CN108667441B - 功率半导体器件及其缓冲电路 - Google Patents

功率半导体器件及其缓冲电路 Download PDF

Info

Publication number
CN108667441B
CN108667441B CN201710206579.0A CN201710206579A CN108667441B CN 108667441 B CN108667441 B CN 108667441B CN 201710206579 A CN201710206579 A CN 201710206579A CN 108667441 B CN108667441 B CN 108667441B
Authority
CN
China
Prior art keywords
voltage
switch
dynamic
capacitance
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710206579.0A
Other languages
English (en)
Other versions
CN108667441A (zh
Inventor
毛赛君
斯蒂芬·施罗德
史经奎
徐贺
马吕斯·梅希林斯基
瞿博
苑志辉
张颖奇
沈捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Energy Power Conversion Technology Ltd
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to CN201710206579.0A priority Critical patent/CN108667441B/zh
Priority to US15/903,710 priority patent/US10389230B2/en
Priority to EP18162917.1A priority patent/EP3382896B1/en
Publication of CN108667441A publication Critical patent/CN108667441A/zh
Application granted granted Critical
Publication of CN108667441B publication Critical patent/CN108667441B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region

Abstract

本发明公开了一种用于电开关的缓冲电路,包括:静态缓冲单元,其并联于所述电开关,用于当所述电开关处于导通或关断的状态下以平衡所述电开关之两端的电压的静态均压;以及动态缓冲单元,用于当所述电开关处于导通或关断的过程中以平衡所述电开关之两端的动态均压。所述动态缓冲单元包括:动态均压电容器,其并联于所述电开关且所述动态均压电容器的电容与电压存在关系;和控制器,用于将所述动态均压电容器的电容控制在既定的工作区域,所述电容的既定的工作区域为所述电容将随着所述电开关之两端的电压的增加而上升。本发明还公开了一种功率半导体器件。

