TW201209159A - Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section - Google Patents

Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section Download PDF

Info

Publication number
TW201209159A
TW201209159A TW100119251A TW100119251A TW201209159A TW 201209159 A TW201209159 A TW 201209159A TW 100119251 A TW100119251 A TW 100119251A TW 100119251 A TW100119251 A TW 100119251A TW 201209159 A TW201209159 A TW 201209159A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
amplification
sample
loc device
loc
Prior art date
Application number
TW100119251A
Other languages
Chinese (zh)
Inventor
Mehdi Azimi
Geoffrey Richard Facer
Kia Silverbrook
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201209159(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201209159A publication Critical patent/TW201209159A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A lab-on-a-chip (LOC) device for genetic analysis of a sample containing target nucleic acid sequences, the LOC device having a sample inlet for receiving the sample, a plurality of reagent reservoirs containing dNTP's, primers, polymerase and buffer solution for addition to the sample, a first nucleic acid amplification section for thermal control of the sample to amplify the target nucleic acid sequences, and, a second nucleic acid amplification section for thermal control of amplicon from the first nucleic acid amplification section to further amplify the target nucleic acid sequences.

Description

201209159 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST )之診斷裝置。特 別是,本發明關於用於分子診斷之微流和生化處理及分析 【先前技術】 分子診斷已用於可於病徵顯現之前,提供早期疾病偵 測預示之領域。分子診斷試驗係用於偵測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康健康照護的發生、增進病患預後(patient outcome )、改進疾病管理及個體化患者照護。分子診斷 的許多技術係基於自生物樣本(諸如血液或唾液)萃取及 擴增之特定核酸(去氧核糖核酸(DNA )以及核酸核酸( RNA )兩者)的偵測及辨識。核酸鹼基的互補特性使得經 合成DNA (寡核苷酸)短序列結合(雜交)至用於核酸 試驗之特定核酸序列。若發生雜交,則互補序列存在於樣 本中。此使得例如預測個人未來會得到的疾病、判定感染 性病原體的種類及致病性,或判定個人對藥物的反應成爲 可能。 -5- 201209159 以核酸爲基之分子診斷試驗 A以核酸爲基之試驗具有四個獨立步驟: 1 .樣本製備 2. 核酸萃取 3. 核酸擴增(任意的) 4. 偵測 許多樣本類型,諸如血液、尿液、痰和組織樣本’係 用於基因分析。診斷試驗判定所需的樣本類型’因並非所 有樣本代表疾病進程。這些樣本具有各種組分,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的偵測。因此,於開始時經常需要純化 及/或濃縮步驟。 血液爲較常請求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促 進凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃 縮之前令試樣與諸如乙二胺四乙酸(EDTA )之試劑混合 。通常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅 血球佔細胞物質之約99%,但其不帶有DNA因彼不具細 胞核。此外,紅血球含有諸如血紅素之可能干擾下游核酸 擴增程序(描述於下)的成分。可藉由差示( d i f f e r e n t i a 11 y )溶解於溶解溶液中之紅血球來移除紅血球 ,而留下剩餘的完整細胞物質,其可接著使用離心而自樣 本分離。此提供自其萃取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程取決於樣本及待實施之診斷 -6 ** 201209159 ' 分析。例如,用於萃取病毒RNA之規程與用於萃取基因 組DNA之規程相當不同。然而,自標靶細胞萃取核酸通 常包含細胞溶解步驟及接續的核酸純化。細胞溶解步驟使 細胞及細胞核膜破裂,而釋放出遺傳物質。此經常使用溶 胞清潔劑來完成,溶胞清潔劑係諸如十二烷基硫酸鈉,其 亦使存在於細胞中之蛋白質大量變性。 接著以醇(通常爲冰乙醇或異丙醇)沉澱步驟純化核 酸,或是經由固相純化步驟,於清洗之前在高濃度的離液 ® 鹽(chaotropic salt )存在下,通常於分餾塔中的氧化矽 基質、樹脂或順磁性珠上,接著以低離子強度緩衝劑進行 洗提。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之蛋 白酶,以進一步純化樣本。 其他溶胞方法包括經由超聲振動之機械式溶胞以及將 樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質中 ,尤其是若標靶來自致病性來源。核酸擴增提供選擇性擴 ¥ 增(即,複製)特定標靶(就可偵測程度而言爲低濃度者 )的能力。 最常用之核酸擴增技術爲聚合酶鏈反應(PCR )。 PCR係業界已知悉,以及於E. van Pelt-Verkuil等人之 Principles and Technical Aspects of PCR Amplification, Springer, 200 8中提供此類反應之綜合理解性描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標 靶DNA序列。若欲(藉由PCR)擴增RNA,則首先必須 201209159 使用名爲反轉錄酶之酶將之轉錄爲cDNA (互補DNA) 隨後,藉由PCR擴增得到的CDNA。 的 靶 合 的 ( 間 包 相 中 至 至 至 方 引 體 PCR爲指數型方法,只要維持反應的條件爲可接受 則其可繼續進行。反應之成分爲:201209159 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to microfluidic and biochemical treatment and analysis for molecular diagnostics. [Prior Art] Molecular diagnostics have been used in the field of providing early detection of disease prior to the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes related to health-prone genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the incidence of ineffective health care Improve patient outcomes, improve disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both DNA and nucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobase allows for the binding (hybridization) of the synthetic DNA (oligonucleotide) short sequence to the particular nucleic acid sequence used for the nucleic acid assay. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will get in the future, determine the type and pathogenicity of the infectious pathogen, or determine the individual's response to the drug. -5- 201209159 Nucleic Acid-Based Molecular Diagnostic Test A A nucleic acid-based assay has four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (arbitrary) 4. Detection of many sample types, For example, blood, urine, sputum and tissue samples are used for genetic analysis. Diagnostic tests determine the type of sample required 'because not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the outset. Blood is one of the more frequently requested sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of cellular material, but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by dip (d i f f e r e n t i a 11 y ) red blood cells dissolved in the dissolution solution, leaving the remaining intact cellular material, which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact procedure used to extract nucleic acids depends on the sample and the diagnosis to be performed -6 ** 201209159 'Analysis. For example, the protocol used to extract viral RNA is quite different from the protocol used to extract genomic DNA. However, extracting nucleic acids from a target cell typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often accomplished using a lyophilized detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells. The nucleic acid is then purified by precipitation with an alcohol (usually ice ethanol or isopropanol) or via a solid phase purification step prior to washing in the presence of a high concentration of chaotropic salt, usually in a fractionation column. The ruthenium oxide matrix, resin or paramagnetic beads are then eluted with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protein-cleaving proteinase to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. Target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively increase (i.e., replicate) a particular target (in the case of a low concentration of detectable levels). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR is known in the art and a comprehensive comprehensible description of such reactions is provided in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2000. PCR is a useful technique for amplifying a target DNA sequence relative to a complex DNA background. If RNA is to be amplified (by PCR), it must first be transcribed into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Then, the obtained cDNA is amplified by PCR. The target (in the middle of the phase to the top of the primer PCR) is an exponential method, which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1. 引子對-具有約10-30個與毗鄰(flanking)標 序列區互補之核苷酸的短單股DNA 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP )-提供整合至新 成之DNA股之核苷酸 4. 緩衝劑-提供DN A合成之最佳化學環境 PCR通常包含將這些反應物置於含有經萃取之核酸 小管(〜10-5 0微升)。將管放置於聚合酶鏈反應器 thermal cycler)中;一種令反應經受一連串不等量時 之不同溫度的儀器。各熱循環的標準規程(protocol ) 括變性相、黏著相及延伸相。延伸相有時代表引子延伸 。除了此三-步驟規程外,可採用二-步驟熱規程,於其 黏著及延伸相合倂。變性相普通包含將反應溫度升溫 90 - 95 °C以使DNA股變性;於黏著相中,將溫度降低 ~5 0-60°C以供引子黏著:接著於延伸相中,將溫度升溫 最佳DNA聚合酶活性溫度60-72°C,以供引子延伸。此 法重複循環約2 0 - 4 0次’最終結果爲產生數百萬拷貝之 子間的標靶序列。 已發展出用於分子診斷之許多標準PCR規程之變 ,其中包括諸如多引子組PCR、聯結子引發(linker- 201209159 primed) PCR、直接 PCR、重複序列(tandem) PCR、即 時PCR以及反轉錄酶PCR。 多引子組PCR使用單一 PCR混合物中之多重引子組 以產生對不同DNA序列具專一性之不同大小之擴增子^ 藉由一次標靶多個基因,由單一試驗可得到額外的資訊( 以其他方式則需要數次試驗)。最佳化多引子組PCR更 爲困難,因其需要選取具近似黏著溫度之引子及具近似長 度與鹼基組成之擴增子以確保各擴增子之擴增效率相等。 聯結子引發(linker-primed) PCR,又稱爲接合接合 子(ligation adaptor) PCR,爲用於致能複雜DNA混合物 中實質上所有DNA序列之核酸擴增的方法,而不需要標 靶-專一性引子。此方法首先以合適的限制性內核酸酶( 酶)來剪切(digest)標靶DNA群體。使用接合酶酶,具 有合適的懸伸(overhanging )端之雙股寡核苷酸聯結子 (亦稱爲接合子)接著與標靶DN A片段之端子接合。接 下來使用對聯結子序列具有專一性之寡核苷酸引子實施核 酸擴增。藉此,可擴增毗鄰聯結子寡核苷酸之DNA來源 的所有片段。 直接PCR描述一種直接於樣本上實施PCR而不需要 任何核酸萃取(或最少核酸萃取)之系統。長久以來認爲 ,PCR反應受到存在於未純化的生物樣本中之許多成分的 抑制,諸如血液中的原血紅素成分。傳統上,於製備反應 混合物之前’ p CR需要加強純化標靶核酸。然而,利用化 學性質的適當變化及樣本濃縮,可以最少化DNA純化而 201209159 進行 質的 能力 合之 正確 PCR 單一 核酸 引子 第二 的論 基因 低, 。藉 標準 子診 所不 。反 接著 (ex 錄本 PCR或進行直接PCR。用於直接PCR之PCR化學性 調整包括加強緩衝劑強度、使用高活性及高持續合成 (ρτ 〇 c e s s i V i t y )之聚合酶及與潛在聚合酶抑制劑蜜 添加物。1. Primer pair - a short single strand of DNA having approximately 10-30 nucleotides complementary to the flanking target sequence 2. DNA polymerase-synthesis of DNA thermostable enzymes 3. Deoxyribonucleoside III Phosphoric acid (dNTP) - provides nucleotides integrated into the newly formed DNA strands. 4. Buffer - the best chemical environment for DN A synthesis. PCR usually involves placing these reagents in a tube containing extracted nucleic acids (~10-5). 0 microliters). The tube is placed in the thermal cycler of the polymerase chain reactor; an instrument that subjects the reaction to different temperatures at a series of unequal amounts. The standard protocol for each thermal cycle includes the denaturing phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the extension of the primer. In addition to this three-step procedure, a two-step thermal procedure can be employed for adhesion and extension. The denatured phase generally involves heating the reaction temperature by 90-95 °C to denature the DNA strand; in the adhesive phase, the temperature is lowered by ~50-60 °C for adhesion of the primer: then the temperature rise is best in the extended phase. The DNA polymerase activity temperature is 60-72 ° C for extension of the primer. This method repeats the cycle by about 20 to 40 times. The final result is to generate a target sequence between millions of copies. A number of standard PCR protocols for molecular diagnostics have been developed, including, for example, multiple primer set PCR, linker initiation (linker-201209159 primed) PCR, direct PCR, tandem PCR, real-time PCR, and reverse transcriptase PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons that are specific to different DNA sequences. By indexing multiple genes at once, additional information can be obtained from a single experiment (with other The method requires several trials). Optimizing multiple primer set PCR is more difficult because it requires the selection of primers with approximate adhesion temperatures and amplicon with approximate length and base composition to ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of virtually all DNA sequences in complex DNA mixtures without the need for target-specific Sexual introduction. This method first digests the target DNA population with a suitable restriction endonuclease (enzyme). Using a ligase enzyme, a double stranded oligonucleotide linker (also known as a zygote) with a suitable overhanging end is then ligated to the terminal of the target DN A fragment. Nucleic acid amplification is then carried out using an oligonucleotide primer having specificity for the linker sequence. Thereby, all fragments derived from the DNA of the adjacent linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that the PCR reaction is inhibited by many components present in unpurified biological samples, such as the protohemoglobin component in the blood. Traditionally, 'pCR requires enhanced purification of the target nucleic acid prior to preparation of the reaction mixture. However, using appropriate changes in chemical properties and sample concentration, DNA purification can be minimized while 201209159 is capable of binding to the correct PCR single nucleic acid primer second gene low. By standard clinic, no. This is followed by (ex-recording PCR or direct PCR. PCR chemical adjustments for direct PCR include potentiation of buffer strength, use of high activity and high sustained synthesis (pτ 〇cessi Vity) polymerase and inhibition with potential polymerases Honey additive.

重複序列PC R利用兩次獨立的核酸擴增以增進擴增 擴增子的機率。重複序列 PCR中的一類型爲巢式 ,其中使用兩對PCR引子,以於分別的核酸擴增進行 基因座擴增。第一對引子與標靶核酸序列外部區域的 序列雜交。第二次擴增中所使用的第二對引子(巢式 )結合於第一 PCR產物中並且產生含有標靶核酸的 PCR產物(較第一PCR產物爲短)。此策略所運用 理爲:若於第一次核酸擴增期間因失誤而擴增錯誤的 ,由第二對引子再次擴增錯誤的基因座的機率非常 因此確保了專一性。 用即時PCR或定量PCR以即時量測PCR產物之量 用含有探針或螢光染料之螢光團以及反應中的參考 可測定樣本中之核酸的最初含量。此特別有用於分 ’其中治療選擇可能取決於樣本中所載病原體而有 泛轉錄酶PCR ( RT-PCR )係用於自RNA來擴增DNA 專錄酶爲將RN A反轉錄成互補DN A ( cDN A )之酶, 奢由PCR擴增cDNA。RT-PCR廣泛地用於表現型態 session profiling)以判定基因的表現或辨識rnA轉 (包括轉錄起始及終止位點)之序列。其亦用於擴增 -10- 201209159 RNA病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。The repeat sequence PC R utilizes two independent nucleic acid amplifications to increase the probability of amplifying the amplicon. Repetitive Sequences One type of PCR is nested, in which two pairs of PCR primers are used to perform amplification of the locus for separate nucleic acid amplification. The first pair of primers hybridize to the sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested) used in the second amplification binds to the first PCR product and produces a PCR product containing the target nucleic acid (short than the first PCR product). The strategy is based on the fact that if the error is amplified due to a mistake during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very high, thus ensuring specificity. Real-time measurement of the amount of PCR product by real-time PCR or quantitative PCR The initial content of the nucleic acid in the sample can be determined using a fluorescent group containing a probe or a fluorescent dye and a reference in the reaction. This is particularly useful for sub-sections where treatment options may depend on the pathogen contained in the sample and there is a pan-transcriptase PCR (RT-PCR) system for amplifying DNA from RNA to record the enzyme for reverse transcription of RN A into a complementary DN A The enzyme (cDN A ) is extravagantly amplified by PCR. RT-PCR is widely used in expression profiling to determine the expression of a gene or to recognize the sequence of rnA transfection (including transcription initiation and termination sites). It is also used to amplify -10- 201209159 RNA viruses, such as human immunodeficiency virus or hepatitis C virus.

恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 應期間之標靶DNA的熱變性,因此不需要複雜的機械。 恆溫核酸擴增方法可因此原始位置進行或於實驗室環境外 易於被操作。包括股取代擴增(Strand Displacement Amplification )、轉錄介導擴增(Transcription Mediated Amplification )、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增( Recombinase Polymerase Amplification)、滾動循環擴增 (Rolling Circle Amplification )、分枝型擴增( Ramification Amplification )、解旋酶依賴性恒溫 DNA 擴增(Helicase-Dependent Isothermal DNA Amplification )及環形恆溫擴增(Loop-Mediated Isothermal Amplification)之一些恆溫核酸擴增方法已被敘述。 恆溫核酸擴增法不依賴模板DNA之持續加熱變性來 產生作爲進一步擴增之模板的單股分子,而是依賴諸如於 常溫下藉由專一性限制內核酸酶之DNA分子的酶性切割 ,或是利用酶分開DNA股之其他方法。 股取代擴增(SDA )係依賴特定限制性酶切割該經半 修飾(hemi-modified)之DNA的未經修飾股的能力,及 5’ -3’外核酸酶-缺乏聚合酶延伸並取代下游股的能力。 然後,指數型核酸擴增係藉由偶合義(sense )與反義( antisense )反應來達成,其中來自義反應之股取代係作爲 反義反應之模板。使用不以傳統方式切割DNA而是於 -11 - 201209159 DNA之一股上產生切口之切口酶(諸如N. Alwl , N. BstNBl及Mlyl)對此反應有用。SDA已藉由使用熱 穩定限制性酶(d v α 1 )及熱穩定性外-聚合酶(聚合酶 )之組合來改進。此組合顯現出使反應的擴增效率由1 〇8 倍擴增增加至1 〇 1 ^倍擴增,從而可使用此技術來擴增獨 特的單拷貝分子。 轉錄介導擴增(ΤΜΑ)及賴核酸序列擴增(NASBA) 係使用RNA聚合酶來複製RNA序列而非對應之基因組 DN Α。此技術使用兩種引子及二或三種酶、RN Α聚合酶、 反轉錄酶及任意的RNase Η (若反轉錄酶不具有RNase活 性)。一種引子含有用於RNA聚合酶之啓動子序列。在 核酸擴增的第一步驟中,此引子於限定的位置與標靶核糖 體RNA ( rRNA )雜交。藉由自啓動子引子的3 1端開始延 伸,反轉錄酶產生標靶rRNA之DNA拷貝。若存在另外 的RNase Η,則所得的RNA : DNA雙股中的RNA經由反 轉錄酶之RNase活性而被分解。接著,第二引子結合至 DNA拷貝。藉反轉錄酶自此引子的末端合成新的DNA股 而產生雙股DNA分子。RNA聚合酶辨識DNA模板中的啓 動子,並開始轉錄。各個新合成的RNA擴增子再進入過 程中並作爲新複製循環之模板。 在重組酵素聚合酶擴增(RPA )中,特定DNA片段 之恆溫擴增係經由將反向寡核苷酸引子與模板DNA結合 ,再藉由DNA聚合酶延伸來達成。將雙股DNA ( dsDNA )模板變性並不需要熱。相反地,RPA採用重組酵素-引Constant temperature amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DNA during the amplification reaction, and thus does not require complicated machinery. The thermostatic nucleic acid amplification method can be performed at the original location or easily outside the laboratory environment. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Expansion Some thermostated nucleic acids such as Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification, and Loop-Mediated Isothermal Amplification Amplification methods have been described. The constant temperature nucleic acid amplification method does not rely on the continuous heat denaturation of the template DNA to produce a single strand of the molecule as a template for further amplification, but relies on enzymatic cleavage of a DNA molecule such as an internal nuclease which is specifically restricted at a normal temperature, or It is another method of separating DNA strands by enzymes. The strand-substituted amplification (SDA) is dependent on the ability of a particular restriction enzyme to cleave the unmodified strand of the hemi-modified DNA, and the 5'-3' exonuclease-deficient polymerase extension and replaces the downstream The ability of the stock. The exponential nucleic acid amplification is then achieved by a reaction between the sense and the antisense, wherein the strand substitution from the sense reaction serves as a template for the antisense reaction. Using a nicking enzyme (such as N. Alwl, N. BstNBl and Mlyl) that produces a nick on one of the DNA strands of -11 - 201209159 DNA, which is not cut in a conventional manner, is useful for this reaction. SDA has been improved by using a combination of a thermostable restriction enzyme (d v α 1 ) and a thermostable exo-polymerase (polymerase). This combination appears to increase the amplification efficiency of the reaction from 1 〇 8 fold amplification to 1 〇 1 倍 amplification, so that this technique can be used to amplify unique single copy molecules. Transcription-mediated amplification (ΤΜΑ) and lysin nucleic acid sequence amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than the corresponding genomic DN Α. This technique uses two primers and two or three enzymes, RN Α polymerase, reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to a target ribosomal RNA (rRNA) at a defined position. The reverse transcriptase produces a DNA copy of the target rRNA by extending from the 31 end of the promoter primer. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the RNase activity of the reverse transcriptase. Next, the second primer binds to the DNA copy. A double-stranded DNA molecule is produced by synthesizing a new DNA strand from the end of the primer by reverse transcriptase. RNA polymerase recognizes the promoter in the DNA template and initiates transcription. Each newly synthesized RNA amplicon is re-entered and used as a template for a new replication cycle. In recombinant enzyme polymerase amplification (RPA), isothermal amplification of a specific DNA fragment is achieved by binding a reverse oligonucleotide primer to a template DNA and then by DNA polymerase extension. Denaturation of the double-stranded DNA (dsDNA) template does not require heat. Conversely, RPA uses recombinant enzymes

201209159 子複合物來掃描dsDNA並促進在同源位點之股多 此產生之結構再經由單股DN A結合與經取代之fj 互作用來穩定化,從而防止該引子經由分支遷移 migration)退出。重組酵素解開使得股取代〇ΝΑ (諸如枯草芽孢桿菌Poll ( 5^ )之大片段)可g 苷酸之3'端,再接著延伸引子。指數型核酸擴增存 複循環此過程來完成。 賴解旋酶擴增(HDA )模擬體內系統,其使 解旋酶來產生用於引子雜交之單股模板,接著藉 聚合酶延伸引子。在HD A反應之第一個步驟中, 沿著標靶DNA穿過,破壞連接兩股之氫鍵,該兩 由單股結合蛋白連結。藉由解旋酶使單股標靶區暴 允許引子黏著。然後,DNA聚合酶利用游離脫氧 苷三磷酸(dNTPs)將各引子之3'端延伸以製造二 複製子。該兩組複製之dsDN A股獨立進入下一個 環,造成該標靶序列指數型核酸擴增。 其他以DNA爲基礎之恆溫技術包括滾動循環 RCA ),其中DNA聚合酶持續圍繞環形DNA模板 子,產生由許多該環之重複拷貝所組成的長DNA 在反應結束前,該聚合酶產生成千上萬份該環形模 貝,且該拷貝之鏈連繫著該原始標靶DNA。如此 進行標靶之空間解析及該信號之快速核酸擴增。1 至多可產生1〇12份模板拷貝。分枝型擴增爲RCA 變體,其使用封閉之環形探針(C -探針)或掛鎖 i換。由 !板股交 (branch 聚合酶 丨近寡核 ^經由重 用 DNA 由 DN A 解旋酶 丨股再藉 ^露後可 核糖核 組DNA HDA循 :擴增( i延伸引 產物。 ;板的拷 可允許 小時內 之一種 探針及 -13- 201209159 具有高持續合成能力(processivity)之DNA聚合酶以在 恆溫條件下將C-探針進行指數型擴增。201209159 Subcomplex to scan dsDNA and promote strands at homologous sites. The resulting structure is then stabilized by a single strand of DN A binding interacting with the substituted fj, thereby preventing the primer from exiting via branch migration. Recombinant enzymes are unraveled such that the stock replaces 〇ΝΑ (such as a large fragment of B. subtilis Poll (5^)) which can be the 3' end of g-glycoside, followed by extension of the primer. The exponential nucleic acid amplification is repeated in this process to complete. The lysed enzyme amplification (HDA) mimics the in vivo system, which uses a helicase to generate a single-strand template for primer hybridization, followed by a polymerase extension primer. In the first step of the HD A reaction, passing along the target DNA disrupts the hydrogen bond linking the two strands, which are linked by a single strand of binding protein. The single-strand target zone is allowed to adhere by the helicase to allow the primer to adhere. Then, the DNA polymerase extends the 3' end of each primer using free deoxyglycoside triphosphate (dNTPs) to produce a second replicon. The two sets of replicated dsDN A strands enter the next loop independently, resulting in amplification of the target sequence exponential nucleic acid. Other DNA-based thermostating techniques include rolling cycle RCA, in which DNA polymerase continues to surround the circular DNA template, producing long DNA consisting of many repeating copies of the loop. The polymerase is produced thousands of times before the end of the reaction. The annular mold is 10,000 parts, and the copy of the copy is linked to the original target DNA. The spatial resolution of the target and the rapid nucleic acid amplification of the signal are performed as such. 1 to 12 copies of the template can be produced. Branched amplification is an RCA variant that is replaced with a closed circular probe (C-probe) or padlock i. By the board stocks (branch polymerase 丨 near oligonuclear ^ via reuse of DNA by DN A helicase 丨 再 再 ^ 露 可 ribonucleoside DNA HDA cycle: amplification (i extension of the product; One probe within hours can be allowed and -13-201209159 DNA polymerase with high sustained processivity to exponentially expand the C-probe under constant temperature conditions.

環形恆溫擴增(LAMP )提供高選擇性且採用DNA聚 合酶及四個一組之經過特別設計可辨識標靶DNA上共6 個不同序列的引子。包含標靶DNA之義及反義股序列的 內引子啓動LAMP。接下去之藉由外引子啓動之股取代 DNA合成作用會釋出單股DNA。此單股DNA可作爲由該 與標靶之另一端雜交的第二內引子及外引子啓動之DNA 合成作用的模板,而產生臂環(stem-loop ) DNA結構。 在隨後之LAMP循環中,一個內引子與產物上之環雜交並 起始取代DN A合成作用,產生該原始臂環DNA及具有兩 倍長之臂的新臂環DNA。該循環反應在不到一小時內持 續累積1 〇9份之標靶拷貝。該最終產物爲具有數個該標靶 之反向重複子及菜花狀結構(其具有多個經由同一股中交 替反向之標靶重複子間黏連形成的環)的臂環DNA。Circular Thermostat Amplification (LAMP) provides high selectivity and uses DNA polymerase and four sets of primers specifically designed to recognize six different sequences on the target DNA. An intron containing the meaning of the target DNA and the antisense strand sequence initiates LAMP. Subsequent replacement of DNA synthesis by a strand initiated by an external primer will release a single strand of DNA. This single-stranded DNA can serve as a template for DNA synthesis initiated by the second primer and the foreign primer which hybridize to the other end of the target, thereby producing a stem-loop DNA structure. In the subsequent LAMP cycle, an internal primer hybridizes to the loop on the product and initiates the replacement of DN A synthesis, producing the original armor loop DNA and the new armor loop DNA with twice the length of the arm. The cycle reaction continued to accumulate 1 〇 9 copies of the target copy in less than an hour. The final product is an arm loop DNA having a plurality of inverted repeaters of the target and a cauliflower-like structure having a plurality of loops formed by overlapping the target repeaters in the same strand.

完成核酸擴增後,必須分析該擴增產物以測定是否產 生預期之擴增子(該標靶核酸之擴增量)。分析產物的方 法可從透過凝膠電泳法單純測定該擴增子之大小到使用 DNA雜交鑑定該擴增子之核苷酸組成。 凝膠電泳爲檢查該核酸擴增過程中是否產生預期之擴 增子最簡單的方法。凝膠電泳採用施用於凝膠基質之電場 以分離DNA片段。該帶負電荷之DNA片段將以不同速度 通過基質,此主要取決於其大小。電泳完成後可將凝膠中 之片段染色使其可視化。溴化乙錠爲一種常用之染色,其 -14- 201209159 在紫外光下顯現出螢光。 該片段之大小係經由與DNA尺寸標記(DNA ladder )相比較來測定,該標記含有已知大小之DNA片段且在 凝膠上與擴增子並排泳行。由於該寡核苷酸引子結合至毗 鄰該標靶DNA之特定位點,該擴增產物之大小可依凝膠 上已知大小之帶來預測及偵測。爲了確定該擴增子之特性 ,或者若已產生數個擴增子,則通常採用與該擴增子雜交 的DNA探針。 DNA雜交係指藉由互補鹼基配對形成雙股DNA。用 於明確辨識特定擴增產物之DNA雜交技術需要使用約20 個核苷酸長之DNA探針。若該探針具有與擴增子(標靶 )DNA序列互補之序列,雜交將會在溫度、pH値和離子 濃度之有利條件下發生。若發生雜交,則原始樣本中存有 所欲之基因或DNA序列。 光學偵測爲偵測雜交最常用的方法。無論是擴增子或 探針均經過標示以透過螢光或電化學發光來發射光。這些 過程之差異在於產生激發狀態之光製造部分的方式,但此 二種過程均可用於共價標示核苷酸股。在電化學發光( ECL )中,光係在以電流刺激時由發光團分子或複合物產 生。在螢光中,其係由造成光發射之激發光發光。 使用可在螢光分子吸收之波長下提供激發光的發光來 源及偵測單位來偵測螢光。該偵測單位包括一個偵測發射 信號之光感測器(諸如光電倍增管或電荷耦合裝置(CCD )配置)及防止激發光被包含在光感測器輸出之機制(諸 -15- 201209159 如波長選擇性過濾器)。該螢光分子發射斯托克斯位移( Stokes shifted )光以回應該激發光,再由該偵測單位收集 此發射之光。斯托克斯位移爲發射光與吸收之激發光間的 頻率差異或波長差異。 ECL發射係利用光感測器偵測,該感測器對於所使用 之ECL物種的發射波長具敏感性。例如,過渡金屬-配體 複合物發射可視波長之光,因此習用之光二極體和CCD 可被用來作爲光感測器。ECL的一項優點在於,若遮蔽環 境光線,ECL之發射光即爲偵測系統中之唯一光線,因此 增進敏感性。 微陣列能讓數以百千計之DN A雜交試驗得以同時進 行。微陣列係強大之分子診斷工具,其可在單一試驗中篩 選數千種基因疾病或偵測眾多感染性病原體之存在。微陣 列係由許多不同的DN A探針所組成,該等探針經固定爲 基板上之點。首先將標靶DNA (擴增子)以螢光或發光 分子標示(不論在核酸擴增期間亦或在核酸擴增之後), 接著施用標靶DNA至探針微陣列。該微陣列係於熱控制 、潮濕環境中培育數小時或數天以使探針及擴增子之間發 生雜交。在培育後,微陣列必須經一系列緩衝劑清洗以移 除未結合之股。待清洗後即用氣流(通常爲氮氣)乾燥微 陣列表面。雜交及清洗之嚴謹度至關重要。嚴謹度不足可 能導致高度非專一性結合。嚴謹度過局可能導致無法適當 結合’造成敏感性降低。雜交係藉由偵測與互補探針形成 雜交物之標示擴增子所發射之光加以識別。 -16- 201209159 ' 來自微陣列之螢光係利用微陣列掃描器偵測,掃描器 通常是由電腦控制之倒立掃描式螢光共軛焦顯微鏡,該顯 微鏡通常使用雷射激發螢光染劑及光感測器(諸如光電倍 增管或CCD )偵測該發射信號。螢光分子發射斯托克斯 位移光(如上所述),該光係由偵測單位收集。 該發射之螢光必須經過收集、與未吸收之激發波長分 開並傳輸至偵測器。在微陣列掃描器中,通常使用裝設在 影像面之共軛焦針孔光圈的共軛焦配置以消除非聚焦( ® out-of-focus )之資訊。此裝置使得只有聚焦部分之光會 被偵測。來自標靶之聚焦面以上及以下的光無法進入偵測 器,因此提高信噪比。該經偵測之螢光光子被偵測器轉換 成電能,接著再被轉換成數位信號。此數位信號轉譯成數 字,該數字代表來自給定像素之螢光的強度。陣列之每項 特徵係由一或多個該等像素組成。掃描之最終結果係陣列 表面之影像。由於在微陣列上之每種探針之確切序列及位 _ 置係已知的,因此可同時辨識及分析與之雜交之標靶序列 有關螢光探針之更多資訊請見: http://www.premierbiosoft.com/tech_notes/FRET_probe.html 及 http://www.invitrogen.com/site/us/en/home/References/Molecul ar-Probes-The-Handbook/Technical-Notes-and-Product-After completion of nucleic acid amplification, the amplification product must be analyzed to determine whether or not the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product can be carried out by simply measuring the size of the amplicon by gel electrophoresis to identify the nucleotide composition of the amplicon using DNA hybridization. Gel electrophoresis is the easiest way to check if the expected amplicon is produced during amplification of the nucleic acid. Gel electrophoresis uses an electric field applied to a gel matrix to separate DNA fragments. The negatively charged DNA fragments will pass through the matrix at different rates, depending on their size. After electrophoresis is completed, the fragments in the gel can be stained for visualization. Ethidium bromide is a commonly used dyeing, and its -14-201209159 exhibits fluorescence under ultraviolet light. The size of the fragment is determined by comparison to a DNA ladder containing DNA fragments of known size and migrating side by side with the amplicons on the gel. Since the oligonucleotide primer binds to a specific site adjacent to the target DNA, the size of the amplification product can be predicted and detected based on the known size of the gel. To determine the identity of the amplicon, or if several amplicons have been generated, a DNA probe that hybridizes to the amplicon is typically employed. DNA hybridization refers to the formation of double stranded DNA by complementary base pairing. A DNA hybridization technique for clearly identifying a particular amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DNA sequence, hybridization will occur under conditions of temperature, pH and ion concentration. If hybridization occurs, the desired gene or DNA sequence is present in the original sample. Optical detection is the most common method of detecting hybridization. Either the amplicon or probe is labeled to emit light by fluorescence or electrochemiluminescence. The difference in these processes lies in the manner in which the light-generating portion of the excited state is produced, but both processes can be used to covalently label nucleotide strands. In electrochemiluminescence (ECL), a light system is produced by a luminophore molecule or complex when stimulated by an electric current. In fluorescent light, it emits light by excitation light that causes light emission. Fluorescence is detected using illumination sources and detection units that provide excitation light at wavelengths absorbed by the fluorescent molecules. The detection unit includes a light sensor for detecting a transmitted signal (such as a photomultiplier tube or a charge coupled device (CCD) configuration) and a mechanism for preventing excitation light from being included in the output of the light sensor (the -15-201209159 Wavelength selective filter). The fluorescent molecules emit Stokes shifted light to respond to the excitation light, which is then collected by the detection unit. The Stokes shift is the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. The ECL emission system is detected using a light sensor that is sensitive to the emission wavelength of the ECL species used. For example, the transition metal-ligand complex emits light of a visible wavelength, so conventional light diodes and CCDs can be used as photosensors. One of the advantages of ECL is that if the ambient light is shielded, the ECL's emitted light is the only light in the detection system, thus increasing sensitivity. Microarrays allow hundreds of thousands of DN A hybridization experiments to be performed simultaneously. Microarrays are powerful molecular diagnostic tools that screen thousands of genetic diseases or detect the presence of numerous infectious pathogens in a single experiment. The microarray consists of a number of different DN A probes that are fixed at points on the substrate. The target DNA (amplicon) is first labeled with a fluorescent or luminescent molecule (either during nucleic acid amplification or after nucleic acid amplification), followed by administration of the target DNA to the probe microarray. The microarray is incubated in a heat-controlled, humid environment for hours or days to allow hybridization between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. After cleaning, the surface of the microarray is dried with a gas stream (usually nitrogen). The rigor of hybridization and cleaning is critical. Insufficient rigor may result in a highly non-specific combination. A rigorous pass may result in an inability to properly combine' resulting in reduced sensitivity. Hybridization is identified by detecting light emitted by the labeled amplicon of the hybrid with the complementary probe. -16- 201209159 'The fluorescence from the microarray is detected by a microarray scanner, which is usually a computer-controlled inverted scanning fluorescent conjugated focus microscope, which typically uses a laser to excite fluorescent dyes and A light sensor, such as a photomultiplier tube or CCD, detects the transmitted signal. The fluorescent molecules emit Stokes displaced light (as described above), which is collected by the detection unit. The emitted fluorescent light must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. In a microarray scanner, a conjugate focal configuration of a conjugated focal hole aperture mounted on the image side is typically used to eliminate out-of-focus information. This device allows only the light of the focused portion to be detected. Light from above and below the focal plane of the target cannot enter the detector, thus increasing the signal-to-noise ratio. The detected fluorescent photons are converted into electrical energy by the detector and then converted into digital signals. This digital signal is translated into a number that represents the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, it is possible to simultaneously identify and analyze the target sequence of the hybrid probe. More information about the fluorescent probe can be found at: http:/ /www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References/Molecul ar-Probes-The-Handbook/Technical-Notes-and-Product-

