TW201431886A - 具有改善的導電性的導電性高分子及其製備方法 - Google Patents
具有改善的導電性的導電性高分子及其製備方法 Download PDFInfo
- Publication number
- TW201431886A TW201431886A TW102139463A TW102139463A TW201431886A TW 201431886 A TW201431886 A TW 201431886A TW 102139463 A TW102139463 A TW 102139463A TW 102139463 A TW102139463 A TW 102139463A TW 201431886 A TW201431886 A TW 201431886A
- Authority
- TW
- Taiwan
- Prior art keywords
- conductive polymer
- core
- precursor
- shell
- shell structured
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/127—Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/126—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/83—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/184—Carboxylic acids; Anhydrides, halides or salts thereof
- D06M13/188—Monocarboxylic acids; Anhydrides, halides or salts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/51—Charge transport
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/50—Physical properties
- C08G2261/59—Stability
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/96—Applications coating of particles
- C08G2261/962—Applications coating of particles coating of organic particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
- C08J2300/12—Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2365/00—Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/0806—Silver
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Textile Engineering (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
本發明係提供一種導電性高分子,包括藉由利用以下化學式1之前驅物形成殼層,本發明並提供一種該導電性高分子之製造方法:□在化學式1中,X代表氫、具有1至6個碳原子之烷基、或鹵素,且n係為0至23的整數。藉由前驅物而易於調整氧化還原之反應速率,因而可防止聚集,並且可在高分子之表面上形成厚度均勻之殼層。根據本發明,可藉由簡單且容易的方法,在導電性高分子之表面上形成金屬殼層。又,本發明之導電性高分子具有優異的可撓性、導電性、與穩定性,且亦具有經濟效益。
Description
本發明係有關於一種改善導電性高分子(conductive polymer)之導電性的方法以及導電性高分子。
由於透明導電電極在於觸控面板、平板顯示器、和其他光電元件上之應用,透明導電電極之重要性係日益增加。目前為止,在有機太陽能電池的領域中,銦錫氧化物(Indium-Tin Oxide,ITO)為最為廣泛使用之透明電極材料。然而,由於銦錫氧化物為塑膠材料,製程需在高溫下進行,銦錫氧化物容易受到外部物理震擊(physical shock)而損壞,且易於彎曲和變形。再者,當在高分子基板上塗佈銦錫氧化物時,若基板彎曲,銦錫氧化物膜便會損壞。最重要的是,由於銦的匱乏,使得銦錫氧化物之價格持續增加,因此銦錫氧化物之供給成為一大問題。
近日,作為解決此類銦錫氧化物之問題的解決方
