超過2μm)。若第二陶瓷之比例過高,則形成之陶瓷粉體在雷射燒結後難以積層。在本揭露一實施例中,黏結劑為水性高分子如聚乙烯醇、聚乙二醇(PEG)、或聚甲基丙烯酸甲酯(PMMA,壓克力)。在本揭露一實施例中,黏結劑之重量約為第一陶瓷之核心與第二陶瓷之 粒子總重量的1%~3%之間。若黏結劑之比例過低,則無法形成核殼結構粉體。若黏結劑之比例過高,則有機物含量過高,影響後續雷射燒結之效果。在本揭露一實施例中,上述漿料中第一陶瓷核心與第二陶瓷粒子之總固含量介於30%~60%之間。若水之比例過高,則漿料黏度低,在造粒過程中無法完全乾燥,使得造粒粉體互相黏結、真圓度低、及粉體粒徑小等現象。若水之比例過低,則漿料黏度高,在造粒過程中容易造成機台阻塞,粉體造粒效率低。
接著噴霧乾燥上述漿料,使第二陶瓷之粒子形成第二陶瓷之殼層包覆第一陶瓷之核心。在本揭露一實施例中,第一陶瓷之核心係由第一陶瓷之粒子聚集而成,則第二陶瓷之粒子可能填入第一陶瓷之粒子之間的部份空隙。之後熱定型處理第一陶瓷之核心與第二陶瓷之殼層,以形成陶瓷粉體。在本揭露一實施例中,熱定型處理的溫度介於1000℃至1100℃之間。若熱定型處理的溫度過高,第二陶瓷會完全融熔無法包覆第一陶瓷粒子。若熱定型處理的溫度過低,則無法使第二陶瓷之殼層定型,在後續製程中易粉碎。最後形成之陶瓷粉體具有核殼結構,且粒徑介於14μm至28μm之間。若陶瓷粉體之粒徑過小,則會降低後續雷射燒結的積層效率。若陶瓷粉體之粒徑過大,則雷射難以將粉體完全燒結融熔。將上述陶瓷粉體壓錠後經由傳統燒結法燒結,所得到塊材做耐熱震測試,可得耐熱震臨界溫差250℃,即上述核殼結構之陶瓷粉體為高耐熱震材料。
本揭露亦提供應用上述陶瓷粉體的雷射燒結成型 方法。首先取上述陶瓷粉體形成陶瓷粉體層,且成層方法可採用刮刀定義陶瓷粉體層的厚度。在本揭露一實施例中,陶瓷粉體層的厚度介於20μm至60μm之間。若陶瓷粉體層過厚,則雷射難以燒結,或層與層之間無法黏結。若陶瓷粉體層過薄,則影響積層效率。接著施加雷射至部份陶瓷粉體層,以燒結陶瓷粉體。接著可重複上述步驟,形成另一陶瓷粉體層於雷射燒結後的陶瓷粉體層上,再雷射燒結部份的另一陶瓷粉體層。重複上述步驟多次後,雷射燒結的部份即積層形成立體圖案,而未照射雷射之陶瓷粉體則可以撥除等方式移除並回收再利用。在本揭露一實施例中,雷射的功率介於3W~30W之間。若雷射的功率過低,則無燒結效果。若雷射的功率過高,則能量高可能將鋪層粉體擊飛而無雷射燒結效果,或完全融熔第二陶瓷殼層使積層效率變差。在本揭露一實施例中,使用二氧化碳雷射(波長約10640nm),陶瓷材料對於此波長有較佳的吸收效果,能有效將光能轉換成熱能使粉體燒結。但整體製程參數,如:掃描速率、雷射功率、能量密度、粉體粒徑…等,都會互相影響,例如:低速率搭配高功率之燒結效果,可能與高速率低功率之燒結效果相同。舉例來說,雷射能量密度可介於150~1400脈衝/英寸之間。經上述雷射燒結成型後的產品,其裂縫寬度介於0至1μm之間。另一方面,單層燒結之表面粗糙度介於約3~5μm,隨著堆疊層數越高其表面粗糙度亦隨之增加。
為了讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例作詳細說明如下:
實施例
實施例1
依化學計量取Li2CO3(19.24克)、Al2O3(26.02克)、與SiO2(61.61克)及助熔劑(2.54克之B2O3及1.73克之H3PO4)球磨混合後,加熱至100℃將混合粉體乾燥,乾燥後的粉體燒至1300℃以形成Li2O.Al2O3.4SiO2。接著細化上述粉體至粒徑介於1μm至3μm之間,作為後述殼層所用的陶瓷粒子。
取130g之掺雜3mol%之氧化釔之氧化鋯粒子(粒徑為50nm)、2.6g之聚乙烯醇(MW 2,000,購自SCIENTIFIC POLYMER PRODUCTS,INC.)、與130g的水,球磨混合形成漿料,噴霧乾燥漿料使粒子聚集形成核心,再以1200℃熱定型處理核心(粒徑為10μm~20μm)。