Highlights/Fluorescence-Resonance-Energy-Transfer- FRET.html -17- 201209159 定點照護(ΡΟΙΝΤ-OF-CARE)分子診斷 雖然分子診斷試驗提供許多好處,但是此類試驗在臨 床實驗室之成長仍較預期的緩慢,還不是實驗室醫學檢驗 之主流。這主要是因爲相較於不涉及核酸方法之試驗而言 ,核酸試驗導致較高之複雜性及成本。在臨床環境中廣泛 地採用分子診斷檢驗係與儀器設備之發展密切相關,該儀 器設備必須能顯著降低成本、提供自始(樣本處理)至終 (產生結果)快速及自動化之分析,且不須大幅人力干預 之操作。 定點照護技術可在醫師辦公室、醫院床側或甚至以消 費者爲主之居家環境提供照護,此技術可提供許多優點包 括: •快速獲得結果,以便立即採取治療及改善照護品質 •可自非常少量之樣本檢驗獲得實驗室數値 •減少臨床工作量 •減少實驗室工作量及藉由減少行政工作以增進辦公 室效率 •經由減少住院天數、門診病患可在初診時得到確診 及減少樣本之處理、儲存及運送而改善每位病患成本 •有助於臨床管理決策諸如感染控制及抗生素使用 以實驗室晶片(LOC )爲基之分子診斷 以微流體技術爲基礎之分子診斷系統提供可自動化及 加速分子診斷分析之裝置。較短之偵測時間主要是因爲所 -18- 201209159 需之樣本體積極少'自動化及在微流體裝置內之低開銷內 置級聯式之診斷方法步驟。以奈升及微升爲規模之體積亦 減少試劑消耗及成本。實驗室晶片(LOC )裝置係常見之 微流體裝置形式。LOC裝置具有在MST層內之MST結構 以用於將流體處理整合至單一支撐基板(通常爲矽)上。 利用半導體產業之VLSI (超大型積體電路)蝕刻技術( lithographic technique)製造使各LOC裝置之單位成本非 常低廉。然而,控制流體流經L 0 C裝置、添加試劑、控 制反應條件等等需要大型之外部水電工程裝置。連接L0C 裝置至這些外部裝置大幅地限制L0C裝置之分子診斷用 途於實驗室環境中。外部儀器之費用及其操作複雜性排除 以L0C爲基之分子診斷作爲定點照護環境中之選擇。 有鑑於此,需要可供定點照護使用之以L0C裝置爲 基之分子診斷系統。 【發明內容】 現在在下列編號之段落中說明本發明之各種觀點。 GDI010.1 本發明此觀點提供一種用於從生物樣本 移除細胞碎片之晶片上實驗室(L0C )裝置,該L0C裝 置包含: 透析區,其具有大組分通道、小組分通道以及在通道 與小組分通道之間的個用於流體交流之小孔,該大組分通 道具有用於接收生物樣本之上游端,該生物樣本爲攜帶細 胞碎片與靶分子之混合物的液體,該小組分通道具有用於 -19- 201209159 連接雜交區之下游端,該雜交區帶有用於靶分子反應之探 針陣列以形成探針-標靶複合物;其中, 該小孔之大小可允許標靶分子流入小組分通道’但保 留較該大組分通道中閾値尺寸大的細胞碎片。 GDI0 1 0.2 較佳地,該大組分通道和小組分通道具 有一個共同的側壁,而該數個小孔爲一系列通過該共同之 側壁延伸之流通口,各流通口具有通向組分通道之小開口 ,其變粗成通向小組分通道的大開口。 GDI010.3 較佳地,該LOC裝置亦具有數個小組分 通道,其各與該大組分通道共有一個共同的側壁並由一系 列流通口與大組分通道流體上連接。 GDI010.4 較佳地,各流通口之小開口之高度和寬 度尺寸介於1微米至8微米之間。 GDI010.5 較佳地,該LOC裝置亦具有廢物貯槽, 其中該大組分通道具有連接至廢物貯槽之下游端。 GDIO10.6 較佳地,該LOC裝置亦具有在透析區上 游之裂解區,其中該標靶分子爲標靶核酸序列且該裂解區 係經配置成裂解在生物樣本中之細胞並釋出其中之標靶核 酸序列。 GDIO10.7 較佳地,該LOC裝置亦具有用於擴增該 標靶核酸序列之核酸擴增區。 GDI010.8 較佳地,該探針係配置成與該標靶核酸 序列雜交以形成探針-標靶雜交物,該探針-標靶雜交物在 回應激發光時產生螢光。 -20- 201209159 GDIO 1 0.9 較佳地,該LOC裝置亦具有用 核酸擴增區之CMOS電路,該CMOS電路亦具 測從該探針-標靶雜交物發射之螢光的光感測器。 GDIO 1 0.1 0 較佳地,該雜交區具有包含用 核酸序列雜交之探針的雜交室陣列。 GDIO10.il 較佳地,該光感測器爲分別與 毗鄰之光二極體陣列。 GDI010.12 較佳地,該CMOS電路具有用 該流體之處理過程相關之數據的數位記憶體,該 該探針之細節及各探針在雜交室陣列中之位置。 GDIO 1 0. 1 3 較佳地,該CMOS電路具有至 於感測該雜交室陣列之溫度的溫度感測器。 GDI010.14 較佳地,該LOC裝置亦具有由 電路控制之加熱器,該CMOS電路利用來自溫度 反饋以將該探針及標靶核酸序列保持在雜交溫度 GDI010.15 較佳地,該光二極體距離該對 室少於249微米。 GDI010.16 較佳地,該探針爲螢光共振能 FRET )探針。 GDI010.17 較佳地,該雜交室具有一光學 光學窗口之位置可使該FRET探針接觸激發光。 GDI010.18 較佳地,該FRET探針各具有 團及淬滅劑,該螢光團係經配置以在該FRET探 針-標靶雜交物時發射螢光信號給該光二極體以 於操控該 有用於感 於與標靶 各雜交室 於儲存與 數據包括 少一個用 該 CMOS 感測器之 〇 應之雜交 量轉移( 窗口,此 一個螢光 針形成探 回應該激 -21 - 201209159 發光,該CMOS電路係經配置以使該光二極體在激發光熄 滅後於預定之延遲時間後啓動,該數位記億體包括該預先 安排之延遲。 GDIO10.19 較佳地,該CMOS電路具有用於電氣連 接外部裝置之結合墊且經配置以將來自光二極體之輸出轉 換成表示該與標靶核酸序列雜交之FRET探針的信號,並 將該信號提供給結合墊以傳輸至外部裝置。 GDIO 10.20 較佳地,該LOC裝置亦具有數個用於 保持液態試劑以添加在樣本中之貯槽。 此LOC裝置之設計具有直接選擇包含該標靶之樣本 組分的優點。此LOC裝置之設計具有增濃在該欲藉由 LOC裝置進一步處理之樣本部分中的有效標靶濃度之優點 。此LOC裝置之設計具有移除樣本中可能抑制稍後之分 析步驟的組分之優點。此LOC裝置之設計具有移除該經 處理之混合物中之不欲有的組分之優點,該不欲有之組分 可能干擾稍後之標靶偵測。此LOC裝置之設計具有移除 混合物中可能阻塞LOC裝置中之小室或連接處並使操作 降級之組分的優點。 GDI01 1.1 本發明此觀點提供一種用於從包含標靶 核酸序列之生物樣本中移除細胞碎片之晶片上實驗室( LOC )裝置,該LOC裝置包含: 透析區,其具有大組分通道、小組分通道以及在大組 分通道與小組分通道之間的數個用於流體交流之小孔,該 該大組分通道具有用於接收生物樣本之上游端,該生物樣 -22- 201209159 本爲攜帶細胞碎片與標靶核酸序列之混合物的液體且該小 組分通道具有用於連接雜交區之下游端,該雜交區帶有與 標靶核酸序列雜交之探針陣列以形成探針-標靶複合物;其 中, 該小孔之大小可允許標靶核酸序列流入小組分通道, 但保留較該大組分通道中之閾値尺寸大的細胞碎片。 GDI01 1.2 較佳地,該大組分通道和小組分通道具 有一個共同的側壁,而該數個小孔爲一系列通過該共同之 側壁延伸之流通口,各個流通口具有通向大組分通道之小 開口及逐漸變細成通向小組分通道的大開口。 GDI01 1.3 較佳地,該L 0 C裝置亦具有數個小組分 通道,其各與該等大組分通道共有一個共同的側壁且經由 一系列流通口與大組分通道流體上連接。 GDI01 1.4 較佳地,該各等流通口之小開口的高度 和寬度尺寸介於1微米至8微米之間。 GDI011.5 較佳地,該LOC裝置亦具有廢物貯槽’ 其中該大組分通道具有連接至廢物貯槽之下游端。 GDI011.6 較佳地,該LOC裝置亦具有在擴增區上 游之裂解區,其中該裂解區係配置成裂解在生物樣本中之 細胞並釋出其中之標靶核酸序列。 GDI011.7 較佳地,該LOC裝置亦具有用於擴增該 標靶核酸序列之核酸擴增區。 GDI011.8 較佳地,該LOC裝置亦具有用於操控該 核酸擴增區之CMOS電路,該CMOS電路亦具有用於感 -23- 201209159 測從該探針-標靶雜交物發射之螢光的光感測器。 GDI011.9 較佳地,該雜交區具有包含用於與標靶 核酸序列雜交之探針的雜交室陣列。 GDI01 1.10 較佳地,該光感測器爲分別與各雜交室 毗鄰之光二極體陣列。 GDI011.il 較佳地,該CMOS電路具有用於儲存與 該流體之處理過程相關之數據的數位記億體,該數據包括 該探針之細節及各探針在雜交室陣列中之位置。 GD 1011.12 較佳地,該CMOS電路具有至少一個用 於感測該雜交室陣列之溫度的溫度感測器。 GDI011.13 較佳地,該 LOC裝置亦具有由該 CMOS電路控制之加熱器,該CMOS電路利用來自溫度感 測器之反饋以將該探針及標靶核酸序列保持在雜交溫度。 GDI01 1.14 較佳地,該光二極體距離該對應之雜交 室少於249微米。 GDIO 11.15 較佳地,該探針爲螢光共振能量轉移( FRET )探針。 GDI011.16 較佳地,該雜交室具有一光學窗口,此 光學窗口之位置可使該FRET探針接觸激發光。 GDI011.17 較佳地,該FRET探針各具有一個螢光 團及淬滅劑,該螢光團係經配置以在該FRET探針形成探 針-標靶雜交物時發射螢光信號給該光二極體以回應該激 發光,該CMOS電路係經配置以使該光二極體在激發光熄 滅後於預定之延遲時間後啓動,該數位記億體包括該預先 -24- 201209159 安排之延遲。 GDI01 1.18 較佳地,該CMOS電路具有用於電氣連 接外部裝置之結合墊且經配置以將來自光二極體之輸出轉 換成表示與該標靶核酸序列雜交之FRET探針的信號,並 將該信號提供給結合墊以傳輸至外部裝置。 GDI01 1.19 較佳地,該LOC裝置亦具有數個用於 保持液態試劑以添加在樣本中之貯槽。 GDI011.20 較佳地,該試劑貯槽各具有一表面張力 閥,該表面張力閥具有一個小孔,該小孔係經配置以固定 將液體試劑保持在其中之彎液面,直到與樣本接觸而移除 彎液面並使該液體試劑加入樣本流中。 此L0C裝置之設計具有移除可能抑制稍後之分析步 驟的樣本組分之優點。此LOC裝置之設計具有移除該經 處理之混合物中的不欲有之組分的優點,該不欲有之組分 可能干擾稍後之標靶偵測。此LOC裝置之設計具有移除 混合物中可能阻塞該LOC裝置中之小室或連接處並使操 作降級之組分的優點。 GDI013.1 本發明此觀點提供一種用於從包含標靶 核酸序列之生物樣本中移除細胞碎片之晶片上實驗室( L0C)裝置,該LOC裝置包含: 擴增區,其係用於擴增該核酸序列; 透析區,其具有大組分通道、小組分通道以及在該大 組分通道與小組分通道之間的數個用於流體交流之小孔, 該大組分通道係經配置以在該擴增區中擴增核酸後用於接 -25- 201209159 收生物樣本,該生物樣本爲細胞碎片與標靶核酸序列之液 體混合物且該小孔之尺寸可允許標靶核酸序列流入小組分 通道,但保留較該大組分通道中之閾値尺寸大的細胞碎片 ;及 探針陣列,此探針陣列與小組分通道爲流體相通以與 該標靶核酸序列雜交形成探針-標靶雜交物。 GDIO 1 3.2 較佳地,該大組分通道和小組分通道具 有一個共同的側壁,而該數個小孔爲一系列通過該共同之 側壁延伸之流通口,各流通口具有通向大組分通道之小開 口及逐漸變細成通向小組分通道的大開口。 GDIO 1 3.3 較佳地,該透析區具有數個小組分通道 ,其各與該大組分通道共有一個共同的側壁且經由一系列 流通口與大組分通道流體上連接。 GDI01 3.4 較佳地,該各個流通口之小開口之高度 和寬度尺寸介於1微米至8微米之間。 GDI013.5 較佳地,該LOC裝置亦具有廢物貯槽, 其中該大組分通道具有連接至廢物貯槽之下游端。 GDI013.6 較佳地,該LOC裝置亦具有在擴增區上 游之裂解區,其中該裂解區係配置成裂解在生物樣本中之 細胞並釋出其中之標靶核酸序列。 GDI013.7較佳地,該探針-標靶雜交物在回應激發 光時產生螢光。 GDI013.8 較佳地,該LOC裝置亦具有用於操控該 核酸擴增區之CMOS電路,該CMOS電路亦具有用於感 201209159 測從該探針-標靶雜交物發射之螢光的光感測器。 GDI013.9 較佳地,該雜交區具有包含用於與標靶 核酸序列雜交之探針的雜交室陣列。 GDIO 1 3 · 1 0 較佳地,該光感測器爲分別與各雜交室 毗鄰之光二極體陣列。 GDI013.il 較佳地,該CMOS電路具有用於儲存與 該流體之處理過程相關之數據的數位記憶體,該數據包括 該探針之細節及各探針在雜交室陣列中之位置。 GDI013.12 較佳地,該CMOS電路具有至少一個用 於感測該雜交室陣列之溫度的溫度感測器。 GDI013.13 較佳地,該 LOC裝置亦具有由該 CMOS電路控制之加熱器,該CMOS電路利用來自溫度感 測器之反饋以將該探針及標靶核酸序列保持在雜交溫度。 GDI013.14 較佳地,各光二極體距離該對應之雜交 室少於249微米。 GDI013.15 較佳地,該探針爲螢光共振能量轉移( FRET )探針。 GDI013.16 較佳地,該雜交室具有一光學窗口,此 光學窗口之位置可使該FRET探針接觸激發光。 GDI013.17 較佳地,該FRET探針各具有一個螢光 團及淬滅劑,該螢光團係經配置以在該FRET探針形成探 針-標靶雜交物時發射螢光信號給該光二極體以回應該激 發光,該CMO S電路係經配置以使該光二極體在激發光熄 滅後於預定之延遲時間後啓動,該數位記憶體包括該預定 -27- 201209159 之延遲。 GDIO 1 3.18 較佳地,該CMOS電路 接外部裝置之結合墊且經配置以將來自光 換成表示與該標靶核酸序列雜交之FRET 將該信號提供給結合墊以傳輸至外部裝置 GDIO 1 3. 1 9 較佳地,該 LOC裝置 保持液態試劑以添加在樣本中之貯槽。 GDIO13.20 較佳地,該試劑貯槽各 口閥;其中 該出口閥爲表面張力閥,其各具有一 係經配置以固定能將液體試劑保持在其中 與樣本接觸後移除該彎液面並使該液體試 〇 此LOC裝置之設計具有直接選擇包 組分的優點。此LOC裝置之設計具有移 本中的不欲有之組分的優點,該不欲有之 後之標靶偵測。此LOC裝置之設計具有 能抑制稍後之分析步驟的組分之優點。此 計具有移除該經處理之樣本中的不欲有之 不欲有之組分可能干擾稍後之標靶偵測。 設計具有移除該混合物中可能阻塞L Ο C 連接處並使操作降級之組分的優點。 GPC027.1 本發明此觀點提供一種 含標靶核酸序列之樣本的晶片上實驗室( 具有用於電氣連 二極體之輸出轉 探針的信號,並 〇 亦具有數個用於 具有一對應之出 個小孔,該小孔 之彎液面,直到 劑加入樣本流中 含該標靶之樣本 除該經處理之樣 組分可能干擾梢 移除該樣本中可 L0C裝置之設 組分的優點,該 此L〇C裝置之 裝置中之小室或 用於基因分析包 L0C )裝置,該 201209159 L〇C裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之緩衝液、 dNTP、引子及聚合酶以形成擴增混合物;及 核酸擴增區,其係用於在該標靶核酸序列之恆溫擴增 期間將該擴增混合物保持在預定的溫度下。 GPC027.2 較佳地,該核酸擴增區具有多個延長之 擴增室,各室中具有至少一個平行於該擴增室之縱向範圍 繼續延伸的延長加熱器。 GPC027.3 較佳地,該核酸擴增區具有一微通道且 該延長之擴增室爲該微通道之各區。 GPC027.4 較佳地,該微通道具有由一系列寬曲流 形成之彎曲構型,各寬曲流爲形成其中一個延長之擴增室 的通道區。 GPC027.5 較佳地,該L0C裝置亦具有與至少一個 加熱器連接以在恆溫擴增期間操控該至少一個加熱器之 CMOS電路。 GPC027.6 較佳地,沿著各寬曲流之各個通道區具 有多個延長加熱器。 GPC027.7 較佳地,該多個延長加熱器係沿著通道 區端至端放置。 GPC027.8 較佳地,該延長加熱器係獨立操作。 GPC027.9 較佳地,該LOC裝置亦具有至少一個與 CMOS電路連接之溫度感測器以反饋控制該延長加熱器。 -29- 201209159 GPCO27.10 較佳地,該核酸擴增區具有用於在恆溫 擴增期間將液體保留在核酸擴增區中的主動閥。 GPC027.il 較佳地,該主動閥爲沸騰啓動閥,其具 有用於將該液體保留在核酸擴增區中的彎液面錨,該沸騰 啓動閥亦具有用於加熱沸騰該液體之閥門加熱器,從而使 該彎液面脫離該彎液面錨並恢復該藉由毛細作用驅動之液 流從核酸擴增區流出。 GPC027.1 2 較佳地,該LOC裝置在主動閥下游亦 具有液體感測器,該液體感測器係經配置以偵測在該液體 感測器位置中之液體來反饋控制該閥門加熱器。 GPC027.1 3 較佳地,該彎液面錨爲一個小孔且該閥 門加熱器係位在該小孔周圍。 GPC027.14 較佳地,該LOC裝置亦具有用於與該 標靶核酸序列雜交之探針陣列以形成探針-標靶雜交物。 GPC027.1 5 較佳地,該LOC裝置亦具有用於偵測 該探針-標靶雜交物之光感測器。 GPC027.1 6 較佳地,該光感測器爲與該探針陣列配 準之光二極體。 GPC027.1 7 較佳地,該在核酸擴增區中之液體的體 積少於400奈升。 GPC027.1 8 較佳地,該PCR微通道之與流動向呈 橫切向的截面面積爲1平方微米至400平方微米。 GPC027.1 9 較佳地,該LOC裝置在核酸擴增區上 游亦具有透析區,其中該樣本包含大小不同之組分,該透 -30- 201209159 析區係經配置以將小於預定閾値之組分與大於預定閥 組分分開。 GPCO27.20 較佳地,該核酸序列係包含在小於 定閾値尺寸之細胞和有機體中。’ 此可更敏感、更專一的偵測標靶DNA。此LOC 具有不需要熱循環之優點,此可簡化熱控制電子,允 均勻之熱控制並減少該LOC裝置中之材料降解。此 裝置之設計將減少在操作期間蒸發的程度,改良對 裝置中之物理和化學條件的控制。 GPC028.1 本發明此觀點提供一種用於基因分 含標靶核酸序列之樣本的晶片上實驗室(LOC)裝置 LOC裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之dNTP 子、重組酵素、DNA聚合酶及緩衝液以形成擴增混 ;及 核酸擴增區,其係用於在標靶核酸序列之重組酵 合酶擴增(RP A )期間將該擴增混合物保持在預定的 下。 GPC028.2 較佳地,該核酸擴增區具有多個延 擴增室,各室中具有至少一個平行於該擴增室之縱向 區的延長加熱器。 GPC028.3 較佳地,該核酸擴增區具有微通道 等延長擴增室爲該微通道之各區。 値之 該預 裝置 許更 LOC LOC 析包 ,該 、引 合物 素聚 溫度 長之 延伸 且該 -31 - 201209159 GPC028.4 較佳地,該微通道具有由一系列寬曲流 所形成之彎曲構型,各個該寬曲流爲形成其中一個延長擴 增室的通道區。 GPC028.5 較佳地,該LOC裝置亦具有與至少一個 加熱器連接以在RPA期間操控該至少一個加熱器之CMOS 電路。 GPC028.6 較佳地,沿著各寬曲流之各個通道區具 有多個延長加熱器。 GPC028.7 較佳地,該多個延長加熱器係沿著通道 區端至端放置。 GPC028.8 較佳地,該延長加熱器係獨立操作。 GPC028.9 較佳地,該LOC裝置亦具有至少一個與 CMOS電路連接之溫度感測器以反饋控制該延長加熱器。 GPCO28.10 較佳地,該核酸擴增區具有用於在恆溫 擴增期間將液體保留在核酸擴增區中的主動閥。 GPC028.il 較佳地,該主動閥爲沸騰啓動閥,其具 有用於將該液體保留在核酸擴增區中的彎液面錨,該沸騰 啓動閥亦具有用於加熱沸騰該液體之閥門加熱器,從而使 該彎液面脫離該彎液面錨並恢復該藉由毛細作用驅動之液 流從核酸擴增區流出。 GPC028.12 較佳地,該 L0C裝置在主動閥下游亦 具有液體感測器,該液體感測器係經配置以偵測在該液體 感測器位置中之液體來反饋控制該閥門加熱器。 GPC028.1 3 較佳地,該彎液面錨爲一個小孔且該閥 201209159 門加熱器係位在該小孔周圍。 GPC028.14 較佳地’該LOC裝置亦具有用於與該 標靶核酸序列雜交之探針陣列以形成探針-標靶雜交物。 GPC028.1 5 較佳地,該LOC裝置亦具有用於偵測 該探針-標靶雜交物之光感測器。 GPC028.1 6 較佳地,該光感測器爲與該探針陣列配 準之光二極體。 GPC028.1 7 較佳地,該在核酸擴增區中之液體的體 積少於400奈升。 GPC028.1 8 較佳地,該PCR微通道之與流動向呈 橫切向的截面面積爲1平方微米至400平方微米。 GPC028.1 9 較佳地,該LOC裝置在核酸擴增區上 游亦具有透析區,其中該樣本包括大小不同之組分,該透 析區係經配置以將小於預定閾値之組分與大於預定閥値之 組分分開。 GPCO2 8.20 較佳地,該核酸序列係包含在小於該預 定閾値之細胞和有機體中。 此LOC裝置具有不需要熱循環之優點,其可簡化熱 控制電子,允許更均勻之熱控制並減少該LOC裝置中之 材料降解。此LOC裝置之設計將降低在操作期間蒸發的 程度,改良對LOC裝置中之物理和化學條件的控制。此 LOC裝置具有由序列專一性擴增提供之優點,包括:由擴 增提供之敏感度;廣泛之動態範圍;及對標靶DNA序列之 高專一性。重組酵素聚合酶擴增具有在15分鐘內從標靶 -33- 201209159 核酸之單一拷貝擴增至可偵測到之水準的額外優點。此 LOC裝置具有設計和製造的要求較不複雜的優點,這將導 致更簡單、更可靠的製造法。此LOC裝置具有在操作過 程中使用較少之化學步驟的優點,這將導致更簡單、更可 靠的操作。 GPC029.1 本發明此觀點提供一種用於基因分析包 含標靶核酸序列之樣本的晶片上實驗室(LOC )裝置,該 LOC裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之dNTP、引 子、切口酶、緩衝液及DNA聚合酶以形成擴增混合物; 及 核酸擴增區,其係用於在標靶核酸序列之恆溫擴增期 間將該擴增混合物保持在預定的溫度下。 GPC029.2 較佳地,該核酸擴增區具有多個延長之 擴增室,各室中具有至少一個平行於該擴增室之縱向範圍 繼續延伸的延長加熱器。 GPC029.3 較佳地,該核酸擴增區具有微通道且該 延長擴增室爲該微通道之各區。 GPC029.4 較佳地,該微通道具有由一系列寬曲流 所形成之彎曲構型,各個該寬曲流爲形成其中一個延長擴 增室的通道區。 GPC029.5 較佳地,該LOC裝置亦具有與該至少一 個用於在恆溫擴增期間操控樣本之加熱器連接的CMOS電 201209159 路。 GPC029.6 較佳地,沿著各寬曲流之各個通道區具 有多個延長加熱器。 GPC029.7 較佳地,該多個延長加熱器係沿著通道 區端至端放置。 GPC029.8 較佳地,該延長加熱器係獨立操作。 GPC029.9 較佳地,該LOC裝置亦具有至少一個與 CMOS電路連接之溫度感測器以反饋控制該延長加熱器。 GPCO29.10 較佳地,該核酸擴增區具有用於在恆溫 擴增期間將液體保留在核酸擴增區中的主動閥。 GPC029.il 較佳地,該主動閥爲沸騰啓動閥,其具 有用於將該液體保留在核酸擴增區中的彎液面錨,該沸騰 啓動閥亦具有用於加熱沸騰該液體之閥門加熱器,而使該 彎液面脫離該彎液面錨並恢復該藉由毛細作用驅動之液流 從核酸擴增區流出。 GPC029.1 2 較佳地’該LOC裝置在主動閥下游亦 具有液體感測器,該液體感測器係經配置以偵測在該液體 感測器位置中之液體來反饋控制該閥門加熱器。 GPC029.1 3 較佳地,該彎液面錨爲一個小孔且該閥 門加熱器係位在該小孔周圍。 GPC029.14 較佳地,該LOC裝置亦具有用於與該 標靶核酸序列雜交之探針陣列以形成探針-標靶雜交物。 GPC029.15 較佳地,該LOC裝置亦具有用於偵測 該探針-標靶雜交物之光感測器。 -35- 201209159 GPC029.1 6 較佳地,該光感測器爲與該探針陣列配 準之光二極體。 GPC029.1 7 較佳地,該在核酸擴增區中之液體的體 積少於400奈升。 GPC029.1 8 較佳地,該PCR微通道之與流動向呈 橫切向的截面面積爲1平方微米至400平方微米。 GPC029.1 9 較佳地,該LOC裝置在核酸擴增區上 游亦具有透析區,其中該樣本包括大小不同之組分,該透 析區係經配置成用於將小於預定閾値之組分與大於預定閥 値之組分分開。 GPCO29.20 較佳地,該核酸序列係包含在小於該預 定閾値尺寸之細胞和有機體中。 此LOC裝置具有不需要熱循環之優點,此可簡化熱 控制電子,允許更均勻之熱控制並減少該L 0 C裝置中之 材料降解。此LOC裝置之設計將降低在操作期間蒸發的 程度,改良對LOC裝置中之物理和化學條件的控制。此 LOC裝置具有由序列專一性擴增提供之優點,包括:由擴 增提供之敏感度;廣泛之動態範圍;及對標靶DNA序列之 高專一性。 GPCO30.1 本發明此觀點提供一種用於基因分析包 含標靶核酸序列之樣本的晶片上實驗室(LOC )裝置,該 LOC裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之dNTP、引 201209159 子、逆轉錄酶、RNA聚合酶及緩衝液以形成擴增混合物 :及 核酸擴增區,其係用於在標靶核酸序列之恆溫擴增期 間將該擴增混合物保持在預定的溫度下。 GPCO30.2 較佳地,該核酸擴增區具有多個延長之 擴增室,各室中具有至少一個平行於該擴增室之縱向範圍 繼續延伸的延長加熱器。 GPCO30.3 較佳地,該核酸擴增區具有一微通道且 該延長之擴增室爲該微通道之各區。 GPCO30.4 較佳地,該微通道具有由一系列寬曲流 所形成之彎曲構型,各寬曲流爲形成其中一個延長擴增室 的通道區。 GPCO30.5 較佳地,該LOC裝置亦具有在恆溫擴增 期間操控該至少一個加熱器連接以之CMOS電路。 GPCO30.6 較佳地,沿著各寬曲流之各個通道區具 有多個延長加熱器。 GPCO30.7 較佳地,該多個延長加熱器係沿著通道 區端至端放置。 GPCO30.8 較佳地,該延長加熱器係獨立操作》 GPCO30.9 較佳地,該LOC裝置亦具有至少一個與 CMOS電路連接之溫度感測器以反饋控制該延長加熱器。 GPC030.1 0 較佳地,該核酸擴增區具有用於在恆溫 擴增期間將液體保留在核酸擴增區中的主動閥。 GPCO30.il 較佳地,該主動閥爲沸騰啓動閥,其具 -37- 201209159 有用於將該液體保留在核酸擴增區中的彎液面錨,該沸騰 啓動閥亦具有用於加熱沸騰該液體之閥門加熱器,從而使 該彎液面脫離該彎液面錨並恢復該藉由毛細作用驅動之液 流從核酸擴增區流出。 GPCO30.12 較佳地,該LOC裝置在主動閥下游亦 具有液體感測器,該液體感測器係經配置以偵測在該液體 感測器位置中之液體來反饋控制該閥門加熱器。 GPCO30.13 較佳地,該彎液面錨爲一個小孔且該閥 門加熱器係位在該小孔周圍。 GPCO30.14 較佳地,該LOC裝置亦具有用於與該 標靶核酸序列雜交之探針陣列以形成探針-標靶雜交物。 GPCO30.15 較佳地,該LOC裝置亦具有用於偵測 該探針-標靶雜交物之光感測器。 GPCO30.16 較佳地,該光感測器爲與該探針陣列配 準之光二極體。 - GPCO30.17 較佳地,該在核酸擴增區中之液體的體 積少於400奈升。 GPCO30.18 較佳地,該 PCR微通道之與流動向呈 橫切向的截面面積爲1平方微米至40 0平方微米。 GPCO30.19 較佳地,該 LOC裝置在核酸擴增區上 游亦具有透析區,其中該樣本包括大小不同之組分,該透 析區係經配置成用於將小於預定閾値之組分與大於預定閥 値之組分分開。 GPC030.20 較佳地,該核酸序列係包含在小於該預 201209159 定閩値尺寸之細胞和有機體中。 此LOC裝置具有不需要熱循環之優點,此可簡化熱 控制電子,允許更均勻之熱控制並減少該LOC裝置中之 材料降解。此LOC裝置之設計將降低在操作期間蒸發的 程度,改良對LOC裝置中之物理和化學條件的控制。此 LOC裝置具有由序列專一性擴增提供之優點,包括:由擴 增提供之敏感度;廣泛之動態範圍;及對標靶RNA序列之 高專一性。 I GPC031.1 本發明此觀點提供用於基因分析樣本中 之核酸序列的晶片上實驗室(LOC)裝置,該LOC裝置 包含: 用於接收該樣本之樣本入口; 第一聚合酶反應(PCR)區,其係用於將由dNTP、 引子及緩衝液與樣本和聚合酶所組成之第一 PCR混合物 進行熱循環以擴增該核酸序列;及 ^ 第二PCR區,其位於該第一 PCR區之下游以用於將 由dNTP、引子及緩衝液與聚合酶和至少一些來自該第一 PCR區之擴增子所組成之第二PCR混合物進行熱循環。 GPC031.2 較佳地,該第一 PCR區具有用於在該樣 本中之核酸序列的擴增期間將液體保留在該第一 PCR區 中的主動閥。 GPC03 1.3 較佳地,該主動閥爲沸騰啓動閥,其具 有用於將該液體保留在該第一 PCR區中的彎液面錨,該 沸騰啓動閥亦具有用於加熱沸騰該液體之閥門加熱器,從 -39- 201209159 而使該彎液面脫離該彎液面錨並恢復該藉由毛細作用驅動 之液流從該第一 PCR區流出。 GPC031.4 較佳地,該LOC裝置亦具有帶有出口閥 門之第二PCR混合物貯槽及帶有出口閥門之第二聚合酶 貯槽以用於在第二PCR區中擴增前將PCR混合物和聚合 酶添加在來自該第一 PCR區之擴增子中。 GPC031.5 較佳地,該出口閥門爲表面張力閥,該 表面張力閥各具有一個小孔,該小孔係經配置以固定能將 液體試劑保持在其中之彎液面,直到與擴增子接觸後移除 彎液面並使該PCR混合物及聚合酶加入流入該第二PCR 區之擴增子中。 GPC031.6 較佳地,該第二PCR區具有主動閥以在 來自該第一 PCR區之擴增子中的核酸序列被擴增時將液 體保留在該第二PCR區中。 GPC031.7 較佳地,該主動閥爲沸騰啓動閥,其具 有用於將該液體保留在第二PCR區中的彎液面錨,該沸 騰啓動閥亦具有用於加熱沸騰該液體之閥門加熱器,從而 使該彎液面脫離該彎液面錨並恢復該藉由毛細作用驅動之 液流從該第二PCR區流出。 GPC031.8 較佳地,該LOC裝置亦具有雜交區,此 雜交區具有用於與該第二PCR區擴增子中之標靶核酸序 列雜交之探針陣列。 GPC03 1 .9 較佳地,該雜交區具有用於偵測在探針 陣列中之探針的雜交作用之光感測器。 -40- 201209159 GPCO31.10 較佳地,該LOC裝置在第二PCR 游及雜交區上游亦具有透析區,其中該第二PCR區 子包含核酸序列及細胞碎片,從而使該透析區被配置 除較該核酸序列大之細胞碎片。 GPC031.il 較佳地,該第一 PCR區具有用於 增期間保持該樣本的PCR微通道及至少一個用於將 內之核酸序列進行熱循環的延長加熱器,該延長加熱 與該PCR微通道排成一列。 GPC031.12 較佳地,該PCR混合物之體積少K 奈升。 GPC031.13 較佳地,該PCR微通道之與流動 橫切向的截面面積爲1平方微米至4 00平方微米》 GPC031.14 較佳地,該PCR微通道具有一個 入口及一個PCR出口,且該PCR微通道至少有一區 延長之PCR室。 GPC031.15 較佳地,該第一PCR區具有多個 之PCR室,其各由PCR微通道之各別區形成,該微 具有由一系列寬曲流形成之彎曲構型,各寬曲流爲形 中一個延長之PCR室的通道區。 GPC031.16 較佳地,各通道區具有多個延長加 〇 GPC03 1.17 較佳地,該多個延長加熱器係沿著 區端至端放置。 GPC03 1.18 較佳地,該多個延長加熱器係各自 區下 擴增 成移 在擴 樣本 器係 400 向呈 PCR 形成 延長 通道 成其 熱器 通道 獨立 -41 - 201209159 操作。 GPC03 1.19 較佳地,該LOC裝置亦具有至少一個 用於反饋控制該延長加熱器的溫度感測器。 GPCO31.20 較佳地,該第一PCR區之熱循環時間 少於3 0秒。 此L0C裝置具有由序列專一性擴增提供之優點,包 括:由擴增提供之敏感度;廣泛之動態範圍;及對標靶 DNA序列之高專一性。兩階段之擴增容許將規程進一步 細化以進行高度敏感偵測,此高度敏感之偵測可忍受存有 可能干擾單階段擴增方案之類似的遺傳物質及化學污染物 。該來自該第一擴增階段之產物亦可以再次分以在第二擴 增階段進行多個平行反應,此可增加該L0C裝置之多工 能力。具有平行反應部位之L 0 C裝置設計可在非常小之 樣本體積上並行執行診斷試驗,此可增加所取得之診斷數 據的範圍和品質。 GPC033.1 本發明此觀點提供用於基因分析包含標 靶核酸序列之樣本的晶片上實驗室(L0C)裝置’該L0C 裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之dNTP、引 子、聚合酶及緩衝液;及 核酸擴增區,其係用於樣本之熱控制以進行該標靶核 酸序列之第一階段擴增,並用於接著控制來自第一階段擴 增之擴增子的溫度以執行第二階段之擴增以進一步擴增該 -42- 201209159 標靶核酸序列。 GPC033.2 較佳地,該核酸擴增區係經配置 一階段擴增期間用於進行全基因組擴增,並在第二 增期間擴增預定之核酸序列。 GPC033.3 較佳地,該核酸擴增區係經配置 聚合酶鏈反應(PCR )擴增且該熱控制包括將該樣 循環。 GPC033.4 較佳地,該核酸擴增區係經配置 恆溫全基因組擴增且該熱控制包括將樣本保持在預 度。 GPC033.5 .較佳地,該核酸擴增區具有用於 一階段擴增之第一核酸擴增區,以及位在該第一核 區下游之第二核酸擴增區以執行第一階段擴增。 GPC033.6 較佳地,該第一核酸擴增區係經 擴增第一預定核酸序列且該第二核酸擴增區係經配 增第二預定核酸序列,該第一預定核酸序列爲該第 核酸序列之子部分。 GPC033.7 較佳地,該試劑貯槽包括第一試 和第二試劑貯槽,該第一試劑貯槽含有用於在第一 增區中進行擴增前添加入樣本中之第一 dNTP、引 合酶及緩衝液,而該第二試劑貯槽含有用於在該第 擴增區中進行擴增前添加入來自該第一核酸擴增區 子中的第二dNTP、引子、聚合酶及緩衝液。 GPC03 3.8 較佳地,該等試劑貯槽各具有一 以在第 階段擴 以用於 本之熱 以用於 定之溫 執行第 酸擴增 配置以 置以擴 二預定 劑貯槽 核酸擴 子、聚 二核酸 之擴增 帶有小 -43- 201209159 孔之表面張力閥,該小孔係經配置以固定將液態試劑保留 在其中之彎液面,直到與樣本接觸而移除該彎液面。 GPC033.9 較佳地,該第一核酸擴增區具有多個延 長之擴增室,各室中具有至少一個平行於該擴增室之縱向 延伸區的延長加熱器。 GPCO33.10 較佳地,該核酸擴增區具有微通道且該 等延長之擴增室爲該微通道之各區。 GPC033.il 較佳地,該微通道具有由一系列寬曲流 所形成之彎曲構型,各個該寬曲流爲形成其中一個延長擴 增室的通道區。 GPC033.1 2 較佳地,該LOC裝置亦具有與該至少 一個用於在擴增期間控制該樣本之溫度的加熱器連接之 CMOS電路。 GPC033.1 3 較佳地,該L0C裝置亦具有至少一個 與C Μ 0 S電路連接之溫度感測器以反饋控制該至少一個加 熱器。 GPC03 3 . 1 4 較佳地,該L0C裝置亦具有用於與該 標靶核酸序列雜交之探針陣列以形成探針-標靶雜交物。 GPC033.15 較佳地,該L0C裝置亦具有用於偵測 該探針-標靶雜交物之光感測器。 GPC03 3 . 1 6 較佳地,該光感測器爲與該探針陣列配 準之光二極體。 GPC033.17 較佳地,該在第一核酸擴增區中之液體 的體積少於400奈升。 201209159 GPC033.1 8 較佳地,該PCR微通道之與流動向呈 橫切向的截面面積爲1平方微米至40 0平方微米。 GPC033.19 較佳地,各通道區具有多個加熱器,各 加熱器經延長並沿著通道區端至端地放置,且該CMOS電 路係經配置成用於獨立操作該多個延長加熱器中的各加熱 器。 GPCO3 3.20 較佳地,該LOC裝置亦具有支撐基板 ,其中該CMOS電路係位於該探針陣列與該支撐基板之間 〇 此L Ο C裝置具有由序列專一性擴增提供之優點,包 括:由擴增提供之敏感度;廣泛之動態範圍;及對標靶 DNA序列之高專一性。兩階段之擴增容許將規程進一步 細化以進行高度敏感偵測,此高度敏感之偵測可忍受存有 可能干擾單階段擴增方案之類似的遺傳物質及化學污染物 。該來自第一擴增階段之產物亦可以再次分以在第二擴增 階段進行多個平行反應,此可增加該LOC裝置之多工能 力。具有平行反應部位之LOC裝置設計可在非常小之樣 本體積上並行執行診斷試驗,此可增加所取得之診斷數據 的範圍和品質。在專一性偵測或額外之擴增前的非專一性 核酸擴增可允許對罕見標靶具有更高之敏感性。在更多專 一性步驟前之非專一性擴增亦藉由減少在現有之診斷面板 上增加新測試時所需之額外硏發量來增加該LOC裝置平 台的多功能性。 GPC034.1 本發明此觀點提供用於基因分析包含標 -45- 201209159 靶核酸序列之樣本的晶片上實驗室(L0C)裝置’該L0C 裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之dNTP、引 子、聚合酶及緩衝液; 第一核酸擴增區’其係用於樣本之熱控制以擴增該標 靶核酸序列;及 第二核酸擴增區,其係用於控制來自該第一核酸擴增 區之擴增子的溫度以進一步擴增該標靶核酸序列。 GPC034.2 較佳地,該第一核酸擴增區係經配置以 用於全基因組擴增,且該第二核酸擴增區係經配置以用於 擴增預定之核酸序列。 GPC034.3 較佳地,該第一核酸擴增區係經配置以 用於聚合酶鏈反應(PCR )擴增且該熱控制包括該樣本之 熱循環。 GPC034.4 較佳地,該第一核酸擴增區係經配置以 用於恆溫全基因組擴增且該熱控制包括將該樣本保持在預 定之溫度。 GPC034.5 較佳地,該第二核酸擴增區係爲經配置 以擴增預定之核酸序列的PCR核酸擴增區。 GPC034.6 較佳地,該第一核酸擴增區係經配置以 擴增第一預定核酸序列且該第二核酸擴增區係經配置以擴 增第二預定核酸序列,該第一預定核酸序列爲該第二預定 核酸序列之子部分。 -46 - 201209159 GPC034.7 較佳地,該試劑貯槽包括第一試劑貯槽 和第二試劑貯槽,該第一試劑貯槽含有用於在該第一核酸 擴增區中進行擴增前添加入樣本中之第一 dNTP、引子、 聚合酶及緩衝液,而該第二試劑貯槽含有用於在該第二核 酸擴增區中進行擴增前添加入來自該第一核酸擴增區之擴 增子中的第二dNTP、引子、聚合酶及緩衝液。 GPC034.8 較佳地,該試劑貯槽各具有一帶有小孔 之表面張力閥,該小孔係經配置以固定將液態試劑保留在 其中之彎液面,直到與樣本接觸而移除該彎液面。 GPC034.9 較佳地,該第一核酸擴增區具有多個延 長之擴增室,各室中具有至少一個平行於該擴增室之縱向 延伸區的延長加熱器。 GPC034.1 0 較佳地,該核酸擴增區具有微通道且該 等延長之擴增室爲該微通道之各區。 GPC034.il 較佳地,該微通道具有由一系列寬曲流 所形成之彎曲構型,各個該寬曲流爲形成其中一個延長擴 增室的通道區。Highlights/Fluorescence-Resonance-Energy-Transfer- FRET. Html -17- 201209159 Point-of-care (ΡΟΙΝΤ-OF-CARE) Molecular Diagnostics Although molecular diagnostic tests offer many benefits, the growth of such tests in clinical laboratories is still slower than expected and is not the mainstream of laboratory medical testing. This is primarily because nucleic acid testing results in higher complexity and cost than tests that do not involve nucleic acid methods. The extensive use of molecular diagnostic testing in clinical settings is closely related to the development of instrumentation, which must significantly reduce costs, provide rapid (automatic) analysis from initial (sample processing) to final (resulting), and does not require The operation of a large human intervention. Point-of-care technology provides care in the physician's office, on the hospital bed side, or even in a consumer-focused home environment. This technology offers many advantages including: • Quick results for immediate treatment and improved care quality • Very small amount The sample test obtains the number of laboratories • Reduces clinical workload • Reduces laboratory workload and reduces office efficiency by reducing administrative work. • By reducing the number of hospital stays, outpatients can be diagnosed at the time of initial diagnosis and reduced sample processing, Storage and delivery to improve the cost per patient • Helps clinical management decisions such as infection control and antibiotic use. Laboratory wafer (LOC)-based molecular diagnostics provide micro-fluid technology-based molecular diagnostic systems that can be automated and accelerated. A device for molecular diagnostic analysis. The shorter detection time is mainly due to the fact that the sample body required by -18-201209159 is less active and the low-cost built-in cascaded diagnostic method steps in the microfluidic device. The volume of nanoliters and microliters also reduces reagent consumption and cost. Laboratory chip (LOC) devices are common in the form of microfluidic devices. The LOC device has an MST structure within the MST layer for integrating fluid processing onto a single support substrate (typically helium). The unit cost of each LOC device is very low by manufacturing the VLSI (very large integrated circuit) lithographic technique of the semiconductor industry. However, controlling the flow of fluid through the L 0 C device, adding reagents, controlling reaction conditions, and the like requires a large external hydroelectric engineering device. The connection of L0C devices to these external devices greatly limits the molecular diagnostics of L0C devices for use in a laboratory environment. The cost of external instruments and their operational complexity are excluded. L0C-based molecular diagnostics are the choice in a fixed-point care environment. In view of this, there is a need for a molecular diagnostic system based on a L0C device that can be used for fixed-point care. SUMMARY OF THE INVENTION Various aspects of the present invention are now described in the following paragraphs. GDI010. 1 This aspect of the invention provides a wafer-on-lab (L0C) device for removing cell debris from a biological sample, the LOC device comprising: a dialysis zone having a large component channel, a small component channel, and a channel and a small component An aperture between the channels for fluid communication, the large component channel having an upstream end for receiving a biological sample, the biological sample being a liquid carrying a mixture of cell debris and a target molecule, the small component channel having -19- 201209159 is connected to the downstream end of the hybridization zone, which has a probe array for target molecule reaction to form a probe-target complex; wherein the pore size is such that the target molecule can flow into the small component channel 'But retain cell debris larger than the threshold 値 size in this large component channel. GDI0 1 0. 2 Preferably, the large component channel and the small component channel have a common side wall, and the plurality of small holes are a series of flow ports extending through the common side wall, each flow port having a small passage to the component channel The opening is thickened into a large opening leading to the small component passage. GDI010. Preferably, the LOC device also has a plurality of small component channels each having a common side wall with the plurality of channels and fluidly coupled to the bulk channel by a series of flow ports. GDI010. Preferably, the small openings of each of the flow openings have a height and a width dimension between 1 and 8 microns. GDI010. Preferably, the LOC device also has a waste storage tank, wherein the large component passage has a downstream end connected to the waste storage tank. GDIO10. Preferably, the LOC device also has a cleavage region upstream of the dialysis zone, wherein the target molecule is a target nucleic acid sequence and the cleavage region is configured to lyse cells in the biological sample and release the target therein Nucleic acid sequence. GDIO10. Preferably, the LOC device also has a nucleic acid amplification region for amplifying the target nucleic acid sequence. GDI010. Preferably, the probe is configured to hybridize to the target nucleic acid sequence to form a probe-target hybrid that produces fluorescence upon re-stress luminescence. -20- 201209159 GDIO 1 0. Preferably, the LOC device also has a CMOS circuit using a nucleic acid amplification region, the CMOS circuit also having a photosensor that emits fluorescence from the probe-target hybrid. GDIO 1 0. Preferably, the hybridizing region has an array of hybridization chambers comprising probes hybridized with a nucleic acid sequence. GDIO10. Il Preferably, the photosensor is an array of adjacent photodiodes. GDI010. Preferably, the CMOS circuit has digital memory for data associated with the processing of the fluid, details of the probe and the location of each probe in the array of hybridization chambers. GDIO 1 0.  Preferably, the CMOS circuit has a temperature sensor for sensing the temperature of the hybridization chamber array. GDI010. Preferably, the LOC device also has a circuit controlled heater that utilizes temperature feedback to maintain the probe and target nucleic acid sequence at hybridization temperature GDI010. Preferably, the photodiode is less than 249 microns from the pair of chambers. GDI010. Preferably, the probe is a fluorescent resonance energy FRET probe. GDI010. Preferably, the hybridization chamber has an optical optical window positioned to contact the FRET probe with excitation light. GDI010. Preferably, the FRET probes each have a cluster and a quencher configured to emit a fluorescent signal to the photodiode at the FRET probe-target hybrid for manipulation of the useful In the sense of sharing with the target hybrid chamber in the storage and data including a small amount of hybridization with the CMOS sensor (window, this one fluorescent needle formation should be stimulated - 21 - 201209159 luminescence, the CMOS The circuitry is configured to cause the photodiode to be activated after a predetermined delay time after the excitation light is extinguished, the digital inclusion comprising the pre-arranged delay. GDIO10. Preferably, the CMOS circuit has a bond pad for electrically connecting an external device and is configured to convert an output from the photodiode into a signal representative of the FRET probe that hybridizes to the target nucleic acid sequence and to signal the signal Provided to the bond pad for transmission to an external device. GDIO 10. Preferably, the LOC device also has a plurality of reservoirs for holding the liquid reagent for addition to the sample. The design of this LOC device has the advantage of directly selecting the sample components containing the target. The design of the LOC device has the advantage of enriching the effective target concentration in the portion of the sample to be further processed by the LOC device. The design of this LOC device has the advantage of removing components of the sample that may inhibit subsequent analysis steps. The design of the LOC device has the advantage of removing undesirable components of the treated mixture which may interfere with later target detection. The design of this LOC device has the advantage of removing components of the mixture that may block cells or joints in the LOC device and degrade operation. GDI01 1. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for removing cell debris from a biological sample comprising a target nucleic acid sequence, the LOC device comprising: a dialysis zone having a large component channel, a small component a channel and a plurality of apertures for fluid communication between the large component channel and the small component channel, the large component channel having an upstream end for receiving the biological sample, the biological sample -22-201209159 a liquid of a mixture of cell debris and a target nucleic acid sequence and having a downstream end for ligating a hybridization region with a probe array hybridized to a target nucleic acid sequence to form a probe-target complex Wherein the pores are sized to allow the target nucleic acid sequence to flow into the small component channel, but retain cell fragments that are larger than the threshold size in the large component channel. GDI01 1. 2 Preferably, the large component channel and the small component channel have a common side wall, and the plurality of small holes are a series of flow ports extending through the common side wall, and each flow port has a passage to the large component channel. Small openings and tapering into large openings leading to small component channels. GDI01 1. Preferably, the L 0 C device also has a plurality of small component channels each having a common side wall with the plurality of channel channels and fluidly coupled to the bulk channel via a series of flow ports. GDI01 1. Preferably, the small openings of the respective flow openings have a height and width dimension between 1 and 8 microns. GDI011. Preferably, the LOC unit also has a waste storage tank' wherein the large component passage has a downstream end connected to the waste storage tank. GDI011. Preferably, the LOC device also has a cleavage region upstream of the amplification region, wherein the cleavage region is configured to lyse cells in the biological sample and release the target nucleic acid sequence therein. GDI011. Preferably, the LOC device also has a nucleic acid amplification region for amplifying the target nucleic acid sequence. GDI011. Preferably, the LOC device also has a CMOS circuit for manipulating the nucleic acid amplification region, the CMOS circuit also having light for sensing the fluorescence emitted from the probe-target hybrid by Sense -23-201209159 Sensor. GDI011. Preferably, the hybridizing region has an array of hybridization chambers comprising probes for hybridization to the target nucleic acid sequence. GDI01 1. Preferably, the photosensor is an array of photodiodes adjacent to each of the hybridization chambers. GDI011. Il. Preferably, the CMOS circuit has a digital register for storing data associated with the processing of the fluid, the data including details of the probe and the location of each probe in the array of hybrid chambers. GD 1011. Preferably, the CMOS circuit has at least one temperature sensor for sensing the temperature of the array of hybridization chambers. GDI011. Preferably, the LOC device also has a heater controlled by the CMOS circuit that utilizes feedback from the temperature sensor to maintain the probe and target nucleic acid sequences at the hybridization temperature. GDI01 1. Preferably, the photodiode is less than 249 microns from the corresponding hybridization chamber. GDIO 11. Preferably, the probe is a fluorescence resonance energy transfer (FRET) probe. GDI011. Preferably, the hybridization chamber has an optical window positioned such that the FRET probe contacts the excitation light. GDI011. Preferably, the FRET probes each have a fluorophore and a quencher configured to emit a fluorescent signal to the photodiode when the FRET probe forms a probe-target hybrid. The CMOS circuit is configured to cause the photodiode to be activated after a predetermined delay time after the excitation light is extinguished, the digital body including the delay of the pre--24-201209159 arrangement. GDI01 1. 18. Preferably, the CMOS circuit has a bond pad for electrically connecting an external device and is configured to convert an output from the photodiode into a signal representative of a FRET probe that hybridizes to the target nucleic acid sequence, and the signal is Provided to the bond pad for transmission to an external device. GDI01 1. Preferably, the LOC device also has a plurality of reservoirs for holding the liquid reagent for addition to the sample. GDI011. Preferably, the reagent reservoirs each have a surface tension valve having a small aperture configured to hold a meniscus in which the liquid reagent is held until removed from contact with the sample. The meniscus and the liquid reagent are added to the sample stream. The design of this L0C device has the advantage of removing sample components that may inhibit later analysis steps. The design of the LOC device has the advantage of removing unwanted components of the treated mixture which may interfere with later target detection. The design of this LOC device has the advantage of removing components of the mixture that may block the cells or joints in the LOC device and degrade the operation. GDI013. 1 This aspect of the invention provides a wafer-on-a-lab (LOC) device for removing cell debris from a biological sample comprising a target nucleic acid sequence, the LOC device comprising: an amplification region for amplifying the nucleic acid a dialysis zone having a large component channel, a small component channel, and a plurality of small holes for fluid communication between the large component channel and the small component channel, the large component channel being configured to After amplifying the nucleic acid in the amplification region, the biological sample is used to receive the liquid sample of the cell debris and the target nucleic acid sequence, and the size of the small hole allows the target nucleic acid sequence to flow into the small component channel. However, cell debris that is larger than the threshold 値 size in the large component channel is retained; and a probe array that is in fluid communication with the small component channel to hybridize with the target nucleic acid sequence to form a probe-target hybrid. GDIO 1 3. 2 Preferably, the large component channel and the small component channel have a common side wall, and the plurality of small holes are a series of flow ports extending through the common side wall, and each flow port has a passage to the large component channel. Small openings and tapering into large openings leading to small component channels. GDIO 1 3. Preferably, the dialysis zone has a plurality of small component channels each sharing a common side wall with the plurality of channels and fluidly coupled to the bulk channel via a series of flow ports. GDI01 3. Preferably, the small openings of the respective flow openings have a height and width dimension between 1 and 8 microns. GDI013. Preferably, the LOC device also has a waste storage tank, wherein the large component passage has a downstream end connected to the waste storage tank. GDI013. Preferably, the LOC device also has a cleavage region upstream of the amplification region, wherein the cleavage region is configured to lyse cells in the biological sample and release the target nucleic acid sequence therein. GDI013. Preferably, the probe-target hybrid produces fluorescence upon response to excitation light. GDI013. Preferably, the LOC device also has a CMOS circuit for manipulating the nucleic acid amplification region, the CMOS circuit also having a photosensor for sensing the fluorescence emitted from the probe-target hybrid by 201209159 . GDI013. Preferably, the hybridizing region has an array of hybridization chambers comprising probes for hybridization to the target nucleic acid sequence. GDIO 1 3 · 1 0 Preferably, the photosensor is an array of photodiodes adjacent to each of the hybridization chambers. GDI013. Il. Preferably, the CMOS circuit has digital memory for storing data associated with the processing of the fluid, the data including details of the probe and the location of each probe in the array of hybrid chambers. GDI013. Preferably, the CMOS circuit has at least one temperature sensor for sensing the temperature of the array of hybridization chambers. GDI013. Preferably, the LOC device also has a heater controlled by the CMOS circuit that utilizes feedback from the temperature sensor to maintain the probe and target nucleic acid sequences at the hybridization temperature. GDI013. Preferably, each photodiode is less than 249 microns from the corresponding hybridization chamber. GDI013. Preferably, the probe is a fluorescence resonance energy transfer (FRET) probe. GDI013. Preferably, the hybridization chamber has an optical window positioned such that the FRET probe contacts the excitation light. GDI013. Preferably, the FRET probes each have a fluorophore and a quencher configured to emit a fluorescent signal to the photodiode when the FRET probe forms a probe-target hybrid. The CMOS circuit is configured to cause the photodiode to be activated after a predetermined delay time after the excitation light is extinguished, the digital memory including the predetermined delay of -27-201209159. GDIO 1 3. Preferably, the CMOS circuit is coupled to a bond pad of the external device and is configured to exchange FRET from the light to indicate hybridization with the target nucleic acid sequence to provide the signal to the bond pad for transmission to the external device GDIO 1 .  Preferably, the LOC device maintains a liquid reagent for addition to a reservoir in the sample. GDIO13. Preferably, the reagent reservoir is a port valve; wherein the outlet valve is a surface tension valve each having a system configured to retain a liquid reagent therein to remove the meniscus after contact with the sample and to Liquid Test The design of this LOC device has the advantage of directly selecting the package components. The design of this LOC device has the advantage of shifting the undesired components of the present, which is not desired for subsequent target detection. The design of this LOC device has the advantage of being able to inhibit the components of later analysis steps. This metering has the undesired component of removing the undesired component of the processed sample that may interfere with later target detection. The design has the advantage of removing the components of the mixture that may block the L Ο C joint and degrade the operation. GPC027. 1 This aspect of the invention provides a wafer-on-lab (a signal having an output transducing probe for an electrical diode) comprising a sample of a target nucleic acid sequence, and having a plurality of signals for having a corresponding one An orifice, the meniscus of the orifice, until the agent is added to the sample containing the target in the sample stream, except that the treated component may interfere with the advantage of removing the components of the LOC device in the sample. a chamber in the device of the L〇C device or a device for genetic analysis package L0C), the 201209159 L〇C device comprising: a sample inlet for receiving the sample; a plurality of reagent storage tanks for inclusion in the sample Buffer, dNTP, primer, and polymerase to form an amplification mixture; and a nucleic acid amplification region for maintaining the amplification mixture at a predetermined temperature during isothermal amplification of the target nucleic acid sequence. GPC027. Preferably, the nucleic acid amplification region has a plurality of elongated amplification chambers, each chamber having at least one elongated heater extending parallel to the longitudinal extent of the amplification chamber. GPC027. Preferably, the nucleic acid amplification region has a microchannel and the extended amplification chamber is the region of the microchannel. GPC027. Preferably, the microchannel has a curved configuration formed by a series of wide meandering streams, each broad stream being a channel region forming one of the elongated amplification chambers. GPC027. Preferably, the LOC device also has a CMOS circuit coupled to the at least one heater to operate the at least one heater during constant temperature amplification. GPC027. Preferably, a plurality of elongated heaters are provided along each of the wide channel of each meandering stream. GPC027. Preferably, the plurality of elongated heaters are placed end to end along the channel region. GPC027. 8 Preferably, the extension heater operates independently. GPC027. Preferably, the LOC device also has at least one temperature sensor coupled to the CMOS circuit for feedback control of the extended heater. -29- 201209159 GPCO27. Preferably, the nucleic acid amplification region has an active valve for retaining liquid in the nucleic acid amplification region during constant temperature amplification. GPC027. Il preferably, the active valve is a boiling start valve having a meniscus anchor for retaining the liquid in the nucleic acid amplification zone, the boiling start valve also having a valve heater for heating the liquid to boil, Thereby, the meniscus is separated from the meniscus anchor and the liquid flow driven by capillary action is resumed from the nucleic acid amplification zone. GPC027. Preferably, the LOC device also has a liquid sensor downstream of the active valve, the liquid sensor being configured to detect liquid in the liquid sensor position to feedback control the valve heater. GPC027. Preferably, the meniscus anchor is a small hole and the valve heater is positioned around the aperture. GPC027. Preferably, the LOC device also has a probe array for hybridization to the target nucleic acid sequence to form a probe-target hybrid. GPC027. Preferably, the LOC device also has a photosensor for detecting the probe-target hybrid. GPC027. Preferably, the photosensor is an optical diode that is associated with the array of probes. GPC027. Preferably, the volume of the liquid in the nucleic acid amplification zone is less than 400 nanoliters. GPC027. Preferably, the PCR microchannel has a cross-sectional area transverse to the flow direction of from 1 square micron to 400 square micrometers. GPC027. Preferably, the LOC device also has a dialysis zone upstream of the nucleic acid amplification zone, wherein the sample comprises components of different sizes, and the -30-201209159 zone is configured to set a component less than a predetermined threshold More than a predetermined valve component is separated. GPCO27. Preferably, the nucleic acid sequence is contained in cells and organisms having a size less than a threshold size. This allows for more sensitive and specific detection of target DNA. This LOC has the advantage of not requiring thermal cycling, which simplifies thermal control electronics, allows for uniform thermal control and reduces material degradation in the LOC device. The design of this device will reduce the degree of evaporation during operation and improve the control of the physical and chemical conditions in the device. GPC028. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for a sample containing a target nucleic acid sequence. The LOC device comprises: a sample inlet for receiving the sample; a plurality of reagent storage tanks for inclusion a dNTP, a recombinant enzyme, a DNA polymerase, and a buffer in the sample to form an amplification mix; and a nucleic acid amplification region for use in the recombinant enzyme synthase amplification (RP A ) of the target nucleic acid sequence The amplification mixture is kept under predetermined conditions. GPC028. Preferably, the nucleic acid amplification region has a plurality of extension chambers, each chamber having at least one elongated heater parallel to the longitudinal region of the amplification chamber. GPC028. Preferably, the nucleic acid amplification region has a microchannel or the like to extend the amplification chamber to each region of the microchannel. The pre-device of the 许 LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO LO Preferably, the microchannel has a curved configuration formed by a series of wide meandering flows, each of which is a channel region forming one of the elongated expansion chambers. GPC028. Preferably, the LOC device also has a CMOS circuit coupled to the at least one heater to operate the at least one heater during the RPA. GPC028. Preferably, a plurality of elongated heaters are provided along each of the wide channel of each meandering stream. GPC028. Preferably, the plurality of elongated heaters are placed end to end along the channel region. GPC028. 8 Preferably, the extension heater operates independently. GPC028. Preferably, the LOC device also has at least one temperature sensor coupled to the CMOS circuit for feedback control of the extended heater. GPCO28. Preferably, the nucleic acid amplification region has an active valve for retaining liquid in the nucleic acid amplification region during constant temperature amplification. GPC028. Il preferably, the active valve is a boiling start valve having a meniscus anchor for retaining the liquid in the nucleic acid amplification zone, the boiling start valve also having a valve heater for heating the liquid to boil, Thereby, the meniscus is separated from the meniscus anchor and the liquid flow driven by capillary action is resumed from the nucleic acid amplification zone. GPC028. Preferably, the LOC device also has a liquid sensor downstream of the active valve, the liquid sensor being configured to detect liquid in the liquid sensor position to feedback control the valve heater. GPC028. Preferably, the meniscus anchor is a small hole and the valve 201209159 door heater is positioned around the aperture. GPC028. Preferably, the LOC device also has a probe array for hybridizing to the target nucleic acid sequence to form a probe-target hybrid. GPC028. Preferably, the LOC device also has a photosensor for detecting the probe-target hybrid. GPC028. Preferably, the photosensor is an optical diode that is associated with the array of probes. GPC028. Preferably, the volume of the liquid in the nucleic acid amplification zone is less than 400 nanoliters. GPC028. Preferably, the PCR microchannel has a cross-sectional area transverse to the flow direction of from 1 square micron to 400 square micrometers. GPC028. Preferably, the LOC device also has a dialysis zone upstream of the nucleic acid amplification zone, wherein the sample comprises components of different sizes, the dialysis zone being configured to set a component less than a predetermined threshold and greater than a predetermined valve The components are separated. GPCO2 8. Preferably, the nucleic acid sequence is contained in cells and organisms that are less than the predetermined threshold. This LOC device has the advantage of not requiring thermal cycling, which simplifies thermal control electronics, allows for more uniform thermal control and reduces material degradation in the LOC device. The design of this LOC device will reduce the extent of evaporation during operation and improve control of the physical and chemical conditions in the LOC device. This LOC device has the advantage of being provided by sequence-specific amplification, including: sensitivity provided by amplification; broad dynamic range; and high specificity for target DNA sequences. Recombinant enzyme polymerase amplification has the added benefit of amplifying from a single copy of the target -33-201209159 nucleic acid to a detectable level within 15 minutes. This LOC device has the advantage of being less complex in design and manufacture, which will result in a simpler, more reliable manufacturing process. This LOC device has the advantage of using fewer chemical steps during operation, which results in a simpler, more reliable operation. GPC029. 1 This aspect of the invention provides a wafer on-lab (LOC) device for genetically analyzing a sample comprising a target nucleic acid sequence, the LOC device comprising: a sample inlet for receiving the sample; a plurality of reagent reservoirs comprising a dNTP, a primer, a nicking enzyme, a buffer, and a DNA polymerase added to the sample to form an amplification mixture; and a nucleic acid amplification region for maintaining the amplification mixture during constant temperature amplification of the target nucleic acid sequence At a predetermined temperature. GPC029. Preferably, the nucleic acid amplification region has a plurality of elongated amplification chambers, each chamber having at least one elongated heater extending parallel to the longitudinal extent of the amplification chamber. GPC029. Preferably, the nucleic acid amplification region has a microchannel and the extended amplification chamber is a region of the microchannel. GPC029. Preferably, the microchannel has a curved configuration formed by a series of wide meandering flows, each of which is a channel region forming one of the elongated expansion chambers. GPC029. Preferably, the LOC device also has a CMOS 201209159 circuit coupled to the at least one heater for manipulating the sample during constant temperature amplification. GPC029. Preferably, a plurality of elongated heaters are provided along each of the wide channel of each meandering stream. GPC029. Preferably, the plurality of elongated heaters are placed end to end along the channel region. GPC029. 8 Preferably, the extension heater operates independently. GPC029. Preferably, the LOC device also has at least one temperature sensor coupled to the CMOS circuit for feedback control of the extended heater. GPCO29. Preferably, the nucleic acid amplification region has an active valve for retaining liquid in the nucleic acid amplification region during constant temperature amplification. GPC029. Il preferably, the active valve is a boiling start valve having a meniscus anchor for retaining the liquid in the nucleic acid amplification zone, the boiling start valve also having a valve heater for heating the liquid to boil, The meniscus is removed from the meniscus anchor and the flow driven by capillary action is resumed from the nucleic acid amplification zone. GPC029. 1 2 Preferably, the LOC device also has a liquid sensor downstream of the active valve, the liquid sensor being configured to detect liquid in the liquid sensor position to feedback control the valve heater. GPC029. Preferably, the meniscus anchor is a small hole and the valve heater is positioned around the aperture. GPC029. Preferably, the LOC device also has a probe array for hybridization to the target nucleic acid sequence to form a probe-target hybrid. GPC029. Preferably, the LOC device also has a photosensor for detecting the probe-target hybrid. -35- 201209159 GPC029. Preferably, the photosensor is an optical diode that is associated with the array of probes. GPC029. Preferably, the volume of the liquid in the nucleic acid amplification zone is less than 400 nanoliters. GPC029. Preferably, the PCR microchannel has a cross-sectional area transverse to the flow direction of from 1 square micron to 400 square micrometers. GPC029. Preferably, the LOC device also has a dialysis zone upstream of the nucleic acid amplification zone, wherein the sample comprises components of different sizes, the dialysis zone being configured to use a component less than a predetermined threshold 与 and a predetermined valve The components of the cockroach are separated. GPCO29. Preferably, the nucleic acid sequence is contained in cells and organisms that are smaller than the predetermined threshold size. This LOC device has the advantage of not requiring thermal cycling, which simplifies thermal control electronics, allows for more uniform thermal control and reduces material degradation in the L0C device. The design of this LOC device will reduce the extent of evaporation during operation and improve control of the physical and chemical conditions in the LOC device. This LOC device has the advantage of being provided by sequence-specific amplification, including: sensitivity provided by amplification; broad dynamic range; and high specificity for target DNA sequences. GPCO30. 1 This aspect of the invention provides a wafer on-lab (LOC) device for genetically analyzing a sample comprising a target nucleic acid sequence, the LOC device comprising: a sample inlet for receiving the sample; a plurality of reagent reservoirs comprising Adding dNTPs into the sample, introducing 201209159, reverse transcriptase, RNA polymerase, and buffer to form an amplification mixture: and a nucleic acid amplification region for use in the constant amplification of the target nucleic acid sequence The addition mixture is maintained at a predetermined temperature. GPCO30. Preferably, the nucleic acid amplification region has a plurality of elongated amplification chambers, each chamber having at least one elongated heater extending parallel to the longitudinal extent of the amplification chamber. GPCO30. Preferably, the nucleic acid amplification region has a microchannel and the extended amplification chamber is the region of the microchannel. GPCO30. Preferably, the microchannel has a curved configuration formed by a series of wide meandering streams, each broad stream being a channel region forming one of the elongated amplification chambers. GPCO30. Preferably, the LOC device also has a CMOS circuit that operates the at least one heater connection during constant temperature amplification. GPCO30. Preferably, a plurality of elongated heaters are provided along each of the wide channel of each meandering stream. GPCO30. Preferably, the plurality of elongated heaters are placed end to end along the channel region. GPCO30. 8 Preferably, the extended heater is operated independently GPCO30. Preferably, the LOC device also has at least one temperature sensor coupled to the CMOS circuit for feedback control of the extended heater. GPC030. Preferably, the nucleic acid amplification region has an active valve for retaining liquid in the nucleic acid amplification region during constant temperature amplification. GPCO30. Il preferably, the active valve is a boiling start valve having a meniscus anchor for retaining the liquid in the nucleic acid amplification zone from -37 to 201209159, the boiling start valve also having a boiling boiling liquid for heating The valve heater is such that the meniscus is disengaged from the meniscus anchor and the flow driven by the capillary action is resumed from the nucleic acid amplification zone. GPCO30. Preferably, the LOC device also has a liquid sensor downstream of the active valve, the liquid sensor being configured to detect liquid in the liquid sensor position to feedback control the valve heater. GPCO30. Preferably, the meniscus anchor is a small aperture and the valve heater is positioned around the aperture. GPCO30. Preferably, the LOC device also has a probe array for hybridization to the target nucleic acid sequence to form a probe-target hybrid. GPCO30. Preferably, the LOC device also has a photosensor for detecting the probe-target hybrid. GPCO30. Preferably, the photo sensor is an optical diode that is associated with the probe array. - GPCO30. Preferably, the volume of the liquid in the nucleic acid amplification zone is less than 400 nanoliters. GPCO30. Preferably, the PCR microchannel has a cross-sectional area transverse to the flow direction of from 1 square micron to 40 square micrometers. GPCO30. Preferably, the LOC device also has a dialysis zone upstream of the nucleic acid amplification zone, wherein the sample comprises components of different sizes, the dialysis zone being configured to use a component less than a predetermined threshold 与 greater than a predetermined valve 値The components are separated. GPC030. Preferably, the nucleic acid sequence is contained in cells and organisms that are smaller than the predetermined size of the 201209159. This LOC device has the advantage of not requiring thermal cycling, which simplifies thermal control electronics, allows for more uniform thermal control and reduces material degradation in the LOC device. The design of this LOC device will reduce the extent of evaporation during operation and improve control of the physical and chemical conditions in the LOC device. This LOC device has the advantage of being provided by sequence-specific amplification, including: sensitivity provided by amplification; extensive dynamic range; and high specificity for target RNA sequences. I GPC031. 1 This aspect of the invention provides a wafer-on-lab (LOC) device for genetically analyzing a nucleic acid sequence in a sample, the LOC device comprising: a sample inlet for receiving the sample; a first polymerase reaction (PCR) region, Is for thermally cycling a first PCR mixture consisting of dNTPs, primers and buffers with a sample and a polymerase to amplify the nucleic acid sequence; and a second PCR region located downstream of the first PCR region for use A second PCR mixture consisting of dNTPs, primers and buffers with a polymerase and at least some of the amplicons from the first PCR region is thermally cycled. GPC031. Preferably, the first PCR region has an active valve for retaining liquid in the first PCR region during amplification of the nucleic acid sequence in the sample. GPC03 1. Preferably, the active valve is a boiling start valve having a meniscus anchor for retaining the liquid in the first PCR zone, the boiling start valve also having a valve heater for heating the liquid to boil From -39 to 201209159, the meniscus is disengaged from the meniscus anchor and the flow driven by capillary action is resumed from the first PCR zone. GPC031. Preferably, the LOC device also has a second PCR mixture reservoir with an outlet valve and a second polymerase reservoir with an outlet valve for adding the PCR mixture and polymerase prior to amplification in the second PCR zone. In the amplicon from the first PCR region. GPC031. Preferably, the outlet valve is a surface tension valve, each of the surface tension valves having an aperture configured to hold a meniscus capable of holding a liquid reagent therein until after contact with the amplicon The meniscus is removed and the PCR mixture and polymerase are added to the amplicon flowing into the second PCR zone. GPC031. Preferably, the second PCR region has an active valve to retain the liquid in the second PCR region when the nucleic acid sequence in the amplicon from the first PCR region is amplified. GPC031. Preferably, the active valve is a boiling start valve having a meniscus anchor for retaining the liquid in the second PCR zone, the boiling start valve also having a valve heater for heating the liquid to boil, Thereby the meniscus is disengaged from the meniscus anchor and the flow driven by capillary action is resumed from the second PCR zone. GPC031. Preferably, the LOC device also has a hybridization region having a probe array for hybridization to a target nucleic acid sequence in the second PCR region amplicon. GPC03 1 . Preferably, the hybridization zone has a photosensor for detecting hybridization of the probes in the array of probes. -40- 201209159 GPCO31. Preferably, the LOC device also has a dialysis zone upstream of the second PCR and hybridization region, wherein the second PCR region comprises a nucleic acid sequence and a cell fragment, such that the dialysis zone is configured to be larger than the nucleic acid sequence. Cell debris. GPC031. Il preferably, the first PCR zone has a PCR microchannel for increasing the sample during the incubation period and at least one extension heater for thermally cycling the nucleic acid sequence therein, the extended heating being aligned with the PCR microchannel a row. GPC031. Preferably, the PCR mixture has a volume of K liters. GPC031. Preferably, the cross-sectional area of the PCR microchannel and the flow transverse direction is from 1 square micron to 400 square micrometers. GPC031. Preferably, the PCR microchannel has an inlet and a PCR outlet, and the PCR microchannel has at least one extended PCR chamber. GPC031. Preferably, the first PCR zone has a plurality of PCR chambers each formed by a respective region of a PCR microchannel having a curved configuration formed by a series of wide meandering flows, each broad meandering being shaped The channel area of an extended PCR chamber. GPC031. 16 Preferably, each channel zone has a plurality of extended twists GPC03 1. Preferably, the plurality of elongated heaters are placed along the end of the zone. GPC03 1. Preferably, the plurality of extended heaters are each expanded under the respective zones to expand in the sampler system 400 to form an extended channel into the heat exchanger channel independent of -41 - 201209159 operation. GPC03 1. Preferably, the LOC device also has at least one temperature sensor for feedback control of the extended heater. GPCO31. Preferably, the first PCR zone has a thermal cycle time of less than 30 seconds. This L0C device has the advantage of being provided by sequence-specific amplification, including: sensitivity provided by amplification; extensive dynamic range; and high specificity for target DNA sequences. Two-stage amplification allows the protocol to be further refined for highly sensitive detection, which is highly tolerant of similar genetic material and chemical contaminants that may interfere with a single-stage amplification protocol. The product from the first amplification stage can also be divided again to perform multiple parallel reactions in the second expansion stage, which can increase the multiplex capacity of the LOC unit. The L 0 C device with parallel reaction sites is designed to perform diagnostic tests in parallel on very small sample volumes, which increases the range and quality of the diagnostic data obtained. GPC033. 1 This aspect of the invention provides a wafer-on-a-lab (L0C) device for genetically analyzing a sample comprising a target nucleic acid sequence. The LOC device comprises: a sample inlet for receiving the sample; a plurality of reagent reservoirs for inclusion a dNTP, a primer, a polymerase, and a buffer into the sample; and a nucleic acid amplification region for thermal control of the sample for performing the first stage amplification of the target nucleic acid sequence, and for subsequent control from the first stage The temperature of the amplified amplicon is subjected to a second stage of amplification to further amplify the -42-201209159 target nucleic acid sequence. GPC033. Preferably, the nucleic acid amplification region is configured to perform whole genome amplification during the one-stage amplification and to amplify the predetermined nucleic acid sequence during the second increase. GPC033. Preferably, the nucleic acid amplification region is subjected to polymerase chain reaction (PCR) amplification and the thermal control comprises circulating the sample. GPC033. Preferably, the nucleic acid amplification region is configured for constant temperature whole genome amplification and the thermal control comprises maintaining the sample at a predetermined level. GPC033. 5 . Preferably, the nucleic acid amplification region has a first nucleic acid amplification region for one-stage amplification, and a second nucleic acid amplification region located downstream of the first nuclear region to perform the first-stage amplification. GPC033. Preferably, the first nucleic acid amplification region is amplified by a first predetermined nucleic acid sequence and the second nucleic acid amplification region is complemented by a second predetermined nucleic acid sequence, the first predetermined nucleic acid sequence being the nucleic acid sequence The son part. GPC033. Preferably, the reagent storage tank comprises a first test and a second reagent storage tank, the first reagent storage tank containing a first dNTP, a damp enzyme and a buffer for being added to the sample before amplification in the first addition zone And the second reagent storage tank contains a second dNTP, a primer, a polymerase, and a buffer added from the first nucleic acid amplification region before amplification in the first amplification region. GPC03 3. Preferably, the reagent storage tanks each have a first stage expansion for the heat for performing the acid acid amplification configuration at a predetermined temperature to expand the predetermined reagent storage tank nucleic acid extension, polydinucleotide A surface tension valve with a small -43-201209159 orifice is configured that is configured to hold the meniscus in which the liquid reagent remains, until the meniscus is removed by contact with the sample. GPC033. Preferably, the first nucleic acid amplification region has a plurality of elongated amplification chambers, each chamber having at least one elongated heater parallel to the longitudinal extension of the amplification chamber. GPCO33. Preferably, the nucleic acid amplification region has microchannels and the extended amplification chambers are regions of the microchannel. GPC033. Il Preferably, the microchannel has a curved configuration formed by a series of wide meandering flows, each of which is a channel region forming one of the elongated expansion chambers. GPC033. Preferably, the LOC device also has a CMOS circuit coupled to the at least one heater for controlling the temperature of the sample during amplification. GPC033. Preferably, the LOC device also has at least one temperature sensor coupled to the C Μ 0 S circuit for feedback control of the at least one heater. GPC03 3 .  Preferably, the LOC device also has a probe array for hybridization to the target nucleic acid sequence to form a probe-target hybrid. GPC033. Preferably, the LOC device also has a photosensor for detecting the probe-target hybrid. GPC03 3 .  Preferably, the photosensor is an optical diode that is associated with the array of probes. GPC033. Preferably, the volume of the liquid in the first nucleic acid amplification zone is less than 400 nanoliters. 201209159 GPC033. Preferably, the PCR microchannel has a cross-sectional area transverse to the flow direction of from 1 square micron to 40 square micrometers. GPC033. Preferably, each channel region has a plurality of heaters, each heater being extended and placed end to end along the channel region, and the CMOS circuit is configured for independent operation of the plurality of extension heaters Each heater. GPCO3 3. Preferably, the LOC device also has a supporting substrate, wherein the CMOS circuit is located between the probe array and the supporting substrate, and the L Ο C device has the advantages provided by sequence specific amplification, including: Increased sensitivity; broad dynamic range; and high specificity for target DNA sequences. Two-stage amplification allows the protocol to be further refined for highly sensitive detection, which is highly tolerant of similar genetic material and chemical contaminants that may interfere with a single-stage amplification protocol. The product from the first amplification stage can also be divided again to perform multiple parallel reactions in the second amplification stage, which can increase the multiplex capacity of the LOC device. LOC devices with parallel reaction sites are designed to perform diagnostic tests in parallel on very small sample volumes, which increases the range and quality of diagnostic data obtained. Non-specific nucleic acid amplification prior to specificity detection or additional amplification allows for greater sensitivity to rare targets. Non-specific amplification prior to more specific steps also increases the versatility of the LOC device platform by reducing the amount of additional bursts required to add new tests to existing diagnostic panels. GPC034. 1 This aspect of the invention provides a wafer-on-lab (L0C) device for genetically analyzing a sample comprising a target nucleic acid sequence of -45-201209159. The LOC device comprises: a sample inlet for receiving the sample; a plurality of reagent storage tanks, a dNTP, a primer, a polymerase, and a buffer for addition to a sample; a first nucleic acid amplification region' for thermal control of the sample to amplify the target nucleic acid sequence; and a second nucleic acid amplification region, It is used to control the temperature of the amplicon from the first nucleic acid amplification region to further amplify the target nucleic acid sequence. GPC034. Preferably, the first nucleic acid amplification region is configured for whole genome amplification and the second nucleic acid amplification region is configured to amplify a predetermined nucleic acid sequence. GPC034. Preferably, the first nucleic acid amplification region is configured for polymerase chain reaction (PCR) amplification and the thermal control comprises thermal cycling of the sample. GPC034. Preferably, the first nucleic acid amplification region is configured for constant temperature whole genome amplification and the thermal control comprises maintaining the sample at a predetermined temperature. GPC034. Preferably, the second nucleic acid amplification region is a PCR nucleic acid amplification region configured to amplify a predetermined nucleic acid sequence. GPC034. Preferably, the first nucleic acid amplification region is configured to amplify a first predetermined nucleic acid sequence and the second nucleic acid amplification region is configured to amplify a second predetermined nucleic acid sequence, the first predetermined nucleic acid sequence being a sub-portion of the second predetermined nucleic acid sequence. -46 - 201209159 GPC034. Preferably, the reagent storage tank comprises a first reagent storage tank and a second reagent storage tank, the first reagent storage tank containing a first dNTP, an introduction, which is added to the sample before amplification in the first nucleic acid amplification region a polymerase and a buffer, and the second reagent storage tank contains a second dNTP, an introduction molecule added to the amplicon from the first nucleic acid amplification region before amplification in the second nucleic acid amplification region , polymerase and buffer. GPC034. Preferably, the reagent reservoirs each have a surface tension valve with an orifice configured to secure a meniscus in which the liquid reagent remains, until the meniscus is removed by contact with the sample. GPC034. Preferably, the first nucleic acid amplification region has a plurality of elongated amplification chambers, each chamber having at least one elongated heater parallel to the longitudinal extension of the amplification chamber. GPC034. Preferably, the nucleic acid amplification region has microchannels and the extended amplification chambers are regions of the microchannel. GPC034. Il Preferably, the microchannel has a curved configuration formed by a series of wide meandering flows, each of which is a channel region forming one of the elongated expansion chambers.

