TW201436459A - 用於mosfet應用的可變緩衝電路 - Google Patents

用於mosfet應用的可變緩衝電路 Download PDF

Info

Publication number
TW201436459A
TW201436459A TW103105442A TW103105442A TW201436459A TW 201436459 A TW201436459 A TW 201436459A TW 103105442 A TW103105442 A TW 103105442A TW 103105442 A TW103105442 A TW 103105442A TW 201436459 A TW201436459 A TW 201436459A
Authority
TW
Taiwan
Prior art keywords
resistors
gate
resistor
mosfet
drain
Prior art date
Application number
TW103105442A
Other languages
English (en)
Other versions
TWI595749B (zh
Inventor
Sik Lui
Ji Pan
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Publication of TW201436459A publication Critical patent/TW201436459A/zh
Application granted granted Critical
Publication of TWI595749B publication Critical patent/TWI595749B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/8605Resistors with PN junctions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers

Abstract

本發明的各個方面提出了一種具有緩衝電路的MOSFET器件。緩衝電路包括一個或多個帶有動態可控電阻的電阻器,由開關時一個或多個MOSFET結構的閘極和/或漏極電勢的變化控制。要強調的是,本摘要必須使研究人員或其他讀者快速掌握技術說明書的主旨內容,本摘要符合以上要求。應明確,本摘要將不用於解釋或局限申請專利範圍書的範圍或意圖。

