TW201430925A - 利用原子氫清潔基板結構的方法與設備 - Google Patents

利用原子氫清潔基板結構的方法與設備 Download PDF

Info

Publication number
TW201430925A
TW201430925A TW102147206A TW102147206A TW201430925A TW 201430925 A TW201430925 A TW 201430925A TW 102147206 A TW102147206 A TW 102147206A TW 102147206 A TW102147206 A TW 102147206A TW 201430925 A TW201430925 A TW 201430925A
Authority
TW
Taiwan
Prior art keywords
substrate
chamber
cleaning
hydrogen
processing chamber
Prior art date
Application number
TW102147206A
Other languages
English (en)
Inventor
Jeong-Won Park
Joe Griffith Cruz
Pravin K Narwankar
Murali K Narasimhan
Bo Zheng
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of TW201430925A publication Critical patent/TW201430925A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本文提供清潔基板結構的方法與設備。在一些實施例中,清潔基板結構的方法可包括提供含氫氣體至具有複數個絲極的處理腔室,將電流流過複數個絲極以將該複數個絲極的溫度提高至足以分解至少一部分含氫氣體的第一溫度,以及藉由將基板的結構暴露至含氫氣體分解所形成的氫原子來清潔基板的結構。

Description

利用原子氫清潔基板結構的方法與設備
本發明之實施例一般而言是關於半導體基板處理,更明確而言是關於清潔形成於基板表面內或基板表面上之結構的方法。
半導體元件的製造需要多個處理步驟來完成元件成品。然而,處理步驟或期間的條件可能產生多餘材料(例如原生氧化物層、汙染物、殘留物等),該多餘材料可能沉積或形成在元件結構上。此等材料通常經由基板清潔處理來移除。習知的基板清潔處理通常包括在高溫及/或高壓下將元件暴露至由處理氣體(例如含氟氣體)所形成的電漿。然而,本案發明人已觀察到該等方法可能對元件結構造成難以接受的損害。
因此,本案發明人提出經改善的清潔元件表面的方法。
本文提供用於清潔基板結構之方法及設備。在一些 實施例中,清潔基板結構之方法可包括下列步驟:提供含氫氣體至具有複數個絲極的處理腔室;將電流流過複數個絲極,以提高該複數個絲極之溫度至足以分解至少一部分含氫氣體的第一溫度;以及藉由將基板之結構暴露至由含氫氣體分解所形成的氫原子來清潔該基板之結構。
以下說明本發明其他及進一步之實施例。
100‧‧‧方法
102、104、106、108‧‧‧步驟
200‧‧‧元件
201‧‧‧結構
202‧‧‧基板
204‧‧‧埋藏的氧化物層
206‧‧‧汲極
208‧‧‧源極
210‧‧‧鰭狀物
212‧‧‧閘極
214‧‧‧層
216‧‧‧表面
300‧‧‧系統
301‧‧‧處理腔室
302‧‧‧腔室主體
303‧‧‧清潔腔室
304‧‧‧內部容積
305‧‧‧腔室主體
306‧‧‧控制器
307‧‧‧內容積
308‧‧‧中央處理單元(CPU)
309‧‧‧箭頭
310‧‧‧導線
311‧‧‧支持電路
312‧‧‧記憶體
313‧‧‧電源
314‧‧‧軟體常式
320‧‧‧檔板
322‧‧‧腔室襯料
328‧‧‧基板支撐件
330‧‧‧基板
331‧‧‧距離
332‧‧‧氣體入口
333‧‧‧噴灑頭
334‧‧‧氣體出口
