TW201405866A - 製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法 - Google Patents

製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法 Download PDF

Info

Publication number
TW201405866A
TW201405866A TW102113589A TW102113589A TW201405866A TW 201405866 A TW201405866 A TW 201405866A TW 102113589 A TW102113589 A TW 102113589A TW 102113589 A TW102113589 A TW 102113589A TW 201405866 A TW201405866 A TW 201405866A
Authority
TW
Taiwan
Prior art keywords
substrate
emitting diode
light
nano
micron
Prior art date
Application number
TW102113589A
Other languages
English (en)
Inventor
Hyuk-Jin Cha
Heon Lee
Eun-Seo Choi
Original Assignee
Hunetplus Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunetplus Co Ltd filed Critical Hunetplus Co Ltd
Publication of TW201405866A publication Critical patent/TW201405866A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02376Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

一種製造氮化物系發光二極體之方法。根據該方法,製造具有奈米至微米尺寸圖案之一基材,該奈米至微米尺寸圖案包括一底部及一凸部,該凸部之較低端部直徑係該發光二極體發光波長之0.1至3倍,以及製造形成於該基材上的一緩衝層,其係氮化鎵(GaN)層。根據該製造氮化物系發光二極體之方法,可顯著增進光擷取,且可經濟的形成該奈米至微米尺寸圖案。

