TW201219776A - Microfluidic device with conductivity sensor - Google Patents

Microfluidic device with conductivity sensor Download PDF

Info

Publication number
TW201219776A
TW201219776A TW100119253A TW100119253A TW201219776A TW 201219776 A TW201219776 A TW 201219776A TW 100119253 A TW100119253 A TW 100119253A TW 100119253 A TW100119253 A TW 100119253A TW 201219776 A TW201219776 A TW 201219776A
Authority
TW
Taiwan
Prior art keywords
probe
microfluidic device
nucleic acid
amplification
sample
Prior art date
Application number
TW100119253A
Other languages
Chinese (zh)
Inventor
Mehdi Azimi
Kia Silverbrook
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201219776(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201219776A publication Critical patent/TW201219776A/en

Links

Abstract

A microfluidic device for processing a fluid, the microfluidic device having an inlet for receiving the fluid, functional sections for processing the fluid, a flow-path extending from the inlet into at least some of the functional sections, CMOS circuitry for operative control of the functional sections, and, a conductivity sensor with a first terminal and a second terminal spaced apart along the flow-path, and a first electrode and a second electrode positioned between the first terminal and the second terminal and spaced apart along the flow-path, wherein, the CMOS circuitry is configured to generate a current between the first terminal and the second terminal, and measure a voltage across the first electrode and the second electrode such that conductivity of the fluid in the flow-path is derived from the current and the measured voltage.

Description

201219776 六、發明說明 . 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特別 V. 是,本發明關於用於分子診斷之微流和生化處理及分析。 【先前技術】 分子診斷已用於可於病徵顯現之前,提供早期疾病偵 測預示之領域。分子診斷試驗係用於偵測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康健康照護的發生、增進病患預後(patient outcome)、改進疾病管理及個體化患者照護。分子診斷的 許多技術係基於自生物樣本(諸如血液或唾液)萃取及擴增 之特定核酸(去氧核糖核酸(DNA)以及核糖核酸(RNA)兩者) 的偵測及辨識。核酸鹼基的互補特性使得經合成DNA(寡 核苷酸)短序列結合(雜交)至用於核酸試驗之特定核酸序 * 列。若發生雜交,則互補序列存在於樣本中。此使得例如 H 預測個人未來會得到的疾病、判定感染性病原體的種類及 致病性、或判定個人對藥物的反應成爲可能。 以核酸爲基之分子診斷試驗 201219776 A以核酸爲基之試驗具有四個獨立步驟: 1 .樣本製備 2. 核酸萃取 3. 核酸擴增(任意的) 4. 偵測 許多樣本類型,諸如血液、尿液、痰和組織樣本’係 用於基因分析。診斷試驗決定所需的樣本類型,因並非所 有樣本代表疾病進程。這些樣本具有各種組分,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的偵測。因此,於核酸試驗開始時經常 需要純化及/或濃縮步驟。 血液爲較常尋求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促進 凝集且在體外維持活性》爲抑制凝聚作用,在純化及濃縮 之前令試樣與諸如乙二胺四乙酸(EDTA)之試劑混合。通 常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅血球 佔細胞物質之約99%,但其不帶有DNA因彼不具細胞 核。此外,紅血球含有諸如血紅素之可能干擾下游核酸擴 增程序(描述於下)的成分。可藉由將紅血球差示 (differentially)溶解於溶解溶液中來移除紅血球,而留下 剩餘的完整細胞物質,其可接著使用離心而與樣本分離。 此提供可由其萃取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程取決於樣本及待實施之診斷 分析。例如,用於萃取病毒RNA之規程與用於萃取基因 201219776 組DN A之規程相當不同。然而,自標靶細胞萃取核酸通 常包含細胞溶解步驟及接續的核酸純化。細胞溶解步驟使 細胞及細胞核膜破裂,而釋放出遺傳物質。此經常使用溶 胞清潔劑來完成,溶胞清潔劑係諸如十二烷基硫酸鈉,其 亦使存在於細胞中之蛋白質大量變性。 接著以醇(通常爲冰乙醇或異丙醇)沉澱步驟純化核 酸,或是經由固相純化步驟,在高濃度的離液鹽 (chaotropic salt)存在下,通常於分飽塔中的砂膠基質、 樹脂或順磁性珠上,接著清洗及以低離子強度緩衝劑進行 洗提。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之蛋 白酶,以進一步純化樣本。 其他溶胞方法包括經由超聲振動之機械式溶胞以及將 樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質 中’尤其是若標靶來自致病性來源。核酸擴增提供選擇性 擴增(即,複製)特定標靶(就可偵測程度而言爲低濃度者) 的能力。 最常用之核酸擴增技術爲聚合酶鏈反應(PC R)。PCR 係業界已知悉,以及於 E. van Pelt-Verkuil等人之 Principles and Technical Aspects of PCR Amplification, Springer,2 008中提供此類反應之廣泛完整的描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標 靶DNA序列。若欲(藉由PCR)擴增rna,則首先必須使 用名爲反轉錄酶的酶將之轉錄爲cDNA(互補DNA)。隨 201219776 後,藉由PCR擴增得到的cDNA。 PCR爲指數型方法,只要維持反應的條件爲可接受 的,則其可繼續進行。反應之成分爲:201219776 VI. Description of the Invention [Technical Field] The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to microfluidic and biochemical treatment and analysis for molecular diagnostics. [Prior Art] Molecular diagnosis has been used in the field of providing early detection of disease before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes related to health-prone genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the incidence of ineffective health care Improve patient outcomes, improve disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobase allows for the binding (hybridization) of a synthetic DNA (oligonucleotide) short sequence to a particular nucleic acid sequence* for use in nucleic acid assays. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will get in the future, determine the type and pathogenicity of the infectious pathogen, or determine the individual's response to the drug. Nucleic Acid-Based Molecular Diagnostic Test 201219776 A The nucleic acid-based assay has four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (arbitrary) 4. Detection of many sample types, such as blood, Urine, sputum and tissue samples are used for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the beginning of a nucleic acid assay. Blood is one of the more commonly sought sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombosis promotes agglutination and maintains activity in vitro. To inhibit coagulation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of the cellular material, but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by dissolving the red blood cells differentially in the dissolution solution leaving the remaining intact cellular material which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid can be extracted. The exact procedure used to extract nucleic acids depends on the sample and the diagnostic analysis to be performed. For example, the protocol used to extract viral RNA is quite different from the protocol used to extract the gene 201219776 DN A. However, extracting nucleic acids from a target cell typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often accomplished using a lyophilized detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells. The nucleic acid is then purified by an alcohol (usually ice ethanol or isopropanol) precipitation step, or via a solid phase purification step, in the presence of a high concentration of chaotropic salt, usually in a subsaturated column. , resin or paramagnetic beads, followed by washing and elution with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protein-cleaving proteinase to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. The target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target (in the case of a low concentration of detectable levels). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PC R). The PCR is known in the art and a broad and complete description of such reactions is provided in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2000. PCR is a useful technique for amplifying a target DNA sequence relative to a complex DNA background. If the rna is to be amplified (by PCR), it must first be transcribed into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Following 201219776, the resulting cDNA was amplified by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1.引物對-具有約10-30個與毗鄰(flanking)標靶序 列區互補之核苷酸的短單股DNA 2· DNA聚合酶-合成DNA之熱穩定性酶 3·去氧核糖核苷三磷酸(dNTP)-提供整合至新合成 的DNA股之核苷酸 4-緩衝劑-提供DNA合成之最佳化學環境 PCR通常包含將這些反應物置於含有經萃取之核酸的 小管(〜10-50微升)。將管放置於熱循環器(thermal cycler) 中;一種令反應經受一連串不等量時間之不同溫度的儀 器。各熱循環的標準規程(protocol)包括變性相、黏著相 及延伸相。延伸相有時代表引物延伸相。除了此三-步驟 規程外’可採用二-步驟熱規程,於其中黏著及延伸相合 倂。變性相普通包含將反應溫度升溫至90 - 95 ° C以使 DNA股變性;於黏著相中,將溫度降低至〜50-6CTC以供 引物黏著;接著於延伸相中,將溫度升溫至最佳DNA聚 合酶活性溫度60-72°C,以供引物延伸。此方法重複循環 約2 0-4〇次,最終結果爲產生數百萬拷貝之引物之間的標 靶序列。 已發展出用於分子診斷之許多標準PCR規程之變 體,其中包括諸如多引物組 PCR、聯結子引發(linker-primed)PCR、直接 PCR、重複序列(tandem)PCR、即時 201219776 PCR以及反轉錄酶PCR。 多引物組PCR在單一PCR混合物中使用多重引物組 以產生對不同DNA序列具專一性之不同大小之擴增子。 藉由一次標靶多個基因,由單一試驗可得到額外的資訊 (以.其他方式則需要數次試驗)。最佳化多引物組PCR更爲 困難,因其需要選取具近似黏著溫度之引物及具近似長度 與鹼基組成之擴增子以確保各擴增子之擴增效率相等。 聯結子引發(linker-primed)PCR,又稱爲接合接合子 (ligation adaptor)PCR,爲能使複雜DNA混合物中實質上 所有DNA序列之核酸擴增的方法,而不需要標靶-專一性 引物。此方法首先以合適的限制性內核酸酶來剪切(digest) 標靶DNA群體。接著使用接合酶,使具有合適的懸伸 (overhanging)端之雙股寡核苷酸聯結子(亦稱爲接合子)與 標靶DNA片段之端子接合。接下來使用對聯結子序列具 有專一性之寡核苷酸引物實施核酸擴增。藉此,可擴增毗 鄰聯結子寡核苷酸之DNA來源的所有片段。 直接PCR描述一種直接於樣本上實施PCR而不需要 任何核酸萃取(或使用最少的核酸萃取)之系統。長久以來 認爲,PCR反應受到存在於未純化的生物樣本中之許多成 分的抑制,諸如血液中的原血紅素成分。傳統上,於製備 反應混合物之前,PCR需要加強純化標靶核酸。然而,利 用化學性質的適當變化及樣本濃縮,可以最少化DNA純 化而進行PCR或進行直接PCR。用於直接PCR之PCR化 學性質的調整包括增加緩衝劑強度、使用高活性及高持續 -9 - 201219776 合成能力(processivity)之聚合酶及與潛在聚合酶抑制劑螯 合之添加物。 重複序列PCR利用兩次獨立的核酸擴增以增進正確 擴增子的擴增機率。重複序列PCR中的一類型爲巢式 PCR.,其中使用兩對PCR引物,以於分別的核酸擴增進行 單一基因座擴增。第一對引物與標靶核酸序列外部區域的 核酸序列雜交。第二次擴增中所使用的第二對引物(巢式 引物)結合於第一PCR產物中並且產生含有標靶核酸的第 二PCR產物(較第一 PCR產物爲短)。此策略所運用的論 理爲:若於第一次核酸擴增期間因失誤而擴增錯誤的基因 座,由第二對引物再次擴增錯誤的基因座的機率非常低, 因此確保了專一性。 使用即時PCR或定量PCR以即時量測PCR產物之 量。藉使用含有螢光團的探針或螢光染料以及反應中的參 考標準,可測定樣本中之核酸的最初含量。此特別有用於 其中治療選擇可能取決於樣本中所載病原體而有所不同之 分子診斷。 反轉錄酶PCR(RT-PCR)係用於自RNA來擴增DNA。 反轉錄酶爲將RNA反轉錄成互補DNA(cDNA)之酶,接著 藉由 PCR擴增 cDNA。RT-PCR廣泛地用於表現型態 (expression pro filing)以判定基因的表現或辨識RNA轉錄 本(包括轉錄起始及終止位點)之序列。其亦用於擴增RNA 病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。 恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 -10- 201219776 應期間之標靶DNA的熱變性,因此不需要複雜的機械。 恆溫核酸擴增方法可因此原始位置進行或於實驗室環境外 易於被操作。包括股取代擴增(Strand Displacement Amplification)、轉錄介導擴增(Transcription Mediated Amplification)、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增 (Recombinase Polymerase Amplification)、滾動循環擴增 (Rolling Circle Amplification)、分枝型擴增(Ramification Amplification)、解旋酶依賴性恆溫 DNA擴增(1^1丨〇336-Dependent Isothermal DNA Amplification)及環开多恆溫擴增 (Loop-Mediated Isothermal Amplification)之一些恒溫核 酸擴增方法已被敘述。 恆溫核酸擴增法不依賴模板D N A之持續加熱變性來 產生作爲進一步擴增之模板的單股分子,而是依賴諸如於 常溫下藉由專一性限制內核酸酶之DNA分子的酶性切 割,或是利用酶分開DNA股之其他方法。 股取代擴增(SDA)係依賴特定限制性酶切割該經半修 飾(hemi-modified)之DNA的未經修飾股的能力,及5,-3’外核酸酶-缺乏的聚合酶延伸並取代下游股之能力。然 後,指數型核酸擴增係藉由偶合有義(sense)與反義 (antisense)反應來達成,其中來自有義反應之股取代係作 爲反義反應之模板。使用不以傳統方式切割DNA而是於 DNA之一股上產生切口之切口酶(諸如 N. Alwl、N. BstNBl、及Mlyl)對此反應有用。SDA已藉由使用熱穩定 -11 - 201219776 限制性酶(Aval)及熱穩定性外-聚合酶(Bst聚合酶)之組合 來改進。此組合顯現出使反應的擴增效率由1 08倍擴增增 加至1〇1()倍擴增,從而可使用此技術來擴增獨特的單拷 貝分子。 轉錄介導擴增(TMA)及依賴核酸序列擴增(NASBA) 係使用RNA聚合酶來複製RNA序列而非對應之基因組 DN A。此技術使用兩種引物及二或三種酶;RNA聚合酶、 反轉錄酶及任意的RNase Η (若反轉錄酶不具有RNase活 性)。一種引物含有用於RN A聚合酶之啓動子序列。在核 酸擴增的第一步驟中,此引物於限定的位置與標靶核糖體 RNA(rRNA)雜交。藉由自啓動子弓丨物的3'端開始延伸,反 轉錄酶產生標靶rRNA之DNA拷貝。若存在另外的RNase Η,則所得的RNA : DNA雙股中的RNA經由反轉錄酶之 RNase活性而被分解。接著,第二引物結合至該DNA拷 貝。藉反轉錄酶自此引物的末端合成新的DNA股而產生 雙股DNA分子。RNA聚合酶辨識DNA模板中的啓動子序 列,並開始轉錄。各個新合成的RNA擴增子再進入過程 中並作爲新複製循環之模板。 在重組酵素聚合酶擴增(RPA)中,特定DNA片段 之恆溫擴增係經由將反向寡核苷酸引物與模板DNA結 合,再藉由 DNA聚合酶延伸來達成。將雙股 DNA (dsDNA )模板變性並不需要熱。相反地,rPA採用重組 酵素-引物複合物來掃描dsDNA並促進在同源位點之股交 換。由此產生之結構再經由與經取代之模板股交互作用的 -12- 201219776 單股DNA結合蛋白來穩定化,從而防止該引物經由分支 遷移(branch migration)退出。重組酵素解開使得股取代 DNA聚合酶(諸如枯草芽孢桿菌p〇丨i(Bsu)之大片段)可 接近寡核苷酸之3·端,再接著延伸引物。指數型核酸擴增 係經由重複循環此過程來完成。 解旋酶依賴性擴增(HDA )模擬體內系統,其使用 DN A解旋酶來產生用於引物雜交之單股模板,接著藉由 DNA聚合酶延伸引物。在HD A反應之第一個步驟中,解 旋酶沿著標靶DNA穿過,破壞連接兩股之氫鍵,該兩股 再藉由單股結合蛋白連結。藉由解旋酶使單股標靶區暴露 後可允許引物黏著》然後,DNA聚合酶利用游離脫氧核 糖核苷三磷酸(dNTPs)將各引物之3,端延伸以製造二組 DN A複製子。該兩組複製之dsDN A股獨立進入下一個 HDA循環,造成該標靶序列指數型核酸擴增。 其他以DNA爲基礎之恆溫技術包括滾動循環擴增 (RCA ),其中DNA聚合酶持續圍繞環形DNA模板延伸 引物,產生由許多該環之重複拷貝所組成的長 DNA產 物。在反應結束前,該聚合酶產生成千上萬份該環形模板 的拷貝,且該拷貝之鏈連繫著該原始標靶DNA。如此可 允許進行標靶之空間解析及該信號之快速核酸擴增。1小 時內可產生至多1〇12份模板拷貝。分枝型擴增爲RCA之 —種變體,其使用封閉之環形探針(C -探針)或掛鎖探 針及具有高持續合成能力(processivity)之DNA聚合酶以 在恆溫條件下將C-探針進行指數型擴增。 -13- 201219776 環形恆溫擴增(LAMP)提供高選擇性且採用DNA聚 合酶及四個一組之經過特別設計可辨識標靶DNA上共6 個不同序列的引物。包含標靶DNA之有義及反義股序列 的內引物啓動LAMP。藉由外引物啓動之後續的股取代 DNA合成作用會釋出單股DNA。此單股DNA可作爲由該 與標靶之另一端雜交的第二內引物及外引物啓動之DNA 合成作用的模板,而產生臂環(stem-loop)DNA結構。在 隨後之LAMP循環中,一個內引物與產物上之環雜交並起 始取代DN A合成作用,產生該原始臂環DNA及具有兩倍 長之臂的新臂環DNA。該循環反應在不到一小時內持續 累積1〇9份之標靶拷貝。該最終產物爲具有數個該標靶之 反向重複子及菜花狀結構(其具有多個經由同一股中交替 反向之標靶重複子間黏連形成的環)的臂環DN A。 完成核酸擴增後,必須分析該擴增產品以測定是否產 生預期之擴增子(該標靶核酸之擴增量)。分析產物的方 法可從透過凝膠電泳法單純測定該擴增子之大小到使用 DNA雜交鑑定該擴增子之核苷酸組成。 凝膠電泳爲檢查該核酸擴增過程中是否產生預期之擴 增子最簡單的方法。凝膠電泳採用施用於凝膠基質之電場 以分離DNA片段。該帶負電荷之DNA片段將以不同速度 通過基質,此主要取決於其大小。電泳完成後可將凝膠中 之片段染色使其可視化。溴化乙錠爲一種常用之染色,其 在紫外光下顯現出螢光。1. Primer pair - short single strand DNA having about 10-30 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis DNA thermostable enzyme 3·deoxyribonucleoside Triphosphate (dNTP) - provides nucleotides to the newly synthesized DNA strands - 4 buffers - the best chemical environment for DNA synthesis. PCR usually involves placing these reagents in small tubes containing extracted nucleic acids (~10- 50 microliters). The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. The standard protocols for each thermal cycle include the denatured phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension are combined. The denatured phase generally involves heating the reaction temperature to 90-95 ° C to denature the DNA strand; in the adhesive phase, the temperature is lowered to ~50-6 CTC for primer adhesion; then the temperature is raised to the optimum in the extended phase. The DNA polymerase activity temperature is 60-72 ° C for primer extension. This method repeats the cycle by about 20-4 times, with the end result being a target sequence between the millions of copies of the primer. Variants of many standard PCR protocols for molecular diagnostics have been developed, including, for example, multi-primer PCR, linker-primed PCR, direct PCR, tandem PCR, instant 201219776 PCR, and reverse transcription Enzyme PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate amplicons of different sizes that are specific for different DNA sequences. Additional information can be obtained from a single experiment by targeting multiple genes at once (in other ways, several trials are required). Optimizing the multi-primer set PCR is more difficult because it requires the selection of primers with approximate adhesion temperatures and amplicon of approximate length and base composition to ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a method for amplifying nucleic acids of virtually all DNA sequences in a complex DNA mixture without the need for target-specific primers . This method first digests the target DNA population with a suitable restriction endonuclease. The ligated enzyme is then used to ligate a double stranded oligonucleotide linker (also known as a zygote) with a suitable overhanging end to the terminal of the target DNA fragment. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. Thereby, all fragments derived from the DNA of the adjacent linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without the need for any nucleic acid extraction (or with minimal nucleic acid extraction). It has long been believed that the PCR reaction is inhibited by many components present in unpurified biological samples, such as the protohemoglobin component in the blood. Traditionally, PCR requires enhanced purification of target nucleic acids prior to preparation of the reaction mixture. However, with appropriate chemical changes and sample concentration, PCR can be performed or direct PCR can be performed with minimal DNA purification. The chemical properties of the PCR used for direct PCR include the addition of buffer strength, the use of high activity and high persistence -9 - 201219776 processivity polymerase and additions to potential polymerase inhibitors. Repeated sequence PCR utilizes two independent nucleic acid amplifications to increase the probability of amplification of the correct amplicon. One type of repeat PCR is nested PCR. Two pairs of PCR primers are used to perform single locus amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. A second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product (short in the first PCR product) containing the target nucleic acid. The rationale used in this strategy is that if the wrong locus is amplified by mistakes during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very low, thus ensuring specificity. The amount of PCR product was measured in real time using either real-time PCR or quantitative PCR. The initial amount of nucleic acid in the sample can be determined by using a probe containing a fluorophore or a fluorescent dye and a reference standard in the reaction. This is particularly useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. The reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), followed by PCR amplification of cDNA. RT-PCR is widely used in expression pro filing to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus. Thermostatic amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DNA during amplification of anti--10-201219776, thus eliminating the need for complex machinery. The thermostatic nucleic acid amplification method can be performed at the original location or easily outside the laboratory environment. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Expansion Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification, and Loop-Mediated Amplification (Loop-Mediated) Some thermostatic nucleic acid amplification methods of Isothermal Amplification have been described. The constant temperature nucleic acid amplification method does not rely on the continuous heat denaturation of the template DNA to produce a single strand of the molecule as a template for further amplification, but relies on enzymatic cleavage of a DNA molecule such as an internal nuclease which is specifically restricted at a normal temperature, or It is another method of separating DNA strands by enzymes. The strand-substituted amplification (SDA) is dependent on the ability of a particular restriction enzyme to cleave the unmodified strand of the hemi-modified DNA, and the 5,-3' exonuclease-deficient polymerase extends and replaces The ability of downstream stocks. The exponential nucleic acid amplification is then achieved by coupling a sense and an antisense reaction, wherein the strand substitution from the sense reaction is used as a template for the antisense reaction. A nicking enzyme (such as N. Alwl, N. BstNBl, and Mlyl) which cleaves DNA on one of the DNA strands without cutting the DNA in a conventional manner is useful for this reaction. SDA has been improved by using a combination of thermostable -11 - 201219776 restriction enzyme (Aval) and thermostable exo-polymerase (Bst polymerase). This combination appears to increase the amplification efficiency of the reaction from 1 08-fold amplification to 1 〇 1 (fold-fold amplification) so that this technique can be used to amplify unique single-copy molecules. Transcription-mediated amplification (TMA) and nucleic acid-dependent sequence amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than the corresponding genomic DN A. This technique uses two primers and two or three enzymes; RNA polymerase, reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RN A polymerase. In the first step of nucleic acid amplification, the primer hybridizes to a target ribosomal RNA (rRNA) at a defined location. The reverse transcriptase produces a DNA copy of the target rRNA by extension from the 3' end of the promoter. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the RNase activity of the reverse transcriptase. Next, the second primer binds to the DNA copy. A double-stranded DNA molecule is produced by synthesizing a new DNA strand from the end of this primer by reverse transcriptase. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each newly synthesized RNA amplicon re-enters the process and serves as a template for a new replication cycle. In recombinant enzyme polymerase amplification (RPA), isothermal amplification of a specific DNA fragment is achieved by binding a reverse oligonucleotide primer to a template DNA and then by DNA polymerase extension. Denaturation of the double-stranded DNA (dsDNA) template does not require heat. In contrast, rPA uses a recombinant enzyme-primer complex to scan dsDNA and facilitate stock exchange at homologous sites. The resulting structure is then stabilized via a -12-201219776 single-stranded DNA binding protein that interacts with the substituted template strand, thereby preventing the primer from exiting via branch migration. The recombinant enzyme is unraveled such that the strand-substituted DNA polymerase (such as a large fragment of B. subtilis p〇丨i (Bsu)) is accessible to the 3' end of the oligonucleotide, followed by extension of the primer. The exponential nucleic acid amplification is accomplished by repeating this process. The helicase-dependent amplification (HDA) mimics the in vivo system, which uses DN A helicase to generate a single-strand template for primer hybridization, followed by extension of the primer by DNA polymerase. In the first step of the HD A reaction, the helicase passes through the target DNA, destroying the hydrogen bonds linking the two strands, which are then joined by a single strand of binding protein. Primer adhesion is allowed by exposure of the single-stranded target region by helicase. Then, DNA polymerase uses free deoxyribonucleoside triphosphates (dNTPs) to extend the 3 ends of each primer to create two sets of DN A replicons. . The two sets of replicated dsDN A strands independently enter the next HDA cycle, resulting in amplification of the target sequence exponential nucleic acid. Other DNA-based thermostating techniques include rolling cycle amplification (RCA) in which DNA polymerase continues to extend primers around a circular DNA template, resulting in a long DNA product consisting of a number of replicate copies of the loop. Prior to the end of the reaction, the polymerase produces tens of thousands of copies of the circular template, and the copy strand is ligated to the original target DNA. This allows for spatial resolution of the target and rapid nucleic acid amplification of the signal. A maximum of 1 to 12 template copies can be generated in 1 hour. Branched-type amplification is a variant of RCA that uses a closed circular probe (C-probe) or a padlock probe and a DNA polymerase with high sustained processivity to hold C under constant temperature conditions. - The probe is subjected to exponential amplification. -13- 201219776 Circular Thermostat Amplification (LAMP) provides high selectivity and uses DNA polymerase and four sets of primers designed to recognize a total of six different sequences on the target DNA. The inner primer containing the sense and antisense strand sequences of the target DNA initiates LAMP. Subsequent strand-initiated DNA synthesis initiated by the outer primer will release a single strand of DNA. This single-stranded DNA can serve as a template for DNA synthesis initiated by the second internal primer and the external primer which hybridize to the other end of the target, thereby producing a stem-loop DNA structure. In the subsequent LAMP cycle, an internal primer hybridizes to the loop on the product and begins to replace DN A synthesis, producing the original armor loop DNA and the new armor loop DNA with twice the length of the arm. The cycle reaction continued to accumulate 1 〇 9 copies of the target copy in less than an hour. The final product is an arm ring DN A having a plurality of inverted repeats of the target and a cauliflower-like structure having a plurality of loops formed by alternating inter-segment adhesions in the same strand. After completion of the nucleic acid amplification, the amplified product must be analyzed to determine whether or not the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product can be carried out by simply measuring the size of the amplicon by gel electrophoresis to identify the nucleotide composition of the amplicon using DNA hybridization. Gel electrophoresis is the easiest way to check if the expected amplicon is produced during amplification of the nucleic acid. Gel electrophoresis uses an electric field applied to a gel matrix to separate DNA fragments. The negatively charged DNA fragments will pass through the matrix at different rates, depending on their size. After electrophoresis is completed, the fragments in the gel can be stained for visualization. Ethidium bromide is a commonly used dye which exhibits fluorescence under ultraviolet light.

