TW201435093A - 氫排出膜 - Google Patents

氫排出膜 Download PDF

Info

Publication number
TW201435093A
TW201435093A TW102146787A TW102146787A TW201435093A TW 201435093 A TW201435093 A TW 201435093A TW 102146787 A TW102146787 A TW 102146787A TW 102146787 A TW102146787 A TW 102146787A TW 201435093 A TW201435093 A TW 201435093A
Authority
TW
Taiwan
Prior art keywords
film
hydrogen
hydrogen discharge
alloy
mol
Prior art date
Application number
TW102146787A
Other languages
English (en)
Inventor
Takahiro Fukuoka
Yoshiko Kira
Kyoko Ishii
Kenta Hata
Hiroshi Yukawa
Tomonori Nanbu
Original Assignee
Nitto Denko Corp
Univ Nagoya Nat Univ Corp
Inst Nat Colleges Tech Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Univ Nagoya Nat Univ Corp, Inst Nat Colleges Tech Japan filed Critical Nitto Denko Corp
Publication of TW201435093A publication Critical patent/TW201435093A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/12Vents or other means allowing expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7837Direct response valves [i.e., check valve type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31533Of polythioether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明之目的在於提供一種不易於電化學元件之使用環境溫度下脆化之氫排出膜及氫排出積層膜。本發明之氫排出膜之特徵在於包含Pd-Ag合金,且Pd-Ag合金中之Ag之含量為20 mol%以上。