336‧‧‧距離
338‧‧‧凸緣
340‧‧‧距離
341‧‧‧氣體分配設備
342‧‧‧板材
344‧‧‧通孔
346‧‧‧氫氣體源
348‧‧‧原子氫源
350‧‧‧預熱腔室
352‧‧‧熱源
402‧‧‧導管
404‧‧‧充氣部
可參考繪示於附圖中的本發明的實施例來了解以上簡述及以下更加詳細討論之本發明的實施例。但應注意附圖僅圖示說明本發明之典型實施例,故不因此視為本發明範疇之限制,本發明容許其他等效實施例。
第1圖為流程圖,是依據本發明的一些實施例來清潔結構的方法。
第2A~2B圖是依據本發明的一些實施例,在第1圖之方法的不同階段期間之具有結構之元件的說明用截面圖。
第3圖為依據本發明的一些實施例,適於進行第1圖中描述之方法的處理系統。
第4圖為依據本發明的一些實施例,適於進行第1圖中描述之方法的處理系統。
為便於理解,盡可能地使用相同的元件符號表示圖式中共同的相同元件。圖式未依比例尺繪製,並簡化以求清楚。可預期的是一個實施例的元件及特徵可有利地併入另一 個實施例而無須進一步詳述。
本文提供用於清潔元件結構之方法及設備。本發明之處理的實施例有利地可允許自基板及形成於基板上之元件及結構(包含具有高深寬比的元件及結構)移除汙染物或不樂見的層,同時相較於習知的清潔處理(例如使用下列一種或多種:電漿、高溫處置或氟系化學),對基板或形成於基板上之元件造成較少損害。此外,本案發明人已觀察到,相較於半導體工業中慣用來產生原子氫的方法,藉由運用利用熱線源來產生原子氫的處理腔室(例如熱線處理腔室)可提供更高密度之原子氫族群(例如1.3至約3倍高)。雖然本文所揭露之本發明方法的應用範圍未被限制,但本發明方法已顯示對於清潔例如鰭狀場效電晶體(FinFETs)、金屬氧化半導體場效電晶體(MOSFETs)等元件的高深寬比結構或特徵特別有效。
第1圖是依據本發明的一些實施例來清潔基板結構的方法100之流程圖。第2A~2B圖是依據本發明的一些實施例在第1圖處理順序的不同階段期間,配置於基板上並具有結構之元件的說明用截面圖。本發明之方法可在任何適於處理依據本發明實施例之半導體基板的設備中進行,例如以下討論之關於第3及4圖的設備。
方法100一般開始於步驟102,在步驟102可選擇地預熱具有結構201之元件200。在進行清潔處理(例如以下描述之清潔處理)前預熱元件,有助於自元件除氣及/或移除汙 染物。在一些實施例中,可在用於清潔處理的相同腔室中預熱元件。或者,在一些實施例中,可利用不同於清潔處理用的預熱腔室(例如以下討論關於第3圖之預熱腔室350)。發明人已觀察到在不同於進行清潔處理用的腔室中預熱元件200,可減少或消除基板被來自清潔處理腔室的殘餘處理副產物汙染的發生率,及/或可減少或消除清潔處理腔室被來自基板的材料汙染的發生率。
預熱腔室可為任何形式之適於預熱元件200至所欲溫度的腔室,例如專用的預熱腔室、退火腔室、沉積腔室等。在一些實施例中,預熱腔室可為熱線處理腔室(例如熱線化學蒸氣沉積(HWCVD)腔室或具有熱線源之其他合適的處理腔室),例如以下關於第3及4圖所描述之處理腔室。在一些實施例中,預熱腔室可為複數個腔室中的一個,耦接至多重腔室工具,例如叢集工具或線內處理工具。
可將元件200預熱至任何適於自元件200除氣或移除汙染物的溫度。例如,在一些實施例中,可將元件200預熱至高達約攝氏500度的溫度。可經由任何合適的熱源預熱基板,例如配置在腔室內的加熱燈或電阻加熱器、埋置在基板支撐件中的加熱器、熱線源的絲極等。在熱線源處理腔室中預熱元件200的實施例中,可加熱熱線源(例如絲極)至約1000至約2500度,以助於將元件200預熱至所欲的溫度。可使用適合於基板以及移除汙染物的其他溫度。
參照第2A圖,元件200可為任何形式之半導體元件,例如二維或三維元件,如多閘極電晶體元件、鰭狀場效 電晶體(FinFET)、金屬氧化半導體場效電晶體(MOSFET)、奈米線場效電晶體(NWFET)、三閘極電晶體等。在一些實施例中,元件200可為記憶體元件。