取60g之掺雜氧化釔之氧化鋯核心、40g之Li2O.Al2O3.4SiO2粒子、2g之聚乙烯醇(MW 2,000,購自SCIENTIFIC POLYMER PRODUCTS,INC.)、與100g的水,球磨混合形成漿料,噴霧乾燥漿料使Li2O.Al2O3.4SiO2粒子聚集成殼層包覆掺雜氧化釔之氧化鋯核心。接著以1100℃熱定型處理上述之核殼結構的陶瓷粉體(粒徑為約25μm)。
以刮刀將上述核殼結構的陶瓷粉體成層(厚度為40μm),再以二氧化碳雷射(20cm/s,3W)燒結陶瓷粉體層,以表面厚度分析儀量測(ET-3000 Surface Profiler,由Kosaka Laboratory Ltd.所製造)雷射燒結後之陶瓷粉體層之表面粗糙度(Ra 10.59μm),並以掃描式電子顯微鏡(LEO 1530 Field Emission Scanning Electron Microscopy)觀察裂縫寬度(458.3nm)。
比較例1
直接取60g之掺雜3mol%之氧化釔之氧化鋯粒子(粒徑為50nm)、40g之Li2O.Al2O3.4SiO2粒子(粒徑為1~3μm)、2g之聚乙烯醇(MW 2,000,購自SCIENTIFIC POLYMER PRODUCTS,INC.)、與100g的水混合,以刮刀將混合物成層(厚度為40μm)後再以雷射(20cm/s,3W)燒結混合物層,並量測雷射燒結後之混合物層之表面粗糙度(100μm以上)與裂縫寬度(9.648μm)。由比較例1與實施例1之比較可知,由核殼結構之陶瓷粉體所形成之雷射燒結產物,比混合物所形成之雷射燒結產物具有更低的表面粗糙度與較小的裂縫寬度。
實施例2
與實施例1類似,差別在於掺雜氧化釔之氧化鋯核心與Li2O.Al2O3.4SiO2粒子的重量由60g/40g(6/4)改為90g/10g(9/1)。其他用料的重量、熱定型溫度、與雷射燒結參數等等均與實施例1相同。此實施例形成陶瓷粉體粒徑為14μm~28μm,且雷射燒結後的陶瓷粉體層之表面粗糙度為約10μm,且裂縫寬度為約2.141μm。
實施例3
依化學計量取Mg(OH)2(18.94克)、Al2O3(33.11克)、與SiO2(48.45克)及助熔劑(2.54克之B2O3及1.73克之H3PO4)球磨混合後,加熱至100℃將混合粉體乾燥,乾燥後的粉體燒至1300℃以形成2MgO.2Al2O3.5SiO2。接著細化上述粉體至粒徑介於1μm至3μm之間,作為後述殼層所用的陶瓷粒子。
取130g之掺雜3mol%之氧化釔之氧化鋯粒子(粒徑 為50nm)、2.6g之聚乙烯醇(MW2,000,購自SCIENTIFIC POLYMER PRODUCTS,INC.)、與130g的水,球磨混合後形成漿料,噴霧乾燥漿料使粒子聚集形成核心,再以1200℃熱定型處理核心(粒徑為10~20μm)。
取60g之掺雜氧化釔之氧化鋯核心、40g之2MgO.2Al2O3.5SiO2粒子、2g之聚乙烯醇(MW2,000,購自SCIENTIFIC POLYMER PRODUCTS,INC.)、與100g的水,球磨混合後形成漿料,噴霧乾燥漿料使2MgO.2Al2O3.5SiO2粒子聚集成殼層包覆掺雜氧化釔之氧化鋯核心。接著以1100℃熱定型處理上述之核殼結構的陶瓷粉體(粒徑為25μm)。
以刮刀將上述核殼結構的陶瓷粉體成層(厚度為40μm),再以雷射(60cm/s,6W)燒結陶瓷粉體層,並以表面厚度分析儀量測雷射燒結後之陶瓷粉體層之表面粗糙度(28.15μm)與掃描式電子顯微鏡觀察裂縫寬度(小於1μm)。
比較例2
直接取60g之掺雜3mol%之氧化釔之氧化鋯粒子(粒徑為50nm)與40g之2MgO.2Al2O3.5SiO2粒子(粒徑為1~3μm)混合,以刮刀將混合物成層(厚度為40μm)後再以雷射(60cm/s,6W)燒結混合物層,並量測雷射燒結後之混合物層之表面粗糙度(100μm以上)與裂縫寬度(2~10μm)。由比較例2與實施例2之比較可知,由核殼結構之陶瓷粉體所形成之雷射燒結產物,比混合物所形成之雷射燒結產物具有更低的表面粗糙度與較小的裂縫寬度。
雖然本揭露已以數個實施例揭露如上,然其並非 用以限定本揭露,任何本技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (15)