Description

氫排出膜
本發明係關於一種設置於電池、電容器(condenser、capacitor)、及感測器等電化學元件之氫排出膜。
近年來,於風力發電及太陽能發電等之換流器、蓄電池等大型電源等用途中,使用有鋁電解電容器。鋁電解電容器有因反向電壓、過電壓、及過電流而於內部產生氫氣之情況,若大量產生氫氣,則有因內部壓力之上升而導致外裝殼體破裂之虞。
因此,於通常之鋁電解電容器設置有具備特殊膜之安全閥。安全閥除了將電容器內部之氫氣排出至外部之功能以外,具有於電容器之內部壓力急遽上升之情形時自我損壞而降低內部壓力,防止電容器自身之破裂之功能。關於作為此種安全閥之構成構件之特殊膜,例如提出以下者。
於專利文獻1中,提出如下壓力調整膜:其具備由使鈀含有20wt%(19.8mol%)Ag而成之鈀銀(Pd-Ag)之合金構成之箔帶。
然而,專利文獻1之箔帶有容易於50~60℃左右以下之環境下脆化,無法長時間維持作為壓力調整膜之功能的問題。
另一方面,作為行動電話、筆記型電腦、及汽車等之電池,廣泛使用有鋰離子電池。又,近年來,關於鋰離子電池,除高電容化或提昇循環特性外,對安全性之關心亦不斷提昇。尤其是已知鋰離子電池於單元內產生氣體,有伴隨內壓上升而產生電池組之膨脹或破裂之 擔憂。
於專利文獻2中,揭示有使用包含鋯(Zr)與鎳(Ni)之合金之非晶合金(例如36Zr-64Ni合金)膜作為使電池內產生之氫氣選擇性地透過之氫選擇透過性合金膜。
然而,上述非晶合金有若於低溫區域(例如50℃)下與氫接觸則形成氫化物(ZrH2)而脆化,故而無法長時間維持作為壓力調整膜之功能之問題。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利第4280014號說明書
[專利文獻2]日本專利特開2003-297325號公報
本發明係鑒於上述問題而完成者,其目的在於提供一種不易於電化學元件之使用環境溫度下脆化之氫排出膜及氫排出積層膜。又,其目的在於提供一種具備該氫排出膜或氫排出積層膜之電化學元件用安全閥、及具備該安全閥之電化學元件。
本發明係關於一種氫排出膜,其係包含Pd-Ag合金者,且其特徵在於:Pd-Ag合金中之Ag之含量為20mol%以上。
包含Pd-Ag合金之氫排出膜具有如下功能:於膜表面使氫分子解離為氫原子,使氫原子固溶於膜內,使固溶之氫原子自高壓側擴散至低壓側,並於低壓側之膜表面將氫原子再次轉化為氫分子並排出。
作為專利文獻1之Pd-20wt%Ag合金容易於50~60℃左右以下之環境下脆化之原因,考慮如下。認為Pd-20wt%Ag合金具有如下特性:於高溫區域下,即便固溶氫原子,α晶格相亦不易轉變,但於50 ~60℃左右以下之低溫區域下,若固溶氫原子,則α晶格相之一部分相轉變成β晶格相,若脫氫則β晶格相再次相轉變成α晶格相。並且,由於β晶格相之晶格常數比α晶格相之晶格常數大,故而於α晶格相與β晶格相混合存在之區域(α+β晶格相)產生應變。因此,認為若反覆進行氫固溶化-脫氫化,則於α+β晶格相產生由應變導致之破壞,使Pd-20wt%Ag合金脆化。
本發明者等人發現:藉由使用Ag含量為20mol%以上之Pd-Ag合金形成氫排出膜,而即便於50~60℃左右以下之低溫區域下氫排出膜亦不易脆化。認為Ag含量為20mol%以上之Pd-Ag合金即便於50~60℃左右以下之低溫區域下固溶氫原子,α晶格相亦不易相轉變成β晶格相,即不易形成α+β晶格相。因此,認為本發明之Pd-Ag合金即便反覆進行氫固溶化-脫氫化,亦不易產生脆化。
上述氫排出膜較佳為Pd-Ag合金中之Ag之含量為20~60mol%,膜厚t(m)與膜面積s(m2)滿足下述式1。
<式1>t/s<32.9m-1
設置於電化學元件之氫排出膜要求壓力之平方根為76.81Pa1/2(0.059bar)下之氫透過量為10ml/day以上(4.03×10-4mol/day以上,按照SATP(Standard Ambient Temperature and Pressure,標準環境溫度與壓力)進行計算(溫度25℃、氣壓1bar下之1mol之理想氣體之體積為24.8L))。本發明之Pd-Ag合金中之Ag之含量為20~60mol%之氫排出膜於50℃下之氫透過係數為1.0×10-13~2.0×10-9(mol.m-1.sec-1.Pa-1/2)。此處,氫透過係數係藉由下述式2求出。