在一些實施例中,元件200可包含基板202,基板202具有沉積於其上的一或多個結構201(例如源極208、汲極206、閘極212、鰭狀物(fin)210等)。基板202可為任何適於半導體元件製造的基板,例如摻雜或未摻雜的矽基板、III-V化合物基板、II-VI化合物基板、鍺化矽(SiGe)基板、磊晶矽基板、絕緣體上矽(SOI)基板、其氧化物等。在一些實施例中,基板202可包含沉積在基板內或基板上的一或多層。例如,在一些實施例中,基板202可包含埋藏的氧化物層204,埋藏的氧化物層204包含例如二氧化矽(SiO2)、氧化鋁(Al2O3)等。替代的例子或與前例組合,在一些實施例中,可形成一或多個特徵(例如穿孔、溝槽、雙鑲嵌結構等)在基板202內或基板202上及/或配置在基板內或基板上之一或多層中的一或多層。在一些實施例中,結構201可為或可包括高深寬比特徵,例如高深寬比穿孔。本文中所使用的高深寬比特徵為具有長對寬的深寬比至少4:1之特徵,或者在一些實施例中至少5:1。
在一些實施例中,欲被移除的層214可被配置於元件200的結構201、特徵或表面之中的一或多個的頂上。雖然本文中所述為一層,但欲被移除的層214也可為部分的層,或可為僅配置在元件200的部分上之材料島狀物。層214可包含任何欲自元件200移除的材料或先前處理的殘留物或汙染物,欲自元件200移除的材料例如原生氧化物層、氮化物 層、介電層、矽層等,汙染物例如含碳、矽、氮或氧的汙染物等。
若在分開的腔室中預熱元件200,則將元件200移動至清潔腔室進行清潔。清潔腔室可為適於進行處理之具有複數個絲極之任何形式的腔室。例如,在一些實施例中,清潔腔室可為熱線處理腔室(例如熱線化學蒸氣沉積(HWCVD)腔室或具有熱線源的其他合適之處理腔室),例如以下說明的處理腔室。發明人已觀察到,相較於半導體工業中慣用來產生原子氫的方法及系統(例如RF及/或DC電漿系統或感應式耦合電漿系統),藉由利用具有熱線源的處理腔室可產生更高密度之原子氫族群(例如1.3至約3倍高)。
下一步,在步驟104,可提供含氫氣體至具有複數個絲極的處理腔室(例如第一處理腔室)。在一些實施例中,具有複數個絲極的處理腔室可為上述的清潔腔室,抑或分開的腔室。在處理腔室為分開的腔室之實施例中,在分解含氫氣體後(說明於下),接著提供生成的氫原子至清潔腔室。
含氫氣體可包含任何氣體或分解時適於提供高密度原子氫的氣體。例如,在一些實施例中,含氫氣體可包含氫氣(H2)、氫氣(H2)及氮氣(N2)的混合物、氨氣(NH3)、過氧化氫(H2O2)、前述氣體的組合等,或含氫氣體可基本上由前述的氣體所組成或可由前述的氣體所組成。在一些實施例中,含氫的預處理氣體可更包含稀釋氣體,例如氦氣(He)、氬氣(Ar)等氣體中的一或多者。在一些實施例中,含氫的預處理氣體可基本上由下列氣體所組成或可由下列氣體所組成:氫氣 (H2)、氫氣(H2)及氮氣(N2)的混合物、氨氣(NH3)、過氧化氫(H2O2)或前述氣體組合中的一或多者,混合稀釋氣體,例如氦氣(He)、氬氣(Ar)等的一或多者。可以任何流動速率提供含氫氣體,該流動速率適於提供所需量之原子氫來清潔元件200的表面,以及可依據元件200及/或處理腔室的尺寸來調整含氫氣體。例如,在一些基板為300mm直徑之半導體晶圓的實施例中,可以高達約10,000sccm的流動速率提供含氫氣體,或在一些實施例中,以約10sccm至約3000sccm的流動速率提供含氫氣體。
下一步,在步驟106,電流流過配置在處理腔室中的複數個絲極,以將複數個絲極的溫度提升至足以至少分解部分含氫氣體的第一溫度。可在預熱基板(以上步驟102所述)及/或提供含氫氣體至處理腔室(以上步驟104所述)之前、同時及/或之後將電流流過複數個絲極。在一些實施例中,至少在提供含氫氣體之前將複數個絲極加熱至第一溫度。在一些實施例中,將複數個絲極加熱至第一溫度可減少或消除來自複數個絲極的汙染物,從而減少或消除顆粒形成。此外,預處理可消除不純物,從而增加複數個絲極的穩定度及/或可靠度,以及延長使用壽命。複數個絲極可為配置在任何合適型態的處理腔室中之任何合適型態的絲極,例如配置在下述關於第3及4圖的處理腔室中的複數個絲極。