Description

用於MOSFET應用的可變緩衝電路
本發明主要涉及電晶體,更確切地說,是關於用於金屬氧化矽場效應電晶體(MOSFET)應用的緩衝電路。
使用MOSFET器件的優勢之一就是,器件可以從“開”狀態快速切換至“關”狀態。快速切換雖然可以提高器件的效率,但也會產生不良的波形,對器件造成負面影響。確切地說,由於MOSFET器件必須同時承受最大電壓和最大電流,因此處於高壓力之下,這可能會使器件超出安全工作區(SOA),導致器件故障。因此,通常利用緩衝器,例如電阻-電容(RC)緩衝器或電阻-電容-二極體(RCD)緩衝器,改善開關波形,以降低峰值電壓和電流。圖1A表示一種與MOSFET器件110集成的典型的RC緩衝電路100。在緩衝電路100中,緩衝電容器118和緩衝電阻器119相互串聯,然後與MOSFET器件110並聯。在MOSFET器件110中,電容器117為器件中固有的源漏電容CDS。另外,節點114維持在閘極電勢,節點115維持在漏極電勢,節點116維持在源極電勢。
圖1B表示引入了緩衝電路的MOSFET器件110的剖面圖。圖中MOSFET器件為遮罩閘溝槽(SGT)MOSFET器件。要注意的是在該剖面圖中看不到源極112和遮罩電極113(除了緩衝電阻器119以外)之間的電連接,因此用連接示意圖表示。常用的SGT MOSFET器件含有一個內襯絕緣材料126的溝槽。絕緣材料126也使遮罩電極113與閘極電極124電絕緣。源極接頭146可以將源極材料112連接到形成在本體層127中的源極區128。漏極接頭129也可以形成在器件110的底面上。
然而,雖然緩衝電路與MOSFET器件集成具有許多好處,但是緩衝電阻器119的存在會降低器件的擊穿電壓VBD。例如,當SGTMOSFET器件110斷開時,由於位移漏極電流穿過遮罩電阻器,因此緩衝 電阻器119的存在會使遮罩電壓超過源極電壓。遮罩電極113和源極112之間的電勢差會使VBD降低。切換時可能會造成器件擊穿,從而降低了器件的可靠性。
因此必須提出一種在切換的初始階段電阻較高的緩衝電路,以降低位移電流,並且在切換的中期電阻較低,無需犧牲VBD,就可獲得較好的波形。
正是在這一前提下,提出了本發明的實施例。
在一種實施例中,本發明提供了一種與緩衝電路並聯的電晶體器件,其中緩衝電路包括一個或多個電阻器,所述電阻器的電阻由電晶體器件的控制信號的變化動態可控。
上述的器件,其中所述的電晶體器件為金屬-氧化物-半導體場效應電晶體(MOSFET)。
在一種實施例中,本發明提供了一種電晶體器件,包括:一個或多個形成在半導體襯底中的閘控結構(Gated structures);一個緩衝電路,與一個或多個閘控結構並聯,其中緩衝電路包括一個或多個電阻器,所述電阻器的電阻由開關時一個或多個閘控結構的控制閘極和/或漏極電勢的變化控制。
上述器件,其中所述的一個或多個閘控結構包括一個或多個金屬-氧化物-半導體場效應電晶體(MOSFET)結構,每個結構都具有閘極端、漏極端和源極端。
上述器件,其中動態可控電阻由開關時所述的一個或多個MOSFET結構的閘極電勢的變化控制。
上述器件,其中一個或多個帶有動態可控電阻的電阻器形成在一個或多個MOSFET結構的閘極電極上方。
上述器件,其中一個或多個電阻器為三端電阻器,具主動極端、漏極端和閘極端,其中閘極端為一個或多個MOSFET結構的閘極電極。
上述器件,其中動態可控電阻由開關時一個或多個MOSFET結構的漏極電勢的變化控制。
上述器件,其中一個或多個帶有動態可控電阻的電阻器形成在電晶體器件的端接區中,其中端接區中的半導體襯底短接,維持在一個或多個MOSFET結構的漏極電勢。
上述器件,其中所述的一個或多個電阻器為三端電阻器,具主動極端、漏極端和閘極端,其中閘極端為端接區中的半導體襯底,端接區維持在一個或多個MOSFET結構的漏極電勢。
上述器件,其中一個或多個所述的帶有動態可控電阻的電阻器由開關時所述的一個或多個MOSFET結構的閘極電勢的變化控制,並且其中一個或多個所述的帶有動態可控電阻的電阻器由開關時所述的一個或多個MOSFET結構的漏極電勢的變化控制。
上述器件,其中由閘極電勢控制的一個或多個所述的電阻器,和由漏極電勢控制的一個或多個所述的電阻器相互並聯。
上述器件,其中由閘極電勢控制的一個或多個所述的電阻器,和由漏極電勢控制的一個或多個所述的電阻器相互串聯。
上述器件,其中所述的一個或多個帶有動態可控電阻的電阻器為薄膜電晶體(TFT)MOSFET。
上述器件,其中所述的一個或多個帶有動態可控電阻的電阻器為耗盡型MOSFET。