GPC034.12 較佳地,該LOC裝置亦具有與該至少 一個在擴增期間控制該樣本之溫度的加熱器連接之CMOS 電路。 GPC034.13 較佳地,該L0C裝置亦具有至少一個 與該C Μ 0 S電路連接之溫度感測器以反饋控制該至少一個 加熱器。 GPC034.14 較佳地,該L〇C裝置亦具有用於與該 -47- 201209159 標靶核酸序列雜交之探針陣列以形成探針-標靶雜交物。 GPC034.15 較佳地,該LOC裝置亦具有用於偵測 該探針-標靶雜交物之光感測器。 GPC034.1 6 較佳地’該光感測器爲與該探針陣列配 準之光二極體。 GPC034.1 7 較佳地,該在第一核酸擴增區中之液體 的體積少於400奈升。 GPC034.1 8 較佳地’該PCR微通道之與流動向呈 橫切向的截面面積爲1平方微米至400平方微米。 GPC034.1 9 較佳地,各該通道區具有多個加熱器, 各加熱器經延長並沿著通道區端至端地放置,且該CMOS 電路係經配置成用於獨立操作該多個延長加熱器中的各加 熱器。 GPCO3 4.20 較佳地,該LOC裝置亦具有支撐基板 ,其中該CMOS電路係位於該探針陣列與該支撐基板之間 〇 此LOC裝置具有由序列專一性擴增提供之優點,包 括:由擴增提供之敏感度;廣泛之動態範圍;及對標靶 DNA序列之高專一性。兩階段之擴增容許將規程進一步 細化以進行高度敏感偵測’此高度敏感之偵測可忍受存有 可能千擾單階段擴增方案之類似的遺傳物質及化學污染物 。該來自第一擴增階段之產物亦可以再次分以在第二擴增 階段進行多個平行反應’此可增加該LOC裝置之多工能 力。在分開之LO C裝置模組上執行二個擴增階段具有在 201209159 擴增階段之間協助添加額外試劑的優點。此可增進將該 LOC裝置結果之敏感度和專一性化學最優化。LOC裝置 之設計具有平行反應部位,如此可在非常小之樣本體積上 並行執行診斷試驗,此可增加所取得之診斷數據的範圍和 品質。在專一性偵測或額外之擴增前的非專一性核酸擴增 可允許對罕見標靶具有更高之敏感性。在更多專一性步驟 前之非專一性擴增亦藉由減少在現有之診斷面板上增加新 測試時所需之額外硏發量來增加該LOC裝置平台的多功 能性。 【實施方式】 較佳體系之詳細描述 槪述 本槪述鑑定納入本發明體系之分子診斷系統的主要組 件。該系統結構及操作之綜合細節記載於下述專利說明書 中〇 參考第1' 2、3、112及113圖,該系統具有下列頂 層組件: 測試模組1 0及1 1具有典型之U S B記憶體的尺寸且 製造上非常低廉。測試模組1 〇及1 1各包含一個微流裝置 ’通常爲預先裝塡試劑之晶片上實驗室(L〇c)裝置30 的形式且通常有超過1 〇〇〇個用於分子診斷偵測的探針( 見第1及1 12圖)。以圖示顯示於第i圖中之測試模組 1 〇係使用以螢光爲基礎之偵測技術來識別標靶分子,而 -49- 201209159 以圖示顯示於第1 1 2圖中之測試模組1 1係使用以電化學 發光爲基礎之偵測技術。LOC裝置30具有用於偵測螢光 或電化學發光之整合的光感測器44 (詳細描述於下)。 此兩種測試模組1 〇和Π均使用用於電源、數據及控制之 標準 Micro-USB插頭14,二者均具有印刷電路板(PCB )5 7且兩者均具有外部電源電容器3 2及電感器1 5。測試 模組1 〇及1 1二者均單次用於大規模生產和銷售即時可用 之無菌包裝。 外殻13具有用於接收生物樣本之大容器24及可移動 之無菌密封膠帶22 (宜使用低黏性黏合劑),以在使用 前覆蓋該大容器。帶有膜防護物410之膜密封墊40 8形成 外殼1 3之一部分,以減少測試模組中之濕氣流失,同時 提供壓力緩解以免於發生小氣壓波動,膜防護物410可保 護膜密封墊408不受損。 測試模組閱讀器12經由Micro-USB埠16提供測試 模組1 0或11電源。該測試模組閱讀器1 2可採用多種不 同形式,而對這些形式之選擇稍後描述。顯示於第1、3 及112圖中之閱讀器12之形式爲一種智慧型手機之體系 。此閱讀器1 2之方塊圖顯示於第3圖中。處理器42運行 來自程式儲存器43之應用軟體。該處理器42亦與顯示螢 幕18及用戶界面(UI)觸控螢幕17和按鈕19、蜂巢式 無線電(cellular radio ) 21、無線網路連接23、衛星導航 系統25連接。蜂巢式無線電21和無線網絡連接23係用 於通信。衛星導航系統25係用於更新流行病學數據庫之 -50- 201209159 位置數據。或者,可經由觸控螢幕17或按鈕19手動輸入 該位置數據。數據儲存器27中保持基因及診斷信息、測 試結果、病人信息、用於鑑定各探針及其陣列位置之分析 及探針數據。數據儲存器27及程式儲存器43可共用一個 共通的記憶設施。安裝在該測試模組閱讀器1 2中之應用 軟體提供結果與其他測試和診斷信息之分析。 爲了進行診斷測試,將測試模組1 〇 (或測試模組11 )插入在測試模組閱讀器12上之Micro-USB埠16。向後 撕去該無菌密封膠帶22並將生物樣本(爲液體形式)裝 塡入該樣本大容器24中。按下啓動按鈕20經由應用軟體 啓動測試。樣本流入該LOC裝置30中,而該機上試驗( on-board assay )萃取、培育、擴增該樣本核酸(標靶) 並將其與預先合成之雜交-反應性寡核苷酸探針雜交。在 測試模組1 〇 (其使用以螢光爲基礎之偵測法)的情況中 ,該探針係經螢光標記且存放在外殼1 3中之LED 26提 供必要之激發光以誘導螢光從雜交的探針發射(見第1及 2圖)。在測試模組1 1中(其使用電化學發光(ECL )偵 測)該LOC裝置30係裝載ECL探針(如上述),而 LED 26對產生螢光發射是沒有必要的。相反地,電極 8 60和8 70提供激發電流(見第1 13圖)。發射光(螢光 或發光)係使用整合入各LOC裝置之CMOS電路的光感 測器44偵測。將該偵測到的信號擴增並轉換成數字輸出 ,其再藉由測試模組閱讀器1 2分析。然後,該閱讀器再 顯示結果。 -51 - 201209159 這些數據可以就地保存和/或上傳到包含患者記錄之 網絡服務器。測試模組閱讀器1 2移出測試模組1 〇或1 1 並將其適當處置。 第丨、3及112圖顯示配置成手機/智慧型手機28形 式之測試模組閱讀器1 2。在其他形式中,該測試模組閱 讀器爲供醫院、私人診所或實驗室使用之手提電腦/筆記 型電腦101、專用閱讀器103、電子書閱讀器107、平板 電腦109或桌上型電腦1〇5 (見第1 14圖)。閱讀器可與 一系列其他應用程式,諸如病歷、帳單、網上數據庫和多 用戶環境連接。其亦可與一系列附近或遠端外圍設備,諸 如印刷機和患者的智能卡連接。 參考第1 1 5圖,由測試模組1 0產生之數據可經由閱 讀器1 2及網絡1 2 5更新在流行病學數據主機系統1 1 1上 管理之流行病學數據、在遺傳學數據主機系統1 1 3上管理 之遺傳學數據、在電子健康記錄(EHR )主機系統Π 5上 管理之電子健康記錄、在電子醫療記錄(EMR )主機系統 121上管理之電子醫療記錄及在個人健康記錄(PHR)主 機系統1 2 3上管理之個人健康記錄。相反地,在流行病學 數據主機系統1 1 1上管理之流行病學數據、在遺傳學數據 主機系統113上管理之遺傳學數據、在電子健康記錄( EHR )主機系統115上管理之電子健康記錄、在電子醫療 記錄(EMR )主機系統1 2 1上管理之電子醫療記錄及在個 人健康記錄(PHR )主機系統1 23上管理之個人健康記錄 可經由網絡1 2 5和閱讀器1 2來更新測試模組1 〇之l 0 C 3 0 201209159 中的數位記憶。 回頭參考第1、2、112及113圖,閱讀器12使用行 動電話配置中之電池電源。行動電話閱讀器包含所有預先 下載之測試和診斷信息。數據亦可經由許多無線或接觸界 面下載或更新以與周邊設備、電腦或線上伺服器連繫。 Micro-USB埠16可用於連接到電腦或主電源以爲電池充 電。 第7 〇圖顯示測試模組1 0之一種體系,其係用於僅需 要特定標靶之陽性或陰性結果的試驗,諸如測試個人是否 受到,例如:Η1N1 A型流感病毒感染。僅需專門設置之 U SB電源/指示器-限定模組4 7即足夠。不需要其他閱讀 器或應用軟體。在USB電源/指示器-限定模組47上之指 示器45發出陽性或陰性結果的信號。此種配置非常適合 群體篩檢。 其他與系統一起提供之項目可能包括含有用於預先處 理某些樣本之試劑的試管,以及用於採集樣本之抹刀和採 血針。第.70圖顯示納入方便使用之彈簧式可伸縮採血針 3 90及採血針釋出按鈕3 92的測試模組體系。衛星電話可 供在偏遠地區使用。 測試模組電子學 第2及1 1 3圖分別爲測試模組1 〇和1 1中之電子組件 的方塊圖。整合在LOC裝置30中之CMOS電路具有USB 裝置驅動器36、控制器34、USB-相容性LED驅動器29 -53- 201209159 、時鐘33、功率調節器3 1、RAM38及程式和數據快閃記 憶體40。這些提供整個測試模組1 0或1 1 (包括光感測器 44、溫度感測器1 70、液體感測器1 74及各種加熱器1 52 、1 5 4、1 8 2、2 3 4,連同相關之驅動器3 7和3 9,以及記 錄器35和41 )控制及記憶。僅LED26 (在測試模組10 之情況中)、外部電源供應電容器32及Micro-USB插頭 14係在LOC裝置30之外部。LOC裝置30包括用於連接 這些外部組件之結合墊。RAM3 8及程序和數據快閃記憶 體40具有用於超過1 000個探針之應用軟體及診斷和測試 信息(快閃/安全儲存,例如:經由加密)。在經配置用 於ECL偵測之測試模組11的情況中並沒有LED26 (見第 112及113圖)。數據由LOC裝置30加密以用於安全儲 存並與外部裝置安全通信。LOC裝置30裝載電化學發光 探針,且雜交室各具一對ECL激發電極8 6 0和8 70。 許多類型之測試模組1 0係製造成多種可供現成使用 之試驗形式。該試驗形式間之差異在於試劑和探針之機上 檢測。 一些以此系統迅速鑑定之傳染病實例包括: •流感-流感病毒A、B、C、鮭魚貧血病毒(Isavirus )、托高 土病毒(Thogotovirus) •肺炎-呼吸道融合病毒(RSV)、腺病毒、間質性 肺炎病毒、肺炎鏈球菌、金黃色葡萄球菌 •結核病-結核分枝桿菌、牛分枝桿菌、非洲分枝桿 菌、卡氏分枝桿菌及田鼠分枝桿菌 201209159 •惡性瘧原蟲、弓形蟲及其他原生動物寄生蟲 •傷寒-傷寒沙門氏菌血清型 •埃博拉病毒(Ebola virus) •人免疫缺陷病毒(HIV ) •登革熱-黃病毒 •肝炎(A至E) •院內感染-例如:困難梭狀芽孢桿菌、抗萬古黴素 腸球菌及耐甲氧西林金黃色葡萄球菌 •單純皰疹病毒(HSV ) •巨細胞病毒(CMV ) •愛潑斯坦-巴爾病毒(EBV) •腦炎-日本腦炎病毒、金迪普拉病毒(Chandipura virus ) •百曰咳-百日咳桿菌 •麻疹-副黏液病毒 •腦膜炎-肺炎鏈球菌及腦膜炎奈瑟菌 •炭疽-炭疽桿菌 一些以此系統迅速鑑定之遺傳性疾病實例包括: •囊性纖維化 •血友病 •鐮狀細胞病 •泰-薩克斯病(Tay-Sachs disease) •血色素沉著症(haemochromatosis) •腦動脈病 -55- 201209159 •克隆氏症 •多囊性腎臟病 •先天性心臟病 • Rett綜合徵 藉由此診斷系統鑑定之一小部分癌症包括: •卵巢 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 • Turcot綜合徵 上述列表並不詳盡且該診斷系統可經配置以利用核酸 及蛋白質體分析來偵測更多種疾病和病況。 系統組件之詳細結構 L0C裝置 L0C裝置30爲該診斷系統之中心。其採用微流平台 迅速地執行以核酸爲基礎之分子診斷分析的四個主要步驟 ’即:製備樣本、萃取核酸、擴增核酸及偵測。該l〇C 裝置亦具有其他用途’這些將在稍後詳細介紹。如上述, 測試模組1 〇和1 1可採用許多不同的配置以偵測不同的標 靶。同樣地’該L0C裝置30具有許多之不同針對所欲標 標靶體系。一種L0C裝置30之形式爲L0C裝置301,其 係用於螢光偵測全血樣本之病原體中的標靶核酸序列之。 爲了說明’現在參考第4至2 6及2 7至5 7圖詳細介紹 -56- 201209159 LOC裝置301之結構和操作。 第4圖爲LOC裝置301之結構的示意圖像。爲了方 便起見,第4圖中所示之處理階段係以對應於執行該處理 階段之LOC裝置301之功能區的參考編號表示。其中亦 指出與該以核酸爲基礎之分子診斷分析的各主要步驟相關 之處理階段:樣本輸入及製備288、萃取29〇、培育291 、擴增292及偵測294。稍後將更詳細描述各貯槽、室、 閥門及LOC裝置301之其他組件。 ^ 第5圖爲LOC裝置301之透視圖。其係利用高容量 CMOS及MST (微系統技術)製造技術來製造。該LOC 裝置3 0 1之分層結構解說於第1 2圖之局部剖面示意圖( 未按比例)中。LOC裝置301具有支承CMOS + MST芯片 48的矽基板84,其包含CMOS電路86及MST層87,在 MST層87上覆以蓋罩46 »本專利說明書中,“ MST層” 一詞爲以各種試劑處理該樣本之構造和層次之集合名稱。 ^ 因此,這些構造及組件係配置成以特有尺寸限定流動路徑 ,該流動路徑之特有尺寸將支持該具有類似於樣本的物理 特性之液體於處理過程中被毛細作用驅動而流動。有鑑於 此,該MST層及組件通常採用表面微加工技術和/或主體 微加工技術製造。然而,其他製造方法亦可製造其尺寸之 規劃可適用於由毛細作用驅動之流動及可處理非常小之體 積的結構和元件。本專利說明書中所描述之特殊體系所顯 示之MST層爲如支承在CMOS電路86上的結構和可用組 件,但不包括蓋罩46之部分。然而,技術熟習人士將明 -57- 201209159 白MST層不需具有底層CMOS或真正之覆蓋蓋罩以便其 處理樣本。 下列圖形中所顯示之LOC裝置的整體尺寸爲1 760微 米X5824微米。當然,所製造之用於不同應用中的LOC 裝置可具有不同的尺寸。GPC034.12 Preferably, the LOC device also has a CMOS circuit coupled to the at least one heater that controls the temperature of the sample during amplification. GPC034.13 Preferably, the LOC device also has at least one temperature sensor coupled to the C Μ 0 S circuit for feedback control of the at least one heater. GPC034.14 Preferably, the L〇C device also has a probe array for hybridization to the -47-201209159 target nucleic acid sequence to form a probe-target hybrid. GPC034.15 Preferably, the LOC device also has a photosensor for detecting the probe-target hybrid. GPC034.1 6 Preferably the photosensor is an optical diode that is associated with the probe array. GPC034.1 7 Preferably, the volume of the liquid in the first nucleic acid amplification zone is less than 400 nanoliters. GPC034.1 8 preferably has a cross-sectional area of the PCR microchannel that is transversely tangential to the flow direction from 1 square micron to 400 square micrometers. GPC034.1 9 preferably, each of the channel regions has a plurality of heaters, each heater being extended and placed end to end along the channel region, and the CMOS circuit is configured to operate the plurality of extensions independently Each heater in the heater. GPCO3 4.20 Preferably, the LOC device also has a support substrate, wherein the CMOS circuit is located between the probe array and the support substrate, and the LOC device has the advantages provided by sequence-specific amplification, including: amplification Sensitivity provided; extensive dynamic range; and high specificity for target DNA sequences. Two-stage amplification allows the protocol to be further refined for highly sensitive detection. This highly sensitive detection can tolerate similar genetic material and chemical contaminants that may interfere with a single-stage amplification protocol. The product from the first amplification stage can also be divided again to perform multiple parallel reactions in the second amplification stage. This can increase the multiplex capacity of the LOC device. Performing two amplification stages on separate LO C device modules has the advantage of assisting in the addition of additional reagents between the 201209159 amplification stages. This optimizes the sensitivity and specificity chemistry of the LOC device results. The LOC device is designed with parallel reaction sites so that diagnostic tests can be performed in parallel on very small sample volumes, which increases the range and quality of diagnostic data obtained. Non-specific nucleic acid amplification prior to specificity detection or additional amplification allows for greater sensitivity to rare targets. Non-specific amplification prior to more specific steps also increases the versatility of the LOC device platform by reducing the amount of additional bursts required to add new tests to existing diagnostic panels. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED SYSTEM STATEMENT This description identifies the main components of the molecular diagnostic system incorporating the system of the present invention. The details of the structure and operation of the system are described in the following patent specification. Referring to Figures 1 '2, 3, 112 and 113, the system has the following top-level components: Test modules 10 and 1 have typical USB memory The size is very low in manufacturing. Test modules 1 and 1 each contain a microfluidic device 'typically in the form of a pre-packaged on-wafer laboratory (L〇c) device 30 and typically more than one for molecular diagnostic detection Probe (see Figures 1 and 1 12). The test module 1 shown in Figure i is a fluorescent-based detection technique for identifying target molecules, and -49-201209159 is shown graphically in the test in Figure 1 1 2 Module 1 1 uses electrochemiluminescence-based detection technology. The LOC device 30 has a photosensor 44 (described in detail below) for detecting the integration of fluorescence or electrochemiluminescence. Both test modules 1 and 使用 use standard Micro-USB plugs 14 for power, data and control, both of which have printed circuit boards (PCBs) 57 and both have external power supply capacitors 3 2 and Inductor 15. Both test modules 1 and 1 are used for large-scale production and sale of ready-to-use aseptic packaging. The outer casing 13 has a large container 24 for receiving a biological sample and a removable sterile sealing tape 22 (a low viscosity adhesive is preferred) to cover the large container prior to use. A membrane gasket 40 8 with a membrane shield 410 forms part of the outer casing 13 to reduce moisture loss in the test module while providing pressure relief from small air pressure fluctuations, and the membrane shield 410 protects the membrane gasket 408 is not damaged. The test module reader 12 provides test module 10 or 11 power via a Micro-USB port 16. The test module reader 12 can take a variety of different forms, and the choice of these forms will be described later. The reader 12 shown in Figures 1, 3 and 112 is in the form of a smart phone system. A block diagram of this reader 12 is shown in Figure 3. The processor 42 runs application software from the program storage 43. The processor 42 is also coupled to a display screen 18 and a user interface (UI) touch screen 17 and button 19, a cellular radio 21, a wireless network connection 23, and a satellite navigation system 25. The cellular radio 21 and the wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the epidemiological database -50- 201209159 location data. Alternatively, the location data can be manually entered via touch screen 17 or button 19. The data store 27 holds genetic and diagnostic information, test results, patient information, analysis and probe data for identifying the position of each probe and its array. The data storage 27 and the program storage 43 can share a common memory facility. The application software installed in the test module reader 12 provides analysis of results and other test and diagnostic information. For diagnostic testing, the test module 1 (or test module 11) is inserted into the Micro-USB port 16 on the test module reader 12. The sterile sealing tape 22 is peeled back and the biological sample (in liquid form) is loaded into the large sample container 24. Pressing the start button 20 initiates the test via the application software. The sample flows into the LOC device 30, and the on-board assay extracts, cultures, and amplifies the sample nucleic acid (target) and hybridizes it to a pre-synthesized hybrid-reactive oligonucleotide probe. . In the case of a test module 1 (which uses a fluorescence-based detection method), the probe is fluorescently labeled and the LED 26 stored in the housing 13 provides the necessary excitation light to induce fluorescence. Emission from hybridized probes (see Figures 1 and 2). In the test module 11 (which uses electrochemiluminescence (ECL) detection), the LOC device 30 is loaded with an ECL probe (as described above), and the LED 26 is not necessary to generate a fluorescent emission. Conversely, electrodes 8 60 and 8 70 provide an excitation current (see Figure 1 13). The emitted light (fluorescent or luminescent) is detected using a light sensor 44 integrated into the CMOS circuitry of each LOC device. The detected signal is amplified and converted to a digital output, which is then analyzed by a test module reader 12. The reader then displays the results. -51 - 201209159 These data can be saved and/or uploaded to a web server containing patient records. Test Module Reader 1 2 Remove the test module 1 〇 or 1 1 and dispose of it appropriately. Figures 3, 112 and 112 show a test module reader 12 configured as a mobile/smartphone 28 format. In other forms, the test module reader is a laptop/notebook 101, a dedicated reader 103, an e-book reader 107, a tablet 109 or a desktop computer for use in a hospital, private clinic or laboratory. 〇 5 (see picture 1 14). The reader can be connected to a range of other applications such as medical records, billing, online databases and multi-user environments. It can also be connected to a range of nearby or remote peripherals such as printers and patient smart cards. Referring to FIG. 1 15 , the data generated by the test module 10 can update the epidemiological data managed on the epidemiological data host system 11 1 via the reader 1 2 and the network 1 2 5 in the genetic data. Genetic data managed on the host system 1 1 3, electronic health records managed on an electronic health record (EHR) host system Π 5, electronic medical records managed on an electronic medical record (EMR) host system 121, and in personal health Record (PHR) personal health records managed on the host system 1 2 3 . Conversely, epidemiological data managed on the epidemiological data host system 111, genetic data managed on the genetic data host system 113, and electronic health managed on the electronic health record (ERR) host system 115 Recorded, electronic medical records managed on an electronic medical record (EMR) host system 1 21 and personal health records managed on a personal health record (PHR) host system 1 23 may be via network 1 2 5 and reader 1 2 Update the digital memory in test module 1 l l 0 C 3 0 201209159. Referring back to Figures 1, 2, 112 and 113, the reader 12 uses the battery power in the mobile phone configuration. The mobile phone reader contains all pre-downloaded test and diagnostic information. Data can also be downloaded or updated via a number of wireless or contact interfaces to interface with peripheral devices, computers or online servers. The Micro-USB埠16 can be used to connect to a computer or mains to charge the battery. Figure 7 shows a system of test modules 10 for testing that requires only positive or negative results for a particular target, such as testing whether an individual is exposed to, for example, a Η1N1 influenza A virus infection. It is sufficient to simply set the U SB power/indicator-definition module 4 7 . No other readers or application software is required. The indicator 45 on the USB power/indicator-defining module 47 signals a positive or negative result. This configuration is ideal for group screening. Other items provided with the system may include test tubes containing reagents for pre-processing certain samples, as well as spatula and blood collection needles for collecting samples. Fig. 70 shows a test module system incorporating a spring-loaded retractable lancet 3 90 and a lancet release button 3 92 for convenient use. Satellite phones are available for use in remote locations. Test Module Electronics Sections 2 and 1 1 3 are block diagrams of the electronic components in Test Modules 1 and 11. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36, a controller 34, a USB-compatible LED driver 29-53-201209159, a clock 33, a power conditioner 31, a RAM 38, and a program and data flash memory. 40. These provide the entire test module 10 or 1 1 (including photosensor 44, temperature sensor 170, liquid sensor 1 74, and various heaters 1 52 , 1 5 4, 1 8 2, 2 3 4 , along with associated drivers 3 7 and 3 9, and recorders 35 and 41) control and memory. Only LED 26 (in the case of test module 10), external power supply capacitor 32 and Micro-USB plug 14 are external to LOC device 30. The LOC device 30 includes a bond pad for connecting these external components. RAM3 8 and Program and Data Flash Memory 40 have application software and diagnostic and test information for more than 1 000 probes (flash/secure storage, eg via encryption). In the case of the test module 11 configured for ECL detection, there is no LED 26 (see Figures 112 and 113). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 carries an electrochemiluminescent probe, and each of the hybridization chambers has a pair of ECL excitation electrodes 860 and 870. Many types of test modules 10 are manufactured in a variety of test formats for ready-to-use use. The difference between this test format is the on-machine detection of reagents and probes. Some examples of infectious diseases that are rapidly identified by this system include: • Influenza-flu viruses A, B, C, Isavirus, Tohogotovirus • Pneumonia-Respiratory Syndrome (RSV), Adenovirus, Interstitial pneumonia virus, Streptococcus pneumoniae, Staphylococcus aureus • Tuberculosis - Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium, Mycobacterium vaccae and Mycobacterium vaccae 201209159 • Plasmodium falciparum, arch Insects and other protozoan parasites • Typhoid-S. typhimurium serotype • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever – flavivirus • Hepatitis (A to E) • Nosocomial infections – eg difficulties Clostridium, vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus • herpes simplex virus (HSV) • cytomegalovirus (CMV) • Epstein-Barr virus (EBV) • encephalitis - Japan Encephalitis virus, Chandipura virus • Hundred cough - Bordetella pertussis • Measles - paramyxovirus • Meningitis - Streptococcus pneumoniae and Neisseria meningitidis • Some examples of hereditary diseases that are rapidly identified by this system include: • Cystic fibrosis • Hemophilia • Sickle cell disease • Tay-Sachs disease • Haemochromatosis • Cerebral artery disease -55- 201209159 • Crohn's disease • Polycystic kidney disease • Congenital heart disease • Rett syndrome is identified by this diagnostic system. A small number of cancers include: • Ovary • Colon cancer • Multiple endocrine tumors • Retinoblastoma • Turcot Syndrome The above list is not exhaustive and the diagnostic system can be configured to utilize nucleic acid and proteomic analysis to detect a wider variety of diseases and conditions. Detailed Structure of System Components L0C Device The L0C device 30 is the center of the diagnostic system. It uses a microfluidic platform to rapidly perform the four major steps of nucleic acid-based molecular diagnostic analysis—that is, preparing samples, extracting nucleic acids, amplifying nucleic acids, and detecting. The l〇C device also has other uses' which will be described in detail later. As mentioned above, test modules 1 〇 and 1 1 can be implemented in many different configurations to detect different targets. Similarly, the LOC device 30 has a number of different targets for the desired target system. An L0C device 30 is in the form of a L0C device 301 for use in fluorescence detection of a target nucleic acid sequence in a pathogen of a whole blood sample. For the sake of explanation, the structure and operation of the LOC device 301 are described in detail with reference to Figures 4 to 26 and 27 to 57. FIG. 4 is a schematic image of the structure of the LOC device 301. For the sake of convenience, the processing stages shown in Fig. 4 are denoted by reference numerals corresponding to the functional areas of the LOC device 301 performing the processing stage. It also points to the processing stages associated with the major steps of the nucleic acid-based molecular diagnostic assay: sample input and preparation 288, extraction 29, incubation 291, amplification 292, and detection 294. Each of the sump, chamber, valve and other components of the LOC device 301 will be described in more detail later. ^ Figure 5 is a perspective view of the LOC device 301. It is manufactured using high-capacity CMOS and MST (microsystem technology) manufacturing techniques. The hierarchical structure of the LOC device 310 is illustrated in a partial cross-sectional view (not to scale) of FIG. The LOC device 301 has a germanium substrate 84 supporting a CMOS + MST chip 48, which includes a CMOS circuit 86 and an MST layer 87 overlying the MST layer 87 with a cover 46. In this patent specification, the term "MST layer" is used in various The reagent handles the collection name of the construction and hierarchy of the sample. ^ Accordingly, these configurations and components are configured to define a flow path in a unique size that will support the flow of liquid having a physical property similar to the sample driven by capillary action during processing. In view of this, the MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also be fabricated with dimensions that are applicable to structures and components that are driven by capillary action and that can handle very small volumes. The MST layer shown by the particular system described in this patent specification is a structure and a usable component such as supported on CMOS circuit 86, but does not include portions of cover 46. However, those skilled in the art will recognize that the white MST layer does not need to have an underlying CMOS or a true overlay cover for processing samples. The overall dimensions of the LOC device shown in the following figures are 1 760 microns x 5824 microns. Of course, the LOC devices that are manufactured for use in different applications can have different sizes.