  1. 一種陶瓷粉體,包括:一第一陶瓷之核心,該第一陶瓷之抗折強度介於350MPa至700MPa之間,且該第一陶瓷之熱膨脹係數介於7.0×10-6/℃至11.0×10-6/℃之間;以及一第二陶瓷之殼層,包覆該第一陶瓷之核心,該第二陶瓷之抗折強度介於50MPa至350MPa之間,且該第二陶瓷之熱膨脹係數介於-1.0×10-6/℃至3.0×10-6/℃之間。
  2. 如申請專利範圍第1項所述之陶瓷粉體,其中該第一陶瓷之核心與該第二陶瓷之殼層的重量比介於90:10至60:40之間。
  3. 如申請專利範圍第1項所述之陶瓷粉體,其中該第一陶瓷之核心粒徑介於10μm至20μm之間,且該陶瓷粉體之粒徑介於14μm至28μm之間。
  4. 如申請專利範圍第1項所述之陶瓷粉體,其中該第一陶瓷包括氧化鋁或掺雜氧化釔之氧化鋯,而該第二陶瓷包括Li2O.Al2O3.2SiO2、Li2O.Al2O3.4SiO2或2MgO.2Al2O3.5SiO2
  5. 如申請專利範圍第1項所述之陶瓷粉體,其中該第一陶瓷之核心包括該第一陶瓷之多個粒子聚集而成,且該第一陶瓷之該些粒子的粒徑介於40nm至5μm之間。
  6. 如申請專利範圍第1項所述之陶瓷粉體,其中該第二陶瓷之殼層包括該第二陶瓷之多個粒子聚集而成,且該第二陶瓷之該些粒子的粒徑介於1μm至3μm之間。
  7. 一種雷射燒結成型方法,包括:形成一陶瓷粉體層,且該陶瓷粉體層包括申請專利範圍第1項所述之陶瓷粉體;施加一雷射至部份該陶瓷粉體層,以燒結該陶瓷粉體;以及移除未施加該雷射之該陶瓷粉體。
  8. 如申請專利範圍第7項所述之雷射燒結成型方法,其中該雷射燒結後之該陶瓷粉體層的裂縫寬度介於0至1μm之間。
  9. 如申請專利範圍第7項所述之雷射燒結成型方法,其中該雷射為波長10640nm的二氧化碳雷射,雷射功率介於3W至30W之間,且雷射能量密度介於150脈衝/英寸至1400脈衝/英寸。
  10. 一種陶瓷粉體的形成方法,包括:提供一第一陶瓷之核心,其中該第一陶瓷之抗折強度介於350MPa至700MPa之間,且該第一陶瓷之熱膨脹係數介於7.0×10-6/℃至11.0×10-6/℃之間;混合該第一陶瓷之核心、一第二陶瓷之多個粒子、第一黏結劑、與水後,形成一第一漿料;噴霧乾燥該第一漿料,使該第二陶瓷之該些粒子形成該第二陶瓷之殼層包覆該第一陶瓷之核心,其中該第二陶瓷之抗折強度介於50MPa至350MPa之間,且該第二陶瓷之熱膨脹係數介於-1.0×10-6/℃至3.0×10-6/℃之間;以及熱定型處理該第一陶瓷之核心與該第二陶瓷之殼層,以形成該陶瓷粉體。
  11. 如申請專利範圍第10項所述之陶瓷粉體的形成方法,其中該第一陶瓷之核心的粒徑介於10μm至20μm之間,且該第二陶瓷之該些粒子的粒徑介於1μm至3μm之間。
  12. 如申請專利範圍第10項所述之陶瓷粉體的形成方法,其中該第一陶瓷之核心與該第二陶瓷之殼層的重量比介於90:10至60:40之間。
  13. 如申請專利範圍第10項所述之陶瓷粉體的形成方法,其中形成該第一漿料之步驟中,該第一陶瓷之核心與該第二陶瓷之該些粒子之總重與該第一黏結劑之重量比介於100:1至100:3之間,且該第一漿料中該第一陶瓷之核心與該第二陶瓷之該些粒子的總固含量介於30%至60%之間。
  14. 如申請專利範圍第10項所述之陶瓷粉體的形成方法,其中提供該第一陶瓷之核心的步驟包括:混合該第一陶瓷之多個粒子、第二黏結劑、與水形成一第二漿料,且該第一陶瓷之該些粒子的粒徑介於40nm至5μm之間;噴霧乾燥該第二漿料,使該第一陶瓷之該些粒子聚集成該第一陶瓷之核心;以及熱定型處理該第一陶瓷之核心。
  15. 如申請專利範圍第14項所述之陶瓷粉體的形成方法,其中形成該第二漿料之步驟中,該第一陶瓷之該些粒子與該第二黏合劑之重量比介於100:1至100:3之間,且該第二漿料中該第一陶瓷之固含量介於30%至60%之間。
TW104133651A 2014-10-23 2015-10-14 陶瓷粉體與其形成方法及雷射燒結成型方法 TWI546272B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462067539P 2014-10-23 2014-10-23