上述器件,其中所述的一個或多個帶有動態可控電阻的電阻器為增強型MOSFET,與被動電阻器並聯。
上述器件,其中所述的一個或多個帶有動態可控電阻的電阻器為JFET。
110‧‧‧MOSFET器件
100‧‧‧緩衝電路
118‧‧‧緩衝電容器
119‧‧‧緩衝電阻器
117‧‧‧電容器
114‧‧‧節點
115‧‧‧節點
116‧‧‧節點
112‧‧‧源極
113‧‧‧遮罩電極
126‧‧‧內襯絕緣材料
124‧‧‧閘極電極
146‧‧‧源極接頭
127‧‧‧本體層
128‧‧‧源極區
129‧‧‧漏極接頭
220‧‧‧動態可變電阻器
101‧‧‧緩衝器
220D‧‧‧漏極可控電阻器
220G‧‧‧閘極可控電阻器
331‧‧‧線
332‧‧‧線
333‧‧‧線
334‧‧‧線
420‧‧‧動態可變電阻器
411‧‧‧MOSFET器件
455‧‧‧半導體襯底
115‧‧‧漏極電勢
429‧‧‧漏極接頭
444‧‧‧主動區
445‧‧‧端接區
427‧‧‧本體層
428‧‧‧源極層
426‧‧‧內襯絕緣材料
413‧‧‧遮罩電極
424‧‧‧閘極電極
420G‧‧‧可控動態可變電阻器
425‧‧‧氧化層
421‧‧‧源極端
422‧‧‧本體區
423‧‧‧漏極端
420D‧‧‧可控動態可變電阻器
450‧‧‧通道停止溝槽
441‧‧‧內襯絕緣材料
442‧‧‧導電材料
443‧‧‧劃片槽
圖1A表示與MOSFET器件相結合的常用緩衝電路的示意圖。
圖1B表示SGT MOSFET器件中引入緩衝電路的剖面圖。
圖2A表示依據本發明的各個方面,帶有動態可變電阻器的一種通用版的緩衝電路電路圖。
圖2B表示依據本發明的各個方面,漏極可控的動態可變電阻器的電路圖。
圖2C表示依據本發明的各個方面,閘極可控的動態可變電阻器的電路圖。
圖2D表示依據本發明的各個方面,帶有漏極可控的動態可變電阻器和閘極可控的動態可變電阻器的一種通用版的緩衝電路電路圖。
圖2E表示依據本發明的各個方面,帶有漏極可控的動態可變電阻器和閘極可控的動態可變電阻器的一種通用版的緩衝電路電路圖。
圖3A-3D表示動態可變電阻器的電阻和MOSFET的閘極電壓之間的廣義關係圖。
圖4A-4B表示MOSFET器件中引入閘極可控的動態可變電阻器的剖面圖。
圖4C-4D表示MOSFET器件中引入漏極可控的動態可變電阻器的剖面圖。
儘管為瞭解釋說明,以下詳細說明包含了許多具體細節,但是本領域的技術人員應明確以下細節的各種變化和修正都屬於本發明的範圍。因此,提出以下本發明的典型實施例,並沒有使所聲明的方面損失任何普遍性,也沒有提出任何局限。在下文中,N型器件僅用於解釋說明。利用相同的工藝,相反的導電類型,可以製備P型器件。
本發明的各個方面提出了一種用於MOSFET應用的緩衝電路101,其中背景技術例如圖1A中提及的電阻器119被本發明提出的動態可變電阻器220代替。如圖2A所示,緩衝器101的基本結構除了具有基本恒定電阻率的被動電阻器119,被動態可變電阻器220代替以外,其他都與圖1A的緩衝電路100類似,在MOSFET器件切換時,動態可變電阻器220的電阻可以變化。此處所述的“開關”是指從“開”狀態到“關”狀態切換,或從“關”狀態到“開”狀態切換。在緩衝電路101中使用動態可變電阻器220有很多好處。首先,可變電阻在開關時,可以為控制電壓和電流過沖以及動態擊穿,提供了額外的自由度。這是由於可變電阻無需降低器件的可靠性,就可以改變切換波形。確切地說,依據本發明的各個方面,動態可變電阻器220的優化組合可以引入到MOSFET器件中,以便在開關的初始階段,通過高電阻降低位移電流,但在開關的中間和結束階段,通過低電阻獲得良好的波形,而不會在開關時發生擊穿。
在圖2A中,動態可變電阻器220僅表示為一個矩形框,是指可以使用許多類型的器件。依據本發明的各個方面,動態可變電阻器220可以是一個三端電阻。作為示例,但不作為局限,三端電阻器可以是一個耗盡型MOSFET、一個與被動電阻器119並聯的增強型MOSFET、一個結型場效應管JFET、一個薄膜電晶體(TFT)MOSFET或本領域中已知的任意一種其他類似的三端結構。電阻器的動態可變控制由第三端提供。由於第三端調製了電阻器的第一和第二端之間的電流,因此它的功能與FET器件中的閘極電極基本類似。因此,文中所述的動態可變電阻器的第三端也可稱為“電阻器閘極”。然而,要注意的是,電阻器閘極不必維持在MOSFET器件的閘極電勢114。依據本發明的其他方面,電阻器閘極可以維持在漏極電勢115或閘極電勢114。在圖2B中,提出了本發明的一個方面的電路圖,其中電阻器閘極連接到MOSFET器件的漏極電勢115。文中所述的電阻器閘極維持在漏極電勢115的動態可變電阻器也稱為“漏極可控電阻器”220D。在圖2C中,提出了本發明的一個方面的電路圖,其中電阻器閘極連接到MOSFET器件的閘極電勢114。文中所述的電阻器閘極維持在閘極電勢114的動態可變電阻器也稱為“閘極可控電阻器”220G