該片段之大小係經由與 DNA尺寸標記(DNA -14- 201219776 ladder )相比較來測定,該標記含有已知大小之〇ΝΑ片段 且在凝膠上與擴增子並排泳行。由於該寡核苷酸引物結合 至毗鄰該標靶DNA之特定位點,該擴增產物之大小可依 凝膠上已知大小之帶來預測及偵測。爲了確定該擴增子之 特性,或者若已產生數個擴增子,則通常採用與該擴增子 雜交的DNA探針。 DNA雜交係指藉由互補鹼基配對形成雙股DNA。用 於明確辨識特定擴增產物之DNA雜交技術需要使用約20 個核苷酸長之DNA探針。若該探針具有與擴增子(標 靶)DNA序列互補之序列,雜交將會在溫度、PH値和離 子濃度之有利條件下發生。若發生雜交,則原始樣本中存 有所欲之基因或DNA序列。 光學偵測爲偵測雜交最常用的方法。無論是擴增子或 探針均經過標示以透過螢光或電化學發光來發射光。這些 過程之差異在於產生光製造基團之激發態的方式,但此二 種過程均可用於共價標示核苷酸股。在電化學發光 (ECL )中,以電流刺激時由發光團分子或複合物產生 光。在螢光中,其係以導致發光之激發光造成發光。 使用可在螢光分子吸收之波長下提供激發光的發光來 源及偵測單位來偵測螢光。該偵測單位包括一個偵測發射 信號之光感測器(諸如光電倍增管或電荷耦合裝置 (CCD )陣列)及防止激發光被包含在光感測器輸出之機 制(諸如波長選擇性過濾器)。該螢光分子發射斯托克斯 位移(Stokes shifted)光以回應該激發光,再由該偵測單位 -15- 201219776 收集此發射之光。斯托克斯位移爲發射光與吸收之激發光 間的頻率差異或波長差異。 E C L發射係利用光感測器偵測,該感測器對於所使用 之E C L物種的發射波長具敏感性。例如,過渡金屬-配體 複合物發射可見光波長之光,因此習用之光電二極體和 CCD可被用來作爲光感測器。ECL的一項優點在於,若 遮蔽環境光線,ECL之發射光即爲偵測系統中之唯一光 線,因此增進敏感性。 微陣列能讓數以百千計之DNA雜交試驗得以同時進 行。微陣列係分子診斷之強力有效工具,其可在單一試驗 中篩選數千種基因疾病或偵測眾多感染性病原體之存在。 微陣列係由許多不同的DNA探針所組成,該等探針經固 定爲基板上之點。首先將標靶DN A (擴增子)以螢光或發 光分子標示(不論在核酸擴增期間亦或在核酸擴增之後), 接著施用標靶DNA至探針微陣列。該微陣列係於溫度控 制、潮濕環境中培育數小時或數天以使探針及擴增子之間 發生雜交。在培育後,微陣列必須經一系列緩衝劑清洗以 移除未結合之股。一旦清洗後,即用空氣流(通常爲氮氣) 乾燥微陣列表面。雜交及清洗之嚴謹度至關重要。嚴謹度 不足可能導致高度非專一性結合。嚴謹度過高可能導致無 法適當結合,造成敏感性降低。雜交係藉由偵測與互補探 針形成雜交物之標示擴增子所發射之光加以識別。 來自微陣列之螢光係利用微陣列掃描器偵測,掃描器 通常是由電腦控制之倒立掃描式螢光共軛焦顯微鏡,該顯 -16- 201219776 微鏡通常使用雷射激發螢光染劑及光感測器(諸如光電倍 增管或CCD)偵測該發射信號。螢光分子發射斯托克斯位 移光(如上所述),該光係由偵測單位收集。 該發射之螢光必須經過收集、與未吸收之激發波長分 開並傳輸至偵測器。在微陣列掃描器中,通常使用裝設在 影像面之共軛焦針孔光圈的共軛焦配置以消除非聚焦(out-〇f-f〇CUS)之資訊。此裝置使得只有聚焦部分之光會被偵 測。來自目標之聚焦面以上及以下的光無法進入偵測器, 因此提高信噪比。該經偵測之螢光光子被偵測器轉換成電 能,接著再被轉換成數位信號。此數位信號轉譯成數字, 該數字代表來自給定像素之螢光的強度。陣列之每項特徵 係由一或多個該等像素組成。掃描之最終結果係陣列表面 之影像。由於在微陣列上之每種探針之確切序列及位置係 已知的,因此可同時辨識及分析與之雜交的標靶序列。 有關螢光探針之更多資訊請見: http://www.premierbiosoft.com/tech_notes/FRET_probe.html 及 http://www.invitrogen.com/site/us/en/home/References/Mo lecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html 定點照護(P0INT-0F-CARE)分子診斷 雖然分子診斷試驗提供許多好處,但是此類試驗在臨 床實驗室之成長仍較預期的緩慢,還不是實驗室醫學檢驗 -17- 201219776 之主流。這主要是因爲相較於不涉及核酸方法之試驗而 言,核酸試驗導致較高之複雜性及成本。在臨床環境中廣 泛地採用分子診斷檢驗係與儀器設備之發展密切相關’該 儀器設備必須能顯著降低成本、提供自始(樣本處理)至終 (產生結果)快速及自動化之分析,且不須大幅人力干預之 運作。 定點照護技術可在醫師辦公室、醫院床側或甚至以消 費者爲主之居家環境提供照護,此技術可提供許多優點包 括: • 快速獲得結果,以便立即採取治療及改善照護品 質 • 可自非常少量之樣本檢驗獲得實驗室數値 • 減少臨床工作量 • 減少實驗室工作量及藉由減少行政工作以增進辦 公室效率 • 經由減少住院天數、門診病患可在初診時得到確 診及減少樣本之處理、儲存及運送而改善每位病 患成本 • 有助於臨床管理決策諸如感染控制及抗生素使用 以實驗室晶片(LOC)爲基之分子診斷 以微流體技術爲基礎之分子診斷系統提供可自動化及 加速分子診斷分析之裝置。較短之偵測時間主要是因爲所 需之樣本體積極少、自動化及在微流體裝置內之低開銷內 -18- 201219776 置級聯式之診斷方法步驟。以奈升及微升爲規模之體積亦 減少試劑消耗及成本。實驗室晶片(L0C)裝置係常見之微 流體裝置形式。LOC裝置具有在MST層內之MST結構以 用於將流體處理整合至單一支撐基板(通常爲矽)上。利用 半導體產業之VLSI (超大型積體電路)蝕刻技術 (lithographic technique)製造使各LOC裝置之單位成本非 常低廉。然而’控制流體流經L 0 C裝置、添加試劑、控 制反應條件等等需要大型之外部配管和電子裝置。連接 LOC裝置至這些外部裝置大幅地限制l〇C裝置之分子診 斷用途於實驗室環境中。外部儀器之費用及其操作複雜性 排除以L0C爲基之分子診斷作爲定點照護環境中之選 擇。 有鑑於此,需要可供定點照護使用之以L0C裝置爲 基之分子診斷系統。 【發明內容】 現在在下列編號之段落中說明本發明之各種觀點。 GSE001.1 本發明之此觀點提供用於處理流體之微 流裝置,該微流裝置包含: 用於接收流體之入口; 用於處理流體之功能區; 自入口伸延入至少一功能區的流動路徑; 流速感測器,其具有位於沿著該流動路徑流動之流體 附近的導電元件: -19- 201219776 配置成用於測量導電元件之溫度的CMOS電路; 其中, 該CMOS電路係經配置以提供通過導電元件之預定電 流並測量該導電元件之電阻,從而自電流、溫度感'測器輔1 出及電阻導出流動速度,而流率係利用流動速度及導® $ 件上與流向橫向之流動路徑截面來導出。 GSE001.2 較佳地,該導電元件爲支承在流動路徑 內部表面之加熱器元件。 GSE001.3 較佳地,該導電元件具有一彎曲的結 構。 GSE001.4 較佳地,該流動路徑係由微通道限定’ 該微通道之與流動橫向的截面面積小於10萬平方微米° GSE001.5 較佳地,該功能區之一爲聚合酶鏈反應 (PCR )區,且該流體爲含有標靶核酸序列之生物樣本’ 該PCR區係經配置成用於進行樣本之熱循環以將標靶核 酸序列擴增,該微通道界定通過PCR區之流動路徑。 GSE001.6 較佳地,該微流裝置亦具有至少一種用 於加熱微通道內之標靶核酸序列的延長之加熱器元件。 GSE001.7 較佳地,該微流裝置亦具有支撐基板及 納入功能區之微系統技術(MST)層,其中該CMOS電路 具有用於儲存數據及操作資訊之數位記憶體以在處理和分 析樣本期間操作控制該功能區。 GSE001.8 較佳地,該微流裝置亦具有多個包含用 於處理該樣本之試劑的試劑庫,其中該儲存在數位記憶體 -20- 201219776 中之數據係與試劑特性有關。 GSE001.9 較佳地,該儲存在數位記億體中之數據 爲該微流裝置之獨特識別符。 GSE001.10 較佳地,該儲存在數位記憶體中之操作 資訊係與熱循環之時點及持續時間有關。 GSE001.il 較佳地,該功能區包括在PCR區上游 之培育區,且該試劑庫之一爲限制酶庫,該培育區具有用 於在標靶核酸序列之限制酶切期間將樣本與限制酶之混合 物的溫度保持在培育溫度之加熱器。 GSE001.12 較佳地,該微流裝置亦具有用於與來自 PCR區之擴增子中的標靶核酸序列雜交的探針陣列。 GSE001.13 較佳地,該儲存在數位記憶體中之數據 包括鑑定在探針陣列內之各位點處的探針之探針特性數 據。 GSE001.14 較佳地,各探針係經過配置以與包含在 擴增子中之互補標靶核酸序列形成探針-標靶雜交物,各 探針-標靶雜交物係經過配置以在回應輸入時發射光子, 而該C Μ 0 S電路納入一用於感測由探針-標靶雜交物發射 之光子的光感測器。 GSE00 1.15 較佳地,該儲存在數位記憶體中之數據 包括自光感測器輸出產生之雜交數據。 GSE001.16 較佳地,該微流裝置亦具有供容納探針 之雜交室陣列,如此各雜交室內之探針係配置成與該標靶 核酸序列之一雜交。 -21 - 201219776 GSE001.17 較佳地,該光感測器爲與該雜交室配準 之光電二極體陣列。 GSE001.1 8 較佳地,該 CMOS電路具有結合墊 (bond pads),且經配置以將雜交數據傳輸至外部裝置。 GSE00 1.19 較佳地,該樣本係取自患者,且該 CMOS電路係經配置以經由該結合墊下載患者數據並將患 者之數據儲存在數位記憶體中。 GSE001.20 較佳地,該PCR區具有主動閥門,以 用於在熱循環期間將液體保留在PCR區,並允許液體流 向雜交室以回應來自CMOS電路之激活信號。 就微流裝置之運作觀點言之,微流裝置可大量且廉價 地處理及/或分析流體係與該流體流率受到該容易製造之 熱線式流量感測器監控及以最理想之方式控制有關。 GSE002.1 本發明之此觀點提供用於處理流體之微 流裝置,該微流裝置包含: 用於接收流體之入口; 用於處理流體之功能區; 自入口延伸入至少一些功能區之流動路徑; 用於操作控制該功能區之電路;及 液體感測器,其具有位在可與沿著該流動路徑流動之 流體接觸之位置上的電極;其中, 該電路係經配置以提供電極間之電壓,如此,高於預 定閾値之電流爲電極處存有液體的指示。 -22- 201219776 GSE002.2 較佳地,該微流裝置亦具有用於感測在 流動路徑中之流體溫度的溫度感測器’及具有支承在流動 路徑內部表面之加熱器元件的流率感測器’其中該電路係 經配置以用於接收溫度感測器輸出,提供通過該加熱器元 件之預定電流並測量該導電元件之電阻’從而自電流、溫 度感測器輸出及電阻導出流動速度,且流率係使用流動速 度及加熱器元件上與流動橫向之流動路徑截面導出。 GSE002.3 較佳地,該加熱器元件具有一彎曲的結 構。 GSE002.4 較佳地,該流動路徑係由微通道界定, 該微通道之與流動橫向的截面面積小於10萬平方微米。 GSE002.5 較佳地,該功能區之一爲聚合酶鏈反應 (PCR )區,且該流體爲含有核酸序列之生物樣本,該 PCR區係經配置成用於進行樣本之熱循環以將該核酸序列 擴增,該微通道界定通過PCR區之流動路徑。 GSE002.6 較佳地,該微流裝置亦具有至少一種用 於加熱微通道內之核酸序列的延長之加熱器元件。 GSE002.7 較佳地,該微流裝置亦具有支撐基板及 納入功能區之微系統技術(MST )層,其中該電路爲 CMOS電路,其具有用於儲存數據及操作資訊之數位記憶 體以在處理和分析樣本期間操作控制該功能區。 GSE002.8 較佳地,該微流裝置亦具有多個包含用 於處理該樣本之試劑的試劑庫,其中該儲存在數位記億體 中之數據係與試劑特性有關。 -23- 201219776 GSE002.9 較佳地,該儲存在數位記憶體中之數據 爲該微流裝置之獨特識別符。 GSE002.1 0 較佳地,該儲存在數位記憶體中之操作 資訊係與熱循環之時點及持續時間有關。 GSE002.il 較佳地,該功能區包括在PCR區上游 之培育區,且該試劑庫之一爲限制酶庫,該培育區具有用 於在核酸序列之限制酶切期間將樣本與限制酶之混合物的 溫度保持在培育溫度之加熱器。 GSE002.1 2 較佳地,該微流裝置亦具有用於與來自 PCR區之擴增子中的標靶核酸序列雜交的探針陣列。 GSE002.1 3 較佳地,該儲存在數位記憶體中之數據 包括鑑定在探針陣列內之各位點處的探針之探針特性數 據。 GSE002.14 較佳地,各探針係經過配置以與包含在 擴增子中之互補標靶核酸序列形成探針-標靶雜交物,各 探針-標靶雜交物係經過配置以在回應輸入時發射光子, 而該CMOS電路納入一用於感測由探針·標靶雜交物發射 之光子的光感測器。 GSE002.1 5 較佳地,該儲存在數位記億體中之數據 包括自光感測器輸出產生之雜交數據。 GSE002.1 6 較佳地,該微流裝置亦具有供容納探針 之雜交室陣列,如此各雜交室內之探針係配置成與該標靶 核酸序列之一雜交。 GSE002.1 7 較佳地,該光感測器爲與該雜交室配準 -24- 201219776 之光電二極體陣列。 GSE002.1 8 較佳地,該CMOS電路具有結合墊,且 經配置以將雜交數據傳輸至外部裝置。 GSE002.1 9 較佳地,該樣本係取自患者,且該 CMOS電路係經配置以經由該結合墊下載患者數據並將患 者之數據儲存在數位記億體中。 GSE002.20 較佳地,該PCR區具有主動閥門,以 用於在熱循環期間將液體保留在PCR區,並允許液體流 向雜交室以回應來自CMOS電路之激活信號。 就微流裝置之運作觀點而言,微流裝置可大量且低廉 地處理及/或分析流體係與指定位置中是否存在流體係受 到該容易製造之液體感測器的監控及以最理想之方式控制 有關。 GSE003.1 本發明之此觀點提供用於處理流體之微 流裝置,該微流裝置包含: 用於接收流體之入口; 用於處理流體之功能區; 從入口延伸入至少一些功能區之流動路徑: 用於操作控制該功能區之電路;及 毛細管前緣前進速度感測器,其具有多個沿著該流動 路徑分隔之液體感測器,各液體感測器具有位在可與沿著 該流動路徑流動之流體接觸之位置上的電極;其中, 該電路係經配置以提供電極間之電壓,如此,高於預 定閾値之電流爲電極處存有液體之指示並用於導出液體流 -25- 201219776 前緣之速度。 GSE003.2 較佳地,該微流裝置亦具有用於感測在 該流動路徑中之流體溫度的溫度感測器,及具有支撐在流 動路徑內部表面之加熱器元件的流率感測器,其中該電路 係經配置以用於接收溫度感測器輸出,提供通過該加熱器 元件之預定電流並測量該導電元件之電阻_,從而自電流、 溫度感測器輸出及電阻導出流動速度,且流率係使用流動 速度及加熱器元件上與流動橫向之流動路徑截面導出。 GSE003.3 較佳地,該加熱器元件具有一彎曲的結 構。 GSE003.4 較佳地,該流動路徑係由微通道界定, 該微通道之與流動橫向的截面面積小於10萬平方微米。 GSE003.5 較佳地,該功能區之一爲聚合酶鏈反應 (PCR )區,且該流體爲含有核酸序列之生物樣本,該 PCR區係經配置成用於進行樣本之熱循環以將該核酸序列 擴增,該微通道界定通過PCR區之流動路徑。 GSE003.6 較佳地,該微流裝置亦具有至少一種用 於加熱微通道內之核酸序列的延長之加熱器元件。 GSE003.7 較佳地,該微流裝置亦具有支撐基板及 納入功能區之微系統技術(MST )層,其中該電路爲 CMOS電路,其具有用於儲存數據及操作資訊之數位記憶 體以在處理和分析樣本期間操作控制該功能區。 GSE003.8 較佳地,該微流裝置亦具有多個包含用 於處理該樣本之試劑的試劑庫’其中該儲存在數位記億體 -26- 201219776 中之數據係與試劑特性有關。 GSE003.9 較佳地,該儲存在數位記憶體中之數據 爲該微流裝置之獨特識別符。 GSE003.1 0 較佳地,該儲存在數位記億體中之操作 資訊係與熱循環之時點及持續時間有關。 GSE0 03.il 較佳地,該功能區包括在PCR區上游 之培育區,且該試劑庫之一爲限制酶庫,該培育區具有用 於在核酸序列之限制酶切期間將樣本與限制酶之混合物的 溫度保持在培育溫度之加熱器。 GSE003.1 2 較佳地,該微流裝置亦具有用於與來自 P CR區之擴增子中的標靶核酸序列雜交的探針陣列。 GSE003.1 3 較佳地,該儲存在數位記憶體中之數據 包括鑑定在探針陣列內之各位點處的探針之探針特性數 據。 GSE003.1 4 較佳地,各探針係經過配置以與包含在 擴增子中之互補標靶核酸序列形成探針-標靶雜交物,各 探針-標靶雜交物係經過配置以在回應輸入時發射光子, 而該CM Ο S電路納入一用於感測由探針-標靶雜交物發射 之光子的光感測器。 GSE003.1 5 較佳地,該儲存在數位記憶體中之數據 包括自光感測器輸出產生之雜交數據。 GSE003.1 6 較佳地,該微流裝置亦具有供容納探針 之雜交室陣列,如此各雜交室內之探針係配置成與該標祀 核酸序列之一雜交。 -27- 201219776 GSE003.1 7 較佳地,該光感測器爲與該雜交室配準 之光電二極體陣列。 GSE003.1 8 較佳地,該CMOS電路具有結合墊,且 經配置以將雜交數據傳輸至外部裝置。 GSE003.1 9 較佳地,該樣本係取自患者,且該 CMOS電路係經配置以經由該結合墊下載患者數據並將患 者之數據儲存在數位記憶體中。 GSE003.20 較佳地,該PCR區具有主動閥門,以 用於在熱循環期間將液體保留在PCR區,並允許液體流 向雜交室以回應來自CMOS電路之激活信號》 就微流裝置之運作觀點而言,微流裝置可大量且低廉 地處理及/或分析流體係與該流體流率係受該容易製造之 毛細前緣前進速度感測器的監控及以最理想之方式控制有 關。 GSE004.1 本發明之此觀點提供用於處理流體之微 流裝置,該微流裝置包含: 用於接收流體之入口; 用於處理流體之功能區; 自入口伸延入至少一些功能區的流動路徑; 用於操作控制功能區之CMOS電路;及 導電感測器,其具有沿著該流動路徑分隔之第一端子 和第二端子以及置於該第一端子和第二端子之間,沿著該 流動路徑分隔之第一電極和第二電極:其中 該CMOS電路係經過配置以在第一端子與第二端子之 -28- 201219776 間產生電流,並測量通過第一電極及第二電極之電壓,從 而使該流動路徑中之流體的導電性係來自該電流及測得之 電壓。 GSE004.2 較佳地,該微流裝置亦具有用於感測在 流動路徑中之流體溫度的溫度感測器,及具有支承在流動 路徑內部表面之加熱器元件的流率感測器,其中該電路係 經配置以用於接收溫度感測器輸出,提供通過該加熱器元 件之預定電流並測量該導電元件之電阻,從而自電流、溫 度感測器輸出及電阻導出流動速度,且流率係使用流動速 度及加熱器元件上與流動橫向之流動路徑截面導出。 GSE004.3 較佳地,該加熱器元件具有一彎曲的結 構。 GSE004.4 較佳地,該流動路徑係由微通道界定, 該微通道之與流動橫向的截面面積小於10萬平方微米。 GSE004.5 較佳地,該功能區之一爲聚合酶鏈反應 (PCR )區,且該流體爲含有核酸序列之生物樣本,該 PCR區係經配置成用於進行樣本之熱循環以將該核酸序列 擴增,該微通道界定通過PCR區之流動路徑。 GSE004.6 較佳地,該微流裝置亦具有至少一種用 於加熱微通道內之核酸序列的延長之加熱器元件。 GSE004.7 較佳地,該微流裝置亦具有支撐基板及 納入功能區之微系統技術(MST )層,其中該CM0S電路 具有用於儲存數據及操作資訊之數位記憶體以在處理和分 析樣本期間操作控制該功能區。 -29- 201219776 GSE004.8 較佳地,該微流裝置亦具有多個包含用 於處理該樣本之試劑的試劑庫,其中該儲存在數位記億體 中之數據係與試劑特性有關。 GSE004.9 較佳地,該儲存在數位記憶體中之數據 爲該微流裝置之獨特識別符。 GSE004.1 0 較佳地,該儲存在數位記憶體中之操作 資訊係與熱循環之時點及持續時間有關。 GSE004.il 較佳地,該功能區包括在PCR區上游 之培育區,且該試劑庫之一爲限制酶庫,該培育區具有用 於在核酸序列之限制酶切期間將樣本與限制酶之混合物的 溫度保持在培育溫度下的加熱器。 GSE004.1 2 較佳地,該微流裝置亦具有用於與來自 PCR區之擴增子中的標靶核酸序列雜交的探針陣列。 GSE004.1 3 較佳地,該儲存在數位記憶體中之數據 包括鑑定在探針陣列內之各位點處的探針之探針特性數 據。 GSE004.14 較佳地,各探針係經過配置以與包含在 擴增子中之互補標靶核酸序列形成探針-標靶雜交物,各 探針-標靶雜交物係經過配置以在回應輸入時發射光子, 而該CMOS電路納入一用於感測由探針-標靶雜交物發射 之光子的光感測器。 GSE004.1 5 較佳地,該儲存在數位記憶體中之數據 包括自光感測器輸出產生之雜交數據。 GSE004.1 6 較佳地,該微流裝置亦具有供容納探針 -30- 201219776 之雜交室陣列,如此各雜交室內之探針係配置成與該標靶 核酸序列之一雜交。 GSE004.1 7 較佳地,該光感測器爲與該雜交室配準 之光電二極體陣列。 GSE004.1 8 較佳地,該CMOS電路具有結合墊,且 其經配置以將雜交數據傳輸至外部裝置。 GSE004.1 9 較佳地,該樣本係取自患者,且該 CMOS電路係經配置以經由該結合墊下載患者數據並將患 者之數據儲存在數位記憶體中。 GSE004.20 較佳地,該PCR區具有主動閥門,以 用於在熱循環期間將液體保留在PCR區,並允許液體流 向雜交室以回應來自CMOS電路之激活信號。 就微流裝置之運作觀點而言,微流裝置可大量且低廉 地處理及/或分析流體係與該流體混合物之導電性係受到 該容易製造之導電性感測器的監控及以最理想之方式控制 流體流率有關。 【實施方式】 較佳體系之詳細描述 槪述 本槪述確認納入本發明體系之分子診斷系統的主要組 件。該系統結構及操作之綜合細節記載於下述專利說明書 中。 參考第1、2、3、12〇及121圖,該系統具有下列頂 -31 - 201219776 層組件: 測試模組1 0及1 1具有典型之USB存儲鑰匙的尺寸 且製造上非常低廉。測試模組1 〇及1 1各包含一個微流裝 置,通常爲預先裝塡試劑之晶片上實驗室(LOC)裝置30的 形式且通常有超過1000個用於分子診斷偵測的探針(見 第1及1 2 0圖)。以圖示顯示於第1圖中之測試模組10 係使用以螢光爲基礎之偵測技術來識別標靶分子,而以圖 示顯示於第1 20圖中之測試模組1 1係使用以電化學發光 爲基礎之偵測技術。LOC裝置30具有用於偵測螢光或電 化學發光之整合的光感測器44 (詳細描述於下)。此兩 種測試模組1 〇和1 1均使用用於電源、數據及控制之標準 Micro-USB插頭 14,二者均具有印刷電路板(PCB) 57 且兩者均具有外部電源電容器32及電感器15。測試模組 10及11二者均單次用於大規模生產和銷售即時可用之無 菌包裝。 外殻13具有用於接收生物樣本之大容器24及可移動 之無菌密封膠帶22(宜使用低黏性黏合劑),以在使用前覆 蓋該大容器。帶有膜防護物410之膜密封墊408形成外殼 1 3之一部分,以減少測試模組中之濕氣流失,同時提供 壓力緩解以免於發生小氣壓波動,膜防護物410可保護膜 密封墊408不受損。 測試模組閱讀器12經由Micro-USB埠16提供測試 模組1 0或1 1電源。該測試模組閱讀器1 2可採用多種不 同形式,而對這些形式之選擇稍後描述。顯示於第1、3 -32- 201219776 及120圖中之閱讀器丨2之形式爲一種智慧型手機之體 系。此閱讀器12之方塊圖顯示於第3圖中。處理器42運 行來自程式存儲器43之應用軟體。該處理器42亦與顯示 屏幕18及用戶界面(ui)觸摸屏17和按鈕19、蜂巢式 無線電(cellular radio)21、無線網路連接23、衛星導航系 統25連接。蜂巢式無線電21和無線網絡連接23係用於 通信。衛星導航系統25係用於更新流行病學數據庫之位 置數據。或者’可經由觸摸屏17或按鈕19手動輸入該位 置數據。數據存儲器27中保持基因及診斷信息、測試結 果、病人信息、用於鑑定各探針及其陣列位置之分析及探 針數據。數據存儲器27及程式存儲器43可共用一個共通 的記憶設施。安裝在該測試模組閱讀器1 2中之應用軟體 提供結果與其他測試和診斷信息之分析。 爲了進行診斷測試,將測試模組1 〇 (或測試模組 1 1 )插入在測試模組閱讀器12上之Micro-USB埠16。向 後撕去該無菌密封膠帶22並將生物樣本(爲液體形式) 裝塡入該樣本大容器24中。按下啓動按鈕20經由應用軟 體啓動測試。樣本流入該LOC裝置30中,而該機上試驗 (on-board assay)萃取、培育、擴增該樣本核酸(標靶)並 將其與預先合成之雜交-反應性寡核苷酸探針雜交。在測 試模組1 〇 (其使用以螢光爲基礎之偵測法)的情況中, 該探針係經螢光標記且存放在外殼1 3中之LED 26提供 必要之激發光以誘導螢光從雜交的探針發射(見第1及2 圖)。在測試模1 1中(其使用電化學發光(EC L )偵 -33- 201219776 測)該LOC裝置30係裝載ECL探針(如上述),而 LED 26對產生螢光發射是沒有必要的。相反地,電極 860和870提供激發電流(見第121圖)。發射光(螢光 或發光)係使用整合入各LOC裝置之CMOS電路的光感 測器44偵測。將該偵測到的信號擴增並轉換成數字輸 出,其再藉由測試模組閱讀器12分析。然後,該閱讀器 再顯示結果。 這些數據可以就地保存和/或上傳到包含患者記錄之 網絡服務器。測試模組閱讀器1 2移出測試模組1 〇或1 1 並將其適當處置。 第1、3及120圖顯示配置成手機/智慧型機28形式 之測試模組閱讀器1 2。在其他形式中,該測試模組閱讀 器爲供醫院、私人診所或實驗室使用之手提電腦/筆記型 電腦101、專用閱讀器103、電子書閱讀器107、平板電 腦109或桌上型電腦105 (見第122圖)。閱讀器可與一 系列其他應用程式,諸如病歷、帳單、網上數據庫和多用 戶環境連接。其亦可與一系列附近或遠端外圍設備,諸如 印刷機和患者的智能卡連接。 參考第1 23圖,由測試模組1 〇產生之數據可經由閱 讀器12及網絡125更新在流行病學數據主機系統1U上 管理之流行病學數據、在遺傳學數據主機系統113上管理 之遺傳學數據、在電子健康記錄(EHR )主機系統1 1 5上 管理之電子健康記錄、在電子醫療記錄(EMR)主機系統 121上管理之電子醫療記錄及在個人健康記錄(PHR)主 -34- 201219776 機系統1 2 3上管理之個人健康記錄。相反地,在流行病學 數據主機系統111上管理之流行病學數據、在遺傳學數據 主機系統113上管理之遺傳學數據、在電子健康記錄 (EHR )主機系統115上管理之電子健康記錄、在電子醫 療記錄(EMR)主機系統121上管理之電子醫療記錄及在個 人健康記錄(PHR)主機系統123上管理之個人健康記錄 可經由網絡125和閱讀器12來更新測試模組1〇之LOC30 中的數位記憶。 回頭參考第1、2、120及121圖,閱讀器12使用行 動電話配置中之電池電源。行動電話閱讀器包含所有預先 下載之測試和診斷信息。數據亦可經由許多無線或接觸界 面下載或更新以與周邊設備、電腦或線上伺服器連繫。 Mi cro - U S B埠1 6可用於連接到電腦或主電源以爲電池充 電。 第77圖顯示測試模組1 〇之一種體系,其係用於僅需 要特定標靶之陽性或陰性結果的試驗,諸如測試個人是否 受到,例如:Η 1N 1 A型流感病毒感染。僅需專門設置之 USB電源/指示器-限定模組47即足夠。不需要其他閱讀 器或應用軟體。在USB電源/指示器-限定模組47上之指 示器4 5發出陽性或陰性結果的信號。此種配置非常適合 群體篩檢。 其他與系統一起提供之項目可能包括含有用於預先處 理某些樣本之試劑的試管,以及用於採集樣本之抹刀和採 血針。第77圖顯示納入方便使用之彈簧式可伸縮採血針 -35- 201219776 3 90及採血針釋出按鈕3 92的測試模組體系。衛星電話可 供在偏遠地區使用。 測試模組電子學 第2及1 2 1圖分別爲測試模組1 0和1 1中之電子組件 的方塊圖。整合在LOC裝置30中之CMOS電路具有USB 裝置驅動器36、控制器34、USB-相容性LED驅動器 29、時鐘33、功率調節器31、RAM 38及程式和數據快閃 記憶體40。這些提供整個測試模組1 0或1 1 (包括光感測 器44、溫度感測器1 70、液體感測器1 74及各種加熱器 152、154、182、234,連同相關之驅動器37和39,以及 記錄器3 5和4 1 )控制及記億。僅LED 26 (在測試模組1 0 之情況中)' 外部電源供應電容器32及Micro-USB插頭 14係在LOC裝置30之外部。LOC裝置30包括用於連接 這些外部組件之結合墊。RAM 3 8及程序和數據快閃記憶 體40具有用於超過1 000個探針之應用軟體及診斷和測試 信息(快閃/安全存儲,例如:經由加密)。在經配置用 於ECL偵測之測試模組1 1的情況中並沒有LED 26 (見 第120及121圖)。數據由LOC裝置30加密以用於安全 存儲並與外部裝置安全通信。LOC裝置30裝載電化學發 光探針,且雜交室各具一對ECL激發電極860和870。 許多類型之測試模組1 0係製造成多種可供現成使用 之試驗形式。該試驗形式間之差異在於試劑和探針之機上 檢測。 -36- 201219776 一些以此系統迅速鑑定之傳染病實例包括: •流感-流感病毒 A、B、C、鮭魚貧血病毒 (Isavirus)、托高 土病毒(Thogotovirus) •肺炎-呼吸道融合病毒(RSV)、腺病毒、間質性 肺炎病毒、肺炎鏈球菌、金黃色葡萄球菌 •結核病-結核分枝桿菌、牛分枝桿菌、非洲分枝桿 菌、卡氏分枝桿菌及田鼠分枝桿菌 •惡性瘧原蟲、弓形蟲及其他原生動物寄生蟲 •傷寒-傷寒沙門氏菌血清型 •埃博拉病毒(Ebola virus) •人免疫缺陷病毒(HIV) •登革熱-黃病毒 •肝炎(A至E) •院內感染-例如:困難梭狀芽孢桿菌、抗萬古黴素 腸球菌及耐甲氧西林金黃色葡萄球菌 •單純皰疹病毒(HSV) •巨細胞病毒(CMV) •愛潑斯坦-巴爾病毒(EBV) •腦炎-日本腦炎病毒、金迪普拉病毒(Chandipura virus) •百日咳-百日咳桿菌 •麻瘆-副黏液病毒 •腦膜炎-肺炎鏈球菌及腦膜炎奈瑟菌 •炭疽-炭疽桿菌 -37- 201219776 一些以此系統迅速鑑定之遺傳性疾病實例包括: •囊性纖維化 •血友病 •鐮狀細胞病 •泰-薩克斯病(Tay-Sachs disease) •血色素沉著症(haemochromatosis) •腦動脈病 •克隆氏症 •多囊性腎臟病 •先天性心臟病 • Rett綜合徵 藉由此診斷系統鑑定之一小部分癌症包括: •卵巢 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 • Turcot綜合徵 上述列表並不詳盡且該診斷系統可經配置以利用核酸 及蛋白質體分析來偵測更多種疾病和病況。 系統組件之詳細結構 LOC裝置 LOC裝置3〇爲該診斷系統之中心。其採用微流平台 迅速地執行以核酸爲基礎之分子診斷分析的四個主要步 38· 201219776 驟,即:製備樣本、萃取核酸、擴增核酸及偵測。該LOC 裝置亦具有其他用途,這些將在稍後詳細介紹。如上述, 測試模組1 〇和1 1可採用許多不同的配置以偵測不同的標 靶。同樣地,該LOC裝置30具有許多之不同針對所欲標 標靶體系。一種LOC裝置30之形式爲LOC裝置301,其 係用於螢光偵測全血樣本之病原體中的標靶核酸序列。爲 了說明,現在參考第4至26及27至57圖詳細介紹LOC 裝置301之結構和運作。 第4圖爲LOC裝置301之結構的示意圖像。爲了方 便起見第4圖中所示之處理階段係以對應於執行該處理階 段之LOC裝置301之功能區的參考編號表示。其中亦指 出與該以核酸爲基礎之分子診斷分析的各主要步驟相關之 處理階段:樣本輸入及製備28 8、萃取290、培育291、 擴增292及偵測294。稍後將更詳細描述各貯存庫、小 室、閥門及LOC裝置301之其他組件。 第5圖爲LOC裝置301之透視圖。其係利用高容量 CMOS及MST (微系統技術)製造技術來製造。該LOC 裝置301之分層結構解說於第12圖之局部剖面示意圖 (未按比例)中。LOC裝置301具有支承CMOS + MST芯 片48的矽基板84,其包含CMOS電路86及MST層87, 在MST層87上覆以蓋罩46。本專利說明書中,“ MST 層”一詞爲以各種試劑處理該樣本之構造和層次之集合名 稱。因此,這些構造及組件係配置成以特有尺寸限定流動 路徑,該流動路徑之特有尺寸將支持該具有類似於樣本的 -39 - 201219776 物理特性之液體於處理過程中被毛細作用驅動而流動。有 鑑於此,該MST層及組件通常採用表面微加工技術和/或 主體微加工技術製造。然而,其他製造方法亦可製造其尺 寸之規劃可適用於由毛細作用驅動之流動及可處理非常小 之體積的結構和元件。本專利說明書中所描述之特殊體系 所顯示之MST層爲如支承在CMOS電路86上的結構和可 用組件,但不包括蓋罩46之部分。然而,技術熟習人士 將明白MST層不需具有底層CMOS或真正之覆蓋蓋罩以 便其處理樣本。 下列圖形中所顯示之LOC裝置的整體尺寸爲1 760微 米x5 8 24微米。當然,所製造之用於不同應用中的LOC裝 置可具有不同的尺寸。 第6圖顯示具有疊加在上之蓋罩部分的MST層87之 樣貌。第6圖中所顯示之插圖AA至AD、AG及AH分別 放大於第13、14、35、56、55和67圖中並詳細介紹於下 文中以全面了解該LOC裝置301中之各結構。第7至10 圖獨立顯示該蓋罩 46之樣貌,而第11圖獨立顯示該 CMOS + MST裝置48之結構。 薄層結構 第12及22圖爲圖解顯示CMOS+ MST裝置48之薄層 結構、蓋罩46及二者間之流體交互作用的草圖。這些圖 形並非用於解說之規模。第1 2圖爲通過樣本入口 6 8之剖 面示意圖,而第22圖爲通過貯存庫54之剖面示意圖。如 -40- 201219776 第12圖中之最佳顯示,該CMOS + MST裝置48具有支承 該CMOS電路86(其使上述MST層87內之有用元件運作) 之矽基板84。鈍化層88密封並保護CMOS層86遠離流 經MST層87之流體。 流體流過分別在蓋罩層46及MST通道層100中之蓋 罩通道94及MST通道90 (見,例如:第7和16圖)。 細胞轉運係在組裝於蓋罩46中之較大的通道94中發生, 而生化過程係在較小的MST通道90中進行。細胞轉運通 道係製成可將樣本中之細胞轉運至MST通道90中預定之 位置的尺寸。運輸其尺寸大於20微米之細胞(例如:某 些白血球)時需要通道尺寸大於約20微米,因此與流動 橫向之截面面積需要大於400平方微米。MST通道,尤 其是LOC中不需要運輸細胞之位置可以明顯較小。 可察知的是蓋罩通道94及MS T通道90爲通用的名 稱,尤其是MS T通道90鑑於其特定功能亦可被稱爲(例 如)經加熱之微通道或透析M S T通道。M S T通道9 0係經 由通過位於鈍化層88之MST通道層100蝕刻形成,並以 光阻抗蝕劑形成圖案。該MST通道90被屋頂層66圍 住,該屋頂層66形成CMOS + MST裝置48之頂部(相關 於圖形中所示之方位)。 儘管有時以分隔之層次顯示,蓋罩通道層80及貯存 庫層78係從單一片之材料形成。當然,該材料片亦可爲 非單一片。此材料片係從二邊蝕刻以形成其中蝕刻出蓋罩 通道94之蓋罩通道層80及其中蝕刻出貯存庫S4、56、 -41 - 201219776 58、60和62之貯存庫層78 »或者,貯存 藉由微模塑法(micromolding)形成。飩刻 者均用於製造通道,該通道之與流動橫向 至2 0000平方微米,小至8平方微米。 在LOC裝置之不同位置中,與流動 可以有一些適當的選擇範圍。當通道中包 大量組成之樣本時截面積適合至多達到 (例如:在〗〇〇微米厚之層中的200微米 道中包含少量液體或不存有大細胞之混合 向的截面面積宜爲非常小。 較低之密封墊64包圍蓋罩通道94, 包圍貯存庫54、56、58、60和62» 該五個貯存庫54、56、58、60和62 專用試劑。於此處所描述之體系中,該貯 列試劑,但其他試劑可輕易地被取代: ♦貯存庫54:抗凝血劑,其可選擇 解緩衝劑 •貯存庫5 6 :裂解試劑 •貯存庫58 :限制性內切酶、連接 於連接器啓動之PCR (見第76圖,摘錄丨 al.,Human Molecular Genetics 2, Garland London, 1999)) .貯存庫60:擴增混合物(dNTPs、 及 :庫及蓋罩通道係 及微模塑技術二 的截面面積可大 橫向的截面面積 含大量樣本或具 20000平方微米 寬通道)。當通 物時,與流動橫 較高之密封墊82 中預先裝塡檢測 存庫預先裝塡下 地包含紅細胞裂 酶和連接子(用 自 T. Stachan et Science,NY and 引物、緩衝劑) -42- 201219776 .貯存庫62 : DNA聚合酶。 蓋罩46及CMOS + MST層48係經由在較低之密封墊 64及屋頂層66中的對應開口進行流體交流。這些開口根 據該流體係從MST通道90流入蓋罩通道94,或從蓋罩 通道94流入MST通道90,而被稱爲攝入孔96及下降道 92 〇 LOC裝置操作 下文中參考分析血液樣本中之病原體DNA來逐步描 述LOC裝置301之操作方法。當然,亦可使用試劑、測 試方案、LOC裝置之變體及檢測系統之適當設置或的組合 來分析其他類型之生物或非生物流體。回頭參考第4圖, 分析生物樣本涉及五個主要步驟,包含輸入和製備樣本 2 8 8、萃取核酸290、培育核酸291、擴增核酸292及偵測 和分析2 9 4 * 樣本輸入和製備步驟288涉及將血液與抗凝劑116混 合’然後藉病原體透析區70將病原體與白血球和紅血球 分離。如第7和12圖之最佳顯示,血液樣本經由樣本入 口 68進入該裝置。毛細作用將血液樣本沿著蓋罩通道94 吸入貯存庫54。當血流打開貯存庫54之表面張力閥1 1 8 時,抗凝血劑從貯存庫54釋出(見第15和22圖)。該 抗凝劑防止可能阻斷液流之血塊形成。 如第22圖之最佳顯示,該抗凝血劑116藉由毛細作 用從貯存庫54被吸出,經由下降道92進入MST通道 -43- 201219776 90。該下降道92具有毛細作用啓動特性裝置(capillary initiation features) (CIF) 102以塑造該彎月面之幾何結 構的形狀,從而使其不會固定在下降道92之邊緣。在上 方密封墊82中之通風孔122可在抗凝劑1 16從貯存庫54 被吸出時令空氣取代抗凝劑1 1 6。 第22圖中所示之MST通道90爲表面張力閥118之 —部分。該抗凝劑1 1 6塡入表面張力閥1 1 8並將彎月面 120固定在攝入孔96之彎月面之錨98上。使用之前,彎 月面1 20仍然被固定在攝入孔96,從而使抗凝劑不會流 入蓋罩通道94中。當血液流過蓋罩通道94至攝入孔96 時,彎月面120被移除且該抗凝劑被吸入液流中。 第15至21圖顯示插圖AE,其爲第13圖中所示之插 圖AA的一部分。如第15、16及17圖所示,該表面張力 閥118具有三個延伸在各自對應之下降道92及攝入孔96 之間的分隔之MST通道90。表面張力閥中之MST通道 90的數目可以不同,以改變試劑流入樣本混合物中之流 率。當樣本混合物和試劑混合物藉由擴散混合在一起時, 流出貯存庫之流率決定在樣本液流中的試劑濃度。因此, 各貯存庫之表面張力閥係經配置以符合所需之試劑濃度。 血液進入病原體透析區70 (見第4和15圖),其中 標靶細胞係利用小孔(其大小係根據預定的閾値)陣列1 64 從樣本濃縮。小於閾値之細胞通過小孔而較大的細胞則無 法通過小孔。不要的細胞(其可能是被小孔陣列1 64截留 的較大細胞或通過小孔之較小的細胞)被重新指引到廢物 -44- 201219776 單位76,而標靶細胞則繼續爲分析之一部分。 在此處所描述之病原體透析區70中,來自全血樣本 之病原體被濃縮以用於微生物DNA分析。該小孔陣列係 由數個直徑爲3微米的小孔1 64形成,其在流體運行上連 接蓋罩通道94中的輸入流連接至標靶通道74»該3微米 直徑小孔1 64及標靶通道74之透析吸收孔1 68係藉由一 系列透析MST通道204連接(最佳顯示於第15和21圖 中)。病原體小到足以通過直徑爲3微米的小孔1 64,並 經由透析MST通道204塡入標靶通道74。大於3微米之 細胞(諸如紅血球及白血球)停留在蓋罩46中之廢物通道 72,其將導向廢物貯存庫76 (見第7圖)。 其他小孔形狀、大小和長寬比可用於分離特定病原體 或其他標靶細胞,諸如白血球,以用於人類DNA分析。 透析區及透析變體之更詳細的說明提供於下文中。 再參考第6和7圖,該液流通過標靶通道74被吸入 裂解試劑庫56之表面張力閥128。表面張力閥128具有7 個在裂解試劑庫56和標靶通道74之間延伸的MST通道 90。當該彎月面被樣本流解開固定時,來自所有7個 MST通道90之流率將大於來自抗凝劑貯存庫54(其中表 面張力閥118具有3個MST通道90)之流率(假設該流體 之物理特性大致相等)。因此,在樣本混合物中之裂解試 劑的比例大於該抗凝血劑之比例。 裂解試劑和標靶細胞在化學裂解區1 3 0中之標®通道 74內藉由擴散混合。沸騰啓動閥1 2 6停止液流直到經過 -45- 201219776 足夠的時間來發生擴散和裂解,從標靶細胞釋出遺傳物質 (見第6和7圖)。該沸騰啓動閥之結構和運作參考第 31和32圖更詳細地描述於下文中。本申請者亦已硏發其 他可在此使用以取代沸騰啓動閥之主動閥類型(與被動閥 相反,諸如表面張力閥H8)。這些替代閥之設計亦在稍 後描述。 當沸騰啓動閥1 26打開時,該裂解之細胞流入混合區 1 3 1以進行預擴增之限制酶切及連接子接合。 參考第1 3圖,當液流將彎月面從混合區1 3 1開始處 之表面張力閥132解除固定時,限制性內切酶、連接子及 連接酶從貯存庫5 8釋出。該混合物流過混合區1 3 1之長 度以進行擴散混合。混合區1 3 1之終點處爲下降道1 34, 其引導進入培育區114之培育室入口通道133(見第13 圖)中。該培育室入口通道133將混合物送入經加熱之微 通道210的彎曲結構中,此結構提供用於在限制酶切及連 接子接合期間容納樣本的培育室(見第1 3和1 4圖)。 第23、24、25、26、27、28和29圖顯示第6圖之插 圖AB中之LOC裝置301的各層。各圖形顯示依序加入之 形成CMOS + MST層48及蓋罩46之結構的各層。插圖AB 顯示培育區1 1 4之終點及擴增區11 2之開端。如第1 4和 23圖之最佳顯示,該液流塡入該培育區114之微通道 2 1 0,直至到達沸點啓動閥1 06,該液流在此停住並發生 擴散。如上述,該沸騰啓動閥106上游之微通道210成爲 包含該樣本、限制性內切酶、連接酶及連接子之培育室。 -46- 201219776 然後,該加熱器1 54被激活並保持在恆溫一段指定的時間 以供發生限制酶切及連接子接合。 熟習本技藝之工作人員將可察知此培育步驟291 (見 第4圖)爲可選擇的且僅爲一些核酸擴增分析類型所需。 此外,於一些情況下,培育期結束時可能需要一個加熱步 驟以使溫度突破高於培育溫度。該突破之溫度令限制性內 切酶和連接酶在進入擴增區112前去活化。限制性內切酶 及連接酶之去活化在使用恆溫核酸擴增時特別適宜。 培育後,沸騰啓動閥106被活動起來(打開),該液 流回流入擴增區112。參考第31和32圖,該混合物塡入 該經加熱之微通道158的彎曲構造(其形成一個或多個擴 增室)’直至到達沸點啓動閥108。如第30圖之示意剖面 圖的最佳顯示,擴增混合物(dNTPs、引物、緩衝劑)從 貯存庫60釋出’聚合酶再隨後從貯存庫62釋入連接培育 室和擴增區(分別爲114和112)之中間MST通道212 中。 第35至51圖顯示第6圖之插圖AC內的LOC裝置 3〇1之各層。各圖形顯示依序加入之形成CMOS + MST裝 置48及蓋罩46之結構的各層。插圖AC爲擴增區112之 終點及雜交和偵測區5 2之開端。該經培育之樣本、擴增 混合物及聚合酶流過微通道158,到達沸點啓動閥108。 經過足夠擴散混合的時間後,微通道1 5 8中之加熱器1 5 4 被激活以開始熱循環或恆溫擴增。該擴增混合物經過預定 數目之熱循環或預設之擴增時間,以擴增足夠的標靶 -47- «et· 201219776 DNA。經過核酸擴增過程後,該沸騰啓動閥1〇8打開該雜 交及偵測區5 2且液流回流。沸騰起動閥之操作將更詳細 地描述於下文中》 如第5 2圖所示,該雜交及偵測區5 2具有雜交室陣列 110»第52、53、54和56圖顯示詳細之雜交室陣列110 及個別雜交室180。雜交室180之入口處爲擴散屏障 175,其防止雜交期間標靶核酸、探針股及雜交之探針在 雜交室1 80之間擴散,從而防止錯誤之雜交偵測結果。該 擴散屏障175呈現出足夠長之流動路徑長以防止在探針與 核酸雜交及偵測信號之時間內,標靶序列和探針從一個小 室擴散出並污染另一個小室,從而可避免錯誤的結果。 另一種防止錯誤讀數的機制爲在許多雜交室中具有同 等探針。CMOS電路86從對應該包含同等探針之雜交室 180的光電二極體184衍生出單一的結果。在單一結果之 推衍過程中.,異常結果可被忽略或以不同方式加權。 CMOS控制之加熱器182可提供雜交所需之熱能(詳 細描述於下文中)。加熱器被激活後,互補之標靶-探針 序列之間發生雜交。CMOS電路86中之LED驅動器29傳 遞信號給位於測試模組1 〇中之LED 26使其發光。這些 探針僅在雜交發生時產生螢光’從而避免去除未結合之股 時通常需要的洗滌和乾燥步驟。雜交迫使FRET探針186 之臂-和-環結構打開,這使得螢光團在回應LED激發光時 發射螢光能量,下文中將更詳細地討論之。藉由在各雜交 室180(見下文中描述之雜交室)下之CMOS電路86中 -48 - 201219776 的光電二極體184來偵測螢光。所有雜交室之光電二 1 84及相關之電子產品共同構成光感測器44 (見套 圖)。於其它體系中,該光感測器可爲電荷耦合裝置 列(C C D陣列)。將該從光電二極體1 8 4偵測到的 擴增並轉換成由測試模組閱讀器1 2分析之數位輸出 偵測方法進一步詳細描述於後。 LOC裝置之其他細節 模組化之設計 LOC裝置301具有許多功能區,包括試劑庫 56、58、60和62、透析區70、裂解區130、培育區 及擴增區11 2、閥門類型、加濕器和濕度感測器。於 裝置之其他體系中,這些功能區可以被省略,可添加 之功能區’或者該功能區可用於上述之替代目的。 例如:培育區1 14可作爲串聯擴增分析系統之第 增區112’該化學裂解試劑庫56可用於添加該引物 —擴增混合物、dNTPs和緩衝劑,而試劑庫58係用 加該逆轉錄酶和/或聚合酶。若樣本需要進行化學 時’亦可將化學裂解劑與該擴增混合物一起加入貯 56中’或者,可在培育區中將樣本加熱—段預定的 以發生熱裂解。於一些體系中,若需要化學裂解且需 引物、dNTPs和緩衝劑之混合物與該化學裂解劑分離 可將額外之貯存庫立即納入貯存庫5 8之上游以混 物、dNTPs和緩衝劑。 極體 | 68 之陣 信號 。該 54 ' 114 LOC 額外 -擴 之第 於添 裂解 存庫 時間 要將 時, 合引 -49- 201219776 於某些情況下,可能需要省略一個步驟,諸如該培育 步驟2 9 1。在此情況下,可專門製造一個LO C裝置以省略 試劑庫5 8及培育區1 1 4,或者該貯存庫中可能根本不裝 塡試劑,或者該主動閥門(若存在時)沒有活動起來將試劑 分配在樣本流中,該培育區則根本變成通道以將樣本從裂 解區130運輸至擴增區112中。該加熱器可獨立操作,因 此,當反應需要熱(諸如熱裂解)時,安排加熱器在此步驟 時不運作可確保不會在不需要熱裂解之LOC裝置中發生 熱裂解。該透析區70可如第4圖所示般位於微流裝置內 之流體系統的開端,或者可以位於該微流裝置內的任何地 方。例如:在某些情況下,在雜交和偵測步驟294前,在 擴增相2 9 2後進行透析以去除細胞碎片可能是有益的。另 外,可以在整個LOC裝置中的任何位置納入一或多個透 析區。類似地,可能納入額外之擴增區1 1 2以使多個標靶 被同時或依序擴增,再在雜交室陣列110中以特定核酸探 針偵測之。爲了分析其中不需要透析之類似全血的樣本, 可以將透析區70完全從LOC設計之樣本輸入和製備區 28 8省略。在某些情況下,不需要從LOC裝置省略透析區 70,即使該分析並不需要透析。若透析區之存在對分析沒 有幾何結構障礙,在LOC之樣本輸入和製備區中仍可使 用透析區70,不會損失所需的功能。 此外,該偵測區294可能包含蛋白質體小室陣列,其 等同於雜交室陣列,但裝塡經設計用於與存在於非擴增樣 本中之樣本標靶蛋白質結合或雜交的探針,而非經設計之 -50- 201219776 與標靶核酸序列雜交的核酸探針。 可以察知的是,用於此診斷系統中之LOC裝置 據特殊之LOC應用的選擇而製造成具有不同功能區 合。絕大多數之功能區爲許多LOC裝置所共通的, 計額外之LOC裝置以用於新的應用是一個從現有之 裝置中所使用之大量功能區選項中匯整合適之功能區 的問題。 本說明中僅顯示少數的LOC裝置且有些係以示 顯示來說明用於此系統之LOC裝置的設計彈性。熟 技藝之人士將可輕易識別本說明中所顯示之LOC裝 不是一個詳盡的清單且許多額外之LOC設計爲匯整 之功能區組合的問題。 樣本類型 LOC變體可以接受及分析各種液體形式之樣本類 核酸或蛋白質內含物,該樣本類型包括,但不限於血 血液製品、唾液、腦脊液、尿液、精液、羊水、臍帶 母乳、汗水、胸室積液、眼淚、心包積液、腹室積液 境水樣本和飮料樣本。從巨觀核酸擴增取得之擴增子 使用LOC裝置分析;在此情況下,所有試劑庫將是 或配置成不釋出其內含物,且該透析、裂解、培育和 區將僅用於將樣本從樣本入口 68運輸至雜交室180 上述偵測核酸。 對於某些樣本類型而言,前處理步驟是必需的 可根 之組 且設 LOC 組合 意圖 習本 置並 合適 型的 液和 血、 、環 亦可 空的 擴增 以依 ,例 -51 - 201219776 如:精液可能需要先液化且黏液可能需要以 理,以在輸入LOC裝置前先降低其黏度。 樣本輸入 參考第1和1 2圖,先將樣本添加入測目 容器24中。該大容器24是一個被截斷之圓 細作用將樣本送入LOC裝置301之入口 68 流入64微米寬χ60微米深之蓋罩通道94, 由毛細作用被吸向抗凝劑貯存庫5 4。 試劑庫 使用微流裝置之分析系統(諸如LOC裝 小體積試劑允許試劑庫包含生化處理所需要 各試劑庫均具有小體積。此體積很容易不到 米,在絕大多數之情況下爲小於3億立方微 於7000萬立方微米,且在附圖中所顯示之 的情況中爲小於2000萬立方微米。 透析區 參考第15至21、33和34圖’病原體矣 計係從樣本濃縮致病性標靶細胞。如先前所 6 6中之多個爲3微米直徑孔之形式的小孔 細胞從樣本主體過濾出。當樣本流過3微米 時,微生物病原體通過小孔進入一系列透 一種酶預先處 ί:模組1 〇之大 錐,其藉由毛 中。其從這裡 其在該處亦藉 置301)需要的 之所有試劑, 1 0億立方微 米,通常爲小 LOC裝置30 1 I析區7 0之設 述,在屋頂層 164將該標靶 直徑小孔164 析M S Τ通道 -52- 201219776 2 04,再經由16微米透析攝入孔168回流入標靶通道 7 4 (見第3 3和3 4圖)。剩餘之樣本(紅血球,等)留在蓋 罩通道94中。病原體透析區70之下游,蓋罩通道94變 成廢物通道72’其導向廢物貯存庫76。在產生大量廢物 之生物樣本類型方面,測試模組1 0之外殼1 3內的泡沫插 入元件或其他多孔元件4 9係配置成與廢物貯存庫7 6進行 流體溝通(見第1圖)。 病原體透析區70完全依賴該流體樣本之毛細作用來 運作。在病原體透析區70之上游終點的3微米直徑小孔 164具有毛細作用啓動特性裝置(C IF) 166 (見第33 圖),從而使流體被吸入下方之透析MST通道204。標 靶通道74之第一攝入孔198亦具有CIF 202 (見第15 圖),以避免液流穿越該透析攝入孔168時完全被固定在 彎月面。 第81圖之示意圖中所顯示之小成分透析區682可具 有類似於病原體透析區7 0之結構。該小成分透析區藉由 將小孔尺寸製作(若需要時,採用塑形)成適合允許小標 靶細胞或分子進入標靶通道,繼續進一步分析之大小,以 將任何小標靶細胞或分子從樣本中分離出。較大尺寸之細 胞或分子被移至廢物貯存庫766中。因此,LOC裝置30 (見第1和120圖)不僅限於分離尺寸小於3微米之病原 體,亦可用於分離具有任何需要之尺寸的細胞或分子。 裂解區 -53- 201219776 再重新參考第7、11和13圖,樣本中之遺傳物質係 藉由化學裂解過程從細胞釋出。如上述,來自裂解庫56 之裂解試劑與裂解庫56之表面張力閥128下游的標靶通 道74中之樣本流混合。然而,一些診斷分析更適合熱裂 解過程,甚至是將標靶細胞組合進行化學和熱裂解。LOC 裝置301藉由提供培育區114之經加熱的微通道210來達 成此點。樣本流塡入培育區1 1 4,並停止在沸騰啓動閥 106。該培育微通道210將樣本在可破壞細胞膜的溫度下 加熱。 在一些熱裂解應用中,在化學裂解區130中之酶催化 反應並非必要的且熱裂解反應完全取代在化學裂解區130 中之酶催化反應。 沸騰啓動閥 如上述,該LOC裝置301具有三個沸騰啓動閥126、 106和108。這些閥門之位置顯示於第6圖。第31圖爲獨 立顯示之沸騰啓動閥108之放大的平面視圖,其位於擴增 區1 1 2之經加熱的微通道1 5 8終端。 該樣本流1 1 9藉由毛細作用被吸至該經加熱之微通道 1 5 8直至達到該沸點啓動閥1 08。該樣本流之前導彎月面 120固定在閥門入口 146之彎月面的錨98。彎月面之錨 98的幾何結構停止彎月面前進以遏制該毛細流。如第3 j 和32圖所示,該彎月面之錨98爲從MST通道90至蓋罩 通道94之攝入開口所提供的小孔。彎月面丨2〇之表面張 -54- 201219776 力保持閥門關閉。環形加熱器152係在閥入口 146之周 圍。該環形加熱器1 5 2係經由沸騰啓動閥加熱器接頭1 5 3 受到C Μ Ο S控制。 爲了打開閥門,CMOS電路86發送電脈衝至閥門加 熱器接頭1 5 3。該環形加熱器1 5 2電阻式加熱該液體樣本 119直到其沸騰。沸騰使彎月面120不再固定在閥門入口 146,並使蓋罩通道94開始濕潤。一旦蓋罩通道94開始 潤濕,毛細流恢復。流體樣本1 1 9塡入蓋罩通道94並流 過閥門下降道1 5 0到達閥門出口 1 4 8,在此,由毛細作用 驅動之液流繼續沿著擴增區出口通道160進入雜交及偵測 區52。在閥門之前和後置放液體感測器174以用於診 斷。 將可察知的是,一旦該沸騰啓動閥被打開,其不能再 關閉。然而,由於LOC裝置301及測試模組10爲單次使 用之裝置,重新關閉該閥門是不必要的。 培育區及核酸擴增區 第 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 和 51 圖顯示培育區114及擴增區112。該培育區114具有一個 單一、經加熱之培育微通道2 1 0,其爲蝕刻在從下降道開 口 134至沸騰啓動閥106之MST通道層100中的彎曲形 微通道(見第1 3和14圖)。控制培育區1 14之溫度可使 酶催化性反應之效率較高。同樣地,該擴增區I12具有從 沸騰起動閥1〇6至沸騰啓動閥108之彎曲構造的經加熱之 -55- 201219776 擴增微通道158(見第6和14圖)。這些閥門遏止該液 流以在混合、培育和核酸擴增作用發生時將該標靶細胞保 留在該經加熱之培育或擴增微通道210或158中。該微通 道之彎曲樣式亦可促進(在一定程度上)標靶細胞與試劑 混合。 在培育區1 1 4及擴增區1 1 2中係以加熱器1 54爲該樣 本細胞及試劑加熱,該加熱器1 54係受該使用脈衝寬度變 調(PWM )之CMOS電路86控制。該經加熱之培育微通 道210及擴增微通道158之彎曲構造的各個曲折部分具有 3個可分別操作且在其各自之加熱器接頭156(其提供對輸 入熱流密度之二維控制)之間延伸的加熱器1 54 (見第1 4 圖)。如第51圖之最佳顯示,該加熱器154係支承在屋 頂層66上且包埋在較低之密封墊64中。該加熱器材料爲 TiAl,但許多其他導電金屬亦合適。該長加熱器154與形 成該彎曲形狀之寬曲折部分的各通道區的縱向平行。在擴 增區1 1 2中,各個寬曲折部分可經由控制個別之加熱器而 以分別之PCR室的形式操作。 使用微流裝置(諸如LOC裝置301)之分析系統所需要 的小體積擴增子可容許小體積之擴增混合物在擴增區1 1 2 中進行擴增。此體積很容易少於4〇〇奈升’在絕大多數之 情況下係少於17〇奈升’通常爲少於70奈升’且在L0C 裝置301之情況中係介於2奈升至30奈升。 增加之加熱速率和較佳之擴散混合 -56- 201219776 各通道區之小截面可增加該擴增流體混合物之加熱速 率。所有流體均保持在與加熱器1 54相隔很短之距離內。 將該通道截面(即,該擴增微通道158之截面)減少至少 於10萬平方微米時可使其加熱速率較更“大規格”之儀 器的加熱速率明顯較高。蝕刻製造技術允許該擴增微通道 158具有小於1 6000平方微米之與該流動路徑橫向的截面 面積,而產生實質上較高之加熱速率。以蝕刻技術可輕易. 地達到形體尺寸約爲1微米。若需要之擴增子很少(例如 在LOC裝置301之情況中),可將該截面面積減少到少 於2500平方微米。在LOC裝置中以1000至2000之探針 進行診斷分析且需要在不到1分鐘內“樣本進,答案出” 時,與流動橫向之截面面積在1平方微米至4 00平方微米 之間即足夠。 在擴增微通道1 5 8中之加熱器元件以超過每秒8 0開 爾文(Kelvin) (K)之速率加熱該核酸序列,在絕大多數 的情況下速率大於每秒1 00 K。通常,該加熱器元件加熱 核酸序列之速率超過每秒1,000 K且在許多情況中,該加 熱器元件加熱核酸序列之速率超過每秒1 0,000 K。一般, 根據該分析系統之要求,該加熱器元件加熱核酸序列之速 率超過每秒 ΙΟΟ,ΟΟΟΚ,超過每秒 1,000,000K,超過每秒 10.000. 000Κ , 超過每秒 20,000,000Κ , 超過每秒 40.000. 000Κ,超過每秒 80,000,000Κ,超過每秒 1 60,000,000Κ。 小截面積通道也有利於任何試劑與樣本流體進行擴散 -57- 201219776 混合。在擴散混合完成前液體中。濃度隨著與界面之距離 而降低。使用具有非常小之與流動方向橫向之截面的微通 道使此二種流體保持接近界面地流動以更迅速地擴散混 合。將通道截面減至少於10萬平方微米可取得與更“大 規格”儀器相比較下明顯較高的混合率。蝕刻製造技術允 許微通道之與該流動路徑橫向的截面面積小於16000平方 微米,而產生實質上較高之混合率。若需要小體積(如同 在LOC裝置3 0 1之情況中),可將該截面面積減少到少 於2500平方微米。在LOC裝置中以1〇〇〇至2000之探針 進行診斷分析且需要在不到1分鐘內“樣本進,答案出” 時,與流動橫向之截面面積在1平方微米至400平方微米 之間即足夠。 短熱循環時間 將樣本混合物保持靠近加熱器,並使用非常小之流體 量可使熱循環在核酸擴增過程中快速進行。在至多150個 鹼基對(bp)長之標靶序列方面,各熱循環(即,變性、 黏者及引物延伸)在不到30秒內完成。在絕大多數的診 斷分析中,該個別熱循環時間少於1 1秒,大部分少於4 秒。對至多150個鹼基對長之標序列而言,具有—些最 常見之診斷分析的LOC裝置30的熱循環時間在0.45秒 至1 .5秒。此速率之熱循環允許該測試模組在遠少於! 〇 分鐘內完成核酸擴增過程;通常少於220秒。對於大多數 分析而言’從樣本流體進入樣本入口開始,該擴增區在不 -58- 201219776 到8 0秒內會產生足夠之擴增子》對很多分析而言,在3 0 秒內產生足夠之擴增子。 在完成預設數目之擴增循環時,該擴增子經由沸騰啓 動閥108被送入雜交及偵測區52。 雜交室 第52、53、54、56和57圖顯示在雜交室陣列110中 之雜交室180。該雜交及偵測區52具有雜交室180之24χ 45陣列1 1〇,各具有雜交反應性FRET探針186、加熱器 元件182及經整合之光電二極體184。納入之光電二極體 1 84係用於偵測從標靶核酸序列或蛋白質與FRET探針 186雜交產生的螢光。各光電二極體184係由CMOS電 路86獨立控制。FRET探針186與光電二極體184之間的 任何材料必須是可讓發射的光穿透的。因此,介於探針 186和光電二極體184之間的壁區97對發射的光而言亦 是光學上可穿透的。在LOC裝置301中,該壁區97爲薄 層(約0.5微米)二氧化矽。 將光電二極體1 84直接納入各雜交室1 80之下可允許 探針-標靶雜交物的體積非常小,但仍可產生可偵測到之 螢光信號(見第54圖)。少量可允許小體積之雜交室。 在雜交之前,探針-標靶雜交物之可偵測量所需要的探針 量很容易不到270皮克(相當於90萬立方微米),在絕 大多數情況下爲少於60皮克(相當於20萬立方微米), 通常少於12皮克(相當於4萬立方微米),在附圖中所 -59- 201219776 顯示之LOC裝置301的情況中爲少於2.7皮克(對應之 小室的體積爲9000立方微米)。當然,雜交室之尺寸變 小可允許較高密度之小室,因此在LOC裝置上有更多之 探針。在LOC裝置301中,該雜交區在1 5 00微米X1500 微米之面積(即,每一個小室小於225 0平方微米)中具 有超過1 0 0 0個小室。較小之體積亦減少反應時間,而使 雜交及偵測速度更快。各個小室中需要小量探針的另一優 點爲製造該LOC裝置期間各個小室中僅需點入非常少量 之探針。根據本發明之LOC裝置的體系可使用丨皮升或 更少之探針溶液體積點樣。 核酸擴增後,沸騰啓動閥108被活動起來且該擴增子 沿著流動路徑176流動並進入各雜交室180(見第52和 5 6圖)。終點液體感測器1 7 8指出當雜交室1 8 0中塡入 擴增子時,該加熱器182可以被活動起來。 經過足夠之雜交時間後,LED 26(見第2圖)被活 動起來。各雜交室180中之開口提供光學窗口 136以供 FRET探針186接觸激發輻射(見第52、54和56圖)。 該LED 26被點亮足夠長的時間以從探針誘導高強度之螢 光信號。在激發期間,缺少該光電二極體1 8 4。經過程控 之延遲300(見第2圖)後,啓動光電二極體184且在 沒有激發光之存在下偵測螢光發射。在光電二極體1 84之 感光區185上的入射光(見第54圖)被轉換成光電流, 再利用C Μ O S電路8 6測量之。 雜交室180各裝載著用於偵測單一標靶核酸序列之探 -60- 201219776 針。若需要時’各雜交室180可裝載探針以偵測超過 1000種不同的標靶。另外,許多或所有的雜交室可裝載 同一種探針以重複偵測相同的標靶核酸。以此方式在整個 雜交室陣列1 1 0複製探針可增加對所得結果之信心,且若 需要時’可由鄰接那些雜交室之光電二極體組合結果以提 供單一結果。熟習本技藝之人士將可辨識到根據偵測規 範’在雜交室陣列110上可能具有1至超過1000種不同 的探針。 加濕器及濕度感測器 第6圖中之插圖AG指出加濕器196之位置。加濕器 可防止試劑和探針在LOC裝置3 01操作期間蒸發。如第 55圖之放大視圖中的最佳顯示,水庫188在流體運行上 連接三個蒸發器190。水庫188中塡滿分子生物級水且在 製造過程中密封。如第5 5和74圖中之最佳顯示,水被吸 入三個下降道194中並藉由毛細作用沿著各別供水通道 192進入在蒸發器190之一組三個的攝入口 193中。彎月 面固定在各攝入口 193以保留水。該蒸發器具有環繞攝入 口 1 93之環形加熱器1 9 1。該環形加熱器1 9 1藉由到達頂 端金屬層195之傳導柱3 76連接到CMOS電路86 (見第 37圖)。被激活後,該環形加熱器191把水加熱,使水 蒸發並使周圍的裝置潮濕。 第6圖中亦顯示濕度感測器23 2的位置。然而,如第 67圖之插圖AH的放大視圖中的最佳顯示,該濕度感測器 -61 - 201219776 具有電容式梳狀結構。蝕刻之第一電極296和蝕刻之第二 電極298彼此面對面從而使其梳齒彼此交錯。相對之電極 形成具有可由CMOS電路86監控之電流容量的電容器。 隨著濕度增加,電極之間的空氣間隙之電容率增加,從而 使電容量亦隨之增加。該濕度感測器23 2與雜交室陣列 1 1 〇相鄰,在此,測量濕度最爲重要以減緩包含該外露探 針之溶液蒸發。 反饋感測器 在整個LOC裝置301中納入溫度和液體感測器以在 裝置操作期間提供反饋和診斷。參考第35圖,9個溫度 感測器1 7 0分佈在整個擴增區1.1 2中。同樣地,該培育區 1 1 4亦具有9個溫度感測器1 70。這些感測器各使用一個 雙極型電晶體(BJTs ) 2 X 2陣列來監測流體溫度並提供 CMOS電路86反饋。CMOS電路 86使用其來精確控制核 酸擴增過程中之熱循環以及熱裂解及培育期間之任何加 熱。 雜交室180中,CMOS電路86使用雜交加熱器182 作爲溫度感測器(見第5 6圖)。該雜交加熱器1 8 2之電 阻係取決於溫度,且該CMOS電路86使用此來衍生各雜 交室1 8 0之溫度讀數。 LOC裝置301亦具有多個MST通道液體感測器174 及蓋罩通道液體感測器208。第35圖顯示在經加熱之微 通道158中每隔一個曲折部分的一端有一排MST通道液 -62- 201219776 體感測器174。如第37圖中的最佳顯示,該MST通道液 體感測器174爲一對由CMOS結構86中之頂端金屬層 1 95的外露區所形成之電極。液體關閉電極之間的電路以 表明其存在於感測器的位置。 第25圖顯示蓋罩通道液體感測器208之放大的透視 圖。相對之TiAl電極對218和220係放置在屋頂層66。 電極218和22 0之間爲縫隙222以在沒有液體存在時保持 電路打開。液體存在時關閉電路,而CMOS電路86使用 該反饋來監控液流。 重力的獨立性 測試模組1 0與方向無關。其不需要被固定在平坦穩 定的表面上才能操作。由毛細作用驅動之流體在缺乏外部 管道裝置下流入輔助儀器可允許該模組真正地爲可攜式且 僅需插入一個同樣爲可攜式之手持閱讀器(諸如行動電話) 中。擁有與重力無關之運作意指該測試模組實際上亦完全 與加速度無關。其可抵抗衝擊和振動且可在行駛的車輛上 或當該行動電話被攜帶至各處時運作。The size of the fragment was determined by comparison to a DNA size marker (DNA-14-201219776 ladder) containing a fragment of the known size and swimming side by side with the amplicon on the gel. Since the oligonucleotide primer binds to a specific site adjacent to the target DNA, the size of the amplification product can be predicted and detected based on the known size of the gel. In order to determine the characteristics of the amplicon, or if several amplicons have been generated, a DNA probe that hybridizes to the amplicon is usually employed. DNA hybridization refers to the formation of double stranded DNA by complementary base pairing. A DNA hybridization technique for clearly identifying a particular amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DNA sequence, hybridization will occur under conditions of temperature, pH and ion concentration. If hybridization occurs, the desired gene or DNA sequence is present in the original sample. Optical detection is the most common method of detecting hybridization. Either the amplicon or probe is labeled to emit light by fluorescence or electrochemiluminescence. The difference in these processes lies in the manner in which the excited state of the photopolymerizable group is produced, but both processes can be used to covalently label the nucleotide strands. In electrochemiluminescence (ECL), light is generated by luminophore molecules or complexes when stimulated by electrical current. In fluorescent light, it causes light to be emitted by excitation light that causes luminescence. Fluorescence is detected using illumination sources and detection units that provide excitation light at wavelengths absorbed by the fluorescent molecules. The detection unit includes a photosensor that detects a transmitted signal (such as a photomultiplier tube or a charge coupled device (CCD) array) and a mechanism that prevents excitation light from being included in the output of the photosensor (such as a wavelength selective filter) ). The fluorescent molecules emit Stokes shifted light to respond to the excitation light, which is then collected by the detection unit -15-201219776. The Stokes shift is the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. The E C L emission system is detected using a light sensor that is sensitive to the emission wavelength of the E C L species used. For example, the transition metal-ligand complex emits light of visible wavelengths, so conventional photodiodes and CCDs can be used as photosensors. One of the advantages of ECL is that if the ambient light is shielded, the ECL's emitted light is the only light in the detection system, thus increasing sensitivity. Microarrays allow hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are powerful and powerful tools for molecular diagnostics that can screen thousands of genetic diseases or detect the presence of numerous infectious pathogens in a single experiment. Microarrays consist of a number of different DNA probes that are fixed at the point on the substrate. The target DN A (amplicon) is first labeled with a fluorescent or luminescent molecule (either during nucleic acid amplification or after nucleic acid amplification), followed by administration of the target DNA to the probe microarray. The microarray is incubated in a temperature controlled, humid environment for hours or days to allow hybridization between the probe and the amplicon. After incubation, the microarray must be cleaned with a series of buffers to remove unbound strands. Once cleaned, the surface of the microarray is dried with a stream of air (usually nitrogen). The rigor of hybridization and cleaning is critical. Insufficient rigor may result in a highly non-specific combination. Excessive rigor may result in an inability to properly combine, resulting in reduced sensitivity. Hybridization is identified by detecting the light emitted by the labeled amplicons of the hybrid formation of the complementary probe. The fluorescence from the microarray is detected by a microarray scanner, which is usually a computer-controlled inverted scanning fluorescent conjugated focus microscope. The display-16-201219776 micromirror usually uses a laser to excite the fluorescent dye. And a light sensor (such as a photomultiplier tube or CCD) detects the transmitted signal. Fluorescent molecules emit Stokes bits (as described above), which are collected by the detection unit. The emitted fluorescent light must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. In microarray scanners, a conjugate focal configuration of a conjugated focal hole aperture mounted on the image side is typically used to eliminate out-of-focus (out-〇f-f〇CUS) information. This device allows only the light of the focus portion to be detected. Light from above and below the focal plane of the target cannot enter the detector, thus increasing the signal to noise ratio. The detected fluorescent photons are converted into electrical energy by the detector and then converted into digital signals. This digital signal is translated into a number that represents the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the target sequence to which it is hybridized can be simultaneously identified and analyzed. For more information on fluorescent probes please see: http://www. Premierbiosoft. Com/tech_notes/FRET_probe. Html and http://www. Invitrogen. Com/site/us/en/home/References/Mo lecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET. Html Point-Point Care (P0INT-0F-CARE) Molecular Diagnostics Although molecular diagnostic tests offer many benefits, the growth of such tests in clinical laboratories is still slower than expected and is not the mainstream of laboratory medical tests -17-201219776. This is mainly because nucleic acid tests lead to higher complexity and cost than tests that do not involve nucleic acid methods. The extensive use of molecular diagnostic tests in clinical settings is closely related to the development of instrumentation. 'The instrument must be able to significantly reduce costs, provide rapid (automatic) analysis from initial (sample processing) to final (resulting), without The operation of substantial human intervention. Point-of-care technology can provide care in the physician's office, on the hospital bed side, or even in a consumer-focused home environment. This technology offers many benefits including: • Quick results for immediate treatment and improved care quality • Very small amount The number of laboratories in the sample test 値• Reduce the clinical workload • Reduce the workload of the laboratory and reduce the administrative work to improve the efficiency of the office. • By reducing the number of hospital stays, outpatients can be diagnosed at the initial diagnosis and reduced sample processing, Storage and delivery to improve the cost per patient • Helps clinical management decisions such as infection control and antibiotic use. Laboratory wafer (LOC)-based molecular diagnostics provide micro-fluid technology-based molecular diagnostic systems that can be automated and accelerated. A device for molecular diagnostic analysis. The shorter detection time is mainly due to the fact that the sample body required is less active, automated and within the low overhead of the microfluidic device. The volume of nanoliters and microliters also reduces reagent consumption and cost. Laboratory wafer (L0C) devices are a common form of microfluidic device. The LOC device has an MST structure within the MST layer for integrating fluid processing onto a single support substrate (typically helium). The unit cost of each LOC device is very low by manufacturing a VLSI (very large integrated circuit) lithographic technique for the semiconductor industry. However, large external piping and electronic devices are required to control the flow of fluid through the L 0 C device, to add reagents, to control reaction conditions, and the like. The connection of LOC devices to these external devices greatly limits the molecular diagnostic use of the l〇C device in a laboratory environment. Cost of external instruments and their operational complexity Eliminate L0C-based molecular diagnostics as an option in a fixed-point care environment. In view of this, there is a need for a molecular diagnostic system based on a L0C device that can be used for fixed-point care. SUMMARY OF THE INVENTION Various aspects of the present invention are now described in the following paragraphs. GSE001. 1 This aspect of the invention provides a microfluidic device for treating a fluid, the microfluidic device comprising: an inlet for receiving a fluid; a functional region for treating the fluid; a flow path extending from the inlet into the at least one functional region; a sensor having a conductive element located adjacent the fluid flowing along the flow path: -19-201219776 A CMOS circuit configured to measure a temperature of a conductive element; wherein the CMOS circuit is configured to provide a conductive element The predetermined current is measured and the resistance of the conductive element is measured, so that the flow rate is derived from the current, temperature sense, and the resistance, and the flow rate is based on the flow velocity and the flow path cross section of the flow direction and the flow direction. Export. GSE001. Preferably, the electrically conductive element is a heater element supported on the inner surface of the flow path. GSE001. Preferably, the electrically conductive element has a curved configuration. GSE001. 4 Preferably, the flow path is defined by the microchannel. The cross-sectional area of the microchannel with the flow transverse direction is less than 100,000 square micrometers. GSE001. Preferably, one of the functional regions is a polymerase chain reaction (PCR) region, and the fluid is a biological sample containing a target nucleic acid sequence. The PCR region is configured to perform a thermal cycle of the sample to The target nucleic acid sequence is amplified and the microchannel defines a flow path through the PCR region. GSE001. Preferably, the microfluidic device also has at least one elongated heater element for heating the target nucleic acid sequence within the microchannel. GSE001. Preferably, the microfluidic device also has a support substrate and a microsystem technology (MST) layer incorporated into the functional area, wherein the CMOS circuit has digital memory for storing data and operational information for operation during processing and analysis of the sample. Control the ribbon. GSE001. Preferably, the microfluidic device also has a plurality of reagent libraries containing reagents for processing the sample, wherein the data stored in the digital memory -20-201219776 is related to the reagent characteristics. GSE001. Preferably, the data stored in the digital unit is a unique identifier of the microfluidic device. GSE001. Preferably, the operational information stored in the digital memory is related to the time and duration of the thermal cycle. GSE001. Il preferably, the functional region comprises a growing region upstream of the PCR region, and one of the reagent libraries is a restriction enzyme library having a sample and a restriction enzyme for restriction enzyme digestion of the target nucleic acid sequence The temperature of the mixture is maintained at the incubation temperature of the heater. GSE001. Preferably, the microfluidic device also has an array of probes for hybridizing to a target nucleic acid sequence in an amplicon from the PCR region. GSE001. Preferably, the data stored in the digital memory includes probe characteristic data identifying the probe at each of the points within the probe array. GSE001. Preferably, each probe is configured to form a probe-target hybrid with a complementary target nucleic acid sequence contained in the amplicon, each probe-target hybrid being configured to respond to input A photon is emitted, and the C Μ 0 S circuit incorporates a photosensor for sensing photons emitted by the probe-target hybrid. GSE00 1. Preferably, the data stored in the digital memory includes hybridization data generated from the photosensor output. GSE001. Preferably, the microfluidic device also has an array of hybridization chambers for housing the probes such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. -21 - 201219776 GSE001. Preferably, the photosensor is an array of photodiodes that are registered with the hybridization chamber. GSE001. Preferably, the CMOS circuit has bond pads and is configured to transmit hybridization data to an external device. GSE00 1. Preferably, the sample is taken from the patient and the CMOS circuit is configured to download patient data via the bond pad and store the patient's data in digital memory. GSE001. Preferably, the PCR zone has an active valve for retaining liquid in the PCR zone during thermal cycling and allowing liquid to flow to the hybridization chamber in response to activation signals from the CMOS circuitry. As far as the operation of the microfluidic device is concerned, the microfluidic device can process and/or analyze the flow system in a large and inexpensive manner and the fluid flow rate is monitored by the easily manufactured hot wire flow sensor and controlled in an optimal manner. . GSE002. 1 This aspect of the invention provides a microfluidic device for treating a fluid, the microfluidic device comprising: an inlet for receiving a fluid; a functional region for processing a fluid; a flow path extending from the inlet into at least some of the functional regions; Circuitry for controlling the functional area; and a liquid sensor having an electrode positioned in contact with a fluid flowing along the flow path; wherein the circuit is configured to provide a voltage between the electrodes, Thus, a current above a predetermined threshold 为 is indicative of the presence of liquid at the electrode. -22- 201219776 GSE002. 2 Preferably, the microfluidic device also has a temperature sensor ' for sensing the temperature of the fluid in the flow path and a flow rate sensor having a heater element supported on the inner surface of the flow path, wherein the circuit Is configured to receive a temperature sensor output, provide a predetermined current through the heater element and measure a resistance of the conductive element to derive a flow rate from the current, temperature sensor output, and resistance, and the flow rate is used The flow velocity and the flow path cross section on the heater element and the flow transverse direction are derived. GSE002. Preferably, the heater element has a curved configuration. GSE002. Preferably, the flow path is defined by a microchannel having a cross-sectional area transverse to the flow direction of less than 100,000 square microns. GSE002. Preferably, one of the functional regions is a polymerase chain reaction (PCR) region, and the fluid is a biological sample containing a nucleic acid sequence configured to perform thermal cycling of the sample to sequence the nucleic acid sequence Amplification, the microchannel defines a flow path through the PCR region. GSE002. Preferably, the microfluidic device also has at least one elongated heater element for heating the nucleic acid sequence within the microchannel. GSE002. Preferably, the microfluidic device also has a support substrate and a microsystem technology (MST) layer incorporated in the functional area, wherein the circuit is a CMOS circuit having digital memory for storing data and operating information for processing and The functional area is controlled during the analysis of the sample. GSE002. Preferably, the microfluidic device also has a plurality of reagent reservoirs containing reagents for processing the sample, wherein the data stored in the digits is related to reagent characteristics. -23- 201219776 GSE002. Preferably, the data stored in the digital memory is a unique identifier of the microfluidic device. GSE002. Preferably, the operational information stored in the digital memory is related to the time and duration of the thermal cycle. GSE002. Il preferably, the functional region comprises a growing region upstream of the PCR region, and one of the reagent libraries is a restriction enzyme library having a mixture for the sample and the restriction enzyme during restriction enzyme digestion of the nucleic acid sequence. The heater is maintained at the incubation temperature. GSE002. Preferably, the microfluidic device also has an array of probes for hybridizing to a target nucleic acid sequence in an amplicon from the PCR region. GSE002. Preferably, the data stored in the digital memory includes probe characteristic data identifying the probe at each of the points within the probe array. GSE002. Preferably, each probe is configured to form a probe-target hybrid with a complementary target nucleic acid sequence contained in the amplicon, each probe-target hybrid being configured to respond to input The photons are emitted, and the CMOS circuit incorporates a photosensor for sensing photons emitted by the probe-target hybrid. GSE002. Preferably, the data stored in the digital body comprises hybridization data generated from the output of the photosensor. GSE002. Preferably, the microfluidic device also has an array of hybridization chambers for receiving probes such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. GSE002. Preferably, the photosensor is a photodiode array that is registered with the hybridization chamber -24-201219776. GSE002. Preferably, the CMOS circuit has a bond pad and is configured to transmit hybridization data to an external device. GSE002. Preferably, the sample is taken from the patient and the CMOS circuit is configured to download patient data via the bond pad and store the patient's data in a digital body. GSE002. Preferably, the PCR zone has an active valve for retaining liquid in the PCR zone during thermal cycling and allowing liquid to flow to the hybridization chamber in response to activation signals from the CMOS circuitry. From the point of view of the operation of the microfluidic device, the microfluidic device can process and/or analyze the flow system and the specified location in the flow system in a large and inexpensive manner by the easy-to-manufacture liquid sensor and in the most ideal manner. Control related. GSE003. 1 This aspect of the invention provides a microfluidic device for treating a fluid, the microfluidic device comprising: an inlet for receiving a fluid; a functional region for processing a fluid; a flow path extending from the inlet into at least some of the functional regions: a circuit for controlling the functional area; and a capillary leading edge advancement sensor having a plurality of liquid sensors spaced along the flow path, each liquid sensor having a position along and along the flow path An electrode at a location where the flowing fluid contacts; wherein the circuit is configured to provide a voltage between the electrodes such that a current above a predetermined threshold 为 is indicative of the presence of liquid at the electrode and is used to derive the liquid flow - 25, 2012, 1977 The speed of the edge. GSE003. 2 Preferably, the microfluidic device also has a temperature sensor for sensing the temperature of the fluid in the flow path, and a flow rate sensor having a heater element supported on the inner surface of the flow path, wherein A circuit is configured to receive a temperature sensor output, provide a predetermined current through the heater element, and measure a resistance _ of the conductive element, thereby deriving a flow rate from the current, temperature sensor output, and resistance, and the flow rate The flow velocity and the cross section of the flow path on the heater element and the flow direction are derived. GSE003. Preferably, the heater element has a curved configuration. GSE003. Preferably, the flow path is defined by a microchannel having a cross-sectional area transverse to the flow direction of less than 100,000 square microns. GSE003. Preferably, one of the functional regions is a polymerase chain reaction (PCR) region, and the fluid is a biological sample containing a nucleic acid sequence configured to perform thermal cycling of the sample to sequence the nucleic acid sequence Amplification, the microchannel defines a flow path through the PCR region. GSE003. Preferably, the microfluidic device also has at least one elongated heater element for heating the nucleic acid sequence within the microchannel. GSE003. Preferably, the microfluidic device also has a support substrate and a microsystem technology (MST) layer incorporated in the functional area, wherein the circuit is a CMOS circuit having digital memory for storing data and operating information for processing and The functional area is controlled during the analysis of the sample. GSE003. Preferably, the microfluidic device also has a plurality of reagent reservoirs containing reagents for processing the sample, wherein the data stored in the digits -26-201219776 is related to reagent characteristics. GSE003. Preferably, the data stored in the digital memory is a unique identifier of the microfluidic device. GSE003. Preferably, the operational information stored in the digital body is related to the time and duration of the thermal cycle. GSE0 03. Il preferably, the functional region comprises a growing region upstream of the PCR region, and one of the reagent libraries is a restriction enzyme library having a mixture for the sample and the restriction enzyme during restriction enzyme digestion of the nucleic acid sequence. The heater is maintained at the incubation temperature. GSE003. Preferably, the microfluidic device also has an array of probes for hybridizing to a target nucleic acid sequence in an amplicon from the PCR region. GSE003. Preferably, the data stored in the digital memory includes probe characteristic data identifying the probe at each of the points within the probe array. GSE003. Preferably, each probe is configured to form a probe-target hybrid with a complementary target nucleic acid sequence contained in the amplicon, each probe-target hybrid being configured to respond to an input The photons are emitted while the CM Ο S circuit incorporates a photosensor for sensing photons emitted by the probe-target hybrid. GSE003. Preferably, the data stored in the digital memory includes hybridization data generated from the photosensor output. GSE003. Preferably, the microfluidic device also has an array of hybridization chambers for housing the probes such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. -27- 201219776 GSE003. Preferably, the photosensor is an array of photodiodes that are registered with the hybridization chamber. GSE003. Preferably, the CMOS circuit has a bond pad and is configured to transmit hybridization data to an external device. GSE003. Preferably, the sample is taken from the patient and the CMOS circuit is configured to download patient data via the bond pad and store the patient's data in digital memory. GSE003. Preferably, the PCR zone has an active valve for retaining liquid in the PCR zone during thermal cycling and allowing liquid to flow to the hybridization chamber in response to activation signals from the CMOS circuit. The microfluidic device can process and/or analyze the flow system in a large and inexpensive manner and the fluid flow rate is monitored by the easy-to-manufacture capillary leading edge velocity sensor and in an optimal manner. GSE004. 1 This aspect of the invention provides a microfluidic device for treating a fluid, the microfluidic device comprising: an inlet for receiving a fluid; a functional region for treating the fluid; a flow path extending from the inlet into at least some of the functional regions; a CMOS circuit operating the control function area; and a conductive sensor having a first terminal and a second terminal spaced along the flow path and disposed between the first terminal and the second terminal along the flow path a first electrode and a second electrode separated by: wherein the CMOS circuit is configured to generate a current between -28-201219776 of the first terminal and the second terminal, and measure a voltage passing through the first electrode and the second electrode, thereby The conductivity of the fluid in the flow path is derived from the current and the measured voltage. GSE004. 2 Preferably, the microfluidic device also has a temperature sensor for sensing the temperature of the fluid in the flow path, and a flow rate sensor having a heater element supported on the inner surface of the flow path, wherein the circuit Configuring to receive a temperature sensor output, providing a predetermined current through the heater element and measuring the resistance of the conductive element, thereby deriving the flow rate from the current, temperature sensor output, and resistance, and using the flow rate The flow velocity and the flow path cross section on the heater element and the flow transverse direction are derived. GSE004. Preferably, the heater element has a curved configuration. GSE004. Preferably, the flow path is defined by a microchannel having a cross-sectional area transverse to the flow direction of less than 100,000 square microns. GSE004. Preferably, one of the functional regions is a polymerase chain reaction (PCR) region, and the fluid is a biological sample containing a nucleic acid sequence configured to perform thermal cycling of the sample to sequence the nucleic acid sequence Amplification, the microchannel defines a flow path through the PCR region. GSE004. Preferably, the microfluidic device also has at least one elongated heater element for heating the nucleic acid sequence within the microchannel. GSE004. Preferably, the microfluidic device also has a support substrate and a microsystem technology (MST) layer incorporated into the functional area, wherein the CMOS circuit has digital memory for storing data and operational information for operation during processing and analysis of the sample. Control the ribbon. -29- 201219776 GSE004. Preferably, the microfluidic device also has a plurality of reagent reservoirs containing reagents for processing the sample, wherein the data stored in the digits is related to reagent characteristics. GSE004. Preferably, the data stored in the digital memory is a unique identifier of the microfluidic device. GSE004. Preferably, the operational information stored in the digital memory is related to the time and duration of the thermal cycle. GSE004. Il preferably, the functional region comprises a growing region upstream of the PCR region, and one of the reagent libraries is a restriction enzyme library having a mixture for the sample and the restriction enzyme during restriction enzyme digestion of the nucleic acid sequence. The heater is maintained at a temperature at the incubation temperature. GSE004. Preferably, the microfluidic device also has an array of probes for hybridizing to a target nucleic acid sequence in an amplicon from the PCR region. GSE004. Preferably, the data stored in the digital memory includes probe characteristic data identifying the probe at each of the points within the probe array. GSE004. Preferably, each probe is configured to form a probe-target hybrid with a complementary target nucleic acid sequence contained in the amplicon, each probe-target hybrid being configured to respond to input The photons are emitted, and the CMOS circuit incorporates a photosensor for sensing photons emitted by the probe-target hybrid. GSE004. Preferably, the data stored in the digital memory includes hybridization data generated from the photosensor output. GSE004. Preferably, the microfluidic device also has an array of hybridization chambers for receiving probes -30-201219776 such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. GSE004. Preferably, the photosensor is an array of photodiodes that are registered with the hybridization chamber. GSE004. Preferably, the CMOS circuit has a bond pad and is configured to transmit hybridization data to an external device. GSE004. Preferably, the sample is taken from the patient and the CMOS circuit is configured to download patient data via the bond pad and store the patient's data in digital memory. GSE004. Preferably, the PCR zone has an active valve for retaining liquid in the PCR zone during thermal cycling and allowing liquid to flow to the hybridization chamber in response to activation signals from the CMOS circuitry. In terms of the operation of the microfluidic device, the microfluidic device can process and/or analyze the flow system and the conductivity of the fluid mixture in a large amount and inexpensively by the easy-to-manufacture conductive sensor and in an optimal manner. Control fluid flow rate related. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED SYSTEM STATEMENT This brief description identifies the main components of the molecular diagnostic system incorporating the system of the present invention. The details of the structure and operation of the system are described in the following patent specification. Referring to Figures 1, 2, 3, 12 and 121, the system has the following top-31 - 201219776 layer components: Test modules 10 and 1 have the dimensions of a typical USB memory key and are very inexpensive to manufacture. Test modules 1 and 1 each comprise a microfluidic device, typically in the form of a pre-packaged on-wafer laboratory (LOC) device 30 and typically have more than 1000 probes for molecular diagnostic detection (see Figures 1 and 1 2 0)). The test module 10 shown in Figure 1 uses a fluorescence-based detection technique to identify the target molecules, and the test module 1 1 shown in Figure 20 is used. Detection technology based on electrochemiluminescence. The LOC device 30 has an integrated light sensor 44 (described in detail below) for detecting fluorescence or electrochemiluminescence. Both test modules 1 and 11 use standard Micro-USB plugs 14 for power, data and control, both with a printed circuit board (PCB) 57 and both with external power supply capacitors 32 and inductors Device 15. Both test modules 10 and 11 are used in a single use for mass production and sale of ready-to-use sterile packaging. The outer casing 13 has a large container 24 for receiving a biological sample and a removable sterile sealing tape 22 (a low viscosity adhesive is preferred) to cover the large container prior to use. A membrane gasket 408 with a membrane shield 410 forms part of the outer casing 13 to reduce moisture loss in the test module while providing pressure relief from small air pressure fluctuations, and the membrane shield 410 protects the membrane gasket 408 Not damaged. The test module reader 12 provides test module 10 or 11 power via a Micro-USB port 16. The test module reader 12 can take a variety of different forms, and the choice of these forms will be described later. The reader 丨 2 shown in Figures 1, 3 - 32 - 201219776 and 120 is in the form of a smart phone system. A block diagram of this reader 12 is shown in FIG. The processor 42 runs the application software from the program memory 43. The processor 42 is also coupled to a display screen 18 and a user interface (ui) touch screen 17 and button 19, a cellular radio 21, a wireless network connection 23, and a satellite navigation system 25. The cellular radio 21 and the wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the location data of the epidemiological database. Alternatively, the location data can be manually entered via the touch screen 17 or button 19. The data store 27 holds genetic and diagnostic information, test results, patient information, analysis and probe data for identifying the position of each probe and its array. Data memory 27 and program memory 43 share a common memory facility. The application software installed in the test module reader 12 provides analysis of results and other test and diagnostic information. For diagnostic testing, the test module 1 〇 (or test module 1 1 ) is inserted into the Micro-USB port 16 on the test module reader 12. The sterile sealing tape 22 is peeled back and the biological sample (in liquid form) is loaded into the large sample container 24. Pressing the start button 20 initiates the test via the application software. The sample flows into the LOC device 30, and the on-board assay extracts, cultures, and amplifies the sample nucleic acid (target) and hybridizes it to a pre-synthesized hybrid-reactive oligonucleotide probe. . In the case of a test module 1 (which uses a fluorescence-based detection method), the probe is fluorescently labeled and the LEDs 26 stored in the housing 13 provide the necessary excitation light to induce fluorescence. Emission from hybridized probes (see Figures 1 and 2). The LOC device 30 is loaded with an ECL probe (as described above) in the test mode 1 (which uses electrochemiluminescence (EC L) detection - 33 - 201219776), and the LED 26 is not necessary to generate a fluorescent emission. Conversely, electrodes 860 and 870 provide an excitation current (see Figure 121). The emitted light (fluorescent or luminescent) is detected using a light sensor 44 integrated into the CMOS circuitry of each LOC device. The detected signal is amplified and converted to a digital output, which is then analyzed by test module reader 12. The reader then displays the results. This data can be saved and/or uploaded to a web server containing patient records. Test Module Reader 1 2 Remove the test module 1 〇 or 1 1 and dispose of it appropriately. Figures 1, 3 and 120 show a test module reader 12 in the form of a handset/smartphone 28. In other forms, the test module reader is a laptop/notebook 101, a dedicated reader 103, an e-book reader 107, a tablet 109, or a desktop computer 105 for use in a hospital, private clinic, or laboratory. (See Figure 122). The reader can be connected to a range of other applications, such as medical records, billing, online databases, and multi-user environments. It can also be connected to a range of nearby or remote peripherals, such as printers and patient smart cards. Referring to FIG. 23, the data generated by the test module 1 can be updated by the reader 12 and the network 125 to update the epidemiological data managed on the epidemiological data host system 1U, and managed on the genetic data host system 113. Genetic data, electronic health records managed on an electronic health record (EHR) host system 115, electronic medical records managed on an electronic medical record (EMR) host system 121, and personal health records (PHR) master-34 - 201219776 Machine system 1 2 3 Managed personal health records. Conversely, epidemiological data managed on the epidemiological data host system 111, genetic data managed on the genetic data host system 113, electronic health records managed on the electronic health record (EHR) host system 115, The electronic medical record managed on the electronic medical record (EMR) host system 121 and the personal health record managed on the personal health record (PHR) host system 123 can update the LOC 30 of the test module 1 via the network 125 and the reader 12. Digital memory in the middle. Referring back to Figures 1, 2, 120 and 121, the reader 12 uses the battery power in the mobile phone configuration. The mobile phone reader contains all pre-downloaded test and diagnostic information. Data can also be downloaded or updated via a number of wireless or contact interfaces to interface with peripheral devices, computers or online servers. Mi cro - U S B埠1 6 can be used to connect to a computer or mains to charge the battery. Figure 77 shows a system of test modules 1 for testing that requires only positive or negative results for a particular target, such as testing whether an individual is exposed to, for example, a Η 1N 1 influenza A virus infection. It is sufficient to simply configure the USB power/indicator-definition module 47. No other readers or application software is required. The indicator on the USB power/indicator-defining module 47 signals a positive or negative result. This configuration is ideal for group screening. Other items provided with the system may include test tubes containing reagents for pre-processing certain samples, as well as spatula and blood collection needles for collecting samples. Figure 77 shows the test module system incorporating the spring-loaded retractable lancet -35-201219776 3 90 and the lancet release button 3 92 for convenient use. Satellite phones are available for use in remote locations. Test Module Electronics Figures 2 and 1 2 1 are block diagrams of the electronic components in test modules 10 and 11. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36, a controller 34, a USB-compatible LED driver 29, a clock 33, a power conditioner 31, a RAM 38, and a program and data flash memory 40. These provide the entire test module 10 or 1 1 (including photosensor 44, temperature sensor 170, liquid sensor 1 74, and various heaters 152, 154, 182, 234, along with associated drivers 37 and 39, as well as recorders 3 5 and 4 1 ) control and record billion. Only the LED 26 (in the case of the test module 10) 'the external power supply capacitor 32 and the Micro-USB plug 14 are external to the LOC device 30. The LOC device 30 includes a bond pad for connecting these external components. RAM 3 8 and Program and Data Flash Memory 40 have application software and diagnostic and test information for more than 1 000 probes (flash/secure storage, eg via encryption). There is no LED 26 in the case of a test module 1 1 configured for ECL detection (see Figures 120 and 121). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 carries an electrochemical luminescence probe, and each of the hybridization chambers has a pair of ECL excitation electrodes 860 and 870. Many types of test modules 10 are manufactured in a variety of test formats for ready-to-use use. The difference between this test format is the on-machine detection of reagents and probes. -36- 201219776 Some examples of infectious diseases that are rapidly identified by this system include: • Influenza-flu viruses A, B, C, Isavirus, Thogotovirus • Pneumonia-Respiratory Syndrome (RSV) , adenovirus, interstitial pneumonia virus, pneumococci, staphylococcus aureus • tuberculosis - mycobacterium tuberculosis, mycobacterium bovis, mycobacteria, mycobacteria, mycobacteria, mycobacteria, falciparum Insects, Toxoplasma and other protozoan parasites • Typhoid-S. typhimurium serotype • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever - flavivirus • Hepatitis (A to E) • Nosocomial infections - For example: Clostridium difficile, vancomycin-resistant Enterococcus and methicillin-resistant Staphylococcus aureus • Herpes simplex virus (HSV) • Cytomegalovirus (CMV) • Epstein-Barr virus (EBV) • Brain Inflammation - Japanese encephalitis virus, Chandipura virus • Pertussis-B. pertussis • Paralytic-paramyxovirus • Meningitis - Streptococcus pneumoniae and Neisseria meningitidis •疽-Bacillus anthracis-37- 201219776 Some examples of hereditary diseases that are rapidly identified by this system include: • Cystic fibrosis • Hemophilia • Sickle cell disease • Tay-Sachs disease • Hemochromatosis (haemochromatosis) • cerebral arterial disease • Crohn's disease • polycystic kidney disease • congenital heart disease • Rett syndrome is identified by this diagnostic system. A small number of cancers include: • Ovary • Colon cancer • Multiple endocrine tumors • Retinoblastoma • Turcot Syndrome The above list is not exhaustive and the diagnostic system can be configured to utilize nucleic acid and proteomic analysis to detect a wider variety of diseases and conditions. Detailed structure of system components LOC device LOC device 3 is the center of the diagnostic system. It uses a microfluidic platform to rapidly perform four major steps in nucleic acid-based molecular diagnostic analysis. 38·201219776, ie, preparing samples, extracting nucleic acids, amplifying nucleic acids, and detecting. The LOC device also has other uses, which will be described in detail later. As mentioned above, test modules 1 〇 and 1 1 can be implemented in many different configurations to detect different targets. Similarly, the LOC device 30 has many different targets for the desired target system. One form of LOC device 30 is the LOC device 301, which is used to fluorescently detect a target nucleic acid sequence in a pathogen of a whole blood sample. For purposes of illustration, the structure and operation of the LOC device 301 will now be described in detail with reference to Figures 4 through 26 and 27 through 57. FIG. 4 is a schematic image of the structure of the LOC device 301. For the sake of convenience, the processing stages shown in Fig. 4 are denoted by reference numerals corresponding to the functional areas of the LOC device 301 performing the processing stage. It also refers to the stages of processing associated with the major steps of the nucleic acid-based molecular diagnostic assay: sample input and preparation 28, extraction 290, incubation 291, amplification 292, and detection 294. Each of the reservoirs, chambers, valves, and other components of the LOC device 301 will be described in more detail later. Figure 5 is a perspective view of the LOC device 301. It is manufactured using high-capacity CMOS and MST (microsystem technology) manufacturing techniques. The hierarchical structure of the LOC device 301 is illustrated in a partial cross-sectional view (not to scale) of Fig. 12. The LOC device 301 has a germanium substrate 84 supporting a CMOS + MST chip 48 comprising a CMOS circuit 86 and an MST layer 87 overlying the MST layer 87 with a cap 46. In this patent specification, the term "MST layer" refers to the collective name of the structure and hierarchy of the sample treated with various reagents. Accordingly, these configurations and components are configured to define a flow path in a particular size that is uniquely sized to support the flow of liquid having a physical property similar to that of the sample -39 - 201219776 during capillary processing. In view of this, the MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also be fabricated with dimensions that are applicable to structures driven by capillary action and that can handle very small volumes of structures and components. The particular system described in this patent specification shows the MST layer as a structure and components that are supported on CMOS circuitry 86, but does not include portions of cover 46. However, those skilled in the art will appreciate that the MST layer does not need to have an underlying CMOS or a true overlay cover for processing samples. The overall dimensions of the LOC device shown in the following figures are 1 760 microns x 5 8 24 microns. Of course, the LOC devices that are manufactured for use in different applications can have different sizes. Fig. 6 shows the appearance of the MST layer 87 having the cover portion superimposed thereon. The illustrations AA to AD, AG, and AH shown in Fig. 6 are magnified in Figures 13, 14, 35, 56, 55, and 67, respectively, and are described in detail below for a comprehensive understanding of the structures in the LOC device 301. Figures 7 through 10 show the appearance of the cover 46 independently, while Figure 11 shows the structure of the CMOS + MST device 48 independently. Thin Layer Structures Figures 12 and 22 are schematic diagrams showing the thin layer structure of the CMOS+ MST device 48, the cover 46, and the fluid interaction therebetween. These figures are not intended to be used for illustration. Fig. 22 is a schematic cross-sectional view through the sample inlet 68, and Fig. 22 is a schematic cross-sectional view through the reservoir 54. As best shown in Figure 12 of the -40-201219776, the CMOS + MST device 48 has a germanium substrate 84 that supports the CMOS circuit 86 (which operates the useful components within the MST layer 87 described above). Passivation layer 88 seals and protects CMOS layer 86 from the fluid flowing through MST layer 87. Fluid flows through the shroud channel 94 and the MST channel 90 in the cap layer 46 and the MST channel layer 100, respectively (see, for example, Figures 7 and 16). The cell transport system occurs in a larger channel 94 assembled in the cap 46, while the biochemical process is performed in the smaller MST channel 90. The cell transport channel is sized to transport cells in the sample to a predetermined location in the MST channel 90. Transporting cells larger than 20 microns (e.g., some white blood cells) requires channel sizes greater than about 20 microns, and therefore cross-sectional areas with flow transverse directions need to be greater than 400 square microns. MST channels, especially those that do not require transport of cells in the LOC, can be significantly smaller. It will be appreciated that the cover channel 94 and the MS T channel 90 are generic names, and in particular the MS T channel 90 may also be referred to as, for example, a heated microchannel or a dialysis M S T channel in view of its particular function. The M S T channel 90 is formed by etching through the MST channel layer 100 located on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is surrounded by a roof layer 66 that forms the top of the CMOS + MST device 48 (associated with the orientation shown in the figures). Although sometimes shown in a separate hierarchy, the cover channel layer 80 and the reservoir layer 78 are formed from a single piece of material. Of course, the piece of material may also be a non-single piece. The sheet of material is etched from both sides to form a cap channel layer 80 in which the cap channel 94 is etched and a reservoir layer 78 in which the reservoirs S4, 56, -41 - 201219776 58, 60 and 62 are etched. Storage is formed by micromolding. The engravers are used to create channels that flow laterally to 200,000 microns and as small as 8 square microns. There may be some suitable range of choices for flow and flow in different locations of the LOC device. When the channel contains a large number of samples, the cross-sectional area is suitable to be at most (for example, the cross-sectional area of a mixed channel containing a small amount of liquid or no large cells in a 200 micron track in a layer of 〇〇 〇〇 micron thickness is preferably very small. A lower gasket 64 surrounds the cover channel 94, enclosing the reservoirs 54, 56, 58, 60, and 62» the five reservoirs 54, 56, 58, 60, and 62 dedicated reagents. In the system described herein, The storage reagent, but other reagents can be easily replaced: ♦ Depot 54: Anticoagulant, optional debuffer • Repository 5 6 : Lysis reagent • Repository 58: Restriction enzymes, ligation PCR initiated at the connector (see Figure 76, excerpt 丨al. , Human Molecular Genetics 2, Garland London, 1999)). Depot 60: The amplification mixture (dNTPs, and: reservoir and cap channeling and micromolding technique 2) can have a large cross-sectional area with a large cross-sectional area containing a large number of samples or a wide channel of 20,000 square microns. In the case of a general-purpose, the pre-packaged detection reservoir in the horizontally-highly sealed gasket 82 contains pre-assembled erythrocyte lyase and linker (used by T.  Stachan et Science, NY and Primers, Buffers) -42- 201219776 . Repository 62: DNA polymerase. Cover 46 and CMOS + MST layer 48 are in fluid communication via corresponding openings in lower seal 64 and roof layer 66. These openings flow from the MST channel 90 into the cap channel 94 or from the cap channel 94 to the MST channel 90 depending on the flow system, and are referred to as the ingestion port 96 and the down channel 92. LOC device operation is referred to below in the analysis of the blood sample. The pathogen DNA is used to describe the method of operation of the LOC device 301 step by step. Of course, other types of biological or non-biological fluids can also be analyzed using reagents, test protocols, variants of the LOC device, and appropriate settings or combinations of detection systems. Referring back to Figure 4, the analysis of biological samples involves five main steps, including inputting and preparing samples 28 8 , extracting nucleic acids 290, culturing nucleic acids 291, amplifying nucleic acids 292, and detecting and analyzing 2 9 4 * sample input and preparation steps 288 involves mixing the blood with the anticoagulant 116 and then separating the pathogen from the white blood cells and red blood cells by the pathogen dialysis zone 70. As best shown in Figures 7 and 12, blood samples enter the device via sample inlet 68. The capillary action draws the blood sample into the reservoir 54 along the cover channel 94. When the blood flow opens the surface tension valve 1 18 of the reservoir 54, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). The anticoagulant prevents the formation of blood clots that may block the flow. As best shown in Fig. 22, the anticoagulant 116 is aspirated from the reservoir 54 by capillary action and enters the MST channel via the descending channel 92 -43 - 201219776 90. The downcomer 92 has a capillary initiation features (CIF) 102 to shape the geometry of the meniscus such that it does not rest at the edge of the downcomer 92. The venting opening 122 in the upper gasket 82 allows air to replace the anticoagulant 116 when the anticoagulant 116 is aspirated from the reservoir 54. The MST channel 90 shown in Fig. 22 is part of the surface tension valve 118. The anticoagulant 1 16 breaks into the surface tension valve 1 18 and secures the meniscus 120 to the anchor 98 of the meniscus of the ingestion hole 96. Prior to use, the meniscus 1 20 is still secured to the ingestion aperture 96 so that the anticoagulant does not flow into the mask passage 94. As blood flows through the cap channel 94 to the ingestion port 96, the meniscus 120 is removed and the anticoagulant is drawn into the fluid stream. Figures 15 through 21 show an inset AE which is part of the insert AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three spaced apart MST channels 90 extending between respective corresponding downcomers 92 and intake apertures 96. The number of MST channels 90 in the surface tension valve can be varied to vary the flow rate of reagent into the sample mixture. When the sample mixture and reagent mixture are mixed together by diffusion, the flow rate out of the reservoir determines the concentration of the reagent in the sample stream. Thus, the surface tension valves of each reservoir are configured to meet the desired reagent concentration. The blood enters the pathogen dialysis zone 70 (see Figures 4 and 15), wherein the target cell line is concentrated from the sample using an array of apertures (the size of which is based on a predetermined threshold). Cells smaller than the threshold 通过 cells that pass through the small holes cannot pass through the small holes. The unwanted cells (which may be larger cells trapped by the small well array 1 64 or smaller cells that pass through the small holes) are redirected to waste-44-201219776 unit 76, while the target cells continue to be part of the analysis . In the pathogen dialysis zone 70 described herein, pathogens from whole blood samples are concentrated for microbial DNA analysis. The aperture array is formed by a plurality of apertures 1 64 having a diameter of 3 microns, the fluid input to the input flow in the cover channel 94 is coupled to the target channel 74» the 3 micron diameter aperture 1 64 and the standard The dialysis absorbing wells 1 68 of the target channel 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21). The pathogen is small enough to pass through a small hole 1 64 having a diameter of 3 microns and into the target channel 74 via the dialysis MST channel 204. Cells larger than 3 microns, such as red blood cells and white blood cells, remain in the waste channel 72 in the cover 46, which will be directed to the waste reservoir 76 (see Figure 7). Other pore shapes, sizes, and aspect ratios can be used to isolate specific pathogens or other target cells, such as white blood cells, for human DNA analysis. A more detailed description of the dialysis zone and dialysis variants is provided below. Referring again to Figures 6 and 7, the flow is drawn through the target passage 74 into the surface tension valve 128 of the cracking reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is unfastened by the sample stream, the flow rate from all seven MST channels 90 will be greater than the flow rate from the anticoagulant reservoir 54 (where the surface tension valve 118 has three MST channels 90) (hypothesis) The physical properties of the fluid are approximately equal). Therefore, the proportion of the lysis reagent in the sample mixture is greater than the ratio of the anticoagulant. The lysis reagent and target cells are mixed by diffusion in the standard channel 74 of the chemical cleavage zone 130. The boiling start valve 1 2 6 stops the flow until -45-201219776 enough time for diffusion and lysis to release the genetic material from the target cells (see Figures 6 and 7). The construction and operation of the boiling start valve are described in more detail below with reference to Figures 31 and 32. The Applicant has also identified other types of active valves that may be used herein to replace the boiling start valve (as opposed to passive valves, such as surface tension valve H8). The design of these alternative valves is also described later. When the boiling start valve 126 is opened, the lysed cells flow into the mixing zone 133 for restriction enzyme digestion and linker ligation. Referring to Fig. 3, when the liquid flow releases the meniscus from the surface tension valve 132 at the beginning of the mixing zone 133, the restriction enzyme, linker and ligase are released from the reservoir 58. The mixture flows through the length of the mixing zone 133 for diffusion mixing. At the end of the mixing zone 133 is a descending lane 134 which is directed into the cultivating chamber inlet channel 133 of the incubation zone 114 (see Figure 13). The chamber inlet channel 133 delivers the mixture into the curved structure of the heated microchannel 210, which provides an incubation chamber for holding the sample during restriction enzyme ligation and ligation of the linker (see Figures 13 and 14). . Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in Figure AB of Figure 6. Each of the patterns is shown in sequence to form layers of the CMOS + MST layer 48 and the cover 46. The illustration AB shows the end of the incubation zone 1 1 4 and the beginning of the amplification zone 11 2 . As best shown in Figures 14 and 23, the stream breaks into the microchannel 210 of the incubation zone 114 until it reaches the boiling point activation valve 106 where it circulates and diffuses. As described above, the microchannel 210 upstream of the boiling start valve 106 becomes an incubation chamber containing the sample, restriction enzyme, ligase, and linker. -46- 201219776 The heater 1 54 is then activated and held at a constant temperature for a specified period of time for restriction enzyme digestion and linker engagement. Those skilled in the art will recognize that this incubation step 291 (see Figure 4) is optional and is only required for some types of nucleic acid amplification analysis. In addition, in some cases, a heating step may be required at the end of the incubation period to allow the temperature to break above the incubation temperature. The temperature of the breakthrough causes the restriction enzyme and ligase to deactivate before entering the amplification zone 112. Deactivation of restriction enzymes and ligases is particularly suitable when amplified using thermostatic nucleic acids. After incubation, the boiling start valve 106 is activated (opened) and the flow is returned to the amplification zone 112. Referring to Figures 31 and 32, the mixture breaks into the curved configuration of the heated microchannel 158 (which forms one or more expansion chambers) until it reaches the boiling point activation valve 108. As best shown in the schematic cross-sectional view of Figure 30, the amplification mix (dNTPs, primers, buffers) is released from the reservoir 60 'polymerase and then released from the reservoir 62 into the ligation chamber and the amplification zone (respectively In the intermediate MST channel 212 of 114 and 112). Figures 35 through 51 show the layers of the LOC device 3〇1 in the illustration AC of Figure 6. Each of the figures shows the layers that form the structure of the CMOS + MST device 48 and the cover 46. The illustration AC is the end of the amplification zone 112 and the beginning of the hybridization and detection zone 52. The incubated sample, amplification mixture, and polymerase flow through microchannel 158 to boiling point activation valve 108. After sufficient time for diffusion mixing, the heater 1 5 4 in the microchannel 1 58 is activated to initiate thermal cycling or isothermal amplification. The amplification mixture is subjected to a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target -47- «et·201219776 DNA. After the nucleic acid amplification process, the boiling start valve 1〇8 opens the hybrid and detection zone 52 and flows back. The operation of the boiling start valve will be described in more detail below. As shown in Figure 52, the hybridization and detection zone 52 has a hybrid chamber array 110» Figures 52, 53, 54 and 56 showing detailed hybridization chambers. Array 110 and individual hybridization chambers 180. At the entrance to hybridization chamber 180 is a diffusion barrier 175 that prevents diffusion of the target nucleic acid, probe strands, and hybridized probes between hybridization chambers 180 during hybridization, thereby preventing false hybridization detection results. The diffusion barrier 175 exhibits a sufficiently long flow path length to prevent the target sequence and probe from diffusing out of one chamber and contaminating another chamber during the time when the probe hybridizes with the nucleic acid and detects the signal, thereby avoiding erroneous result. Another mechanism to prevent erroneous readings is to have equal probes in many hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 corresponding to the hybridization chamber 180 containing the equivalent probe. In the process of the single result. The abnormal results can be ignored or weighted differently. A CMOS controlled heater 182 can provide the thermal energy required for hybridization (described in detail below). After the heater is activated, hybridization occurs between the complementary target-probe sequences. The LED driver 29 in the CMOS circuit 86 transmits a signal to the LED 26 located in the test module 1 to emit light. These probes produce fluorescence only when hybridization occurs, thereby avoiding the washing and drying steps typically required to remove unbound strands. Hybridization forces the arm-and-loop structure of the FRET probe 186 to open, which causes the fluorophore to emit fluorescing energy in response to the LED excitation light, as discussed in more detail below. Fluorescence is detected by photodiode 184 of -48 - 201219776 in CMOS circuit 86 under each hybrid cell 180 (see hybridization chamber described below). All of the hybrid chamber's Optoelectronics II 84 and associated electronics together form a photosensor 44 (see set of drawings). In other systems, the photosensor can be a charge coupled device column (C C D array). The amplification and conversion detected from the photodiode 128 is further described in detail below by the digital output detection method analyzed by the test module reader 12. Other Details of the LOC Device Modularized Design The LOC device 301 has a number of functional areas including reagent reservoirs 56, 58, 60 and 62, dialysis zone 70, lysis zone 130, incubation zone and amplification zone 11 2. Valve type, plus Humidifier and humidity sensor. In other systems of the device, these functional areas may be omitted, and the functional area may be added' or the functional area may be used for the above alternative purposes. For example, the incubation zone 1 14 can serve as the first addition zone 112' of the tandem amplification analysis system. The chemical lysis reagent library 56 can be used to add the primer-amplification mixture, dNTPs and buffer, while the reagent library 58 is coupled with the reverse transcription. Enzymes and / or polymerases. If the sample requires chemistry, a chemical lysing agent may also be added to the reservoir together with the amplification mixture' or the sample may be heated in the incubation zone for a predetermined thermal cracking. In some systems, if chemical cleavage is required and a mixture of primers, dNTPs, and buffers is required to separate from the chemical cleavage agent, additional reservoirs can be immediately included upstream of reservoir 58 with mixtures, dNTPs, and buffers. Polar body | 68 array signal. The 54 '114 LOC extra-expansion is added to the cleavage repository time. In the case of -49-201219776 In some cases, it may be necessary to omit a step, such as the incubation step 2 9 1 . In this case, an LO C device may be specially fabricated to omit the reagent reservoir 58 and the incubation zone 1 1 4, or the reservoir may not be loaded with reagents at all, or the active valve (if present) will not be active. The reagent is dispensed into the sample stream, which then becomes a channel at all to transport the sample from the lysis zone 130 into the amplification zone 112. The heater can operate independently, so when the reaction requires heat (such as thermal cracking), arranging the heater to not operate at this step ensures that thermal cracking does not occur in LOC units that do not require thermal cracking. The dialysis zone 70 can be located at the beginning of the fluid system within the microfluidic device as shown in Figure 4, or can be located anywhere within the microfluidic device. For example, in some cases, it may be beneficial to perform dialysis to remove cell debris after the amplification phase 292 prior to the hybridization and detection step 294. In addition, one or more dialysis zones can be included at any location throughout the LOC device. Similarly, additional amplification regions 1 1 2 may be included to allow multiple targets to be amplified simultaneously or sequentially, and then detected in the hybridization chamber array 110 with a particular nucleic acid probe. To analyze a sample of similar whole blood in which dialysis is not required, the dialysis zone 70 can be completely omitted from the sample input and preparation zone 28 of the LOC design. In some cases, there is no need to omit the dialysis zone 70 from the LOC device, even though the analysis does not require dialysis. If the presence of the dialysis zone does not have a geometrical barrier to the analysis, the dialysis zone 70 can still be used in the sample input and preparation zones of the LOC without loss of the desired function. In addition, the detection zone 294 may comprise a protein body cell array that is identical to the hybridization chamber array, but is designed to bind or hybridize to the probe target protein present in the non-amplified sample, rather than Designed from -50 to 201219776 A nucleic acid probe that hybridizes to a target nucleic acid sequence. It will be appreciated that the LOC devices used in this diagnostic system are manufactured to have different functional regions depending on the particular LOC application. The vast majority of functional areas are common to many LOC devices, and the addition of additional LOC devices for new applications is a matter of consolidating the appropriate functional areas from the large number of functional area options used in existing devices. Only a few LOC devices are shown in this description and some are shown to illustrate the design flexibility of the LOC devices used in this system. Those skilled in the art will readily recognize that the LOC installation shown in this description is not an exhaustive list and that many additional LOC designs are a combination of functional zones. Sample type LOC variants can accept and analyze sample nucleic acid or protein inclusions in a variety of liquid forms including, but not limited to, blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord, sweat, Chest effusion, tears, pericardial effusion, ascites fluid sample and dip sample. Amplicon obtained from macroscopic nucleic acid amplification is analyzed using a LOC device; in this case, all reagent libraries will be or be configured to not release their contents, and the dialysis, lysis, incubation and zones will only be used The sample is transported from sample inlet 68 to hybridization chamber 180 for detection of nucleic acids as described above. For some sample types, the pre-treatment step is a necessary group of roots and the LOC combination is intended to be placed in a suitable type of liquid and blood, and the ring can also be expanded by amplification, for example -51 - 201219776 For example, semen may need to be liquefied first and mucus may need to be taken to reduce its viscosity before entering the LOC device. Sample Input Referring to Figures 1 and 12, the sample is first added to the eyepiece container 24. The large container 24 is a truncated circular effect that feeds the sample into the inlet 68 of the LOC unit 301 into a 64 micron wide 60 micron deep mask passage 94 which is drawn by capillary action to the anticoagulant reservoir 54. The reagent library uses an analysis system for microfluidic devices (such as LOC with a small volume of reagents to allow the reagent library to contain a small volume of reagents required for biochemical treatment. This volume is easily less than meters, in most cases less than 3 The billion cubic micron is 70 million cubic micrometers and is less than 20 million cubic micrometers in the case shown in the drawing. The dialysis zone refers to the maps of the 15th, 21st, 33th and 34th pathogens. Target cells. Small pore cells in the form of a plurality of 3 micron diameter wells as previously described in 6 6 are filtered from the sample body. When the sample flows through 3 micrometers, the microbial pathogen enters a series of enzymes through the pores. At ί: the large cone of the module 1 ,, which is made up of the hair. From here, it also borrows all the reagents required by 301), 1 billion cubic micrometers, usually a small LOC device 30 1 I In the description of zone 70, the target diameter aperture 164 is analyzed in the roof layer 164. The channel - channel-52-201219776 2 04 is recirculated into the target channel 7 4 via the 16 micron dialysis inlet 168 (see section 3). 3 and 3 4)). The remaining sample (red blood cells, etc.) remains in the mask channel 94. Downstream of the pathogen dialysis zone 70, the cap passage 94 becomes a waste channel 72' which is directed to the waste reservoir 76. In terms of the type of biological sample from which a large amount of waste is generated, the foam insertion member or other porous member 49 in the outer casing 13 of the test module 10 is configured to be in fluid communication with the waste reservoir 76 (see Figure 1). The pathogen dialysis zone 70 relies entirely on the capillary action of the fluid sample to function. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis zone 70 has a capillary action initiation characteristic device (CIF) 166 (see Figure 33) such that fluid is drawn into the underlying dialysis MST channel 204. The first ingestion port 198 of the target channel 74 also has a CIF 202 (see Figure 15) to avoid complete immobilization of the meniscus when the flow passes through the dialysis uptake port 168. The small component dialysis zone 682 shown in the schematic of Fig. 81 may have a structure similar to the pathogen dialysis zone 70. The small component dialysis zone is sized to allow small target cells or molecules to enter the target channel by making the pore size (and shaped if necessary) to continue the size of the assay to any small target cell or molecule. Separated from the sample. Larger sized cells or molecules are moved to waste repository 766. Thus, LOC device 30 (see Figures 1 and 120) is not limited to the isolation of pathogens having a size of less than 3 microns, but can also be used to isolate cells or molecules of any desired size. Lysis zone -53- 201219776 Referring again to Figures 7, 11, and 13, the genetic material in the sample is released from the cell by a chemical cleavage process. As described above, the lysis reagent from the lysis library 56 is mixed with the sample stream in the target channel 74 downstream of the surface tension valve 128 of the lysis reservoir 56. However, some diagnostic assays are more suitable for thermal cracking processes, even combining the target cells for chemical and thermal lysis. LOC device 301 achieves this by providing heated microchannels 210 of incubation zone 114. The sample stream is drawn into the incubation zone 1 14 and stopped at the boiling start valve 106. The incubation microchannel 210 heats the sample at a temperature that can destroy the cell membrane. In some thermal cracking applications, the enzymatic reaction in the chemical cracking zone 130 is not necessary and the thermal cracking reaction completely replaces the enzyme catalyzed reaction in the chemical cracking zone 130. Boiling Start Valve As described above, the LOC unit 301 has three boiling start valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independently shown boiling start valve 108 located at the heated microchannel 158 terminal of the amplification zone 112. The sample stream 1 1 9 is drawn by capillary action to the heated microchannel 1 58 until the boiling point activation valve 108 is reached. The sample flow is preceded by an anchor 98 that is secured to the meniscus of the valve inlet 146. The geometry of the meniscus anchor 98 stops the meniscus from advancing to contain the capillary flow. As shown in Figures 3 j and 32, the meniscus anchor 98 is an aperture provided from the MST channel 90 to the intake opening of the shroud channel 94. The surface of the meniscus 丨 2〇 -54- 201219776 The force keeps the valve closed. A ring heater 152 is located around the valve inlet 146. The ring heater 125 is controlled by C Μ Ο S via the boiling start valve heater joint 1 5 3 . To open the valve, CMOS circuit 86 sends an electrical pulse to valve heater connector 153. The ring heater 125 heats the liquid sample 119 until it boils. Boiling causes the meniscus 120 to no longer be secured to the valve inlet 146 and causes the shroud passage 94 to begin to wet. Once the cover channel 94 begins to wet, the capillary flow is restored. The fluid sample 1 19 breaks into the cap passage 94 and flows through the valve down channel 150 to the valve outlet 14 4 where the flow driven by capillary action continues along the amplifying zone outlet channel 160 into the hybridization and detection Measuring area 52. Liquid sensor 174 is placed before and after the valve for diagnostic purposes. It will be appreciated that once the boiling start valve is opened, it can no longer be closed. However, since the LOC device 301 and the test module 10 are single-use devices, it is not necessary to reclose the valve. Incubation Zone and Nucleic Acid Amplification Zone Figures 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50 and 51 show the incubation zone 114 and the amplification zone 112. The incubation zone 114 has a single, heated incubation microchannel 210 that is a curved microchannel etched in the MST channel layer 100 from the downcomer opening 134 to the boiling activation valve 106 (see pages 1 3 and 14). Figure). Controlling the temperature of the incubation zone 14 14 results in a higher efficiency of the enzyme catalytic reaction. Similarly, the amplification zone I12 has a heated -55-201219776 amplification microchannel 158 from the boiling start valve 1〇6 to the curved configuration of the boiling start valve 108 (see Figures 6 and 14). These valves arrest the flow to retain the target cells in the heated incubation or amplification microchannel 210 or 158 as mixing, incubation and nucleic acid amplification occurs. The curved pattern of the microchannel also promotes (to some extent) the mixing of the target cells with the reagents. Heater 1 54 is used to heat the sample cells and reagents in the incubation zone 1 14 and the amplification zone 1 1 2, and the heater 1 54 is controlled by the CMOS circuit 86 using pulse width modulation (PWM). Each of the tortuous portions of the heated cultivating microchannel 210 and the augmented microchannel 158 has three twistable portions that are operable separately and between their respective heater joints 156 (which provide two dimensional control of the input heat flux density). Extended heater 1 54 (see Figure 1 4). As best shown in FIG. 51, the heater 154 is supported on the roof 66 and embedded in the lower gasket 64. The heater material is TiAl, but many other conductive metals are also suitable. The long heater 154 is parallel to the longitudinal direction of each of the channel regions forming the wide tortuous portion of the curved shape. In the expansion zone 112, each of the wide tortuous portions can be operated in the form of separate PCR chambers by controlling individual heaters. The small volume of amplicons required for an analytical system using a microfluidic device, such as LOC device 301, allows a small volume of amplification mixture to be amplified in the amplification zone 112. This volume is easily less than 4 〇〇 升 'in most cases less than 17 〇 liters 'usually less than 70 liters' and in the case of L0C device 301 is 2 liters to 30 nanoliters. Increased heating rate and preferred diffusion mixing -56-201219776 A small cross section of each channel zone increases the heating rate of the augmented fluid mixture. All fluids are kept within a short distance from the heater 1 54. Reducing the cross-section of the channel (i.e., the cross-section of the augmented microchannel 158) by at least 100,000 square microns results in a heating rate that is significantly higher than that of a more "large gauge" instrument. The etch fabrication technique allows the amplifying microchannel 158 to have a cross-sectional area transverse to the flow path of less than 16,000 square microns, resulting in a substantially higher heating rate. It is easy to use etching technology.  The ground reaches a size of about 1 micron. If the number of amplicon required is small (e.g., in the case of LOC device 301), the cross-sectional area can be reduced to less than 2,500 square microns. Diagnostic analysis performed with a probe of 1000 to 2000 in the LOC device and it is necessary to "sample in, answer out" in less than 1 minute, and the cross-sectional area of the flow transverse direction is between 1 square micron and 400 square micron. . The heater element in the amplification microchannel 158 heats the nucleic acid sequence at a rate of more than 80 Kelvin (K) per second, in most cases at a rate greater than 100 K per second. Typically, the heater element heats the nucleic acid sequence at a rate of more than 1,000 K per second and in many cases the heater element heats the nucleic acid sequence at a rate of more than 10,000 K per second. Typically, the heater element heats the nucleic acid sequence at a rate exceeding 每秒, ΟΟΟΚ, exceeding 1,000,000 K per second, in accordance with the requirements of the analytical system. 000.  000Κ , more than 20,000,000 每秒 per second, more than 40. 000.  000 Κ, more than 80,000,000 每秒 per second, more than 1 60,000,000 每秒 per second. Small cross-sectional channels also facilitate the diffusion of any reagent and sample fluid -57-201219776. In the liquid before the diffusion mixing is completed. The concentration decreases with distance from the interface. The microchannels having a very small cross section transverse to the flow direction are used to keep the two fluids flowing close to the interface to diffuse the mixture more rapidly. Reducing the channel section by at least 100,000 square microns results in a significantly higher mixing ratio compared to more "large size" instruments. Etch fabrication techniques allow the cross-sectional area of the microchannel to be transverse to the flow path to be less than 16,000 square microns, resulting in a substantially higher mixing ratio. If a small volume is required (as in the case of the LOC device 310), the cross-sectional area can be reduced to less than 2500 square microns. Diagnostic analysis is performed in a LOC device with a probe from 1 〇〇〇 to 2000 and requires a cross-sectional area between 1 and 10 square microns in the transverse direction of the flow when the sample is taken in less than 1 minute. That is enough. Short Thermal Cycle Time Keep the sample mixture close to the heater and use very small amounts of fluid to allow thermal cycling to proceed quickly during nucleic acid amplification. In the case of a target sequence of up to 150 base pairs (bp) long, each thermal cycle (i.e., denaturation, adhesion, and primer extension) is completed in less than 30 seconds. In most diagnostic analyses, the individual thermal cycle time is less than 11 seconds, mostly less than 4 seconds. For a sequence of up to 150 base pairs long, the LOC device 30 with some of the most common diagnostic assays has a thermal cycle time of zero. 45 seconds to 1 . 5 seconds. This rate of thermal cycling allows the test module to be much less! Complete the nucleic acid amplification process in minutes; usually less than 220 seconds. For most analyses, 'from the sample fluid entering the sample inlet, the amplified region will produce enough amplicons in the period -58-201219776 to 80 seconds." For many analyses, it occurs within 30 seconds. Enough amplicon. The amplicon is sent to the hybridization and detection zone 52 via the boiling start valve 108 upon completion of a predetermined number of amplification cycles. Hybridization Chambers Figures 52, 53, 54, 56 and 57 show hybridization chambers 180 in hybridization chamber array 110. The hybridization and detection zone 52 has a 24 χ 45 array of hybridization chambers 180, each having a hybrid reactive FRET probe 186, a heater element 182, and an integrated photodiode 184. The incorporated photodiode 1 84 is used to detect fluorescence produced by hybridization of the target nucleic acid sequence or protein to the FRET probe 186. Each photodiode 184 is independently controlled by a CMOS circuit 86. Any material between the FRET probe 186 and the photodiode 184 must be transparent to the emitted light. Thus, wall region 97 between probe 186 and photodiode 184 is also optically permeable to the emitted light. In the LOC device 301, the wall region 97 is a thin layer (about 0. 5 microns) cerium oxide. Direct incorporation of photodiode 1 84 under each hybridization chamber 1 80 allows the probe-target hybrid to be very small in size but still produces detectable fluorescent signals (see Figure 54). A small amount allows for a small volume of hybridization chamber. The amount of probe required for the detectable amount of the probe-target hybrid is easily less than 270 picograms (equivalent to 900,000 cubic micrometers) before hybridization, and in most cases less than 60 picograms. (equivalent to 200,000 cubic micrometers), usually less than 12 picograms (equivalent to 40,000 cubic micrometers), less than 2. in the case of the LOC device 301 shown in the drawing -59-201219776. 7 picograms (the corresponding chamber has a volume of 9000 cubic microns). Of course, the smaller size of the hybridization chamber allows for higher density chambers, so there are more probes on the LOC device. In the LOC device 301, the hybridization zone has more than 1 000 cells in an area of 1 500 microns x 1500 microns (i.e., less than 225 0 square microns per cell). The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of requiring a small number of probes in each chamber is that only a very small number of probes need to be dispensed into each chamber during manufacture of the LOC device. The system of the LOC device according to the present invention can be spotted using a smear or less probe solution volume. After nucleic acid amplification, the boiling activation valve 108 is activated and the amplicon flows along the flow path 176 and into each of the hybridization chambers 180 (see Figures 52 and 56). The endpoint liquid sensor 178 indicates that the heater 182 can be activated when the amplicons are inserted into the hybridization chamber 180. After sufficient hybridization time, LED 26 (see Figure 2) is activated. The openings in each of the hybridization chambers 180 provide an optical window 136 for the FRET probe 186 to contact the excitation radiation (see Figures 52, 54 and 56). The LED 26 is illuminated for a sufficient amount of time to induce a high intensity fluorescent signal from the probe. The photodiode 1 8 4 is absent during excitation. After a process controlled delay of 300 (see Figure 2), the photodiode 184 is activated and the fluorescent emission is detected in the absence of excitation light. The incident light (see Fig. 54) on the photosensitive region 185 of the photodiode 1 84 is converted into a photocurrent, which is then measured by a C Μ O S circuit 86. The hybridization chambers 180 are each loaded with a probe for detecting a single target nucleic acid sequence - 60-201219776. If desired, each hybridization chamber 180 can be loaded with probes to detect more than 1000 different targets. Alternatively, many or all of the hybridization chambers can be loaded with the same probe to repeatedly detect the same target nucleic acid. Copying the probes throughout the hybridization chamber array 110 in this manner increases confidence in the results obtained and, if desired, can be combined by the photodiode of those hybridization chambers to provide a single result. Those skilled in the art will recognize that there may be from 1 to over 1000 different probes on the hybrid chamber array 110 in accordance with the detection specification. Humidifier and Humidity Sensor The illustration AG in Fig. 6 indicates the position of the humidifier 196. The humidifier prevents reagents and probes from evaporating during LOC unit 101 operation. As best shown in the enlarged view of Fig. 55, reservoir 188 connects three evaporators 190 in fluid operation. The reservoir 188 has a full-scale biological water and is sealed during the manufacturing process. As best shown in Figures 5 and 74, water is drawn into the three downcomers 194 and enters the respective intake ports 193 of one of the evaporators 190 along the respective water supply passages 192 by capillary action. The meniscus is fixed at each intake port 193 to retain water. The evaporator has a ring heater 191 surrounding the intake port 193. The ring heater 191 is connected to the CMOS circuit 86 by a conductive post 376 that reaches the top metal layer 195 (see Figure 37). When activated, the ring heater 191 heats the water, causing the water to evaporate and damp the surrounding equipment. The position of the humidity sensor 23 2 is also shown in FIG. However, as best shown in the enlarged view of the illustration AH of Fig. 67, the humidity sensor -61 - 201219776 has a capacitive comb structure. The etched first electrode 296 and the etched second electrode 298 face each other such that their comb teeth are staggered with each other. The opposing electrode forms a capacitor having a current capacity that can be monitored by CMOS circuit 86. As the humidity increases, the permittivity of the air gap between the electrodes increases, so that the capacitance also increases. The humidity sensor 23 2 is adjacent to the hybridization chamber array 1 1 , where humidity measurement is most important to slow the evaporation of the solution containing the exposed probe. The feedback sensor incorporates temperature and liquid sensors throughout the LOC device 301 to provide feedback and diagnostics during device operation. Referring to Figure 35, nine temperature sensors 170 are distributed throughout the amplification zone. 1 2 in. Similarly, the incubation zone 1 14 also has nine temperature sensors 1 70. Each of these sensors uses a bipolar transistor (BJTs) 2 X 2 array to monitor fluid temperature and provide CMOS circuit 86 feedback. The CMOS circuit 86 is used to precisely control the thermal cycling during the nucleic acid amplification process as well as any heating during the thermal cracking and incubation. In the hybridization chamber 180, the CMOS circuit 86 uses the hybridization heater 182 as a temperature sensor (see Figure 5-6). The resistance of the hybrid heater 108 is temperature dependent and the CMOS circuit 86 uses this to derive temperature readings for each of the hybrid chambers 180. The LOC device 301 also has a plurality of MST channel liquid sensors 174 and a cap channel liquid sensor 208. Figure 35 shows a row of MST channel fluids - 62 - 201219776 body sensor 174 at one end of every other tortuous portion of the heated microchannel 158. As best shown in FIG. 37, the MST channel liquid sensor 174 is a pair of electrodes formed by the exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid closes the circuit between the electrodes to indicate their presence at the sensor. Figure 25 shows an enlarged perspective view of the cap channel liquid sensor 208. The TiAl electrode pairs 218 and 220 are placed on the roof layer 66. Between electrodes 218 and 22 0 is a gap 222 to keep the circuit open in the absence of liquid. The circuit is turned off when the liquid is present, and the CMOS circuit 86 uses the feedback to monitor the flow. Independence of gravity The test module 10 is independent of direction. It does not need to be fixed on a flat, stable surface to operate. Fluid flow driven by capillary action into the auxiliary instrument in the absence of an external conduit means allows the module to be truly portable and only need to be inserted into a portable handheld reader such as a mobile phone. Having a gravity-independent operation means that the test module is actually completely independent of acceleration. It is resistant to shock and vibration and can operate on a moving vehicle or when the mobile phone is carried everywhere.