Description

功率半导体器件及其缓冲电路
技术领域
本发明涉及一种功率半导体器件及其缓冲电路,具体地,涉及一种可提供相串联的电开关之电压平衡的功率半导体器件及其缓冲电路。
背景技术
在高压应用中,使用低电压装置而非高电压装置的串行化器件是低成本的良好解决方案。然而,使得串行化器件中的每一电开关达到电压平衡是个大问题。串行化器件中的阻断电压的不平衡会引起其中的一些电开关相对于其余电开关承受较高的阻断电压,从而大大增加了器件故障率。电压的不平衡主要是由门驱动信号的传播延迟失配以及各相串联的电开关之性能差异所引起的。这些因素也可能随着器件的制造工艺、温度变化、老化程度等不同而有所变化。为了弱化这些因素带来的影响,现有的缓冲电路中通常使用一电容器,用于降低各串联电开关两端之电压,从而实现串联化器件的电压平衡。然而,当施加到该电容器的电压增加时,其电容值将大大地降低,以至于该电容器必须具有高击穿电压的结构,例如:与一额外的具有固定大电容的电容器相组合,这样的结构将增加整个器件的尺寸且耗费较高的成本。
由此,期望提供新的和改进的功率半导体器件及其缓冲电路,以较低的成本和更为简单的结构,来实现串行化的功率半导体器件的电压平衡。
发明内容
根据本发明的一方面,提供了一种用于电开关的缓冲电路,所述缓冲电路包括:静态缓冲单元,其并联于所述电开关,用于当所述电开关处于导通或关断的状态下以平衡所述电开关之两端的电压的静态均压;以及动态缓冲单元,用于当所述电开关处于导通或关断的过程中以平衡所述电开关之两端的动态均压。所述动态缓冲单元包括:动态均压电容器,其并联于所述电开关且所述动态均压电容器的电容与电压存在关系;和控制器,用于将所述动态均压电容器的电容控制在既定的工作区域,所述电容的既定的工作区域为所述电容将随着所述电开关之两端的电压的增加而上升。
根据本发明的另一方面,提供了一种功率半导体器件,其包括:至少两个相串联的电开关;以及包括前述的用于各电开关的缓冲电路。
附图说明
参考附图阅读下面的详细描述,可以帮助理解本发明的特征、方面及优点,其中:
图1是根据本发明之具体实施方式的电开关模块的示意图;
图2是根据本发明之具体实施方式的功率半导体器件的示意图;以及
图3是根据本发明之具体实施方式的动态均压电容器之电容与其两端电压之间的关系示意图。
具体实施方式
为帮助本领域的技术人员能够确切地理解本发明所要求保护的主题,下面结合附图详细表述本发明的具体实施方式。在以下对这些具体实施方式的详细描述中,本说明书对一些公知的功能或者构造不做详细描述以避免不必要的细节而影响到本发明的披露。
除非另作定义,在本说明书和权利要求书中使用的技术术语或者科学术语应当为本发明所属技术领域内具有一般技能的人士所理解的通常意义。本说明书以及权利要求书中使用的“第一”或者“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”或者“一”等类似词语并不表示数量限制,而是表示存在至少一个。“或者”包括所列举的项目中的任意一者或者全部。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同元件,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
请参阅图1,图1示出了本发明一具体实施方式的电开关模块10的电路示意图。电开关模块10可以包括电开关103。电开关103包括但不限于:绝缘栅双极晶体管(InsulatedGate Bipolar Transistors,IGBT)、集成门极换向晶闸管(Integrated Gate CommutatedThyristor,IGCT)、金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor FieldEffect Transistors,MOSFET)、电子注入增强栅晶体管(Injection Enhanced GateTransistors,IEGT)、碳化硅金属氧化物半导体场效应晶体管(SiC MOSFET)或其他可以在导通和关断状态下切换的可控电开关。
在本实施例中,缓冲电路包括为电开关103提供了静态与动态平衡。缓冲电路位于需要保护的电开关103的两端。
在本实施例中,缓冲电路包括并联于电开关103的静态缓冲单元11。在一些实施方式中,静态缓冲单元11包括至少一个静态均压电阻器101,用于提供电开关103两端电压的静态平衡。静态缓冲单元11中的静态均压电阻器101相对于电开关103具有较小的电阻。当电开关103处于关断状态时,电开关103两端电压将由静态缓冲单元11所分担,即静态缓冲单元11将调节电开关103两端的电压从而实现静态电压平衡。
在本实施例中,缓冲电路还包括动态缓冲单元12。动态缓冲单元12包括并联于电开关103的动态均压电容器102。动态缓冲单元12还包括一控制器(未示出)。该控制器控制动态均压电容器102的电容工作于一既定的工作区域内,即所述电容将随着所述电开关之两端的电压的增加而上升。