第一溫度可為適於達成分解含氫氣體以提供所欲原子氫密度並且有助於清潔元件200表面的溫度,如下所述。例如,在一些實施例中,第一溫度可為攝氏約10至約500度。 只要適於基板及待移除的汙染物,可使用其他相容於處理的溫度。
下一步,在步驟108,藉由將元件200暴露至由含氫氣體分解所形成之氫原子一段時間,來清潔元件200的結構201的一或多個表面216(例如移除某些或全部配置在基板上的材料或汙染物)。原子氫的高反應特性有助於層214的移除,從而清潔元件200的一或多個表面216,如第2B圖所示。發明人亦觀察到,相較於習知清潔處理例如利用電漿及/或含氟處理氣體之處理,藉由使用原子氫來移除層214,該層可被完全地移除而不留下任何殘留物,或損壞或氧化表面。例如,發明人已觀察到原子氫有助於層214的移除而不會改變鰭狀物210的形狀(例如不會圓化鰭狀物210的邊緣)。
一或多個表面216可為處理(例如沉積、蝕刻、退火、植入、微影術,例如極紫外線(extreme ultraviolet)微影術、或其他處理)之前及/或之後任何需要清潔的表面,例如結構(例如源極208、汲極206、閘極212、鰭狀物210等)、觸點、襯料(例如吸氣襯料)、阻障層(例如氫氣鈍化阻障層)、金屬填料、石英表面、極紫外線(EUV)光罩等的表面。在一些實施例中,例如一或多個表面216為觸點表面(例如歐姆觸點),該一或多個表面216可包含矽化物、氧化物之中的一或多個,矽化物例如矽化鎳,氧化物例如氧化釕(RuO2)、二氧化矽(SiO2)、金屬氧化物等。
一段時間可為任何足以助於移除層214至令人滿意之程度(例如完全移除、實質上移除等程度)的時間量,並且時 間的長度可依據層214的組成、元件200的尺寸等因素而變化。例如,在一些實施例中,可將元件200暴露至原子氫一段約60至約600秒的時間。在上述任何的實施例中,第一溫度或一段時間中的至少一者可取決於製造絲極所用的材料及/或處理腔室內複數個絲極的設置。
在一些實施例中,元件200配置於處理腔室中複數個絲極的下方並直接暴露至複數個絲極。可替代為,在一些實施例中,元件200可與複數個絲極分開。例如,在一些實施例中,具有複數個孔的板材(例如氣體分配板)可配置在複數個絲極與元件200之間,例如,如下述之關於第3及4圖中的板材342。當板材存在時,更允許具有複數個絲極配置於其中的腔室的一部分以及具有元件200配置於其中的腔室的一部分獨立控制溫度,從而允許複數個絲極中的每一個以及基板維持在不同溫度,如下所述。在另一個實例中,在一些實施例中,可在具有複數個加熱絲極或導線的處理腔室(例如熱線處理腔室)中遠端地形成原子氫,以及提供原子氫至內有配置元件200之分開的處理腔室(例如清潔腔室)。
元件200可以靜態位置定位在熱線源下方或板材342下方、基板支撐件上方(例如下述有關第3圖的基板支撐件328),或在一些實施例中,當元件200經過板材342下方時,可動地動態清潔元件200。
除上述者外,可利用額外的處理參數以助於清潔元件200的結構201。例如,發明人已觀察到產生的原子氫密度可以含有元件200的處理腔室(例如處理腔室或分開的清潔腔 室)內的壓力來控制。據此,在一些實施例中,處理腔室可維持在小於約10-9mTorr(例如超高真空)至約10Torr的壓力。此外,元件200可維持在適於有助於清潔元件200的結構201之任何溫度,例如高至約攝氏1000度。
元件200可經由任何合適的加熱機構或熱源,例如電阻加熱器(例如埋置在基板支撐件內的加熱器)、加熱燈等來維持在前述的溫度。此外,可經由任何適於提供精確量測溫度的機構來監測溫度。例如,在一些實施例中,可直接經由一或多個熱電偶、焦度計、前述之組合等來監測溫度。在一些實施例中,可替換地或組合,可經由提供至加熱機構的功率以及生成物溫度之間的已知關係式來估算溫度。發明人已觀察到維持元件200在這樣的溫度下提供額外的能量於處理,可助於含氫氣體的更完全分解,以形成氫原子,因而增加清潔處理的產量及均勻度。