<式2>氫透過係數=(氫莫耳數×膜厚t)/(膜面積s×時間×壓力之平方根)
於氫透過量為10ml/day(4.03×10-4mol/day)且氫透過係數為2.0×10-9(mol.m-1.sec-1.Pa-1/2)之情形時,若於式2中代入各數值則如以 下所示。
2.0×10-9=(4.03×10-4×膜厚t)/(膜面積s×86400×76.81)
2.0×10-9=6.08×10-11×膜厚t/膜面積s
膜厚t/膜面積s=32.9m-1
因此,於使用50℃下之氫透過係數為1.0×10-13~2.0×10-9(mol.m-1.sec-1.Pa-1/2)之氫透過膜之情形時,氫透過量成為10ml/day以上(4.03×10-4mol/day以上)之條件係膜厚t/膜面積s<32.9m-1。再者,本發明之Pd-Ag合金中之Ag之含量為20~60mol%之氫排出膜較佳為50℃下之氫透過係數為2.0×10-11~2.0×10-9(mol.m-1.sec-1.Pa-1/2)。
本發明之氫排出積層膜係於上述氫排出膜之單面或雙面具有支持體者。支持體係為了防止於氫排出膜自安全閥脫落之情形時掉落至電化學元件內而設置。又,氫排出膜必須具有作為電化學元件之內部壓力成為特定值以上時自我損壞之安全閥之功能。於氫排出膜為薄膜之情形時,由於氫排出膜之機械強度較低,因此有於電化學元件之內部壓力達到特定值前自我損壞之虞,無法發揮作為安全閥之功能。因此,於氫排出膜為薄膜之情形時,較佳為於氫排出膜之單面或雙面積層支持體以提高機械強度。
支持體較佳為平均孔徑100μm以下之多孔質體。若平均孔徑超過100μm,則多孔質體之表面平滑性降低,因此於利用濺鍍法等製造氫排出膜之情形時,不易於多孔質體上形成膜厚均勻之氫排出膜,或容易於氫排出膜產生針孔或裂紋。
就化學及熱穩定之觀點而言,支持體較佳為由聚四氟乙烯或聚碸形成。
又,本發明係關於一種具備上述氫排出膜或氫排出積層膜之電化學元件用安全閥、及具有該安全閥之電化學元件。作為電化學元件,例如可列舉鋁電解電容器及鋰離子電池等。
本發明之氫排出膜及氫排出積層膜具有不易於電化學元件之使用環境溫度下脆化之特徵。又,本發明之氫排出膜及氫排出積層膜不僅可迅速地僅將在電化學元件內部產生之氫氣迅速地排出至外部,而且可防止雜質自外部滲入至電化學元件內部。又,具備本發明之氫排出膜及氫排出積層膜之安全閥於電化學元件之內部壓力急遽上升之情形時可自我損壞而降低內部壓力,防止電化學元件自身之破裂。藉由該等效果,可長時間維持電化學元件之性能,可謀求電化學元件之長壽命化。
1‧‧‧氫排出積層膜
2‧‧‧氫排出膜
3‧‧‧接著劑
4‧‧‧支持體
5‧‧‧夾具
圖1(a)、(b)係表示本發明之氫排出積層膜之構造之概略剖面圖。
圖2(a)、(b)係表示本發明之氫排出積層膜之構造之概略剖面圖。
圖3係實施例1及比較例1中製作之氫排出膜之評價試驗後之照片。
圖4係實施例4中製作之氫排出積層膜之評價試驗後之表面之SEM(Scanning Electron Microscope,掃描式電子顯微鏡)照片。
圖5係比較例2中製作之氫排出積層膜之評價試驗後之表面之SEM照片。
以下,對本發明之實施形態進行說明。
作為本發明之氫排出膜之原料,使用Ag之含量為20mol%以上之Pd-Ag合金。由於Ag之含量越多則越難於低溫區域產生氫脆化,故而Ag之含量較佳為30mol%以上,更佳為40mol%以上,進而較佳為50mol%以上。另一方面,若Ag之含量變得過多,則有氫透過速度降低之傾向,因此Ag之含量之上限值通常為60mol%以下。又,Pd-Ag合金亦可於無損本發明之效果之範圍內含有IB族及/或IIIA族之金屬。
本發明之氫排出膜例如可藉由壓延法、濺鍍法、真空蒸鍍法、離子鍍著法、及鍍敷法等製造,於製造膜厚較厚之氫排出膜之情形時,較佳為使用壓延法,於製造膜厚較薄之氫排出膜之情形時,較佳為使用濺鍍法。
壓延法可為熱壓延,亦可為冷壓延,可為任一方法。壓延法係使一對或複數對輥(滾筒)旋轉,一面對作為原料之Pd-Ag合金施加壓力一面使其通過輥間,藉此將其加工成膜狀之方法。