動態可變電阻器220的電阻率是否隨主動MOSFET器件的閘極電壓Vg的變化而變化,取決於電阻器220是閘極可控,還是漏極可控。圖3A中的線331表示對於閘極可控電阻器220G來說,電阻率與Vg之間的普遍關係。由圖可知,當Vg很低時,電阻器的電阻非常高。然後,由於閘極電勢開始增大,電阻器220G的電阻降低。圖3B中的線332表示對於漏極可控電阻器220D來說,電阻率與Vg之間的普遍關係。由圖可知,當閘極電勢很低時,電阻器220D的電阻很低。然後,當閘極電勢開始增大時,電阻器的電阻也隨之增大。
依據本發明的其他方面,在不同的電路結構中,使用兩個或多個電阻器220,可以獲得電阻率和Vg之間更加複雜的關係。例如,閘極可控電阻器220G可以與漏極可控電阻器220D串聯,例如如圖2D所示。兩個電阻器串聯的組合電阻與MOSFET器件的閘極電壓之間的普遍關係,由圖3C中的線333表示。由圖可知,當Vg很低時,電阻一開始很高,然後降低至最低電阻,並且在Vg較高時,最終開始升高。還可選擇,閘極可控和漏極可控電阻器220G、220D並聯,例如如圖2E所示。組合電阻和Vg之 間的普遍關係,由圖3D中的線334所示。組合電阻和特性與當兩個電阻器類型串聯時的組合電阻的特性基本相反。因此,在Vg很低時,電阻一開始很低,然後升高至峰值電阻,並且在Vg較高時,最終開始降低。
圖3A-3D表示四種不同的連接結構,可用於動態控制緩衝電路101的電阻。另外,傳統的恒定電阻電阻器119可以與其他四種電阻器結構中的任意一種相結合。因此,當通過動態可變電阻器自定義波形時,至少有五種常用結構和五個相應的常用電阻-Vg關係,利用它們可以優化所需波形:1)漏極可控電阻器;2)閘極可控電阻器;3)恒定電阻的電阻器;4)與閘極可控電阻器串聯的漏極可控電阻器;以及5)與閘極可控電阻器並聯的漏極可控電阻器。為了製備所需的緩衝電路101,可以使用任意數量的每個電阻器類型和/或任意數量的電路結構組合。要注意的是,本發明的各個方面包括配置兩個或多個這種常用結構的包含連接或並聯或串/並聯混合組合。
圖4A-4C表示依據本發明的各個方面,引入動態可變電阻器420的MOSFET器件411的剖面圖。為了簡便,剖面圖中僅表示了薄膜電晶體(TFT)MOSFET,但本領域的技術人員應明確還可選擇三端電阻器件,例如但不限於耗盡型MOSFET、增強型MOSFET與固定電阻器並聯,或JFET,使用大致相同的操作原理。另外,主動MOSFET結構表示為遮罩閘溝槽MOSFET,儘管依據本發明的各個方面,使用動態可變電阻器可以使任意一種MOSFET器件受益。作為示例,SGT MOSFET結構可以形成在半導體襯底455(例如矽晶圓)上。維持在漏極電勢115的漏極接頭429形成在襯底的底面上。襯底455可分成主動區444和端接區445。主動器件結構位於主動區444中。主動器件結構包括典型層和結構(例如本體層427、源極層428)以及一個內襯絕緣材料426(例如氧化物材料)的溝槽。溝槽可以含有多個導電電極,多個導電電極通過絕緣材料426相互電絕緣,例如遮罩電極413和閘極電極424通過位於它們之間的絕緣材料426相互絕緣,其中閘極電極424維持在閘極電勢114。
圖4A表示閘極可控動態可變電阻器420G的剖面圖。電阻器420G形成在閘極電極424上方,閘極電極424形成在溝槽中。氧化層425將電阻器420G和閘極電極424分開。在圖4B中,主動器件沿平行於器件溝槽長度的平面。由此可知,可以看到電阻器420G的源極端421、本體區 422和漏極端423,本體區422設置在源極端421、漏極端423之間。作為示例,它們由多晶矽製成。電阻器的源極端421和漏極端423為重摻雜。作為示例,也可用於文中其他說明,源極和漏極可以為n+重摻雜。作為示例,電阻器的每個末端處的摻雜濃度約為5 1019/cm3(符合歐姆接觸的要求)。電阻器的本體區422可以為輕摻雜的n-區。作為示例,末端區之間的區域中摻雜濃度約為1 1015/cm3。當閘極電壓為0時,本體的摻雜濃度決定了電阻器的阻值。還可選擇,當依據本發明的各個方面,為電阻器使用增強型MOSFET時,中間區域為p-摻雜。
閘極可控電阻器420G的第三端為形成在溝槽中的閘極電極424。因此,電阻器420G所需的電阻門已經由主動MOSFET器件供電,無需額外工藝(除了在器件溝槽上方製備源極、本體和漏極之外),就可提供連接到閘極電勢114上的第三端。