Description

製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法
本發明係經提供以經濟地使用由奈米印刷或奈米印製(nano imprint)製程,製造奈米至微米尺寸圖案於一基材上,該基材係由藍寶石單晶、石英、矽或相似物所形成,並於圖案上形成氮化鎵或相似物,以提供具有減少的晶體缺陷的氮化物系發光二極體,藉此顯著增進發光二極體的性能。
發光二極體因作為未來照明的光源而受到矚目,且由於其相較於例如傳統的螢光燈、白熾燈之類的發光設備係壽命長、能源消耗低、並對環境友善的,目前已廣泛用作許多領域中的光源。特定而言,由於氮化物系發光二極體具有大的能階差,具有可發射綠光至藍光區域及近紫外光區域之光的優點,大幅擴張了其使用領域,例如LCD及行動電話的背光、汽車照明、交通燈號、一般照明等。然而,尚未能有效地改進氮化物系發光二極體的性能以滿足此類需求。
發光二極體的性能通常係根據注入電子所產生的光子數量之內部量子效率,以及根據可發射至發光二極體裝置外的 光子數量之光擷取效率(light extraction efficiency)而測定。
近來,雖然氮化物系發光二極體之內部光子效率由於磊晶生長(epitaxial growth)技術的發展得以大幅地改進,但光擷取效率相較於內部光子效率的改進係非常的低。當多量子井(multi quantum well,MQW)區域(其係發光二極體之活性層(發光層))中產生的光發射時,在發光二極體裝置、外部空氣、以及例如環氧樹脂、藍寶石基材或相似物的外部密封材料之間的界面係產生全反射。由於GaN的折射率為約2.5,較空氣(nair=1)、環氧樹脂(nepoxy=1.5)、及藍寶石(nsap.=1.77)的折射率更大,MQW中產生的光在離開裝置外的臨界角範圍為θGAN/air=23°、θGAN/epoxy=37°、及θGAN/sap.=45°,係非常受限的。因此,由臨界角範圍發出且朝裝置外部方向進入的光無法前進到外面,而完全被反射直到光線由裝置吸收,故光擷取效率僅為非常低的數%。此外,此將導致裝置發熱的問題。
為克服氮化物系發光二極體之限制,已有研究嘗試藉由於p-GaN層或是裝置表面的透明電極層中插入圖案,透過光的漫反射(diffused reflection)以有效地減少全反射。特定言之,已知在發光二極體製造程序中引入圖案尺寸均一且規則而緻密配置的次微米級光子晶體圖案,將大大提升光擷取效率。然而,考量到圖案化後形成p型電極、發光二極體的製造程序(例如包裝程序或相似者)及產率,難以實際商業化p-GaN層及透明電極層的圖案化程序。又或者,當在圖案化的藍寶石基材(PSS)上生長磊晶層時,類似的,由於光的漫反射效應,可以有效地增進光擷取效率。在PSS的情況下,實質上,係發展該技術以減少藍寶石 基材與GaN磊晶層之間晶格位移產生的階層錯位(treading dislocation)密度並增加內部光子效率,或是光擷取效率亦可顯著地增進,且可應用於發光二極體的製造程序。目前,在國內外發光二極體的製造公司中,使用PSS的產品係處於大量製造階段。
在目前PSS的情況下,PSS係主要經由光蝕刻製程以及乾式及濕式蝕刻製程製造,且大部分圖案的規格為約數微米。由於光的漫反射使得發光二極體的光擷取效率的增進程度係隨著圖案的尺寸、形狀、循環等有明顯的不同。已知當奈米光子晶體圖案施用至發光二極體的發光區域,可大幅地提升光擷取。因此,傳統商業化PSS的微米圖案的直徑及循環應減低到奈米等級以增進發光裝置的效率,且圖案的形狀應最佳化。
由於光蝕刻(用以製造PSS的圖案化技術)係相當昂貴且增加產品製造成本,因為施用了奈米至微米尺寸圖案,而顯著地降低經濟可行性,無法再經由傳統方法及PSS以輕易地增進光擷取效率。因此,為了額外增進發光二極體的效率,不使用昂貴的光蝕刻,需要可以經濟地製造該奈米至微米尺寸圖案的圖案化技術。
為了達成前述各方面,一種根據本發明之一具體實施態樣之製造氮化物系發光二極體之方法,係包括一第一步驟,形成一抗侵蝕(corrosion-proof)的抵抗薄膜在一基材的一個表面上或一奈米模具的一個表面上;一第二步驟,面對該抗侵蝕的抵 抗薄膜,定位並壓印該奈米模具或該基材,並且形成具有該奈米至微米尺寸圖案之該抗侵蝕的抵抗薄膜在該基材上;一第三步驟,蝕刻該基材,於其上形成有該奈米至微米尺寸圖案;以及一第四步驟,退火處理該經蝕刻的基材。
該奈米至微米尺寸圖案可包括一底部及一凸部,該凸部之較低端部直徑可為該發光二極體發光波長之0.1至3倍。