藉由壓延法而獲得之氫排出膜之膜厚較佳為5~50μm,更佳為10~30μm。於膜厚未達5μm之情形時,容易於製造時產生針孔或裂紋,或容易一旦吸藏氫則變形。另一方面,若膜厚超過50μm,則使氫透過需要時間,因此氫排出性能降低,或於成本方面較差,故而不佳。
濺鍍法並無特別限定,可使用平行平板型、單片型、通過型、DC(Direct Current,直流)濺鍍、及RF(Radio Frequency,射頻)濺鍍等之濺鍍裝置進行。例如於將基板安裝於設置有Pd-Ag合金靶之濺鍍裝置後,將濺鍍裝置內進行真空排氣,將氬氣壓調整為特定值,並對Pd-Ag合金靶投入特定之濺鍍電流而於基板上形成Pd-Ag合金膜。其後,自基板剝離Pd-Ag合金膜而獲得氫排出膜。再者,作為靶,可根據所製造之氫排出膜而使用單一或複數個靶。
通常,濺鍍膜係藉由對支持體進行加溫等而預先加溫至室溫~500℃左右,於其上形成濺鍍膜並進行冷卻而獲得。於其後再次加熱之情形時可抑制氫脆化,故而較佳。認為其原因在於結晶性升高,缺陷變少。具體而言,認為若於50~300℃下製作濺鍍膜後,利用乾燥機等以100~300℃加熱5分鐘~24小時,則膜中之晶粒成長,結晶缺陷變少,應力集中部位變少,故而不易產生由氫脆化導致之膜破壞。
作為基板,例如可列舉玻璃板、陶瓷板、矽晶圓、鋁及不鏽鋼 等之金屬板。
藉由濺鍍法而獲得之氫排出膜之膜厚較佳為0.01~5μm,更佳為0.05~2μm。於膜厚未達0.01μm之情形時,不僅有形成針孔之可能性,而且不易獲得要求之機械強度。又,自基板剝離時容易破損,剝離後之處理亦變難。另一方面,若膜厚超過5μm,則製造氫排出膜需要時間,於成本方面較差,故而不佳。
氫排出膜之膜面積可考慮氫透過量與膜厚而適當調整,於用作安全閥之構成構件之情形時為0.01~100mm2左右。再者,於本發明中,膜面積係氫排出膜中實際排出氫之部分之面積,不包括塗佈後述環狀之接著劑之部分。
亦可於氫排出膜之單面或雙面設置支持體而製成氫排出積層膜。尤其是藉由濺鍍法而獲得之氫排出膜由於膜厚較薄,故而較佳為於氫排出膜之單面或雙面積層支持體以提高機械強度。
圖1及2係表示本發明之氫排出積層膜1之構造之概略剖面圖。可如圖1(a)或(b)所示,於氫排出膜2之單面或雙面使用環狀之接著劑3積層支持體4,亦可如圖2(a)或(b)所示,使用夾具5於氫排出膜2之單面或雙面積層支持體4。
支持體4只要為氫透過性且可支持氫排出膜2者則並無特別限定,可為無孔質體,亦可為多孔質體。又,支持體4可為織布或不織布。作為支持體4之形成材料,例如可列舉聚乙烯及聚丙烯等聚烯烴、聚對苯二甲酸乙二酯及聚萘二甲酸乙二酯等聚酯、聚碸及聚醚碸等聚芳醚碸、聚四氟乙烯及聚偏二氟乙烯等氟樹脂、環氧樹脂、聚醯胺、聚醯亞胺等。該等中可較佳地使用化學及熱穩定之聚碸或聚四氟乙烯。
支持體4之厚度並無特別限定,通常為5~1000μm左右,較佳為10~300μm。
於利用濺鍍法製造氫排出膜2之情形時,若使用支持體4作為基板,則可於支持體4上直接形成氫排出膜2,可不使用接著劑3或夾具5而製造氫排出積層膜1,故而就氫排出積層膜1之物性及製造效率之觀點而言較佳。於該情形時,作為支持體4,較佳為使用平均孔徑100μm以下之多孔質體,更佳為平均孔徑5μm以下之多孔質體,尤佳為使用超過濾膜(UF(Ultrafiltration)膜)。
本發明之氫排出膜及氫排出積層膜之形狀可為大致圓形狀,亦可為三角形、四邊形、五邊形等多邊形。可製成根據後述用途之任意之形狀。
本發明之氫排出膜及氫排出積層膜尤其是可用作鋁電解電容器或鋰離子電池之安全閥之構成構件。
[實施例]
以下列舉實施例說明本發明,但本發明並不受該等實施例任何限定。
實施例1
[利用壓延法製作氫排出膜(Ag含量40mol%)]