案,導電性高分子、碳奈米管(carbon nanotube)、石墨烯(grapheme)、與金屬奈米線(metal nanowire)和奈米粒子(nanoparticles)已引起關注,這些材料可作為可撓性透明電極,並且可取代銦錫氧化物。
然而,碳奈米管或石墨烯具有低導電性且只稍微地
改善透光度。再者,以銀奈米線為代表的金屬奈米線價格昂貴,因此若只使用銀奈米線製備透明電極,透明電極變為昂貴,且透明電極之表面變為粗糙,使得層疊(laminate)與印刷後續材料以成為如薄膜電晶體(Thin-Film Transistor,TFT)之元件係非常困難。
再者,由於在金屬奈米線之上執行噴墨印刷製程係為困難,且金屬奈米線之製程不能在高溫下進行,故金屬奈米線具有製程上的應用限制。並且,當金屬奈米線延伸,其導電性會減低。
同時,導電性高分子具有高可撓性與優異的光電特
性(optoelectronic characteristics)。因此,以導電性高分子所製造的電極係維持透光度以及可撓性,且在遭受外部的物理性應力如彎曲/延伸的情況下,係相對地安全。又,導電性高分子可在低溫下塑化,具有與銦錫氧化物電極相同的效率,因而已有對於導電性高分子進行的研究,將其視為極具潛力的電極材料,有希望取代銦錫氧化物。然而,相較於銦錫氧化物或金屬奈米線而言,導電性高分子之導電性相對較低,且其穩定性(包括耐光性(photostability))較差。因此,為了改善導電性高分子的導電性,已對於將高分子與金屬材料結合之方法進行研究,這些方法例如
是在高分子中浸漬(impregnating)金屬材料、在高分子之表面上塗佈金屬材料、或類似者。
然而,由於高分子與金屬材料的材料本質有所不
同,彼此互相結合較為困難。因此,要製備可應用於產品的結構係為困難,且製造此類結構之製程實屬複雜。又,即使將高分子與金屬材料相互結合,它們也相當容易彼此分離。因此,仍然需要具有改善之導電性並且穩定的導電性高分子,以及易於製備此類導電性高分子的方法。
本發明係關於具有改善的導電性之導電性高分子,作為可替代昂貴電極材料之材料。本發明之目的係提供具有高導電性、優異的穩定性與穩固的透光度的導電性高分子。
又,本發明也關於簡單且容易之在導電性高分子之表面上形成金屬殼層的方法,以。
本發明係提供一種芯殼結構(core-shell structure)導電性高分子,包括一殼層(shell layer),該殼層由前驅物在一芯導電性高分子之表面上形成,前驅物如以下化學式1所示:
在化學式1中,X代表氫、具有1至6個碳原子之
烷基(alkyl group)、或鹵素(halogen),且n係為0至23的整數。
較佳地,該芯導電性高分子可由芳香族雜環化合物
(aromatic heterocyclic compound)或其之衍生物(derivative)聚合而成,該芳香族雜環化合物如以下化學式2所示:
較佳地,殼層可以是以該芯導電性高分子作為前驅
物之還原劑的方式形成。
較佳地,芯導電性高分子可形成為奈米線(nanowire,
NW)。
本發明提供一種芯殼結構導電性高分子之製備方
法,其中藉由還原一前驅物在一芯導電性高分子之表面上形成一殼層,該前驅物由以下化學式1所示:
在化學式1中,X代表氫、具有1至6個碳原子之
烷基、或鹵素,且n係為0至23的整數。
較佳地,芯導電性高分子可由一芳香族雜環化合物
或其之衍生物在一柱狀模板中(cylindrical template)聚合而成,該芳香族雜環化合物如以下化學式2所示:
較佳地,前驅物可以是以一包括非極性溶劑之溶液的形式置入到該芯導電性高分子。
較佳地,溶液可包括包含具有4至18個碳原子的烷基之胺類。
較佳地,芯導電性高分子可以是以一包括極性溶劑之溶液的形式提供。
較佳地,還原反應可在反應溫度在室溫至40℃的範圍內的條件下進行。
較佳地,相對於該芯導電性高分子,前驅物可使用100至200重量份(parts by weight)的量。
藉由以下配合附圖對於本發明範例性的實施例所進
行的詳細說明,本發明之上述及其他目標、特徵與優點,對於本領域中具有通常知識者而言將變得更為明確。
第1圖繪示芯導電性高分子之一合成製程的示意圖。
第2圖繪示根據本發明之一範例之殼層形成反應之示意圖。
以下將參照附圖,詳細地對於本發明之範例性的實
施例進行描述。雖然本發明以其實施例進行揭露,本發明所屬技術領域中之通常知識者能夠清楚了解到,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。
為了改善導電性高分子之導電性,本發明提供一種
芯殼結構導電性高分子,包括由前驅物在一芯高分子表面上所形成的殼層,前驅物如以下化學式1所示:
在化學式1中,X代表氫、具有1至6個碳原子之
烷基、或鹵素,且n係為0至23的整數。
前驅物在非極性溶劑中具有高溶解度,且在非極性