該奈米至微米尺寸圖案的該底部及該凸部可為交錯形成,且一第一凸部與鄰接該第一凸部之第二凸部間的距離可為該發光二極體發光波長之0.2至6倍,並且鄰接該第一凸部之第二凸部的循環可為該發光二極體發光波長之0.2至6倍。
該奈米至微米尺寸圖案可重複包含選自以下群組之任一者:半球形、三角錐形、四角錐形、六角錐形、圓錐形、及截球形。
該製造氮化物系發光二極體之方法可更包括一第五步驟,在第四步驟之後更形成一氮化鎵(GaN)緩衝層於該經退火處理的基材上,增進該發光二極體的光擷取效率。
該基材可為選自以下群組之任一者:藍寶石基材、矽基材及石英基材,且可包含選自以下群組之任一者:Al2O3、SiC、Si、SiO2、石英、AlN、GaN、Si3N4及MgO。
根據本發明之另一具體實施態樣的氮化物系發光二極體包括由製造氮化物系發光二極體之方法所製造之基材。該供發光二極體用之基材包括一基材、一凸部形成在該基材的一個表面上、以及一底部其上未形成有凸部,其中該凸部可重複形成;該凸部之較低端部直徑可為該發光二極體發光波長之0.1至3倍; 且第一凸部與鄰接該第一凸部之第二凸部間的形成循環可為該發光二極體發光波長之0.2至6倍。
在本發明中,由於發光二極體的基材圖案的直徑及循環降低到奈米等級,故最大化發光二極體的內部光子效率及光擷取效率。此外,提出了使用奈米印刷(或印製)蝕刻(lithography)技術(係經濟且非光學的圖案化技術)在基材上製造奈米至微米尺寸圖案的方法。由於奈米印刷(或印製)技術允許藉由經濟且簡單的程序將圖案轉移或形成於大的區域上,而不需要昂貴的曝光儀器,可增加產率。特定言之,由於圖案化發光二極體不需要精確的對齊(alignment),可適當地施用奈米印刷(或印製)製程(係一直接轉移圖案方法),而輕易地形成次微米圖案。因此,相較於傳統製造PSS的光蝕刻(photolithography)製程,當施用奈米印刷(或印製)技術於PSS製程時,可進一步增進產物的性能且可達到經濟可行性,並且使大量製造高效率PSS發光二極體成為可能。此外,當例如氮化鎵的材料形成於其上時,可顯著地減少形成的材料之晶體缺陷,發光裝置發出的光可散射而顯著地降低內部全反射的可能性,且可明顯地改進裝置的發光性能。
此外,本發明可應用於頂部發射發光二極體、倒裝(flip-chip)發光二極體、及垂直二極體,其為傳統的發光二極體。
A‧‧‧凸部之較低端部直徑
B‧‧‧第一凸部及第二凸部的形成循環
第1圖係顯示根據本發明之一具體實施態樣之製造氮化物系發光二極體之方法的示意圖。
第2圖係顯示可用於本發明具體實施態樣之多種圖案之例子的概念圖。
第3圖係根據本發明具體實施態樣所製造之發光二極體的概念圖。
以下將參照所附圖式描述本發明之具體實施態樣,使得於此技術領域中具有通常知識者可輕易地進行本發明。然而,本發明並非限於該具體實施態樣,而可以多種不同方式實施。在本敘述中類似的元件係以類似的元件符號表示。
第1圖係顯示根據本發明之一具體實施態樣之製造氮化物系發光二極體之方法的示意圖;第2圖係顯示可用於本發明具體實施態樣之多種圖案之例子的概念圖;而第3圖係根據本發明具體實施態樣所製造之發光二極體之概念圖。根據本發明具體實施態樣之製造氮化物系發光二極體之方法包括一第一步驟,形成一抗侵蝕的抵抗薄膜在一基材的一個表面上或一奈米模具的一個表面上;一第二步驟,面對該抗侵蝕的抵抗薄膜,定位並壓印該奈米模具或該基材,並且形成具有該奈米至微米尺寸圖案之該抗侵蝕的抵抗薄膜在該基材上;一第三步驟,蝕刻該基材,於其上形成有該奈米至微米尺寸圖案;以及一第四步驟,退火處理該經蝕刻的基材。
該基材可為矽基材或石英基材,或是作為LED基材的藍寶石基材。基材可包括選自以下群組之任一者:Al2O3、SiC、Si、SiO2、石英、AlN、GaN、Si3N4及MgO。
該抗侵蝕的抵抗薄膜可為包括氧化矽溶膠層的薄 膜。氧化矽溶膠層可藉由製造氧化矽溶膠,之後將氧化矽溶膠旋塗在基材或奈米模具上而形成;該氧化矽溶膠可藉由熔融原矽酸四乙酯(tetraethyl orthosilicate,TEOS)於一溶劑中而製造,所使用的溶劑可為例如乙醇、甲醇、二甲基甲醯胺(DMF)之類的有機溶劑,但不僅限於此。
當抗侵蝕的抵抗薄膜形成於基材的一個表面上,奈米至微米尺寸圖案可藉由面對該抗侵蝕的抵抗薄膜,定位並壓印奈米模具的奈米印製方法形成;並於第二步驟中形成具有該奈米至微米尺寸圖案之該抗侵蝕的抵抗薄膜於該基材上。