在一種可選但非必須的實施例中,如圖4A~4B,在襯底455的頂部形成有一層本體層427,圍繞在閘極溝槽的較上部,在本體層427的頂部形成有一層源極層428,源極層428和襯底455的摻雜類型相同,但與本體層427的摻雜類型相反。主動區中MOSFET單元的閘極溝槽向下貫穿源極層428、本體層427直至其底部延伸至本體層427下方的襯底455內,在溝槽內的底部製備有一個遮罩電極413,在溝槽內的頂部製備有一個閘極電極424,內襯於溝槽內壁的絕緣材料426用於絕緣隔離遮罩電極413、閘極電極424與溝槽外部的襯底部分,從而在本體層427內沿著槽溝的各側壁形成了受控於閘極電極424的MOSFET單元的溝道區。如圖4A~4B,在一個可選實施例中,可以(但非必須)為條狀結構的動態可變電阻器420G形成在閘極電極424上方的氧化層425之上,並沿著溝槽的長度方向延伸,閘極電極424不僅作為溝槽式MOSFET單元的控制閘極,還體現為動態可變電阻器420G的“電阻器閘極”,即本體區422中是否形成或消除反型層同樣也取決於閘極電極424的電勢,用於影響和調節動態可變電阻器420G的電阻值,來實現電阻器420G的電阻值在MOSFET單元的開關切換事件中動態可調節的目的。電阻器420G的源極端421、漏極端423兩者之一作為三端電阻器的上述第一端,餘下的另一個作為第二端,第一、第二端中的一端耦合到遮罩電極413與MOSFET單元漏極間的寄生或引入的電容器118 的一端(如遮罩電極413)上,第一、第二端中的另一端耦合到源極112上,而電容器118的另一端耦合到漏極接頭429並維持在漏極電勢115。
圖4C表示依據本發明的一個方面,漏極可控動態可變電阻器420D的剖面圖。利用通道停止溝槽450,將襯底分成主動區444和端接區445。由圖4C可知,主動區444位於通道停止的右側(雖然為了方便起見顯示在右側,通常理解為主動區444位於溝槽450的內側),端接區445位於通道停止的左側(雖然為了方便起見顯示在左側,通常理解為端接區445位於溝槽450的外側)。通道停止溝槽450內襯絕緣材料441(例如氧化物),並用導電材料442(例如多晶矽)填充。雖然通道停止溝槽450表示在圖4C中,但要注意的是,依據本發明的各個方面,可以使用任意一種端接結構,使主動區444和端接區445絕緣。
漏極可控電阻器420D的源極和漏極端421、423以及本體區422,與上述閘極可控電阻器420G的源極和漏極端及本體基本類似。然而,漏極可控電阻器420D不再形成在主動區444中以及閘極電極424上方,而是位於端接區445中,並且通過氧化層425,使漏極可控電阻器420D與本體層427分隔開。襯底455最左邊的邊緣為劃片槽443。劃片槽443表示各個單獨的器件晶片分開的位置。劃片槽443形成到漏極接頭429的短路。因此,端接區445中表示的本體層427維持在漏極電勢115。由於本體層427位於漏極電勢115,可以用作漏極可控電阻器420D的電阻門。因此,當漏極可控電阻器420D形成在端接區445中的本體層427上方時,製備漏極可控電阻器時無需製備一個單獨的漏極端接頭。
在一種可選但非必須的實施例中,如圖4D,與圖4C的不同之處主要在於,圖4D中端接區445的本體層427頂部還摻雜形成有一層源極層428,端接區445的源極層428連同該端接區445的本體層427都沿著襯底455的邊緣以一等電位而電性短路在一起,它們同時還沿著襯底455的邊緣短接到漏極接頭429,圖4C中僅僅是端接區445的本體層427維持在漏極電勢115,但圖4D中端接區445的本體層427、源極層428都維持在漏極電勢115,它們共同用作漏極可控電阻器420D的“電阻器閘極”,漏極可控電阻器420D通過端接區445的襯底455上方的氧化層425與本體層427、源極層428分隔開。
儘管以上是本發明的較佳實施例的完整說明,但是也有可能使用各種可選、修正和等效方案。因此,本發明的範圍不應局限於以上說明,而應由所附的申請專利範圍書及其全部等效內容決定。本方法中所述步驟的順序並不用於局限進行相關步驟的特定順序的要求。任何可選件(無論首選與否),都可與其他任何可選件(無論首選與否)組合。在以下申請專利範圍中,除非特別聲明,否則不定冠詞“一個”或“一種”都指下文內容中的一個或多個專案的數量。除非在指定的申請專利範圍中用“意思是”特別指出,否則所附的申請專利範圍書應認為是包括意義及功能的限制。
114‧‧‧節點
115‧‧‧節點
116‧‧‧節點
220D‧‧‧漏極可控電阻器