在步驟108清潔元件200的結構201後,一般而言方法100就結束了,並且元件200可繼續進一步的處理。在一些實施例中,可在元件200上進行額外的處理例如額外的層沉積、蝕刻、退火等。
第3圖描述了依據本發明實施例之處理系統的側視示意圖。在一些實施例中,系統300包括系統腔室301(例如第一處理腔室)、清潔腔室303以及選擇性的預熱腔室350。處理腔室301可為任何形式具有複數個絲極配置於其中的處理腔室,例如熱線處理腔室(例如熱線化學蒸氣沉積(HWCVD)腔室或具有熱線源的其他合適處理腔室)。處理腔室301通常 包含腔室主體302,該腔室主體302具有內部容積304與配置於內部容積304內之原子氫源348。設置原子氫源348以在處理期間提供原子氫至基板330(例如上述之元件)的表面。原子氫源348包括耦接至電源313的複數個絲極或導線310,電源313用於提供電流以加熱複數個絲極至足以自例如由氫氣體源346提供的氫氣產生原子氫的溫度。
複數個絲極(導線)310可為分開的導線,或可為前後布線橫越內部容積304的單一導線。導線310可包含任何合適的導電材料,例如鎢、鉭、銥、鎳-鉻、鈀等。導線310可包含任何厚度及/或適於提供處理腔室301內所欲之原子氫密度的任何密度。例如,在一些實施例中,每一導線310可具有約0.5mm至約10mm的直徑。此外,在一些實施例中,每一導線的密度可依據應用(例如基板組成、欲移除的材料等)而變化。在一些實施例中,每一導線310藉由支撐結構適當地夾持,以在加熱至高溫時維持導線牢固,以及提供電觸點至導線。在一些實施例中,可變化每一導線310之間的距離(例如導線至導線的距離336),以依據特定應用提供處理腔室301內所欲之原子氫密度。例如,在一些實施例中,導線至導線的距離336可為約5mm至約80mm。
電源313耦接至導線310以提供電流加熱導線310。基板330可定位在熱線源(例如導線310)下方,例如配置在清潔腔室303內的基板支撐件328上。可固定基板支撐件328以靜態清潔,或當基板330通過熱線源下方時可移動基板支撐件328(如箭頭309所示)以動態清潔。在一些實施例中,可 變化每一導線310與基板330之間的距離(例如導線至基板的距離340)以助於在處理腔室301中進行的特定製程(例如上述之方法100)。例如,在一些實施例中,導線至基板的距離340可為約10mm至約300mm。
腔室主體302進一步包括一或多個氣體入口(圖示出一個氣體入口332)以及一或多個出口(圖示出兩個氣體出口334),所述一或多個氣體入口耦接至氫氣體源346以提供清潔氣體,所述一或多個出口耦接至真空泵以維持處理腔室301內合適的操作壓力並移除過量的處理氣體及/或處理副產物。氣體入口332可進料入噴灑頭333(如圖示出)或其他合適的氣體分配部件,以均勻地分配氣體,或如所欲地分配在導線310上。
在一些實施例中,基板330可與熱線源(例如導線310)分開,經由氣體分配設備341,例如具有複數個通孔344的板材342,經設置以所欲方式分配氣體(例如上述之原子氫)至基板330。例如,可依據特定的應用改變通孔的數量、圖案以及複數個通孔334的大小。例如,在一些實施例中,可設置複數個通孔334,使得板材342具有約10%至約50%的開口區域。在一些實施例中,複數個通孔的每一個可具有約1mm至約30mm的直徑。在一些實施例中,當板材342存在時,可預防導線310中的一或多個接觸到基板330,以免導線310機械故障。在一些實施例中,從氣體分配設備341到基板330的距離可為任何適於提供所欲原子氫密度至基板330的距離。例如,在一些實施例中,氣體分配設備341到基板330 約10至約200mm。