該抗侵蝕的抵抗薄膜可形成於該奈米模具的一個表面上,奈米至微米尺寸圖案可藉由面對該基材,定位並壓印奈米模具的奈米印刷方法形成;並於第二步驟中形成具有該奈米至微米尺寸圖案之該抗侵蝕的抵抗薄膜於該基材上。當抗侵蝕的抵抗薄膜形成於奈米模具的一個表面上,可更包括一固化製程。
該奈米至微米尺寸圖案的模具可為可撓性複製聚合物模具,且可由例如PDMS、h-PDMS、PVC之類的聚合物材料形成。模具的奈米至微米尺寸圖案可包括形成於該抗侵蝕的抵抗薄膜內的一底部及一凸部,只要形成於基材中之凸部的較低端部直徑A可形成奈米至微米尺寸圖案為該發光二極體發光波長之0.1至3倍。此處,如第3圖所示,較低端部直徑A意味凸部與底部接觸的表面處凸部表面的截面直徑。
於第二步驟中,壓印可於1至20大氣壓下進行,且壓印的溫度可為70至250℃。
藉由第三步驟印刷或印製於基材上的奈米至微米尺 寸圖案包括一底部及一凸部,且該凸部之較低端部直徑係該發光二極體發光波長之0.1至3倍。意即,假設發光二極體的發光波長為λ,凸部之較低端部直徑可為0.1λ至3λ,且發光二極體的發光波長可根據光波長施用,其係由發光二極體提供。當凸部之較低端部直徑在該範圍內,發光二極體的發光效率可顯著地提升。
奈米至微米尺寸圖案的底部及凸部可交錯形成,且一第一凸部與鄰接該第一凸部之第二凸部間的距離係該發光二極體發光波長之0.2至6倍;且假設發光二極體發光波長為λ,第一凸部及鄰接該第一凸部之第二凸部的形成循環B可為0.2λ至6λ。當奈米至微米尺寸圖案的循環在該範圍內,發光二極體的發光效率可顯著地提升。
如第2圖所示,奈米至微米尺寸圖案可藉由重複選自以下群組之任一者而形成:半球形、三角錐形、四角錐形、六角錐形、圓錐形、及截球形。由於圖案係使用奈米印刷或奈米印製,可根據主要模板(master template)製造及施用所欲形狀的圖案。
當奈米至微米尺寸圖案係以具規則性的三維形狀形成,可以減少形成於基材上的GaN層的晶格位移,且因此可減少階層錯位密度以增進內部光子效率。此外,當根據圖案的形狀而稍微增進光擷取效率時,可藉由二極體中的漫反射增進低光擷取效率。
第三步驟中的蝕刻可為蝕刻基材的方法,例如乾式蝕刻、濕式蝕刻、離子蝕刻方法、或相似者。當抗侵蝕的抵抗薄膜於蝕刻後留有一殘留層時,該殘留層可於一第五步驟(下文敘 述)之前移除。
第四步驟中的退火處理可於300至1000℃的溫度下進行,且奈米至微米尺寸圖案的圖案化的藍寶石基材(PSS)可藉由退火處理形成於基材上。
製造氮化物系發光二極體之方法可包括一第五步驟,於第四步驟之後更形成一GaN緩衝層於該經退火處理的基材上。當緩衝層形成於基材上,其中GaN形成奈米至微米尺寸圖案時,通常可減少GaN層形成於基材上時所產生的晶格位移,且可藉由奈米至微米尺寸圖案更精確地減少晶格位移。此外,由於圖案根據發光二極體的波長可具有均一尺寸及循環,降低光擷取效率的漫反射可被最小化,而可增進發光二極體的光擷取效率。
此外,在傳統光蝕刻的情況下,可圖案化的尺寸係限制在微米單位,但可施用本發明之奈米印刷或奈米印製方法以精確地形成奈米至微米尺寸圖案於基材上,且同時可簡化製程(與傳統的光蝕刻不同),簡化製造供發光二極體用之基材以及包含該基材之發光二極體的製程。
根據本發明另一具體實施態樣的發光二極體包括由製造氮化物系發光二極體之方法所製造之基材。該供發光二極體用之基材包括一基材,在該基材的一個表面上形成的一凸部,以及於未形成凸部處的底部。該凸部可重複形成;該凸部之較低端部直徑可為該發光二極體發光波長之0.1至3倍;且第一凸部與鄰接該第一凸部之第二凸部間的形成循環可為該發光二極體發光波長之0.2至6倍。
第3圖係本發明發光二極體之概念圖。參照第3圖, 藉由前述方法形成其上形成有奈米至微米尺寸圖案之供發光二極體用之基材,以及依序形成於其上的一n-GaN層、一MQW層、及一P-GaN層。該n-GaN層可更包括形成於其較低端部且由GaN組成之一緩衝層,且該緩衝層可減少晶格位移而增進光擷取效率。
此外,包括供發光二極體用之基材的發光二極體可減少形成包括緩衝層的GaN薄膜之後的剩餘應力,即使基材的直徑因為規則的奈米至微米尺寸圖案及形成於其上且由GaN組成的GaN緩衝層而增加,亦可避免其彎曲。
該發光二極體可為頂部發射發光二極體、可包含於倒裝發光二極體中、且可應用於垂直發光二極體。
前文係關於本發明一例示性具體實施態樣的描述,其用意為說明,不應被視為限制本發明。本文教示可適用於其他種類的裝置及設備。於本發明範圍及精神內的多種替代、改變、及差異對於此技術領域中具有通常知識者而言將是可理解的。