如图3所示,其示出了动态均压电容器102的电容与其两端电压在-25 °C至125 °C之较宽温度范围内的特定关系。当电压自0V起上升,电容器102的电容随之增加。然而,当电压升至特定值,如:温度为25°C,电压升至400V,电容器102的电容将随着电压的持续上升而减小。此时,电容器102之电容的既定的工作区域将从一低电压到对应于最大电容的电压,以确保电容器102之电容呈现出随着电压的上升而增加的性能。在一些实施方式中,动态均压电容器102之电容被控制在0nF至100nF的区域。控制器可以是任何类型的可编程设备,诸如微控制器、微控制单元(MCU)、数字信号处理器(DSP)等。
在一些实施例中,控制器包括接收器(未示出)、计算器(未示出)和调节器(未示出)。接收器用于接收电开关103两端的电压。计算器用于根据动态均压电容器之电容与其两端电压的关系,基于所接收的电开关103两端的电压确定动态均压电容器之电容。动态均压电容器之电容与其两端电压的关系可以预先保存于控制器中。调节器用于当所确定的动态均压电容器的电容超出其既定的工作区域时,以调节被传送至所述电开关的门驱动信号使得所述动态均压电容器的电容工作于所述既定的工作区域。例如,当电开关103两端的电压在温度为25°C下达到约450V时,动态均压电容器102的电容将下降至90%的值,而不是高于100%的值,此时,便无法为电开关103分担足够的电压。在这样的情况下,调节器将延迟提供给电开关103的门驱动信号,使得电开关103两端的电压下降至400V以下。电容器102之电容便可在工作于随电压上升而增加的既定工区域内了。
在开通与关断的过程中,位于电开关103两端的动态均压电容器102具有高电压应力而呈现出高电容。这使得具有高电压应力的电开关103的总阻抗变小,电开关103两端的电压便由动态均压电容器102所分担。由此,便可在开通与关断的过程中自动地减小电压应力以实现动态电压平衡。
在本实施例中,动态缓冲单元12还可以包括阻尼电阻器104。阻尼电阻器104串联于动态均压电容器102,用于抑制电开关的电流振荡。为示意性目的,图1中仅示出了一个阻尼电阻器104。实际中可以根据具体的应用来设定阻尼电阻器104的数量。
请参阅图2,其示出了本发明一具体实施方式的功率半导体器件1的电路示意图。在该实施例中,功率半导体器件1包括多个串联的电开关S1, S2, …, Sn-1, Sn。每一电开关S1, S2, …, Sn-1, Sn具有类似于前述的缓冲电路。特别地,每一需要保护的电开关S1, S2,…, Sn-1, Sn各自具有一单独的缓冲电路。每一缓冲电路具有并联于电开关S1, S2, …,Sn-1, Sn的静态均压电阻器Rps1, Rps2, …, Rpsn-1, Rpsn,用于当电开关S1, S2, …, Sn-1,Sn处于开通或关断的状态下,即处于静态,实现电开关S1, S2, …, Sn-1, Sn两端电压的静态电压平衡。进一步地,每一缓冲电路包括并联于电开关S1, S2, …, Sn-1, Sn的动态均压电容器Css1, Css2, …, Css n-1, Cssn,用于当电开关S1, S2, …, Sn-1, Sn在开通或关断的过程中,即处于动态,实现电开关S1, S2, …, Sn-1, Sn两端电压的动态平衡。在一些实施例中,动态均压电容器Css1, Css2, …, Css n-1, Cssn的电容被控制在一既定的工作区域内,该既定的工作区域为所述电容将随着所述电开关S1, S2, …, Sn-1, Sn之两端的电压的增加而上升。进一步地,每一缓冲电路还包括串联于所述动态均压电容器Css1, Css2, …,Css n-1, Cssn的阻尼电阻器Rss1, Rss2, …, Rss n-1, Rssn,用于在开通或关断过程中,抑制电开关S1, S2, …, Sn-1, Sn的电流振荡。
为示意性目的,图2中示出了多个电开关S1, S2, …, Sn-1, Sn,然而,在特定应用下,功率半导体器件1可以包括两个或两个以上相串联的电开关。
如上所述,在缓冲电路的作用下,具有高电压应力的电开关S1, S2, …, Sn-1, Sn之两端电压将被降低。进一步地,在开通或关断的过程中,电压应力将被自动地减小以实现动态均压。由此,可以实现功率半导体器件的电压平衡。此外,由于动态均压电容器Css1,Css2, …, Css n-1, Cssn之可受控制的电容,动态均压电容器Css1, Css2, …, Css n-1, Cssn可高效地缓和过载电压。由此,额外的缓冲电容器,诸如具有固定大电容的电容器,便不再需要了。
虽然结合特定的具体实施方式对本发明进行了详细说明,但本领域的技术人员可以理解,对本发明可以作出许多修改和变型。因此,要认识到,权利要求书的意图在于覆盖在本发明真正构思和范围内的所有这些修改和变型。