清潔腔室303通常包含界定內容積307的腔室主體305。基板支撐件328可定位在內容積307內。在一些實施例中,清潔腔室303可包含一或多個加熱器(未圖示出)以助於加熱基板。當配置於清潔腔室303中的一或多個加熱器存在時,可助於預熱基板,例如上述的情形。在一些實施例中,可提供一或多個檔板320以最小化腔室主體305的內部表面上多餘的材料沉積。檔板320以及腔室襯料322通常保護腔室主體305的內部表面免於因為腔室中的清潔處理及/或處理氣體流動而引起之不樂見的沉積材料聚集。檔板320以及腔室襯料322為可移除的、可置換的及/或可清潔的。可設置檔板320以及腔室襯料322來覆蓋可能被塗層之腔室主體305的每個區域,所述區域包含但不限定於塗層隔室的導線310周圍以及所有的壁上。一般而言,檔板320以及腔室襯料322可由鋁(Al)製造,以及可具有粗糙化表面以增強沉積材料的附著(預防沉積材料剝落)。檔板320以及腔室襯料322可以任何合適的方式安裝在處理腔室中所欲之區域,例如熱線源周圍。在一些實施例中,所述來源、檔板以及襯料可因維護以及清潔,經由打開處理腔室301的上部而移除。例如,在一些實施例中,處理腔室301的蓋子或頂棚可沿著凸緣338耦接至腔室主體302,凸緣338支撐蓋子並提供表面以將蓋子固定至處理腔室301的主體。
在一些實施例中,可提供預熱腔室350以預熱積板。預熱腔室可為具有熱源352以提供熱至配置於預熱腔室 350中之基板330的任何合適的腔室。預熱腔室350可直接耦接至處理腔室301,例如為線內基板處理工具的一部分,或可經由一或多個介於中間的腔室耦接至處理腔室301,例如叢集工具的傳送腔室。合適的線內基板處理工具的例子描述於D.Haas等人在2012年2月21日獲准的美國專利案第8,117,987號中。
控制器306可耦接至系統300的不同組件,例如至處理腔室301、清潔腔室303或預熱腔室350,以控制這些組件運作。雖然示意地圖示出耦接至系統300,但控制器可操作性連接至可以控制器控制的任何組件,例如電源313、耦接至氣體入口332的氣體供應(未圖示出)、耦接至出口334的真空泵及/或節流閥(未圖示出)、基板支撐件328等,以控制依據本文所揭露之方法的清潔處理。控制器306通常包含中央處理單元(CPU)308、記憶體312以及CPU 308的支持電路311。控制器306可直接控制系統300,或經由與特定支持系統組件聯繫的其他計算機或控制器(未圖示出)來控制系統300。控制器306可為任何形式能用於工業安裝用來控制各種腔室與次處理器之通用型計算機處理器中的一種。CPU 308的記憶體312或計算機可讀取媒體可為下列一或多種:現成記憶體,例如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、軟碟、硬碟、快閃、或任何其他形式之區域或遠端數位儲存。支持電路311耦接至CPU 308以習知的方式支持處理器。這些電路包含快取、電源、時脈電路、輸入/輸出電路以及次系統等。本文所述之本發明方法可以軟體常式(software routine)314儲存於記 憶體312中,該軟體常式314可經執行或引動以將控制器變成特定用途控制器,以使用本文所述之方式控制處理腔室301的操作。軟體常式亦可藉由第二CPU(未圖示出)儲存及/或執行,第二CPU的設置遠離被CPU 308所控制的硬體。
在一些實施例中,處理腔室301以及清潔腔室303可相互耦接,或相互整合建構以形成單一的處理腔室(例如第3圖中所示)。可替代地,在一些實施例中,處理腔室301以及清潔腔室303可為分開的腔室,例如第4圖中所示。在這樣的實施例中,可以導線310遠端地加熱處理氣體(例如含氫氣體),且生成的原子氫可經由例如導管402提供至清潔腔室。在一些實施例中,導管402可提供原子氫至配置在氣體分配設備341上的孔穴或充氣部404,然後經由複數個通孔344分配至清潔腔室303的內容積307。
因此,本文以提供用於清潔基板上元件結構的方法及設備。相較於利用例如電漿、高溫處理或氟系化學中的一種或多種之習知清潔處理,本發明之處理的實施例有利地允許污染物或不樂見之層自基板移除時,對基板造成較少損害。再者,發明人已觀察到,相較於習知用來產生原子氫的方法,藉由利用熱線處理腔室產生原子氫,可有利地提供更高密度之原子氫族群(例如1.3至約3倍高)。
儘管上述為有關本發明的實施例,可設計本發明的其他或進一步實施例而不脫離本發明之基本範疇。
100‧‧‧方法
102、104、106、108‧‧‧步驟