溶劑與極性溶劑之間具有分配平衡(partition equilibrium),據此可防止聚集(aggregation)問題,聚集問題係為使用其他前驅物材料在高分子表面形成殼層時的常規的問題。也就是說,以本發明之前驅物,可調整氧化還原反應速率,從而藉由調整非極性溶劑與極性溶劑之間的分配平衡而防止聚集。因此,根據本發明,放置於高分子表面之上的前驅物並不會聚集,且只吸附於高分子之表面以形成殼層。因而,本發明能夠提供在其上形成均勻殼層的殼芯結構。
再者,如下所述,藉由在殼層形成反應期間調整反
應溫度與前驅物之濃度,可形成具有所需厚度的殼層。因此,本發明之導電性高分子可在其表面包括厚度經調整的均勻殼層。
同時,在殼層形成反應期間,芯導電性高分子作為
前驅物之還原劑。亦即,即使沒有另外的還原劑,導電性高分子直接還原前驅物,並在導電性高分子之表面上形成殼層。因此,相較於藉由使用另外的還原劑進行還原反應以形成殼層的例子,在本發明的殼層形成反應中,可輕易地調整反應速率,且芯與殼層之間的結合變得穩固(solid)。
可藉由使用芳香族雜環化合物或其之衍生物作為單
體(monomer),以合成芯導電性高分子,但並不限於此。其中,芳香族雜環化合物係如以下化學式2所示:
較佳地,單體可包括例如吡咯(pyrole)、苯胺
(aniline)、或噻吩(thiophene)。
在本發明之一範例中,使用催化劑,在從界面活性
劑(surfactant)製備之作為模板(template)的六角柱狀(hexagonal cylindrical)結構中,通過單體之聚合(polymerization)反應,以奈米線的形式形成導電性高分子。作為界面活性劑,可使用如下的陽離子界面活性劑:辛基三甲基溴化銨(Octyltrimethylammonium Bromide,OTAB)、癸基三甲基溴化銨(Decyltrimethylammonium Bromide,DeTAB)、十二烷基三甲基溴化銨(Dodecyltrimethylammonium Bromide,DTAB)、十四烷基三甲基溴化銨(Tetradecyltrimethylammonium Bromide,TTAB)、和十六烷基三甲基溴化銨(Cetyltrimethylammonium Bromide,CTAB),但本發明不限於此。第1圖係繪示根據一範例之合成具有奈米線結構的導電性高分子之製程的概念性示意圖。
將莫耳濃度0.01至0.9的界面活性劑以300至600
每分鐘轉數(rpm)之速度攪拌達1至3小時,以形成微胞(micelle),且從中製備柱狀模板。接著,用以合成導電性高分子之單體係以相對於界面活性劑50至100重量份的量注入,且與存在於柱狀結構中的單體聚合。在聚合反應期間,可使用以下催化劑:過氧化氫(hydrogen peroxide)、過氧化異丙苯(cumylperoxide)、三氯化鐵(Fe(III)Cl3)、過硫酸銨(ammonium persulfate)、與氯化銅(copper chloride)。所製備的導電性高分子具有如第1圖所繪示的奈米線結構。為了形成具有合適尺寸的奈米線結構,較佳地,反應溫度可在1至40℃的範圍中。
本發明提供芯殼結構導電性高分子之製備方法,其
中殼層係在芯導電性高分子之表面上藉由還原前驅物而形成,其中前驅物係由以上之化學式1所示,芯導電性高分子之製備如上所述。
由於前驅物在非極性溶劑中具有高溶解度,可在包
含非極性溶劑之溶液的形式下製備前驅物,並滴加入芯導電性高分子。在此例中,較佳地,前驅物溶液可包括包含具有4至18個碳原子的烷基的胺類。可使用例如以下之胺類:三乙胺(triethylamine)、丁基胺(butyl amine)、辛胺(octylamine)、十二烷胺(dodecylamine)、油胺(oleylamine)。
胺類藉由以下之反應平衡來調整前驅物之離子化。
又,在一範例中,如下所示,處於離子態的前驅物
在導電性高分子之表面上還原以形成殼層。在此例中,胺類作為陰離子(anion)摻雜物(dopant)
因此,欲調整殼層形成反應速率與殼層之厚度,調
整胺類之濃度係為一方法。在本發明中,較佳地,前驅物溶液包含有胺類,胺類之濃度大於0重量百分比(wt%)且小於10重量百分比。
同時,導電性高分子係在極性溶劑中合成。藉由緩
慢地將含有非極性溶劑之前驅物溶液滴加入含有極性溶劑之導電性高分子溶液,進行在導電性高分子之表面上形成殼層之反應,並呈現如第2圖所繪示的分配平衡。
在此例中,可依據反應溫度與前驅物之濃度而調整殼層之厚度。較佳地,反應溫度可在室溫至40℃之範圍中,且前驅物可以相對於導電性高分子為100至200重量份之量使用。在低溫之下,高分子表面之活性係大幅地降低且反應無法進行。相對地,若反應溫度高於上述之溫度範圍,反應速率係大幅地增