Claims (17)

  1. 一種與緩衝電路並聯的電晶體器件,其特徵在於,緩衝電路包括一個或多個電阻器,所述電阻器的電阻由電晶體器件的控制信號的變化動態可控。
  2. 如申請專利範圍第1項所述的器件,其特徵在於,所述的電晶體器件為金屬-氧化物-半導體場效應電晶體(MOSFET)。
  3. 一種電晶體器件,其特徵在於,包括:一個或多個形成在半導體襯底中的閘控結構;一個緩衝電路,與一個或多個閘控結構並聯,其中緩衝電路包括一個或多個電阻器,所述電阻器的電阻由開關時一個或多個閘控結構的控制閘極和/或漏極電勢的變化控制。
  4. 如申請專利範圍第3項所述的器件,其特徵在於,所述的一個或多個閘控結構包括一個或多個金屬-氧化物-半導體場效應電晶體(MOSFET)結構,每個結構都具有閘極端、漏極端和源極端。
  5. 如申請專利範圍第4項所述的器件,其特徵在於,動態可控電阻由開關時所述的一個或多個MOSFET結構的閘極電勢的變化控制。
  6. 如申請專利範圍第5項所述的器件,其特徵在於,一個或多個帶有動態可控電阻的電阻器形成在一個或多個MOSFET結構的閘極電極上方。
  7. 如申請專利範圍第6項所述的器件,其特徵在於,一個或多個電阻器為三端電阻器,具主動極端、漏極端和閘極端,其中閘極端為一個或多個MOSFET結構的閘極電極。
  8. 如申請專利範圍第4項所述的器件,其特徵在於,動態可控電阻由開關時一個或多個MOSFET結構的漏極電勢的變化控制。
  9. 如申請專利範圍第8項所述的器件,其特徵在於,一個或多個帶有動態可控電阻的電阻器形成在電晶體器件的端接區中,其中端接區中的半導體襯底短接,維持在一個或多個MOSFET結構的漏極電勢。
  10. 如申請專利範圍第9項所述的器件,其特徵在於,所述的一個或多個電阻器為三端電阻器,具主動極端、漏極端和閘極端,其中閘極端為端接區中的半導體襯底,端接區維持在一個或多個MOSFET結構的漏極電勢。
  11. 如申請專利範圍第4項所述的器件,其特徵在於,一個或多個所述的帶有動態可控電阻的電阻器由開關時所述的一個或多個MOSFET結構的閘極電勢的變化控制,並且其中一個或多個所述的帶有動態可控電阻的電阻器由開關時所述的一個或多個MOSFET結構的漏極電勢的變化控制。
  12. 如申請專利範圍第11項所述的器件,其特徵在於,由閘極電勢控制的一個或多個所述的電阻器,和由漏極電勢控制的一個或多個所述的電阻器相互並聯。
  13. 如申請專利範圍第11項所述的器件,其特徵在於,由閘極電勢控制的一個或多個所述的電阻器,和由漏極電勢控制的一個或多個所述的電阻器相互串聯。
  14. 如申請專利範圍第4項所述的器件,其特徵在於,所述的一個或多個帶有動態可控電阻的電阻器為薄膜電晶體(TFT)MOSFET。
  15. 如申請專利範圍第4項所述的器件,其特徵在於,所述的一個或多個帶有動態可控電阻的電阻器為耗盡型MOSFET。
  16. 如申請專利範圍第4項所述的器件,其特徵在於,所述的一個或多個帶有動態可控電阻的電阻器為增強型MOSFET,與被動電阻器並聯。
  17. 如申請專利範圍第4項所述的器件,其特徵在於,所述的一個或多個帶有動態可控電阻的電阻器為JFET。
TW103105442A 2013-03-11 2014-02-18 用於mosfet應用的可變緩衝電路 TWI595749B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361776276P 2013-03-11 2013-03-11
US13/943,156 US9230957B2 (en) 2013-03-11 2013-07-16 Integrated snubber in a single poly MOSFET