Publications (2)

Publication Number Publication Date
TW201615597A true TW201615597A (zh) 2016-05-01
TWI546272B TWI546272B (zh) 2016-08-21

Family

ID=55791435

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133651A TWI546272B (zh) 2014-10-23 2015-10-14 陶瓷粉體與其形成方法及雷射燒結成型方法

Country Status (2)

Country Link
US (1) US9850172B2 (zh)
TW (1) TWI546272B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511902A (zh) * 2021-04-19 2021-10-19 北京北方华创微电子装备有限公司 陶瓷烧结方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
CN112062547A (zh) * 2020-09-02 2020-12-11 上海交通大学 氮化铝/氧化铝复合陶瓷型芯及其制备方法
CN113185304A (zh) * 2021-05-13 2021-07-30 大连理工大学 基于热处理法调控激光增材制造熔体自生陶瓷构件的组织及性能的方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222373A (en) 1977-07-26 1980-09-16 Davis Michael A Ceramic solar collector
US4943612A (en) 1986-12-06 1990-07-24 Lion Corporation Ultra-fine particulated polymer latex and composition containing the same
ATE226737T1 (de) 1996-01-16 2002-11-15 Corning Inc Athermale optische einrichtung
US6209352B1 (en) 1997-01-16 2001-04-03 Corning Incorporated Methods of making negative thermal expansion glass-ceramic and articles made thereby
US6465380B1 (en) 1996-01-16 2002-10-15 Corning Incorporated Athermal optical device
CN1268584A (zh) 1999-03-25 2000-10-04 台湾茂矽电子股份有限公司 具有多个图案的五倍光掩模
US7208446B2 (en) 1999-08-11 2007-04-24 Albemarle Netherlands B. V. Quasi-crystalline boehmites containing additives
WO2002076675A1 (fr) 2001-03-27 2002-10-03 Nippon Sheet Glass Co., Ltd. Substrat pour support d'enregistrement d'informations et procede de production dudit substrat, support d'enregistrement d'informations et feuille de verre ebauche
US6754429B2 (en) 2001-07-06 2004-06-22 Corning Incorporated Method of making optical fiber devices and devices thereof
US7280028B2 (en) 2001-12-04 2007-10-09 Delphi Technologies, Inc. Temperature sensor and method of making the same
TW593204B (en) 2002-06-03 2004-06-21 Univ Nat Central A method of producing lithium aluminosilicate ceramics
US7105047B2 (en) 2003-05-06 2006-09-12 Wessex Incorporated Thermal protective coating
US6921431B2 (en) 2003-09-09 2005-07-26 Wessex Incorporated Thermal protective coating for ceramic surfaces
CN1315747C (zh) 2005-10-24 2007-05-16 浙江大学 一种含氟磷锂铝硅玻璃陶瓷及其制备方法
CN100352782C (zh) 2005-10-28 2007-12-05 浙江大学 一种含磷锂铝硅玻璃陶瓷及其制备方法
US8658013B2 (en) 2005-12-01 2014-02-25 Delphi Technologies, Inc. Sensor and sensing method
US20070160859A1 (en) 2006-01-06 2007-07-12 General Electric Company Layered thermal barrier coatings containing lanthanide series oxides for improved resistance to CMAS degradation
US7666511B2 (en) 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