以錠塊中之Ag含量成為40mol%之方式分別稱量Pd及Ag原料,投入至具備水冷銅坩堝之電弧熔解爐,於大氣壓之氬氣氛圍中進行電弧熔解。將所獲得之紐扣錠塊使用輥徑100mm之二段壓延機冷壓延至厚度5mm而獲得板材。其後,於玻璃管中放入壓延之板材,並密封玻璃管之兩端。將玻璃管內部於室溫下減壓至5×10-4Pa,其後升溫至700℃並放置24小時,其後冷卻至室溫。藉由該熱處理而消除合金中之Pd及Ag之偏析。繼而,使用輥徑100mm之二段壓延機將板材冷壓延至厚度100μm,進而使用輥徑20mm之二段壓延機將板材冷壓延至厚度25μm。其後,於玻璃管中放入壓延之板材,並密封玻璃管之兩端。將玻璃管內部於室溫下減壓至5×10-4Pa,其後升溫至700℃並 放置1小時,其後冷卻至室溫。藉由該熱處理而去除由壓延產生之Pd-Ag合金內部之應變,製作厚度25μm、Ag含量40mol%之Pd-Ag氫排出膜。利用下述方法評價氫排出膜之氫脆性,結果未觀察到形變等外觀變化(參照圖3之下側之膜)。
實施例2~5
除採用表1記載之值以外,利用與實施例1相同之方法製作Pd-Ag氫排出膜。利用下述方法評價氫排出膜之氫脆性,結果未觀察到形變等外觀變化。
比較例1
[利用壓延法製作氫排出膜(Ag含量19.8mol%)]
以錠塊中之Ag含量成為19.8mol%之方式分別使用Pd及Ag原料,除此以外,利用與實施例1相同之方法製作厚度25μm、Ag含量19.8mol%之Pd-Ag氫排出膜。利用下述方法評價氫排出膜之氫脆性,結果於氫排出膜產生形變,成為無法於實際使用上使用之狀態(參照圖3之上側之膜)。
實施例6
[利用濺鍍法製作氫排出積層膜(Ag含量40mol%)]
於裝有Ag含量為40mol%之Pd-Ag合金靶之RF磁控濺鍍裝置(Sanyu Electron公司製造)安裝作為支持體之聚碸多孔質片材(日東電工公司製造,孔徑0.001~0.02μm)。其後,將濺鍍裝置內真空排氣至1×10-5Pa以下,於氬氣壓1.0Pa下向Pd-Ag合金靶投入4.8A之濺鍍電流6分鐘,於聚碸多孔質片材上形成厚度0.4μm之Pd-Ag合金膜(Ag含量40mol%)而製作氫排出積層膜。利用下述方法評價氫排出積層膜之氫脆性,結果未於表面產生裂紋(參照圖4)。
實施例7~14
除採用表1記載之值以外,以與實施例6相同之方法製作Pd-Ag氫 排出積層膜。利用下述方法評價氫排出積層膜之氫脆性,結果未觀察到形變等外觀變化。
比較例2
[利用濺鍍法製作氫排出積層膜(Ag含量19.8mol%)]
除使用Ag含量為19.8mol%之Pd-Ag合金靶以外,利用與實施例6相同之方法製作厚度0.4μm之氫排出積層膜(Ag含量19.8mol%)。利用下述方法評價氫排出積層膜之氫脆性,結果於表面產生裂紋(參照圖5)。認為產生了氫脆化。
[評價、算出方法]
(利用壓延法所製作之氫排出膜之氫脆性之評價方法)
於玻璃管中放入製作之氫排出膜,並密封玻璃管之兩端。將玻璃管內部於50℃下減壓至5×10-3Pa,其後升溫至400℃。其後,於玻璃管內導入氫氣,於105kPa之氛圍下放置1小時。其後,將玻璃管內冷卻至室溫,並將玻璃管內真空排氣(30分鐘)至5×10-3Pa。其後,再次於玻璃管內導入氫氣,於105kPa之氛圍下放置1小時。反覆進行上述操作3次後,將氫排出膜自玻璃管內取出,利用目視觀察氫排出膜之外觀,並利用下述基準評價。將評價結果示於表1。
○:無形變等外觀變化。
×:產生形變。
(利用濺鍍法製作之氫排出積層膜之氫脆性之評價方法)
於玻璃管中放入製作之氫排出積層膜,並密封玻璃管之兩端。將玻璃管內部於50℃下減壓至5×10-3Pa後,於玻璃管內導入氫氣,於105kPa之氛圍下放置1小時。其後,自玻璃管內取出氫排出積層膜,利用SEM觀察表面,並利用下述基準評價。將評價結果示於表1。
○:未於表面產生裂紋。
×:於表面產生裂紋。
(氫透過係數之算出方法)
於空間AB間安裝氫排出膜或氫排出積層膜,於空間A(體積100mL)填充氫氣0.1MPa。繼而,將空間B(體積100mL)利用真空泵設為減壓狀態後,於50℃下放置6小時。根據空間A或B之壓力變化算出轉移之氫莫耳數,將其代入下述式,藉此算出氫透過係數。再者,於氫排出積層膜之情形時,將Pd-Ag合金膜之厚度設為膜厚t。將算出值示於表1。
氫透過係數=(氫莫耳數×膜厚t)/(膜面積s×時間×壓力之平方根)
[產業上之可利用性]
本發明之氫排出膜及氫排出積層膜可較佳地用作設置於電池、電容器(condenser、capacitor)、及感測器等電化學元件之安全閥之構成構件。
1‧‧‧氫排出積層膜
2‧‧‧氫排出膜
3‧‧‧接著劑
4‧‧‧支持體