Publications (2)

Publication Number Publication Date
TW201436459A true TW201436459A (zh) 2014-09-16
TWI595749B TWI595749B (zh) 2017-08-11

Family

ID=51486799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103105442A TWI595749B (zh) 2013-03-11 2014-02-18 用於mosfet應用的可變緩衝電路

Country Status (3)

Country Link
US (3) US9230957B2 (zh)
CN (1) CN104052458B (zh)
TW (1) TWI595749B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230957B2 (en) 2013-03-11 2016-01-05 Alpha And Omega Semiconductor Incorporated Integrated snubber in a single poly MOSFET
KR20140142888A (ko) * 2013-06-05 2014-12-15 에스케이하이닉스 주식회사 반도체 집적 회로 장치 및 그 제조방법
US9123801B2 (en) * 2013-09-16 2015-09-01 Infineon Technologies Ag Semiconductor device, integrated circuit and method of manufacturing a semiconductor device
US9461164B2 (en) 2013-09-16 2016-10-04 Infineon Technologies Ag Semiconductor device and method of manufacturing the same
WO2016067835A1 (ja) * 2014-10-30 2016-05-06 ローム株式会社 パワーモジュールおよびパワー回路
EP3029833B1 (en) * 2014-12-03 2019-03-13 General Electric Technology GmbH Semiconductor switching circuit
JP6622611B2 (ja) * 2016-02-10 2019-12-18 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US10388781B2 (en) 2016-05-20 2019-08-20 Alpha And Omega Semiconductor Incorporated Device structure having inter-digitated back to back MOSFETs
CN106100323B (zh) * 2016-06-15 2019-06-04 维沃移动通信有限公司 开关电源电路、对开关电源电路进行调试的方法及装置
CN105958812B (zh) * 2016-06-15 2018-05-11 维沃移动通信有限公司 开关电源电路及对开关电源电路进行调试的方法
US10446545B2 (en) 2016-06-30 2019-10-15 Alpha And Omega Semiconductor Incorporated Bidirectional switch having back to back field effect transistors
CN106341047A (zh) * 2016-08-09 2017-01-18 张超莲 实用开关电源
JP6635900B2 (ja) * 2016-09-13 2020-01-29 株式会社東芝 半導体装置
US10056461B2 (en) 2016-09-30 2018-08-21 Alpha And Omega Semiconductor Incorporated Composite masking self-aligned trench MOSFET
US10535651B2 (en) 2016-10-12 2020-01-14 Mediatek Inc. Impedance circuit with poly-resistor
US10510823B2 (en) 2016-10-12 2019-12-17 Mediatek Inc. Impedance circuit with poly-resistor
US10103140B2 (en) 2016-10-14 2018-10-16 Alpha And Omega Semiconductor Incorporated Switch circuit with controllable phase node ringing
US10199492B2 (en) 2016-11-30 2019-02-05 Alpha And Omega Semiconductor Incorporated Folded channel trench MOSFET
CN106452065B (zh) * 2016-12-06 2019-09-17 上海传英信息技术有限公司 驱动电路
CN108667441B (zh) * 2017-03-31 2022-07-26 通用电气公司 功率半导体器件及其缓冲电路
US10461702B2 (en) 2017-04-19 2019-10-29 Mediatek Inc. Amplifier circuit having poly resistor with biased depletion region
US10325908B2 (en) 2017-04-26 2019-06-18 Alpha And Omega Semiconductor Incorporated Compact source ballast trench MOSFET and method of manufacturing
US10211333B2 (en) 2017-04-26 2019-02-19 Alpha And Omega Semiconductor (Cayman) Ltd. Scalable SGT structure with improved FOM
DE102017211030B4 (de) * 2017-06-29 2020-07-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrische Schaltungsanordnung mit einer aktiven Entladeschaltung
EP3998647A3 (en) * 2017-09-01 2022-07-06 MediaTek Inc. Impedance circuit with poly-resistor
US10714580B2 (en) 2018-02-07 2020-07-14 Alpha And Omega Semiconductor (Cayman) Ltd. Source ballasting for p-channel trench MOSFET
CN108777573B (zh) * 2018-09-04 2024-02-13 库顿电子科技(厦门)有限公司 一种交流固态继电器
KR102140951B1 (ko) * 2018-11-12 2020-08-05 엘지전자 주식회사 전력 공급 장치 및 이를 포함하는 공기조화기
DE102018219994B4 (de) 2018-11-22 2020-11-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. RC-Snubberglied mit hoher Spannungsfestigkeit
JP2020103008A (ja) * 2018-12-25 2020-07-02 日本電産株式会社 スナバ回路、制御回路、及び情報処理装置
JP7327016B2 (ja) * 2019-09-05 2023-08-16 株式会社村田製作所 スナバ回路、及び、電力変換回路
JP2022015398A (ja) * 2020-07-09 2022-01-21 新電元工業株式会社 半導体装置及び半導体装置の製造方法
CN114267717B (zh) * 2021-11-19 2024-03-01 深圳深爱半导体股份有限公司 半导体器件及其制备方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429293A (en) * 1972-04-04 1976-03-24 Cav Ltd Control systems for fuel systems for engines
US4646114A (en) 1984-12-31 1987-02-24 Raytheon Company Integrated circuit Zener diode
US5644270A (en) * 1996-03-15 1997-07-01 Ics Technologies, Inc. Enchanced stability voltage controlled RC oscillator
EP0971412B1 (en) * 1998-07-10 2013-03-13 Kabushiki Kaisha Toyota Jidoshokki Power Semiconductor with Attachable Protection Circuit
DE19926715C1 (de) * 1999-06-11 2001-01-18 Siemens Ag Verfahren und Vorrichtung zum Abschalten einer Kaskodenschaltung mit spannungsgesteuerten Halbleiterschaltern
US6466069B1 (en) * 2000-11-21 2002-10-15 Conexant Systems, Inc. Fast settling charge pump
US6645815B2 (en) * 2001-11-20 2003-11-11 General Semiconductor, Inc. Method for forming trench MOSFET device with low parasitic resistance
US6977203B2 (en) * 2001-11-20 2005-12-20 General Semiconductor, Inc. Method of forming narrow trenches in semiconductor substrates
TW583747B (en) * 2003-03-06 2004-04-11 Advanced Power Electronics Cor High density trench power MOSFET structure and method thereof
JP4167513B2 (ja) * 2003-03-06 2008-10-15 シャープ株式会社 不揮発性半導体記憶装置
US7336459B2 (en) * 2004-07-29 2008-02-26 United Microelectronics Corp. Electrostatic discharge protection device and circuit thereof
US7230838B2 (en) * 2004-12-28 2007-06-12 Monolithic Power Systems, Inc. Active damping control for a switch mode power supply
US8748268B1 (en) 2012-12-20 2014-06-10 Alpha to Omega Semiconductor, Inc. Method of making MOSFET integrated with schottky diode with simplified one-time top-contact trench etching
US7768064B2 (en) 2006-01-05 2010-08-03 Fairchild Semiconductor Corporation Structure and method for improving shielded gate field effect transistors
US20070170910A1 (en) * 2006-01-26 2007-07-26 Ming-Hoo Chang Spectral resistor, spectral capacitor, order-infinity resonant tank, EM wave absorbing material, and applications thereof
DE102006017989B4 (de) * 2006-04-07 2008-05-08 Atmel Germany Gmbh Schneller CMOS-Stromspiegel
US20090141909A1 (en) * 2006-07-24 2009-06-04 Van Katz Arthur William Microphone Circuit
KR100865327B1 (ko) * 2006-12-28 2008-10-27 삼성전자주식회사 출력전압의 오버슈트를 감소시키기 위한 고전압 발생회로와그 방법
US7919830B2 (en) * 2008-04-03 2011-04-05 International Business Machines Corporation Method and structure for ballast resistor
US8969950B2 (en) 2008-12-23 2015-03-03 Alpha & Omega Semiconductor, Inc. Integrated MOSFET-Schottky diode device with reduced source and body Kelvin contact impedance and breakdown voltage
US8193848B2 (en) * 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8093118B2 (en) * 2009-06-26 2012-01-10 United Microelectronics Corp. Semiconductor structure and method of forming the same
US8138605B2 (en) 2009-10-26 2012-03-20 Alpha & Omega Semiconductor, Inc. Multiple layer barrier metal for device component formed in contact trench
US8367501B2 (en) 2010-03-24 2013-02-05 Alpha & Omega Semiconductor, Inc. Oxide terminated trench MOSFET with three or four masks
US8394702B2 (en) 2010-03-24 2013-03-12 Alpha And Omega Semiconductor Incorporated Method for making dual gate oxide trench MOSFET with channel stop using three or four masks process
JP5280410B2 (ja) * 2010-06-21 2013-09-04 三菱電機株式会社 半導体装置、スナバデバイス
JP5434844B2 (ja) * 2010-08-04 2014-03-05 住友電気工業株式会社 昇温装置及び昇温試験方法
TWI562313B (en) * 2010-09-06 2016-12-11 shu lu Chen Electrical switch using a recessed channel gated resistor structure and method for three dimensional integration of semiconductor device
US8580667B2 (en) 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
US8431470B2 (en) 2011-04-04 2013-04-30 Alpha And Omega Semiconductor Incorporated Approach to integrate Schottky in MOSFET
US8502302B2 (en) 2011-05-02 2013-08-06 Alpha And Omega Semiconductor Incorporated Integrating Schottky diode into power MOSFET
US8507978B2 (en) 2011-06-16 2013-08-13 Alpha And Omega Semiconductor Incorporated Split-gate structure in trench-based silicon carbide power device
US8796745B2 (en) * 2011-07-05 2014-08-05 Texas Instruments Incorporated Monolithically integrated active snubber
US8604542B2 (en) * 2011-08-23 2013-12-10 Nan Ya Technology Corporation Circuit structure with conductive and depletion regions to form tunable capacitors and resistors
TWI455432B (zh) * 2012-01-20 2014-10-01 Macroblock Inc 動態阻尼模組及其應用之驅動電路
US8753935B1 (en) 2012-12-21 2014-06-17 Alpha And Omega Semiconductor Incorporated High frequency switching MOSFETs with low output capacitance using a depletable P-shield
US9230957B2 (en) 2013-03-11 2016-01-05 Alpha And Omega Semiconductor Incorporated Integrated snubber in a single poly MOSFET