核酸擴增變體 直接PCR 傳統上’ PCR需要先大規模純化標靶DNA再製備反 應混合物。然而,藉由適當地修改化學和樣本濃度,使得 在進行核酸擴增時只需最低程度之DNA純化或直接擴增 -63- 201219776 是可行的。當該核酸擴增過程爲pCR時’此方法稱爲直 接PCR。在其中該核酸擴增係在受控制、恆溫之下進行的 LOC裝置中,該方法爲直接恆溫擴增。在LOC裝置中使 用直接核酸擴增技術具有相當的優勢’尤其是可簡化所需 之流體設計。用於直接PCR或直接恆溫擴增之擴增化學 的調整包括加強緩衝劑強度、使用具有高活性及高持續合 成能力之聚合酶及與潛在聚合酶抑制劑螯合之添加物。稀 釋存在於樣本中之抑制劑也很重要。 爲了利用直接核酸擴增技術,該LOC裝置設計包括 兩種額外特色。第一個特色爲具有適當尺寸之試劑庫(例 如:第8圖中之貯存庫5 8 )來提供足量之擴增反應混合 物或稀釋劑,如此該可能干擾擴增化學之樣本成分的最終 濃度低至足以允許核酸擴增成功。非細胞性樣本成分的所 欲稀釋度係在5倍至20倍。當適當時使用不同之LOC結 構(例如第4圖中之病原體透析區70)以確保該標靶核酸 序列之濃度係維持在足夠高之濃度下以進行擴增和偵測。 在此體系中(進一步說明於第6圖中)係在樣本萃取區 2 90之上游採用,可有效地濃縮小至足以進入擴增區292 之病原體的透析區,並將較大之細胞排至廢物容器76 中。於另一體系中係採用透析區來選擇性地耗盡血漿中之 蛋白質和鹽類,同時保留所欲之細胞。 第二種支持直接核酸擴增之LOC結構特色爲通道縱 橫比之設計以調整樣本與擴增混合物成分之間的混合比。 例如:爲了確保與樣本結合之抑制劑在單一混合步驟中的 -64- 201219776 稀釋倍數在較佳之5倍-20倍的範圍內,樣本及試劑通道 之長度和截面係經過設計,從而使樣本通道(啓動混合之 位置的上游)所構成之流動阻抗較試劑混合物流過之通道 的流動阻抗高出4-1 9倍。控制微通道中之流動阻抗可容 易透過控制幾何結構之設計來達成。對固定之截面而言, 微通道之流動阻抗隨著通道之長度而線性增加。對混合設 計而言,重要的是微通道中之流動阻抗更強烈地倚賴最小 之截面尺寸。例如:當長寬比不一致時,具有長方形截面 之微通道的流動阻抗與立方體之最小正交尺寸成反比。 逆轉錄酶PCR ( RT-PCR) 當分析或萃取之樣本核酸物種爲RNA(諸如來自RNA 病毒或信使RNA)時,在PCR擴增前需要先將RNA逆轉 錄成互補DNA(cDNA)。該逆轉錄反應可在與PCR相同 之反應室中進行(單步驟RT -PCR),或可以分開之起始 反應之形式進行(二步驟RT-PCR ) »在此處所描述之 LOC變體中,單步驟RT -PCR可簡單地經由在試劑庫62 中加入逆轉錄酶與聚合酶,並將加熱器1 54制訂成先進行 逆轉錄步驟之循環,再進行核酸擴增步驟來進行。兩步驟 RT-PCR亦可輕易地透過使用可儲存及配發緩衝劑、引 物、dNTPs及逆轉錄酶的試劑庫58及用於逆轉錄步驟之 培育區114,再在擴增區112中以正常方式擴增來達成。 恆溫核酸擴增 -65- 201219776 對於某些應用而言,恆溫核酸擴增爲核酸 方法,如此可避免需要透過各種溫度循環將反 地循環,而是將擴增區維持在恆定之溫度下 37t至41 °C。現已描述之恆溫核酸擴增方法有 股取代擴增(SDA )、轉錄介導擴增(TMA ) 序列擴增(NASBA )、重組酵素聚合酶擴增( 旋酶依賴性恆溫 DNA擴增(HDA )、滾震 (RCA )、分枝型擴增(RAM )及環形 (LAMP ),且任何這些或其他恆溫擴增方法 處所描述之LOC裝置的特殊體系中。 爲了執行恆溫核酸擴增,該毗鄰擴增區2 和62將裝載用於特定之恆溫方法的適當試劑 擴增混合物和聚合酶》例如:在SDA方面,ϋ 含擴增緩衝劑、引物及dNTI»S,而試劑庫62 切口酶及外切DNA聚合酶。在RPA方面,試 含擴增緩衝劑、引物' dNTPs及重組酵素蛋白 庫62包含股取代DNA聚合酶,諸如Bsu。 HDA方面,試劑庫60包含擴增緩衝劑、引物 而試劑庫62包含適當之DNA聚合酶和解旋 DNA之股解開,而非使用加熱。熟習本技藝 白該必要試劑可以任何適合核酸擴增過程之方 個試劑庫之間。 爲了從RNA病毒(諸如HIV或C型肝炎 病毒核酸,NASBA或TMA是合適的,因爲 擴增之較佳 應成分重複 ,通常約爲 多種,包括 、依賴核酸 RPA)、解 訪循環擴增 恆溫擴增 均可用於此 L試劑庫60 ,而非 PCR t劑庫6 0包 包含適當之 :劑庫60包 質,而試劑 類似地,在 及 dNTPs, 酶以將雙股 之人士將明 式分開在二 病毒)擴增 不需要先將 -66- 201219776 RNA轉錄爲cDNA。在此實例中,試劑庫60中裝塡擴增 緩衝劑、引物和dNTPs,試劑庫62中裝塡RNA聚合酶、 逆轉錄酶及可選擇的’ RNaseHe 對某些形式之恆溫核酸擴增而言’將溫度保持在進行 恆溫核酸擴增之溫度前可能需要有一個起始變性循環以分 開該雙股DNA模板。在此處所描述之LOC裝置的所有體 系中很容易實現此項’因爲擴增區1 1 2中之混合物的溫度 可由擴增微通道1 5 8中之加熱器1 54小心地控制(見第 14 圖)。 恆溫核酸擴增較能容忍樣本中之潛在抑制劑,因此, 一般適合用於需要從樣本直接擴增核酸的情況中。因此’ 恆溫核酸擴增有時可用於第82、83和84圖中分別顯示之 LOC 變體 XLIII 673、LOC 變體 XLIV 674 及 LOC 變體 XLW077 ,等中。直接恆溫擴增亦可合倂如第82和84圖 中所示之一或多個預擴增透析步驟70、686或682及/或 如第83圖中所指出之預雜交透析步驟682,以分別在核 酸擴增前協助部分濃縮樣本中之標靶細胞或在樣本進入雜 交室陣列110之前去除不要之細胞碎片。熟習本技藝之人 士將會明白可使用任何預擴增透析法和預雜交透析法之組 合。 恆溫核酸擴增亦可同時在諸如第78、79和80圖中圖 解顯示之擴增區中進行,恆溫核酸擴增之多樣及某些方法 (諸如LAMP)可與初始逆轉錄步驟相容以擴增RNA。 -67- 201219776 其它設計變體 導電率感測器 第1 1 8圖爲用於偵測鹽類及各種標靶之電導率感測器 8 1 〇的示意剖面視圖,其經由(例如)導致導電率變化的 酶催化性反應或抗體結合來進行偵測。該導電率感測器 810經由在第一端子8 02和第二端子8 08之間迫使電流通 過來測量在通道8 00中之液體8 1 2的導電率並測量通過第 —電極804和第二電極806之電壓。該第一和第二端子 8 02、8 08,及第一和第二電極 8 04、806爲透過鈍化層 88中之窗口外露的CMOS電路86頂端金屬層195的一部 分。 流率感測器 除了溫度和液體感測器外,該LOC裝置亦可納入如 第119圖中示意說明及LOC變體X 728中之CMOS-控制 流率感測器740(見第93至109圖)。這些感測器係用於在 兩個步驟中測定流率。在第一個步驟中係經由施用低電流 並測量電壓以測定該彎曲之加熱器元件8 1 4的電阻,再利 用電阻與加熱器元件之溫度間已知之關係來測定元件8 1 4 的溫度。在此階段,元件814中消散之熱最少,且通道中 之液體的溫度等於該元件814之計算出的溫度。在第二步 驟中,在彎曲之加熱器元件814上施用更高之電流,從而 增加元件8 1 4之溫度,且一些熱量係流失在流動之液體 中。在施用較高之電流時,經由再次測量通過該元件8 1 4 -68- 201219776 之電壓可測定元件814之新電阻,並再度經由CMOS電路 86來計算增加之溫度。使用該彎曲之加熱器元件814的 新溫度及在第一步驟中計算出之已知的樣本液體之溫度可 測定該液體之流速。從已知之通道截面幾何結構和流速可 計算出在該通道中之液體的流率。 毛細前緣行進速度感測器 該在樣本流前端之前導彎月面的速度可藉由觸發各種 液體感測器1 74之間的時間延遲來測定。 螢光偵測系統之其他細節 第58和59圖顯示雜交-反應性FRET探針236 »這些 通常被稱爲分子信標且爲從單股核酸的產生臂-和-環探 針,其在與互補核酸雜交時產生螢光。第58圖顯示與標 靶核酸序列23 8雜交前之單一 FRET探針23 6。該探針在 5'端具有環240、臂242、螢光團246且在3’端具有淬滅 劑248。該環240係由與該標靶核酸序列2 3 8互補之序列 所組成。在探針序列之任一側的互補序列黏合在一起以形 成臂242。 如第58圖所示,缺乏互補標靶序列時,該探針保持 閉合。該臂242保持螢光團-淬滅劑對彼此靠近,從而使 其彼此之間可以發生明顯之共振能量轉移,實質上消除當 以激發光244照亮時螢光團發出螢光的能力。 第59圖顯示爲開啓或雜交之配置的FRET探針23 6。 -69- 201219776 當與互補標靶核酸序列23 8雜交時’該臂-和-環結構被破 壞,螢光團和淬滅劑在空間上被分隔,從而恢復營光團 246發出螢光的能力。該螢光發射250可以光學方法偵測 而作爲探針已雜交之指示。 由於該探針之臂螺旋被設計成較具有非互補性單·-核 苷酸的探針·標靶螺旋體更穩定,該探針以非常高之專_ 性與互補標靶雜交。由於雙股DNA比較緊密,該探針_標 靶螺旋體與臂螺旋體在空間上不可能共存》 與引物連接之探針 與引物連接之臂-和·環探針及與引物連接之線性探 針,或稱爲蠍子探針者可替代分子信標且可用於LOC裝 置中之即時及定量性核酸擴增。即時擴增可直接在LOC 裝置之雜交室中進行。使用與引物連接之探針的優點爲該 探針元件係實際連接該引物,因此在核酸擴增期間只需要 發生單次雜交,而不需將引物和探針分別雜交。這確保該 反應瞬間有效且產生較使用單獨之引物和探針時更強之信 號、更短之反應時間及更好的區別性。在製造期間,該探 針(連同聚合酶及擴增混合物)將存放在雜交室180內且 LOC裝置上將不需要分開的擴增區。或者,將擴增區閒置 或用於其它反應。 與引物連接之線性探針 第8 5和8 6圖分別顯示在第一個核酸擴增循環期間及 -70- 201219776 隨後之核酸擴增循環期間之與引物連接的線性探針692及 其雜交配置》參考第85圖’該與引物連接之線性探針 692具有雙股臂段242。該雙股的其中一股納入與引物連 接之探針序列696,其與標靶核酸696上之一區同源且其 5'端以螢光團246標記,其3’端經由一擴增阻斷劑694連 接寡核苷酸引物700。臂242之另一股的3’端以淬滅劑部 分248標記。完成核酸擴增之第一個循環後,探針可環繞 並與帶有序列698 (目前互補)之延伸股雜交。在核酸擴增 之第一個循環期間,該寡核苷酸引物700黏接該標靶 DNA 238 (第85圖)並再延伸形成同時包含探針序列和 擴增產物之DNA股。該擴增阻斷劑694防止聚合酶讀取 並複製探針區69 6。在接下去之變性時,該延伸之寡核苷 酸引物700/模板雜交物被分開,該與引物連接之線性探針 的雙股臂242亦被分開,從而釋出淬滅劑248。一旦用於 黏著和延伸步驟之溫度降低,該與引物連接之線性探針的 與引物連接之探針序列696捲繞並與在延伸之股上的經擴 增之互補序列69 8雜交,而偵測到之螢光表示有標靶 DN A存在。非延伸之與引物連接的線性探針保留其雙股 臂且螢光仍保持淬滅。此偵測方法特別適合用於快速偵測 系統,因爲其依賴單一分子過程。 與引物連接之臂-和-環探針 第87A至87F圖顯示與引物連接之臂·和-環探針7〇4 的操作。參考第87A圖,該與引物連接之臂-和-環探針 201219776 704具有互補雙股DNA之臂242及包含該探針序列之環 240。該臂股708之一的Y端以螢光團246標記。另一股 710之3'端以淬滅劑248標記並且同時攜帶擴增阻斷劑 694及寡核苷酸引物700。在最初之變性階段(見第87B 圖),該標靶核酸23 8之雙股分開,該與引物連接之臂-和-環探針704的臂242亦是。當黏著階段之溫度冷卻時 (見第87C圖),該與引物連接之臂-和-環探針704上的 寡核苷酸引物700與標靶核酸序列23 8雜交。在延伸期間 (見第87D圖),合成標靶核酸序列2 3 8之補體706,形 成同時包含探針序列704和擴增產物的DNA股。該擴增 阻斷劑694防止聚合酶讀取並複製該探針區704。當該探 針接著黏連(接續在變性後)時,該與引物連接之臂·和-環 探針的環段240之探針序列(見第87F圖)黏連至該延伸 股上之互補序列706。此配置使螢光團246離淬滅劑248 很遠,造成螢光發射顯著增加。 對照探針 該雜交室陣列1 1 〇包括一些具有用於分析品質控制之 陽性和陰性對照探針的雜交室1 8 0。第1 1 4和1 1 5圖以圖 解說明無螢光團796之陰性對照探針,第1 1 6和丨丨7圖爲 無淬滅劑7 9 8之陽性對照探針的草圖。該陽性和陰性對照 探針具有如上述之FRET探針的臂-和-環構造。然而,該 螢光信號250總是從陽性對照探針798發射且陰性對照探 針796不曾發射螢光信號250,無論該探針是否雜交成開 -72- 201219776 放之配置或保持關閉》 參考第114和115圖,該陰性對照螢光探針796不具 有螢光團(且可能具有或可能不具有淬滅劑248 )。因 此,無論該標靶核酸序列2 3 8是否與該探針雜交(見第 115圖),或者該探針是否保持其臂-和-環配置(見第 114圖),對激發光244之反應是微不足道的。或者,該 陰性對照探針796可經過設計使其始終保持淬滅。例如: 合成環240,以具有不會與檢查之樣本內的任何核酸序列 雜交的探針序列,該探針分子之臂242將重新與本身雜 交,該螢光團及淬滅劑將保持在近端且將不會發射明顯的 螢光信號。此陰性對照信號將對應於來自雜交室180 (其 中該探針未雜交,但淬滅劑不會將所有來自報告子之發射 淬滅)之低量發射。 相反地,如第1 1 6和1 1 7圖之說明,該陽性對照探針 79 8之構造不具有淬滅劑。無論陽性對照探針798是否與 標靶核酸序列23 8雜交,螢光團246回應激發光244時發 射之螢光25 0不會被任何東西淬滅。 第52圖顯示整f雜交室陣列110中可能之陽性和陰 性.對照探針的分佈(分別爲3 7 8和3 8 0 )。該對照探針 378及380被置於位在橫跨雜交室陣列11〇之線上的雜交 室1 8 0中。然而,該陣列內之對照探針係任意安排(如同 雜交室陣列1 1 0之配置)。 螢光團設計 -73- 201219776 需要具有長螢光壽命之螢光團以便有足夠的時間讓激 發光的強度衰減到低於螢光發射之強度,此時,光感應器 44啓用,從而提供足夠之信噪比。此外,較長之螢光壽 命轉譯成較大之集成的螢光光子計數。 Α 螢光團2 46 (見第59圖)具有長於100奈秒之螢光 壽命,通常爲長於200奈秒,更常爲長於300奈秒且在大 多數情況下爲長於400奈秒。 該以過渡金屬或稀土爲基之金屬-配子複合物具有長 壽命(從數百奈秒到毫秒)、充足之量子產量及高熱、化 學及光化學穩定性,這些對螢光偵測系統之必要條件而言 均爲有利之性質。 —種以過渡金屬離子釕(Ru ( Ε ))爲底之被特別充 分硏究的金屬-配子複合物爲三(2,2'-聯吡啶)釘(Π ) ([Ru(bpy)32+),其具有約1微秒之壽命。此複合物可從 Biosearch科技之品牌Pulsar 650購得。 表1: Pulsar 650(釕螯合物)之光£ 吻理性質 參數 符號 數値 單位 吸收波長 ^abs 460 nm 發射波長 λβιη 650 nm 消光係數 Ε 14800 M'cin'1 蛋光壽命 Tf 1.0 μδ 量子容量 Η 1 (脫氧的) Ν/Α 铽螯合物,一種鑭系金屬-配子複合物已被成功地證 明爲FRET探針系統中之螢光報告子,且亦具有1 600微 -74- 201219776 秒之長壽命。 表2 :铽螯合物之光物理性質Nucleic Acid Amplification Variants Direct PCR Traditionally, PCR requires large-scale purification of target DNA to prepare a reaction mixture. However, by appropriately modifying the chemistry and sample concentration, only minimal DNA purification or direct amplification is required for nucleic acid amplification -63-201219776 is feasible. When the nucleic acid amplification process is pCR, this method is called direct PCR. In a LOC device in which the nucleic acid amplification is carried out under controlled, constant temperature, the method is direct isothermal amplification. The use of direct nucleic acid amplification techniques in LOC devices has considerable advantages' in particular to simplify the fluid design required. Adjustments to the amplification chemistry for direct PCR or direct isothermal amplification include potentiation of buffer strength, use of polymerases with high activity and high sustained synthesis, and additions to potential polymerase inhibitors. It is also important to dilute the inhibitors present in the sample. In order to utilize direct nucleic acid amplification techniques, the LOC device design includes two additional features. The first feature is a library of reagents of appropriate size (eg, reservoir 58 in Figure 8) to provide a sufficient amount of amplification reaction mixture or diluent, which may interfere with the final concentration of the sample components of the amplification chemistry. Low enough to allow successful nucleic acid amplification. The desired dilution of the non-cellular sample components is between 5 and 20 times. Different LOC structures (e.g., pathogen dialysis zone 70 in Figure 4) are used where appropriate to ensure that the concentration of the target nucleic acid sequence is maintained at a sufficiently high concentration for amplification and detection. In this system (further illustrated in Figure 6) is employed upstream of the sample extraction zone 2 90 to effectively concentrate the dialysis zone small enough to enter the pathogen of the amplification zone 292 and drain the larger cells to In the waste container 76. In another system, a dialysis zone is employed to selectively deplete proteins and salts in the plasma while retaining the desired cells. The second LOC structure that supports direct nucleic acid amplification is characterized by a channel aspect ratio to adjust the mixing ratio between the sample and the components of the amplification mixture. For example, to ensure that the inhibitor bound to the sample is in the range of 5 to 20 times the dilution ratio of the -64-201219776 in a single mixing step, the length and cross-section of the sample and reagent channels are designed to allow the sample channel The flow impedance formed by the upstream of the starting mixing position is 4-1 times higher than the flow impedance of the passage through which the reagent mixture flows. Controlling the flow impedance in the microchannel can be easily achieved by designing the control geometry. For a fixed cross section, the flow impedance of the microchannel increases linearly with the length of the channel. For hybrid designs, it is important that the flow impedance in the microchannels is more strongly dependent on the smallest cross-sectional dimension. For example, when the aspect ratios are inconsistent, the flow impedance of a microchannel having a rectangular cross section is inversely proportional to the smallest orthogonal dimension of the cube. Reverse transcriptase PCR (RT-PCR) When the sample or nucleic acid species analyzed or extracted is RNA (such as from RNA virus or messenger RNA), the RNA needs to be reversed into complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction can be carried out in the same reaction chamber as the PCR (single-step RT-PCR), or can be carried out separately in the form of a starting reaction (two-step RT-PCR) » in the LOC variant described herein, The single-step RT-PCR can be carried out simply by adding a reverse transcriptase and a polymerase to the reagent library 62, and formulating the heater 1 54 to perform a reverse transcription step and then performing a nucleic acid amplification step. The two-step RT-PCR can also be easily performed by using a reagent library 58 for storing and dispensing buffers, primers, dNTPs and reverse transcriptase, and a breeding region 114 for the reverse transcription step, and then in the amplification region 112. The way to achieve amplification. Thermostatic Nucleic Acid Amplification-65- 201219776 For some applications, thermostated nucleic acid amplification is a nucleic acid method, which avoids the need to circulate back to the ground through various temperature cycles, but maintains the amplified region at a constant temperature of 37t to 41 °C. The thermostatic nucleic acid amplification methods that have been described are strand-substituted amplification (SDA), transcription-mediated amplification (TMA) sequence amplification (NASBA), and recombinant enzyme polymerase amplification (chase-dependent isothermal DNA amplification (HDA). ), rolling shock (RCA), branched-type amplification (RAM), and circular (LAMP), and in any particular system of LOC devices described in these or other isostatic amplification methods. Amplification zones 2 and 62 will be loaded with appropriate reagent amplification mixtures and polymerases for specific thermostatic methods. For example: in terms of SDA, containing amplification buffers, primers and dNTI»S, and reagent library 62 nickase and Exo-DNA polymerase. In terms of RPA, the assay containing amplification buffer, primer 'dNTPs and recombinant enzyme protein library 62 contains a strand-substituted DNA polymerase, such as Bsu. In HDA, reagent library 60 contains amplification buffers and primers. Reagent library 62 contains the appropriate strands of DNA polymerase and unwinding DNA, rather than using heat. It is familiar with the art that the necessary reagents can be between any reagent pool suitable for the nucleic acid amplification process. HIV or C type Hepatitis virus nucleic acid, NASBA or TMA is suitable, because the preferred components of amplification should be repeated, usually about a variety of types, including, depending on the nucleic acid RPA), and the cycle amplification amplification can be used for the L reagent library 60. The PCR package does not contain 60 capsules, and the reagents are similarly in the form of dNTPs, and the enzymes are used to separate the duplexes from the two viruses. 66- 201219776 RNA is transcribed into cDNA. In this example, reagent library 60 contains amplification buffers, primers, and dNTPs, and reagent library 62 contains RNA polymerase, reverse transcriptase, and selectable 'RNaseHe for some forms of thermostatic nucleic acid amplification. 'It may be necessary to have an initial denaturation cycle to separate the double-stranded DNA template before maintaining the temperature at the temperature for constant temperature nucleic acid amplification. This is easily accomplished in all systems of the LOC devices described herein because the temperature of the mixture in the amplification zone 112 can be carefully controlled by the heaters 1 54 in the amplification microchannels 158 (see section 14). Figure). Thermostatic nucleic acid amplification is more tolerant of potential inhibitors in the sample and, therefore, is generally suitable for use in situations where nucleic acid amplification is required directly from the sample. Therefore, constant temperature nucleic acid amplification can sometimes be used in LOC variant XLIII 673, LOC variant XLIV 674 and LOC variant XLW077, etc. shown in Figures 82, 83 and 84, respectively. Direct thermostatic amplification may also be combined with one or more preamplification dialysis steps 70, 686 or 682 as shown in Figures 82 and 84 and/or prehybridization dialysis step 682 as indicated in Figure 83, The target cells in the partially concentrated sample are assisted prior to nucleic acid amplification, respectively, or the unwanted cell debris is removed before the sample enters the hybridization chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used. Thermostatic nucleic acid amplification can also be performed simultaneously in amplification regions as shown graphically in Figures 78, 79 and 80, the diversity of thermostatic nucleic acid amplification and certain methods (such as LAMP) can be compatible with the initial reverse transcription step to expand Increase RNA. -67- 201219776 Other Design Variant Conductivity Sensors Figure 1 18 is a schematic cross-sectional view of a conductivity sensor 8 1 用于 for detecting salts and various targets, which causes, for example, conduction The rate is altered by an enzyme-catalyzed reaction or antibody binding for detection. The conductivity sensor 810 measures the conductivity of the liquid 8 1 2 in the channel 800 by passing a current between the first terminal 82 and the second terminal 808 and measures through the first electrode 804 and the second The voltage of the electrode 806. The first and second terminals 082, 088, and the first and second electrodes 804, 806 are part of the top metal layer 195 of the CMOS circuit 86 exposed through the window in the passivation layer 88. Flow Rate Sensor In addition to the temperature and liquid sensors, the LOC device can also incorporate a CMOS-controlled flow rate sensor 740 as illustrated schematically in Figure 119 and in LOC Variant X 728 (see pages 93-109). Figure). These sensors are used to measure the flow rate in two steps. In the first step, the resistance of the bent heater element 814 is determined by applying a low current and measuring the voltage, and the temperature of the element 814 is determined using a known relationship between the resistance and the temperature of the heater element. At this stage, the heat dissipated in element 814 is minimal and the temperature of the liquid in the channel is equal to the calculated temperature of element 814. In the second step, a higher current is applied to the curved heater element 814, thereby increasing the temperature of the component 814, and some of the heat is lost in the flowing liquid. When a higher current is applied, the new resistance of element 814 can be determined by again measuring the voltage across the element 8 1 4 -68 - 201219776 and the increased temperature is again calculated via CMOS circuit 86. The flow rate of the liquid can be determined using the new temperature of the curved heater element 814 and the temperature of the known sample liquid calculated in the first step. The flow rate of the liquid in the channel can be calculated from the known channel cross-section geometry and flow rate. Capillary leading edge travel velocity sensor The velocity of the meniscus before the front end of the sample stream can be determined by triggering the time delay between the various liquid sensors 1 74. Additional details of the fluorescence detection system Figures 58 and 59 show hybridization-reactive FRET probes 236 » These are commonly referred to as molecular beacons and are generated from single-stranded nucleic acid arm-and-loop probes, which are Fluorescence is produced when the complementary nucleic acids hybridize. Figure 58 shows a single FRET probe 23 6 prior to hybridization to the target nucleic acid sequence 23 8 . The probe has a ring 240, an arm 242, a fluorophore 246 at the 5' end and a quencher 248 at the 3' end. The loop 240 is composed of a sequence complementary to the target nucleic acid sequence 238. The complementary sequences on either side of the probe sequence are bonded together to form an arm 242. As shown in Figure 58, the probe remains closed when the complementary target sequence is lacking. The arm 242 maintains the fluorophore-quenching agent pairs close to each other such that significant resonant energy transfer can occur between them, substantially eliminating the ability of the fluorophore to fluoresce when illuminated by the excitation light 244. Figure 59 shows the FRET probe 23 6 configured for opening or hybridization. -69- 201219776 When the hybrid target nucleic acid sequence 23 8 hybridizes, the arm-and-loop structure is destroyed, and the fluorophore and quencher are spatially separated, thereby restoring the ability of the camping light 246 to emit fluorescence. . The fluorescent emission 250 can be optically detected as an indication that the probe has hybridized. Since the arm helix of the probe is designed to be more stable than the probe/target helix with non-complementary mono-nucleotide, the probe hybridizes to the complementary target with very high specificity. Since the double-stranded DNA is relatively tight, the probe-targeted helix and the arm-helical are spatially impossible to coexist. The probe-and-primer-attached arm-and-loop probe and the linear probe connected to the primer are connected to the primer. Or a scorpion probe can be used in place of molecular beacons and can be used for both real-time and quantitative nucleic acid amplification in LOC devices. Immediate amplification can be performed directly in the hybridization chamber of the LOC device. An advantage of using a probe attached to a primer is that the probe element is actually linked to the primer, so that only a single hybridization is required during nucleic acid amplification without the need to hybridize the primer and probe, respectively. This ensures that the reaction is instantaneously efficient and produces stronger signals, shorter reaction times, and better discrimination than when using separate primers and probes. During manufacture, the probe (along with the polymerase and amplification mixture) will be stored in hybridization chamber 180 and a separate amplification zone will not be required on the LOC device. Alternatively, the amplification zone is left unused or used for other reactions. Linear probes linked to primers Figures 8 and 8 show the primer-ligated linear probe 692 and its hybridization configuration during the first nucleic acid amplification cycle and during the subsequent nucleic acid amplification cycle of -70-201219776, respectively. Referring to Figure 85, the linear probe 692 coupled to the primer has a double-stranded arm segment 242. One of the double strands incorporates a probe-ligated probe sequence 696 which is homologous to a region on the target nucleic acid 696 and whose 5' end is labeled with a fluorophore 246, the 3' end of which is via a amplification block. The fragment 694 is ligated to the oligonucleotide primer 700. The 3' end of the other strand of arm 242 is labeled with a quencher portion 248. Upon completion of the first cycle of nucleic acid amplification, the probe can wrap around and hybridize to an extended strand with sequence 698 (currently complementary). During the first cycle of nucleic acid amplification, the oligonucleotide primer 700 binds to the target DNA 238 (Fig. 85) and is further extended to form a DNA strand containing both the probe sequence and the amplification product. The amplification blocker 694 prevents the polymerase from reading and replicating the probe region 69 6 . Upon subsequent denaturation, the extended oligonucleotide primer 700/template hybrid is separated and the double-stranded arms 242 of the linear probe attached to the primer are also separated to release the quencher 248. Once the temperature for the adhesion and extension steps is lowered, the primer-ligated probe sequence 696 of the primer-ligated linear probe is coiled and hybridized to the amplified complementary sequence 69 8 on the extended strand, and detected. Fluorescence to the presence indicates that the target DN A is present. A non-extended linear probe attached to the primer retains its double-stranded arm and the fluorescence remains quenched. This detection method is particularly well suited for use in fast detection systems because it relies on a single molecular process. Arm-and-loop probes attached to primers Figures 87A through 87F show the operation of the arm-and-loop probes 7〇4 attached to the primers. Referring to Figure 87A, the primer-linked arm-and-loop probe 201219776 704 has an arm 242 of complementary double-stranded DNA and a loop 240 comprising the probe sequence. The Y end of one of the arms 708 is labeled with a fluorophore 246. The other 3' end of 710 is labeled with quencher 248 and carries both amplification blocker 694 and oligonucleotide primer 700. In the initial denaturation phase (see Figure 87B), the double strands of the target nucleic acid 23 8 are separated, and the arms 242 of the arm-and-loop probe 704 attached to the primer are also. When the temperature of the adhesion phase is cooled (see Figure 87C), the oligonucleotide primer 700 on the primer-linked arm-and-loop probe 704 hybridizes to the target nucleic acid sequence 23 8 . During extension (see Figure 87D), complement 706 of the target nucleic acid sequence 238 is synthesized to form a DNA strand comprising both probe sequence 704 and amplification products. The amplification blocker 694 prevents the polymerase from reading and replicating the probe region 704. When the probe is subsequently ligated (continuously after denaturation), the probe sequence of the loop-to-primer-arm-and-loop probe loop 240 (see Figure 87F) is attached to the complementary sequence on the stretched strand. 706. This configuration leaves the fluorophore 246 far away from the quencher 248, resulting in a significant increase in fluorescence emission. Control Probes The hybridization chamber array 1 1 〇 includes some hybridization chambers 180 with positive and negative control probes for analytical quality control. Figures 1 1 4 and 1 1 5 illustrate the negative control probes without fluorophore 796. Figures 1 16 and 7 show sketches of positive control probes without quencher 798. The positive and negative control probes have an arm-and-loop configuration as described above for the FRET probe. However, the fluorescent signal 250 is always emitted from the positive control probe 798 and the negative control probe 796 has not emitted the fluorescent signal 250, regardless of whether the probe hybridizes to open-72-201219776, puts the configuration on or off. In the 114 and 115 maps, the negative control fluorescent probe 796 does not have a fluorophore (and may or may not have a quencher 248). Thus, whether or not the target nucleic acid sequence 298 hybridizes to the probe (see Figure 115), or whether the probe retains its arm-and-loop configuration (see Figure 114), the reaction to excitation light 244 It is trivial. Alternatively, the negative control probe 796 can be designed to remain quenched at all times. For example: Synthetic loop 240, with a probe sequence that does not hybridize to any of the nucleic acid sequences in the sample being examined, the probe molecule 242 will rehybridize itself, the fluorophore and quencher will remain near It will not emit a noticeable fluorescent signal. This negative control signal will correspond to a low amount of emission from hybridization chamber 180 (wherein the probe is not hybridized, but the quencher does not quench all of the emission from the reporter). Conversely, as illustrated by Figures 1 16 and 117, the positive control probe 79 8 is constructed without a quencher. Whether or not the positive control probe 798 hybridizes to the target nucleic acid sequence 23, the fluorescent light 260 emitted by the fluorophore 246 in response to the excitation light 244 is not quenched by anything. Figure 52 shows the distribution of possible positive and negative control primers in the entire f hybridization chamber array 110 (3 7 8 and 380, respectively). The control probes 378 and 380 were placed in a hybridization chamber 180 which was located across the line of the hybridization chamber array 11〇. However, the control probes within the array were arbitrarily arranged (as in the hybrid chamber array 110 configuration). Fluorescent Group Design -73- 201219776 A fluorophore with a long fluorescent lifetime is required in order to allow sufficient time for the intensity of the excitation light to decay below the intensity of the fluorescent emission, at which point the light sensor 44 is enabled, thereby providing sufficient Signal to noise ratio. In addition, longer fluorescent lifetimes translate into larger integrated fluorescence photon counts.萤 Fluorescent Cluster 2 46 (see Figure 59) has a fluorescence lifetime longer than 100 nanoseconds, usually longer than 200 nanoseconds, more often longer than 300 nanoseconds and in most cases longer than 400 nanoseconds. The transition metal or rare earth-based metal-gametide complex has a long lifetime (from hundreds of nanoseconds to milliseconds), sufficient quantum yield, and high thermal, chemical, and photochemical stability, which are necessary for fluorescent detection systems. Conditions are all advantageous properties. A metal-gametide complex based on a transition metal ion ruthenium (Ru ( Ε )) is a tris(2,2'-bipyridyl) nail (Π) ([Ru(bpy)32+) ), which has a lifetime of about 1 microsecond. This complex is commercially available from Biosearch Technologies brand Pulsar 650. Table 1: Light of Pulsar 650 (钌 chelate) £ Kissing property parameter number of symbols 値 unit absorption wavelength ^abs 460 nm emission wavelength λβιη 650 nm extinction coefficient Ε 14800 M'cin'1 egg light lifetime Tf 1.0 μδ quantum capacity Η 1 (deoxygenated) Ν/Α 铽 chelate, a lanthanide metal-gametide complex has been successfully demonstrated as a fluorescent reporter in the FRET probe system, and also has a frequency of 1 600 micro-74-201219776 seconds Long life. Table 2: Photophysical properties of ruthenium chelate