US8693853B2 (en) 2007-09-21 2014-04-08 Emisshield, Inc. Radiant tube
TW200927697A (en) 2007-12-26 2009-07-01 Delta Electronics Inc Slurry and method for manufacturing dielectric ceramic component with high frequency and glass-ceramic composition thereof
TW200932701A (en) 2008-01-17 2009-08-01 Kuo-Chin Lo Unleaded low temperature co-firing electric ceramic composition of matter and ceramic product of method
US9011791B2 (en) 2008-04-07 2015-04-21 Emisshield, Inc. Pyrolysis furnace and process tubes
US20090293786A1 (en) 2008-05-27 2009-12-03 Olver John W Biomass Combustion Chamber and Refractory Components
CN101318824B (zh) 2008-06-30 2012-02-22 中国科学院上海硅酸盐研究所 包覆钇稳定氧化锆粉体及其制备方法和应用
US7968756B2 (en) 2008-08-12 2011-06-28 Wessex Incorporated Process and apparatus for production of vinyl chloride monomer
US20100038061A1 (en) 2008-08-15 2010-02-18 Wessex Incorporated Tube shields having a thermal protective layer
US20100081100A1 (en) 2008-10-01 2010-04-01 Wessex Incorporated Burner Tips
US20130168470A1 (en) 2008-10-01 2013-07-04 John W. Olver Burner Tips
US8992878B2 (en) 2009-03-04 2015-03-31 Toray Industries, Inc. Composition containing carbon nanotubes, catalyst for producing carbon nanotubes, and aqueous dispersion of carbon nanotubes
CN101508578A (zh) 2009-03-21 2009-08-19 中国海洋大学 LaPO4包覆Al2O3、ZrO2复合粉体的非均匀成核制备方法
US8636946B1 (en) 2009-04-13 2014-01-28 Emisshield, Inc. Bell annealing furnace
US20110132562A1 (en) 2009-12-08 2011-06-09 Merrill Gary B Waxless precision casting process
CN101746954B (zh) 2009-12-18 2012-04-18 中国科学院上海光学精密机械研究所 掺钴镁铝硅基玻璃陶瓷可饱和吸收体的制备方法
US8840942B2 (en) 2010-09-24 2014-09-23 Emisshield, Inc. Food product and method and apparatus for baking
CN102030476A (zh) 2010-11-03 2011-04-27 中国科学院上海光学精密机械研究所 含氧化镧的掺钴镁铝硅基纳米微晶玻璃及其制备方法
US8883663B2 (en) 2010-11-30 2014-11-11 Corning Incorporated Fusion formed and ion exchanged glass-ceramics
DE102011076756A1 (de) 2011-05-31 2012-12-06 Schott Ag Substratelement für die Beschichtung mit einer Easy-to-clean Beschichtung
DE102011076754A1 (de) 2011-05-31 2012-12-06 Schott Ag Substratelement für die Beschichtung mit einer Easy-to-clean Beschichtung
CN102503419B (zh) 2011-11-02 2013-08-14 中国科学院上海硅酸盐研究所 一种ysz基复合热障涂层材料及其制备方法
KR101908000B1 (ko) 2012-02-29 2018-10-15 에스씨지 케미컬스 컴퍼니, 리미티드. 고방사율 코팅 조성물 및 이의 제조 방법
CN102992626A (zh) 2012-11-28 2013-03-27 江苏宜达光电科技有限公司 锂镁铝硅微晶玻璃基础粉制备方法
CN104086176A (zh) 2013-08-30 2014-10-08 常州凡登特种材料技术有限公司 均匀复合的球状陶瓷颗粒及其制备方法
CN103723926B (zh) 2013-12-19 2016-05-25 海南中航特玻材料有限公司 低膨胀锂铝硅系透明微晶玻璃
CN103803957A (zh) 2014-03-12 2014-05-21 哈尔滨工业大学 一种超低热膨胀系数的堇青石陶瓷材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511902A (zh) * 2021-04-19 2021-10-19 北京北方华创微电子装备有限公司 陶瓷烧结方法