第6圖顯示具有叠加在上之蓋罩部分的MST層87之 樣貌。第6圖中所顯示之插圖AA至AD、AG及AH分別 放大於第1 3、I 4、3 5、5 6、5 5和6 3圖中並詳細介紹於下 文中以全面了解該LOC裝置301中之各結構。第7至10 圖獨立顯示該蓋罩46之樣貌,而第11圖獨立顯示該 CMOS + MST裝置48之結構。 薄層結構 第12及22圖爲圖解顯示CMOS + MST裝置48之薄層 結構、蓋罩46及二者間之流體交互作用的草圖。這些圖 形並非用於解說之規模。第〗2圖爲通過樣本入口 6 8之剖 面示意圖,而第22圖爲通過貯槽54之剖面示意圖。如第 12圖中之最佳顯示,該CMOS + MST裝置48具有支承該 CMOS電路86 (其使上述MST層87內之有用元件操作) 之矽基板84。鈍化層88密封並保護CMOS層86遠離流 經M S T層8 7之流體。 流體流過分別在蓋罩層46及MST通道層1〇〇中之蓋 罩通道94及MST通道90(見,例如:第7和16圖)。 細胞轉運係在組裝於蓋罩46中之較大的通道94中發生, -58- 201209159 而生化過程係在較小的MST通道90中進行。細胞轉運通 道係製成可將樣本中之細胞轉運至MST通道90中預定之 位置的尺寸。運輸其尺寸大於20微米之細胞(例如:某 些白血球)時需要通道尺寸大於約2 0微米,因此與流動 向呈橫切向之截面面積需要大於400平方微米。MST通 道,尤其是LOC中不需要運輸細胞之位置可以明顯較小 〇 可察知的是蓋罩通道94及MST通道90爲通用的名 稱’尤其是MST通道90鑑於其特定功能亦可被稱爲(例 如)經加熱之微通道或透析MST通道。MST通道90係經 由通過位於鈍化層8 8之M S T通道層1 0 0蝕刻形成,並以 光阻抗蝕劑形成圖案。該MST通道90被屋頂層66圍住 ,該屋頂層66形成CMOS+ MST裝置48之頂部(相關於 圖形中所示之方位)。 儘管有時以分隔之層次顯示,蓋罩通道層80及貯槽 層78係從單一片之材料形成。當然,該材料片亦可爲非 單一片。此材料片係從二邊蝕刻以形成其中蝕刻出蓋罩通 道94之蓋罩通道層80及其中蝕刻出貯槽54 ' 56、58、 60和62之貯槽層78。或者,貯槽及蓋罩通道係藉由微模 塑法(micromolding )形成。蝕刻及微模塑技術二者均用 於製造通道,該通道之與流動向呈橫切向的截面面積可大 至200 00平方微米,小至8平方微米。 在LOC裝置之不同位置中,與流動向呈橫切向的截 面面積可以有一些適當的選擇範圍。當通道中包含大量樣 -59- 201209159 本或具大量組成之樣本時截面積適合至多達到20000平方 微米(例如:在100微米厚之層中的2 00微米寬通道)。 當通道中包含少量液體或不存有大細胞之混合物時,與流 動向呈橫切向的截面面積宜爲非常小。 較低之密封墊64包圍蓋罩通道94,較高之密封層82 包圍貯槽54、56、58、60和62。 該五個貯槽54、56 ' 58、60和62中預先裝塡檢測專 用試劑。於此處所描述之體系中,該貯槽預先裝塡下列試 劑,但其他試劑可輕易地被取代: •貯槽54:抗凝血劑,其可選擇地包含紅血球裂解 緩衝劑 •貯槽5 6 :裂解試劑 •貯槽5 8 :限制性內切酶、連接酶和連接子(用於 連接器啓動之PCR (見第69圖’摘錄自 T. Stachan et al·, Human Molecular Genetics 2, Garland Science, NY and London, 1999)) •貯槽60 :擴增混合物(dNTPs、引子、緩衝劑)及 •貯槽62 : DNA聚合酶。 蓋罩46及CMOS + MST層48係經由在較低之密封墊 64及屋頂層66中的對應開口進行流體交流。這些開口根 據該流體係從MST通道90流入蓋罩通道94,或從蓋罩 通道94流入MST通道90而被稱爲上管道口 96及下管道 □ 92。 -60- 201209159 LOC裝置操作 下文中參考分析血液樣本中之致病基因來逐步描述 LOC裝置301之操作方法。當然,亦可使用試劑、測試方 案、LOC裝置之變體及檢測系統之適當設置或的組合來分 析其他類型之生物或非生物流體。回頭參考第4圖,分析 生物樣本涉及五個主要步驟,包含輸入和製備樣本28 8、 萃取核酸290、培育核酸291、擴增核酸292及偵測和分 析 2 94。 樣本輸入和製備步驟288涉及將血液與抗凝劑116混 合,然後藉病原體透析區70將病原體與白血球和紅血球 分離。如第7和1 2圖之最佳顯示,血液樣本經由樣本入 口 68進入該裝置。毛細作用將血液樣本沿著蓋罩通道94 吸入貯槽54。當血流打開貯槽54之表面張力閥1 1 8時, 抗凝血劑從貯槽54釋出(見第15和22圖)。該抗凝劑 防止可能阻斷液流之血塊形成。 如第22圖之最佳顯示,該抗凝血劑116藉由毛細作 用從貯槽54被吸出,經由下管道口 92進入MST通道90 。該下管道口 92具有毛細作用啓動特徵(capillary initiation features ) ( CIF) 102以塑造該彎液面之幾何結 構的形狀,從而使其不會固定在下管道口 92之邊緣。在 上方密封墊82中之通風孔122可在抗凝劑1 16從貯槽54 被吸出時令空氣取代抗凝劑1 1 6。 第22圖中所示之MST通道90爲表面張力閥118之 一部分。該抗凝劑116塡入表面張力閥118並將彎液面 -61 - 201209159 120固定在上管道口 96之彎液面之錨98上。使用之前, 彎液面120仍然被固定在上管道口 96,從而使抗凝劑不 會流入蓋罩通道94中。當血液流過蓋罩通道94至上管道 口 96時,彎液面1 20被移除且該抗凝劑被吸入液流中。 第15至21圖顯示插圖AE,其爲第13圖中所示之插 圖AA的一部分。如第15、16及17圖所示,該表面張力 閥118具有三個延伸在各自對應之下管道口 92及上管道 口 96之間的分隔之MST通道90。表面張力閥中之MST 通道90的數目可以不同,以改變試劑流入樣本混合物中 之流率。當樣本混合物和試劑混合物藉由擴散混合在一起 時,流出貯槽之流率決定在樣本液流中的試劑濃度。因此 ,各貯槽之表面張力閥係經配置以符合所需之試劑濃度。 血液進入病原體透析區70(見第4和15圖),其中 標靶細胞係利用小孔(其大小係根據預定的閾値)陣列 1 64從樣本濃縮。小於閾値之細胞通過小孔而較大的細胞 則無法通過小孔。不要的細胞(其可能是被小孔陣列1 64 截留的較大細胞或通過小孔之較小的細胞)被重新指引到 廢物單位76,而標靶細胞則繼續爲分析之一部分。 在此處所描述之病原體透析區7〇中,來自全血樣本 之病原體被濃縮以用於微生物DNA分析。該小孔陣列係 由數個直徑爲3微米的小孔1 64形成,其在流體運行上連 接蓋罩通道94中的輸入流連接至標靶通道74。該3微米 直徑小孔1 6 4及標靶通道7 4之透析吸收孔1 6 8係藉由一 系列透析MST通道204連接(最佳顯示於第15和21圖 201209159 中)。病原體小到足以通過直徑爲3微米的小孔1 64 ’ M 經由透析MST通道204塡入標靶通道74。大於3微米之 細胞(諸如紅血球及白血球)停留在蓋罩46 Φ 2@ $ 道72,其將導向廢物貯槽76 (見第7圖)。 其他小孔形狀、大小和長寬比可用於分離特定胃 或其他標靶細胞,諸如白血球,以用於人類DNA分析° 透析區及透析變體之更詳細的說明提供於下文中° 再參考第6和7圖,該液流通過標靶通道74被吸入 裂解試劑貯槽56之表面張力閥128。表面張力閥128具 有7個在裂解試劑貯槽5 6和標靶通道74之間延伸的 MST通道90。當該彎液面被樣本流解開固定時,來自所 有7個MST通道90之流率將大於來自抗凝劑貯槽54 ( 其中表面張力閥118具有3個MST通道90)之流率(假 設該流體之物理特性大致相等)。因此,在樣本混合物中 之裂解試劑的比例大於該抗凝血劑之比例。 裂解試劑和標靶細胞在化學裂解區130中之標靶通道 74內藉由擴散混合。沸騰啓動閥1 26停止液流直到經過 足夠的時間來發生擴散和裂解,從標靶細胞釋出遺傳物質 (見第6和7圖)。該沸騰啓動閥之結構和操作參考第 31和32圖更詳細地描述於下文中。本申請者亦已硏發其 他可在此使用以取代沸騰啓動閥之主動閥類型(與被動閥 相反’諸如表面張力閥118) »這些替代閥之設計亦在稍 後描述。 當沸騰啓動閥1 26打開時,該裂解之細胞流入混合區 -63- 201209159 1 3 1以進行預擴增之限制酶切及連接子接合。 參考第13圖,當液流將彎液面從混合區131開始處 之表面張力閥1 3 2解除固定時,限制性內切酶、連接子及 連接酶從貯槽彡8釋出。該混合物流過混合區1 3 1之長度 以進行擴散混合。混合區1 3 1之終點處爲下管道口 1 3 4, 其引導進入培育區114之培育室入口通道133(見第13 圖)中。該培育室入口通道133將混合物送入經加熱之微 通道210的彎曲構型中,此結構提供用於在限制酶切及連 接子接合期間容納樣本的培育室(見第1 3和1 4圖)。 第23、24、25、26、27、28和29圖顯示第6圖之插 圖AB中之LOC裝置30 1的各層。各圖形顯示依序加入之 形成CMOS + MST層48及蓋罩46之結構的各層。插圖AB 顯示培育區1 1 4之終點及擴增區1 1 2之開端。如第1 4和 23圖之最佳顯示,該液流塡入該培育區114之微通道210 ,直至到達沸騰啓動閥1 06,該液流在此停住並發生擴散 。如上述,該沸騰啓動閥106上游之微通道210成爲包含 該樣本、限制性內切酶、連接酶及連接子之培育室。然後 ,該加熱器1 54被激活並保持在恆溫一段指定的時間以供 發生限制酶切及連接子接合。 熟習本技藝之工作人員將可察知此培育步驟2 9 1 (見 第4圖)爲可選擇的且僅爲一些核酸擴增分析類型所需。 此外,於一些情況下,培育期結束時可能需要一個加熱步 驟以使溫度突破高於培育溫度。該突破之溫度令限制性內 切酶和連接酶在進入擴增區1 1 2前去活化。限制性內切酶 -64 - 201209159 及連接酶之去活化在使用恆溫核酸擴增時特別適宜。 培育後,沸騰啓動閥106被活動起來(打開),該液 流回流入擴增區112»參考第31和32圖,該混合物塡入 該經加熱之微通道158的彎曲構造(其形成一個或多個擴 增室),直至到達沸騰啓動閥1 08。如第30圖之示意剖 面圖的最佳顯示,擴增混合物(dNTPs、引子、緩衝劑) 從貯槽60釋出,聚合酶再隨後從貯槽62釋入連接培育室 和擴增區(分別爲114和112)之中間MST通道212中 第35至51圖顯示第6圖之插圖AC內的LOC裝置 3〇1之各層。各圖形顯示依序加入之形成CMOS + MST裝 置48及蓋罩46之結構的各層。插圖AC爲擴增區112之 終點及雜交和偵測區52之開端。該經培育之樣本、擴增 混合物及聚合酶流過微通道158,到達沸騰啓動閥108。 經過足夠擴散混合的時間後,微通道158中之加熱器154 ^ 被激活以開始熱循環或恆溫擴增。該擴增混合物經過預定 數目之熱循環或預設之擴增時間,以擴增足夠的標靶 DN A。經過核酸擴增過程後,該沸騰啓動閥1 〇 8打開該雜 交及偵測區5 2且液流回流。沸騰起動閥之操作將更詳細 地描述於下文中。 如第5 2圖所示,該雜交及偵測區5 2具有雜交室陣列 110。第52、53、54和56圖顯示詳細之雜交室陣列11〇 及個別雜交室180。雜交室180之入口處爲擴散屏障175 ’其防止雜交期間標靶核酸、探針股及雜交之探針在雜交 -65- 201209159 室1 8 0之間擴散’從而防止錯誤之雜交偵測結果。該擴散 屏障175呈現出足夠長之流動路徑長以防止在探針與核酸 雜交及偵測信號之時間內,標靶序列和探針從一個室擴散 出並污染另一個室,從而可避免錯誤的結果。 另一種防止錯誤讀數的機制爲在許多雜交室中具有同 等探針。CMOS電路86從對應該包含同等探針之雜交室 180的光二極體184衍生出單一的結果。在單一結果之推 衍過程中,異常結果可被忽略或以不同方式加權。 CMOS控制之加熱器182可提供雜交所需之熱能(詳 細描述於下文中)。加熱器被激活後,互補之標靶-探針 序列之間發生雜交。CMOS電路86中之LED驅動器29傳 遞信號給位於測試模組1 0中之L E D 2 6使其發光。這些探 針僅在雜交發生時產生螢光,從而避免去除未結合之股時 通常需要的洗滌和乾燥步驟。雜交迫使FRET探針186之 臂-和-環結構打開,這使得螢光團在回應LED激發光時發 射螢光能量,下文中將更詳細地討論之。藉由在各雜交室 180(見下文中描述之雜交室)下之CMOS電路86中的光 二極體184來偵測螢光。所有雜交室之光二極體184及相 關之電子產物共同構成光感測器44(見第64圖)。於其 它體系中,該光感測器可爲電荷耦合裝置之陣列(CCD 陣列)。將該從光二極體1 84偵測到的信號擴增並轉換成 由測試模組閱讀器1 2分析之數位輸出。該偵測方法進一 步詳細描述於後。 -66- 54、 201209159 LOC裝置之其他細節 模組化之設.計 LOC裝置301具有許多功能區,包括試劑貯槽 56、58、60和62、透析區70、裂解區13〇、培育1 及擴增區1 1 2、閥門類型、加濕器和濕度感測器。於 裝置之其他體系中,這些功能區可以被省略,可添加 之功能區’或者該功能區可用於上述之替代目的。 例如:培育區1 1 4可作爲串聯擴增分析系統之第 增區112 ’該化學裂解試劑貯槽%可用於添加該引 第一擴增混合物、dN TP s和緩衝劑,而試劑貯槽5 8 於添加該逆轉錄酶和/或聚合酶。若樣本需要進行化 解時’亦可將化學裂解劑與該擴增混合物一起加入 56中’或者’可在培育區中將樣本加熱—段預定的 以發生熱裂解。於一些體系中’若需要化學裂解且需 引子、dNTPs和緩衝劑之混合物與該化學裂解劑分離 可將額外之貯槽立即納入貯槽58之上游以混合引 dNTPs和緩衝劑。 於某些情況下’可能需要省略一個步驟,諸如該 步驟291。在此情況下’可專門製造—個l〇C裝置以 試劑貯槽5 8及培育區1 1 4,或者該貯槽中可能根本 塡試劑’或者該主動閥門(若存在時)沒有活動起來 劑分配在樣本流中,該培育區則根本變成通道以將樣 裂解區130運輸至擴增區112中。該加熱器可獨立操 因此’當反應需要熱(諸如熱裂解)時,安排加熱器 1 14 L0C 額外 一擴 子之 係用 學裂 貯槽 時間 要將 時, 子、 培育 省略 不裝 將試 本從 作, 在此 -67- 201209159 步驟時不操作可確保不會在不需要熱裂解之LOC 發生熱裂解。該透析區70可如第4圖所示般位於 置內之流體系統的開端,或者可以位於該微流裝置 何地方。例如:在某些情況下,在雜交和偵測步驟 ,在擴增相2 9 2後進行透析以去除細胞碎片可能是 。另外’可以在整個L Ο C裝置中的任何位置納入 個透析區。類似地,可能納入額外之擴增區1 1 2以 標靶被同時或依序擴增,再在雜交室陣列110中以 酸探針偵測之。爲了分析其中不需要透析之類似全 本,可以將透析區70完全從LOC設計之樣本輸入 區2 8 8省略。在某些情況下,不需要從LOC裝置 析區70,即使該分析並不需要透析。若透析區之 分析沒有幾何結構障礙,在LOC之樣本輸入和製 仍可使用透析區70,不會損失所需的功能。 此外,該偵測區294可能包含蛋白質體室陣列 同於雜交室陣列,但裝塡經設計用於與存在於非擴 中之樣本標靶蛋白質結合或雜交的探針,而非經設 標靶核酸序列雜交的核酸探針。 可以察知的是,用於此診斷系統中之LOC裝 據特殊之LOC應用的選擇而製造成具有不同功能 合。絕大多數之功能區爲許多LOC裝置所共通的 計額外之LOC裝置以用於新的應用是一個從現有; 裝置中所使用之大量功能區選項中匯整合適之功能 的問題。 裝置中 微流裝 內的任 294前 有益的 一或多 使多個 特定核 血的樣 和製備 省略透 存在對 備區中 ,其等 增樣本 計之與 置可根 區之組 ,且設 匕LOC 區組合 -68- 201209159 本說明中僅顯示少數的LOC裝置且有些係以 顯示來說明用於此系統之LOC裝置的設計彈性。 技藝之人士將可輕易識別本說明中所顯示之L0C 不是一個詳盡的清單且許多額外之LOC設計爲匯 之功能區組合的問題。 樣本類型 LOC變體可以接受及分析各種液體形式之樣本 核酸或蛋白質內含物,該樣本類型包括,但不限於 血液製品、唾液、腦脊液、尿液、精液、羊水、臍 母乳、汗水、胸室積液、眼淚、心包積液、腹室積 境水樣本和飮料樣本。從巨觀核酸擴增取得之擴增 使用LOC裝置分析;在此情況下,所有試劑貯槽 的或配置成不釋出其內含物,且該透析、裂解、培 增區將僅用於將樣本從樣本入口 68運輸至雜交室 依上述偵測核酸。 對於某些樣本類型而言,前處理步驟是必需的 :精液可能需要先液化且黏液可能需要以一種酶預 ,以在輸入LOC裝置前先降低其黏度。 樣本輸入 參考第1和1 2圖,先將樣本添加入測試模組 容器24中。該大容器24是一個被截斷之圓錐,g 細作用將樣本送入LOC裝置301之入口 68中。其 示意圖 熟習本 裝置並 整合適 類型的 血液和 帶血、 液、環 子亦可 將是空 育和擴 180以 ,例如 先處理 1 〇之大 藉由毛 從這裡 -69- 201209159 流入64微米寬x60微米深之蓋罩通道94,其在該處亦藉 由毛細作用被吸向抗凝劑貯槽5 4 ° 試劑貯槽 使用微流裝置之分析系統(諸如L0C裝置301 )需要 的小體積試劑允許試劑貯槽包含生化處理所需要之所有試 劑,各試劑貯槽均具有小體積。此體積很容易不到1 0億 立方微米,在絕大多數之情況下爲小於3億立方微米’通 常爲小於7000萬立方微米’且在附圖中所顯示之L0C裝 置301的情況中爲小於2000萬立方微米。 透析區 參考第15至21、33和34圖’病原體透析區之設 計係從樣本濃縮致病性標靶細胞。如先前所述’在屋頂層 66中之多個爲3微米直徑孔之形式的小孔164將該標靶 細胞從樣本主體過濾出。當樣本流過3微米直徑小孔1 64 時,微生物病原體通過小孔進入一系列透析MST通道 204,再經由16微米透析攝入口 168回流入標靶通道74 (見第3 3和3 4圖)。剩餘之樣本(紅血球’等)留在蓋 罩通道94中。病原體透析區70之下游’蓋罩通道94變 成廢物通道72,其導向廢物貯槽76。在產生大量廢物之 生物樣本類型方面’測試模組1 〇之外殼1 3內的泡沫插入 元件或其他多孔元件4 9係配置成與廢物貯槽7 6進行流體 溝通(見第1圖)。 -70- 201209159 病原體透析區70完全依賴該流體樣本之毛細作用來 操作。在病原體透析區7 0之上游終點的3微米直徑小孔 164具有毛細作用啓動特徵(CIFs) 166 (見第33圖), 從而使流體被吸入下方之透析MST通道204。標靶通道 74之第一攝入孔198亦具有CIF 202(見第15圖),以 避免液流穿越該透析攝入孔168時完全被固定在彎液面。 第85圖之示意圖中所顯示之小成分透析區682可具 有類似於病原體透析區7 0之結構。該小成分透析區藉由 將小孔尺寸製作(若需要時,採用塑形)成適合允許小標 靶細胞或分子進入標靶通道,繼續進一步分析之大小,以 將任何小標靶細胞或分子從樣本中分離出。較大尺寸之細 胞或分子被移至廢物貯槽766中。因此,LOC裝置30( 見第1和1 1 2圖)不僅限於分離尺寸小於3微米之病原體 ,亦可用於分離具有任何需要之尺寸的細胞或分子。 裂解區 再重新參考第7、11和13圖,樣本中之遺傳物質係 藉由化學裂解過程從細胞釋出。如上述,來自裂解貯槽 56之裂解試劑與裂解貯槽56之表面張力閥128下游的標 靶通道74中之樣本流混合。然而,一些診斷分析更適合 熱裂解過程,甚至是將標靶細胞組合進行化學和熱裂解。 LOC裝置301藉由提供培育區114之經加熱的微通道210 來達成此點。樣本流塡入培育區114,並停止在沸騰啓動 閥1 0 6。該培育微通道2 1 0將樣本在可破壞細胞膜的溫度 -71 - 201209159 下加熱。 在一些熱裂解應用中,在化學裂解區130中之酶催化 反應並非必要的且熱裂解反應完全取代在化學裂解區130 中之酶催化反應。 沸騰啓動閥 如上述,該LOC裝置301具有三個沸騰啓動閥126、 106和108。這些閥門之位置顯示於第6圖。第31圖爲獨 立顯示之沸騰啓動閥108之放大的平面視圖,其位於擴增 區1 1 2之經加熱的微通道1 5 8終端。 該樣本流I 1 9藉由毛細作用被吸至該經加熱之微通道 1 5 8直至達到該沸騰啓動閥1 〇8。該樣本流之前導彎液面 120固定在閥門入口 146之彎液面的錨98。彎液面之錨 9 8的幾何結構停止彎液面前進以遏制該毛細流。如第3 1 和32圖所示,該彎液面之錨98爲從MST通道90至蓋罩 通道94之攝入開口所提供的小孔。彎液面1 20之表面張 力保持閥門關閉。環形加熱器152係在閥入口 146之周圍 。該環形加熱器1 52係經由沸騰啓動閥加熱器接頭1 53受 到C Μ Ο S控制。 爲了打開閥門,CMOS電路86發送電脈衝至閥門加 熱器接頭1 5 3。該環形加熱器1 5 2電阻式加熱該液體樣本 119直到其沸騰。沸騰使彎液面120不再固定在閥門入口 1 46 ’並使蓋罩通道94開始濕潤。一旦蓋罩通道94開始 潤濕,毛細流恢復。流體樣本1 1 9塡入蓋罩通道94並流 -72- 201209159 過閥門下管道口 150到達閥門出口 148,在此,由毛細作 用驅動之液流繼續沿著擴增區出口通道160進入雜交及偵 測區52。在閥門之前和後置放液體感測器丨74以用於診 斷。 將可察知的是’一旦該沸騰啓動閥被打開,其不能再 關閉。然而’由於LOC裝置301及測試模組10爲單次使 用之裝置,重新關閉該閥門是不必要的。 培育區及核酸擴增區 第 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 和 51 圖顯示培育區114及擴增區112。該培育區114具有一個 單一、經加熱之培育微通道2 1 0,其爲蝕刻在從下管道開 口 134至沸騰啓動閥106之MST通道層100中的彎曲形 微通道(見第1 3和14圖)。控制培育區1 14之溫度可使 酶催化性反應之效率較高。同樣地’該擴增區112具有從 沸騰起動閥106至沸騰啓動閥1〇8之彎曲構造的經加熱之 培育微通道158(見第6和14圖)。這些閥門遏止該液 流以在混合、培育和核酸擴增作用發生時將該標祀細胞保 留在該經加熱之培育或擴增微通道210或158中。該微通 道之彎曲樣式亦可促進(在一定程度上)標靶細胞與試劑 混合。 在培育區114及擴增區1丨2中係以加熱器丨54爲該樣 本細胞及試劑加熱,該加熱器1 5 4係受該使用脈衝寬度變 調(PWM)之CMOS電路86控制。該經加熱之培育微通 -73- 201209159 道210及擴增微通道158之彎曲構造的各個曲折部分具有 3個可分別操作且在其各自之加熱器接頭1 5 6 (其提供對 輸入熱流密度之二維控制)之間延伸的加熱器1 54 (見第 14圖)。如第51圖之最佳顯示,該加熱器154係支承在 屋頂層66上且包埋在較低之密封墊64中。該加熱器材料 爲TiAl,但許多其他導電金屬亦合適。該長加熱器154 與形成該彎曲形狀之寬曲折部分的各通道區的縱向平行。 在擴增區1 1 2中,各個寬曲折部分可經由控制個別之加熱 器而以分別之P C R室的形式操作。 使用微流裝置(諸如LOC裝置3 0 1 )之分析系統所需 要的小體積擴增子可容許小體積之擴增混合物在擴增區 1 1 2中進行擴增。此體積很容易少於400奈升,在絕大多 數之情況下係少於1 70奈升,通常爲少於70奈升’且在 LOC裝置301之情況中係介於2奈升至30奈升。 增加之加熱速率和較佳之擴散混合 各通道區之小截面可增加該擴增流體混合物之加熱速 率。所有流體均保持在與加熱器1 5 4相隔很短之距離內。 將該通道截面(即,該擴增微通道1 5 8之截面)減少至少 於10萬平方微米時可使其加熱速率較更“大規格”之儀 器的加熱速率明顯較高。蝕刻製造技術允許該擴增微通道 158具有小於1 6000平方微米之與該流動路徑橫向的截面 面積,而產生實質上較高之加熱速率。以蝕刻技術可輕易 地達到形體尺寸約爲1微米。若需要之擴增子很少(例如 -74- 201209159 在LOC裝置301之情況中),可將該截面面積減 於2500平方微米。在LOC裝置中以1000至2000 進行診斷分析且需要在不到1分鐘內“樣本進,答 時,與流動向呈橫切向之截面面積在1平方微米至 方微米之間即足夠。 在擴增微通道158中之加熱器元件以超過每秒 爾文(Kelvin ) (K)之速率加熱該核酸序列,在 數的情況下速率大於每秒1〇〇 K。通常,該加熱器 熱核酸序列之速率超過每秒1,〇〇〇 K且在許多情況 加熱器元件加熱核酸序列之速率超過每秒10,〇〇〇 K ,根據該分析系統之要求,該加熱器元件加熱核酸 速率超過每秒 1〇〇,〇〇〇Κ,超過每秒 Ι,ΟΟΟ,ΟΟΟΚ, 秒 10,000,000Κ,超過每秒 20,000,000Κ,超兒 40,000,000Κ ,超過每秒 80,000,000Κ ,超過 1 60,000,000Κ。 小截面積通道也有利於任何試劑與樣本流體進 混合。在擴散混合完成前一種液體擴散至另一液體 用在兩者之間的界面附近最大。濃度隨著與界面之 降低。使用具有非常小之與流動方向橫向之截面的 使此二種流體保持接近界面地流動以更迅速地擴散 將通道截面減至少於10萬平方微米可取得與更“ ”儀器相比較下明顯較高的混合率。蝕刻製造技術 通道之與該流動路徑橫向的截面面積小於1 6000平 ,而產生實質上較高之混合率。若需要小體積( 少到少 之探針 案出” 400平 80開 絕大多 元件加 中,該 。一般 序列之 超過每 i每秒 每秒 行擴散 中的作 距離而 微通道 混合。 大規格 允許微 方微米 如同在 -75- 201209159 LOC裝置3 01之情況中),可將該截面面積減少到少於 2500平方微米。在LOC裝置中以1000至2000之探針進 行診斷分析且需要在不到1分鐘內“樣本進,答案出”時 ,與流動向呈橫切向之截面面積在1平方微米至40 0平方 微米之間即足夠。 短熱循環時間Fig. 6 shows the appearance of the MST layer 87 having the cover portion superimposed thereon. The illustrations AA to AD, AG, and AH shown in FIG. 6 are magnified in the first, fourth, third, fifth, fifth, and fifth, respectively, and are described in detail below for a comprehensive understanding of the LOC device. Each structure in 301. Figures 7 through 10 show the appearance of the cover 46 independently, while Figure 11 shows the structure of the CMOS + MST device 48 independently. Thin Layer Structures Figures 12 and 22 are sketches showing the thin layer structure of the CMOS + MST device 48, the cover 46, and the fluid interaction therebetween. These figures are not intended to be used for illustration. Fig. 2 is a schematic cross-sectional view through the sample inlet 68, and Fig. 22 is a schematic cross-sectional view through the sump 54. As best shown in FIG. 12, the CMOS + MST device 48 has a germanium substrate 84 that supports the CMOS circuit 86 (which operates the useful components within the MST layer 87 described above). Passivation layer 88 seals and protects CMOS layer 86 from the fluid flowing through M S T layer 87. The fluid flows through the cap channel 94 and the MST channel 90 in the cap layer 46 and the MST channel layer 1 (see, for example, Figures 7 and 16). The cell transporter occurs in the larger channel 94 assembled in the cap 46, -58-201209159 and the biochemical process is performed in the smaller MST channel 90. The cell transport channel is sized to transport cells in the sample to a predetermined location in the MST channel 90. Transporting cells larger than 20 microns (e.g., some white blood cells) requires a channel size greater than about 20 microns, and therefore requires a cross-sectional area that is transverse to the flow direction to be greater than 400 square microns. The location of the MST channel, especially in the LOC, which does not require transport of cells can be significantly smaller. It is known that the cover channel 94 and the MST channel 90 are generic names 'especially the MST channel 90 can also be referred to in view of its specific function ( For example) heated microchannels or dialyzed MST channels. The MST channel 90 is formed by etching through the M S T channel layer 100 located in the passivation layer 88 and patterned with a photoresist. The MST channel 90 is surrounded by a roof layer 66 that forms the top of the CMOS+ MST device 48 (associated with the orientation shown in the figures). Although sometimes shown in spaced layers, the cover channel layer 80 and the sump layer 78 are formed from a single piece of material. Of course, the piece of material may also be a single piece. The sheet of material is etched from both sides to form a cap channel layer 80 in which the cap channel 94 is etched and a sump layer 78 in which the sump 54' 56, 58, 60 and 62 are etched. Alternatively, the sump and the cover channel are formed by micromolding. Both etching and micromolding techniques are used to fabricate channels having cross-sectional areas that are transversely tangential to flow direction as large as 200,000 square microns and as small as 8 square microns. In different locations of the LOC device, there may be some suitable range of choice for the cross-sectional area transverse to the flow direction. When the channel contains a large number of samples, the cross-sectional area is suitable for up to 20,000 square microns (for example, a 200-micron wide channel in a 100-micron thick layer). When the channel contains a small amount of liquid or a mixture of large cells, the cross-sectional area transverse to the flow direction is preferably very small. The lower seal 64 encloses the cover passage 94 and the upper sealing layer 82 surrounds the sump 54, 56, 58, 60 and 62. The five reservoirs 54, 56' 58, 60 and 62 are pre-packaged with a detection reagent. In the system described herein, the reservoir is pre-filled with the following reagents, but other reagents can be easily substituted: • Storage tank 54: anticoagulant, optionally containing red blood cell lysis buffer • Storage tank 5 6 : Lysis reagent • Slot 5 8 : Restriction enzymes, ligases and linkers (PCR for connector initiation (see Figure 69) excerpted from T. Stachan et al, Human Molecular Genetics 2, Garland Science, NY and London , 1999)) • Storage tank 60: amplification mixture (dNTPs, primers, buffer) and • storage tank 62: DNA polymerase. Cover 46 and CMOS + MST layer 48 are in fluid communication via corresponding openings in lower seal 64 and roof layer 66. These openings are referred to as an upper duct opening 96 and a lower duct □ 92 depending on the flow system flowing from the MST passage 90 into the shroud passage 94 or from the shroud passage 94 into the MST passage 90. -60- 201209159 LOC Device Operation The method of operation of the LOC device 301 is described step by step with reference to analyzing the disease-causing gene in the blood sample. Of course, other types of biological or non-biological fluids can also be analyzed using reagents, test protocols, variants of the LOC device, and appropriate settings or combinations of detection systems. Referring back to Figure 4, the analysis of biological samples involves five major steps, including input and preparation of samples 28 8 , extraction of nucleic acids 290 , incubation of nucleic acids 291 , amplification of nucleic acids 292 , and detection and analysis 2 94 . The sample input and preparation step 288 involves mixing the blood with the anticoagulant 116 and then separating the pathogen from the white blood cells and red blood cells by the pathogen dialysis zone 70. As best shown in Figures 7 and 12, blood samples enter the device via sample inlet 68. The capillary action draws the blood sample into the sump 54 along the cover channel 94. When the blood flow opens the surface tension valve 1 18 of the sump 54, the anticoagulant is released from the sump 54 (see Figures 15 and 22). The anticoagulant prevents the formation of blood clots that may block the flow. As best shown in Fig. 22, the anticoagulant 116 is aspirated from the sump 54 by capillary action and enters the MST channel 90 via the lower conduit opening 92. The lower duct opening 92 has a capillary initiation feature (CIF) 102 to shape the geometry of the meniscus such that it does not rest at the edge of the lower duct opening 92. The venting opening 122 in the upper gasket 82 allows air to replace the anticoagulant 116 when the anticoagulant 116 is aspirated from the sump 54. The MST channel 90 shown in Fig. 22 is part of the surface tension valve 118. The anti-coagulant 116 breaks into the surface tension valve 118 and secures the meniscus -61 - 201209159 120 to the anchor 98 of the meniscus of the upper conduit port 96. Prior to use, the meniscus 120 is still secured to the upper conduit port 96 so that the anticoagulant does not flow into the cap passage 94. As the blood flows through the cap passage 94 to the upper port 96, the meniscus 110 is removed and the anticoagulant is drawn into the stream. Figures 15 through 21 show an inset AE which is part of the insert AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three spaced apart MST channels 90 extending between respective corresponding conduit ports 92 and upper conduit ports 96. The number of MST channels 90 in the surface tension valve can be varied to vary the flow rate of the reagent into the sample mixture. When the sample mixture and reagent mixture are mixed together by diffusion, the flow rate out of the sump determines the concentration of the reagent in the sample stream. Thus, the surface tension valve of each sump is configured to meet the desired reagent concentration. The blood enters the pathogen dialysis zone 70 (see Figures 4 and 15), wherein the target cell line is concentrated from the sample using an array of apertures (the size of which is based on a predetermined threshold). Cells smaller than the threshold 通过 cells that pass through the small holes cannot pass through the small holes. The unwanted cells (which may be larger cells trapped by the small well array 1 64 or smaller cells through the small holes) are redirected to the waste unit 76, while the target cells continue to be part of the analysis. In the pathogen dialysis zone 7 described herein, pathogens from whole blood samples are concentrated for microbial DNA analysis. The array of apertures is formed by a plurality of apertures 1 64 having a diameter of 3 microns that are connected to the target channel 74 in fluid operation to connect the input stream in the cover channel 94. The 3 micron diameter aperture 164 and the dialysis absorption aperture 168 of the target channel 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21 201209159). The pathogen is small enough to break into the target channel 74 via the dialysis MST channel 204 through a small pore 1 64' M having a diameter of 3 microns. Cells larger than 3 microns (such as red blood cells and white blood cells) remain in the cover 46 Φ 2@ $ lane 72, which will be directed to the waste sump 76 (see Figure 7). Other pore shapes, sizes, and aspect ratios can be used to isolate specific stomach or other target cells, such as white blood cells, for human DNA analysis. More detailed instructions for dialysis zones and dialysis variants are provided below. In Figures 6 and 7, the flow is drawn through the target passage 74 into the surface tension valve 128 of the lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is unfastened by the sample stream, the flow rate from all seven MST channels 90 will be greater than the flow rate from the anti-coagulant reservoir 54 (where the surface tension valve 118 has three MST channels 90) (assuming the The physical properties of the fluid are approximately equal). Therefore, the proportion of the lysis reagent in the sample mixture is greater than the ratio of the anticoagulant. The lysis reagent and target cells are mixed by diffusion in the target channel 74 in the chemical cleavage zone 130. The boiling start valve 126 stops the flow until sufficient time has passed to cause diffusion and lysis to release the genetic material from the target cells (see Figures 6 and 7). The structure and operation of the boiling start valve are described in more detail below with reference to Figures 31 and 32. The Applicant has also identified other types of active valves that may be used herein in place of boiling start valves (as opposed to passive valves such as surface tension valve 118). The design of these alternative valves is also described later. When the boiling start valve 126 is opened, the lysed cells flow into the mixing zone -63 - 201209159 1 3 1 for restriction enzyme digestion and linker ligation. Referring to Fig. 13, when the liquid flow releases the meniscus from the surface tension valve 132 at the start of the mixing zone 131, the restriction enzyme, the linker and the ligase are released from the sump 8. The mixture flows through the length of the mixing zone 133 for diffusion mixing. The end of the mixing zone 133 is the lower conduit opening 134 which is directed into the cultivating chamber inlet passage 133 of the incubation zone 114 (see Figure 13). The chamber inlet channel 133 delivers the mixture into the curved configuration of the heated microchannel 210, which provides a chamber for holding the sample during restriction enzyme digestion and linker ligation (see Figures 13 and 14). ). Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 30 1 in Figure AB of Figure 6. Each of the patterns is shown in sequence to form layers of the CMOS + MST layer 48 and the cover 46. The illustration AB shows the end of the incubation zone 1 1 4 and the beginning of the amplification zone 1 1 2 . As best shown in Figures 14 and 23, the stream breaks into the microchannel 210 of the incubation zone 114 until it reaches the boiling start valve 106 where it circulates and diffuses. As described above, the microchannel 210 upstream of the boiling start valve 106 becomes an incubation chamber containing the sample, restriction enzyme, ligase, and linker. The heater 1 54 is then activated and held at a constant temperature for a specified period of time for restriction enzyme digestion and linker engagement. Those skilled in the art will recognize that this incubation step 291 (see Figure 4) is optional and is only required for some types of nucleic acid amplification assays. In addition, in some cases, a heating step may be required at the end of the incubation period to allow the temperature to break above the incubation temperature. The temperature of this breakthrough allows the restriction enzyme and ligase to be deactivated before entering the amplification zone 112. Reactivation of restriction endonuclease-64 - 201209159 and ligase is particularly suitable when using thermostatic nucleic acid amplification. After incubation, the boiling start valve 106 is activated (opened) and the flow is returned to the amplification zone 112. Referring to Figures 31 and 32, the mixture breaks into the curved configuration of the heated microchannel 158 (which forms one or Multiple expansion chambers) until the boiling start valve 108 is reached. As best shown in the schematic cross-sectional view of Fig. 30, the amplification mixture (dNTPs, primers, buffer) is released from the sump 60, and the polymerase is then released from the sump 62 into the ligating chamber and the amplification zone (114, respectively) Figures 35 through 51 of the intermediate MST channel 212 of and 112) show the layers of the LOC device 3〇1 in the inset AC of Fig. 6. Each of the figures shows the layers that form the structure of the CMOS + MST device 48 and the cover 46. The illustration AC is the end of the amplification zone 112 and the beginning of the hybridization and detection zone 52. The incubated sample, amplification mixture, and polymerase flow through microchannel 158 to boiling start valve 108. After sufficient diffusion mixing time, the heater 154^ in the microchannel 158 is activated to initiate thermal cycling or isothermal amplification. The amplification mixture is subjected to a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DN A . After the nucleic acid amplification process, the boiling start valve 1 〇 8 opens the hybrid and detection zone 52 and flows back. The operation of the boiling start valve will be described in more detail below. As shown in Figure 5, the hybridization and detection zone 52 has a hybridization chamber array 110. Figures 52, 53, 54 and 56 show detailed hybridization chamber arrays 11 and individual hybridization chambers 180. At the entrance of the hybridization chamber 180 is a diffusion barrier 175' which prevents the target nucleic acid, the probe strand and the hybridized probe from diffusing between the hybridizations -65-201209159 chamber during the hybridization to prevent false hybridization detection results. The diffusion barrier 175 exhibits a sufficiently long flow path length to prevent the target sequence and probe from diffusing out of one chamber and contaminating another chamber during the time when the probe hybridizes with the nucleic acid and detects the signal, thereby avoiding erroneous result. Another mechanism to prevent erroneous readings is to have equal probes in many hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 of the hybridization chamber 180 that should contain the equivalent probe. Abnormal results can be ignored or weighted differently during the progression of a single result. A CMOS controlled heater 182 can provide the thermal energy required for hybridization (described in detail below). After the heater is activated, hybridization occurs between the complementary target-probe sequences. The LED driver 29 in the CMOS circuit 86 transmits a signal to the L E D 2 6 located in the test module 10 to cause it to emit light. These probes only produce fluorescence when hybridization occurs, thereby avoiding the washing and drying steps typically required to remove unbound strands. Hybridization forces the arm-and-loop structure of the FRET probe 186 to open, which causes the fluorophore to emit fluorescing energy in response to LED excitation light, as discussed in more detail below. Fluorescence is detected by photodiode 184 in CMOS circuit 86 under each hybridization chamber 180 (see hybridization chamber described below). The photodiode 184 of all hybridization chambers and associated electronic products together form a photosensor 44 (see Figure 64). In other systems, the photosensor can be an array of charge coupled devices (CCD arrays). The signal detected from the photodiode 1 84 is amplified and converted into a digital output analyzed by the test module reader 12. This detection method is further described in detail later. -66-54, 201209159 Other details of the LOC device are modularized. The LOC device 301 has a number of functional zones including reagent reservoirs 56, 58, 60 and 62, dialysis zone 70, cracking zone 13 , incubation 1 and expansion Zone 1 1 2. Valve type, humidifier and humidity sensor. In other systems of the device, these functional areas may be omitted, and the functional area may be added' or the functional area may be used for the above alternative purposes. For example, the incubation zone 1 14 can be used as the first addition zone 112 of the tandem amplification analysis system. The chemical lysis reagent storage tank % can be used to add the first amplification mixture, dN TP s and buffer, while the reagent storage tank is 58 8 The reverse transcriptase and/or polymerase is added. If the sample needs to be resolved, a chemical lysing agent may also be added to 56 with the amplification mixture or 'the sample may be heated in the incubation zone to be scheduled to undergo thermal cracking. In some systems, if chemical cleavage is required and a mixture of primers, dNTPs, and buffers is required to separate from the chemical cleavage agent, additional sump can be immediately placed upstream of sump 58 to mix the dNTPs and buffer. In some cases, it may be necessary to omit a step, such as step 291. In this case, 'a special device can be manufactured with a reagent storage tank 58 and a cultivation zone 1 14 , or the storage tank may be completely sputum reagents' or the active valve (if present) has no active agent distribution In the sample stream, the incubation zone becomes a channel at all to transport the sample cleavage zone 130 into the amplification zone 112. The heater can be operated independently. Therefore, when the reaction requires heat (such as thermal cracking), the heater 1 14 L0C is additionally provided with an expansion of the sump storage time, and the cultivating is omitted. Do not operate at this -67-201209159 step to ensure that thermal cracking does not occur in LOCs that do not require thermal cracking. The dialysis zone 70 can be located at the beginning of the fluid system within the set as shown in Figure 4 or can be located where the microfluidic device is located. For example, in some cases, in the hybridization and detection steps, dialysis may be performed after the amplification phase 2 2 2 to remove cell debris. In addition, dialysis zones can be incorporated anywhere in the entire L Ο C device. Similarly, additional amplification regions 1 1 2 may be included to simultaneously or sequentially expand the targets, which are then detected by acid probes in hybridization array 110. To analyze a similar whole of which no dialysis is required, the dialysis zone 70 can be completely omitted from the sample input zone 288 of the LOC design. In some cases, there is no need to isolate zone 70 from the LOC device, even though the analysis does not require dialysis. If there is no geometrical barrier to the analysis of the dialysis zone, the dialysis zone 70 can still be used for sample input and production at the LOC without losing the required function. In addition, the detection zone 294 may comprise a protein body array array identical to the hybridization chamber array, but the cassette is designed to bind or hybridize to the probe target protein present in the non-expanded sample, rather than the labeled target nucleic acid. A nucleic acid probe that hybridizes to a sequence. It will be appreciated that the LOCs used in this diagnostic system are manufactured with different functionalities depending on the particular LOC application. The vast majority of functional areas are common to many LOC devices. The additional LOC device for new applications is a matter of reconciling the appropriate functionality from the numerous functional area options used in the device. Any one or more of the plurality of specific nuclear blood samples and preparations in the microfluidic device in the device are omitted in the paired area, and the group of the increased sample and the rooted zone are set. LOC Zone Combination -68- 201209159 Only a few LOC devices are shown in this description and some are shown to illustrate the design flexibility of the LOC devices used in this system. Those skilled in the art will readily recognize that the L0C shown in this description is not an exhaustive list and that many additional LOC designs are a combination of functional areas. Sample type LOC variants can accept and analyze sample nucleic acids or protein inclusions in a variety of liquid forms including, but not limited to, blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical breast milk, sweat, chest Fluid, tears, pericardial effusion, abdominal compartment water sample and dip sample. Amplification from macroscopic nucleic acid amplification is analyzed using a LOC device; in this case, all reagent reservoirs are configured or configured to not release their contents, and the dialysis, lysis, and culture zones will only be used to sample The nucleic acid is detected as described above by transport from the sample inlet 68 to the hybridization chamber. For some sample types, a pre-treatment step is required: Semen may need to be liquefied first and the mucus may need to be pre-embedded with an enzyme to reduce its viscosity before entering the LOC device. Sample Input Referring to Figures 1 and 12, the sample is first added to the test module container 24. The large container 24 is a truncated cone that acts to feed the sample into the inlet 68 of the LOC unit 301. The schematic diagram is familiar with the device and the appropriate type of blood and blood, liquid, and ring can also be air cultured and expanded 180, for example, the first treatment of 1 藉 by the hair from here -69 - 201209159 into the 64 micron wide X60 micron deep cover channel 94 where it is also attracted to the anticoagulant reservoir by capillary action. 5 4 ° Reagent storage tank Small volume reagents required for analysis systems using microfluidic devices (such as L0C device 301) The storage tank contains all the reagents required for biochemical treatment, and each reagent storage tank has a small volume. This volume is easily less than 1 billion cubic micrometers, in most cases less than 300 million cubic micrometers 'typically less than 70 million cubic micrometers' and is less than in the case of the LOC device 301 shown in the figures. 20 million cubic microns. Dialysis Zone Referring to Figures 15 to 21, 33 and 34, the design of the pathogen dialysis zone concentrates the pathogenic target cells from the sample. Apertures 164 in the form of a plurality of 3 micron diameter holes in the roof layer 66 as previously described filter the target cells out of the sample body. As the sample flows through the 3 micron diameter orifice 1 64, the microbial pathogen enters a series of dialysis MST channels 204 through the small holes and then flows back into the target channel 74 via the 16 micron dialysis inlet 168 (see Figures 3 3 and 34). . The remaining sample (red blood cells ', etc.) remains in the mask channel 94. Downstream of the pathogen dialysis zone 70, the cap passage 94 becomes a waste channel 72 that is directed to the waste sump 76. In terms of the type of biological sample from which a large amount of waste is produced, the foam insertion member or other porous member in the outer casing 13 of the test module 1 is configured to communicate with the waste storage tank 76 (see Fig. 1). -70- 201209159 The pathogen dialysis zone 70 relies entirely on the capillary action of the fluid sample to operate. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis zone 70 has capillary action initiation features (CIFs) 166 (see Figure 33) such that fluid is drawn into the underlying dialysis MST channel 204. The first intake aperture 198 of the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid flow completely from being fixed to the meniscus as it traverses the dialysis uptake aperture 168. The small component dialysis zone 682 shown in the schematic of Figure 85 can have a structure similar to the pathogen dialysis zone 70. The small component dialysis zone is sized to allow small target cells or molecules to enter the target channel by making the pore size (and shaped if necessary) to continue the size of the assay to any small target cell or molecule. Separated from the sample. Larger sized cells or molecules are moved to waste storage tank 766. Thus, LOC device 30 (see Figures 1 and 1 1 2) is not limited to the isolation of pathogens having a size of less than 3 microns, but can also be used to isolate cells or molecules of any desired size. Lysis zone Referring again to Figures 7, 11, and 13, the genetic material in the sample is released from the cell by a chemical cleavage process. As described above, the lysis reagent from the lysis sump 56 is mixed with the sample stream in the target channel 74 downstream of the surface tension valve 128 of the lysis sump 56. However, some diagnostic assays are more suitable for thermal cracking processes, even combining the target cells for chemical and thermal lysis. LOC device 301 accomplishes this by providing heated microchannels 210 of incubation zone 114. The sample stream is drawn into the incubation zone 114 and stopped at the boiling start valve 106. The incubation microchannel 210 heats the sample at a temperature that can destroy the cell membrane -71 - 201209159. In some thermal cracking applications, the enzymatic reaction in the chemical cracking zone 130 is not necessary and the thermal cracking reaction completely replaces the enzyme catalyzed reaction in the chemical cracking zone 130. Boiling Start Valve As described above, the LOC unit 301 has three boiling start valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independently shown boiling start valve 108 located at the heated microchannel 158 terminal of the amplification zone 112. The sample stream I 1 9 is drawn by capillary action to the heated microchannel 1 58 until the boiling start valve 1 〇 8 is reached. Prior to the sample flow, the meniscus 120 is secured to the anchor 98 of the meniscus of the valve inlet 146. The geometry of the meniscus anchor 9 8 stops the meniscus from advancing to contain the capillary flow. As shown in Figures 31 and 32, the meniscus anchor 98 is an aperture provided from the MST channel 90 to the intake opening of the shroud channel 94. The surface tension of the meniscus 1 20 keeps the valve closed. Ring heater 152 is attached around valve inlet 146. The ring heater 152 is controlled by C Μ Ο S via the boiling start valve heater connector 153. To open the valve, CMOS circuit 86 sends an electrical pulse to valve heater connector 153. The ring heater 125 heats the liquid sample 119 until it boils. Boiling causes the meniscus 120 to no longer be secured to the valve inlet 1 46 ' and causes the shroud passage 94 to begin to wet. Once the cover channel 94 begins to wet, the capillary flow is restored. The fluid sample 1 1 9 is inserted into the cap passage 94 and flows -72- 201209159 through the valve lower pipe port 150 to the valve outlet 148 where the capillary driven by the capillary action continues to enter the hybrid along the expansion zone outlet passage 160. Detection area 52. A liquid sensor 丨 74 is placed in front of and behind the valve for diagnostic purposes. It will be appreciated that once the boiling start valve is opened, it cannot be closed again. However, since the LOC device 301 and the test module 10 are single-use devices, it is not necessary to reclose the valve. Incubation Zone and Nucleic Acid Amplification Zone Figures 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50 and 51 show the incubation zone 114 and the amplification zone 112. The incubation zone 114 has a single, heated incubation microchannel 210 that is a curved microchannel etched in the MST channel layer 100 from the lower conduit opening 134 to the boiling start valve 106 (see Figures 1 and 14). Figure). Controlling the temperature of the incubation zone 14 14 results in a higher efficiency of the enzyme catalytic reaction. Similarly, the amplification zone 112 has a heated incubation microchannel 158 from the boiling start valve 106 to the boiling activation valve 1〇8 (see Figures 6 and 14). These valves arrest the flow to retain the target cells in the heated incubation or amplification microchannel 210 or 158 as mixing, incubation and nucleic acid amplification occurs. The curved pattern of the microchannel also promotes (to some extent) the mixing of the target cells with the reagents. The sample cell and the reagent are heated by the heater 丨 54 in the incubation zone 114 and the amplification zone 1丨2, and the heater 154 is controlled by the CMOS circuit 86 using pulse width modulation (PWM). Each of the bent portions of the heated cultivating micro-pass-73-201209159 channel 210 and the augmented microchannel 158 has three detachable portions that are separately operable and at their respective heater joints 156 (which provide input heat flux density) The two-dimensional control) extends between heaters 1 54 (see Figure 14). As best shown in FIG. 51, the heater 154 is supported on the roofing layer 66 and embedded in the lower gasket 64. The heater material is TiAl, but many other conductive metals are also suitable. The long heater 154 is parallel to the longitudinal direction of each of the passage regions forming the wide meandering portion of the curved shape. In the amplification zone 112, each of the wide tortuous portions can be operated in the form of separate P C R chambers by controlling individual heaters. The small volume of amplicons required for an analytical system using a microfluidic device (such as LOC device 301) allows a small volume of amplification mixture to be amplified in the amplification zone 112. This volume is easily less than 400 nanoliters, in most cases less than 1 70 nanoliters, typically less than 70 nanoliters' and in the case of LOC device 301 is between 2 nanoliters to 30 nanometers. Rise. The increased heating rate and preferably the diffusion mixing of the small cross-sections of each channel region increases the heating rate of the augmented fluid mixture. All fluids are kept within a short distance from the heater 154. Reducing the cross-section of the channel (i.e., the cross-section of the amplifying microchannel 158) to at least 100,000 square microns results in a heating rate that is significantly higher than that of a more "large gauge" instrument. The etch fabrication technique allows the amplifying microchannel 158 to have a cross-sectional area transverse to the flow path of less than 16,000 square microns, resulting in a substantially higher heating rate. The size of the body can be easily achieved by etching techniques to be about 1 micron. If the number of amplicon required is small (e.g., -74-201209159 in the case of LOC device 301), the cross-sectional area can be reduced to 2500 square microns. In the LOC device, the diagnostic analysis is performed at 1000 to 2000 and it is necessary to "sample in, and, in response, the cross-sectional area transverse to the flow direction is between 1 square micrometer and square micrometer is sufficient. The heater element in the microchannel 158 heats the nucleic acid sequence at a rate exceeding Kelvin (K), in the case of a number greater than 1 〇〇K per second. Typically, the heater is subjected to a thermal nucleic acid sequence. The rate exceeds 1, 〇〇〇K per second and in many cases the heater element heats the nucleic acid sequence at a rate in excess of 10, 〇〇〇K per second, according to the requirements of the analytical system, the heater element heats the nucleic acid at a rate of more than one second. 1〇〇, 〇〇〇Κ, more than Κ, ΟΟΟ, ΟΟΟΚ, sec, 10,000,000 Ι per second, more than 20,000,000 每秒 per second, over 40,000,000 Κ, more than 80,000,000 每秒 per second, more than 1 60,000,000 Κ. Small cross-sectional area is also beneficial Mix any reagent with the sample fluid. Before the diffusion mixing is completed, one liquid diffuses to the other liquid and is used near the interface between the two. The concentration decreases with the interface. The cross-section of the cross-section with the flow direction maintains the two fluids flowing close to the interface for more rapid diffusion. The channel cross-section is reduced by at least 100,000 square microns to achieve a significantly higher mixing ratio compared to more "in" instruments. The cross-sectional area of the etching manufacturing technology channel transverse to the flow path is less than 1 6000 amps, resulting in a substantially higher mixing ratio. If a small volume is required (less to few probes are reported), 400 flat 80 is used to open most components. Medium, the general sequence exceeds the distance per second per second per second in the diffusion of the line and the microchannel is mixed. The large size allows the micro-micron as in the case of -75-201209159 LOC device 3 01, which can be used The area is reduced to less than 2,500 square microns. In the LOC device, a diagnostic analysis is performed with a probe of 1000 to 2000 and it is necessary to "cross the tangential direction" with a flow direction of 1 square micron to 40 0 square micrometer in less than 1 minute. That is enough. Short thermal cycle time