Claims (3)

  1. 一種製造於其上形成有奈米至微米尺寸圖案之供高效率氮化物系發光二極體用之基材之方法,其係包含:一第一步驟,形成一抗侵蝕(corrosion-proof)的抵抗薄膜在一基材的一個表面上或一奈米模具的一個表面上;一第二步驟,面對該抗侵蝕的抵抗薄膜,定位並壓印該奈米模具或該基材,並且形成具有該奈米至微米尺寸圖案之該抗侵蝕的抵抗薄膜在該基材上;一第三步驟,蝕刻該基材,於其上形成有該奈米至微米尺寸圖案;以及一第四步驟,退火處理該經蝕刻的基材,其中,該奈米至微米尺寸圖案係包含一底部及一凸部,該凸部之較低端部直徑係該發光二極體發光波長之0.1至3倍,該奈米至微米尺寸圖案的該底部及該凸部係交錯形成,且一第一凸部與鄰接該第一凸部之第二凸部間的距離係該發光二極體發光波長之0.2至6倍,以及該奈米至微米尺寸圖案係重複包含選自以下群組之任一者:半球形、三角錐形、四角錐形、六角錐形、圓錐形、及截球形。
  2. 如請求項1所述之製造於其上形成有奈米至微米尺寸圖案之供高效率氮化物系發光二極體用之基材之方法,其更包含一第五步驟,在第四步驟之後更形成一氮化鎵(GaN)緩衝層於該經退火處理的基材上,增進該發光二極體的光擷取效率 (light extraction efficiency)。
  3. 如請求項1所述之製造於其上形成有奈米至微米尺寸圖案之供高效率氮化物系發光二極體用之基材之方法,其中該基材係選自以下群組之任一者:藍寶石基材、矽基材及石英基材,且包含選自以下群組之任一者:Al2O3、SiC、Si、SiO2、石英、AlN、GaN、Si3N4及MgO。
TW102113589A 2012-04-18 2013-04-17 製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法 TW201405866A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120040150A KR101233062B1 (ko) 2012-04-18 2012-04-18 나노 급 패턴이 형성된 고효율 질화물계 발광다이오드용 기판의 제조방법

Publications (1)

Publication Number Publication Date
TW201405866A true TW201405866A (zh) 2014-02-01

Family

ID=47899503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102113589A TW201405866A (zh) 2012-04-18 2013-04-17 製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法

Country Status (7)

Country Link
US (1) US20150064821A1 (zh)
EP (1) EP2840618A4 (zh)
JP (1) JP2015515145A (zh)
KR (1) KR101233062B1 (zh)
CN (1) CN104221169A (zh)
TW (1) TW201405866A (zh)
WO (1) WO2013157816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560141B (en) * 2014-11-21 2016-12-01 Force Prec Instr Co Ltd Micro/nano-molding template and method of forming micro-structure on substrate by use of such micor/nano-molding template

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218132A (zh) * 2013-05-29 2014-12-17 苏州新纳晶光电有限公司 一种氮化镓图形衬底的制备方法
KR101436743B1 (ko) 2013-06-20 2014-09-02 고려대학교 산학협력단 수직형 발광 소자의 제조 방법
EP3298181A1 (de) 2015-05-21 2018-03-28 EV Group E. Thallner GmbH Verfahren zur aufbringung einer überwuchsschicht auf eine keimschicht
KR102382440B1 (ko) 2015-06-22 2022-04-05 삼성전자주식회사 반도체 발광소자
JP6841198B2 (ja) * 2017-09-28 2021-03-10 豊田合成株式会社 発光素子の製造方法
CN110517949B (zh) * 2019-07-29 2021-05-11 太原理工大学 一种利用SiO2作为衬底制备非极性a面GaN外延层的方法
CN114068779B (zh) * 2021-11-16 2024-04-12 黄山博蓝特光电技术有限公司 应用于直下式背光led芯片的复合型衬底及其制备方法
CN115172554B (zh) * 2022-09-02 2022-11-18 元旭半导体科技股份有限公司 一种高亮度的纳米图形衬底结构的制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772905A (en) * 1995-11-15 1998-06-30 Regents Of The University Of Minnesota Nanoimprint lithography
JP2003017745A (ja) * 2001-06-29 2003-01-17 Shiro Sakai 窒化ガリウム系発光素子
DE10306779A1 (de) * 2002-12-30 2004-07-22 Osram Opto Semiconductors Gmbh Verfahren zum Aufrauhen einer Oberfläche eines Körpers und optoelektronisches Bauelement
JP2005064492A (ja) * 2003-07-28 2005-03-10 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
JP2005136106A (ja) * 2003-10-29 2005-05-26 Kyocera Corp 単結晶サファイア基板とその製造方法及び半導体発光素子
US7648641B2 (en) * 2005-06-17 2010-01-19 Hitachi Global Storage Technologies Netherlands B.V. Method and apparatus for creating a topographically patterned substrate
JP4637781B2 (ja) * 2006-03-31 2011-02-23 昭和電工株式会社 GaN系半導体発光素子の製造方法
JP4908381B2 (ja) * 2006-12-22 2012-04-04 昭和電工株式会社 Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
US20090015142A1 (en) * 2007-07-13 2009-01-15 3M Innovative Properties Company Light extraction film for organic light emitting diode display devices
JP2009054882A (ja) * 2007-08-28 2009-03-12 Univ Of Tokushima 発光装置の製造方法
KR100994034B1 (ko) * 2008-05-06 2010-11-11 네오세미테크 주식회사 고효율 발광 다이오드용 사파이어 기판의 제조방법
KR100957570B1 (ko) * 2008-07-25 2010-05-11 이헌 고효율 발광 다이오드용 기판의 제조방법
JP2010103424A (ja) * 2008-10-27 2010-05-06 Showa Denko Kk 半導体発光素子の製造方法
DE102009018286A1 (de) * 2009-04-21 2010-10-28 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips
JP5240171B2 (ja) * 2009-11-20 2013-07-17 住友電気工業株式会社 窒化ガリウム系半導体、半導体光素子、半導体レーザ、発光ダイオード
KR100974288B1 (ko) * 2010-01-13 2010-08-05 한국기계연구원 나노임프린트를 이용한 금속 산화박막 패턴 형성방법 및 이를 이용한 led 소자의 제조방법
WO2012176728A1 (ja) * 2011-06-23 2012-12-27 旭化成株式会社 微細パタン形成用積層体及び微細パタン形成用積層体の製造方法
US9391236B2 (en) * 2011-08-31 2016-07-12 Asahi Kasei E-Materials Corporation Substrate for optics having a plurality of dot lines, semiconductor light emitting device. and exposure apparatus
JP2013077599A (ja) * 2011-09-29 2013-04-25 Hitachi High-Technologies Corp スタンパ、インプリント装置及び処理製品並びに処理製品製造装置及び処理製品製造方法
TWI489522B (zh) * 2012-03-12 2015-06-21 Asahi Kasei E Materials Corp Mold, resist layer and its manufacturing method and concave and convex structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI560141B (en) * 2014-11-21 2016-12-01 Force Prec Instr Co Ltd Micro/nano-molding template and method of forming micro-structure on substrate by use of such micor/nano-molding template