Claims (8)

1.一种用于开关的缓冲电路,包括:
静态缓冲单元,其并联于所述开关,用于当所述开关处于导通或关断的状态下以平衡所述开关之两端的静态均压;以及
动态缓冲单元,用于当所述开关处于导通或关断的过程中以平衡所述开关之两端的动态均压,所述动态缓冲单元包括:
动态均压电容器,其并联于所述开关且所述动态均压电容器的电容与电压之间存在关系;和
控制器,用于将所述动态均压电容器的所述电容控制在既定的工作区域,所述既定的工作区域为电容将随着所述开关之两端的电压的增加而上升:
其特征在于,所述控制器包括:
接收器,用于接收所述开关之两端的电压;
计算器,用于根据所述动态均压电容器的所述电容与所述电压之间的所述关系,基于所接收的所述开关之两端的电压,以确定所述动态均压电容器的所述电容;以及
调节器,用于当所确定的所述动态均压电容器的电容超出所述既定的工作区域时,以调节被提供至所述开关的门驱动信号使得所述动态均压电容器的所述电容处于所述既定的工作区域。
2.根据权利要求1所述的缓冲电路,其特征在于,所述动态均压电容器被控制在0nF至100nF的范围内工作。
3.根据权利要求1所述的缓冲电路,其特征在于,所述动态缓冲单元还包括:
阻尼电阻器,其串联于所述动态均压电容器,用于阻尼所述开关之两端的电流振荡。
4.根据权利要求1所述的缓冲电路,其特征在于,所述静态缓冲单元包括至少一个静态均压电阻器。
5.一种功率半导体器件,包括:
至少两个相串联的开关;以及
至少两个缓冲电路,其中所述至少两个缓冲电路中的每个缓冲电路并联于所述至少两个相串联的开关之一,并且所述至少两个缓冲电路中的每个缓冲电路包括:
静态缓冲单元,其并联于所述开关,用于当所述开关处于导通或关断的状态下以平衡所述开关之两端的静态均压;以及
动态缓冲单元,用于当所述开关处于导通或关断的过程中以平衡所述开关之两端的动态均压,所述动态缓冲单元包括:
动态均压电容器,其并联于所述开关且所述动态均压电容器的电容与电压之间存在关系;和
控制器,用于将所述动态均压电容器的所述电容控制在既定的工作区域,所述既定的工作区域为电容将随着所述开关之两端的电压的增加而上升;
其特征在于,所述控制器包括:
接收器,用于接收所述开关之两端的电压;
计算器,用于基于所接收的所述开关之两端的电压,以确定所述动态均压电容器的所述电容;以及
调节器,用于当所确定的所述动态均压电容器的电容超出所述既定的工作区域时,以调节被提供至所述开关的门驱动信号。
6.根据权利要求5所述的功率半导体器件,其特征在于,所述动态均压电容器被控制在0nF至100nF的范围内工作。
7.根据权利要求5所述的功率半导体器件,其特征在于,所述动态缓冲单元还包括:
阻尼电阻器,其串联于所述动态均压电容器,用于阻尼所述开关之两端的电流振荡。
8.根据权利要求5所述的功率半导体器件,其特征在于,所述静态缓冲单元包括至少一个静态均压电阻器。
CN201710206579.0A 2017-03-31 2017-03-31 功率半导体器件及其缓冲电路 Active CN108667441B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710206579.0A CN108667441B (zh) 2017-03-31 2017-03-31 功率半导体器件及其缓冲电路
US15/903,710 US10389230B2 (en) 2017-03-31 2018-02-23 Power semiconductor device and snubber circuit thereof
EP18162917.1A EP3382896B1 (en) 2017-03-31 2018-03-20 Power semiconductor device and snubber circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710206579.0A CN108667441B (zh) 2017-03-31 2017-03-31 功率半导体器件及其缓冲电路

Publications (2)

Publication Number Publication Date
CN108667441A CN108667441A (zh) 2018-10-16
CN108667441B true CN108667441B (zh) 2022-07-26

Family

ID=61731621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710206579.0A Active CN108667441B (zh) 2017-03-31 2017-03-31 功率半导体器件及其缓冲电路

Country Status (3)