將樣本混合物保持靠近加熱器,並使用非常小之流體 量可使熱循環在核酸擴增過程中快速進行。在至多150個 鹼基對(bp )長之標靶序列方面,各熱循環(即,變性、 黏著及引子延伸)在不到30秒內完成。在絕大多數的診 斷分析中,該個別熱循環時間少於1 1秒,大部分少於4 秒。對至多1 5 0個鹼基對長之標靶序列而言,具有一些礙 常見之診斷分析的L Ο C裝置3 0的熱循環時間在〇 · 4 5秒 至1 · 5秒。此速率之熱循環允許該測試模組在遠少於j 〇 分鐘內完成核酸擴增過程;通常少於220秒。對於大多數 分析而言,從樣本流體進入樣本入口開始,該擴增區在+ 到8 0秒內會產生足夠之擴增子。對很多分析而言,在3 Q 秒內產生足夠之擴增子。 在完成預設數目之擴增循環時,該擴增子經由沸騰啓 動閥108被送入雜交及偵測區52。 雜交室 第52、53、54、56和57圖顯示在雜交室陣列11〇中 -76- 201209159 之雜交室180。該雜交及偵測區52具有雜多 24x45陣列110,各具有雜交反應性FRET探劍 器元件182及經整合之光二極體184。納入 1 84係用於偵測從標靶核酸序列或蛋白質與 186雜交產生的螢光。各光二極體 184係由 86獨立控制。FRET探針186與光二極體184 材料必須是可讓發射的光穿透的。因此,介於 光二極體184之間的壁區97對發射的光而言 可穿透的。在LOC裝置301中,該壁區97 0.5微米)二氧化矽。 將光二極體184直接納入各雜交室180之 針-標靶雜交物的體積非常小,但仍可產生可 光信號(見第54圖)。少量可允許小體積之 雜交之前,探針-標靶雜交物之可偵測量所需 很容易不到270皮克(相當於90萬立方微米 多數情況下爲少於60皮克(相當於20萬立方 常少於12皮克(相當於40,000立方微米), 顯示之LOC裝置301的情況中爲少於2.7皮 室的體積爲9000立方微米)。當然,雜交室 可允許較高密度之室,因·此在LOC裝置上有 。在LOC裝置301中,該雜交區在1500微米 之面積(即,每一個室小於225 0平方微米) 1 000個室。較小之體積亦減少反應時間,而 測速度更快。各個室中需要小量探針的另一優 $室 180之 • 1 8 6、加熱 之光二極體 FRET探針 CMOS電路 之間的任何 探針1 8 6和 亦是光學上 爲薄層(約 下可允許探 偵測到之螢 雜交室。在 要的探針量 ),在絕大 微米),通 在附圖中所 克(對應之 之尺寸變小 更多之探針 xl 5 00微米 中具有超過 使雜交及偵 點爲製造該 -77- 201209159 LOC裝置期間各個室中僅需點入非常少量之探針。根據本 發明之LOC裝置的體系可使用1皮升或更少之探針溶液 體積點樣。 核酸擴增後,沸騰啓動閥108被活動起來且該擴增子 沿著流動路徑1 7 6流動並進入各雜交室1 8 0 (見第5 2和 56圖)。終點液體感測器178指出當雜交室180中塡入 擴增子時’該加熱器182可以被活動起來。. 經過足夠之雜交時間後,LED 26(見第2圖)被活 動起來。各雜交室1 8 0中之開口提供光學窗口 1 3 6以供 FRET探針186接觸激發輻射(見第52、54和56圖)。 該LED26被點亮足夠長的時間以從探針誘導高強度之螢 光信號。在激發期間,缺少該光二極體1 8 4。經過程控之 延遲300(見第2圖)後’啓動光二極體184且在沒有激 發光之存在下偵測螢光發射。在光二極體184之感光面 1 8 5上的入射光(見第5 4圖)被轉換成光電流,再利用 CMOS電路86測量之。 雜交室1 8 0各裝載著用於偵測單一標鞭核酸序列之探 針。若需要時’各雜交室1 8 0可裝載探針以偵測超過 1000種不同的標耙。另外,許多或所有的雜交室可裝載 同一種探針以重複偵測相同的標靶核酸。以此方式在整個 雜交室陣列1 1 0複製探針可增加對所得結果之信心,且若 需要時’可由鄰接那些雜交室之光二極體組合結果以提供 單一結果。熟習本技藝之人士將可辨識到根據偵測規範, 在雜交室陣列110上可能具有1至超過1000種不同的探 201209159 針。 加濕器及濕度感測器 第6圖中之插圖AG指出加濕器1 96之位置。加濕器 可防止試劑和探針在L 0 C裝置3 0 1操作期間蒸發。如第 5 5圖之放大視圖中的最佳顯示,水貯槽1 8 8在流體運行 上連接三個蒸發器190。水貯槽188中塡滿分子生物級水 且在製造過程中密封。如第55和67圖中之最佳顯示,水 被吸入三個下管道口 1 94中並藉由毛細作用沿著各別供水 通道192進入在蒸發器190之一組三個的攝入口 193中。 彎液面固定在各攝入口 193以保留水。該蒸發器具有環繞 攝入口 193之環形加熱器191。該環形加熱器191藉由到 達頂端金屬層195之傳導柱3 76連接到CMOS電路86 ( 見第3 7圖)。被激活後,該環形加熱器1 91把水加熱, 使水蒸發並使周圍的裝置潮濕。 第6圖中亦顯示濕度感測器232的位置。然而,如第 63圖之插圖AH的放大視圖中的最佳顯示,該濕度感測器 具有電容式梳狀結構。蝕刻之第一電極2 9 6和蝕刻之第二 電極298彼此面對面從而使其梳齒彼此交錯。相對之電極 形成具有可由CMOS電路86監控之電流容量的電容器。 隨著濕度增加,電極之間的空氣間隙之電容率增加,從而 使電容量亦隨之增加。該濕度感測器232與雜交室陣列 1 1 〇相鄰,在此,測量濕度最爲重要以減緩包含該外露探 針之溶液蒸發。 -79- 201209159 反饋感測器 在整個LO C裝置3 0 1中納入溫度和液體感測器以 裝置操作期間提供反饋和診斷。參考第3 5圖,9個溫 感測器1 70分佈在整個擴增區1 1 2中。同樣地,該培育 1 1 4亦具有9個溫度感測器1 7 0。這些感測器各使用一 雙極型電晶體(BjTs ) 2x2陣列來監測流體溫度並提 CMOS電路86反饋。CMOS電路 86使用其來精確控制 酸擴增過程中之熱循環以及熱裂解及培育期間之任何加 〇 雜交室1 80中,CMOS電路86使用雜交加熱器1 作爲溫度感測器(見第56圖)。該雜交加熱器182之 阻係取決於溫度,且該CMOS電路86使用此來衍生各 交室180之溫度讀數。 LOC裝置301亦具有多個MST通道液體感測器1 及蓋罩通道液體感測器208。第35圖顯示在經加熱之 通道158中每隔一個曲折部分的一端有一排MST通道 體感測器174。如第37圖中的最佳顯示,該MST通道 體感測器174爲一對由CMOS結構86中之頂端金屬 1 9 5的外露區所形成之電極。液體關閉電極之間的電路 表明其存在於感測器的位置。 第25圖顯示蓋罩通道液體感測器208之放大的透 圖。相對之TiAl電極對218和220係放置在屋頂層66 電極218和220之間爲縫隙222以在沒有液體存在時保 電路打開。液體存在時關閉電路,而CM0S電路86使 在 度 丨品- 個 供 核 熱 82 電 雜 74 微 液 液 層 以 視 〇 持 用 201209159 該反饋來監控液流。 重力的獨立性 測試模組1 〇與方向無關。其不需要被固定 定的表面上才能操作。由毛細作用驅動之流體在 管道裝置下流入輔助儀器可允許該模組真正地爲 僅需插入一個同樣爲可攜式之手持閱讀器(諸如 )中。擁有與重力無關之操作意指該測試模組實 全與加速度無關。其可抵抗衝擊和振動且可在行 上或當該行動電話被攜帶至各處時操作。 透析變體 透析區帶有液流通道次防止氣泡被限制住 以下描述稱爲LOC變體观518之一種LOC 系並顯示於第72、73、74及75圖中。此LOC 塡滿流體樣本,且不會將氣泡困在通道中之透析 變體VD1518亦具有稱爲界面層594之額外的物質 面層594係位於CMOS+ MST裝置48之蓋罩通缝 MST通道層100之間。該界面層5 94允許試 MST層87之間更複雜的流體交互連接,而不會 板84之尺寸。 參考第73圖,該旁路通道600係經過設計 體樣本流從界面廢物通道604流到界面標靶通道 入時間延遲。此時間延遲允許流體樣本流過透析 在平坦穩 缺乏外部 可攜式且 行動電話 際上亦完 駛的車輛 裝置的體 裝置具有 區。L 0 C 層。該界 ί層80與 劑貯槽與 增加矽基 以在該流 602時引 MST通 -81 - 201209159 道2 04到達透析攝入口 168,其在此固定住彎液面。藉由 從旁路通道600至界面標靶通道602之攝入口處的毛細作 用啓動特徵(CIF ) 202,該樣本流從透析MST通道204 之所有透析攝入口 168的上游塡入該界面標靶通道602。 沒有旁路通道600時,該界面標靶通道602仍從上游 端開始塡充,但該彎液面最終到達並通過屬於MST通道 之尙未塡滿的攝入口,導致空氣被限制在毛點上。被限制 住之空氣降低該樣本通過白血球透析區3 2 8之流速。 預雜交過濾 LOC裝置之變體,LOC變體ΧΠ758,使用置於擴增 區1 12之出口的小組分透析區682 (見第96至103圖) 。小組分透析區682提供預雜交過濾純化階段293 (見第 96圖)。預雜交過濾去除在細胞裂解後留在樣本流中之 細胞碎片。雜交效率可能受細胞碎片影響,所以在雜交之 前降低細胞碎片之濃度是有利的。 參考第101,102及103圖,該小組分透析區682具 有三個製造在底部通道層1〇〇中之相鄰通道;大組分通道 760兩側鄰接兩個小組分通道762。沿著該大組分通道 760兩側之一系列逆錐形開口形式的流通口 764提供與小 組分通道762之流體連接。在大多數實際應用中,該流通 口將介於1至8微米寬及1至8微米高之間。當樣本流下 大組分通道760時,足夠小之顆粒通過逆錐形開口(如: 該擴增子)流過小組分通道762,而較大之顆粒(如:該 201209159 細胞碎片)留在大組分通道,此大組分通道最終終止 個封閉端766。較小之顆粒繼續沿著小組分通道到達 室陣列110之相對的兩側,其在此皆遵循蜿蜒的路徑 陣列到達各別之封閉端768 (見第1 03圖)。在偵測 該小組分擴增子塡入所有個別雜交室1 80。Keeping the sample mixture close to the heater and using very small amounts of fluid allows the thermal cycle to proceed rapidly during nucleic acid amplification. In the case of a target sequence of up to 150 base pairs (bp) long, each thermal cycle (i.e., denaturation, adhesion, and primer extension) is completed in less than 30 seconds. In most diagnostic analyses, the individual thermal cycle time is less than 11 seconds, mostly less than 4 seconds. For a target sequence of up to 150 base pairs long, the thermal cycle time of the L Ο C device 30 with some common diagnostic analysis is 〇 · 4 5 seconds to 1.25 seconds. This rate of thermal cycling allows the test module to complete the nucleic acid amplification process in much less than j 〇 minutes; typically less than 220 seconds. For most analyses, starting from the sample fluid entering the sample inlet, the amplified region will produce enough amplicons in + to 80 seconds. For many analyses, enough amplicons are produced in 3 Q seconds. The amplicon is sent to the hybridization and detection zone 52 via the boiling start valve 108 upon completion of a predetermined number of amplification cycles. Hybridization Chambers Figures 52, 53, 54, 56, and 57 show hybridization chambers 180 in the hybrid chamber array 11 -76 - 201209159. The hybridization and detection zone 52 has a heteropoly 24x45 array 110 each having a hybrid reactive FRET finder element 182 and an integrated photodiode 184. Inclusions 1 84 were used to detect fluorescence from hybridization of the target nucleic acid sequence or protein to 186. Each photodiode 184 is independently controlled by 86. The FRET probe 186 and photodiode 184 material must be permeable to the emitted light. Therefore, the wall region 97 between the photodiodes 184 is permeable to the emitted light. In the LOC device 301, the wall region 97 is 0.5 micron) cerium oxide. The needle-target hybrid that directly incorporates photodiode 184 into each hybridization chamber 180 is very small in size but still produces an optical signal (see Figure 54). A small amount of small-volume hybridization allows for a detectable amount of probe-target hybrid that is easily less than 270 picograms (equivalent to 900,000 cubic micrometers in most cases less than 60 picograms (equivalent to 20 Ten thousand cubic meters are often less than 12 picograms (equivalent to 40,000 cubic micrometers), which in the case of LOC device 301 is less than 2.7 cubic chambers of 9000 cubic micrometers. Of course, hybrid chambers allow for higher density chambers, This is on the LOC device. In the LOC device 301, the hybridization zone has an area of 1500 microns (i.e., less than 225 0 square microns per chamber) of 1 000 chambers. The smaller volume also reduces the reaction time. Faster. Another room that requires a small amount of probes in each chamber. 180 • 1 8 6. Any probe between the heated photodiode FRET probe CMOS circuit is also optically A thin layer (about the next possible detection of the fluorescing hybridization chamber. The amount of probe required), in the vast majority of micrometers, is shown in the figure (corresponding to the smaller size of the probe xl 5 00 micron has more than hybridization and detection points for manufacturing the -77-20120 Only a very small number of probes need to be dispensed into each chamber during the 9159 LOC device. The system of the LOC device according to the present invention can be spotted using a probe solution volume of 1 picolite or less. After nucleic acid amplification, the boiling start valve 108 It is activated and the amplicon flows along the flow path 176 and enters each hybridization chamber 180 (see Figures 5 and 56). The endpoint liquid sensor 178 indicates that amplification occurs in the hybridization chamber 180. When the sub-timer 'the heater 182 can be activated. After enough hybridization time, the LED 26 (see Figure 2) is activated. The opening in each of the hybridization chambers provides an optical window 1 3 6 for FRET Probe 186 is exposed to excitation radiation (see Figures 52, 54 and 56). The LED 26 is illuminated for a time sufficient to induce a high intensity fluorescent signal from the probe. During excitation, the photodiode is absent. After the process control delay 300 (see Figure 2), the photodiode 184 is activated and the fluorescent emission is detected in the absence of excitation light. The incident light on the photosensitive surface of the photodiode 184 is visible (see Figure 5) is converted to photocurrent and measured by CMOS circuit 86. Each of the 180 is loaded with a probe for detecting a single standard nucleic acid sequence. If necessary, each hybridization chamber 180 can be loaded with probes to detect more than 1000 different labels. In addition, many or all of The hybridization chamber can be loaded with the same probe to repeatedly detect the same target nucleic acid. In this way, replicating the probe across the hybridization chamber array 1 10 can increase confidence in the results obtained, and if desired, can be contiguous to those hybridization chambers. The light diodes are combined to provide a single result. Those skilled in the art will recognize that there may be from 1 to over 1000 different probes on the hybrid chamber array 110 according to the detection specifications. Humidifier and Humidity Sensor The illustration AG in Fig. 6 indicates the position of the humidifier 1 96. The humidifier prevents reagents and probes from evaporating during the L 0 C device 310 operation. As best shown in the enlarged view of Figure 5, the water sump 1 8 8 is connected to three evaporators 190 in fluid operation. The water storage tank 188 is filled with water and is sealed during the manufacturing process. As best shown in Figures 55 and 67, water is drawn into the three lower conduit openings 1 94 and enters the respective intake ports 193 of one of the evaporators 190 along the respective water supply passages 192 by capillary action. . The meniscus is fixed at each intake port 193 to retain water. The evaporator has a ring heater 191 that surrounds the intake port 193. The ring heater 191 is connected to the CMOS circuit 86 by a conductive post 386 to the top metal layer 195 (see Figure 37). When activated, the ring heater 191 heats the water, allowing the water to evaporate and damp the surrounding equipment. The position of the humidity sensor 232 is also shown in FIG. However, as best shown in the enlarged view of the illustration AH of Fig. 63, the humidity sensor has a capacitive comb structure. The etched first electrode 296 and the etched second electrode 298 face each other such that their comb teeth are staggered with each other. The opposing electrode forms a capacitor having a current capacity that can be monitored by CMOS circuit 86. As the humidity increases, the permittivity of the air gap between the electrodes increases, so that the capacitance also increases. The humidity sensor 232 is adjacent to the hybridization chamber array 1 1 , where humidity measurement is most important to slow the evaporation of the solution containing the exposed probe. -79- 201209159 Feedback Sensors Temperature and liquid sensors are included throughout the LO C unit 310 to provide feedback and diagnostics during device operation. Referring to Figure 35, nine temperature sensors 1 70 are distributed throughout the amplification zone 112. Similarly, the incubation 1 14 also has nine temperature sensors 170. Each of these sensors uses a bipolar transistor (BjTs) 2x2 array to monitor fluid temperature and provide feedback from CMOS circuit 86. The CMOS circuit 86 is used to precisely control the thermal cycling during acid amplification and any of the twisted hybridization chambers 180 during thermal cracking and incubation, and the CMOS circuit 86 uses the hybrid heater 1 as a temperature sensor (see Figure 56). ). The resistance of the hybrid heater 182 is temperature dependent and the CMOS circuit 86 uses this to derive temperature readings for each of the cells 180. The LOC device 301 also has a plurality of MST channel liquid sensors 1 and a cap channel liquid sensor 208. Figure 35 shows a row of MST channel body sensors 174 at one end of every other tortuous portion in the heated channel 158. As best shown in Figure 37, the MST channel body sensor 174 is a pair of electrodes formed by the exposed regions of the top metal 195 in the CMOS structure 86. The circuit between the liquid-off electrodes indicates that it is present at the sensor. Figure 25 shows an enlarged perspective view of the cap channel liquid sensor 208. The pair of TiAl electrode pairs 218 and 220 are placed between the roof layer 66 electrodes 218 and 220 as slits 222 to keep the circuit open when no liquid is present. The liquid is turned off when the liquid is present, and the CM0S circuit 86 monitors the liquid flow by using the feedback of 201209159 with the 微 - - - - 微 微 微 微 微 微 微 微 微 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 Independence of gravity Test module 1 〇 is independent of direction. It does not need to be fixed on the surface to operate. The flow of fluid driven by capillary action into the auxiliary instrument under the conduit means allows the module to be truly inserted into a portable handheld reader such as the portable one. Operation with nothing to do with gravity means that the test module is completely independent of acceleration. It is resistant to shock and vibration and can be operated on the line or when the mobile phone is carried everywhere. Dialysis Variants The dialysis zone is provided with a flow channel to prevent air bubbles from being confined. The following description is referred to as a LOC system of LOC variant view 518 and is shown in Figures 72, 73, 74 and 75. The dialysis variant VD 1518, which is full of fluid sample and does not trap the bubble in the channel, also has an additional material surface layer 594 called interface layer 594 located in the capped MST channel layer 100 of the CMOS+ MST device 48. between. The interfacial layer 5 94 allows for more complex fluid interaction between the MST layers 87 without the size of the plate 84. Referring to Fig. 73, the bypass passage 600 flows through the design sample stream from the interface waste passage 604 to the interface target passage time delay. This time delay allows the fluid sample to flow through the dialysis zone of the vehicle device that is flat and stable and lacks external portable and mobile phones. L 0 C layer. The boundary layer 80 and the agent sump are added to the sputum base. At the time of the flow 602, the MST pass-81 - 201209159 lane 2 04 reaches the dialysis intake port 168, where the meniscus is fixed. By the capillary action initiation feature (CIF) 202 from the bypass channel 600 to the inlet port of the interface target channel 602, the sample stream is drawn into the interface target channel from upstream of all of the dialysis intake ports 168 of the dialysis MST channel 204. 602. When there is no bypass channel 600, the interface target channel 602 still charges from the upstream end, but the meniscus finally reaches and passes through the unfilled intake port belonging to the MST channel, causing the air to be confined to the burr. . The restricted air reduces the flow rate of the sample through the white blood cell dialysis zone. A pre-hybridization filter variant of the LOC device, LOC variant ΧΠ758, uses a small component dialysis zone 682 placed at the exit of the amplification zone 12 (see Figures 96-103). The small component dialysis zone 682 provides a pre-hybridization filtration purification stage 293 (see Figure 96). Prehybridization filters remove cell debris that remains in the sample stream after cell lysis. Hybridization efficiency may be affected by cell debris, so it is advantageous to reduce the concentration of cell debris prior to hybridization. Referring to Figures 101, 102 and 103, the small component dialysis zone 682 has three adjacent channels fabricated in the bottom channel layer 1; the large component channels 760 are flanked by two small component channels 762. A flow port 764 in the form of a series of reverse tapered openings along one of the sides of the large component channel 760 provides a fluid connection to the small component channel 762. In most practical applications, the flow port will be between 1 and 8 microns wide and between 1 and 8 microns high. When the sample flows down the large component channel 760, the small enough particles flow through the small component channel 762 through the inverse tapered opening (eg, the amplicon), while the larger particles (eg, the 201209159 cell debris) remain large The component channel, which ultimately terminates the closed end 766. The smaller particles continue to follow the small component channels to the opposite sides of the chamber array 110, where they follow the path of the array to the respective closed ends 768 (see Figure 103). Upon detection of the small component amplicon, all individual hybridization chambers are inoculated.