Claims (8)

  1. 一種氫排出膜,其係包含Pd-Ag合金者,且其特徵在於:Pd-Ag合金中之Ag之含量為20mol%以上。
  2. 如請求項1之氫排出膜,其中Pd-Ag合金中之Ag之含量為20~60mol%,且膜厚t與膜面積s滿足下述式1,<式1>t/s<32.9m-1
  3. 一種氫排出積層膜,其於如請求項1之氫排出膜之單面或雙面具有支持體。
  4. 如請求項3之氫排出積層膜,其中上述支持體為平均孔徑100μm以下之多孔質體。
  5. 如請求項3或4之氫排出積層膜,其中上述支持體之原料為聚四氟乙烯或聚碸。
  6. 一種電化學元件用安全閥,其具備如請求項1或2之氫排出膜、或如請求項3至5中任一項之氫排出積層膜。
  7. 一種電化學元件,其具備如請求項6之安全閥。
  8. 如請求項7之電化學元件,其中上述電化學元件為鋁電解電容器或鋰離子電池。
TW102146787A 2012-12-17 2013-12-17 氫排出膜 TW201435093A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012275083 2012-12-17
JP2013151906 2013-07-22

Publications (1)

Publication Number Publication Date
TW201435093A true TW201435093A (zh) 2014-09-16

Family

ID=50978367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102146787A TW201435093A (zh) 2012-12-17 2013-12-17 氫排出膜

Country Status (7)