Country Link
US (1) US10389230B2 (zh)
EP (1) EP3382896B1 (zh)
CN (1) CN108667441B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111416510A (zh) * 2020-03-20 2020-07-14 清华大学 一种用于高压直流输电混合换流器的均压电路
EP3920352A1 (en) 2020-06-05 2021-12-08 Hamilton Sundstrand Corporation Direct current (dc) circuit breaker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2490748Y (zh) * 2001-06-13 2002-05-08 中国科学院电工研究所 逆变器过电流快速保护装置
CN102823121A (zh) * 2010-02-03 2012-12-12 Abb技术有限公司 用于限制电力传输或分配线的电流和/或使其断路的装置中的开关模块
CN103036469A (zh) * 2012-12-07 2013-04-10 浙江大学 高压脉冲电源
CN103683260A (zh) * 2013-12-19 2014-03-26 天津正本自控系统有限公司 一种igbt串联均压电路
CN104052458A (zh) * 2013-03-11 2014-09-17 万国半导体股份有限公司 用于mosfet应用的可变缓冲电路
CN104135141A (zh) * 2014-08-15 2014-11-05 上海理工大学 一种用于串联igbt动态均压控制的取能电路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242395A (en) 1961-01-12 1966-03-22 Philco Corp Semiconductor device having low capacitance junction
JPS6028764A (ja) 1983-07-28 1985-02-13 Mitsubishi Electric Corp ゲ−トタ−ンオフサイリスタのスナツバ回路
JPH0821840B2 (ja) 1989-12-07 1996-03-04 富士電機株式会社 パワー半導体装置のスナバ回路
WO1995001670A1 (en) * 1993-06-29 1995-01-12 Square D Company Ac to dc power conversion system
JP3226246B2 (ja) 1994-03-11 2001-11-05 株式会社東芝 系統連系用高電圧自励変換装置
US5841647A (en) 1996-10-07 1998-11-24 Kabushiki Kaisha Toshiba Power conversion system
JP2006042410A (ja) 2004-07-22 2006-02-09 Toshiba Corp スナバ装置
JP4966249B2 (ja) 2008-05-07 2012-07-04 コーセル株式会社 スイッチング電源装置
US20100327963A1 (en) * 2009-06-26 2010-12-30 Battelle Memorial Institute Active Snubbers Providing Acceleration, Damping, and Error Correction
CN101984546B (zh) 2010-02-05 2013-03-06 深圳市科陆变频器有限公司 功率开关器件串联限压电路
TW201131741A (en) 2010-03-05 2011-09-16 Anpec Electronics Corp Power semiconductor device having adjustable output capacitance and manufacturing method thereof
US8541979B2 (en) * 2010-06-22 2013-09-24 A123 Systems, Inc. System and method for balancing voltage of individual battery cells within a battery pack
KR101188014B1 (ko) * 2010-07-29 2012-10-05 성균관대학교산학협력단 태양광 발전시스템을 위한 플라이백 컨버터의 스위치 제어 장치 및 방법
US8891261B2 (en) * 2012-01-31 2014-11-18 Delta Electronics, Inc. Three-phase three-level soft-switched PFC rectifiers
US9755534B2 (en) 2013-02-14 2017-09-05 Nuvolta Technologies, Inc. High efficiency high frequency resonant power conversion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2490748Y (zh) * 2001-06-13 2002-05-08 中国科学院电工研究所 逆变器过电流快速保护装置
CN102823121A (zh) * 2010-02-03 2012-12-12 Abb技术有限公司 用于限制电力传输或分配线的电流和/或使其断路的装置中的开关模块
CN103036469A (zh) * 2012-12-07 2013-04-10 浙江大学 高压脉冲电源
CN104052458A (zh) * 2013-03-11 2014-09-17 万国半导体股份有限公司 用于mosfet应用的可变缓冲电路
CN103683260A (zh) * 2013-12-19 2014-03-26 天津正本自控系统有限公司 一种igbt串联均压电路
CN104135141A (zh) * 2014-08-15 2014-11-05 上海理工大学 一种用于串联igbt动态均压控制的取能电路

Also Published As

Publication number Publication date
CN108667441A (zh) 2018-10-16
EP3382896B1 (en) 2021-04-28
US10389230B2 (en) 2019-08-20
EP3382896A1 (en) 2018-10-03
US20180287487A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
EP2913925B1 (en) Balancing and/or discharge resistor arrangements
US9366717B2 (en) Device and procedure for the detection of a short circuit or overcurrent situation in a power semiconductor switch
US7741883B2 (en) Method of switching and switching device for solid state power controller applications
AU2020388721B2 (en) Driver circuit of power conversion device and application device thereof
US9819337B2 (en) Semiconductor switching circuit
CN110149041B (zh) 一种串并联切换电路及其控制方法
EP2911298A1 (en) Gate drive circuit with a voltage stabilizer and a method
WO2015111154A1 (ja) スイッチング回路、インバータ回路、及びモータ制御装置
CN108667441B (zh) 功率半导体器件及其缓冲电路
US20220376605A1 (en) Adjustable hybrid switch for power converters and methods of operating the same
US10498328B2 (en) Semiconductor switching string
JP2002095240A (ja) 絶縁ゲート型半導体素子のゲート駆動回路およびそれを用いた電力変換装置
US9628073B2 (en) Current control circuit
RU2563880C2 (ru) Преобразовательная схема
JP2017188977A (ja) 半導体装置
WO2020179633A1 (ja) スイッチの駆動装置
EP3343583A1 (en) Dc circuit breaker
JP2007088550A (ja) 半導体リレー装置
WO2016087576A1 (en) Semiconductor switching circuit
US20230179198A1 (en) Method for operating a silicon carbide (sic) mosfet arrangement and device
JP6312946B1 (ja) 電力用半導体素子の駆動回路およびモータ駆動装置
WO2013054465A1 (ja) 絶縁ゲート型デバイスの駆動回路
TW202318765A (zh) 閘極驅動電路及電力轉換裝置
KR20090085921A (ko) 스너버 회로
US6765426B1 (en) Methods and systems for limiting supply bounce

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240226

Address after: England Oxford

Patentee after: GE Energy Power Conversion Technology Ltd.

Country or region after: United Kingdom

Address before: New York, United States

Patentee before: General Electric Co.

Country or region before: U.S.A.

TR01 Transfer of patent right