Also Published As

Publication number Publication date
CN104052458A (zh) 2014-09-17
US9230957B2 (en) 2016-01-05
US10062685B2 (en) 2018-08-28
US20160118380A1 (en) 2016-04-28
US20170287903A1 (en) 2017-10-05
US9685435B2 (en) 2017-06-20
US20140252494A1 (en) 2014-09-11
CN104052458B (zh) 2018-08-03
TWI595749B (zh) 2017-08-11

Similar Documents

Publication Publication Date Title
TWI595749B (zh) 用於mosfet應用的可變緩衝電路
TWI518911B (zh) 垂直dmos電晶體
US9418993B2 (en) Device and method for a LDMOS design for a FinFET integrated circuit
US9018700B2 (en) Direct-drain trench FET with source and drain isolation
CN105280711B (zh) 电荷补偿结构及用于其的制造
US8546875B1 (en) Vertical transistor having edge termination structure
CN105321945B (zh) 具有减小的栅极电荷的沟槽式mosfet
JP5449319B2 (ja) 第1絶縁ゲート電界効果トランジスタが第2電界効果トランジスタと直列に接続された半導体デバイス
TWI455311B (zh) 橫向擴散金屬氧化物半導體元件
JP7358330B2 (ja) ダイヤモンドmisトランジスタ
TW201351614A (zh) 半導體場效電晶體元件及用於製備含有主動半導體場效電晶體元件結構與減震器電路的半導體場效電晶體元件之方法
US10811531B2 (en) Transistor device with gate resistor
CN104576737A (zh) 半导体器件
JP6222825B2 (ja) ダイオード回路を通じて相互接続される能動素子および分離構造を有する半導体デバイスおよびドライバ回路、ならびにその製造方法
KR100589708B1 (ko) 반도체장치
CN109755238B (zh) 一种分栅结构的超结功率器件
CN109755310B (zh) 一种分栅结构的功率晶体管
JP2000332247A (ja) 半導体装置
US10128367B2 (en) Transistor device with increased gate-drain capacitance
JP2017038016A (ja) 半導体装置
JP6627452B2 (ja) 半導体装置
TWI675473B (zh) 高壓半導體裝置
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
TW202221889A (zh) 高壓半導體裝置
CN206259355U (zh) 半导体装置