Country Link
US (1) US20150325380A1 (zh)
EP (1) EP2933013A4 (zh)
JP (1) JPWO2014098038A1 (zh)
KR (1) KR20150096373A (zh)
CN (1) CN104870080A (zh)
TW (1) TW201435093A (zh)
WO (1) WO2014098038A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170133646A1 (en) * 2014-06-16 2017-05-11 Nitto Denko Corporation Hydrogen-releasing film
KR20170016000A (ko) * 2014-06-16 2017-02-10 닛토덴코 가부시키가이샤 수소 배출막
JP6245476B2 (ja) * 2014-08-20 2017-12-13 トヨタ自動車株式会社 二次電池
JP7034577B2 (ja) * 2015-03-06 2022-03-14 日東電工株式会社 水素排出膜
WO2016143658A1 (ja) * 2015-03-06 2016-09-15 日東電工株式会社 水素排出膜
JP6180487B2 (ja) * 2015-10-29 2017-08-16 日東電工株式会社 電気化学素子
WO2017104658A1 (ja) * 2015-12-14 2017-06-22 日東電工株式会社 電気化学素子
JP6203931B2 (ja) 2015-12-14 2017-09-27 日東電工株式会社 電気化学素子
WO2017208723A1 (ja) * 2016-05-30 2017-12-07 日東電工株式会社 電解コンデンサ
JP7020792B2 (ja) * 2016-05-30 2022-02-16 日東電工株式会社 電解コンデンサ
JP7080548B2 (ja) 2016-09-16 2022-06-06 日東電工株式会社 水素排出部品
EP3895786A4 (en) 2018-12-11 2022-09-28 Toray Industries, Inc. POWER GENERATION SYSTEM
EP3895787A1 (en) 2018-12-11 2021-10-20 Toray Industries, Inc. Power generation system
JPWO2020122152A1 (ja) 2018-12-11 2021-10-21 東レ株式会社 発電システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857080A (en) * 1987-12-02 1989-08-15 Membrane Technology & Research, Inc. Ultrathin composite metal membranes
JPH0832296B2 (ja) * 1989-11-02 1996-03-29 東京瓦斯株式会社 水素分離膜の製造方法
JP3540495B2 (ja) * 1996-03-18 2004-07-07 三菱重工業株式会社 水素分離膜
DE10057161C2 (de) * 2000-11-16 2003-08-21 Heraeus Gmbh W C Niob-Legierung und eine daraus hergestellte Wasserstoffpermeationsmembran
EP1479115A2 (en) * 2000-11-21 2004-11-24 The Gillette Company Battery vent
JP2003118027A (ja) * 2001-10-16 2003-04-23 Toyo Kohan Co Ltd ガス透過層積層材の製造方法およびガス透過層積層材を用いた部品の製造方法
JP2003135942A (ja) * 2001-10-31 2003-05-13 Daido Steel Co Ltd 水素分離透過膜およびその製造方法
JP4280014B2 (ja) 2002-01-22 2009-06-17 株式会社オプトニクス精密 圧力調整膜を具備した電気化学素子
JP4104363B2 (ja) 2002-03-29 2008-06-18 三洋電機株式会社 密閉型電池
JP3845372B2 (ja) * 2002-12-13 2006-11-15 本田技研工業株式会社 水素分離部材の製造方法
JP4195306B2 (ja) * 2003-01-09 2008-12-10 株式会社オプトニクス精密 電気化学素子
JP2004216275A (ja) * 2003-01-15 2004-08-05 Ngk Insulators Ltd 水素分離体の製造方法
JP2004228019A (ja) * 2003-01-27 2004-08-12 Toshiba Corp 非水電解質二次電池
JP2005254191A (ja) * 2004-03-15 2005-09-22 Noritake Co Ltd 印刷を用いる水素分離金属膜の製造方法及び水素分離金属膜
JP2007038095A (ja) * 2005-08-02 2007-02-15 National Institute Of Advanced Industrial & Technology 水素分離膜及びその製造方法
JP2007038111A (ja) * 2005-08-02 2007-02-15 Tanaka Kikinzoku Kogyo Kk 水素透過素子及びその製造方法
JP5814506B2 (ja) * 2007-06-11 2015-11-17 日本碍子株式会社 水素分離膜、及び選択透過膜型反応器
CN102574074A (zh) * 2009-09-14 2012-07-11 东京瓦斯株式会社 氢分离膜和氢分离法

Also Published As

Publication number Publication date
US20150325380A1 (en) 2015-11-12
JPWO2014098038A1 (ja) 2017-01-12
CN104870080A (zh) 2015-08-26
EP2933013A1 (en) 2015-10-21
WO2014098038A1 (ja) 2014-06-26
EP2933013A4 (en) 2016-09-14
KR20150096373A (ko) 2015-08-24

Similar Documents

Publication Publication Date Title
TW201435093A (zh) 氫排出膜
WO2015019906A1 (ja) 水素排出膜
JP6867829B2 (ja) 水素排出膜
TW201603356A (zh) 氫排出膜
TW201812811A (zh) 電解電容器
TW201607113A (zh) 氫排出膜
JP7034577B2 (ja) 水素排出膜
JP2016002513A (ja) 水素排出膜
TW201729448A (zh) 電化學元件