Also Published As

Publication number Publication date
EP2840618A4 (en) 2015-05-06
KR101233062B1 (ko) 2013-02-19
WO2013157816A1 (ko) 2013-10-24
CN104221169A (zh) 2014-12-17
JP2015515145A (ja) 2015-05-21
EP2840618A1 (en) 2015-02-25
US20150064821A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
TWI528584B (zh) 製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法
TW201405866A (zh) 製造供高效率氮化物系發光二極體用之奈米圖案化基材之方法
EP2940741B1 (en) Reversely-installed photonic crystal led chip and method for manufacturing same
TWI659546B (zh) 發光裝置及製造發光裝置之方法
KR101913903B1 (ko) 광학용 기판의 제조방법
KR101023135B1 (ko) 이중요철구조의 기판을 갖는 반도체 발광소자 및 그 제조방법
US8957449B2 (en) Method for manufacturing nano-imprint mould, method for manufacturing light-emitting diode using the nano imprint mould manufactured thereby, and light-emitting diode manufactured thereby
KR101233768B1 (ko) 나노 임프린트 몰드 제조방법, 이 방법에 의해 제조된 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드
KR101535852B1 (ko) 나노구조체 전사를 이용한 발광다이오드 제조방법과 그 발광다이오드
KR100994034B1 (ko) 고효율 발광 다이오드용 사파이어 기판의 제조방법
KR20100011835A (ko) 고효율 발광 다이오드용 기판의 제조방법
Lee et al. The influence of nanoimprinting surface structures on the optical efficiency of GaN-based LEDs
KR101364722B1 (ko) 나노 임프린트 몰드 제조 방법, 그것에 의해 제조된 나노 임프린트 몰드 및 그것을 이용한 발광 다이오드 제조 방법
CN112993098B (zh) 一种图形化衬底、发光二极管及其制作方法
Lee et al. 2-inch full wafer nanoimprinting for GaN-based LEDs
Lee et al. Light extraction enhancement by the fabrication of sub-micron structures on GaN-based LEDs
Chiu et al. High light-extraction efficiency GaN-based vertical injection LEDs with surface nipple array
KR20140039414A (ko) 나노 임프린트 몰드를 이용한 발광다이오드 제조방법 및 이 방법에 의해 제조된 발광다이오드