核酸擴增變體 重複序列PCR 第78、79、80、81和82圖(除了其他圖之外) 解說明其中擴增區1 12.1和1 12.2連續操作之LOC裝 第一擴增區112.1包括兩個試劑貯槽,用於擴增混合 60.1及用於聚合酶之62.1。在起始區後加入之各擴 亦包括兩個試劑貯槽,用於擴增混合物之貯槽60.2 於聚合酶之貯槽62.2。 連續之擴增區可進行重複序列PCR分析,該第 增區112.1係用於預擴增以增加後續在擴增區112.2 行之核酸擴增的敏感度。連續之擴增區亦可用於巢式 反應。 在用於預擴增之重複序列PCR中,該第一擴 1 1 2.1係用於擴增包含該標靶序列之樣本的核酸序列 擴增不一定專一於標靶序列(例如:全基因組擴增) 確實增加該標靶序列之濃度。經過預擴增後,該樣本 自貯槽60.2及62.2之試劑混合,再進入第二擴 1 12.2。儲存在貯槽60.2中之試劑包括專一性引子, 於一 雜交 通過 刖, 以圖 置。 物之 增區 及用 一擴 中進 PCR 增區 »此 ,但 與來 增區 以僅 -83- 201209159 擴增在經預擴增之樣本混合物中的標靶序列。須注意,亦 可使用一種其中在第一或第二擴增階段中之PCR被恆溫 技術所取代的類似方法來實現預擴增之優點。 巢式PCR爲一種特殊形式之重複序列PCR,其具有 高標靶專一性之額外優點。在巢式PCR中,在第一擴增 區1 1 2.1中之核酸擴增步驟使用引子將大於最終標靶序列 之序列擴增,形成一部分儲存在貯槽6 0 · 1中之擴增混合 試劑(其與標靶序列外部的區域互補)。在第一擴增區 1 1 2 · 1中之反應產生爲標靶序列加側翼區的擴增子。此經 擴增之混合物與來自貯槽60.2之試劑及來自62.2之聚合 酶混合。該儲存在貯槽60.2中之試劑包括與標靶序列各 端之部位互補的引子,即,來自第一擴增階段之擴增子的 子部分。當在第二擴增區1 1 2 · 2中執行核酸擴增時,位在 與標靶無關之序列位置產生擴增之機會大爲減少,因爲來 自第一擴增階段之擴增子的濃度遠高於原始樣本分子之濃 度。當該一或兩個PCR擴增階段被序列專一性恆溫擴增 技術取代時亦可得到該巢式P C R之敏感性和專一性優點 〇 將聚合酶分別儲存並各自獨立地添加入在樣本混合物 中將具有可選擇以不同聚合酶用於預擴增及最終核酸擴增 步驟之優點。例如:此允許選擇用於預擴增步驟之低錯誤 率(如:校對)聚合酶’以避免創造出含有錯誤或虛假標 祀序列的標靶序列’同時允許使用較高速或在溫度上較爲 耐受之聚合酶來進行最後擴增。 -84-Nucleic Acid Amplification Variant Repeat PCRs Figures 78, 79, 80, 81 and 82 (except for other figures) illustrate the LOC loading of the first amplification region 112.1 in which the amplification regions 1 12.1 and 12.2 are continuously operated. A reagent reservoir for amplifying mix 60.1 and 62.1 for polymerase. Each of the extensions added after the initiation zone also includes two reagent reservoirs for amplifying the storage tank 60.2 in the reservoir 62.2 of the polymerase. Repeated PCR analysis can be performed on successive amplified regions, which are used for pre-amplification to increase the sensitivity of subsequent nucleic acid amplification in the 112.2 line of the amplified region. A continuous amplification zone can also be used for nested reactions. In a repetitive PCR for preamplification, the first amplification 1 1 2.1 is used to amplify a nucleic acid sequence amplification of a sample comprising the target sequence, which is not necessarily specific to the target sequence (eg, whole genome amplification) ) does increase the concentration of the target sequence. After pre-amplification, the sample is mixed from the reagents of reservoirs 60.2 and 62.2 and then into the second extension 12.2. The reagents stored in storage tank 60.2 include specific primers that are crossed by a cross to illustrate. Addition of the region and the use of amplification into the PCR extension zone » this, but with the extension zone to only -83- 201209159 amplification of the target sequence in the pre-amplified sample mixture. It should be noted that a similar method in which the PCR in the first or second amplification stage is replaced by a thermostatic technique can also be used to achieve the advantages of pre-amplification. Nested PCR is a special form of repetitive PCR with the added benefit of high target specificity. In nested PCR, the nucleic acid amplification step in the first amplification region 1 1 2.1 uses primers to amplify a sequence larger than the final target sequence to form a portion of the amplification mixing reagent stored in the storage tank 6 0 · 1 ( It is complementary to the region outside the target sequence). The reaction in the first amplification region 1 1 2 · 1 produces an amplicon that is a target sequence plus a flanking region. This amplified mixture was mixed with the reagent from storage tank 60.2 and the polymerization enzyme from 62.2. The reagent stored in sump 60.2 includes a primer complementary to the portion of each end of the target sequence, i.e., a sub-portion of the amplicon from the first amplification stage. When nucleic acid amplification is performed in the second amplification region 1 1 2 · 2, the chance of generating amplification at a position independent of the target is greatly reduced because the concentration of the amplicon from the first amplification stage It is much higher than the concentration of the original sample molecules. The sensitivity and specificity of the nested PCR can also be obtained when the one or two PCR amplification stages are replaced by sequence specific constant temperature amplification techniques. The polymerases are separately stored and independently added to the sample mixture. There will be advantages to be able to use different polymerases for the pre-amplification and final nucleic acid amplification steps. For example: this allows selection of a low error rate (eg, proofreading) polymerase for the preamplification step to avoid creating a target sequence containing a false or false standard sequence while allowing for higher speed or temperature comparisons. The polymerase is tolerated for final amplification. -84-

201209159201209159

直接PCR 傳統上,PCR需要先大規模純化標靶 應混合物。然而,藉由適當地修改化學和| 在進行核酸擴增時只需最低程度之DNA糸 是可行的。當該核酸擴增過程爲PCR時, 接PCR。在其中該核酸擴增係在受控制、$ LOC裝置中,該方法爲直接恆溫擴增。在 用直接核酸擴增技術具有相當的優點,尤3 之流體設計。用於直接PCR或直接恆溫担 的調整包括加強緩衝劑強度、使用具有高名 成能力之聚合酶及與潛在聚合酶抑制劑螯名 釋存在於樣本中之抑製劑也很重要。 爲了利用直接核酸擴增技術,該LOC 兩種額外特色。第一個特色爲具有適當尺π 例如:第8圖中之貯槽5 8 )來提供足量;^ 物或稀釋劑,如此該可能干擾擴增化學之| 濃度低至足以允許核酸擴增成功。非細胞ΐ 欲稀釋度係在5倍至20倍。當適當時使用 構(例如第4圖中之病原體透析區70 ) H 酸序列之濃度係維持在足夠高之濃度下以ΪΙ 。在此體系中(進一步說明於第6圖中) 區2 90之上游採用,可有效地濃縮小至足 2 92之病原體的透析區,並將較大之細胞排 中。於另一體系中係採用透析區來選擇性地 DNA再製備反 I本濃度,使得 ί化或直接擴增 此方法稱爲直 ί溫之下進行的 LOC裝置中使 ί是可簡化所需 !增之擴增化學 ^性及高持續合 Γ之添加物。稀 裝置設計包括 ~之試劑貯槽( :擴增反應混合 丨本成分的最終 i樣本成分的所 不同之L 0 C結 L確保該標靶核 ;行擴增和偵測 係在樣本萃取 以進入擴增區 至廢物容器76 丨耗盡血獎中之 -85- 201209159 蛋白質和鹽類,同時保留所欲之細胞。 第二種支持直接核酸擴增之LOC結構特色爲通道縱 橫比之設計以調整樣本與擴增混合物成分之間的混合比。 例如:爲了確保與樣本結合之抑製劑在單一混合步驟中的 稀釋倍數在較佳之5X-20X的範圍內,樣本及試劑通道之 長度和截面係經過設計,從而使樣本通道(啓動混合之位 置的上游)所構成之流動阻抗較試劑混合物流過之通道的 流動阻抗高出4-1 9倍。控制微通道中之流動阻抗可容易 透過控制幾何結構之設計來達成。對固定之截面而言,微 通道之流動阻抗隨著通道之長度而線性增加。對混合設計 而言,重要的是微通道中之流動阻抗更強烈地倚賴最小之 截面尺寸。例如:當長寬比不一致時,具有長方形截面之 微通道的流動阻抗與立方體之最小正交尺寸成反比。 逆轉錄酶PCR ( RT-PCR) 當分析或萃取之樣本核酸物種爲 RNA (諸如來自 RNA病毒或信使RNA)時,在PCR擴增前需要先將RNA 逆轉錄成互補DNA(cDNA)。該逆轉錄反應可在與PCR 相同之反應室中進行(單步驟RT -PCR),或可以分開之 起始反應之形式進行(二步驟RT-PCR )。在此處所描述 之LOC變體中,單步驟RT -PCR可簡單地經由在試劑貯 槽62中加入逆轉錄酶與聚合酶,並將加熱器1 54制訂成 先進行逆轉錄步驟之循環,再進行核酸擴增步驟來進行。 兩步驟RT-PCR亦可輕易地透過使用可儲存及配發緩衝劑 201209159 '引子、dNTPs及逆轉錄酶的試劑貯槽58及用 步驟之培育區114,再在擴增區112中以正常方 達成。 恆溫核酸擴增 對於某些應用而言,恆溫核酸擴增爲核酸擴增 方法,如此可避免需要透過各種熱循環將反應成分 循環,而是將擴增區維持在恆定之溫度下,通常約 至4 1 °C。現已描述之恆溫核酸擴增方法有多種,包 代擴增(SDA )、轉錄介導擴增(TMA )、依賴核 擴增(NASBA)、重組酵素聚合酶擴增(RPA)、 依賴性恆溫DNA擴增(HDA )、滾動循環擴增( '分枝型擴增(RAM )及環形恆溫擴增(LAMP ) 何這些或其他恆溫擴增方法均可用於此處所描述: 裝置的特殊體系中。 爲了執行恆溫核酸擴增,該毗鄰擴增區之試 60和62將裝載用於特定之恆溫方法的適當試劑 PCR擴增混合物和聚合酶。例如:在SDA方面, 槽60包含擴增緩衝劑、引子及dNTPs,而試劑貯| 含適當之切口酶及外切DNA聚合酶。在rpa方面 貯槽60包含擴增緩衝劑、引子、dNTPs及重組酵 質,而試劑貯槽62包含股取代〇ΝΑ聚合酶,諸如 類似地,在H D A方面’試劑貯槽6 〇包含擴增緩衝 子及dNTPs ’而試劑貯槽62包含適當之DNA聚合 逆轉錄 擴增來 之較佳 重複地 爲 3 7°C 括股取 酸序列 解旋酶 RCA ) ,且任 ^ LOC 劑貯槽 ,而非 試劑貯 f 62包 ,試劑 素蛋白 B s u。 劑、引 酶和解 -87- 201209159 旋酶以將雙股DNA之股解開,而非使用加熱。熟習本技 藝之人士將明白該必要試劑可以任何適合核酸擴增過程之 方式分開在二個試劑貯槽之間。 爲了從RNA病毒(諸如HIV或C型肝炎病毒)擴 增病毒核酸,NASBA或TMA是合適的,因爲不需要先將 RNA轉錄爲cDNA。在此實例中,試劑貯槽60中裝塡擴 增緩衝劑、引子和dNTPs,試劑貯槽62中裝塡RNA聚合 酶、逆轉錄酶及可選擇的,RNaseH。 對某些形式之恆溫核酸擴增而言,將溫度保持在進行 恆溫核酸擴增之溫度前可能需要有一個起始變性循環以分 開該雙股DNA模板。在此處所描述之LOC裝置的所有體 系中很容易實現此項,因爲擴增區1 1 2中之混合物的溫度 可由擴增微通道1 5 8中之加熱器1 54小心地控制(見第 1 4 圖)。 恆溫核酸擴增較能容忍樣本中之潛在抑製劑,因此, 一般適合用於需要從樣本直接擴增核酸的情況中。因此, 恆溫核酸擴增有時可用於第86、87和88圖中分別顯示之 LOC 變體 XLIII 6 73、LOC 變體 XLIV 674 及 LOC 變體 XLVH677 -等中。直接恆溫擴增亦可合倂如第86和88圖 中所示之一或多個預擴增透析步驟70、686或682及/或 如第8 7圖中所指出之預雜交透析步驟6 8 2,以分別在核 酸擴增前協助部分濃縮樣本中之標靶細胞或在樣本進入雜 交室陣列1 1 0之前去除不要之細胞碎片。熟習本技藝之人 士將會明白可使用任何預擴增透析法和預雜交透析法之組 -88- 201209159 合。 恆溫核酸擴增亦可同時在諸如第71、76和77圖中圖 解顯示之擴增區中進行,恆溫核酸擴增之多樣及某些方法 (諸如LAMP )可與初始逆轉錄步驟相容以擴增RN A。 螢光偵測系統之其他細節 第58和59圖顯示雜交-反應性FRET探針23 6。這些 通常被稱爲分子信標且爲從單股核酸的產生臂-和-環探針 ,其在與互補核酸雜交時產生螢光。第58圖顯示與標靶 核酸序列23 8雜交前之單一 FRET探針236 »該探針在51 端具有環240、臂242、螢光團246且在3·端具有淬滅劑 248。該環240係由與該標靶核酸序列23 8互補之序列所 組成。在探針序列之任一側的互補序列黏合在一起以形成 臂 242。 如第5 8圖所示,缺乏互補標靶序列時,該探針保持 閉合。該臂242保持螢光團-淬滅劑對彼此靠近,從而使 其彼此之間可以發生明顯之共振能量轉移,實質上消除當 以激發光2 44照亮時螢光團發出螢光的能力。 第59圖顯示爲開啓或雜交之配置的FRET探針23 6。 當與互補標靶核酸序列23 8雜交時,該臂-和-環結構被破 壞,螢光團和淬滅劑在空間上被分隔,從而恢復螢光團 246發出螢光的能力。該螢光發射250可以光學方法偵測 而作爲探針已雜交之指示》 由於該探針之臂螺旋被設計成較具有非互補性單一核 -89- 201209159 苷酸的探針-標靶螺旋體更穩定’該探針以非常高之專一 性與互補標靶雜交。由於雙股DNA比較緊密,該探針-標 靶螺旋體與臂螺旋體在空間上不可能共存。 對照探針 該雜交室陣列1 1 〇包括一些具有用於分析品質控制之 陽性和陰性對照探針的雜交室1 80 °第1 和1 〇9圖以圖 解說明無螢光團796之陰性對照探針’第110和111圖爲 無淬滅劑798之陽性對照探針的草圖。該陽性和陰性對照 探針具有如上述之FRET探針的臂-和-環構造。然而,該 螢光信號250總是從陽性對照探針798發射且陰性對照探 針7 9 6不曾發射螢光信號2 5 0,無論該探針是否雜交成開 放之配置或保持關閉。 參考第1 〇 8和1 0 9圖,該陰性對照螢光探針7 9 6不具 有螢光團(且可能具有或可能不具有淬滅劑24 8 )。因此 ,無論該標靶核酸序列23 8是否與該探針雜交(見第109 圖),或者該探針是否保持其臂-和-環配置(見第1 〇8圖 ),對激發光244之反應是微不足道的。或者,該陰性對 照探針7 9 6可經過設計使其始終保持淬滅。例如:合成環 240,以具有不會與檢査之樣本內的任何核酸序列雜交的 探針序列,該探針分子之臂242將重新與本身雜交,該螢 光團及淬滅劑將保持在近端且將不會發射明顯的螢光信號 。此陰性對照信號將對應於來自雜交室180 (其中該探 針未雜交,但淬滅劑不會將所有來自報告子之發射淬滅) -90- 201209159 之低量發射。 相反地,如第1 1 0和1 1 1圖之說明,該陽 798之構造不具有淬滅劑。無論陽性對照探針 標靶核酸序列23 8雜交,螢光團246回應激發 射之螢光250不會被任何東西淬滅。 第52圖顯示整個雜交室陣列110中可能 性對照探針的分佈(分別爲3 78和3 80 )。 37 8及3 80被置於位在橫跨雜交室陣列1 10之 室1 80中。然而,該陣列內之對照探針係任意 雜交室陣列1 1 0之配置)8 螢光團設計 需要具有長螢光壽命之螢光團以便有足夠 發光的強度衰減到低於螢光發射之強度,此時 44啓用,從而提供足夠之信噪比。此外,較 命轉譯成較大之集成的螢光光子計數。 螢光團24 6(見第59圖)具有長於100 壽命,通常爲長於200奈秒,更常爲長於300 多數情況下爲長於400奈秒。 該以過渡金屬或稀土爲基之金屬-配子複 壽命.(從數百奈秒到毫秒)、充足之量子產量 學及光化學穩定性,這些對螢光偵測系統之必 均爲有利之性質。 一種以過渡金屬離子釕(Ru ( H ))爲底 性對照探針 798是否與 光244時發 之陽性和陰 該對照探針 線上的雜交 安排(如同 的時間讓激 ,光感測器 長之登光壽 奈秒之螢光 奈秒且在大 合物具有長 及高熱、化 要條件而言 之被特別充 -91 - 201209159 分硏究的金屬-配子複合物爲三(2,2 ^聯吡啶)釕(Π ) ([釕(聯吡啶)3] 2+ ),其具有約1微秒之壽命。此複 合物可從Biosearch科技之品牌pulsar65 0購得。 表1 : Pulsar 65 0之光物理性質(釕螯合物) 參數 符號 數値 單位 吸收波長 Xabs 460 nm 發射波長 λβιη 650 nm 消光係數 Ε 14800 M-'cm*1 營光壽命 Tf 1.0 μδ 量子產量 Η 1 (脫氧的) Ν/Α 铽螯合物,一種鑭系金屬-配子複合物已被成功地證 明爲FRET探針系統中之螢光報告子,且亦具有1 600微 秒之長壽命。 表2:铽螯合物之光物理性質 參數 符號 數値 單位 吸收波長 ^abs 330-350 nm 發射波長 ^em 548 nm 消光係數 Ε 13800 (取決於及配子,至多可達 30000 @、= 340 nm) M-'cm'1 營光壽命 Tf 1600 (經雜交之探針) μδ 量子產量 Η 1 (取決於配子) Ν/Α 201209159 LOC裝置3 0 1所使用之螢光偵測系統不使用過濾器來 移除不要的背景螢光。因此,爲了增加信噪比,若淬滅劑 248沒有天然發射是有利的。無天然發射時,淬滅劑248 不會造成背景螢光。高淬滅效率也很重要,如此可防止螢 光直到雜交發生時。該黑洞淬滅劑(Black Hole Quenchers ) ( BHQ ) (其可從加州 Novato 之Direct PCR Traditionally, PCR requires large-scale purification of the target mixture. However, it is feasible to minimize the DNA 在 when performing nucleic acid amplification by appropriately modifying the chemistry and |. When the nucleic acid amplification process is PCR, PCR is carried out. In which the nucleic acid amplification is in a controlled, $LOC device, the method is direct isothermal amplification. The use of direct nucleic acid amplification technology has considerable advantages, especially in fluid design. Adjustments for direct PCR or direct thermostatic loading include the enhancement of buffer strength, the use of high-potency polymerases, and the inhibition of potential polymerase inhibitors in the presence of inhibitors in the sample. In order to take advantage of direct nucleic acid amplification technology, the LOC has two additional features. The first feature is to have a suitable gauge π such as: sump 58 in Figure 8 to provide a sufficient amount of diluent or diluent, such that it may interfere with the amplification chemistry | concentration is low enough to allow for successful nucleic acid amplification. The non-cell ΐ dilution is between 5 and 20 times. When appropriate, the conformation (e.g., pathogen dialysis zone 70 in Figure 4) is maintained at a concentration high enough to maintain a concentration of H acid. In this system (further illustrated in Figure 6), upstream of Zone 2 90, the dialysis zone of pathogens as small as 2 92 can be effectively concentrated and the larger cells are lined up. In another system, the dialysis zone is used to selectively re-prepare the concentration of DNA, so that the method of cultivating or directly amplifying the method is called simplification in the LOC device. Addition of augmentation chemical and high-continuation additives. The dilute device design includes a reagent storage tank (the amplification reaction is mixed with the different L 0 C junction L of the final i sample component of the component to ensure the target core; the amplification and detection system is in the sample extraction to enter the expansion Increase the area to the waste container 76 丨Depleted Blood Award -85- 201209159 Protein and salt while retaining the desired cells. The second LOC structure supporting direct nucleic acid amplification is designed to adjust the sample aspect ratio of the channel. Mixing ratio with the components of the amplification mixture. For example, in order to ensure that the dilution ratio of the inhibitor bound to the sample in a single mixing step is in the range of preferably 5X-20X, the length and cross section of the sample and reagent channels are designed. Thus, the flow impedance formed by the sample channel (upstream of the start of the mixing position) is 4-1 times higher than the flow impedance of the channel through which the reagent mixture flows. The flow impedance in the control microchannel can be easily transmitted through the control geometry. Designed to achieve. For a fixed cross section, the flow impedance of the microchannel increases linearly with the length of the channel. For hybrid designs, it is important that the microchannel The flow impedance in the middle relies more strongly on the smallest cross-sectional dimension. For example, when the aspect ratio is inconsistent, the flow impedance of the microchannel with a rectangular cross section is inversely proportional to the smallest orthogonal dimension of the cube. Reverse transcriptase PCR (RT-PCR) When the sample or nucleic acid species analyzed or extracted is RNA (such as from RNA virus or messenger RNA), RNA must be reverse transcribed into complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction can be performed in the same reaction as PCR. Performing in a chamber (single-step RT-PCR), or in the form of separate initial reactions (two-step RT-PCR). In the LOC variants described herein, single-step RT-PCR can be performed simply via reagents The reverse transcription enzyme and the polymerase are added to the storage tank 62, and the heater 1 54 is programmed to perform the reverse transcription step and then the nucleic acid amplification step. The two-step RT-PCR can also be easily stored and used. The dispensing buffer 201209159 'reagent, dNTPs and reverse transcriptase reagent reservoir 58 and the incubation zone 114 with the step are then achieved in the amplification zone 112 as a normal side. Thermostatic nucleic acid amplification is constant for some applications. Nucleic acid amplification is a nucleic acid amplification method, which avoids the need to circulate the reaction components through various thermal cycles, but maintains the amplification zone at a constant temperature, usually about 4 1 ° C. The thermostated nucleic acid expansion has been described. There are a variety of methods for amplification, including generational amplification (SDA), transcription-mediated amplification (TMA), nuclear-dependent amplification (NASBA), recombinant enzyme polymerase amplification (RPA), and dependent thermostated DNA amplification (HDA). Rolling cycle amplification ('branched amplification (RAM) and circular thermostated amplification (LAMP)) These or other isothermal amplification methods can be used in the specific systems described herein: To perform a thermostatic nucleic acid amplification, the adjacent amplification zone trials 60 and 62 will load the appropriate reagent PCR amplification mixture and polymerase for a particular thermostated method. For example, in the case of SDA, tank 60 contains amplification buffers, primers, and dNTPs, while reagent storage | contains appropriate nicking enzymes and exo-DNA polymerase. In the RPA aspect, the sump 60 contains amplification buffers, primers, dNTPs, and recombinant fermentation broth, while the reagent sump 62 contains a stock-substituted ruthenium polymerase. For example, in the HDA aspect, the reagent storage tank 6 contains amplification buffers and dNTPs. 'And the reagent storage tank 62 contains a suitable DNA polymerization reverse transcription amplification preferably with a repeat of 3 7 ° C. The acid sequence helicase RCA), and the LOC agent storage tank, rather than the reagent storage f 62 package , reagent protein B su. Agent, Enzyme and Solution -87- 201209159 The enzyme is used to unwind the strands of double-stranded DNA instead of using heat. Those skilled in the art will appreciate that the necessary reagents can be separated between two reagent reservoirs in any manner suitable for the nucleic acid amplification process. In order to amplify viral nucleic acids from RNA viruses such as HIV or hepatitis C virus, NASBA or TMA is suitable because it is not necessary to first transcribe RNA into cDNA. In this example, reagent reservoir 60 contains buffers, primers, and dNTPs, and reagent reservoir 62 contains RNA polymerase, reverse transcriptase, and, optionally, RNaseH. For some forms of thermostatic nucleic acid amplification, it may be necessary to have an initial denaturation cycle to separate the double-stranded DNA template before maintaining the temperature at the temperature for constant temperature nucleic acid amplification. This is easily accomplished in all systems of the LOC devices described herein because the temperature of the mixture in the amplification zone 112 can be carefully controlled by the heaters 1 54 in the amplification microchannels 158 (see section 1). 4 figure). Thermostatic nucleic acid amplification is more tolerant of potential inhibitors in the sample and, therefore, is generally suitable for use in situations where nucleic acid amplification is required directly from the sample. Therefore, thermostatic nucleic acid amplification is sometimes used in the LOC variants XLIII 6 73, LOC variant XLIV 674 and LOC variant XLVH677 - etc. shown in Figures 86, 87 and 88, respectively. Direct thermostatic amplification may also be combined with one or more of the preamplification dialysis steps 70, 686 or 682 as shown in Figures 86 and 88 and/or the prehybridization dialysis step 6 8 as indicated in Figure 8 2. To assist the target cells in the partially concentrated sample before nucleic acid amplification, respectively, or to remove unwanted cell debris before the sample enters the hybridization chamber array 1 1 0. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used -88-201209159. Thermostatic nucleic acid amplification can also be performed simultaneously in amplification regions as shown graphically in Figures 71, 76 and 77, the diversity of thermostatic nucleic acid amplification and certain methods (such as LAMP) can be compatible with the initial reverse transcription step to expand Increase RN A. Additional details of the fluorescence detection system Figures 58 and 59 show hybridization-reactive FRET probes 23 6 . These are commonly referred to as molecular beacons and are the production of arm-and-loop probes from single-stranded nucleic acids that produce fluorescence upon hybridization with complementary nucleic acids. Figure 58 shows a single FRET probe 236 before hybridization to the target nucleic acid sequence 23 8 . The probe has a loop 240, an arm 242, a fluorophore 246 at the 51 end and a quencher 248 at the 3 end. The loop 240 is composed of a sequence complementary to the target nucleic acid sequence 238. The complementary sequences on either side of the probe sequence are bonded together to form an arm 242. As shown in Figure 5, the probe remains closed when the complementary target sequence is lacking. The arm 242 maintains the fluorophore-quenching agents in close proximity to one another such that significant resonant energy transfer can occur between them, substantially eliminating the ability of the fluorophore to fluoresce when illuminated by the excitation light 2 44. Figure 59 shows the FRET probe 23 6 configured for opening or hybridization. Upon hybridization to the complementary target nucleic acid sequence 23 8 , the arm-and-loop structure is broken and the fluorophore and quencher are spatially separated to restore the ability of the fluorophore 246 to fluoresce. The fluorescent emission 250 can be optically detected as an indication that the probe has hybridized. Since the arm helix of the probe is designed to be more probe-targeted helix than the non-complementary single core-89-201209159 Stable 'The probe hybridizes to a complementary target with very high specificity. Since the double-stranded DNA is relatively tight, the probe-target spirochete and the arm spirochete are not spatially coexistent. Control Probes The hybridization chamber array 1 1 〇 includes some hybridization chambers with positive and negative control probes for analysis of quality control 1 80 ° 1 and 1 〇 9 diagrams to illustrate negative control of fluorescing group 796 Pins '110 and 111 are sketches of positive control probes without quencher 798. The positive and negative control probes have an arm-and-loop configuration as described above for the FRET probe. However, the fluorescent signal 250 is always emitted from the positive control probe 798 and the negative control probe 796 has not emitted the fluorescent signal 250, regardless of whether the probe hybridizes to an open configuration or remains off. Referring to Figures 1 and 10, the negative control fluorescent probe 796 does not have a fluorophore (and may or may not have a quencher 248). Thus, whether or not the target nucleic acid sequence 23 8 hybridizes to the probe (see Figure 109), or whether the probe retains its arm-and-loop configuration (see Figure 1-8), the excitation light 244 The response is negligible. Alternatively, the negative control probe 796 can be designed to remain quenched at all times. For example, the synthesis loop 240 has a probe sequence that does not hybridize to any of the nucleic acid sequences in the sample being examined, the arms 242 of the probe molecule will re-hybridize themselves, and the fluorophore and quencher will remain near It will not emit a noticeable fluorescent signal. This negative control signal will correspond to a low amount of emission from hybridization chamber 180 (where the probe is not hybridized, but the quencher will not quench all of the emission from the reporter) -90-201209159. Conversely, as illustrated by Figures 1 1 0 and 1 1 1 , the configuration of the male 798 does not have a quencher. Regardless of the positive control probe target nucleic acid sequence 23 8 hybridization, the fluorophore 246 responds to the excitation of the fluorescent light 250 without being quenched by anything. Figure 52 shows the distribution of the potential control probes in the entire hybridization chamber array 110 (3 78 and 3 80 , respectively). 37 8 and 3 80 are placed in a chamber 1 80 spanning the hybrid chamber array 1 10 . However, the control probes in the array are in the configuration of any hybridization chamber array. 1) The fluorophore design requires a fluorophore with a long fluorescence lifetime so that the intensity of sufficient luminescence decays below the intensity of the fluorescing emission. At this time, 44 is enabled to provide sufficient signal to noise ratio. In addition, it is better translated into a larger integrated fluorescent photon count. Fluorescent clusters 24 6 (see Figure 59) have a lifetime longer than 100, usually longer than 200 nanoseconds, more often longer than 300 and in most cases longer than 400 nanoseconds. The transition metal or rare earth-based metal-gametoid lifetime (from hundreds of nanoseconds to milliseconds), sufficient quantum yield, and photochemical stability are all beneficial properties for fluorescent detection systems. . A hybridization arrangement in which the transition metal ion ruthenium (Ru(H)) is used as a primer 798 for positive and negative light on the control probe line (as with time, the photosensor is long). The metal-gametide complex of the luminescence of the luminescence of the luminescence of the celsius and the high-temperature and chemical conditions of the compound is three (2, 2 ^ 联Pyridine) 钌(Π) ([钌(bipyridine)3] 2+ ), which has a lifetime of about 1 microsecond. This complex is commercially available from Biosearch Technologies brand pulsar 65 0. Table 1: Pulsar 65 0 light Physical properties (钌 chelate) Parameter symbol number 値 Unit absorption wavelength Xabs 460 nm Emission wavelength λβιη 650 nm Extinction coefficient Ε 14800 M-'cm*1 Camp light lifetime Tf 1.0 μδ Quantum yield Η 1 (deoxidized) Ν/Α A ruthenium chelate, a lanthanide metal-gametide complex, has been successfully demonstrated as a fluorescent reporter in the FRET probe system and also has a long lifetime of 1 600 microseconds. Table 2: Light of ruthenium chelate Physical property parameter number of symbols 値 unit absorption wavelength ^abs 330-350 nm Wavelength ^em 548 nm extinction coefficient Ε 13800 (depending on the gametes, up to 30000 @, = 340 nm) M-'cm'1 camp light lifetime Tf 1600 (hybrid probe) μδ quantum yield Η 1 (depending on配/Α 201209159 LOC device 3 0 1 The fluorescence detection system used does not use filters to remove unwanted background fluorescence. Therefore, in order to increase the signal-to-noise ratio, if the quencher 248 does not have natural emission Advantageously, the quencher 248 does not cause background fluorescence when there is no natural emission. High quenching efficiency is also important to prevent fluorescence until hybridization occurs. The Black Hole Quenchers (BHQ) (It can be from Novato, California

Biosearch技術公司取得)沒有天然發射且具有高淬滅效 率,因而爲該系統之合適淬滅劑。BHQ-1在534nm具有 最大吸收且淬滅範圍爲48 0-58 Onm,這使其成爲铽螯合物 螢光團之合適的淬滅劑。BHQ-2在579nm具有最大吸收 且淬滅範圍爲560-670nm,這使其成爲Pulsar650之合適 的淬滅劑。 愛荷華黑淬滅劑(Iowa Black FQ和RQ )(其可從愛 荷華州 Coralville 之 Integrated DNA Technologies 取得) 爲合適之替代淬滅劑,其具有很少或沒有背景發射。Iowa Black FQ之淬滅範圍爲420-620nm,其在531 nm處具有 最大吸收,因此爲铽螯合物螢光團之合適的淬滅劑。Iowa Black RQ在 656nm具有最大吸收且淬滅範圍在 500-700nm,這使其成爲Pulsar650之理想的淬滅劑。 於此處所描述之體系中,該淬滅劑248爲最初連接在 探針之官能部分’但其他體系中該淬滅劑可能爲在溶液中 游離之分開的分子。 激發源 -93- 201209159 在以此處所描述之體系爲基礎的螢光偵測中,由於功 率消耗低、成本低且體積小因而選擇LED作爲激發源, 而非雷射二極管、高功率燈或雷射。參考第89圖,該 LED26係直接置於LOC裝置301之外表面上的雜交室陣 列110之上。在雜交室陣列110室之對側爲由光二極體陣 列1 84製成之光感測器44以用於偵測來自各室之螢光信 號(見第53、54和64圖)。 第90、91和92圖中圖解說明其他使探針接觸激發光 之體系。在第 90圖中所示之LOC裝置30中,由激發 LED20產生之激發光244係由透鏡254定向在雜交室陣歹IJ 1 10上。該激發LED 26爲脈衝式且該螢光發射係藉由光 感測器44偵測。 在第91圖所示之LOC裝置30中,由激發LED26所 產生之激發光244係由透鏡25 4、第一光學棱鏡712和第 二光學棱鏡714定向到雜交室陣列110上。該激發LED 26爲脈衝式且該螢光發射係藉由光感測器44偵測。 類似地,在第92圖所示之LOC裝置30中,由激發 LED26所產生之激發光244係由透鏡254、第一鏡子716 和第二鏡子7 1 8定向到雜交室陣列1 1 0上。同樣地,該激 發LED 26爲脈衝式且該螢光發射係藉由光感測器44偵 測。 該LED26之激發波長係取決於所選擇之螢光染料。 飛利浦(Philips) LXK2-PR14-R00 爲 Pulsar650 染料之合 適激發源。SET UVT0P3 3 5T039BL LED爲铽螯合物標籤 201209159 之合適激發源。Biosearch Technologies has obtained a natural quencher with no natural emission and high quenching efficiency. BHQ-1 has a maximum absorption at 534 nm and a quenching range of 48 0-58 Onm, which makes it a suitable quencher for the ruthenium chelate fluorophore. BHQ-2 has maximum absorption at 579 nm and a quenching range of 560-670 nm, making it a suitable quencher for Pulsar 650. Iowa Black Quenchers (Iowa Black FQ and RQ) (available from Integrated DNA Technologies of Coralville, Iowa) are suitable alternative quenchers with little or no background emission. The Iowa Black FQ has a quenching range of 420-620 nm, which has maximum absorption at 531 nm and is therefore a suitable quencher for the ruthenium chelate fluorophore. Iowa Black RQ has maximum absorption at 656 nm and a quenching range of 500-700 nm, making it an ideal quencher for Pulsar 650. In the system described herein, the quencher 248 is initially attached to the functional moiety of the probe' but in other systems the quencher may be a separate molecule that is free in solution. Excitation source-93- 201209159 In the fluorescence detection based on the system described here, LED is selected as the excitation source due to low power consumption, low cost and small size, instead of laser diode, high power lamp or thunder Shoot. Referring to Figure 89, the LED 26 is placed directly over the array of hybrid cells 110 on the outer surface of the LOC device 301. Opposite the chamber of hybrid array 110 is a photosensor 44 made of photodiode array 184 for detecting fluorescent signals from each chamber (see Figures 53, 54 and 64). Other systems for contacting the probe with excitation light are illustrated in Figures 90, 91 and 92. In the LOC device 30 shown in Fig. 90, the excitation light 244 generated by the excitation LED 20 is directed by the lens 254 onto the hybrid cell array IJ 1 10 . The excitation LED 26 is pulsed and the fluorescent emission is detected by the optical sensor 44. In the LOC device 30 shown in Fig. 91, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first optical prism 712 and the second optical prism 714 onto the hybridization cell array 110. The excitation LED 26 is pulsed and the fluorescent emission is detected by the photo sensor 44. Similarly, in the LOC device 30 shown in Fig. 92, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 to the hybridization chamber array 110. Similarly, the excitation LED 26 is pulsed and the fluorescent emission is detected by the light sensor 44. The excitation wavelength of the LED 26 is dependent on the selected fluorescent dye. Philips LXK2-PR14-R00 is a suitable source of excitation for Pulsar650 dyes. SET UVT0P3 3 5T039BL LED is a suitable excitation source for the ruthenium chelate label 201209159.