加,導致聚集,因而無法形成均勻的殼層。又,若前驅物係以相對於導電性高分子之小於100重量份之用量,前驅物係以自由分子(free molecule)存在,且因而不會與高分子之表面反應或不會形成厚度足以增進導電性之殼層。若以大於200重量份大量使用前驅物,前驅物溶液之黏度係增加,且殼層並不會均勻地形成於高分子的整個表面上,且亦可能發生局部性地聚集。
因此,根據本發明,藉由調整前驅物溶液之濃度、反應溫度、給進速率(feeding rate)、與胺類之用量,可在殼層形成反應期間防止聚集,且可形成所需厚度之殼層。
在下文中,本發明將參照以下範例進行詳細地解說。然而,以下範例係用以提供對於本發明之理解,而並非用以限定本發明。
將50毫升蒸餾水與作為界面活性劑之0.1克十二烷基三甲基溴化銨(DTAB)放入1公升的反應器(reactor)中,反應器內提供有設定於25℃之恆溫槽,在其中進行溶解。將所得溶液在300每分鐘轉數的速度下攪拌3小時,以形成柱狀微胞。然後,將作為單體的3,4-乙基二氧噻吩(Poly(3,4-EthyleneDiOxyThiophene),PEDOT)以相對於界面活性劑之50重量份的量加入。在氯化鐵以相對於界面活性劑之10重
量份的量溶解於10毫升蒸餾水中之後,將所得溶液加入反應器中。在25℃攪拌約4小時之下進行反應後,將約500毫升之甲醇加入反應器中。將反應溶液倒入分液漏斗中,並再搖晃數次以混合。為了增加奈米高分子(高分子聚3,4-乙基二氧噻吩奈米纖維)之分離率(separation rate),加入作為非溶劑(non-solvent)之100毫升異辛烷(isooctane)。為了收集沉澱的高分子聚3,4-乙基二氧噻吩,藉由使用吸量管(pipette)將異辛烷與上層之甲醇去除。所存留之下層係在室溫下自然地蒸發,並因而得到高分子聚3,4-乙基二氧噻吩奈米纖維。
將20毫升蒸餾水與作為界面活性劑之0.1克聚3,4-乙基二氧噻吩(PEDOT)奈米纖維放入100毫升的反應器中,反應器內提供有設定於25℃之恆溫槽,在其中進行溶解。接著,藉由將作為形成殼層之前驅物2-庚酸甲酯銀(Ag 2-methyl heptanoate)以相對於奈米纖維之100重量份的量進行溶解並將三乙胺(triethylamine)以相對於奈米纖維0.1重量份的量進行溶解,獲得溶液,而20毫升二甲苯(xylene)加入於其中。此後,所得之混合物係在振盪器(shaker)中於室溫下反應1小時,從而形成殼層。
除了將聚苯胺(polyaniline)用作為單體而非3,4-乙
基二氧噻吩外,以與範例1相同之方式,進行合成導電性高分子聚苯胺,並再進行殼層形成反應,。
除了將聚吡咯用作為單體而非3,4-乙基二氧噻吩外,以與範例1相同之方式,進行合成導電性高分子聚吡咯(polypyrole),並再進行殼層形成反應。
對於在範例1中的(2)殼層形成反應,製備藉由溶解硝酸銀作為前驅物而非2-庚酸甲酯銀而得之溶液,並滴加至聚3,4-乙基二氧噻吩(PEDOT)溶液中。然而,硝酸銀之溶解並不佳,且當硝酸銀以此狀態放置於聚3,4-乙基二氧噻吩(PEDOT)溶液中時,觀察到硝酸銀分離至水層。
對於在範例2中的(2)殼層形成反應,製備藉由溶解硝酸銀作為前驅物而非2-庚酸甲酯銀而得之溶液,並滴加至聚3,4-乙基二氧噻吩(PEDOT)溶液中。然而,硝酸銀之溶解並不佳,且當硝酸銀以此狀態放置於聚3,4-乙基二氧噻吩(PEDOT)溶液中時,觀察到硝酸銀分離至水層。
對於在範例3中的(2)殼層形成反應,製備藉由溶解硝酸銀作為前驅物而非2-庚酸甲酯銀而得之溶液,並滴加至聚3,4-乙基二氧噻吩(PEDOT)溶液中。然而,硝酸銀之溶解並不佳,且當硝酸銀以此狀態放置於聚3,4-乙基二氧噻吩(PEDOT)溶液中時,觀察到硝酸銀分離至水層。
由範例1至3所得之最終產物,不會觀察到塊狀物(lumps)或其他類似者之聚集,而從比較例1至3所得之最終產物,可以用肉眼觀察到不均勻的塊狀物。因此,在比較例1至3中,無法製備用以形成塗膜(coating film)之墨水(ink)。
根據本發明,藉由在導電性高分子之表面上形成具有高導電性之金屬殼層,可提供具有改善導電性之芯殼結構高分子。本發明中只有在殼層當中含有高價金屬,極具經濟性,且本發明可提供可撓的與穩定的材料,即使當該材料受到彎曲或延伸,由於芯高分子係為可撓的,該材料的導電性並不會減少。
又,根據本發明,可藉由簡單且容易的方法在導電性高分子之表面上形成金屬殼層,且芯殼結構係為穩固(solid)的,因而對於產品上之應用極具優勢。
很明顯地,對於本發明所屬技術領域中具有通常知識者而言,顯然可在不脫離本發明之精神和範圍內,對前述的本
發明範例性實施例作各種之更動與潤飾。因此,當此類更動與潤飾落在本發明申請專利範圍及其等價範圍內時,本發明涵蓋所有此類更動與潤飾。
Claims (11)
- 一種芯殼結構導電性高分子,包括一殼層,該殼層由一前驅物在一芯導電性高分子之表面上形成,該前驅物如以下化學式1所示:
- 如申請專利範圍第1項所述之芯殼結構導電性高分子,其中該芯導電性高分子係由一芳香族雜環化合物(aromatic heterocyclic compound)或其之衍生物(derivative)聚合而成,該芳香族雜環化合物如以下化學式2所示:
- 如申請專利範圍第1項所述之芯殼結構導電性高分子,其中該殼層是以該芯導電性高分子作為該前驅物之還原劑的方式形成。
- 如申請專利範圍第1項所述之芯殼結構導電性高分子,其中該芯導電性高分子係形成為奈米線。
- 一種芯殼結構導電性高分子之製備方法,該方法包括:還原一前驅物,在一芯導電性高分子之表面上形成一殼層,該前驅物如以下化學式1所示:
- 如申請專利範圍第5項所述之芯殼結構導電性高分子之製備方法,其中該芯導電性高分子係由一芳香族雜環化合物或其之衍生物聚合而成,該芳香族雜環化合物如以下化學式2所示:
- 如申請專利範圍第5項所述之芯殼結構導電性高分子之製備方法,其中該前驅物是以一包括非極性溶劑之溶液的形式置入到該芯導電性高分子。
- 如申請專利範圍第7項所述之芯殼結構導電性高分子之製備方法,其中該溶液係包括包含具有4至18個碳原子的烷基的胺類。
- 如申請專利範圍第7項所述之芯殼結構導電性高分子之製備方法,其中該芯導電性高分子是以一包括極性溶劑之溶液的形式提供。
- 如申請專利範圍第5項所述之芯殼結構導電性高分子之製備方法,其中該還原反應係在反應溫度在室溫至40℃的範圍內的條件下進行。
- 如申請專利範圍第5項所述之芯殼結構導電性高分子之製備方法,其中相對於該芯導電性高分子,該前驅物係使用100至200重量份(parts by weight)的量。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120125318A KR101933224B1 (ko) | 2012-11-07 | 2012-11-07 | 전기 전도성이 향상된 전도성 고분자 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201431886A true TW201431886A (zh) | 2014-08-16 |
TWI586690B TWI586690B (zh) | 2017-06-11 |
Family
ID=50684834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102139463A TWI586690B (zh) | 2012-11-07 | 2013-10-31 | 具有改善的導電性的導電性高分子及其製備方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101933224B1 (zh) |
TW (1) | TWI586690B (zh) |
WO (1) | WO2014073773A1 (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060004439A (ko) * | 2004-07-09 | 2006-01-12 | 이영관 | 전도성 고분자-금속간 복합체의 제조방법 및 그 복합체 |
KR101309546B1 (ko) * | 2010-05-24 | 2013-09-24 | 웅진케미칼 주식회사 | 금속 나노입자로 코팅된 코어-쉘 구조의 고분자 나노와이어 및 그 제조 방법 |
JP5620316B2 (ja) * | 2010-09-09 | 2014-11-05 | 富士フイルム株式会社 | 光電変換素子、光電気化学電池及び色素 |
KR101269492B1 (ko) * | 2010-11-09 | 2013-05-30 | 주식회사 한국엔티켐 | 유-무기 복합체 및 이의 제조방법 |
KR101177641B1 (ko) * | 2010-12-27 | 2012-08-27 | 삼성전기주식회사 | 내열성 마이크로캡슐과 이를 포함하는 터치패널 및 그 제조방법 |
-
2012
- 2012-11-07 KR KR1020120125318A patent/KR101933224B1/ko active IP Right Grant
-
2013
- 2013-07-31 WO PCT/KR2013/006881 patent/WO2014073773A1/ko active Application Filing
- 2013-10-31 TW TW102139463A patent/TWI586690B/zh active
Also Published As
Publication number | Publication date |
---|---|
KR101933224B1 (ko) | 2019-03-15 |
KR20140058894A (ko) | 2014-05-15 |