參數 符號 數値 單位 吸收波長. kbs 330-350 nm 發射波長 λεηι 548 nm 消光係數 Ε 13800 決於kbs及配子,至多可達 30000 @ λβ = 340 nm) M'1 cm·1 螢光壽命 Tf 1600 (經雜交之探針) μδ 量子容量 Η 1 (取決於配子) N/A LOC裝置301所使用之螢光偵測系統不使用過濾器來 移除不要的背景螢光。因此,爲了增加信噪比,若淬滅劑 248沒有天然發射是有利的。無天然發射時,淬滅劑248 不會造成背景螢光。高淬滅效率也很重要,如此可防止螢 光直到雜交發生時。該黑洞淬滅劑(Black Hole Quenchers) (BHQ)(其可從加州Novato之Biosearch技術公司取得)沒 有天然發射且具有高淬滅效率,因而爲該系統之合適淬滅 劑。BHQ-1在5 34 nm具有最大吸收且淬滅範圍爲48 0-580 urn,這使其成爲铽螯合物螢光團之合適的淬滅劑。 BHQ-2在5 79 nm具有最大吸收且淬滅範圍爲560-670 nm,這使其成爲Pulsar 650之合適的淬滅劑。 愛荷華黑淬滅劑(Iowa Black FQ和RQ)(其可從愛 荷華州 Coralville 之 Integrated DNA Technologies 取得) -75- 201219776 爲合適之替代淬滅劑,其具有很少或沒有背景發射。Iowa Black FQ之淬滅範圍爲420-620 nm,其在531 nm處具有 最大吸收,因此爲铽螯合物螢光團之合適的淬滅劑。Iowa Black RQ在656 rim具有最大吸收且淬滅範圍在500-700 n m,這使其成爲P u 1 s a r 6 5 0之理想的淬滅劑。 於此處所描述之體系中,該淬滅劑24 8爲最初連接在 探針之官能部分,但其他體系中該淬滅劑可能爲在溶液中 游離之分開的分子。 激發源 在以此處所描述之之體系爲基礎的螢光偵測中,由於 功率消耗低、成本低且體積小因而選擇LED作爲激發 源,而非雷射二極體、高功率燈或雷射。參考第88圖, 該LED 26係直接置於LOC裝置301之外表面上的雜交室 陣列1 1 0之上。在雜交室陣列1 1 〇室之對側爲由光電二極 體陣列1 84製成之光感測器44以用於偵測來自各小室之 螢光信號(見第53、54和68圖)。 第89、90和91圖中圖解說明其他使探針接觸激發光 之體系。在第89圖中所示之LOC裝置30中,由激發 LED 26產生之激發光244係由透鏡254定向在雜交室陣 列1 10上。該激發LED 26爲脈衝式且該螢光發射係藉由 光感測器44偵測》 在第90圖所示之LOC裝置30中,由激發LED 26所 產生之激發光244係由透鏡254、第一光學稜鏡712和第 -76- 201219776 二光學稜鏡714定向到雜交室陣列110上。該激發LED 26爲脈衝式且該螢光發射係藉由光感測器44偵測。 類似地,在第91圖所示之LOC裝置30中,由激發 LED 26所產生之激發光244係由透鏡254、第一鏡子716 和第二鏡子718定向到雜交室陣列110上。同樣地,該激 發LED 26爲脈衝式且該螢光發射係藉由光感測器44偵 測。 該LED 26之激發波長係取決於所選擇之螢光染料。 飛利浦(Philips) LXK2-Prl4-R00 爲 Pulsar 650 染料之合適 激發源。SET UVT0P3 3 5T039BL LED爲铽螯合物標籤之 合適激發源。 表 3 : Philips LXK2-Pr 1 4-R00 LED 規格Parameter symbol number 値 unit absorption wavelength. kbs 330-350 nm emission wavelength λεηι 548 nm extinction coefficient Ε 13800 depends on kbs and gametes, up to 30000 @ λβ = 340 nm) M'1 cm·1 fluorescence lifetime Tf 1600 ( Hybrid probe) μδ Quantum capacity Η 1 (depending on gametes) The fluorescence detection system used by the N/A LOC device 301 does not use filters to remove unwanted background fluorescence. Therefore, in order to increase the signal to noise ratio, it is advantageous if the quencher 248 does not have a natural emission. Quencher 248 does not cause background fluorescence when there is no natural emission. High quenching efficiency is also important to prevent fluorescence until hybridization occurs. The Black Hole Quenchers (BHQ), available from Biosearch Technologies, Novato, Calif., have no natural emission and high quenching efficiency and are therefore suitable quenchers for the system. BHQ-1 has a maximum absorption at 5 34 nm and a quenching range of 48 0-580 urn, which makes it a suitable quencher for ruthenium chelate fluorophores. BHQ-2 has maximum absorption at 5 79 nm and a quenching range of 560-670 nm, making it a suitable quencher for Pulsar 650. Iowa Black Quencher (Iowa Black FQ and RQ) (available from Integrated DNA Technologies, Coralville, Iowa) -75- 201219776 is a suitable alternative quencher with little or no background emission. The Iowa Black FQ has a quenching range of 420-620 nm, which has a maximum absorption at 531 nm and is therefore a suitable quencher for the ruthenium chelate fluorophore. Iowa Black RQ has a maximum absorption at 656 rim and a quenching range of 500-700 n m, which makes it an ideal quencher for P u 1 s a r 65 5 0. In the system described herein, the quencher 248 is initially attached to the functional portion of the probe, but in other systems the quencher may be a separate molecule that is free in solution. Excitation source In the fluorescence detection based on the system described here, LED is selected as the excitation source due to low power consumption, low cost and small size, instead of laser diode, high power lamp or laser . Referring to Fig. 88, the LED 26 is placed directly above the hybrid cell array 110 on the outer surface of the LOC device 301. Opposite to the cell of the hybridization chamber array 1 is a photosensor 44 made up of a photodiode array 184 for detecting fluorescent signals from the cells (see Figures 53, 54 and 68). . Other systems for contacting the probe with excitation light are illustrated in Figures 89, 90 and 91. In the LOC device 30 shown in Fig. 89, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254 onto the hybrid array 810. The excitation LED 26 is pulsed and the fluorescent emission is detected by the photo sensor 44. In the LOC device 30 shown in FIG. 90, the excitation light 244 generated by the excitation LED 26 is used by the lens 254. The first optical pupil 712 and the -76-201219776 two optical pupils 714 are directed onto the hybridization chamber array 110. The excitation LED 26 is pulsed and the fluorescent emission is detected by the photo sensor 44. Similarly, in the LOC device 30 shown in FIG. 91, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 onto the hybridization chamber array 110. Similarly, the excitation LED 26 is pulsed and the fluorescent emission is detected by the light sensor 44. The excitation wavelength of the LED 26 is dependent on the selected fluorescent dye. Philips LXK2-Prl4-R00 is the appropriate source of excitation for the Pulsar 650 dye. SET UVT0P3 3 5T039BL LED is the appropriate excitation source for the ruthenium chelate label. Table 3: Philips LXK2-Pr 1 4-R00 LED Specifications