Also Published As

Publication number Publication date
US20160115083A1 (en) 2016-04-28
US9850172B2 (en) 2017-12-26
TWI546272B (zh) 2016-08-21

Similar Documents

Publication Publication Date Title
Zhang et al. Additive manufacturing of zirconia ceramics: A state-of-the-art review
Travitzky et al. Additive manufacturing of ceramic‐based materials
Wang et al. Review of additive manufacturing methods for high-performance ceramic materials
TWI546272B (zh) 陶瓷粉體與其形成方法及雷射燒結成型方法
CN105531237B (zh) 用于隔热玻璃单元的真空窗用玻璃支柱
Revilla-León et al. Additive manufacturing technologies for processing zirconia in dental applications
Moritz et al. Additive manufacturing of ceramic components
JP7418154B2 (ja) 特注の組成プロファイルを有するガラス成分およびその調製方法
JP4886026B2 (ja) 3次元形状セラミック体を製造するためのプロセスおよび装置
AU2012264687B2 (en) Ceramic particle mixture, and method for manufacturing ceramic parts from such a mixture
JP2020517824A (ja) 印刷物を作成するシステムおよび方法
JP6443536B2 (ja) 立体造形用粉末材料、立体造形材料セット、立体造形物の製造方法、立体造形物の製造装置、及び立体造形物
CN108285347A (zh) 一种3d打印光固化陶瓷颗粒及其制备方法
Liu et al. Research on selective laser sintering of Kaolin–epoxy resin ceramic powders combined with cold isostatic pressing and sintering
TW201726344A (zh) 積層製造3d列印物品的方法
JP2017202046A (ja) 立体造形材料セット、立体造形物の製造方法、及び立体造形物の製造装置
Li et al. The influence of sintering procedure and porosity on the properties of 3D printed alumina ceramic cores
JP2015536297A (ja) 三次元のガラスセラミック物品の作製方法
Peng et al. Effect of print path process on sintering behavior and thermal shock resistance of Al2O3 ceramics fabricated by 3D inkjet-printing
CN113165207B (zh) 陶瓷制品的制造方法及陶瓷制品
Diao et al. The Applications and Latest Progress of Ceramic 3D Printing
Wang et al. Photopolymerization-based three-dimensional ceramic printing technology
CN111689764B (zh) 一种低成本激光选区熔化用陶瓷粉末制备及其离焦成形方法
Datta et al. Ceramics processing by additive manufacturing
KR20170077972A (ko) 고강도 도자기의 제조방법