WO2014073773A1 (ko) | 2014-05-15 |
TWI586690B (zh) | 2017-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9233421B2 (en) | Method for manufacturing metallic nanowires using ionic liquids | |
Devadas et al. | Effect of carbon dots on conducting polymers for energy storage applications | |
US9972742B2 (en) | Method for forming a transparent conductive film with metal nanowires having high linearity | |
JP5027164B2 (ja) | 高導電性、透明性及び耐湿性を有するポリチオフェン系導電性高分子組成物、並びにこれを利用した高分子膜 | |
US20150336173A1 (en) | Method for manufacturing silver nanowires using copolymer capping agents | |
US8865251B2 (en) | Metal nanobelt and method of manufacturing the same, and conductive ink composition and conductive film comprising the same | |
JPWO2014021405A1 (ja) | 金属光沢を有する膜及びこれが形成されてなる物品並びに金属光沢を有する膜の製造方法 | |
JP2017141409A (ja) | 導電性高分子水溶液、及び導電性高分子膜 | |
KR20120081106A (ko) | 올리고퓨란 및 폴리퓨란, 이의 제조 방법 및 용도 | |
Anilkumar et al. | Self-assembled cylindrical and vesicular molecular templates for polyaniline nanofibers and nanotapes | |
Cao et al. | Highly dispersed polypyrrole nanotubes for improving the conductivity of electrically conductive adhesives | |
JP6032097B2 (ja) | 銀ナノワイヤーの製造方法、該方法で得られた銀ナノワイヤー及び該銀ナノワイヤーを含有するコーティング剤 | |
TWI586690B (zh) | 具有改善的導電性的導電性高分子及其製備方法 | |
Chang et al. | Extraordinary aspects of bromo-functionalized multi-walled carbon nanotubes as initiator for polymerization of ionic liquid monomers | |
KR101207403B1 (ko) | 수계 액정성 고분자를 이용한 실버 나노와이어 잉크 및 이의 제조방법 | |
JP4501030B2 (ja) | 導電性微粒子およびその製造方法 | |
JP2009292909A (ja) | 導電性コーティング組成物 | |
WO2018114570A1 (en) | Electrode assembly | |
KR102144387B1 (ko) | 은 나노와이어의 제조방법 및 이를 이용하여 제조된 은 나노와이어 | |
Khong et al. | Chemical treatment of grafted rubber‐based conductive polymer film for homogeneity improvement | |
JP4501031B2 (ja) | 導電性微粒子およびその製造方法 | |
KR102250709B1 (ko) | 면상 발열체용 수용성 카본 잉크 및 이를 이용한 면상 발열체 | |
EP3340253A1 (en) | Uv-resistant electrode assembly | |
KR20070102963A (ko) | 이온 액체를 이용한 전도성 고분자의 나노입자의 제조방법및 이를 이용한 전도성 고분자 컴퍼지트 물질의 제조방법 | |
KR20140058895A (ko) | 전도성 고분자를 포함하는 복합체 전극 및 그 제조 방법 |