參數 符號 數値 單位 波長 λεχ 460 nm 發射頻率 Vem 6.52(10)14 Hz 輸出功率 Pl 0.515(分)@ ΙΑ W 輻射樣式 朗伯(Lambertian)變化形廓 N/A 表 4 : SET UVT0P3 34T039BL LED 規格Parameter Symbol Number 单位 Unit Wavelength λεχ 460 nm Transmit frequency Vem 6.52(10)14 Hz Output power Pl 0.515 (minutes) @ ΙΑ W Radiation pattern Lambertian variation profile N/A Table 4 : SET UVT0P3 34T039BL LED Specifications

參數 符號 數値 單位 波長 λβ 340 nm 發射頻率 Ve 8.82(10)14 Hz 輸出功率 Pi 0.000240 (分)@ 20mA W 脈衝式正向電流 I 200 mA 輻射樣式 朗伯(Lambertian) N/A -77- 201219776 紫外線激發光 矽幾乎不吸收紫外線光譜中之光。因此,使用紫外線 激發光是有利的。可以使用UV LED激發源,但LED 26 之廣譜會降低此方法之有效性。爲了解決這個問題,可使 用過濾之UV LED。可選擇地,UV雷射可作爲激發源, 除非雷射之相對較高的成本對特定測試模組市場而言並不 切實際。 LED驅動器 該LED驅動器29在恆定電流下驅動LED 26 —段所 需的時間。較低功率USB 2.0-可認證之裝置可以最小操作 電壓4.4V吸出最多1個單位之負載(l00mA)。標準功 率調節電路可用於此目的。 光電二極體 第54圖顯示整合入LOC裝置301之CMOS電路86 的光電二極體184。該光電二極體184無須額外的遮蔽或 步驟地製造成CMOS電路86的一部分。可利用非標準處 理步驟整合在同一芯片上,或製作在相鄰之芯片上的替代 感測技術爲此CMOS光電二極體超越CCD之顯著優點。 芯片上(on-chip)偵測之成本低且縮小偵測系統之尺寸。較 短之光徑長度可降低來自周圍環境之噪音以有效地收集螢 光信號且無需傳統之光學鏡頭和過濾器之組合。 光電二極體184之量子效率爲光子撞擊其感光面 -78- 201219776 185,而有效地轉換爲光-電子的部分。在標準之矽處理程 序方面,量子效率在可見光方面爲0.3至0.5,其取決於 方法參數,諸如覆蓋層之數量和吸收性質。 光電二極體1 84之偵測閾値決定可以被偵測到之螢光 信號的最小強度。該偵測閾値亦決定光電二極體1 84之尺 寸,由此可決定在雜交區和偵測區52中之雜交室180的 數目(見第52圖)。小室之尺寸及數量爲受限於LOC裝 置之尺寸(在LOC裝置301的情況中,該尺寸爲1760微 米X 5824微米)及納入其他功能性模組後(諸如病原體透 析區70及擴增區1 12)之可用空間的技術參數。 在標準矽處理程序方面,光電二極體1 84偵測最少5 個光子。然而,爲了確保可靠之偵測,最低可設爲1〇個 光子。因此,量子效率範圍在0.3至0.5 (如上所述) 時,該來自探針之螢光發射應爲最少17個光子,但對可 靠偵測而言,3 0個光子將納入合適的誤差幅度。 校準室 光電二極體184之電特性的非均勻性、自體螢光和尙 未完全衰退之剩餘的激發光子通量將背景雜訊及偏移引入 輸出信號中。使用一或多個校準信號將這個背景從各個輸 出信號中移除。校準信號係經由將陣列中之一或多個校準 光電二極體184接觸各自之校準源來產生。使用低校準源 來測定其中標靶未與探針反應之陰性結果。高校準源爲從 探針-標靶複合物產生之陽性結果的指示。在此處所描述 -79- 201219776 之體系中,該低校準光源係由雜交室陣列n〇中之校準室 3 8 2提供,其: 不包含任何探針; 包含不具有螢光報告子之探針;或, 包含具有經配置成預計永遠發生淬滅之報告子及淬滅 劑的探針。 來自這類校準室3 8 2之輸出信號非常近似來自LOC 裝置之所有雜交室之輸出信號中的雜訊和偏移。由其他雜 交室產生之輸出信號減去校準信號可大致上去除背景並留 下由螢光發射(如果有的話)所產生的信號。亦減去從該 小室陣列之區中的環境光產生的信號。 參考第1 1 4至1 1 7圖將可明白上述之陰性對照探針可 用於校準室。然而,如第105和106圖所示(其爲第98圖 中所示之LOC變體X 728之插圖DG和DH的放大視 圖)’另一個選擇爲流體上隔離校準室382與擴增子。該 背景雜訊和偏移可經由使該流體上隔離之小室清空,或藉 由包含無報告子之探針,或甚至任何由於流體隔離而阻止 雜交之同時具有報告子與淬滅劑的“正常”探針來測定。 校準室382可提供高校準源以在對應之光電二極體中 產生高信號。該高信號對應於所有在小室中已雜交之探 針。具有報告子且無淬滅劑,或者只具有報告子之點樣探 針將持續提供近似於其中大部分探針已雜交之雜交室的信 號。亦知可使用校準室3 8 2來代替對照探針,或與對照探 針一起使用。 -80 - 201219776 整個雜交室陣列中可具有任意數目和安排之校準室 382。然而,若以非常近似之校準室3 82校準光電二極體 184,則校準更準確。參考第56圖,該雜交室陣列11〇中 每8個雜交室180具有一個校準室382。也就是說,校準 室382係位在每3x3雜交室180的中央。在此配置中,雜 交室180係藉由緊鄰之校準室382校準。 第113圖顯示差分成像器電路788,其係用於將對應 於校準室382之來自光電二極體184的信號(此爲激發光 所造成之結果)從來自包圍雜交室180之螢光信號減去。 該差分成像器電路788採取來自像素790及“假”像素 7 92之樣本信號。於一體系中,將該“假”像素792避 光,所以其輸出信號提供黑暗參考。或者,可將該“假” 像素7 92與其餘陣列暴露在激發光。於“假”像素792對 光開放之體系中亦減去從該小室陣列區之環境光產生的信 號。來自像素790之信號小(即,接近黑暗信號),而未 參考黑暗水準時很難區分背景和非常小之信號。 在使用期間’ “read一row” 794 及 “read_row_d” 795 被激活,M4 797及MD4 8 0 1電晶體被打開。開關807和 809被關閉’從而將該來自像素790和“假”像素792之 輸出信號分別儲存在像素電容器803和假像素電容器 805。該像素信號已儲存後,開關807和809不作用。然 後,“read_col” 開關 811 及假 “read_C0l” 開關 813 被 關閉’該在輸出處之轉換的電容器擴增器815擴增該差分 信號8 1 7。 -81 - 201219776 遏制和啓用光電二極體 被LED 26激發之期間需要抑制光電二極體184,而 在螢光期間啓用之。第69圖爲單一光電二極體184之電 路圖,第70圖爲光電二極體對照信號之時序圖。該電路 具有光電二極體184及六個MOS電晶體,Mshunt 394、 Mtx 3 96、Mreset 3 98、Msf 400 ' Mread 402 和 Mbias 404。 在激發週期t】開始時,經由拉開Mshunt閘門384並將閘 門388重設爲高’以開啓電晶體 Mshunt 394及 Mreset 398。在此期間,該激發光子在光電二極體184中產生載 體。這些載體必須被移除,因爲載體之生成量可能足以使 光電二極體1 84飽和。在此循環期間,Mshunt 394直接移 除在光電二極體184中產生之載體,而Mreset 3 98則重設 任何因電晶體中洩漏或由於激發產生之載體擴散至基板而 累積在節點‘ NS’ 406的載體。激發後,在t4開始捕捉 循環。在此循環期間,從螢光團發射之反應被捕捉並整合 在電路中節點‘NS’ 406上。此可經由拉高tx閘門3 86來 達到,因爲拉高tx閘門3 86可打開電晶體 Mtx 396並將 任何累積在光電二極體184上之載體轉移至節點‘NS’ 4 06。該捕捉循環之期間可與螢光團發射一樣長。該來自 所有在雜交室陣列110中之光電二極體184的輸出同時被 捕捉。 捕捉循環t5結束及閱讀循環t6開始之間有時間上的 延遲。此延遲係由於在捕捉循環後需要分別讀取雜交室陣 -82 - 201219776 列110中之各光電二極體184(見第52圖)。第一個欲 讀取之光電二極體184在閱讀循環前的延遲最短,而最後 之光電二極體184在閱讀循環前的延遲最長。在閱讀循環 期間,經由拉高閱讀閘門3 93來開啓電晶體Mread 402 ^ 使用來源追踪器電晶體Msf 400緩衝並讀取‘NS’節點406 電壓。 其他可選擇之啓用或抑制光電二極體的方法討論如 下: 1 .遏制方法 第1 10、1 1 1和1 12圖顯示Mshunt電晶體3 94三種可 能之配置778、780、782。該Mshunt電晶體394在最大 I VGS丨=5V時有很高之關閉比例,其在激發期間才能夠 起動。如第1 10圖所示,Mshunt閘門3 84係配置在光電二 極體184的邊緣。可選擇地,如第111圖所示,Mshunt閘 門3 84可配置成包圍該光電二極體184。第三種選擇係將 Mshunt閘門384配置在光電二極體184內,如第112圖所 示。在此第三個選項下光電二極體感光面1 8 5會減少。 這三個配置778、780和782降低從光電二極體184 之所有位置到Mshunt閘門3 84之平均路徑長度。在第110 圖中,該Mshunt閘門3 84係在光電二極體1 84的一側。此 配置最容易製造且光電二極體感光面185上之撞擊最少。 然而,繼續停留在光電二極體184之遠側的任何載體通過 Mshunt閘門3 84傳導將需要更長的時間。 在第1 11圖中,該Mshunt電晶體384包圍光電二極體 -83- 201219776 1 84。此進一步降低光電二極體1 84中之載體到達Mshun 閘門3 84之平均路徑長度。然而,將Mshunt閘門3 84延伸 至光電二極體184周邊附近使光電二極體之感光面185減 少更多。第112圖中之配置782將Mshunt閘門3 84置於感 光面1 85內。此提供到達Mshunt閘門3 84之最短平均路徑 長,因此過渡時間最短。然而,在感光面185上之撞擊最 多。其亦帶來較寬之滲漏路徑。 2.啓用方法 a. 觸發光電二極體以固定之延遲時間驅動分流電晶 體。 b. 觸發光電二極體以程控之延遲時間驅動分流電晶 體。 c. 分流電晶體以固定之延遲時間從LED驅動脈衝驅 動。 d. 分流電晶體依2c中之方式驅動但具有程控之延遲 時間。 第75圖爲透過雜交室180,顯示包埋在CMOS電路 86中之光電二極體184和觸發光電二極體187的示意剖 面視圖。在光電二極體184角落中之一個小面積被觸發光 電二極體187取代。具有小面積之觸發光電二極體187即 已足夠,因爲激發光之強度與螢光發射相比較時將是高 的。觸發光電二極體187對激發光244敏感。該觸發光電 二極體187指示激發光244已熄滅並在很短的延遲時間 △t3 00後激活光電二極體184(見第2圖)。此延時使螢 -84 - 201219776 光光電二極體184能在缺乏激發光244下偵測來自FRET 探針1 86的螢光發射。如此可偵測及改善信噪比。 光電二極體184及觸發光電二極體187二者係位於各 雜交室180之CMOS電路86中。該光電二極體之陣列與 適當之電子結合,從而形成光感測器44 (見第68圖)。 該光電二極體184爲CMOS結構製造過程中無須額外之遮 蔽或步驟所製造之pn接面二極體。在MST製造期間,可 選擇性地使用標準MST光蝕刻技術將在光電二極體184 上之絕緣層(未顯示)薄化以允許更多螢光照亮該光電二 極體184之感光面185。光電二極體184具有視野以使雜 交室180內之來自探針-標靶雜交物的螢光信號入射在該 感測器的面。該螢光被轉換成光電流,然後再使用CMOS 電路8 6測量之。 另外,使一或多個雜交室180可僅專用於一個觸發光 電二極體187。這些選項可與上述2a和2b組合使用於 此。 螢光之延遲偵測 下列推衍闡明使用用於上述LED/螢光團組合之長壽 螢光團來延遲偵測螢光。螢光強度之推衍係如第60圖所 示,在時間t i和t2之間,經由使用理想的固定強度Ie脈 衝激發後,以時間函數導出。 令[S 1 ] ( t )等於時間t時之激發態的密度,則在激發 期間和之後’每單位體積內每單位時間之激發態數目係藉 -85- 201219776 以下微分方程式描述: 逆1(〇+迎I 丛...(!) dt xF hve 其中C爲螢光團之莫耳濃度,ε爲莫耳消光係數,Ve爲激 發頻率且h= 6.626068 96( 1 0)·34 Js爲普朗克(PUnk)常數。 此微分方程式具下列一般形式: ^-+ρ(Φ = Φ) 其具有解答: \pU)^ q(x)dx+k jpMdx …(2) 現在使用此式來解答式 剛)=. .SCT, hVe .(3) 現在,在時間ti’ [SI] (ti) =0,且從(3Number of parameter symbols 値 Unit wavelength λβ 340 nm Transmit frequency Ve 8.82(10)14 Hz Output power Pi 0.000240 (minutes) @ 20mA W Pulsed forward current I 200 mA Radiation pattern Lambertian N/A -77- 201219776 Ultraviolet excitation does not absorb light in the ultraviolet spectrum. Therefore, it is advantageous to use ultraviolet light to excite light. A UV LED excitation source can be used, but the broad spectrum of LED 26 reduces the effectiveness of this method. To solve this problem, a filtered UV LED can be used. Alternatively, a UV laser can be used as an excitation source unless the relatively high cost of the laser is impractical for a particular test module market. LED Driver The time required for the LED driver 29 to drive the LED 26 at a constant current. The lower power USB 2.0-certifiable unit can draw up to 1 unit load (l00mA) with a minimum operating voltage of 4.4V. A standard power conditioning circuit can be used for this purpose. Photodiode Figure 54 shows the photodiode 184 integrated into the CMOS circuit 86 of the LOC device 301. The photodiode 184 is fabricated as part of the CMOS circuit 86 without additional shielding or steps. Alternative sensing techniques that can be integrated on the same chip using non-standard processing steps, or fabricated on adjacent chips, have significant advantages over CCDs for CMOS photodiodes. The cost of on-chip detection is low and the size of the detection system is reduced. The shorter optical path length reduces noise from the surrounding environment to efficiently collect fluorescent signals without the need for a combination of conventional optical lenses and filters. The quantum efficiency of the photodiode 184 is a photon that strikes its photosensitive surface -78-201219776 185, and is effectively converted into a photo-electron portion. In terms of standard processing procedures, the quantum efficiency is 0.3 to 0.5 in terms of visible light depending on the method parameters such as the number of cladding layers and the absorption properties. The detection threshold of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection threshold also determines the size of the photodiode 180, thereby determining the number of hybridization chambers 180 in the hybridization and detection zones 52 (see Figure 52). The size and number of chambers is limited by the size of the LOC device (in the case of LOC device 301, which is 1760 microns X 5824 microns) and is incorporated into other functional modules (such as pathogen dialysis zone 70 and amplification zone 1). 12) Technical parameters of the available space. In terms of standard 矽 processing, photodiode 1 84 detects a minimum of 5 photons. However, to ensure reliable detection, it can be set to a minimum of 1 photon. Therefore, when the quantum efficiency ranges from 0.3 to 0.5 (as described above), the fluorescent emission from the probe should be a minimum of 17 photons, but for reliable detection, 30 photons will incorporate the appropriate margin of error. Calibration Chamber The non-uniformity of the electrical characteristics of the photodiode 184, autofluorescence, and residual excitation photon fluxes that are not completely degraded introduce background noise and offset into the output signal. This background is removed from each output signal using one or more calibration signals. The calibration signal is generated by contacting one or more of the calibrated photodiodes 184 in the array with respective calibration sources. A low calibration source was used to determine the negative result in which the target did not react with the probe. The high calibration source is an indication of the positive result produced from the probe-target complex. In the system described in -79-201219776, the low calibration source is provided by a calibration chamber 382 in the hybrid chamber array n〇, which: does not contain any probes; includes a probe that does not have a fluorescent reporter Or, a probe having a reporter and a quencher configured to be expected to quench forever. The output signal from such a calibration chamber 382 is very similar to the noise and offset in the output signals from all of the hybrid chambers of the LOC device. Subtracting the calibration signal from the output signal produced by the other hybrid chamber substantially removes the background and leaves the signal produced by the fluorescent emission (if any). The signal generated from the ambient light in the area of the cell array is also subtracted. Referring to Figures 1 14 to 1 1 7 it will be appreciated that the negative control probe described above can be used in a calibration chamber. However, as shown in Figures 105 and 106 (which is an enlarged view of the illustrations DG and DH of the LOC variant X 728 shown in Figure 98), another option is to fluidly isolate the calibration chamber 382 from the amplicon. The background noise and offset can be emptied by the chamber that isolates the fluid, or by a probe containing no reporter, or even any hybridization due to fluid isolation that has a reporter and quencher. "Probe to determine. The calibration chamber 382 can provide a high calibration source to produce a high signal in the corresponding photodiode. This high signal corresponds to all probes that have been hybridized in the chamber. A spotted probe with a reporter and no quencher, or with only a reporter will continue to provide a signal similar to the hybridization chamber in which most of the probes have hybridized. It is also known to use a calibration chamber 382 instead of a control probe or with a control probe. -80 - 201219776 There may be any number and arrangement of calibration chambers 382 throughout the array of hybrid chambers. However, if the photodiode 184 is calibrated with a very similar calibration chamber 382, the calibration is more accurate. Referring to Figure 56, each of the eight hybridization chambers 180 has one calibration chamber 382. That is, the calibration chamber 382 is tethered to the center of every 3x3 hybridization chamber 180. In this configuration, the hybrid chamber 180 is calibrated by the calibration chamber 382 in the immediate vicinity. Figure 113 shows a differential imager circuit 788 for subtracting the signal from the photodiode 184 corresponding to the calibration chamber 382, which is the result of the excitation light, from the fluorescent signal from the surrounding hybridization chamber 180. go with. The differential imager circuit 788 takes sample signals from pixel 790 and "false" pixels 729. In a system, the "false" pixel 792 is protected from light, so its output signal provides a dark reference. Alternatively, the "dummy" pixel 792 can be exposed to the excitation light with the remaining array. The signal generated from the ambient light of the cell array region is also subtracted from the system in which the "false" pixel 792 is open to light. The signal from pixel 790 is small (i.e., close to the dark signal), and it is difficult to distinguish between the background and the very small signal without reference to the dark level. During use, 'read one row' 794 and "read_row_d" 795 are activated, and M4 797 and MD4 8 0 1 transistors are turned on. Switches 807 and 809 are turned off' thereby storing the output signals from pixel 790 and "false" pixel 792 in pixel capacitor 803 and dummy pixel capacitor 805, respectively. After the pixel signal has been stored, switches 807 and 809 do not function. Then, the "read_col" switch 811 and the dummy "read_C0l" switch 813 are turned off. The converted capacitor amplifier 815 at the output amplifies the differential signal 8 1 7 . -81 - 201219776 Containing and enabling photodiodes The photodiode 184 needs to be suppressed during excitation by LED 26, which is enabled during the fluorescent period. Fig. 69 is a circuit diagram of a single photodiode 184, and Fig. 70 is a timing diagram of a photodiode control signal. The circuit has a photodiode 184 and six MOS transistors, Mshunt 394, Mtx 3 96, Mreset 3 98, Msf 400 'Mread 402 and Mbias 404. At the beginning of the excitation period t], the transistors Mshunt 394 and Mreset 398 are turned on by pulling open the Mshunt gate 384 and resetting the gate 388 high. During this time, the excitation photons generate a carrier in the photodiode 184. These carriers must be removed because the amount of carrier generated may be sufficient to saturate the photodiode 1 84. During this cycle, Mshunt 394 directly removes the carrier generated in photodiode 184, while Mreset 3 98 resets any accumulation at node 'NS' 406 due to leakage in the transistor or diffusion of the carrier due to excitation to the substrate. a. After the excitation, the cycle is captured at t4. During this cycle, the reaction from the fluorophore emission is captured and integrated on the node 'NS' 406 in the circuit. This can be achieved by pulling up the tx gate 386, since pulling up the tx gate 3 86 can open the transistor Mtx 396 and transfer any carrier accumulated on the photodiode 184 to the node 'NS' 460. The capture cycle can be as long as the fluorophore emission. The output from all of the photodiodes 184 in the hybrid cell array 110 is simultaneously captured. There is a time delay between the end of the capture cycle t5 and the beginning of the read cycle t6. This delay is due to the need to separately read each photodiode 184 in the hybrid array -82 - 201219776 column 110 after the capture cycle (see Figure 52). The first photodiode 184 to be read has the shortest delay before the read cycle, and the last photodiode 184 has the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by pulling up the read gate 3 93. The source tracker transistor Msf 400 is used to buffer and read the 'NS' node 406 voltage. Other options for enabling or suppressing photodiodes are discussed below: 1. Containment Methods Figures 1 10, 1 1 1 and 1 12 show three possible configurations of Mshunt transistors 3 94 778, 780, 782. The Mshunt transistor 394 has a high turn-off ratio at maximum I VGS 丨 = 5 V, which is enabled during the excitation period. As shown in Fig. 10, the Mshunt gate 3 84 is disposed at the edge of the photodiode 184. Alternatively, as shown in FIG. 111, Mshunt gate 3 84 may be configured to surround the photodiode 184. A third option is to place the Mshunt gate 384 within the photodiode 184 as shown in FIG. In this third option, the photodiode photosensitive surface 1 8 5 will be reduced. These three configurations 778, 780, and 782 reduce the average path length from all locations of the photodiode 184 to the Mshunt gate 3 84. In Fig. 110, the Mshunt gate 3 84 is attached to one side of the photodiode 184. This configuration is the easiest to manufacture and has the least impact on the photodiode photosurface 185. However, any carrier that continues to stay on the far side of the photodiode 184 will conduct longer through the Mshunt gate 3 84. In Figure 11, the Mshunt transistor 384 surrounds the photodiode -83-201219776 1 84. This further reduces the average path length of the carrier in the photodiode 1 84 to the Mshun gate 3 84. However, extending the Mshunt gate 3 84 to the vicinity of the periphery of the photodiode 184 reduces the photosensitive surface 185 of the photodiode. Configuration 782 in Fig. 112 places Mshunt gate 3 84 within photosensitive surface 185. This provides the shortest average path length to the Mshunt Gate 3 84, so the transition time is the shortest. However, the impact on the photosensitive surface 185 is the greatest. It also brings a wide leak path. 2. Enable method a. Trigger the photodiode to drive the shunt transistor for a fixed delay time. b. Trigger the photodiode to drive the shunt transistor with a programmed delay time. c. The shunt transistor is driven from the LED drive pulse with a fixed delay time. d. The shunt transistor is driven in the manner of 2c but has a programmed delay time. Figure 75 is a schematic cross-sectional view showing the photodiode 184 and the trigger photodiode 187 embedded in the CMOS circuit 86 through the hybridization chamber 180. A small area in the corner of the photodiode 184 is replaced by a photodiode 187. Triggering the photodiode 187 with a small area is sufficient because the intensity of the excitation light will be high compared to the fluorescence emission. The triggering photodiode 187 is sensitive to the excitation light 244. The trigger photodiode 187 indicates that the excitation light 244 has extinguished and activates the photodiode 184 after a short delay time Δt3 00 (see Figure 2). This delay allows the fluorescent -84 - 201219776 photodiode 184 to detect fluorescent emissions from the FRET probe 1 86 in the absence of excitation light 244. This can detect and improve the signal to noise ratio. Both photodiode 184 and trigger photodiode 187 are located in CMOS circuitry 86 of each hybrid cell 180. The array of photodiodes is combined with appropriate electrons to form photosensor 44 (see Figure 68). The photodiode 184 is a pn junction diode fabricated without additional shielding or steps in the fabrication of the CMOS structure. During the MST fabrication, an insulating layer (not shown) on the photodiode 184 can be selectively thinned using standard MST photolithography to allow more phosphor to illuminate the photoreceptor surface 185 of the photodiode 184. . Photodiode 184 has a field of view such that a fluorescent signal from the probe-target hybrid within the hybrid chamber 180 is incident on the face of the sensor. This fluorescent light is converted into a photocurrent, which is then measured using a CMOS circuit 86. Additionally, one or more of the hybridization chambers 180 can be dedicated to only one of the triggering photodiodes 187. These options can be used in combination with the above 2a and 2b. Fluorescence Delay Detection The following derivation clarifies the use of long-lived fluorophores for the above LED/fluorescent combination to delay detection of fluorescence. The fluorescence intensity is derived as shown in Fig. 60. Between time t i and t2, after excitation with the ideal fixed intensity Ie pulse, it is derived as a function of time. Let [S 1 ] ( t ) be equal to the density of the excited state at time t, then the number of excited states per unit time during and after the excitation is described by the following differential equation: -1 (1) 〇+迎I 丛...(!) dt xF hve where C is the molar concentration of the fluorophore, ε is the molar extinction coefficient, Ve is the excitation frequency and h= 6.626068 96( 1 0)·34 Js The PUnk constant. This differential equation has the following general form: ^-+ρ(Φ = Φ) It has the answer: \pU)^ q(x)dx+k jpMdx ...(2) Now use this formula to solve式))..SCT, hVe .(3) Now, at time ti' [SI] (ti) =0, and from (3

I l,lTf //IS hv. k =——:~-e' f ...(4) [sim 在時間t2 : [•SI]⑹= —----e hve hve …(5) 當t^t2,激發態以指數衰減且此可藉下式描述: [51](〇 = [51](/2)e-{,-,j)/r/ …⑹ -86- 201219776 將(5 )代入(6 ): [SmJ-^[\-e(t^),riV{,'h),tf ...(7) hye 該螢光強度係藉由以下公式產生: I (t) = ~^-sl^thvfni …(8) f dx f 其中Vf爲螢光頻率,η爲量子產量且1爲光徑長度。 現在,從(7 ): = >-(叫)〜 …(9)I l,lTf //IS hv. k =——:~-e' f ...(4) [sim at time t2 : [•SI](6)= —----e hve hve ...(5) t^t2, the excited state is exponentially decayed and this can be described by: [51](〇= [51](/2)e-{,-,j)/r/ (6) -86- 201219776 will (5 Substituting (6): [SmJ-^[\-e(t^), riV{, 'h), tf (7) hye The fluorescence intensity is generated by the following formula: I (t) = ~^-sl^thvfni (8) f dx f where Vf is the fluorescence frequency, η is the quantum yield and 1 is the optical path length. Now, from (7): = >-(call)~ ...(9)

dt hve L 將(9 )代入(8 ): IAt) = /e£c/7—[1 -e'<,2_,l)/r/ }e~(,~,lVTf ...(10) ίΐΖίί — 〇〇, 在" 方面, β 因此,我們可以編寫下列近似方程式,其描述經過足 夠長之激發脈衝後螢光強度衰退的情況(t2- tl >> Tf): 今(〇 = /#/7亡〆"2)"’,對叫丽⑼ 在前段中,我們得出結論,在t2- t i >> τ f的情況中, IAt) = IeScln^-e-{,-hVTf .對 θί2 而言。 從上述公式中’我們可以推衍出以下幾點: nf(t) = nesc^eH'~'l),Tf ...(12) 其中 nr (0 - τ V/爲每單位面積內每單位時間之螢光數,且 -87- 201219776 爲每單位面積內每單位時間之激發光子數 因此,Dt hve L Substituting (9) into (8): IAt) = /e£c/7—[1 -e'<,2_,l)/r/ }e~(,~,lVTf ...(10 ) ίΐΖίί — 〇〇, in terms of " β, therefore, we can write the following approximation equation, which describes the case where the fluorescence intensity decays after a sufficiently long excitation pulse (t2- tl >> Tf): = /#/7 〆 〆 "2)" ', 对叫丽(9) In the previous paragraph, we conclude that in the case of t2- ti >> τ f, IAt) = IeScln^-e- {,-hVTf . For θί2. From the above formula, we can derive the following points: nf(t) = nesc^eH'~'l), Tf (12) where nr (0 - τ V/ is per unit area The number of fluorescent lights in time, and -87- 201219776 is the number of excited photons per unit time per unit area.

GO = ...(13) 其中〜爲每單位面積之螢光光子數且t3爲該光電二極體 打開之瞬間時間。將(1 2 )代入(1 3 ): 〇〇GO = ... (13) where ~ is the number of fluorescent photons per unit area and t3 is the instant of opening of the photodiode. Substituting (1 2 ) into (1 3 ): 〇〇

Hf = dt ...(14) 現在,每單位面積內每單位時間到達光電二極體的螢光光 子數’ ~⑺,係由下式產生: 研)=\_ ...(15) 其中&爲該光學系統之集光效率。 將(1 2 )代入(1 5 ),我們發現 ηί(ή = φΰη\εαΙηβ-υ-'^ ...(16) 同樣地,每單位螢光面積內到達光電二極體之螢光光 子數~,將如下: 〇〇 ns = [ns{t)dt h 且代入(1 6 )並整合:Hf = dt (14) Now, the number of fluorescent photons reaching the photodiode per unit time is ~ ~(7), which is generated by the following formula: 研)=\_ (15) & is the light collection efficiency of the optical system. Substituting (1 2 ) into (1 5 ), we find that ηί(ή = φΰη\εαΙηβ-υ-'^ (16) Similarly, the number of fluorescent photons reaching the photodiode per unit of fluorescence area ~, will be as follows: 〇〇ns = [ns{t)dt h and substituted (1 6 ) and integrated:

Hs ^Φ^εαΙητ^'^'11 因此, ns = φ^ή^Ιητfe u,Xf …(17) \ t3之理想値爲當由螢光光子造成光電二極體184產生 電子之比率與由激發光子造成光電二極體184產生電子的 比率相等時,因爲激發光子之通量衰減的速度遠超過螢光 -88- 201219776 光子之衰減速度。 由螢光造成之每單位螢光面積的感測器輸出電子比率 爲· έ}(0 = ^(0 其中分爲該感測器在該螢光波長的量子效率。 代入(1 7 ),可得: έ> (0 = 卜’2)/Γ/ ...(18) 同樣地,由於激發光子產生之每單位螢光面積的感測 器輸出電子比率爲: ·έ;(0 = ^>'(,',ί)/Γ* -(19) 其中&爲感測器在激發波長的量子效率,且%爲對應於激 發LED之“關閉”特點之時間常數。經過時間t2後, LED衰減光子通量將會增加螢光信號的強度並延長其衰減 時間,但我們假設這對1Kt)之影響微不足道’因此’我們 採取保守的方法。 現在,如前所述,t3之理想値爲當:Hs ^Φ^εαΙητ^'^'11 Therefore, the ideal 値 of ns = φ^ή^Ιητfe u, Xf ... (17) \ t3 is the ratio of the electrons generated by the photodiode 184 caused by the fluorescent photons and excited by When photons cause the ratio of electrons generated by photodiode 184 to be equal, the rate at which the flux of the excited photons decays far exceeds the decay rate of photons in the fluorescent-88-201219776. The output electron ratio of the sensor per unit of fluorescence area caused by fluorescence is · έ} (0 = ^(0 which is divided into the quantum efficiency of the sensor at the wavelength of the fluorescence. Substituting (1 7 ),得: έ> (0 = 卜'2)/Γ/ (18) Similarly, the sensor output electron ratio per unit of fluorescence area due to excitation photons is: ·έ; (0 = ^&gt ;'(,', ί)/Γ* -(19) where & is the quantum efficiency of the sensor at the excitation wavelength, and % is the time constant corresponding to the "off" characteristic of the excited LED. After time t2, LED attenuated photon flux will increase the intensity of the fluorescent signal and prolong its decay time, but we assume that this has a negligible effect on 1Kt). Therefore, we take a conservative approach. Now, as mentioned earlier, the ideal of t3 is when:

ef(t3) = eM 因此,從(1 8 )和(19 )可得: φ,φ^εαίηβ^-1^ = φ;η^~^ 再重新排列時,我們發現:Ef(t3) = eM Therefore, from (1 8 ) and (19), we can get: φ, φ^εαίηβ^-1^ = φ; η^~^ When rearranging again, we find:

r/ 從前面兩節中,我們具有以下兩種工作方程式: -89 - 201219776 ns =φ0ήιΡτ/β~&,>Τ/ ...(21) Δ/= \ Φ\~^ …(22)r/ From the previous two sections, we have the following two working equations: -89 - 201219776 ns =φ0ήιΡτ/β~&,>Τ/ ...(21) Δ/= \ Φ\~^ ... (22 )

Tf 、 _F = £C^77 且 ^ = 6 ,1N mn ,.. 其中 。我們亦知,在實行時, w>。。 螢光偵測之最佳時間及使用飛利浦LXK2-PR14-R00 L E D和P u 1 s a r 6 5 0染料偵測的登光光子數係依下述測定。 最佳偵測時間係使用方程式(22 )測定: 回顧擴增子之濃度,並假設所有擴增子雜交,則該螢 光發光團之濃度爲:c = 2.89(10) 莫耳/升 小室之高度爲光徑長度1 = 8 ( 10 ) '6m » 我們令螢光面積等於我們的光電二極體面積’但我們 的實際螢光面積實質上大於我們的光電二極體面積;因 此,我們可以約略假設我們的光學系統之光收集效率爲 九=Q·5。從光電二極體的特點來看,就螢光波長下之光電 二極體量子效率對激發波長下之量子效率的比例而言’ t = 10 ♦e 爲一個非常保守的數値。 以典型之LED衰退壽命~ =0.5奈秒及使用Pulsar 650規格,可測得At : F = [1.48(10)6 ][2.89(10)-6 ][8(10)'6 ](1) = 3.42(10)-5 -90 - 201219776 ^ ln([3.42(10)-5](10)(0.5)) i i- 1(10)-6 ~ 0.5(10)-9 =4.34(10)'9s ' 偵測到之光子數係使用方程式(2 1 )測定。首先,每 單位時間發射之激發光子數 <係經由檢査通過照明幾何結 構來測定。 飛利浦 LXK2-PR14-R00 LED 具有朗伯(Lambertian)輻 射模式,因此: fi, = nl0 cos(0) ...(23) 其中Π/爲偏離LED前進軸向Θ角處每單位立體角內 每單位時間之發射光子數,且Η«•爲前進軸向中&之閥門。 每單位時間內由LED發射的光子總數爲: ή, = j ή,άΩ ΩTf, _F = £C^77 and ^ = 6 , 1N mn , .. where . We also know that when implemented, w>. . The optimum time for fluorescence detection and the number of photons that were detected using Philips LXK2-PR14-R00 L E D and P u 1 s a r 65 5 dye were determined as follows. The optimal detection time is determined using equation (22): Review the concentration of the amplicon, and assuming that all amplicons are hybridized, the concentration of the luminescent luminophore is: c = 2.89 (10) Mohr / liter chamber Height is the length of the light path 1 = 8 ( 10 ) '6m » We make the fluorescent area equal to our photodiode area 'but our actual fluorescent area is substantially larger than our photodiode area; therefore, we can The approximate assumption is that the light collection efficiency of our optical system is nine=Q·5. From the characteristics of the photodiode, the ratio of the quantum efficiency of the photodiode at the fluorescence wavelength to the quantum efficiency at the excitation wavelength is t = 10 ♦e is a very conservative number 値. With a typical LED decay life of ~ = 0.5 nanoseconds and using the Pulsar 650 specification, At: F = [1.48(10)6 ][2.89(10)-6 ][8(10)'6 ](1) = 3.42(10)-5 -90 - 201219776 ^ ln([3.42(10)-5](10)(0.5)) i i-1 (10)-6 ~ 0.5(10)-9 =4.34(10) The number of photons detected by '9s' is determined using equation (2 1 ). First, the number of excitation photons emitted per unit time is determined by inspection through the illumination geometry. The Philips LXK2-PR14-R00 LED has a Lambertian radiation pattern, so: fi, = nl0 cos(0) ... (23) where Π/ is offset from the LED forward axial angle at each unit solid angle The number of emitted photons per unit time, and Η«• is the valve in the forward axial direction & The total number of photons emitted by the LED per unit time is: ή, = j ή, άΩ Ω

=J w)0 cos(0)JQ Ω …(24) 現在, ΔΩ = 2ττ[1 — cos(0 + Δ 0)] — 2;τ[1 - cos(0)] △Ω = 2;r[cos(0) - cos(0 + A0)] 4^sin(0)cos^^jsini-^j + 4^cos(0)sin2f·^ άΩ.-2π$ιη(θ)άθ 將此代入(24): η 2 ή, = j*2;^0 cos(0)sin(0)i/0=J w)0 cos(0)JQ Ω (24) Now, ΔΩ = 2ττ[1 — cos(0 + Δ 0)] — 2;τ[1 - cos(0)] △Ω = 2;r[ Cos(0) - cos(0 + A0)] 4^sin(0)cos^^jsini-^j + 4^cos(0)sin2f·^ άΩ.-2π$ιη(θ)άθ Substitute this into (24 ): η 2 ή, = j*2;^0 cos(0)sin(0)i/0

-91 - 201219776 重新排列後,取得: H,0=二 …(26) π LED 之輸出功率爲 〇.515 w 且 ve= 6.52(10)14Ηζ,因 此: =_0.515_ ~[6.63(10)-34][6.52(10)14] =1.19(10)18 光子/s 將此値代入(2 6 ),取得: …一 1.19(10)18 =3.79(10)17 光子偷 參考第61圖’ LED 26之光學中心252和透鏡254係 以示意圖顯示。該光電二極體爲16微米X16微米,且對 光電二極體在陣列中間而言,從LED 26發射到光電二極 體184之圓錐形光的立體角(Ω)約爲: Ω=感測器之面積/r2 [16 (10)-6][16(10)'6] 2.825(10)-3f = 3.21(10)-5 sr 可察知的是’光電二極體陣列44之中央光.電二極體 1 8 4係欲用於這些計算中。在朗伯激發源強度分佈方面, 位於陣列邊緣之感測器在雜交時將僅接收到少2 %之光 子。 每單位時間內發射之激發光子數爲: -92 - 201219776 he =η,Ω ../28) =[3.79(10)17][3.21(10)'5] =1.22(10)13 光子/s 現在參考方程式(2 9 ): / · τη ~At I τ f ns ns = (0.5)[1.22(10)13 ][3.42(10)'s ][1(10)-6 je"4 34(1〇r, = 208光子/感測器。-91 - 201219776 After rearranging, obtain: H,0=two...(26) π LED output power is 〇.515 w and ve= 6.52(10)14Ηζ, therefore: =_0.515_ ~[6.63(10) -34][6.52(10)14] =1.19(10)18 Photon/s Substituting this ( into (2 6 ), obtain: ...a 1.19(10)18 =3.79(10)17 Photon stealing reference picture 61' The optical center 252 and lens 254 of the LED 26 are shown in schematic form. The photodiode is 16 microns x 16 microns, and for the photodiode in the middle of the array, the solid angle (Ω) of the conical light emitted from the LED 26 to the photodiode 184 is approximately: Ω = sense Area of the device /r2 [16 (10)-6][16(10)'6] 2.825(10)-3f = 3.21(10)-5 sr It is known that the central light of the photodiode array 44. The electric diode 1 8 4 is intended for use in these calculations. In terms of the Lambert source excitation intensity distribution, the sensors at the edge of the array will only receive 2% less photons when hybridized. The number of excited photons emitted per unit time is: -92 - 201219776 he =η,Ω ../28) =[3.79(10)17][3.21(10)'5] =1.22(10)13 Photon/s Now refer to equation (2 9 ): / · τη ~At I τ f ns ns = (0.5)[1.22(10)13 ][3.42(10)'s ][1(10)-6 je"4 34(1 〇r, = 208 photons/sensors.