表 3 : Philips LXK2-PR14-R00 LED 規格Table 3: Philips LXK2-PR14-R00 LED Specifications

參數 符號 數値 單位 波長 λεχ 460 nm 發射頻率 Vem 6.52(10)14 Hz 輸出功率 Pi 0.515(分)@ ΙΑ W 輻射樣式 朗伯(Lambertian)變化形廓 N/A 表 4 : SET UVT0P334T039BL LED 規格Parameter Symbol Number 单位 Unit Wavelength λεχ 460 nm Transmit frequency Vem 6.52(10)14 Hz Output power Pi 0.515(min) @ ΙΑ W Radiation pattern Lambertian variation profile N/A Table 4 : SET UVT0P334T039BL LED Specifications

參數 符號 數値 單位 波長 340 nm 發射頻率 Ve 8:82(10)14 Hz 功率 Pl 0.000240 (分)@ 20mA W 脈衝式正向電流 I 200 mA 輻射樣式 朗伯(Lambertian) N/A LED驅動器 該LED驅動器29在©定電流下驅動LED26 —段所需 的時間。較低功率USB 2.0-可認證之裝置可以最小操作電 壓4.4V吸出最多1個單位之負載(1〇〇mA)。標準功率 調節電路可用於此目的。 光二極體 第54圖顯示整合入l〇C裝置301之CMOS電路86 -95- 201209159 的光一極體184。該光二極體184係製造成無額外遮蔽或 台階之CM 0 S電路8 6的一部分。可利用非標準處理步驟 整合在同一芯片上’或製作在相鄰之芯片上的替代感測技 術爲此CMOS光二極體超越CCD之顯著優點。芯片上( on-chip )偵測之成本低且縮小偵測系統之尺寸。較短之 光徑長度可降低來自周圍環境之噪音以有效地收集螢光信 號且無需傳統之光學鏡頭和過濾器之組合。 光二極體184之量子效率爲光子撞擊其感光面185, 而有效地轉換爲光-電子的部分。在標準之矽處理程序方 面’量子效率在可見光方面爲0.3至0.5,其取決於方法 參數’諸如覆蓋層之數量和吸收性質。 光二極體1 84之偵測閾値決定可以被偵測到之螢光信 號的最小強度。該偵測閩値亦決定光二極體1 8 4之尺寸, 由此可決定在雜交區和偵測區52中之雜交室180的數目 (見第52圖)。室之尺寸及數量爲受限於LOC裝置之尺 寸(在LOC裝置301的情況中,該尺寸爲1 760微米x 5 8 24微米)及納入其他功能性模組後(諸如病原體透析 區70及擴增區112)之可用空間的技術參數。 在標準矽處理程序方面,光二極體1 8 4偵測最少5個 光子。然而,爲了確保可靠之偵測,最低可設爲1 〇個光 子。因此,量子效率範圍在0.3至0.5(如上所述)時, 該來自探針之螢光發射應爲最少17個光子’但對可靠偵 測而言,3 0個光子將納入合適的誤差幅度。 -96- 201209159 校準室 光二極體184之電特性的非均勻性、自體螢光和尙未 完全衰退之剩餘的激發光子通量將背景雜訊及偏移引入輸 出信號中。使用一或多個校準信號將這個背景從各個輸出 信號中移除。校準信號係經由將陣列中之一或多個校準光 二極體1 84接觸各自之校準源來產生。使用低校準源來測 定其中標靶未與探針反應之陰性結果。高校準源爲從探 針-標靶複合物產生之陽性結果的指示。在此處所描述之 體系中,該低校準光源係由雜交室陣列110中之校準室 3 8 2提供,其: 不包含任何探針; 包含不具有螢光報告子之探針;或, 包含具有經配置成預計永遠發生淬滅之報告子及淬滅 劑的探針。 來自這類校準室3 82之輸出信號非常近似來自LOC 裝置之所有雜交室之輸出信號中的雜訊和偏移。由其他雜 交室產生之輸出信號減去校準信號可大致上去除背景並留 下由蛮光發射(如果有的話)所產生的信號。亦減去從該 室陣列之區中的環境光產生的信號。 參考第1 0 8至1 1 1圖將可明白上述之陰性對照探針可 用於校準室。然而,如第94和95圖所示(其爲第93圖 中所示之LOC變體X 728之插圖DG和DH的放大視圖) ’另一個選擇爲流體上隔離校準室3 82與擴增子。該背景 II ΙΛ ®移可經由使該流體上隔離之室清空,或藉由包含 -97- 201209159 無報告子之探針’或甚至任何由於流體隔離而阻止雜交之 同時具有報告子與淬滅劑的'正常’探針來測定。 校準室382可提供高校準源以在對應之光二極體中產 生高信號。該高信號對應於所有在室中已雜交之探針。具 有報告子且無淬滅劑,或者只具有報告子之點樣探針將持 續提供近似於其中大部分探針已雜交之雜交室的信號。亦 知可使用校準室3 8 2來代替對照探針,或與對照探針一起 使用。 整個雜交室陣列中可具有任意數目和安排之校準室 382。然而’若以非常近似之校準室382校準光二極體 184,則校準更準確。參考第56圖,該雜交室陣列11〇中 每8個雜交室180具有一個校準室382。也就是說,校準 室382係位在每3x3雜交室180的中央。在此配置中,雜 交室180係藉由緊鄰之校準室382校準。 第1 0 7圖顯示差分成像器電路7 8 8,其係用於將對應 於校準室3 8 2之來自光二極體1 84的信號(此爲激發光所 造成之結果)從來自包圍雜交室1 8 0之螢光信號減去。該 差分成像器電路788採取來自像素790及“虛擬”像素 792之樣本信號。於一體系中’將該“虛擬”像素792避 光’所以其輸出信號提供黑暗參考。或者,可將該“虛擬 ”像素7 9 2與其餘陣列暴露在激發光。於“虛擬”像素 7 92對光開放之體系中亦減去從該室陣列區之環境光產生 的信號。來自像素790之信號小(即,接近黑暗信號), 而未參考黑暗水準時很難區分背景和非常小之信號。 -98- 201209159 在使用期間’ “read_row” 794 及 “read_ 被激活,M4 797及MD4 801電晶體被打開。 8 09被關閉,從而將該來自像素790和“虛· 之輸出信號分別儲存在像素電容器803和虛擬 805。該像素信號已儲存後,開關8〇7和809 後,“read_c〇l” 開關 811 及虛擬 “read_coI 被關閉,該在輸出處之轉換的電容器擴增器8 分信號8 1 7。 遏制和啓用光二極體 被LED26激發之期間需要抑制光二極體1 光期間啓用之。第65圖爲單一光二極體184 第66圖爲光二極體對照信號之時序圖。該電 極體184及六個 MOS電晶體,Mshunt 3 94 ' Mreset 3 98、MSf 400、Mread 402 和 Mbias 404。 tl開始時,經由對Mshunt閘極3 84及重設閘 電壓,而開啓電晶體Mshunt 394及Mreset 398 ,該激發光子在光二極體184中產生載體。這 被移除,因爲載體之生成量可能足以使光二極 。在此循環期間,Mshunt 3 94直接移除在光二 產生之載體,而Mreset 3 98則重設任何因電晶 由於激發產生之載體擴散至基板而累積在節點 載體。激發後,在t4開始捕捉循環。在此循 螢光團發射之反應被捕捉並整合在電路中節製 _row_d” 7 9 5 開關807和 ί ”像素7 9 2 像素電容器 不作用。然 ”開關8 1 3 1 5擴增該差 84,而在螢 之電路圖, 路具有光二 、Mtx 396、 在激發週期 極3 8 8加高 。在此期間 些載體必須 體184飽和 極體184中 體中洩漏或 ;·Ν3,406 的 環期間,從 ;,NS'406 上 -99- 201209159 。此可經由對tx閘極3 8 6加高電壓來達到,因爲言 極3 8 6加高電壓可打開電晶體 M t x 3 9 6並將任何 光二極體184上之載體轉移至節點’NS ·406。該捕 之期間可與螢光團發射一樣長。該來自所有在雜交 110中之光二極體184的輸出同時被捕捉。 捕捉循環t5結束及閱讀循環t6開始之間有時 延遲。此延遲係由於在捕捉循環後需要分別讀取雜 列110中之各光二極體184 (見第52圖)。第一 取之光二極體184在閱讀循環前的延遲最短,而最 二極體1 84在閱讀循環前的延遲最長。在閱讀循環 經由對閱讀閘極3 9 3加高電壓而開啓電晶體Mrea( 使用來源追踪器電晶體Msf 400緩衝並讀取'NS “ ft 電壓。 其他可選擇之啓用或抑制光二極體的方法討論 1 .遏制方法 第104、105和106圖顯示Mshunt電晶體394 能之配置778、78 0、7 82。該Mshunt電晶體394 I VGS | =5V時有很高之關閉比例,其在激發期間 起動。如第104圖所示,Mshunt閘極3 84係配置在 體184的邊緣。可選擇地,如第105圖所示,Msh 3 84可配置成包圍該光二極體184。第三種選 Mshunt閘極384配置在光二極體184內,如第106 。在此第三個選項下光二極體感光面1 8 5會減少。 hf tx 閘 累積在 捉循環 室陣列 間上的 交室陣 個欲讀 後之光 期間, 402 ° i 點 406 如下: 三種可 在最大 才能夠 光二極 u n t聞極 擇係將 圖所示 -100- 201209159 這三個配置778、780和782降低從光二極體184之 所有位置到Mshunt閘極384之平均路徑長度。在第104圖 中,該Mshunt閘極3 84係在光二極體184的一側。此配置 最容易製造且光二極體感光面185上之撞擊最少。然而, 繼續停留在光二極體1 84之遠側的任何載體通過Mshunt閘 極3 84傳導將需要更長的時間。 在第105圖中,該Mshunt電晶體3 84包圍光二極體 184。此進一步降低光二極體184中之載體到達Mshunt閘 極3 84之平均路徑長度。然而,將Mshunt閘極3 84延伸至 光二極體184周邊附近使光二極體之感光面185減少更多 。第106圖中之配置782將Mshunt閘極3 84置於感光面 185內。此提供到達Mshunt閘極3 84之最短平均路徑長., 因此過渡時間最短。然而,在感光面1 8 5上之撞擊最多。 其亦帶來較寬之滲漏路徑。 2.啓用方法 a.觸發光二極體以固定之延遲時間驅動分流電晶體。 b_觸發光二極體以程控之延遲時間驅動分流電晶體。 c. 分流電晶體以固定之延遲時間從LED驅動脈衝驅動。 d. 分流電晶體依2c中之方式驅動但具有程控之延遲時間 〇 第68圖爲透過雜交室U0,顯示包埋在CMOS電路 86中之光二極體184和觸發光二極體187的示意剖面視 圖。在光二極體184角落中之一個小面積被觸發光二極體 -101 - 201209159 1 87取代。具有小面積之觸發光二極體丨87即已足夠,因 爲激發光之強度與螢光發射相比較時將是高的。觸發光二 極體187對激發光2 44敏感。該觸發光二極體187指示激 發光244已熄滅並在很短的延遲時間^3 00後激活光二極 體184 (見第2圖)。此延時使螢光光二極體184能在缺 •乏激發光244下偵測來自FRET探針186的螢光發射。如 此可偵測及改善信噪比。 光二極體184及觸發光二極體187二者係位於各雜交 室180之CMOS電路86中。該光二極體之陣列與適當之 電子結合,從而形成光感測器44 (見第64圖)。該光二 極體184爲CMOS結構製造過程中無額外之遮蔽或步驟所 製造之pn接面二極體。在MST製造期間,可選擇性地使 用標準MST光蝕刻技術將在光二極體1 84上之絕緣層( 未顯示)薄化以允許更多螢光照亮該光二極體184之感光 面185。光二極體184具有視野以使雜交室180內之來自 探針-標靶雜交物的螢光信號入射在該感測器的面。該螢 光被轉換成光電流,然後再使用CMOS電路86測量之。 另外,使一或多個雜交室180可僅專用於一個觸發光 二極體187。這些選項可與上述2a和2b組合使用於此。 螢光之延遲偵測 下列推衍闡明使用用於上述LED/螢光團組合之長壽 螢光團來延遲偵測螢光。螢光強度之推衍係如第6 0圖所 示,在時間Ο和〇之間,經由使用理想的固定強度Ie脈 -102- 201209159 衝激發後,以時間函數導出。 令[si](()等於時間t時之激發態的密度,則在激發 期間和之後,每單位體積內每單位時間之激發態數目係藉 以下微分方程式描述: d[s\] dt tf hve 其中C爲螢光團之摩爾濃度,ε爲摩爾消光係數,_Ve 爲激發頻率且h= 6.62606896 ( 10) _34 JS爲普朗克( • Plank)常數》 此微分方程式具下列—般形式: y- + p(x)y = q(x) αχ 其具有解答:Number of parameter symbols 値 Unit wavelength 340 nm Transmit frequency Ve 8:82 (10) 14 Hz Power Pl 0.000240 (minutes) @ 20mA W Pulsed forward current I 200 mA Radiation pattern Lambertian N/A LED driver This LED The time required for driver 29 to drive LED 26 at a constant current. The lower power USB 2.0-certifiable unit draws up to 1 unit load (1 mA) with a minimum operating voltage of 4.4V. Standard power conditioning circuits can be used for this purpose. Photodiode Figure 54 shows the photodiode 184 integrated into the CMOS circuit 86-95-201209159 of the device 301. The photodiode 184 is fabricated as part of a CM0S circuit 816 without additional shadowing or steps. Alternative sensing techniques that can be integrated on the same chip using non-standard processing steps or fabricated on adjacent chips have significant advantages over CCDs for CMOS photodiodes. The cost of on-chip detection is low and the size of the detection system is reduced. The shorter optical path length reduces noise from the surrounding environment to efficiently collect fluorescent signals without the need for a combination of conventional optical lenses and filters. The quantum efficiency of the photodiode 184 is such that photons strike the photosensitive surface 185 and are effectively converted into photo-electrons. In the standard process, the quantum efficiency is 0.3 to 0.5 in terms of visible light depending on the method parameters such as the number of cover layers and the absorption properties. The detection threshold of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection chirp also determines the size of the photodiode 128, thereby determining the number of hybridization chambers 180 in the hybridization and detection zones 52 (see Figure 52). The size and number of chambers are limited by the size of the LOC device (in the case of LOC device 301, which is 1 760 microns x 5 8 24 microns) and after incorporating other functional modules (such as pathogen dialysis zone 70 and expansion) The technical parameters of the available space of the zone 112). In terms of standard 矽 processing, the photodiode 184 detects a minimum of 5 photons. However, to ensure reliable detection, it can be set to a minimum of 1 photon. Therefore, when the quantum efficiency ranges from 0.3 to 0.5 (as described above), the fluorescent emission from the probe should be a minimum of 17 photons' but for reliable detection, 30 photons will incorporate a suitable margin of error. -96- 201209159 Calibration Chamber The non-uniformity of the electrical characteristics of the photodiode 184, the autofluorescence, and the remaining excitation photon fluxes that are not fully degraded introduce background noise and offset into the output signal. This background is removed from each output signal using one or more calibration signals. The calibration signal is generated by contacting one or more of the calibration photodiodes 1 84 in the array with respective calibration sources. A low calibration source was used to determine the negative result in which the target did not react with the probe. The high calibration source is an indication of the positive result produced from the probe-target complex. In the system described herein, the low calibration source is provided by a calibration chamber 382 in the hybrid chamber array 110, which: does not contain any probes; includes probes that do not have a fluorescent reporter; or, includes A probe configured to predict the quenching of the reporter and the quencher forever. The output signal from such a calibration chamber 382 is very similar to the noise and offset in the output signals from all of the hybrid chambers of the LOC device. Subtracting the calibration signal from the output signal produced by other hybrid chambers substantially removes the background and leaves the signal produced by the salient light emission (if any). Signals generated from ambient light in the area of the array of the chamber are also subtracted. Referring to Figures 1 0 to 1 1 1 it will be appreciated that the above negative control probe can be used in the calibration chamber. However, as shown in Figures 94 and 95 (which is an enlarged view of the illustrations DG and DH of the LOC variant X 728 shown in Figure 93) 'Another option is to isolate the calibration chamber 3 82 from the amplicon on the fluid. . The background II 移 ® shift can be emptied by the chamber that isolates the fluid, or by a probe containing no reporter of -97-201209159' or even any contamination due to fluid isolation, with a reporter and a quencher The 'normal' probe is used to determine. The calibration chamber 382 can provide a high calibration source to generate a high signal in the corresponding photodiode. This high signal corresponds to all probes that have been hybridized in the chamber. A spotted probe with a reporter and no quencher, or with only a reporter will continue to provide a signal similar to the hybridization chamber in which most of the probes have hybridized. It is also known to use a calibration chamber 382 instead of a control probe or with a control probe. There may be any number and arrangement of calibration chambers 382 throughout the array of hybrid chambers. However, if the photodiode 184 is calibrated with a very similar calibration chamber 382, the calibration is more accurate. Referring to Figure 56, each of the eight hybridization chambers 180 has one calibration chamber 382. That is, the calibration chamber 382 is tethered to the center of every 3x3 hybridization chamber 180. In this configuration, the hybrid chamber 180 is calibrated by the calibration chamber 382 in the immediate vicinity. Figure 107 shows a differential imager circuit 7.8 which is used to correlate the signal from the photodiode 1 84 corresponding to the calibration chamber 382 (this is the result of the excitation light) from the surrounding hybridization chamber. The fluorescent signal of 1 800 is subtracted. The differential imager circuit 788 takes sample signals from pixel 790 and "virtual" pixel 792. The "virtual" pixel 792 is shielded from light in a system so its output signal provides a dark reference. Alternatively, the "virtual" pixel 7 9 2 can be exposed to the excitation light with the remaining array. The signal generated from the ambient light of the array region of the chamber is also subtracted from the "virtual" pixel 7 92 that is open to light. The signal from pixel 790 is small (i.e., close to the dark signal), and it is difficult to distinguish between the background and the very small signal without reference to the dark level. -98- 201209159 During use, 'read_row' 794 and "read_ are activated, M4 797 and MD4 801 transistors are turned on. 8 09 is turned off, so that the output signals from pixel 790 and "virtual" are stored in pixels respectively. Capacitor 803 and virtual 805. After the pixel signal has been stored, after the switches 8〇7 and 809, the “read_c〇l” switch 811 and the dummy “read_coI are turned off, and the converted capacitor amplifier 8 at the output divides the signal 8 1 7. Contains and enables The photodiode is activated during the excitation of the LED 26 during the period of the photodiode 1 to be activated. Fig. 65 is a single photodiode 184. Figure 66 is a timing diagram of the photodiode control signal. The electrode body 184 and the six MOS electrodes Crystal, Mshunt 3 94 'Mreset 3 98, MSf 400, Mread 402 and Mbias 404. At the beginning of tl, the transistors Mshunt 394 and Mreset 398 are turned on via the Mshunt gate 3 84 and the gate voltage is reset, the excitation photons are The carrier is generated in the photodiode 184. This is removed because the amount of carrier generated may be sufficient to cause the photodiode. During this cycle, Mshunt 3 94 directly removes the carrier generated in the light II, while the Mreset 3 98 resets any electricity. The crystal is accumulated in the node carrier due to the diffusion of the carrier generated by the excitation. After the excitation, the capture cycle starts at t4. The reaction of the fluorophore emission is captured and integrated in the circuit to control _row_d" 7 9 5 Off 807 and ί" pixel 7 9 2 pixel capacitor does not work. However, switch 8 1 3 1 5 amplifies the difference 84, and in the circuit diagram of the firefly, the road has light two, Mtx 396, in the excitation period pole 386 high . During this period, some carriers must be 184 saturated in the body of the polar body 184 or leak in the body; Ν 3,406 during the ring period from ;, NS'406 on -99-201209159. This can be achieved by applying a high voltage to the tx gate 386, since the voltage of the diode 386 can open the transistor M tx 3 9 6 and transfer the carrier on any photodiode 184 to the node 'NS. 406. This capture period can be as long as the fluorophore emission. The output from all of the photodiodes 184 in hybridization 110 is simultaneously captured. There is a delay between the end of the capture cycle t5 and the beginning of the read cycle t6. This delay is due to the need to separately read each of the photodiodes 184 in the array 110 after the capture cycle (see Figure 52). The first taken photodiode 184 has the shortest delay before the reading cycle, while the most dipole 184 has the longest delay before the reading cycle. The transistor Mrea is turned on during the reading cycle by applying a high voltage to the reading gate 3 9 3 (buffering with the source tracker transistor Msf 400 and reading the 'NS' ft voltage. Other alternative ways to enable or suppress the photodiode Discussion 1. Containment methods Figures 104, 105, and 106 show that Mshunt transistor 394 can be configured with 778, 78 0, and 7 82. The Mshunt transistor 394 I VGS | = 5V has a high turn-off ratio during excitation. Startup. As shown in Fig. 104, the Mshunt gate 3 84 is disposed at the edge of the body 184. Alternatively, as shown in Fig. 105, the Msh 3 84 can be configured to surround the photodiode 184. The third option The Mshunt gate 384 is placed in the photodiode 184, as in step 106. Under this third option, the photodiode 1 8 5 is reduced. The hf tx gate accumulates in the array of chambers between the arrays. During the light to be read, the 402 ° i point 406 is as follows: Three can be used at the maximum level of the light dioxin unt smear will be shown in the figure -100- 201209159 These three configurations 778, 780 and 782 are lowered from the light diode 184 The average path length of all locations to the Mshunt gate 384. In Fig. 104, the Mshunt gate 3 84 is on one side of the photodiode 184. This configuration is the easiest to fabricate and has the least impact on the photodiode 185. However, it remains at the far end of the photodiode 1 84. Any carrier on the side will take longer to pass through the Mshunt gate 3 84. In Figure 105, the Mshunt transistor 3 84 surrounds the photodiode 184. This further reduces the carrier in the photodiode 184 to the Mshunt gate The average path length of 3 84. However, extending the Mshunt gate 3 84 to the vicinity of the periphery of the photodiode 184 reduces the photoreceptor surface 185 of the photodiode by more. The configuration 782 in Fig. 106 places the Mshunt gate 3 84 Inside the photosensitive surface 185. This provides the shortest average path length to the Mshunt gate 3 84. Therefore, the transition time is the shortest. However, the impact on the photosensitive surface 185 is the most. It also brings a wider leakage path. Enable Method a. Trigger the photodiode to drive the shunt transistor with a fixed delay time b_trigger the photodiode to drive the shunt transistor with a programmed delay time c. The shunt transistor is driven from the LED drive pulse with a fixed delay time d. The galvanic crystal is driven in the manner of 2c but has a programmed delay time. Fig. 68 is a schematic cross-sectional view showing the photodiode 184 and the triggering photodiode 187 embedded in the CMOS circuit 86 through the hybridization chamber U0. A small area in the corner of the photodiode 184 is replaced by a trigger photodiode-101 - 201209159 1 87. Triggering the photodiode 丨87 with a small area is sufficient because the intensity of the excitation light will be high compared to the fluorescent emission. The trigger photodiode 187 is sensitive to the excitation light 2 44 . The trigger photodiode 187 indicates that the illuminator 244 has extinguished and activates the photodiode 184 after a short delay time of ^3 00 (see Figure 2). This delay causes the fluorescent photodiode 184 to detect fluorescent emissions from the FRET probe 186 under the lack of excitation light 244. This will detect and improve the signal to noise ratio. Both photodiode 184 and trigger photodiode 187 are located in CMOS circuitry 86 of each hybrid cell 180. The array of photodiodes is combined with appropriate electrons to form photosensor 44 (see Figure 64). The photodiode 184 is a pn junction diode fabricated without additional shielding or steps in the fabrication of the CMOS structure. During MST fabrication, an insulating layer (not shown) on photodiode 180 can be selectively thinned using standard MST photolithography to allow more phosphor to illuminate photosensitive surface 185 of photodiode 184. Photodiode 184 has a field of view such that a fluorescent signal from the probe-target hybrid within hybridization chamber 180 is incident on the face of the sensor. This fluorescent light is converted into a photocurrent which is then measured using a CMOS circuit 86. Additionally, one or more of the hybridization chambers 180 can be dedicated to only one of the triggering light diodes 187. These options can be used in combination with the above 2a and 2b. Fluorescence Delay Detection The following derivation clarifies the use of long-lived fluorophores for the above LED/fluorescent combination to delay detection of fluorescence. The fluorescence intensity is derived as shown in Fig. 60, and is derived as a function of time between time Ο and 〇 by using the ideal fixed intensity Ie pulse -102-201209159. Let [si](() be equal to the density of the excited state at time t, then the number of excited states per unit volume per unit volume during and after excitation is described by the following differential equation: d[s\] dt tf hve Where C is the molar concentration of the fluorophore, ε is the molar extinction coefficient, _Ve is the excitation frequency and h = 6.62606896 (10) _34 JS is the Planck constant. This differential equation has the following general form: y- + p(x)y = q(x) αχ It has the answer:

^P{x)dx q{x)dx + k 現在使用此式來解答式(1 ) ’ 1>(3) hve 現在,在時間ίι ’ [S1] ( (1 ) = 0 ’且從(3 ) ··^P{x)dx q{x)dx + k Now use this formula to solve equation (1) '1>(3) hve now, at time ίι ' [S1] ( (1 ) = 0 ' and from (3 ) ··

Lscrf t ,rLscrf t ,r

Jc = -」~f-eh'T!…(4) hve 將(4 )代入(3 ) 剛令-分她 -103 ...(5) 201209159 在時間:Jc = -"~f-eh'T!...(4) hve Substituting (4) into (3) Just ordering - dividing her -103 ...(5) 201209159 At time:

IeSCT^ leECXf Λ-(/2-/,)/Γ/ — --—— c hve hve 當t g ί 2,激發態以指數衰減且此可藉下式描述: [51](〇 = [51](/2)β'(,·,ι)/Γ/ ...⑹ 將(5 )代入(6 ): [51](/) = μ _ e-^lrf y^f …⑺IeSCT^ leECXf Λ-(/2-/,)/Γ/ -- --—— c hve hve When tg ί 2, the excited state decays exponentially and this can be described by: [51](〇= [51] (/2)β'(,·,ι)/Γ/ (6) Substituting (5) into (6): [51](/) = μ _ e-^lrf y^f (7)

hye 該螢光強度係藉由以下公式產生: 其中vf爲螢光頻率,η爲量子產量且1爲光徑長度。 現在,從(7 ): 4^1](〇__ Iesc dt ~~~h7eV ~ " 將(9 )代入(8 ):Hye The fluorescence intensity is generated by the following formula: where vf is the fluorescence frequency, η is the quantum yield and 1 is the optical path length. Now, from (7): 4^1](〇__ Iesc dt ~~~h7eV ~ " Substituting (9) into (8):

If (〇 = ΙΒεάη^-[\ - e~(,1-,l),T/ ]e-(,Wj)/^ ...(10) —~— ^ 〇〇 If (〇 -> ΙεεοΙη—ε~(,~,ϊ)Ιτ, 在 方面, Κ 因此,我們可以編寫下列近似方程式,其描述經過足 夠長之激發脈衝後螢光強度衰退的情況(〇- h>>Tf): = 對,Μ 而言·_·(11) 在前段中,我們得出結論,在i2- h>> T f的情況中, If(t) = Iesc^e-{,~'^ -104- 201209159 從上述公式中’我們可以推衍出以下幾點: «/(〇 = rie£c^e'{,^Vtf ...(12) 其中 …"、-7Af) η; (0 — τ v/爲每單位面積內每單位時間之螢光數,且 ne =-i- 爲每單位面積內每單位時間之激發光子數。 因此, 00 nf(t)=\nf(t)dt …(13) 其中\爲每單位面積之螢光光子數且ί3爲該光二極 體打開之瞬間時間。將(1 2 )代入(1 3 ): 00 nf = ^rieec^e'(l',l)lTf dt ...(14) h 現在,每單位面積內每單位時間到達光二極體的螢光 光子數’ K0 ’係由下式產生: K’) = h/(O0〇 ·,·(15) • 其中Α爲該光學系統之集光效率。 將(12 )代入(1 5 ),我們發現 ris(t) = φ0ηεε€ΐηβ (,".(16) 同樣地,每單位螢光面積內到達光二極體之螢光光子 數圮將如下: 〇〇 ,ί 且代入(1 6 )並整合: ns =φϋη€εοΙητ^{Η',ι)ΙΤί 因此, -105- 201209159 ns =Φ〇ήίεοΙητίβ~&,ΙΤ/ ...(17) /3之理想値爲當由螢光光子造成光二極體184產生電 子之比率與由激發光子造成光二極體184產生電子的比率 相等時,因爲激發光子之通量衰減的速度遠超過螢光光子 之衰減速度。 由螢光造成之每單位螢光面積的感測器輸出電子比率 爲: β/(ί) = φ/ηΜ 其中办爲該感測器在該螢光波長的量子效率。 代入(1 7 ),可得: 4 (〇=MWX…(18) 同樣地,由於激發光子產生之每單位螢光面積的感測 器輸出電子比率爲: ee(0 = ^«>"(,",2)/r* -(19) 其中么爲感測器在激發波長的量子效率’且^爲對應於激 發LED之“關閉”特點之時間常數。經過時間/2後’ LED衰減光子通量將會增加螢光信號的強度並延長其衰減 時間,但我們假設這對1<〇)之影響微不足道’因此,我們 採取保守的方法。 現在,如前所述,G之理想値爲當: ^(/3) = ^(/3) 因此,從(18)和(19)可得: & 广,2)/r/ = Wee_(,r’2)/r· -106- 201209159 再重新排列時’我們發現: ΗεοΙη^1·) ί3 _’2 = j j ...(20)If (〇= ΙΒεάη^-[\ - e~(,1-,l),T/ ]e-(,Wj)/^ (10) —~— ^ 〇〇If (〇-> ΙεεοΙη —ε~(,~,ϊ)Ιτ, in terms of, Κ Therefore, we can write the following approximation equation, which describes the case where the fluorescence intensity decays after a sufficiently long excitation pulse (〇-h>gt;Tf): Yes, Μ ··_·(11) In the previous paragraph, we conclude that in the case of i2-h>gt; T f, If(t) = Iesc^e-{,~'^ -104- 201209159 From the above formula, we can derive the following: «/(〇= rie£c^e'{,^Vtf ...(12) where...",-7Af) η; (0 — τ v/ is the number of fluorescence per unit time per unit area, and ne = -i- is the number of excitation photons per unit time per unit area. Therefore, 00 nf(t)=\nf(t)dt ...( 13) where \ is the number of fluorescent photons per unit area and ί3 is the instant time when the photodiode is turned on. Substituting (1 2 ) into (1 3 ): 00 nf = ^rieec^e'(l',l) lTf dt (14) h Now, the number of fluorescent photons 'K0' reaching the photodiode per unit time per unit area is generated by: K') = h /(O0〇·,·(15) • where Α is the light collection efficiency of the optical system. Substituting (12) into (1 5 ), we find that ris(t) = φ0ηεε€ΐηβ (,".(16) Similarly, the number of fluorescent photons reaching the photodiode per unit of fluorescence area will be as follows: 〇〇, ί and substituting (1 6 ) and integrating: ns =φϋη€εοΙητ^{Η', ι)ΙΤί Therefore, -105- 201209159 ns =Φ〇ήίεοΙητίβ~&,ΙΤ/ ...(17) /3 The ideal 値 is the ratio of electrons generated by photodiode 184 caused by fluorescent photons and photodiode 184 caused by excited photons When the ratio of generated electrons is equal, the rate at which the excitation photon is attenuated is much faster than the decay rate of the fluorescent photon. The ratio of the sensor output electrons per unit of fluorescence area caused by fluorescence is: β/(ί) = φ / η Μ where is the quantum efficiency of the sensor at the wavelength of the fluorescence. Substituting (1 7 ), you can get: 4 (〇 = MWX... (18) Similarly, the area per unit of fluorescence generated by the excitation photons The sensor output electron ratio is: ee(0 = ^«>"(,",2)/r* -(19) where is the sensor Excitation wavelength quantum efficiency 'and ^ corresponding to an LED excitation "off" time constant of the characteristics. After the time/2, the LED attenuates the photon flux to increase the intensity of the fluorescent signal and prolong its decay time, but we assume that this has a negligible effect on 1<〇. Therefore, we adopt a conservative approach. Now, as mentioned earlier, the ideal of G is: ^(/3) = ^(/3) Therefore, from (18) and (19): & wide, 2) / r / = Wee_ ( ,r'2)/r· -106- 201209159 When rearranging 'we found: ΗεοΙη^1·) ί3 _'2 = jj ...(20)

Tf Te 從前面兩節中’我們具有以下兩種工作方程式: Ίή/τ〆”…(21) 4〆 Δί = -H 上 …(22) T/ Te 其中F = £c/t7且= 。我們亦知,在實行時,… t \>> Tf ° 螢光偵測之最佳時間及使用飛利浦LXK2-PR14-R00 L E D和P u 1 s a r 6 5 0染料偵測的螢光光子數係依下述測定。 最佳偵測時間係使用方程式(22 )測定: 回顧擴增子之濃度,並假設所有擴增子雜交,則該螢 光發光團之濃度爲:c = 2.89(10) _6莫耳/升 室之高度爲光徑長度1 = 8 ( 10) ·6ιη。 我們令螢光面積等於我們的光二極體面積,但我們的 實際螢光面積實質上大於我們的光二極體面積;因此,我 們可以約略假設我們的光學系統之光收集效率爲A =〇.5。 從光二極體的特點來看,就螢光波長下之光二極體量子效 t = 10 率對激發波長下之量子效率的比例而言,九 爲一個非 常保守的數値3 以典型之LED衰退壽命S=0·5及使用Pulsar 650規格 -107- 201209159 ,可測得Δί : F = [1.48(10)6][2.89(10)-6][8(10)-6](1) =3.42(10)5 Α. Ιη([3·42(10)·5](10)(0.5)) Δ/= ϊ---i- 1(10)-厂 0.5(10)-9 =4.34(10)-9 s ,每 何結 rtian .(23) 內每 偵測到之光子數係使用方程式(2 1 )測$ ° 、$、谓晴明幾 單位時間發射之激發光子數七係經由檢查通@… 構來測定。 / r a m ^ ^ 飛利浦 LXK2-PR14-R00 LED具有朗伯( )輻射模式,因此: «/ = «/〇 COS(^)Tf Te From the previous two sections, we have the following two working equations: Ίή/τ〆...(21) 4〆Δί = -H on...(22) T/ Te where F = £c/t7 and = . It is also known that, when implemented,... t \>> Tf ° The best time for fluorescence detection and the number of fluorescent photons detected using Philips LXK2-PR14-R00 LED and P u 1 sar 6 5 0 dye The optimal detection time is determined using equation (22): Reviewing the concentration of the amplicon and assuming that all amplicons are hybridized, the concentration of the luminescent luminophore is: c = 2.89(10) _6 The height of the moor/liter chamber is the length of the optical path 1 = 8 (10) · 6ιη. We make the area of the fluorescent light equal to the area of our photodiode, but our actual fluorescent area is substantially larger than the area of our photodiode; Therefore, we can roughly assume that the light collection efficiency of our optical system is A = 〇.5. From the characteristics of the photodiode, the quantum efficiency of the photodiode at the fluorescence wavelength is t = 10 at the excitation wavelength. In terms of the ratio of quantum efficiency, nine is a very conservative number 値3 with typical LED decay life S=0·5 and using P Ulsar 650 specification -107- 201209159, can be measured Δί : F = [1.48(10)6][2.89(10)-6][8(10)-6](1) =3.42(10)5 Α. Ιη ([3·42(10)·5](10)(0.5)) Δ/= ϊ---i- 1(10)-factor 0.5(10)-9 =4.34(10)-9 s , each In each of the detected photons, (23), the number of photons emitted by equation (2 1 ) is measured by equation (2 1 ), and the number of excitation photons emitted by the unit is measured by the checksum. ^ ^ Philips LXK2-PR14-R00 LED has Lambertian ( ) radiation mode, so: «/ = «/〇COS(^)

其中S爲偏離LED前進軸向Θ角處每單位立體角 單位時間之發射光子數,且〜爲前進軸向中6之閥門 每單位時間內由LED發射的光子總數爲: ή, = jh]dQ ΩWhere S is the number of emitted photons per unit solid angle unit time away from the advancing angle of the LED, and ~ is the forward axis. The total number of photons emitted by the LED per unit time is: ή, = jh]dQ Ω

=Jh;0 cos(0)c/Q Ω …(24) 現在, ΑΩ = 2π[1 —cos(0 + A0)] — 2;r[l-cos(0)] △Ω = 2;r[cos(0) - cos(0 + Δ0)]=Jh;0 cos(0)c/Q Ω (24) Now, ΑΩ = 2π[1 —cos(0 + A0)] — 2;r[l-cos(0)] △Ω = 2;r[ Cos(0) - cos(0 + Δ0)]

/ 4^sin(0)cos V/ 4^sin(0)cos V

+ 4^cos(^)sin2 ’△θ'l~2~, dQ. = 2ns\n{G)d0 將此代入(24 ) -108- 201209159 ή, = {2^;ocos(0)sin(0)^ 0 =碑。 重新排列後,取得: 衿/〇 =二 ...(26) 7Γ LED之輸出功率爲0.515 W且ve= 6.52(10 因此: 4Hz,+ 4^cos(^)sin2 '△θ'l~2~, dQ. = 2ns\n{G)d0 Substituting this into (24) -108- 201209159 ή, = {2^;ocos(0)sin( 0)^ 0 = monument. After rearranging, obtain: 衿 / 〇 = two ... (26) 7 Γ LED output power is 0.515 W and ve = 6.52 (10 Therefore: 4Hz,

• ..(27) __ 0.515 ~[6.63(10)-34][6.52(10)14] = 1.19(10)18 光子/S 將此値代入(2 6 ),取得: …1.19(10)18 n,〇=~ir~ = 3.79(10)17 光子/sr 參考第61圖,LED26之光學中心252和透 以示意圖顯示。該光二極體爲16微米xl6微米 二極體在陣列中間而言,從LED26發射到光二 之圓錐形光的立體角(Ω)約爲: Ω =感測器之面積/Γ2 254係 且對光 體 184 [16 〔10)116(10), 2.825(10)-3]2 =3.21(10).5 sr 可察知的是,光二極體陣列44之中央光二 係欲用於這些計算中。在朗伯激發源強度分佈方 體184 ,位於 -109- 201209159 陣列邊緣之感測器在雜交時將僅接收到少於2 %之 每單位時間內發射之激發光子數爲: ne = η,Ω ...(28) =[3.79(10),7][3.21(10)"5] =1.22(10)13 光子/s 現在參考方程式(2 9 ): ns = (0.5)^.22(10)^1^.42(10)-^^(10)^^-434°°)^1°0^ = 208光子/感測器 因此,使用飛利浦 LXK2-PR14-R00 LED和 65 0螢光團,我們可以很容易地偵測到任何造成此 光子被發射出來的雜交作用。 該SET LED照明幾何結構顯示於第 62圖 ID = 20 mA時,LED具有中心在λ6= 340nm (铽螯合 收波長),Ρι = 240μ\ν之最小光功率輸出。在ID: 驅動LED將會線性增加輸出功率達到Pl=2.4m W。 之光學中心2 5 2置於離開雜交室陣列1 1 0 17.5 我們大約將此輸出光通量集中在最大直徑爲2毫米 大小中。 在雜交平面遠處的2毫米直徑圓點中之光子通 由方程式27產生。 光子。• ..(27) __ 0.515 ~[6.63(10)-34][6.52(10)14] = 1.19(10)18 Photon/S Substituting this ( into (2 6 ), obtaining: ...1.19(10)18 n, 〇=~ir~ = 3.79(10)17 Photon/sr Referring to Figure 61, the optical center 252 of the LED 26 is shown in a schematic view. The photodiode is a 16 micron x 16 micron diode in the middle of the array. The solid angle (Ω) of the conical light emitted from the LED 26 to the light is about: Ω = area of the sensor / Γ 2 254 system and the light Body 184 [16 [10) 116(10), 2.825(10)-3]2 = 3.21(10).5 sr It is known that the central light dipole of the photodiode array 44 is intended for use in these calculations. At the Lambert source intensity distribution cube 184, the sensor at the edge of the -109-201209159 array will only receive less than 2% of the number of excitation photons emitted per unit time during hybridization: ne = η, Ω ...(28) =[3.79(10),7][3.21(10)"5] =1.22(10)13 Photon/s Now refer to equation (2 9 ): ns = (0.5)^.22( 10)^1^.42(10)-^^(10)^^-434°°)^1°0^ = 208 Photon/Sensor Therefore, use Philips LXK2-PR14-R00 LED and 65 0 Fluorescent Mission, we can easily detect any hybridization that causes this photon to be emitted. The SET LED illumination geometry is shown in Figure 62. ID = 20 mA, the LED has a minimum optical power output centered at λ6 = 340 nm (铽 chelated wavelength), Ρι = 240μ\ν. In ID: The drive LED will linearly increase the output power to Pl = 2.4m W. The optical center 2 5 2 is placed away from the hybridization chamber array 1 1 0 17.5. We have concentrated this output light flux to a maximum diameter of 2 mm. The photon flux in the 2 mm diameter dot at the far side of the hybridization plane is generated by Equation 27. Photon.