Claims (15)

  1. 一種清潔一基板之結構的方法,包含下列步驟:提供一含氫氣體至一第一處理腔室,該第一處理腔室具有複數個絲極;將一電流流過該複數個絲極,以提高該複數個絲極之溫度至一第一溫度以形成氫原子,該第一溫度足以分解該含氫氣體的至少一部分;以及藉由將該基板之結構暴露至氫原子來清潔該基板之該結構,該氫原子是經由該含氫氣體分解所形成。
  2. 如請求項1所述之方法,其中該含氫氣體包含下列至少一者:氫氣(H2)、氫氣(H2)與氮氣(N2)、或氨(NH3)。
  3. 如請求項1所述之方法,其中該結構包括一高深寬比之特徵。
  4. 如請求項3所述之方法,其中該高深寬比為至少4:1。
  5. 如請求項3所述之方法,其中該高深寬比為至少5:1。
  6. 如請求項1所述之方法,其中該結構形成在一極紫外線(extreme ultraviolet,EUV)光罩上。
  7. 如請求項1所述之方法,其中該結構包含矽化物或氧化物 中的一或多者。
  8. 如請求項1所述之方法,其中該結構包含下列的一或多者:矽化鎳、氧化釕(RuO2)、二氧化矽(SiO2)或金屬氧化物。
  9. 如請求項1至8中任一項所述之方法,其中該基板之該結構是在該第一處理腔室中清潔。
  10. 如請求項9所述之方法,更包含下列步驟:在清潔該基板之該結構之前,在不同於該第一處理腔室的一預熱腔室中預熱該基板。
  11. 如請求項9所述之方法,更包含下列步驟:在清潔該基板之該結構之前,在該第一處理腔室中預熱該基板。
  12. 如請求項1至8中任一項所述之方法,其中該基板配置在一清潔腔室中,該清潔腔室不同於該第一處理腔室,以及其中該第一處理腔室中該含氫氣體分解所形成的該氫原子,是提供至該清潔腔室以清潔該基板之該結構。
  13. 如請求項12所述之方法,更包含下列步驟:在清潔該基板之該結構之前,在不同於該清潔腔室的一預熱腔室中預熱該基板。
  14. 如請求項12所述之方法,更包含下列步驟:在清潔該基板之該結構之前,在該清潔腔室中預熱該基板。
  15. 如請求項1至8中任一項所述之方法,其中該處理腔室為一熱線處理腔室。
TW102147206A 2012-12-21 2013-12-19 利用原子氫清潔基板結構的方法與設備 TW201430925A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261740570P 2012-12-21 2012-12-21