因此,使用飛利浦 LXK2-PR14-R00 LED 650螢光團,我們可以很容易地偵測到任何造成 光子被發射出來的雜交作用。 該 SET LED照明幾何結構顯示於第 62 ID = 20 mA時,LED具有中心在λβ= 340 nm (铽 吸收波長),ρ^ΜΟμλΥ之最小光功率輸出。在 驅動LED將會線性增加輸出功率達到ρι=2.4 LED之光學中心252置與雜交室陣列1 1〇相距 米,我們大約將此輸出光通量集中在最大直徑爲 圓點大小中。 在雜交平面遠處的2毫米直徑圓點中之光子 由方程式27產生。 hVe 2.4(10)~3 _ [6.63(10)'34][8.82(10)14] = 4.10(10)15 光子/s 使用方程式28,取得: 和 Pulsar 此數目之 圖中。在 螯合物之 I d = 2 0 m A mW。將 i 17.5 毫 2毫米的 通量係藉 -93- 201219776 ne = η,Ω 4.10(10)15 3.34(10)1 [16(10)6]2 41(10)3]2 光子/s 現在,回顧方程式22並使用先前列出之 螯合物屬 性, 1η[(6.94(10)~5)(10)(0·5)] -_1___Ί_ 1(10)'3 ~ 0.5(10)-9 =3.98(10)_9s 現在,從方程式2 1 : η, = (0.5)[3.34(10)1,][6.94(10)-5][1(10)-3>-39*(,0>',/1(1°)'3 =11,600光子/感測器。 使用SET LED及铽螯合物系統之雜交作用 之光子數的理論値可以很容易偵測到,且最少 3 〇個光子才能依上述藉由光感測器得到可靠的信 所發射出 需要超過 測。 探針與光電二極體間之最大間距 雜交之晶片上偵測可不需要藉由共焦顯微鏡 (見發明背景)。此種與傳統偵測技術的背離爲 夠節約時間和成本的重要因素。傳統偵測需要成 此成像光學必須使用透鏡或曲面鏡。經由採用 學,該診斷系統不需要複雜而笨重之光學系列。 極體置於非常接近探針具有收集效率極高之優點 探針和光電二極體之間的材料厚度以微米計時, 之收集角度至多達到1 73。。此角度係經由考慮 進行偵測 本系統能 像光學, 非成像光 將光電二 :當介於 發射光線 從位在最 -94- 201219776 接近光電二極體(其具有與該雜交室之面平行的平面感光 表面區)之雜交室面的質量中心之探針發射的光來計算。 該發射角之圓錐(在此圓錐內之光線可被光電二極體吸收) 的定義爲其頂點具有發射探針且感測器之一角係在其平面 外圍。對16微米χΐ6微米感測器而言,此圓錐之頂角爲 170° ;在該光電二極體經過擴充而使其面積與29微米X 19.75微米雜交室相稱之限定情況下,該頂角爲173。。將 雜交室之面與1微米或更小之光電二極體的感光面分隔可 以很容易地達到。 使用非成像光學體系確實要求光電二極體1 84必須非 常接近雜交室以收集足夠的螢光發射光子。該光電二極體 與探針之間的最大間距係參考第54圖依下述測定。 使用铽螯合物螢光團及 SET UVT0P335T039BL LED,我們計算出11600個光子從各別的雜交室180到達 我們的16微米xl6微米光電二極體184。在執行此計算 時,我們假設我們的雜交室180之光收集區具有與我們的 光電二極體感光區185相同之底面積且雜交光子總數中有 一半到達該光電二極體184。亦即,該光學系統之光收集 效率爲φ 〇 = 0.5。 更準確地說,我們可以寫下Φ 〇=[光之底面積-雜合室 之收集區)/(光電二極體面積)][Ω/4ττ],其中Ω =雜交室底 部之代表性點處之光電二極體對向的立體角。在正五稜椎 之幾何結構方面: 1 fi = 4arcsin(a2/(4d〇2 + a2)),其中d〇 =小室與光電二極體之間 -95- 201219776 的距離,且a爲該光電二極體之尺寸。 各雜交室釋出23200個光子。選定之光電二極體之偵 測閩値爲1 7個光子:因此,需要之最低光學效率爲: φ 〇= 1 7/23200 = 7.33x1 0'4 該雜交室180之光收集區域的底面積爲29微米X 19.75微米。 解答d〇時,取得介於我們的雜交室底部及我們的光 電二極體184之間的最大極限距離將爲dG= 249微米。在 此限制中,如上述定義之收集圓錐角僅爲0.8°。需注意此 分析忽略該可以忽略不計之折射作用。 具備具有透析裝置、LOC及互相連接之蓋罩的微流 裝置之測試模組 第1 2 5圖顯示用於分析含有標靶分子之樣本流體的測 試模組1 1。測試模組Π包含具有用於接收樣本流體之容 器24的外殼13、可移除之無菌密封膠帶22以在使用前 覆蓋容器24、帶有膜防護物410之膜密封墊408(其形成 外殼1 3之一部分,以減少測試模組中之濕氣流失,同時 以膜防護物410保護膜密封墊40 8不受損而使壓力不會發 生小氣壓波動)、印刷電路板(PCB ) 57、微流裝置783、 多孔元件49、用於電源、數據及控制之標準Micro-USB 插頭外部電源電容器32及電感器15。 該微流裝置7 8 3具有透析裝置7 8 4(其與容器24爲流 體相通且配置成將標靶分子與樣本之其他成分分開)、用 -96- 201219776 於分析該標靶分子之LOC裝置78 5及覆蓋該LOC裝置 785之蓋罩51和用於建立LOC裝置78 5與透析裝置784 之間的流體溝通的透析裝置784。 試劑裝載及探針點樣系統 第63至66圖中所示之機器人,液滴噴射系統在試劑 庫54、56、58、60和62(見第6圖)中塡入試劑和水。 該機器人系統亦將寡核苷酸FRET探針186或ECL探針 237點樣入雜交室180中。液滴配發技術爲一種低廉的點 樣技術,遞送具有可再現之體積的小液滴且可同時配發許 多不同溶液之小液滴。此令LO C裝置可以極高之生產能 力和低成本來大規模生產。 該試劑和探針點樣系統包括三種機器人子系統: 1·試劑配發機器人256(見第63圖)-微量試管258 (見第64圖),其各具有一液滴配發器262以將試劑配 發入貯存庫54、56、58、60及62中並將水配發入水庫 188中(見第6圖)。然後,將有圖案之上密封墊82施 用於(若有需要的話)蓋罩46上。 2. ON EC再塡充機器人2 74 (見第65圖)-具有液滴 配發器2 62之微量試管25 8,其將探針配發入寡核苷酸排 出器芯片(ONEC) 272之貯存庫278中(見第71和72 圖)。該ONEC貯存庫278送料進入熱液滴產生器陣列 271中。然後,將該〇NEC用於第三機器人子系統,LOC 點樣機器人中。 -97- 201219776 3. LOC點樣機器人289(以圖解顯示於第66圖中)-ONEC 272採用熱液滴產生器271在LOC裝置30之各雜 交室〗80中點入探針(見第72圖)。 微量試管 該試劑配發機器人256和ONEC再塡充機器人274均 使用如第64圖中圖解顯示之微量試管2M。探針和試劑 係直接從微量試管(未顯示)之供應商訂購。從微量試管 將液體微量移入各微量試管2 58上之容器259以形成可與 微量試管一起冷藏,直到需要時之小等分樣本(一般係介 於282微升與400微升之間)。各微量試管258具有壓電 液滴配發器262及帶有用於電源和數據傳輸之快閃記憶體 和電子接頭264的封閉之品質保證芯片(即集成電路) 266。該液滴配發器262具有配置成可排出體積爲50皮升 至150皮升之液滴的壓電促動器261以合理快速地裝載試 劑,同時保持準確的滴落位置。 探針和試劑識別方案 品質保證芯片266 (見第64圖)具有數位記憶體以 用來存儲、識別和追踪表徵在微量試管25 8內之試劑或寡 核苷酸探針溶液的規格數據。在點樣和裝載過程結束時, 經由控制該試劑配發機器人或探針配發機器人之控制微處 理器263將來自各微量試管2 58之數據與其他裝載和點樣 數據一起下載並存儲在LOC裝置30之程式和數據快閃記 -98- 201219776 憶體40中。此數據係用於診斷信息和處理工作、品質控 制及審計。 參考第73圖’ ONEC 272在ONEC CMOS結構285中 亦具有數位記憶體(諸如快閃記憶體28 1)以儲存寡核苷酸 之規格數據,諸如探針特性、批號,等。如同LOC裝 置,該ONEC再塡充機器人274將規格數據從微量試管 2 5 8上之品質保證芯片266下載至ONEC快閃記億體 28 1° 自動化信息傳輸將發生錯誤及使用錯誤微量試管之事 件的可能性降至最低,當處理診斷信息時,該測試模組閱 讀器1 2或其他系統組件可鑑定此錯誤。 試劑配發機器人 第63和124圖顯示簡化之試劑配發機器人256的頂 視圖和側視圖。其包括: •微量試管25 8,其包含試劑和分子生物學級水(僅 顯示一些微量試管) •機械/電氣機架286 (僅顯示輪廓),其支承並提供 微量試管25 8電氣連接 •XY平臺268,其提供用於可分離式地固定局部深度 被鋸開之矽晶片260或其他固定之陣列(諸如可分離之 PCB晶片720)的表面 •記錄相機270,其提供反饋給控制微處理器263以 映射該壓電液滴配發器262的確切位置 -99- 201219776 使用在微量試管258上之壓電液滴配發器262來將試 劑和水直接分別配發入LOC裝置貯存庫54、56、58、60 和6 2以及加濕器水庫1 8 8中。 ONEC再塡充機器人 第65圖顯示ONEC再塡充機器人274。其類似於試 劑配發器機器人25 6且包括: • 1 080個微量試管2 5 8,其包含寡核苷酸探針之溶液 (用於說明,未顯示所有的微量試管) •機械/電氣機架2 8 6 (僅顯示輪廓)-支承並提供微量 試管2 5 8電氣連接 •寡核苷酸排出器芯片(ONEC) 272-具有1 080個 ONEC貯存庫2 78,其提供各具有4個ONEC熱液滴產生 器271之各別排出器2 8 7 (見第71和72圖) •XY平臺 26 8 :其支承寡核苷酸排出器芯片 (ONEC/s ) 272 •記錄相機270,其提供反饋給控制微處理器263以 映射該熱液滴產生器271的確切位置。 在機械/電氣架2 8 6下移動該ONEC2 7 2。將獨特的探 針溶液從各微量試管25 8配發到各ONEC庫2 7 8中。然 後,將該ONEC 272用於探針點樣機器人2 7 3以將單液滴 之探針溶液點樣在LOC裝置之雜交室180中。Therefore, with the Philips LXK2-PR14-R00 LED 650 fluorophore, we can easily detect any hybridization that causes photons to be emitted. The SET LED illumination geometry is shown at 62 id = 20 mA, with the LED having a minimum optical power output centered at λβ = 340 nm (铽 absorption wavelength), ρ^ΜΟμλΥ. The drive LED will linearly increase the output power to ρι=2.4. The optical center 252 of the LED is placed at a distance from the hybridization array 1 1 , and we concentrate this output flux approximately at the maximum diameter of the dot size. Photons in a 2 mm diameter dot at a distance from the hybridization plane are generated by Equation 27. hVe 2.4(10)~3 _ [6.63(10)'34][8.82(10)14] = 4.10(10)15 Photon/s Using Equation 28, obtain: and Pulsar in this number graph. I d = 2 0 m A mW in the chelate. The flux of i 17.5 mm 2 mm is borrowed -93- 201219776 ne = η, Ω 4.10(10)15 3.34(10)1 [16(10)6]2 41(10)3]2 photon/s Now, Review Equation 22 and use the previously listed chelate properties, 1η[(6.94(10)~5)(10)(0·5)] -_1___Ί_ 1(10)'3 ~ 0.5(10)-9 =3.98 (10)_9s Now, from Equation 2 1 : η, = (0.5) [3.34(10)1,][6.94(10)-5][1(10)-3>-39*(,0>', /1(1°)'3 = 11,600 photons/sensors. The theory of the number of photons using the hybridization of the SET LED and the ruthenium chelate system can be easily detected, and at least 3 photons can be used as described above. The reliable detection of the signal by the light sensor requires that the detection exceeds the measurement. The on-wafer detection of the maximum spacing between the probe and the photodiode does not require a confocal microscope (see background of the invention). The departure of traditional detection technology is an important factor saving time and cost. Traditional detection requires that the imaging optics must use a lens or a curved mirror. Through the use of the diagnostic system, the diagnostic system does not require a complicated and cumbersome optical series. Very close to the probe for high collection efficiency The advantage of the material thickness between the probe and the photodiode is measured in micrometers, and the collection angle is up to 173. This angle is considered to be optically detected by considering the system, and the non-imaging light will be photo-electric: The emission is calculated from the light emitted by the probe at the center of mass of the hybridization chamber located at -94-201219776 near the photodiode (which has a planar photosensitive surface region parallel to the face of the hybridization chamber). The angle cone (the light in this cone can be absorbed by the photodiode) is defined by its apex with a launch probe and one of the sensors at its periphery. For a 16 micron χΐ6 micron sensor, The apex angle of the cone is 170°; in the case where the photodiode is expanded to have an area commensurate with the 29 μm X 19.75 μm hybridization chamber, the apex angle is 173. The surface of the hybridization chamber is 1 μm. The separation of the photosensitive surfaces of the smaller or smaller photodiodes can be easily achieved. The use of non-imaging optical systems does require that the photodiodes 1 84 must be very close to the hybridization chamber to collect sufficient fluorescent emission photons. The maximum spacing between the electrical diode and the probe is determined as described below with reference to Figure 54. Using the ruthenium chelate fluorophore and the SET UVT0P335T039BL LED, we calculated that 11600 photons arrived from each of the hybrid chambers 180. 16 micron x 16 micron photodiode 184. In performing this calculation, we assume that the light collection region of our hybridization chamber 180 has the same bottom area as our photodiode photosensitive region 185 and half of the total number of hybrid photons The photodiode 184 is reached. That is, the light collection efficiency of the optical system is φ 〇 = 0.5. More precisely, we can write Φ 〇 = [the bottom area of the light - the collection area of the hybrid chamber) / (photodiode area)] [Ω / 4ττ], where Ω = the representative point at the bottom of the hybridization chamber The solid angle of the opposite direction of the photodiode. In the geometry of the pentagonal pyramid: 1 fi = 4arcsin(a2/(4d〇2 + a2)), where d〇 = the distance between the cell and the photodiode -95-201219776, and a is the photodiode The size of the polar body. Each hybrid cell released 23,200 photons. The detected photodiode of the selected photodiode is 17 photons: therefore, the minimum optical efficiency required is: φ 〇 = 1 7/23200 = 7.33x1 0'4 The bottom area of the light collection region of the hybridization chamber 180 It is 29 microns x 19.75 microns. When answering d〇, the maximum limit distance between the bottom of our hybrid chamber and our photodiode 184 will be dG = 249 microns. In this limitation, the collection cone angle as defined above is only 0.8°. It should be noted that this analysis ignores this negligible refraction. Test module with microfluidic device with dialysis device, LOC and interconnected caps Figure 152 shows a test module 1 1 for analyzing sample fluids containing target molecules. The test module Π includes a housing 13 having a container 24 for receiving sample fluid, a removable sterile sealing tape 22 to cover the container 24, a membrane gasket 408 with a membrane shield 410 prior to use (which forms the housing 1) Part 3, to reduce the loss of moisture in the test module, while protecting the membrane gasket 40 8 with the membrane shield 410 without damaging the pressure, the printed circuit board (PCB) 57, micro Flow device 783, porous element 49, standard Micro-USB plug external power supply capacitor 32 and inductor 15 for power, data and control. The microfluidic device 783 has a dialysis device 784 (which is in fluid communication with the container 24 and configured to separate the target molecule from other components of the sample), and the LOC device for analyzing the target molecule with -96-201219776 78 5 and a cover 51 covering the LOC device 785 and a dialysis device 784 for establishing fluid communication between the LOC device 78 5 and the dialysis device 784. Reagent Loading and Probe Styling System The robots shown in Figures 63 through 66, the droplet ejection system, are filled with reagents and water in reagent libraries 54, 56, 58, 60 and 62 (see Figure 6). The robotic system also spots oligonucleotide FRET probe 186 or ECL probe 237 into hybridization chamber 180. Droplet dispensing technology is an inexpensive spotting technique that delivers droplets of reproducible volume and can dispense small droplets of many different solutions simultaneously. This allows the LO C unit to be mass produced with extremely high production capacity and low cost. The reagent and probe spotting system includes three robotic subsystems: 1. a reagent dispensing robot 256 (see Figure 63) - a microtube 258 (see Figure 64), each having a drop dispenser 262 to The reagents are dispensed into reservoirs 54, 56, 58, 60 and 62 and dispensed into reservoir 188 (see Figure 6). The patterned upper seal 82 is then applied (if necessary) to the cover 46. 2. The ON EC refill robot 2 74 (see Figure 65) - a microtube 25 8 with a droplet dispenser 2 62 that dispenses the probe into an oligonucleotide ejector chip (ONEC) 272 In repository 278 (see Figures 71 and 72). The ONEC repository 278 is fed into the thermal droplet generator array 271. The 〇NEC is then used in the third robotic subsystem, the LOC spotting robot. -97- 201219776 3. LOC spotting robot 289 (shown graphically in Figure 66) - ONEC 272 uses thermal droplet generator 271 to point probes in each hybrid chamber 80 of LOC device 30 (see page 72) Figure). Microtubes The reagent dispensing robot 256 and the ONEC refilling robot 274 both use the microtube 2M as shown in Fig. 64. Probes and reagents are ordered directly from the supplier of the microtube (not shown). A small amount of liquid is transferred from a microtube to a container 259 on each microtube 2 58 to form a small aliquot (usually between 282 microliters and 400 microliters) that can be refrigerated with a microtube until needed. Each microtube 258 has a piezoelectric droplet dispenser 262 and a closed quality assurance chip (i.e., integrated circuit) 266 with flash memory and electronics contacts 264 for power and data transfer. The drop dispenser 262 has a piezoelectric actuator 261 configured to discharge droplets having a volume of 50 picoliters to 150 picoliters to load the reagents reasonably quickly while maintaining an accurate drip position. Probe and Reagent Identification Protocol Quality Assurance Chip 266 (see Figure 64) has digital memory for storing, identifying, and tracking specification data for reagents or oligonucleotide probe solutions characterized in microtubes 285. At the end of the spotting and loading process, the data from each microtube 2 58 is downloaded and stored in the LOC along with other loading and spotting data via a control microprocessor 263 that controls the reagent dispensing robot or probe dispensing robot. The program and data flash of the device 30 is -98-201219776. This data is used for diagnostic information and processing work, quality control, and auditing. Referring to Figure 73, ONEC 272 also has digital memory (such as flash memory 28 1) in the ONEC CMOS structure 285 to store specification data for the oligonucleotides, such as probe characteristics, lot numbers, and the like. Like the LOC device, the ONEC refill robot 274 downloads the specification data from the quality assurance chip 266 on the micro-tube 258 to the ONEC flash. The automatic information transmission will be an error and the use of the wrong micro-tube event. The possibility is minimized and the test module reader 12 or other system components can identify this error when processing diagnostic information. Reagent dispensing robots Figures 63 and 124 show top and side views of a simplified reagent dispensing robot 256. It includes: • Microtubes 25 8, which contain reagents and molecular biology grade water (only some microtubes are shown) • Mechanical/electrical racks 286 (only outlines are shown) that support and provide microtubes 25 8 Electrical Connections • XY A platform 268 that provides a surface-recording camera 270 for detachably securing a partially depth-sawed wafer 260 or other fixed array, such as a detachable PCB wafer 720, that provides feedback to the control microprocessor 263 to map the exact position of the piezoelectric droplet dispenser 262 -99-201219776 using the piezoelectric droplet dispenser 262 on the microtube 258 to dispense the reagent and water directly into the LOC device repository 54, 56, 58, 60 and 6 2 and the humidifier reservoir 1 8 8 . ONEC Refill Robot Figure 65 shows the ONEC refill robot 274. It is similar to the reagent dispenser robot 25 6 and includes: • 1 080 microtubes 258, which contain solutions of oligonucleotide probes (for illustration, not all microtubes are shown) • Mechanical/electrical machines Rack 2 8 6 (showing only outlines) - supporting and providing microtubes 2 5 8 electrical connections • oligonucleotide ejector chip (ONEC) 272 - with 1 080 ONEC depots 2 78, each offering 4 ONEC Individual ejector of thermal droplet generator 271 2 8 7 (see Figures 71 and 72) • XY stage 26 8 : support oligonucleotide ejector chip (ONEC/s) 272 • Recording camera 270, which provides Feedback is given to control microprocessor 263 to map the exact location of the thermal droplet generator 271. Move the ONEC2 7 2 under the mechanical/electrical frame 286. A unique probe solution is dispensed from each microtube 286 into each of the ONEC libraries 278. TheONEC 272 is then used in the probe spotting robot 273 to spot a single drop of probe solution in the hybridization chamber 180 of the LOC device.

ONEC -100- 201219776 第71、72和73圖詳細顯示(^丑€ 272。該(^£〇 272爲用於非接觸式點樣在表面(諸如在任何l〇C裝置中 之雜交室陣列)上的寡核苷酸點樣裝置。其整體尺寸爲 23,296微米X1760微米且係使用行之有效之大量光蝕刻製 造技術製造。各ONEC具有1 080個蝕刻在單片矽基板 2了5之貯存庫側277中的貯存庫278 (見第73圖)。各 ONEC具有超過1 000個貯存庫278而具有在此處所描述 之LOC裝置上點樣所需要的完整探針檢測。此允許各 LOC之點樣過程爲單步驟,其意義爲不需要使用超過一個 ONEC來點樣在爲各特定分析所配置之LOC上。該ONEC 貯存庫278具有深度爲200微米之長方形底部(96微米x 208微米)。各ONEC貯存庫278將探針懸浮液送入各別 排出器2 8 7中。探針之液體懸浮液經由一對小室的入口 284塡入共有之小室282中(見第72圖)。該小室的入 口 284爲兩個從貯存庫278至共有之小室282的直徑21 微米洞。四個熱液滴產生器271之一經由加熱該促動器 280來產生蒸汽泡沫而透過排出器側279中之噴嘴283排 出探針液滴至雜交室180中。若有一個液滴產生器故障 時,擁有四個熱液滴產生器271可給予備份。 LOC探針點樣機器人 第66和92圖中顯示該LOC探針點樣機器人289。爲 了清楚起見,PCB晶片720上除了 LOC裝置30以外的組 件未顯示。其包括下列: -101 - 201219776 •ONEC 272-具有1 080個貯存庫278之寡核苷酸排出 器芯片,其各塡滿探針溶液(見第71和72圖) •XY平臺268,其保持該局部深度被鋸開之LOC矽晶 片260(見第66圖)或可分離之PCB晶片720(見第92 圖) •記錄相機270,其提供反饋給控制微處理器263以 映射該ONEC熱液滴產生器271的確切位置。 該LOC矽晶片260或可分離之PCB晶片720係以可 分離之方式固定在可沿著兩個正交軸轉換之平臺上。該 ONEC 2 72係以可分離方式支承在緊鄰平臺之卡盤 265 上,而排出器2 87係面對該平臺(見第66圖)。該LOC 矽晶片260或該可分開之PCB晶片720係藉由該控制處 理器263相對於ONEC 272移動。以該受控制處理器263 操控之排出器爲各LOC裝置雜交室180點樣。使用少於 1 〇〇皮升之體積可減少反應時間,並允許雜交室陣列的密 度增加。過去未曾採用小體積之探針液滴進行點樣係由於 準確且可靠地排出非常小之液滴很因難。滴下方向錯誤可 能無法點樣在正確之小室內且可能污染鄰室。 該ONEC 2 72可以被驅動產生一系列之液滴體積。爲 了準確配發,由ONEC 2 72產生之液滴將少於100皮升。 爲了改良配發之探針和試劑的準確度(就該LOC裝置上 之體積和位置而言),由ONEC產生之液滴可減少到不足 25皮升,較佳爲不超過6皮升。該0NEC 272將探針溶液 以0.1皮升至丨.6皮升體積之液滴及高度的定位精度配發 -102- 201219776 到1080個雜交室180中。 雜交室陣列110係配置成24排,每排具有45個相鄰 的小室(見第52圖)。該樣本流動路徑176延伸在每二 排之間從而使整個陣列具有大致上正方形之形狀以受LED 2 6近似均勻之照明。由於雜交室陣列1 1 〇侷限在小於 1 5 00微米xl 500微米之面積,ONEC 272之點樣正確率當 然高。經由控制處理器26 3來使用記錄相機270以測定該 ONEC熱液滴產生器271之確切位置,且該液滴產生器驅 動脈衝係經由ONEC結合墊276與XY平臺268同步。 該使用ONEC 272和相機270之LOC探針點樣機器 人2 73可輕易地以每秒超過1 〇〇個探針之速度將探針點樣 在表面(諸如雜交室陣列1 1 0 )上;在絕大多數情況下係 以每秒超過14 00個探針之速度進行。通常,該液滴產生 器之陣列係以每秒超過20000個探針之速度將探針點樣在 表面上,且在許多情況下,該液滴產生器之陣列以每秒 30萬個探針至每秒100萬個探針之速度將探針點樣在表 面上。 該以光蝕刻方式製造在矽基板上的液滴產生器陣列允 許 ONEC 272以遠超過現有之探針點樣器的密度將寡核 苷酸點樣在表面上。ONEC 272輕易地以每平方毫米超過 1個探針之密度將點樣。在絕大多數情況下,該點樣密度 係超過每平方毫米8個探針。在大多數情況下,該點樣密 度係超過每平方毫米60個探針,通常,該密度爲每平方 毫米500個探針至每平方毫米1500個探針》 -103- 201219776 該使用ONEC 272作爲生化存放裝置之LOC探針點 樣機器人2 73可以輕易地以每秒超過1 00個液滴之速度將 生化物質存放在表面上,在絕大多數情況下係以每秒超過 1400個液滴之速度進行。通常,該液滴產生器之陣列以 每秒超過20,000個液滴之速度將液滴點樣在表面上,在 許多情況下,該液滴產生器之陣列以每秒3 0萬個液滴至 每秒1 〇〇萬個液滴之速度將液滴點樣在表面上。 該使用ONEC 272作爲生化存放裝置之LOC探針點 樣機器人273可以輕易地以以每平方毫米超過1個液滴之 密度將生化物質存放在表面。在絕大多數情況下,該點樣 密度超過每平方毫米8個液滴。在大多數情況下,該點樣 密度超過每平方毫米60個液滴,通常,該密度爲每平方 毫米500個液滴至每平方毫米1500個液滴。 結論 此處所描述之裝置、系統和方法以低成本、高速及定 點照護促進分子診斷試驗。 上述之系統及其組件純粹用於說明且本技藝之技術熟 習人士將可輕易地察知不偏離本發明廣泛槪念之精神和範 圍的許多變化和修改。 【圖式簡單說明】 現在經由參照所附圖式示範說明本發明之較佳體系 -104- 201219776 其中: 第1圖顯示經配置以用於偵測螢光之測試模組及測試 模組閱讀器; 第2圖爲經配置以用於偵測螢光之測試模組中之電子 組件的總體示意圖; 第3圖爲該測試模組閱讀器中之電子組件的總體示意 圖, 第4圖爲LOC裝置之結構的示意圖像; 第5圖爲LOC裝置之透視圖; 第6圖爲LOC裝置之平面視圖,其中具有來自所有 彼此疊加之各層中的功能和結構; 第7圖爲具有獨立顯示之蓋罩架構的LOC裝置之平 面視圖; 第8圖爲具有以虛線顯示之內通道和貯存庫之蓋罩的 頂端透視圖; 第9圖爲具有以虛線顯示之內通道和貯存庫之蓋罩的 頂端透視分解圖; 第10圖爲蓋罩之底部透視圖,其顯示頂端通道之配 置; 第11圖爲LOC裝置之平面視圖,其獨立顯示該 CMOS + MST裝置之構造; 第12圖爲LOC裝置之樣本入口處的剖面示意圖: 第13圖爲第6圖中顯示之插圖AA的放大視圖; 第14圖爲第6圖中顯示之插圖AB的放大視圖; -105- 201219776 第15圖爲第13圖中顯示之插圖AE的放大視圖; 第16圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖, 第17圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖, 第18圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖: 第19圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第20圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第21圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第22圖爲第21圖中所示之裂解試劑庫的剖面示意 圖, 第23圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第24圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖: 第25圖爲說明插圖AI內之LOC裝置的薄層結構之 局部透視圖; 第26圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第27圖爲說明插圖AB內之LOC裝置的薄層結構之 -106- 201219776 局部透視圖; 第28圖爲說明插圖AB內之LOC裝置的薄層 局部透視圖; 第29圖爲說明插圖AB內之LOC裝置的薄曆 局部透視圖; 第30圖爲擴增混合物貯存庫及聚合酶庫之音g I ,ρΓ| · 圖, 第31圖獨立顯示沸騰起動閥之特徵; 第32圖爲通過第31圖中顯示之線3;3-33所取 騰起動閥的剖面示意圖; 第33圖爲第15圖中所示之插圖AF的放大視8 第34圖爲通過第33圖中顯示之線35-35所取 析區上游端的剖面示意圖; 第35圖爲第6圖中所示之插圖AC的放大視圖 第36圖爲顯示該擴增區之插圖AC內的進一 視圖; 第37圖爲顯示該擴增區之插圖AC內的進一 視圖; 第38圖爲顯示該擴增區之插圖AC內的進— 視圖; 第39圖爲第38圖中所顯示之插圖AK內的進 大視圖; 第40圖爲顯示該擴增室之插圖AC內的、 視圖; 結構之 結構之 面示意 得之沸 S ; 得之透 > 步放大 步放大 步放大 一步放 步放大 -107- 201219776 第41圖爲顯示該擴增區之插圖AC內的進一步放大 視圖, 第42圖爲顯示該擴增室之插圖AC內的進一步放大 視圖; 第43圖爲第42圖中所顯示之插圖AL內的進一步放 大視圖, 第44圖爲顯示該擴增區之插圖AC內的進一步放大 視圖,ONEC -100- 201219776 The figures 71, 72 and 73 are shown in detail (^ ugly 272. This is used for non-contact spotting on the surface (such as the array of hybrid chambers in any l〇C device) The above-mentioned oligonucleotide spotting device has an overall size of 23,296 micrometers and 1760 micrometers and is fabricated using a large number of effective photolithographic fabrication techniques. Each ONEC has 1 080 etched on a single-chip substrate 2 Depot 278 in reservoir side 277 (see Figure 73). Each ONEC has more than 1 000 depots 278 with full probe detection required for spotting on the LOC devices described herein. This allows for each LOC The spotting process is a single step, meaning that there is no need to use more than one ONEC to spot the LOC configured for each particular analysis. The ONEC repository 278 has a rectangular bottom with a depth of 200 microns (96 microns x 208 microns) Each of the ONEC reservoirs 278 delivers the probe suspension to a respective ejector 287. The liquid suspension of the probes is drawn into the common chamber 282 via a pair of chamber inlets 284 (see Figure 72). The entrance 284 of the chamber is two from the storage 278 to the total The chamber 282 has a diameter of 21 micrometers. One of the four thermal droplet generators 271 generates steam froth by heating the actuator 280 and discharges the probe droplets into the hybrid chamber 180 through the nozzle 283 in the ejector side 279. If there is a droplet generator failure, there are four thermal droplet generators 271 that can be backed up. The LOC probe spotting robot shows the LOC probe spotting robot 289 in Figures 66 and 92. For the sake of clarity. The components of the PCB wafer 720 other than the LOC device 30 are not shown. The following includes the following: -101 - 201219776 • ONEC 272 - an oligonucleotide ejector chip having 1 080 banks 278, each of which is full of probe solution (See Figures 71 and 72) • XY stage 268 that holds the LOC矽 wafer 260 (see Figure 66) or the detachable PCB wafer 720 (see Figure 92) that is partially sawn away. • Recording camera 270, It provides feedback to control microprocessor 263 to map the exact location of the ONEC thermal droplet generator 271. The LOC(R) wafer 260 or detachable PCB wafer 720 is detachably fixed along two orthogonal On the axis conversion platform. The ONEC 2 72 is available The separation mode is supported on a chuck 265 adjacent to the platform, and the ejector 2 87 is facing the platform (see Figure 66). The LOC 矽 wafer 260 or the detachable PCB wafer 720 is controlled by the control processor 263. Moving relative to the ONEC 272. The ejector that is controlled by the controlled processor 263 is spotted for each LOC device hybrid chamber 180. Using a volume of less than 1 〇〇 picoliter reduces reaction time and allows for increased density of the hybrid chamber array. The use of small-volume probe droplets for spotting in the past has been difficult due to the accurate and reliable discharge of very small droplets. Mistakes in the direction of the drop may not be spotted in the correct chamber and may contaminate the adjacent room. The ONEC 2 72 can be driven to produce a series of droplet volumes. For accurate dispensing, the droplets produced by ONEC 2 72 will be less than 100 picoliters. To improve the accuracy of the dispensed probes and reagents (in terms of volume and position on the LOC device), droplets produced by ONEC can be reduced to less than 25 picolitres, preferably no more than 6 picolitres. The 0NEC 272 dispenses the probe solution from -102 to 201219776 to 1080 hybridization chambers 180 with a drop of 0.1 picoliter to a volume of 皮.6 picolitres and a high degree of positioning accuracy. The hybrid chamber array 110 is configured in 24 rows with 45 adjacent cells per row (see Figure 52). The sample flow path 176 extends between every two rows such that the entire array has a generally square shape to be substantially uniformly illuminated by the LEDs 26. Since the hybrid chamber array 1 1 〇 is limited to an area of less than 1 500 μm x 500 μm, the correct rate of the ONEC 272 is naturally high. The recording camera 270 is used via control processor 263 to determine the exact position of the ONEC thermal droplet generator 271, and the droplet generator drive pulse is synchronized with the XY stage 268 via the ONEC bond pad 276. The LOC probe spotting robot 2 73 using the ONEC 272 and the camera 270 can easily spot the probe on a surface (such as the hybridization chamber array 110) at a rate of more than one probe per second; In most cases, it is performed at a speed of more than 140 probes per second. Typically, the array of droplet generators spot the probe on the surface at a rate of more than 20,000 probes per second, and in many cases, the array of droplet generators has 300,000 probes per second. The probe is spotted on the surface at a rate of 1 million probes per second. The droplet generator array fabricated on the germanium substrate by photolithography allows the ONEC 272 to spot the oligonucleotides on the surface at a much greater density than existing probe spotters. ONEC 272 easily spotted at a density of more than one probe per square millimeter. In most cases, the spot density is more than 8 probes per square millimeter. In most cases, the spot density is more than 60 probes per square millimeter, typically, the density is 500 probes per square millimeter to 1500 probes per square millimeter. -103- 201219776 This uses the ONEC 272 as The LOC probe spotting robot 2 73 of the biochemical storage device can easily store biochemical substances on the surface at a rate of more than 100 droplets per second, in most cases with more than 1400 droplets per second. Speed is going on. Typically, the array of droplet generators spot the droplets on the surface at a rate of more than 20,000 droplets per second, in many cases the array of droplet generators has 300,000 droplets per second to The droplets are spotted on the surface at a rate of 1 million droplets per second. The LOC probe spotting robot 273 using the ONEC 272 as a biochemical storage device can easily store biochemical substances on the surface at a density of more than one droplet per square millimeter. In most cases, the spot density exceeds 8 droplets per square millimeter. In most cases, the spot density exceeds 60 droplets per square millimeter, typically from 500 droplets per square millimeter to 1500 droplets per square millimeter. Conclusion The devices, systems, and methods described herein facilitate molecular diagnostic testing at low cost, high speed, and point-of-care. The above-described system and its components are purely for the purpose of illustration and many variations and modifications of the spirit and scope of the invention will be readily apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS A preferred system of the present invention will now be described by reference to the accompanying drawings -104-201219776 wherein: Figure 1 shows a test module and test module reader configured for detecting fluorescence Figure 2 is a general schematic diagram of the electronic components in the test module configured to detect fluorescence; Figure 3 is a general schematic diagram of the electronic components in the test module reader, and Figure 4 is the LOC device. A schematic image of the structure; Figure 5 is a perspective view of the LOC device; Figure 6 is a plan view of the LOC device with functions and structures from all layers superimposed on each other; Figure 7 is a cover with independent display A plan view of the LOC device of the architecture; Figure 8 is a top perspective view of the cover with the inner channel and reservoir shown in phantom; Figure 9 is a top perspective view of the cover with the inner channel and reservoir shown in phantom Figure 10 is a bottom perspective view of the cover showing the configuration of the top channel; Figure 11 is a plan view of the LOC device, showing the configuration of the CMOS + MST device independently; Figure 12 is the LOC device Schematic diagram of the section at the entrance of the sample: Figure 13 is an enlarged view of the illustration AA shown in Figure 6; Figure 14 is an enlarged view of the illustration AB shown in Figure 6; -105- 201219776 Figure 15 is the 13th The enlarged view of the illustration AE shown in the figure; Fig. 16 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AE, and Fig. 17 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AE, Figure 18 is a partial perspective view showing the thin layer structure of the LOC device in the inset AE: Figure 19 is a partial perspective view showing the thin layer structure of the LOC device in the inset AE; Fig. 20 is a view showing the LOC in the illustration AE a partial perspective view of the thin layer structure of the device; Fig. 21 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AE; Fig. 22 is a schematic cross-sectional view of the lysis reagent library shown in Fig. 21, the 23rd The figure is a partial perspective view illustrating the thin layer structure of the LOC device in the inset AB; Fig. 24 is a partial perspective view illustrating the thin layer structure of the LOC device in the inset AB: Fig. 25 is a view illustrating the LOC device in the illustration AI a partial perspective view of a thin layer structure; Figure 26 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AB; Fig. 27 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AB -106-201219776; A thin partial perspective view of the LOC device within; Figure 29 is a partial perspective view of the thin section of the LOC device in the illustration AB; Figure 30 is a snapshot of the amplification mixture reservoir and the polymerase library g I , ρΓ| Fig. 31 shows the characteristics of the boiling start valve independently; Fig. 32 is a schematic sectional view of the starting valve taken through the line 3; 3-33 shown in Fig. 31; Fig. 33 is the view shown in Fig. 15. Fig. 34 is an enlarged view of the upstream end of the analysis zone taken by the line 35-35 shown in Fig. 33; Fig. 35 is an enlarged view of the illustration AC shown in Fig. 6 and Fig. 36 is A further view in the illustration AC of the amplification zone is shown; Figure 37 is a further view showing the illustration AC of the amplification zone; Figure 38 is a view showing the inside of the illustration AC of the amplification zone; The figure shows the enlarged view in the illustration AK shown in Figure 38; Figure 40 shows the amplification The illustration in the AC, the view; the structure of the structure of the surface is indicated by the boiling S; the result of the penetration > step amplification step amplification step amplification step by step amplification -107-201219776 Figure 41 shows the illustration of the amplification zone AC Further enlarged view of the inside, Fig. 42 is a further enlarged view showing the illustration AC of the amplification chamber; Fig. 43 is a further enlarged view of the illustration AL shown in Fig. 42, and Fig. 44 is a view showing the expansion A further enlarged view of the illustration of the increase zone AC,

第45圖爲第44圖中所顯示之插圖AM內的進一步放 大視圖I 第46圖爲顯示該擴增區之插圖AC內的進一步放大 視圖; 第47圖爲第46圖中所顯示之插圖AN內的進一步放 大視圖, 第48圖爲顯示該擴增室之插圖AC內的進一步放大 視圖, 第49圖爲顯示該擴增室之插圖AC內的進一步放大 視圖, 第50圖爲顯示該擴增區之插圖AC內的進一步放大 視圖, 第51圖爲該擴增區之剖面示意圖; 第52圖爲該雜交區之放大的平面視圖; 第53圖爲分隔之兩個雜交室的進一步放大的平面視 圖, -108- 201219776 第54圖爲單一雜交室之剖面示意圖; 第55圖爲第6圖中所示之插圖AG中說明之加濕器 的放大視圖; 第56圖爲第52圖中所示之插圖AD的放大視圖; 第57圖爲插圖AD中之LOC裝置的透視分解圖; 第58圖爲閉合配置之FRET探針的圖解; 第59圖爲開放及雜交配置之FRET探針的圖解; 第60圖爲激發光之強度隨著時間推移的圖形; 第6 1圖爲該雜交室陣列之激發照明幾何結構的圖 解; 第62圖爲感測器電子科技LED照明幾何結構(Sensor Electronic Technology LED illumination geometry)的圖 解; 第63圖爲試劑配發機器人之平面不意圖; 第64圖爲具有內置液滴產生器之試劑微量試管 (microvial)的透視圖; 第65圖爲用於將所選定之探針裝載入探針排出芯片 中的寡核苷酸排出機器人之平面示意圖; 第66圖爲用於將探針裝載入部分深度被鋸開之矽晶 片上的LOC裝置之探針點樣機器人的平面示意圖; 第67圖爲第6圖中之插圖AH中所示之濕度感測器 的放大之平面視圖; 第6 8圖爲顯示一部分該光感測器之光電二極體陣列 之示意圖; -109- 201219776 第69圖爲單一光電二極體之電路圖: 第70圖爲光電二極體控制信號之時序圖; 第71圖顯示寡核苷酸排出芯片(ONEC); 第72圖顯示來自第71圖中之插圖 AO中所示之 ONEC的液滴產生器陣列; 第73圖爲沿著第72圖中顯示之線91-91所取得之液 滴產生器陣列之剖面示意圖; 第74圖爲第55圖中之插圖AP中所示之蒸發器的放 大視圖; 第75圖爲通過具有偵測光電二極體及觸發光電二極 體之雜交室的剖面示意圖: 第76圖爲連接子引動之PCR的圖形; 第77圖爲具有刺血針之測試模組的示意圖像: 第78圖爲LOC變體W架構的槪略圖象; 第79圖爲LOC變體架構的槪略圖象; 气 第80圖爲LOC變體XIV架構的圖式說明; 第81圖爲LOC變體XLI架構的圖式說明; 第82圖爲LOC變體XLIII架構的圖式說明; 第83圖爲LOC變體XLIV架構的圖式說明: 第84圖爲LOC變體XLW架構的圖式說明; 第8 5圖爲擴增反應初始循環期間與引物連接之線性 螢光探針的圖形: 第8 6圖爲擴增反應後繼循環期間與引物連接之線性 螢光探針的圖形: -110- 201219776 第87A至87F圖解說明與引物連接之螢光臂-和-環探 針的熱循環; 第88圖爲關於雜交室陣列及光電二極體之激潑LED 的圖式說明; 第89圖爲用於指引光到LOC裝置之雜交室陣列上的 激發LED和光學透鏡之圖式說明; 第90圖爲用於指導光到LOC裝置之雜交室陣列上的 激發LED、光學透鏡和光學稜鏡之圖式說明; 第91圖爲用於指導光到LOC裝置之雜交室陣列上的 激發LED、光學透鏡和鏡子排列之圖式說明; 第92圖爲探針點樣機器人的平面示意圖,其係用於 將探針裝載入在可分開之PCB上的LOC裝置中; 第93圖爲LOC變體X之架構的圖像; 第94圖爲LOC變體X之透視圖; 第95圖爲LOC變體X之平面視圖,其獨立顯示 CMOS + MST裝置之結構; 第96圖爲蓋罩底側之透視圖,其試劑庫以虛線顯 示; 第97圖爲僅獨立顯示蓋罩之樣貌的平面視圖; 第98圖爲顯示所有相互疊加之樣貌,並顯示插圖DA 至DK之位置的平面視圖; 第99圖爲第98圖中所示之插圖DA的放大視圖; 第100圖爲第98圖中所示之插圖DB的放大視圖;‘ 第101圖爲第98圖中所示之插圖DC的放大視圖; -111 - 201219776 第102圖爲第98圖中所示之插圖DD的放大視圖; 第103圖爲第98圖中所示之插圖DE的放大視圖; 第104圖爲第98圖中所示之插圖DF的放大視圖; 第105圖爲第98圖中所示之插圖DG的放大視圖; 第106圖爲第98圖中所示之插圖DH的放大視圖; 第107圖爲第98圖中所示之插圖DJ的放大視圖; 第108圖爲第98圖中所示之插圖DK的放大視圖; 第109圖爲第98圖中所示之插圖DL的放大視圖; 第110圖顯示用於光電二極體之分流電晶體的一種體 系; 第111圖顯示用於光電二極體之分流電晶體的一種體 系: 第112圖顯示用於光電二極體之分流電晶體的一種體 系; 第113圖爲一種差示成像儀的電路圖; 第1 1 4圖以圖式說明螢光探針陰性對照組之臂-和-環 配置; 第1 1 5圖以圖式說明第1 1 4圖之螢光探針陰性對照組 的開放配置: 第1 1 6圖以圖式說明螢光探針陽性對照組之臂-和-環 配置; 第1 1 7圖以圖式說明第1 1 6圖之螢光探針陽性對照組 的開放配置: 第118圖爲用於LOC裝置中之導電感測器的剖面示 -112- 201219776 意圖; 第1 19圖以圖式說明CMOS-控制之流率感測器; 第1 20圖顯示經配置以用於ECL偵測之測試模組及 測試模組閱讀器; 第1 2 1圖爲測試模組中之電子組件的總體示意圖,該 測試模組係經配置以用於ECL偵測; 第1 22圖顯示測試模組及替代之測試模組閱讀器; 第1 23圖顯示測試模組和測試模組閱讀器,以及存放 各種數據庫之主機系統; 第1 24圖爲試劑點樣機器人的示意側視圖; 第125圖爲具有多設備微流裝置之以電化學爲基礎的 測試模組的示意圖像。 【主要元件符號說明】 1 〇 :測試模組 1 1 :測試模組 1 2 :測試模組閱讀器 1 3 :外殻 14: Micro-USB 插頭 15 :電感器 16 : Micro-USB 埠 1 7 :觸摸屏 18 :顯示屏幕 19 :按鈕 -113- 201219776 20 :啓動按鈕 2 1 :蜂巢式無線電 2 2 :無菌密封膠帶 2 3 :無線網路連線 24 :大容器 25 :衛星導航系統 26 :發光二極管 27 :數據存儲器 28 :手機/智慧型手機 29 : LED驅動器 30 : LOC裝置 31 :功率調節器 3 2 :外部電源供應電容器 33 :時鐘Figure 45 is a further enlarged view of the illustration AM shown in Figure 44. Figure 46 is a further enlarged view showing the illustration AC of the amplification zone; Figure 47 is an illustration AN shown in Figure 46. Further enlarged view of the inside, Fig. 48 is a further enlarged view showing the illustration AC of the amplification chamber, Fig. 49 is a further enlarged view showing the illustration AC of the amplification chamber, and Fig. 50 is a view showing the amplification A further enlarged view of the area illustration AC, Figure 51 is a schematic cross-sectional view of the amplification zone; Figure 52 is an enlarged plan view of the hybridization zone; Figure 53 is a further enlarged plane of the two hybridization chambers separated View, -108- 201219776 Figure 54 is a schematic cross-sectional view of a single hybridization chamber; Figure 55 is an enlarged view of the humidifier illustrated in the illustration AG shown in Figure 6; Figure 56 is shown in Figure 52. An enlarged view of the illustration AD; Figure 57 is a perspective exploded view of the LOC device in the illustration AD; Figure 58 is an illustration of a FRET probe in a closed configuration; and Figure 59 is an illustration of a FRET probe in an open and hybrid configuration; Figure 60 shows the intensity of the excitation light. Time-lapse graph; Figure 61 is a diagram of the excitation illumination geometry of the hybrid chamber array; Figure 62 is a diagram of the Sensor Electronic Technology LED illumination geometry; Figure 63 is a diagram of the sensor electronic technology LED illumination geometry; The plane of the reagent dispensing robot is not intended; Fig. 64 is a perspective view of a reagent microvial with a built-in droplet generator; Fig. 65 is for loading the selected probe into the probe ejection chip Schematic diagram of the oligonucleotide ejection robot; Figure 66 is a schematic plan view of the probe spotting robot for loading the probe into the LOC device on the partially sawn saw wafer; Figure 67 is the first 6 is an enlarged plan view of the humidity sensor shown in the illustration AH in the figure; FIG. 6 is a schematic diagram showing a part of the photodiode array of the photo sensor; -109- 201219776 Fig. 69 is a single Circuit diagram of photodiode: Fig. 70 is a timing diagram of the photodiode control signal; Fig. 71 shows an oligonucleotide discharge chip (ONEC); Fig. 72 shows an illustration from the illustration AO in Fig. 71 The NEEC droplet generator array is shown; Fig. 73 is a schematic cross-sectional view of the droplet generator array taken along line 91-91 shown in Fig. 72; Fig. 74 is the illustration AP in Fig. 55. A magnified view of the evaporator shown in Figure 75; Figure 75 is a schematic cross-sectional view of a hybridization chamber with a detection photodiode and a trigger photodiode: Figure 76 is a diagram of the PCR of the linker priming; A schematic image of a test module with a lancet: Figure 78 is a sketch image of the LOC variant W architecture; Figure 79 is a sketch image of the LOC variant architecture; Figure 80 is a LOC variant XIV architecture Figure 81 is a schematic diagram of the LOC variant XLI architecture; Figure 82 is a schematic illustration of the LOC variant XLIII architecture; Figure 83 is a schematic representation of the LOC variant XLIV architecture: Figure 84 A graphical representation of the LOC variant XLW architecture; Figure 85 is a graphical representation of the linear fluorescent probe attached to the primer during the initial cycle of the amplification reaction: Figure 8 6 is the linearity of the primer connection during the subsequent cycle of the amplification reaction. Fluorescent probe graphic: -110- 201219776 Sections 87A to 87F illustrate the connection with primers Thermal cycling of the fluorescent arm-and-loop probe; Figure 88 is a schematic illustration of the excited LED of the hybrid chamber array and photodiode; Figure 89 is a hybridization chamber for directing light to the LOC device Schematic description of the excitation LED and optical lens on the array; Figure 90 is a schematic illustration of the excitation LED, optical lens and optical 用于 on the array of hybridization chambers for directing light to the LOC device; Figure 91 is for A schematic illustration of the excitation LED, optical lens, and mirror arrangement on the array of hybrid cells that direct light to the LOC device; Figure 92 is a schematic plan view of the probe spotting robot for loading the probe into the separable In the LOC device on the PCB; Fig. 93 is an image of the structure of the LOC variant X; Fig. 94 is a perspective view of the LOC variant X; Fig. 95 is a plan view of the LOC variant X, which independently displays the CMOS + structure of the MST device; Fig. 96 is a perspective view of the bottom side of the cover, the reagent library is shown by a broken line; Fig. 97 is a plan view showing only the appearance of the cover independently; Fig. 98 is a view showing all the superimposed ones Look and display a plan view of the position of the illustration DA to DK; Figure 99 Fig. 100 is an enlarged view of the illustration DB shown in Fig. 98; '101 is an enlarged view of the illustration DC shown in Fig. 98; -111 - 201219776 Figure 102 is an enlarged view of the illustration DD shown in Figure 98; Figure 103 is an enlarged view of the illustration DE shown in Figure 98; Figure 104 is an illustration of the illustration DF shown in Figure 98. Magnified view; Fig. 105 is an enlarged view of the illustration DG shown in Fig. 98; Fig. 106 is an enlarged view of the illustration DH shown in Fig. 98; Fig. 107 is an illustration DJ shown in Fig. 98 Magnified view; Fig. 108 is an enlarged view of the illustration DK shown in Fig. 98; Fig. 109 is an enlarged view of the illustration DL shown in Fig. 98; Fig. 110 shows a diversion for the photodiode A system of transistors; Figure 111 shows a system for a shunt transistor for a photodiode: Figure 112 shows a system for a shunt transistor for a photodiode; Figure 113 shows a differential imaging Circuit diagram of the instrument; Figure 1 1 4 illustrates the arm-and-loop of the fluorescent probe negative control group Figure 1 1 5 shows the open configuration of the fluorescent probe negative control group of Figure 1 1 4: Figure 1 16 shows the arm-and-loop of the fluorescent probe positive control group Configuration; Figure 1 1 7 illustrates the open configuration of the fluorescent probe positive control group of Figure 1 16: Figure 118 is a cross-sectional view of the conductive sensor used in the LOC device -112-201219776 Figure 1 is a diagram illustrating a CMOS-controlled flow rate sensor; Figure 20 shows a test module and test module reader configured for ECL detection; Figure 1 2 1 is a test A general schematic of the electronic components in the module, the test module is configured for ECL detection; Figure 1 22 shows the test module and an alternative test module reader; Figure 1 23 shows the test module and Test module reader and host system for storing various databases; Figure 1 24 is a schematic side view of the reagent spotting robot; Figure 125 is a schematic diagram of an electrochemical-based test module with a multi-device microfluidic device image. [Main component symbol description] 1 〇: Test module 1 1 : Test module 1 2 : Test module reader 1 3 : Case 14: Micro-USB plug 15 : Inductor 16: Micro-USB 埠 1 7 : Touch screen 18: Display screen 19: Button-113-201219776 20: Start button 2 1 : Honeycomb radio 2 2: Aseptic sealing tape 2 3: Wireless network connection 24: Large container 25: Satellite navigation system 26: Light-emitting diode 27 : Data Memory 28: Mobile Phone / Smartphone 29 : LED Driver 30 : LOC Device 31 : Power Conditioner 3 2 : External Power Supply Capacitor 33 : Clock

3 4 :控制器 3 5 :記錄器 36: USB裝置驅動器 3 7 :驅動器 38 : RAM 3 9 :激發驅動器 40 :快閃記憶體 4 1 :激發記錄器 42 :處理器 43 :程式存儲器 -114 201219776 44 :光感測器 4 5 :指示器 46 :蓋罩 47 : USB電源/指示器-限定模組 48 : CMOS + MST 芯片 49 :多孔元件 51 :蓋罩 52 :雜交和偵測區 5 4 :貯存庫 5 6 :貯存庫 57 :印刷電路板 5 8 :貯存庫 60 :貯存庫 62 :貯存庫 6 4 :密封墊 6 6 :屋頂層 6 8 :樣本入口 7 0 :透析區 72 :廢物通道 74 :標靶通道 76 :廢物貯存庫 7 8 :貯存庫層 80 :蓋罩通道層 8 2 :密封層 -115- 201219776 84 :矽基板 86 : CMOS 電路 87 : MST 層 8 8 :鈍化層 90 : MST通道 92 :下降道 94 :蓋罩通道 96 :攝入孔 9 7:壁區 98 :彎月面之錨 1 00 : MST通道層 101 :手提電腦/筆記型電腦 1 0 2 :毛細作用啓動功能 103 :專用閱讀器 105 :桌上型電腦 106 :沸點啓動閥 107 :電子書閱讀器 108 :沸點啓動閥 109 :平板電腦 1 1 〇 :雜交室陣列 1 1 1 :流行病學數據主機系統 1 1 2 :擴增區 1 1 3 :遺傳學數據主機系統 1 1 4 :培育區 -116- 201219776 1 1 5 :電子健康記錄(EHR )主機系統 1 1 6 :抗凝劑 1 1 8 :表面張力閥 1 1 9 :樣本流 120 :彎月面 121 :電子醫療記錄(EMR)主機系統 1 2 2 :通風孔 123 :個人健康記錄(PHR )主機系統 1 2 5 :網絡 126 :沸騰啓動閥 128 :表面張力閥 1 3 0 :化學裂解區 1 3 1 :混合區 1 3 2 :表面張力閥 1 3 3 :培育室入口通道 134 :下降道 1 36 :光學窗口 1 4 6 :閥門入口 1 4 8 :閥門出口 150 :下降道 152 :環形加熱器 1 5 3 :加熱器接頭 1 5 4 :加熱器 156 :加熱器接頭 -117- 201219776 158 :微通道 160:擴增區出口通道3 4 : Controller 3 5 : Recorder 36 : USB device driver 3 7 : Driver 38 : RAM 3 9 : Excitation driver 40 : Flash memory 4 1 : Excitation recorder 42 : Processor 43 : Program memory - 114 201219776 44: Light sensor 4 5 : Indicator 46 : Cover 47 : USB power / indicator - Qualification module 48 : CMOS + MST chip 49 : Porous element 51 : Cover 52 : Hybridization and detection zone 5 4 : Repository 5 6 : Repository 57 : Printed circuit board 5 8 : Depot 60 : Depot 62 : Depot 6 4 : Seal 6 6 : Roof layer 6 8 : Sample inlet 7 0 : Dialysis zone 72 : Waste channel 74 : Target channel 76 : Waste repository 7 8 : Depot layer 80 : Cover channel layer 8 2 : Sealing layer - 115 - 201219776 84 : 矽 Substrate 86 : CMOS circuit 87 : MST layer 8 8 : Passivation layer 90 : MST Channel 92: Down channel 94: Cover channel 96: Intake hole 9 7: Wall area 98: Meniscus anchor 1 00: MST channel layer 101: Laptop/notebook 1 0 2: Capillary action start function 103 : Dedicated Reader 105 : Desktop Computer 106 : Boiling Point Start Valve 107 : E-Book Reader 108 : Boiling Point Start Valve 109 : Tablet PC 1 1 〇: Miscellaneous Intersection array 1 1 1 : Epidemiological data host system 1 1 2 : Amplification area 1 1 3 : Genetic data host system 1 1 4 : Cultivation area -116- 201219776 1 1 5 : Electronic health record (EHR) host System 1 1 6 : Anticoagulant 1 1 8 : Surface tension valve 1 1 9 : Sample stream 120 : Meniscus 121 : Electronic medical record (EMR) host system 1 2 2 : Ventilation hole 123 : Personal health record (PHR) Host system 1 2 5 : Network 126 : Boiling start valve 128 : Surface tension valve 1 3 0 : Chemical cracking zone 1 3 1 : Mixing zone 1 3 2 : Surface tension valve 1 3 3 : Incubator inlet channel 134: Down channel 1 36: Optical window 1 4 6 : Valve inlet 1 4 8 : Valve outlet 150 : Down channel 152 : Ring heater 1 5 3 : Heater connector 1 5 4 : Heater 156 : Heater connector -117- 201219776 158 : Micro Channel 160: Amplification zone exit channel

164:小孑L 166 :毛細作用啓動特性裝置 1 6 8 :攝入孔 170 :溫度感測器 174 :液體感測器 175 :擴散屏障 1 7 6 :流動路徑 178 :液體感測器 1 80 :雜交室 1 8 2 :加熱器 1 84 :光電二極體 1 85 :感光區 186: FRET 探針 187:觸發光電二極體 1 8 8 :水庫 190 :蒸發器 1 9 1 :環形加熱器 192 :供水通道 193 :攝入口 194 :下降道 195 :頂端金屬層 1 9 6 :加濕器 -118- 201219776 1 9 8 :攝入孔 202 :毛細作用啓動特性裝置 204 :透析MST通道 210 :微通道 2 1 2 : MST 通道 218 : TiAl 電極 220 : TiAl 電極 222 :縫隙 232 :濕度感測器 2 3 4 :加熱器 23 6 : FRET 探針 23 7 : ECL 探針 2 3 8 :標靶核酸序列 240 :環 242 :雙股臂 244 :激發光 246 :螢光團 248 :淬滅劑 2 5 0 :螢光發射 254 :透鏡 2 56 :試劑配發機器人 2 5 8 :微量試管 259 :容器 2 6 0 : L Ο C矽晶片 -119 201219776 261 :壓電促動器 262 :液滴配發器 263 :控制微處理器 2 6 4 :電子接頭 265 :卡盤 266 :品質保證芯片 268 : XY平臺 270 :記錄相機 2 7 1 :熱液滴產生器陣列 272 :寡核苷酸排出器芯片 273 : LOC探針點樣機器人 274 : ONEC再塡充機器人 275 :單片矽基板 276 :結合墊 2 7 7 :貯存庫側 2 7 8 :貯存庫 279 :排出器側 2 8 0 :促動器 281 :快閃記憶體 2 82 :室 283 :噴嘴 2 84 :室之入口 28 5 : ONEC CMOS 結構 286:機械/電氣架 -120 201219776 2 87 :排出器 2 8 8 :輸入和製備樣本 2 89 : LOC點樣機器人 290 :萃取核酸 2 9 1 :培育核酸 292 :擴增核酸 2 94 :偵測和分析 296 :第一·電極 298 :第二電極 3 00 :程控之延遲 301 : LOC 裝置 3 7 6 :傳導柱 3 7 8 :陽性對照探針 3 80 :陰性對照探針 3 82 :校準室 3 84 : Mshunt 閘門 3 8 6 : t X閘門 3 8 8 :閘門 3 9 0 :採血針 3 9 2 :採血針釋出按鈕 3 93 :閱讀閘門 3 94 :電晶體 Mshunt 3 96 :電晶體Mtx 3 98 :電晶體 Mreset 201219776 4 0 0 :電晶體M s f 402 :電晶體Mread 4 04 :電晶體Mbias 4 0 6 : ‘ N S ’ 節點 408 :膜密封墊 410 :膜防護物164: small 孑 L 166 : capillary action activation characteristic device 1 6 8 : intake hole 170 : temperature sensor 174 : liquid sensor 175 : diffusion barrier 1 7 6 : flow path 178 : liquid sensor 1 80 : Hybridization chamber 1 8 2 : Heater 1 84 : Photodiode 1 85 : Photosensitive region 186: FRET Probe 187: Trigger photodiode 1 8 8 : Reservoir 190 : Evaporator 1 9 1 : Ring heater 192 : Water supply channel 193: Ingestion port 194: Down channel 195: Top metal layer 1 9 6 : Humidifier -118 - 201219776 1 9 8 : Intake hole 202: Capillary action Starting characteristic device 204: Dialysis MST channel 210: Microchannel 2 1 2 : MST channel 218 : TiAl electrode 220 : TiAl electrode 222 : slit 232 : humidity sensor 2 3 4 : heater 23 6 : FRET probe 23 7 : ECL probe 2 3 8 : target nucleic acid sequence 240 : Ring 242: Double-stranded arm 244: Excitation light 246: Fluorescent group 248: Quencher 2 5 0: Fluorescence emission 254: Lens 2 56: Reagent dispensing robot 2 5 8 : Microtube 259: Container 2 6 0 : L Ο C矽 wafer - 119 201219776 261 : Piezoelectric actuator 262 : Drop dispenser 263 : Control microprocessor 2 6 4 : Electronic connector 265 : Chuck 266 : Quality Assurance Chip 268 : XY Stage 270 : Recording Camera 2 7 1 : Thermal Droplet Generator Array 272 : Oligonucleotide Discharger Chip 273 : LOC Probe Staking Robot 274 : ONEC Refilling Robot 275 : Single Chip矽 Substrate 276: Bonding pad 2 7 7 : Depot side 2 7 8 : Depot 279 : Ejector side 2 8 0 : Actuator 281 : Flash memory 2 82 : Chamber 283 : Nozzle 2 84 : Entrance of the chamber 28 5 : ONEC CMOS Structure 286: Mechanical / Electrical Frame - 120 201219776 2 87 : Ejector 2 8 8 : Input and Preparation of Sample 2 89 : LOC Staking Robot 290 : Extraction of Nucleic Acid 2 9 1 : Nucleation of Nucleic Acid 292 : Amplification of Nucleic Acid 2 94 : Detection and analysis 296 : first · electrode 298 : second electrode 3 00 : programmed delay 301 : LOC device 3 7 6 : conducting column 3 7 8 : positive control probe 3 80 : negative control probe 3 82 : Calibration room 3 84 : Mshunt gate 3 8 6 : t X gate 3 8 8 : Gate 3 9 0 : Blood collection needle 3 9 2 : Blood collection needle release button 3 93 : Reading gate 3 94 : Transistor Mshunt 3 96 : Transistor Mtx 3 98: transistor Mreset 201219776 4 0 0 : transistor M sf 402 : transistor Mread 4 04 : transistor Mbias 4 0 6 : 'NS ' section Point 408: Membrane Seal 410: Membrane Shield

673 : LOC 變體 XLIII 674 : LOC 變體 XLIV 677 : LOC 變體 XLW 6 8 2 :透析區 6 8 6 :透析區 692 :與引子連接之線性探針 694 :擴增阻斷劑 6 9 6 :探針區673 : LOC variant XLIII 674 : LOC variant XLIV 677 : LOC variant XLW 6 8 2 : dialysis zone 6 8 6 : dialysis zone 692 : linear probe 694 linked to the primer: amplification blocker 6 9 6 : Probe area

6 9 8 :序歹!J 700 :寡核苷酸引子 704 :臂-和-環探針 708 :臂股 710 :臂股 712:第一光學稜鏡 714:第二光學稜鏡 7 2 0 : P C B 晶片 72 8 : LOC 變體 X 740 :流率感測器 -122- 201219776 766 :廢物貯存庫 77 8 : Mshunt電晶體394之可能配置 780 : Mshunt電晶體394之可能配置 782 : Mshunt電晶體394之可能配置 7 83 :微流裝置 784 :透析裝置 7 8 5 : LOC 裝置 78 8 :差分成像器電路 7 9 0 :像素 792 : “假”像素 794 : read_row 7 9 5: read_ro w_d 796 :螢光團 797 : M4電晶體 798 :淬滅劑 8 0 0 :通道 一 8 Ο 1 : M D 4電晶體 8 02 :第一端子 8 0 3 :像素電容器 804 :第一電極 8 05 :假像素電容器 8 06 :第二電極 8 〇 7 :開關 8 08 :第二端子 -123- 201219776 8 0 9 :開關 8 1 0 :電導率感測器 8 1 1 : “ read_col” 開關 8 12 :液體 813:假 “read_col” 開關 8 1 4 :加熱器元件 8 1 5 :電容器擴增器 8 1 7 :差分信號 860 :電極 8 70 :電極 -1246 9 8 : Preface! J 700: Oligonucleotide primer 704: Arm-and-loop probe 708: Arm strand 710: Arm strand 712: First optical 稜鏡 714: Second optical 稜鏡 7 2 0 : PCB wafer 72 8 : LOC change Body X 740: Flow Rate Sensor - 122- 201219776 766 : Waste Storage 77 8 : Possible Configuration of Mshunt Transistor 394 780 : Possible Configuration of Mshunt Transistor 394 782 : Possible Configuration of Mshunt Transistor 394 7 83 : Micro Flow device 784: dialysis device 7 8 5 : LOC device 78 8 : differential imager circuit 7 9 0 : pixel 792 : "false" pixel 794 : read_row 7 9 5 : read_ro w_d 796 : fluorophore 797 : M4 transistor 798 : quencher 8000: channel one 8 Ο 1 : MD 4 transistor 8 02 : first terminal 8 0 3 : pixel capacitor 804 : first electrode 8 05 : dummy pixel capacitor 8 06 : second electrode 8 〇 7 : Switch 8 08 : Second terminal -123- 201219776 8 0 9 : Switch 8 1 0 : Conductivity sensor 8 1 1 : "read_col" Switch 8 12 : Liquid 813: False "read_col" Switch 8 1 4 : Heating Element 8 1 5 : capacitor amplifier 8 1 7 : differential signal 860 : electrode 8 70 : electrode -124

Claims (1)

201219776 七、申請專利範圍 1. 一種用於處理流體之微流裝置,該微流裝置包 含: 用於接收該流體之入口; 用於處理該流體之功能區; 從入口延伸入至少一些該功能區的流動路徑; 用於操作控制該功能區之CMO S電路;及 導電感測器,其具有沿著該流動路徑分隔之第~端子 和第二端子,以及位於該第一端子與第二端子之間且沿著 該流動路徑分隔之第一電極和第二電極;其中 該CMOS電路係經配置以在第一端子與第二端子之間 產生電流,並測量通過第一電極及第二電極之電壓,從而 使在該流動路徑中之流體的導電性係來自該電流及測得的 電壓。 2. 如申請專利範圍第1項之微流裝置,其進一步包 含用於感測在該流動路徑中之流體溫度的溫度感測器,及 具有支撐在該流動路徑內部表面上之加熱元件的流率感測 器,其中該電路係經配置以用於接收溫度感測器輸出,提 供通過該加熱器元件之預定電流並測量該導電元件之電 阻,從而自該電流、溫度感測器輸出及電阻而導出流動速 度,並利用該流動速度及與加熱器元件處之流動方向橫向 的流動路徑截面而導出流率。 3. 如申請專利範圍第2項之微流裝置,其中該加熱 器元件具有彎曲的結構。 -125- 201219776 4. 如申請專利範圍第3項之微流裝置,其中該 路徑係由微通道限定,該微通道之與流動橫向的截面 小於1 〇萬平方微米。 5. 如申請專利範圍第4項之微流裝置,其中該 區之一爲聚合酶鏈反應(PCR)區,且該流體爲含有 序列之生物樣本,該PCR區係配置成用於進行樣本 循環以將該核酸序列擴增,該微通道限定通過PCR 流動路徑。 6. 如申請專利範圍第5項之微流裝置,其中該 區進一步包含至少一種用於加熱該微通道內之核酸序 延長加熱器元件。 7. 如申請專利範圍第6項之微流裝置,其進一 含支撐基板及納入該功能區之微系統技術(MST )層 中該CMOS電路具有用於儲存數據及操作資訊之數位 體,以在處理和分析樣本期間操作控制該功能區。 8. 如申請專利範圍第7項之微流裝置,其進一 含多個含有用於處理該樣本之試劑的試劑庫,其中該 在數位記億體中之數據係與試劑特性有關。 9. 如申請專利範圍第8項之微流裝置,其中該 在數位記憶體中之數據爲該微流裝置之獨特識別符。 10. 如申請專利範圍第3項之微流裝置,其中該 在數位記憶體中之操作資訊係與熱循環之時點及持續 有關。 1 1 .如申請專利範圍第1 0項之微流裝置,其中 流動 面積 功能 核酸 之熱 區之 PCR 列的 步包 ,其 記億 步包 儲存 儲存 儲存 時間 該功 -126- 201219776 能區包括在PCR區上游之培育區,且該試劑庫之一爲限 制酶庫’該培育區具有用於在核酸序列之限制酶切期間將 樣本與限制酶之混合物的溫度保持在培育溫度之加熱器。 12.如申請專利範圍第11項之微流裝置,其進一步 包含用於與來自PCR區之擴增子(ampl icon)中的標靶核酸 序列雜交的探針陣列。 I3·如申請專利範圍第12項之微流裝置,其中該儲 存在數位記憶體中之數據包括鑑定在探針陣列內各位點之 探針的探針特性數據。 1 4.如申請專利範圍第1 3項之微流裝置,其中各探 針係經配置以與包含在擴增子中之互補標靶核酸序列形成 探針-標靶雜交物,各探針-標靶雜交物係經配置以在回應 輸入時發射光子,且該CMOS電路納入用於感測由探針-標靶雜交物發射之光子的光感測器。 1 5.如申請專利範圍第4項之微流裝置,其中該儲存 在數位記憶體中之數據包括自光感測器輸出產生之雜交數 據。 1 6.如申請專利範圍第丨5項之微流裝置,其進一步 包含供容納該探針之雜交室陣列,如此在各雜交室內之探 針被配置成與該標靶核酸序列中之一者雜交。 1 7.如申請專利範圍第1 6項之微流裝置,其中該光 感測器爲與該雜交室配準之光電二極體陣列。 1 8 ·如申請專利範圍第1 6項之微流裝置,其中該 CMOS電路具有結合墊(b〇nd pads),且經配置以將雜交數 -127- 201219776 據傳輸至外部裝置。 1 9 .如申請專利範圍第1 8項之微流裝置,其中該樣 本係取自患者,且該CMOS電路係經配置以經由該結合墊 下載患者數據,並將患者之數據儲存在數位記憶體中。 20.如申請專利範圍第1 8項之微流裝置,其中該 PCR區具有主動閥門,其用於在熱循環期間將液體保留在 PCR區,並允許液體流向雜交室以回應來自CMOS電路之 激活信號。 -128-201219776 VII. Patent application scope 1. A microfluidic device for treating a fluid, the microfluidic device comprising: an inlet for receiving the fluid; a functional area for processing the fluid; extending from the inlet into at least some of the functional area a flow path for operating a CMO S circuit that controls the functional area; and a conductive sensor having a first terminal and a second terminal separated along the flow path, and located at the first terminal and the second terminal And a first electrode and a second electrode separated along the flow path; wherein the CMOS circuit is configured to generate a current between the first terminal and the second terminal, and measure a voltage passing through the first electrode and the second electrode Thus, the conductivity of the fluid in the flow path is derived from the current and the measured voltage. 2. The microfluidic device of claim 1, further comprising a temperature sensor for sensing a temperature of the fluid in the flow path, and a flow having a heating element supported on an inner surface of the flow path a rate sensor, wherein the circuit is configured to receive a temperature sensor output, provide a predetermined current through the heater element, and measure a resistance of the conductive element from the current, temperature sensor output, and resistance The flow rate is derived and the flow rate is derived using the flow rate and the cross-section of the flow path transverse to the direction of flow at the heater element. 3. The microfluidic device of claim 2, wherein the heater element has a curved configuration. -125-201219776 4. The microfluidic device of claim 3, wherein the path is defined by a microchannel having a cross-section transverse to the flow direction of less than 1 million square microns. 5. The microfluidic device of claim 4, wherein one of the regions is a polymerase chain reaction (PCR) region, and the fluid is a biological sample containing a sequence configured for sample circulation To amplify the nucleic acid sequence, the microchannel defines a flow path through the PCR. 6. The microfluidic device of claim 5, wherein the region further comprises at least one nucleic acid sequence extension heater element for heating the microchannel. 7. The microfluidic device of claim 6 of the patent, further comprising a support substrate and a microsystem technology (MST) layer incorporated in the functional area, the CMOS circuit having a digital body for storing data and operating information to The functional area is controlled during processing and analysis of the sample. 8. The microfluidic device of claim 7, further comprising a plurality of reagent libraries containing reagents for processing the sample, wherein the data in the digits is related to the characteristics of the reagents. 9. The microfluidic device of claim 8, wherein the data in the digital memory is a unique identifier of the microfluidic device. 10. The microfluidic device of claim 3, wherein the operational information in the digital memory is related to the time and duration of the thermal cycle. 1 1. The microfluidic device of claim 10, wherein the PCR column of the hot zone of the functional area of the functional nucleic acid is stored in the step of storing the storage and storage time of the step-by-step package -126-201219776 A culture zone upstream of the PCR zone, and one of the reagent libraries is a restriction enzyme library. The incubation zone has a heater for maintaining the temperature of the mixture of the sample and the restriction enzyme at the incubation temperature during restriction enzyme digestion of the nucleic acid sequence. 12. The microfluidic device of claim 11, further comprising a probe array for hybridizing to a target nucleic acid sequence in an amplicon from the PCR region. I3. The microfluidic device of claim 12, wherein the data stored in the digital memory comprises probe characteristic data identifying probes at respective points in the probe array. 1 4. The microfluidic device of claim 13 wherein each probe is configured to form a probe-target hybrid with each of the complementary target nucleic acid sequences contained in the amplicon, each probe - The target hybrid is configured to emit photons in response to an input, and the CMOS circuit incorporates a photosensor for sensing photons emitted by the probe-target hybrid. 1 5. The microfluidic device of claim 4, wherein the data stored in the digital memory comprises hybridization data generated from a photosensor output. The microfluidic device of claim 5, further comprising an array of hybridization chambers for housing the probe, such that the probes within each hybridization chamber are configured to be one of the target nucleic acid sequences Hybrid. 1 7. The microfluidic device of claim 16, wherein the photosensor is a photodiode array that is registered with the hybridization chamber. A microfluidic device as claimed in claim 16 wherein the CMOS circuit has a bond pad and is configured to transmit the hybrid number -127 - 201219776 data to an external device. The microfluidic device of claim 18, wherein the sample is taken from a patient, and the CMOS circuit is configured to download patient data via the bond pad and store patient data in digital memory in. 20. The microfluidic device of claim 18, wherein the PCR zone has an active valve for retaining liquid in the PCR zone during thermal cycling and allowing liquid to flow to the hybridization chamber in response to activation from the CMOS circuit signal. -128-
TW100119253A 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor TW201219776A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201219776A true TW201219776A (en) 2012-05-16

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section

Family Applications Before (15)

Application Number Title Priority Date Filing Date
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction

Family Applications After (6)

Application Number Title Priority Date Filing Date
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section

Country Status (1)

Country Link
TW (22) TW201211540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870652A (en) * 2012-10-05 2015-08-26 加州理工学院 Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
TWI583972B (en) * 2015-02-12 2017-05-21 Seiko Epson Corp Electronic parts handling equipment and electronic parts inspection device
CN111316072A (en) * 2017-11-17 2020-06-19 美国西门子医学诊断股份有限公司 Sensor assembly and method of using the same
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
CA2991918A1 (en) * 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
KR102546378B1 (en) * 2015-04-22 2023-06-21 버클리 라잇츠, 인크. Culturing station for microfluidic device
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
CN115161157A (en) * 2018-01-11 2022-10-11 纳诺卡夫公司 Microfluidic cellular devices and methods of use thereof
JP7172988B2 (en) 2018-02-01 2022-11-16 東レ株式会社 Apparatus for evaluating particles in liquid and method for operating the same
EP3560593A1 (en) * 2018-04-25 2019-10-30 OPTOLANE Technologies Inc. Catridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
US20240002928A1 (en) * 2020-04-21 2024-01-04 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule-sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104870652A (en) * 2012-10-05 2015-08-26 加州理工学院 Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
TWI583972B (en) * 2015-02-12 2017-05-21 Seiko Epson Corp Electronic parts handling equipment and electronic parts inspection device
CN111316072A (en) * 2017-11-17 2020-06-19 美国西门子医学诊断股份有限公司 Sensor assembly and method of using the same
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system

Also Published As

Publication number Publication date
TW201211540A (en) 2012-03-16
TW201209406A (en) 2012-03-01
TW201211243A (en) 2012-03-16
TW201209405A (en) 2012-03-01
TW201211534A (en) 2012-03-16
TW201211539A (en) 2012-03-16
TW201209407A (en) 2012-03-01
TW201211532A (en) 2012-03-16
TW201219770A (en) 2012-05-16
TW201219115A (en) 2012-05-16
TW201211533A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201209404A (en) 2012-03-01
TW201211242A (en) 2012-03-16
TW201209403A (en) 2012-03-01
TW201211538A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201209158A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201211241A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
TW201219776A (en) Microfluidic device with conductivity sensor
US8354074B2 (en) Test module with low-volume reagent reservoir