Publications (1)

Publication Number Publication Date
TW201430925A true TW201430925A (zh) 2014-08-01

Family

ID=50979125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147206A TW201430925A (zh) 2012-12-21 2013-12-19 利用原子氫清潔基板結構的方法與設備

Country Status (2)

Country Link
TW (1) TW201430925A (zh)
WO (1) WO2014100047A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793475B (zh) * 2019-12-04 2023-02-21 大陸商拓荊科技股份有限公司 具有加熱裝置的溫度控制噴淋元件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9856185B2 (en) * 2014-10-15 2018-01-02 LytOil, Inc. Modular refining reactor and refining methods
JP7018888B2 (ja) * 2015-10-15 2022-02-14 ウニベルシティ・マラヤ 手袋

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660944B2 (ja) * 1992-09-14 1997-10-08 光技術研究開発株式会社 半導体表面の清浄化方法
JPH09190979A (ja) * 1996-01-10 1997-07-22 Nec Corp 選択シリコンエピタキシャル成長方法及び成長装置
US5834371A (en) * 1997-01-31 1998-11-10 Tokyo Electron Limited Method and apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof
JPH10340857A (ja) * 1997-06-10 1998-12-22 Mitsubishi Electric Corp 半導体装置の製造方法及び半導体製造装置
US20120312326A1 (en) * 2011-06-10 2012-12-13 Applied Materials, Inc. Methods for cleaning a surface of a substrate using a hot wire chemical vapor deposition (hwcvd) chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793475B (zh) * 2019-12-04 2023-02-21 大陸商拓荊科技股份有限公司 具有加熱裝置的溫度控制噴淋元件

Also Published As

Publication number Publication date
WO2014100047A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US10199235B2 (en) Liner and barrier applications for subtractive metal integration
US10163696B2 (en) Selective cobalt removal for bottom up gapfill
TWI830277B (zh) 製造熱穩定之低介電常數鰭式場效電晶體間隔物之方法
KR102598662B1 (ko) 실리콘 옥사이드 및 게르마늄 옥사이드에 대한 등방성 원자층 에칭
US11101174B2 (en) Gap fill deposition process
US11791181B2 (en) Methods for the treatment of workpieces
US8455352B1 (en) Method for removing native oxide and associated residue from a substrate
JP6181075B2 (ja) 原子水素を用いて基板表面を洗浄するための方法及び装置
JP2016139792A (ja) 異方性タングステンエッチングのための方法および装置
TW201626451A (zh) 高深寬比結構中的接觸窗清洗
CN110066984A (zh) 实现无缝钴间隙填充的方法
JP4914902B2 (ja) シリサイド形成方法とその装置
US9653311B1 (en) 3D NAND staircase CD fabrication utilizing ruthenium material
TW201534410A (zh) 使用低射頻偏壓頻率應用來清潔非晶碳沉積殘留物之清潔製程
TWI452629B (zh) A method of repairing a low dielectric film, a semiconductor manufacturing apparatus, and a memory medium
TWI608524B (zh) 使用熱線源來處理置於基材上之含鍺材料、含iii-v族化合物材料、或含ii-vi族化合物材料的方法及設備
TW201528366A (zh) 使用氟自由基乾式蝕刻鈷金屬的方法
US9305796B2 (en) Methods for etching silicon using hydrogen radicals in a hot wire chemical vapor deposition chamber
TWI796388B (zh) 減少或消除鎢膜中缺陷的方法
JP2022523315A (ja) メモリ用途のための垂直トランジスタの作製
TW202125704A (zh) 用於形成互連結構之方法及設備
TW201430925A (zh) 利用原子氫清潔基板結構的方法與設備
JP4476984B2 (ja) 半導体装置の作製方法
US10256112B1 (en) Selective tungsten removal
TW201443978A (zh) 用氫原子自基板移除光阻之方法