Pulsar 數目之 中。在 物之吸 :200mA 將LED 毫米, 的圓點 量係藉 -110- 201209159 ήι =Among the number of Pulsar. In the suction of the object: 200mA will be LED mm, the amount of the dot is borrowed -110- 201209159 ήι =

Pi hve 2.4(10)-3 ~ [6.63(10)-34][8.82(lΟ)14] =4.10(10)15 光子/s 使用方程式2 8,取得 he = η,Ω 4.10(10)15 [16(10)-6]2 π[1(1〇)_3]2 3.34(10)1 丨光子/s 現在,回顧方程式22 並使用先前列出之铽螯合物屬 性Pi hve 2.4(10)-3 ~ [6.63(10)-34][8.82(lΟ)14] =4.10(10)15 Photon/s Use equation 2 8 to obtain he = η, Ω 4.10(10)15 [ 16(10)-6]2 π[1(1〇)_3]2 3.34(10)1 丨 Photon/s Now, review Equation 22 and use the previously listed ruthenium chelating properties

At ln[(6.94(10)-s)(10)(0.5)] 1(1〇Γ3 0.5(10)-9 =3.98(10)-9 s 現在,從方程式2 1 : =(0.5)[3.34(10)π][6.94(10)-5][1(10)-3]£ =11,600光子/感測器 使用SET LED及铽螯 之光子數的理論値可以很各 30個光子才能依上述藉由光 探針與光二極體間之最大間 雜交之晶片上偵測可不 (見發明背景)。此種與傳 夠節約時間和成本的重要因 -3.9_-9/1(1〇Γ3 合物系統之雜交作用所發射出 麥易偵測到’且最少需要超過 感測器得到可靠的偵測。 距 需要藉由共焦顯微鏡進行偵測 統偵測技術的背離爲本系統能 素。傳統偵測需要成像光學, -111 - 201209159 此成像光學必須使用透鏡或曲面鏡。經由採用非成像光學 ’該診斷系統不需要複雜而笨重之光學系列。將光二極體 置於非常接近探針具有收集效率極高之優點:當介於·探針 和光一極體之間的材料厚度以1微米計時,發射光線之收 集角度至多達到1 7 3。。此角度係經由考慮從位在最接近 光二極體(其具有與該雜交室之面平行的平面感光表面區 )之雜交室面的質量中心之探針發射的光來計算。該發射 角之圓錐(在此圓錐內之光線可被光二極體吸收)的定義 爲其頂點具有發射探針且感測器之一角係在其平面外圍。 對1 6微米X 1 6微米感測器而言,此圓錐之頂角爲1 7〇。; 在該光二極體經過擴充而使其面積與29微米X19.75微米 雜交室相稱之限定情況下,該頂角爲173°。將雜交室之 面與1微米或更小之光二極體的感光面分隔可以很容易地 達到。 使用非成像光學體系確實要求光二極體184必須非常 接近雜交室以收集足夠的螢光發射光子。該光二極體與探 針之間的最大間距係參考第5 4圖依下述測定。 使用铽螯合物螢光團及SET UVT0P3 3 5 T039BL LED ,我們計算出1 1 600個光子從各別的雜交室1 80到達我們 的16微米xl6微米光二極體184。在執行此計算時,我 們假設我們的雜交室180之光收集區具有與我們的光二極 體感光面185相同之底面積且雜交光子總數中有一半到達 該光二極體184。亦即,該光學系統之光收集效率爲 = 0.5。 -112- 201209159 更準確地說,我們可以寫下 么=[(雜交室之光收集區的底面積)/(光二極體面積)][Ω/4π],其中Ω =雜交室 底部之代表性點處之光二極體對向的立體角。在正五稜椎 之幾何結構方面: Ω = 4反正弦(a2/(4dQ2+a2)),其中d 〇 =室與光二極體之間的距離, 且a爲該光二極體之尺寸。 各雜交室釋出23 200個光子。選定之光二極體之偵測 閾値爲17個光子;因此,需要之最低光學效率爲: ^= 17/23200 = 7.33 xl O'4 該雜交室180之光收集區域的底面積爲29微米 X19.75 微米。 解答d〇時,取得介於我們的雜交室底部及我們的光 二極體184之間的最大極限距離將爲dQ= 249微米。在此 限制中,如上述定義之收集圓錐角僅爲0.8°。需注意此分 析忽略該可以忽略不計之折射作用。 LOC變體 上文中充分描述及說明之LOC裝置301只是許多可 能之LOC裝置設計的其中之一個。現在將描述和/或以示 意流程圖顯示使用上述從樣本入口到偵測之各種功能區的 不同組合之LOC裝置變體來說明一些可能的組合。在適 當情況下,該流程圖被劃分成樣本輸入和製備階段2 8 8、 萃取階段290、培育階段291、擴增階段292、預雜交階 段293及偵測階段294。在所有簡要描述或僅以示意形式 -113- 201209159 顯示之LOC變體方面,爲了清晰度和簡潔的原因而未顯 示附帶完整之佈局。另外,爲了清晰起見’未顯示較小之 功能單位,諸如液體感測器及溫度感測器’但可察知這些 都被納入下列各LOC裝置設計中之適當位置。 LOC變體X Π LOC變體ΧΠ758顯示於第96至103圖中。此LOC 裝置萃取290、培育291、擴增292及偵測294病原性 DNA,並使用預雜交純化步驟293來增加雜交效率。樣本 (諸如全血)係添加到樣本入口 68 (見第98圖)中’而 毛細作用將樣本吸至表面張力閥1 1 8,來自貯槽54之抗 凝血劑在此加入其中。該樣本繼續在蓋罩通道94中持續 流至病原體透析區70。該透析區70具有旁路通道600以 防止被捕捉之氣泡(見第98圖)。 在病原體透析區70中透析後,紅血球和白血球流被 導向廢物貯槽76,而樣本中之病原體繼續流至表面張力 閥128,來自貯槽56之裂解劑在此添加入其中。該樣本 塡入化學裂解室1 3 0,由沸騰啓動閥2 0 6將其保留於此’ 直到裂解劑已擴散通過樣本而釋出大部分(若不是全部) 病原體DNA。當沸騰啓動閥206打開時,該樣本流至表 面張力閥132,來自貯槽58之限制內切酶、連接酶和連 接子引子在此加入其中。該樣本塡入培育區Π4且在病原 體DNA發生限制酶切及連接子接合時加熱之(見第98圖 -114- 201209159 在限制酶切及連接子接合後,該沸騰啓動閥207打開 以供樣本流入擴增區1 1 2。來自貯槽60之擴增混合物經 由表面張力閥138加入其中且當該樣本流入擴增區112時 來自貯槽62之聚合酶通過表面張力閥140加入其中。該 病原體DNA先經由熱循環擴增後,該沸騰啓動閥108打 開以供擴增子流入小組分透析區682,大型組分在此被移 除(見第98圖)。 由第1 0 1和1 02圖中之最佳顯示,在該小組分透析區 682之底部通道層100中形成之兩個小組分通道762之間 具有一個大組分通道760 (見第97圖)。該大組分通道 760藉由一系列逆錐形開口 764 (大組分通道之終端處較 小)形成之流通口連接到小組分通道762。在大多數實 際應用中,該流通口係介於1至8微米寬及1至8微米高 。當擴增子流入大組分通道760時,小組分(小於該逆錐 形開口 764 )開始擴散入小組分通道762中。當該液流前 進到小組分透析區682之下游終端時,該大組分通道760 中之小組分的濃度降低。微加工流通口之另一個優點爲沿 著通道之每單位長度上的流通口數量非常高,從而使分離 更有效率。爲了有效分離具有所欲尺寸之組分,相鄰流通 口之間距係介於1微米至1 〇微米;於第1 02圖中所示之體 系中,相鄰流通口之間距爲8微米。 第103圖顯示出該小組分透析區682之下游端。該大 組分通道760轉移入一個在封閉端766結束之寬曲流中, 此寬曲流提供一個廢物貯槽。該兩個小組分通道762導向 -115- 201209159 該雜交室陣列1 1 0之相對的兩側,其在此均遵循蜿蜒路徑 通過陣列到達各自的封閉端768。該小組分擴增子在雜交 加熱器定時開始前塡入所有的個別雜交室1 8 0中,隨後進 行探針-標靶雜交物偵測(依前述)。 該小組分透析區6 8 2移除細胞裂解後可能還停留在樣 本液流中的細胞碎片。細胞碎片可能會千擾雜交效率。At ln[(6.94(10)-s)(10)(0.5)] 1(1〇Γ3 0.5(10)-9 =3.98(10)-9 s Now, from Equation 2 1 : =(0.5)[3.34 (10) π][6.94(10)-5][1(10)-3]£ =11,600 photons/sensors using the theory of SET LED and the number of photons of scorpion scorpion can be very 30 photons. According to the above-mentioned detection by the maximum inter-hybridization between the optical probe and the photodiode (see the background of the invention), this is an important factor for saving time and cost - 3.9_-9/1 (1〇 The hybridization of the Γ3 compound system is detected by Mai Yi, and at least the sensor needs to be reliably detected. The deviation from the detection system needs to be detected by the confocal microscope. Traditional detection requires imaging optics, -111 - 201209159 This imaging optics must use a lens or curved mirror. By using non-imaging optics' the diagnostic system does not require a complex and cumbersome optical series. Place the photodiode very close to the probe It has the advantage of extremely high collection efficiency: when the thickness of the material between the probe and the light-emitting body is 1 micron, the collection angle of the emitted light is up to 173. This angle is calculated by considering light emitted from a probe positioned at the center of mass of the hybridization chamber surface closest to the photodiode having a planar photosensitive surface region parallel to the face of the hybridization chamber. The cone (the light in this cone can be absorbed by the photodiode) is defined by its apex having a transmitting probe and one of the sensors being at the periphery of its plane. For a 16 micron X 1 6 micron sensor, The apex angle of the cone is 17 〇.; the apex angle is 173° when the photodiode is expanded to have an area commensurate with the 29 μm X 19.75 μm hybridization chamber. The separation of the photosensitive surface of a photodiode of 1 micron or less can be easily achieved. The use of a non-imaging optical system does require that the photodiode 184 must be very close to the hybridization chamber to collect sufficient fluorescent emission photons. The maximum spacing between the needles is determined as described below with reference to Figure 5. Using the ruthenium chelate fluorophore and the SET UVT0P3 3 5 T039BL LED, we calculated that 1 1 600 photons were reached from each of the hybrid chambers 1 80 Our 16 micron xl6 micron Photodiode 184. In performing this calculation, we assume that the light collection region of our hybridization chamber 180 has the same bottom area as our photodiode photoreceptor 185 and that half of the total number of hybrid photons arrives at the photodiode 184. That is, the light collection efficiency of the optical system is = 0.5. -112- 201209159 More precisely, we can write down = [(the bottom area of the light collection area of the hybrid chamber) / (photodiode area)] [ Ω/4π], where Ω = the solid angle of the photodiode at the representative point at the bottom of the hybridization chamber. In terms of the geometry of the pentagonal pyramid: Ω = 4 arcsine (a2/(4dQ2+a2)), where d 〇 = the distance between the chamber and the photodiode, and a is the size of the photodiode. Each hybrid cell released 23,200 photons. The detection threshold of the selected photodiode is 17 photons; therefore, the minimum optical efficiency required is: ^= 17/23200 = 7.33 xl O'4 The bottom area of the light collection region of the hybridization chamber 180 is 29 microns X19. 75 microns. When answering d〇, the maximum limit distance between the bottom of our hybrid chamber and our photodiode 184 will be dQ = 249 microns. In this limitation, the collection cone angle as defined above is only 0.8°. It is important to note that this analysis ignores this negligible refraction. LOC Variants The LOC device 301, described and illustrated above, is just one of many possible LOC device designs. Some possible combinations of LOC device variants using the various combinations of the various functional zones described above from the sample inlet to the detection will now be described and/or illustrated in a flow chart. Where appropriate, the flow chart is divided into a sample input and preparation stage 288, an extraction stage 290, an incubation stage 291, an amplification stage 292, a pre-hybridization stage 293, and a detection stage 294. In all of the brief descriptions or only the LOC variants shown in the schematic form -113-201209159, the complete layout is not shown for clarity and conciseness. In addition, smaller functional units, such as liquid sensors and temperature sensors, have not been shown for clarity, but it is appreciated that these are incorporated into the appropriate locations in the following LOC device designs. The LOC variant X Π LOC variant ΧΠ 758 is shown in Figures 96 to 103. The LOC device extracts 290, incubated 291, expands 292, and detects 294 pathogenic DNA, and uses pre-hybridization purification step 293 to increase hybridization efficiency. A sample (such as whole blood) is added to the sample inlet 68 (see Figure 98) and the capillary action draws the sample to the surface tension valve 1 18. The anticoagulant from the sump 54 is added thereto. The sample continues to flow through the mask channel 94 to the pathogen dialysis zone 70. The dialysis zone 70 has a bypass passage 600 to prevent trapped air bubbles (see Figure 98). After dialysis in the pathogen dialysis zone 70, the red blood cells and white blood cell flow are directed to the waste sump 76, and the pathogens in the sample continue to flow to the surface tension valve 128 where the lysing agent from the sump 56 is added. The sample is drawn into the chemical lysis chamber 130, which is retained by the boiling start valve 206 until the lysing agent has diffused through the sample to release most, if not all, of the pathogen DNA. When the boiling start valve 206 is opened, the sample flows to the surface tension valve 132 where the restriction enzymes, ligase and linker primers from the sump 58 are added. The sample is inoculated into the culture zone Π4 and heated when restriction enzyme digestion of the pathogen DNA and ligation of the linker (see Figure 98-114-201209159). After the restriction enzyme digestion and linker ligation, the boiling start valve 207 is opened for the sample. Flowing into the amplification zone 112. The amplification mixture from the sump 60 is added thereto via a surface tension valve 138 and the polymerase from the sump 62 is added thereto through the surface tension valve 140 as the sample flows into the amplification zone 112. The pathogen DNA is first After amplification via thermal cycling, the boiling start valve 108 opens for the amplicon to flow into the small component dialysis zone 682 where large components are removed (see Figure 98). From Figures 1 01 and 02 Preferably, there is a large component channel 760 between the two small component channels 762 formed in the bottom channel layer 100 of the small component dialysis zone 682 (see Figure 97). The large component channel 760 is A flow port formed by a series of reverse tapered openings 764 (which are smaller at the ends of the large component channels) is connected to the small component channels 762. In most practical applications, the flow port is between 1 and 8 microns wide and 1 to 8 microns high. When the amplicon flows in large Upon component channel 760, a small component (less than the inverse tapered opening 764) begins to diffuse into the small component channel 762. When the liquid stream advances to the downstream end of the small component dialysis zone 682, the large component channel 760 The concentration of the small components is reduced. Another advantage of the micromachined flow port is that the number of flow ports per unit length along the channel is very high, making the separation more efficient. In order to effectively separate the components of the desired size, adjacent The distance between the flow ports is between 1 micrometer and 1 micrometer; in the system shown in Figure 102, the distance between adjacent flow ports is 8 microns. Figure 103 shows the downstream end of the small component dialysis zone 682. The large component passage 760 is transferred into a wide meandering flow ending at the closed end 766. This wide meandering flow provides a waste storage tank. The two small component passages 762 are directed to -115-201209159. The hybrid chamber array 1 1 0 The opposite sides, which here follow the 蜿蜒 path through the array to the respective closed end 768. The small component amplicon is plunged into all individual hybrid chambers prior to the start of the hybridization heater timing, and then probed Needle-target Hybridization detection (as described above) The small component dialysis zone 682 removes cellular debris that may remain in the sample stream after cell lysis. Cell debris may interfere with hybridization efficiency.

LOC 變體 XXXIX 第83圖中顯示之LOC變體XXXIX 609在核酸擴增 前不會裂解細胞或使用樣本透析。此LOC裝置669具有 連續排列之重複序列擴增區1 1 2 . 1和1 1 2 · 2以擴增核酸。 在核酸擴增區1 1 2.2中擴增核酸後小組分透析區682純化 該樣本。該小組分透析區682去除大於某種尺寸之細胞、 顆粒和碎片並將其轉移入廢物貯槽766。較小之樣本組分 (諸如溶解之分子及經擴增之核酸)流入在各個室中包含 序列專一性探針之雜交室陣列】丨〇中。該光感測器44偵 測從探針發射出之光,由探針之設計可決定此光被雜交之 程度修改。如所有LOC裝置,增濕器1 96及濕度感測器 232係用於控制LOC變體XXXIX 669中之蒸發及冷凝作 用,尤其是該雜交室陣列110。LOC Variant XXXIX The LOC variant XXXIX 609 shown in Figure 83 does not lyse cells or use sample dialysis prior to nucleic acid amplification. This LOC device 669 has a contiguous sequence of repeating sequence amplification regions 1 1 2 1 and 1 1 2 · 2 to amplify nucleic acids. The sample is purified by the small component dialysis zone 682 after amplification of the nucleic acid in the nucleic acid amplification zone 1 1 2.2. The small component dialysis zone 682 removes cells, particles and debris larger than a certain size and transfers them to the waste storage tank 766. Smaller sample components, such as dissolved molecules and amplified nucleic acids, flow into the array of hybrid chambers containing sequence-specific probes in each chamber. The light sensor 44 detects light emitted from the probe, and the design of the probe determines the extent to which the light is hybridized. As with all LOC devices, humidifier 1 96 and humidity sensor 232 are used to control evaporation and condensation in LOC variant XXXIX 669, particularly the hybrid chamber array 110.

LOC變體XL 第84圖中圖解說明LOC變體XL 670。此LOC裝置 裂解該細胞(裂解試劑貯槽5 6及化學裂解區1 3 0 )以從 -116- 201209159 樣本細胞萃取遺傳物質,再在擴增區112中擴增核酸。在 重複序列區1 1 2.1和1 1 2 · 2中擴增後,在小組分透析區 6 82中純化樣本(其中大組分被移至廢物貯槽766 ),再 流入雜交室陣列1 1 0中以光感測器44偵測雜交物。 結論 此處所描述之裝置、系統和方法以低成本、高速及定 點照護促進分子診斷試驗。 上述之系統及其組件純粹用於說明且本技藝之技術熟 習人士將可輕易地察知不偏離本發明廣泛槪念之精神和範 圍的許多變化和修改。 【圖式簡單說明】 現在經由參照所附圖形示範說明本發明之較佳體系, 其中: 第1圖顯示經配置以用於偵測螢光之測試模組及測試 模組閱讀器; 第2圖爲經配置以用於偵測螢光之測試模組中之電子 組件的總體示意圖; 第3圖爲該測試模組閱讀器中之電子組件的總體示意 圖; 第4圖爲LOC裝置之結構的示意圖像; 第5圖爲LOC裝置之透視圖'; 第6圖爲LOC裝置之平面視圖,其中具有來自所有 -117- 201209159 彼此疊加之各層中的功能和結構; 第7圖爲具有獨立顯示之蓋罩架構的LOC裝置之平 面視圖; 第8圖爲具有以虛線顯示之內通道和貯槽之蓋罩的頂 端透視圖; 第9圖爲具有以虛線顯示之內通道和貯槽之蓋罩的頂 端透視分解圖; 第10圖爲蓋罩之底部透視圖,其顯示頂端通道之配 置; 第1 1圖爲LOC裝置之平面視圖,其獨立顯示該 CMOS + MST裝置之構造; 第12圖爲LOC裝置之樣本入口處的剖面示意圖; 第13圖爲第6圖中顯示之插圖AA的放大視圖; 第14圖爲第6圖中顯示之插圖AB的放大視圖; 第15圖爲第13圖中顯示之插圖AE的放大視圖; 第16圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第17圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第18圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第19圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第20圖爲說明插圖AE內之LOC裝置的薄層結構之 -118- 201209159 局部透視圖; 第21圖爲說明插圖AE內之LOC裝置的薄層結構之 局部透視圖; 第22圖爲第2 1圖中所示之裂解試劑貯槽的剖面示意 圖; 第23圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第24圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第25圖爲說明插圖AI內之LOC裝置的薄層結構之 局部透視圖; % 26圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第27圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第28圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第29圖爲說明插圖AB內之LOC裝置的薄層結構之 局部透視圖; 第3 0圖爲擴增混合物貯槽及聚合酶貯槽之剖面示意 圖; 第31圖獨立顯示沸騰起動閥之特徵; 第32圖爲通過第31圖中顯示之線3 3 -3 3所取得之沸 騰起動閥的剖面示意圖; -119- 201209159 第33圖爲第15圖中所示之插圖AF的放大視圖; 第34圖爲通過第33圖中顯示之線3 5 -3 5所取得之透 析區上游端的剖面示意圖; 第35圖爲第6圖中所示之插圖AC的放大視圖; 第36圖爲顯示該擴增區之插圖AC內的進一步放大 視圖, 第37圖爲顯示該擴增區之插圖AC內的進一步放大 視圖; 第38圖爲顯示該擴增區之插圖 AC內的進一步放大 視圖, 第39圖爲第38圖中所顯示之插圖AK內的進一步放 大視圖, 第40圖爲顯示該擴增室之插圖AC內的進一步放大 視圖; 第41圖爲顯示該擴增區之插圖AC內的進一步放大 視圖, 第42圖爲顯示該擴增室之插圖AC內的進一步放大 視圖; 第43圖爲第42圖中所顯示之插圖AL內的進一步放 大視圖, 第44圖爲顯示該擴增區之插圖AC內的進一步放大 視圖; 第45圖爲第44圖中所顯示之插圖AM內的進一步放 大視圖; -120- 201209159 第46圖爲顯示該擴增區之插圖AC內的進一步放大 視圖; 第47圖爲第46圖中所顯示之插圖AN內的進一步放 大視圖;· 第48圖爲顯示該擴增室之插圖Ac內的進一步放大 視圖; 第49圖爲顯示該擴增室之插圖Ac內的進一步放大 視圖; 第50圖爲顯示該擴增區之插圖AC內的進一步放大 視圖; 第51圖爲該擴增區之剖面示意圖; 第52圖爲該雜交區之放大的平面視圖; 第53圖爲分隔之兩個雜交室的進一步放大的平面視 圖, 第54圖爲單一雜交室之剖面示意圖; 第55圖爲第6圖中所示之插圖AG中說明之加濕器 的放大視圖; 第56圖爲第52圖中所示之插圖AD的放大視圖; 第57圖爲插圖AD中之LOC裝置的透視分解圖; 第58圖爲閉合配置之FRET探針的圖解; 第59圖爲開放及雜交配置之FRET探針的圖解; 第60圖爲激發光之強度隨著時間推移的圖形; 第61圖爲該雜交室陣列之激發照明幾何結構的圖解; 第62圖爲感測器電子科技LED照明幾何結構( -121 - 201209159The LOC variant XL 670 is illustrated in Figure 84 of the LOC variant XL. The LOC device lyses the cells (lysis reagent reservoir 56 and chemical lysis zone 130) to extract genetic material from the -116-201209159 sample cells and then amplifies the nucleic acid in amplification zone 112. After amplification in the repeat region 1 1 2.1 and 1 1 2 · 2, the sample is purified in the small component dialysis zone 6 82 (where the large component is transferred to the waste storage tank 766) and then into the hybridization chamber array 1 1 0 The hybrid is detected by photosensor 44. Conclusion The devices, systems, and methods described herein facilitate molecular diagnostic testing at low cost, high speed, and point-of-care. The above-described system and its components are purely for the purpose of illustration and many variations and modifications of the spirit and scope of the invention will be readily apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS A preferred embodiment of the present invention will now be described with reference to the accompanying drawings, wherein: FIG. 1 shows a test module and a test module reader configured to detect fluorescence; A general schematic diagram of the electronic components in the test module configured to detect fluorescence; FIG. 3 is a general schematic diagram of the electronic components in the test module reader; FIG. 4 is a schematic diagram of the structure of the LOC device Figure 5 is a perspective view of the LOC device; Figure 6 is a plan view of the LOC device with functions and structures from all layers superimposed on each other -117-201209159; Figure 7 is a cover with independent display A plan view of the LOC device of the hood structure; Figure 8 is a top perspective view of the cover with the inner channel and the sump shown in phantom; Figure 9 is a top perspective exploded view of the cover with the inner channel and the sump shown in phantom Figure 10 is a bottom perspective view of the cover showing the configuration of the top channel; Figure 1 is a plan view of the LOC device, showing the configuration of the CMOS + MST device independently; Figure 12 is the LOC device A schematic view of the section at the entrance of the sample; Fig. 13 is an enlarged view of the illustration AA shown in Fig. 6; Fig. 14 is an enlarged view of the illustration AB shown in Fig. 6; Fig. 15 is an illustration shown in Fig. 13. Figure 16 is a partial perspective view showing the thin layer structure of the LOC device in the inset AE; Figure 17 is a partial perspective view showing the thin layer structure of the LOC device in the inset AE; Figure 18 is a view A partial perspective view of the thin layer structure of the LOC device in the illustration AE; Fig. 19 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AE; Fig. 20 is a view showing the thin layer structure of the LOC device in the illustration AE -118-201209159 partial perspective view; Fig. 21 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AE; Fig. 22 is a schematic cross-sectional view of the lysing reagent storage tank shown in Fig. 21; The figure is a partial perspective view illustrating the thin layer structure of the LOC device in the inset AB; Fig. 24 is a partial perspective view illustrating the thin layer structure of the LOC device in the inset AB; Fig. 25 is a view illustrating the LOC device in the illustration AI Partial perspective view of a thin layer structure Figure 26 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AB; Figure 27 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AB; Figure 28 is a diagram showing the LOC in the illustration AB A partial perspective view of the thin layer structure of the device; Fig. 29 is a partial perspective view showing the thin layer structure of the LOC device in the illustration AB; Fig. 30 is a schematic cross-sectional view of the amplification mixture storage tank and the polymerase storage tank; The characteristics of the boiling start valve are independently displayed; Fig. 32 is a schematic cross-sectional view of the boiling start valve obtained by the line 3 3 - 3 3 shown in Fig. 31; -119- 201209159 Fig. 33 is the picture shown in Fig. 15. An enlarged view of the illustration AF; Fig. 34 is a schematic cross-sectional view of the upstream end of the dialysis zone obtained by the line 3 5 - 3 5 shown in Fig. 33; Fig. 35 is an enlarged view of the illustration AC shown in Fig. 6; Figure 36 is a further enlarged view showing the illustration AC of the amplification region, Figure 37 is a further enlarged view showing the illustration AC of the amplification region; Figure 38 is a diagram showing the amplification region in the AC. Further enlarged view, Figure 39 is the 38th A further enlarged view of the illustration AK shown in the figure, Fig. 40 is a further enlarged view showing the illustration AC of the amplification chamber; Fig. 41 is a further enlarged view showing the illustration AC of the amplification area, the 42nd The figure shows a further enlarged view in the illustration AC of the amplification chamber; Fig. 43 is a further enlarged view of the illustration AL shown in Fig. 42, and Fig. 44 is a view showing further in the illustration AC of the amplification area Figure 45 is a further enlarged view of the illustration AM shown in Figure 44; -120- 201209159 Figure 46 is a further enlarged view showing the illustration AC of the amplification zone; Figure 47 is the 46th A further enlarged view of the illustration AN shown in the figure; · Fig. 48 is a further enlarged view showing the illustration Ac of the amplification chamber; Fig. 49 is a further enlarged view showing the illustration Ac of the amplification chamber; Figure 50 is a further enlarged view showing the illustration AC of the amplification zone; Figure 51 is a schematic cross-sectional view of the amplification zone; Figure 52 is an enlarged plan view of the hybridization zone; Hybrid A further enlarged plan view of the chamber, Fig. 54 is a schematic cross-sectional view of a single hybridization chamber; Fig. 55 is an enlarged view of the humidifier illustrated in the illustration AG shown in Fig. 6; Fig. 56 is a view of Fig. 52 An enlarged view of the illustrated illustration AD; Figure 57 is a perspective exploded view of the LOC device in the illustration AD; Figure 58 is an illustration of a closed configuration FRET probe; Figure 59 is an open and hybrid configuration of the FRET probe Figure 60; Figure 60 is a graph of the intensity of the excitation light over time; Figure 61 is a diagram of the excitation illumination geometry of the hybrid chamber array; Figure 62 is the sensor electronics technology LED illumination geometry (-121 - 201209159

Sensor Electronic Technology LED illumination geometry )的圖解; 第63圖爲第6圖中之插圖AH中所示之濕度感測器 的放大之平面視圖; 第64圖爲顯示一部分該光感測器之光二極體陣列之 示意圖; 第65圖爲單一光二極體之電路圖; 第66圖爲光二極體控制信號之時序圖; 第67圖爲第55圖中之插圖AP中所示之蒸發器的放 大視圖; 第68圖爲通過具有偵測光二極體及觸發光二極體之 雜交室的剖面示意圖; 第69圖爲連接子引動之PCR的圖形; 第7 〇圖爲具有刺血針之測試模組的示意圖像; 第71圖爲LOC變體VD架構的槪略圖象; 第72圖爲LOC變體之平面視圖,其具有來自相互 疊加之所有層的樣貌和結構; 第73圖爲第72圖中所示之插圖CA的放大視圖; 第74圖爲說明第72圖中所示之插圖CA內的LOC變 體VDI之薄層結構的局部透視圖; 第75圖爲第73圖中所示之插圖CE的放大視圖; 第76圖爲LOC變體V1D架構的槪略圖象; 第77圖爲LOC變體XIV架構的圖式說明; 第78圖爲LOC變體XV架構的圖式說明; -122- 201209159 第79圖爲l〇C變體XVin架構的圖式說明; 第80圖爲L〇c變體XXII架構的圖式說明; 第8 1圖舄L〇c變體χχν架構的圖式說明; 第82圖爲L0C變體XX观架構的圖式說明; 第83圖爲LOC變體XXXIX架構的圖式說明; 第84圖爲LOC變體XL架構的圖式說明; 第85圖爲LOC變體XLI架構的圖式說明; 第86圖爲LOC變體XLDI架構的圖式說明; 第87圖爲LOC變體XLIV架構的圖式說明; 第88圖爲L〇c變體XLW架構的圖式說明; 第89圖爲關於雜交室陣列及光二極體之激潑LED的 圖式說明; 第9 0圖爲用於指引光到LOC裝置之雜交室陣列上的 激發LED和光學透鏡之圖式說明; 第91圖爲用於指導光到LOC裝置之雜交室陣列上的 激發LED、光學透鏡和光學棱鏡之圖式說明; 第92圖爲用於指導光到LOC裝置之雜交室陣列上的 激發LED、光學透鏡和鏡子排列之圖式說明; 第93圖爲顯示所有相互疊加之樣貌,並顯示插圖DA 至DK之位置的平面視圖; 第94圖爲第93圖中所示之插圖DG的放大視圖; 第95圖爲第93圖中所示之插圖DH的放大視圖; 第96圖爲LOC變體ΧΠ之架構的圖像; 第97圖爲LOC變體ΧΠ之透視圖; -123- 201209159 第98圖爲L0C變體χ π之平面視圖,其顯示所有相 互疊加之樣貌,並顯示插圖FA至FC之位置; 第99圖爲L0C變體ΧΠ之平面視圖,其僅獨立顯示 蓋罩之樣貌; 第1〇〇圖爲LOC變體X Π之平面視圖,其獨立顯示 CMOS + MST裝釐之結構; 第101圖爲第98圖中所示之插圖FA的放大視圖; 第102圖舄第98圖中所示之插圖FB的放大視圖; 第103圖舄第98圖中所示之插圖FC的放大視圖; 第1 04圖顯示用於光二極體之分流電晶體的—種體系 » 第105圖顯示用於光二極體之分流電晶體的一種體系 » 第106圖顯示用於光二極體之分流電晶體的一種體系 » 第107圖爲一種差示成像儀的電路圖: 第1 08圖以圖式說明螢光探針陰性對照組之臂-和-環 配置; 第1 09圖以圖式說明第1 08圖之螢光探針陰性對照組 的開放配置; 第1 1 0圖以圖式說明螢光探針陽性對照組之臂-和-環 配置; 第Π1圖以圖式說明第1 1 0圖之螢光探針陽性對照組 的開放配置; -124- 201209159 第112圖顯示經配置以用於ECL偵測之測試模組及 測試模組閱讀器; 第1 1 3圖爲測試模組中之電子組件的總體示意圖,該 測試模組係經配置以用於ECL偵測; 第1 1 4圖顯示測試模組及替代之測試模組閱讀器; 第1 1 5圖顯示測試模組和測試模組閱讀器,以及存放 各種數據庫之主機系統; 【主要元件符號說明】 I 〇 :測試模組 II :測試模組 1 2 :測試模組閱讀器 1 3 :外殼 14: Micro-USB 插頭 1 5 :電感器 16: Micro-USB 璋 17 :觸控螢幕 18 :顯示螢幕 19 :按鈕 :啓動按鈕 2 1 :蜂巢式無線電 22 :無菌密封膠帶 23 :無線網路連線 24 :大容器 -125 201209159Diagram of Sensor Electronic Technology LED illumination geometry ; Fig. 63 is an enlarged plan view of the humidity sensor shown in the illustration AH of Fig. 6; Fig. 64 is a view showing a part of the photodiode of the photo sensor Schematic diagram of the array; Fig. 65 is a circuit diagram of a single photodiode; Fig. 66 is a timing diagram of the photodiode control signal; Fig. 67 is an enlarged view of the evaporator shown in Fig. 55 of Fig. 55; Figure 68 is a schematic cross-sectional view of a hybridization chamber having a photodiode and a trigger photodiode; Figure 69 is a graph of PCR driven by a linker; Figure 7 is a schematic image of a test module with a lancet Figure 71 is a schematic image of the LOC variant VD architecture; Figure 72 is a plan view of the LOC variant with features and structures from all layers superimposed on each other; Figure 73 is shown in Figure 72. An enlarged view of the illustration CA; Fig. 74 is a partial perspective view showing the thin layer structure of the LOC variant VDI in the illustration CA shown in Fig. 72; Fig. 75 is an illustration of the illustration CE shown in Fig. 73 Magnified view; Figure 76 shows LOC variant V1D Figure 77 is a schematic diagram of the XC architecture of the LOC variant; Figure 78 is a schematic diagram of the XV architecture of the LOC variant; -122- 201209159 Figure 79 is a variant of the XVin architecture of the L〇C variant Fig. 80 is a schematic diagram of the L〇c variant XXII architecture; Fig. 8 is a schematic diagram of the L〇c variant χχν architecture; Fig. 82 is a diagram of the L0C variant XX architecture Figure 83 is a schematic diagram of the LOC variant XXXIX architecture; Figure 84 is a schematic illustration of the LOC variant XL architecture; Figure 85 is a schematic representation of the LOC variant XLI architecture; Figure 86 is a LOC variant Schematic description of the body XLDI architecture; Figure 87 is a schematic illustration of the LOC variant XLIV architecture; Figure 88 is a schematic illustration of the L〇c variant XLW architecture; Figure 89 is for the hybrid chamber array and photodiode Schematic description of the irritating LED; Figure 90 is a schematic illustration of the excitation LED and optical lens used to direct the light to the array of hybrid chambers of the LOC device; Figure 91 is a diagram for directing the hybridization of light to the LOC device Schematic description of the excitation LED, optical lens and optical prism on the array of chambers; Figure 92 is a diagram of the hybridization chamber array for directing light to the LOC device Schematic description of the excitation LED, optical lens and mirror arrangement; Fig. 93 is a plan view showing all the superimposed appearances and showing the position of the illustrations DA to DK; Fig. 94 is the illustration DG shown in Fig. 93 Magnified view; Fig. 95 is an enlarged view of the illustration DH shown in Fig. 93; Fig. 96 is an image of the structure of the LOC variant ;; Fig. 97 is a perspective view of the LOC variant ;; -123- 201209159 Figure 98 is a plan view of the L0C variant χ π, which shows all the superimposed appearances and shows the position of the illustrations FA to FC; Figure 99 is a plan view of the L0C variant ,, which only shows the cover independently. Figure 1 is a plan view of the LOC variant X ,, which independently shows the structure of the CMOS + MST assembly; Figure 101 is an enlarged view of the illustration FA shown in Figure 98; Figure 102放大An enlarged view of the illustration FB shown in Fig. 98; an enlarged view of the illustration FC shown in Fig. 103 and Fig. 98; Fig. 10 shows a system for the splitting transistor of the photodiode» Figure 105 shows a system for a shunt transistor for an optical diode. Figure 106 shows A system for a shunt transistor for a photodiode » Figure 107 is a circuit diagram of a differential imager: Figure 1 08 illustrates the arm-and-loop configuration of a fluorescent probe negative control; Figure 09 is a schematic diagram showing the open configuration of the fluorescent probe negative control group of Figure 1 08; Figure 1 1 0 is a diagram illustrating the arm-and-loop configuration of the fluorescent probe positive control group; The figure illustrates the open configuration of the fluorescent probe positive control group of Figure 110; -124- 201209159 Figure 112 shows the test module and test module reader configured for ECL detection; 3 is a general schematic diagram of the electronic components in the test module, the test module is configured for ECL detection; Figure 1 14 shows the test module and the alternative test module reader; 1 1 5 The figure shows the test module and the test module reader, and the host system for storing various databases; [Key component symbol description] I 〇: Test module II: Test module 1 2: Test module reader 1 3: Shell 14 : Micro-USB Plug 1 5 : Inductor 16: Micro-USB 璋17: Touch Screen 18: Display Screen 19 : Button : Start button 2 1 : Honeycomb radio 22 : Aseptic sealing tape 23 : Wireless network connection 24 : Large container -125 201209159

2 5 :衛星導航系統 26 : LED 2 7 :數據儲存器 28 :手機/智慧型手機 29 : LED驅動器 3 0 : LOC裝置 3 1 :功率調節器 3 2 :外部電源供應電容器2 5 : Satellite navigation system 26 : LED 2 7 : Data storage 28 : Mobile phone / smart phone 29 : LED driver 3 0 : LOC device 3 1 : Power conditioner 3 2 : External power supply capacitor

33 :時鐘 3 4 :控制器 3 5 :記錄器 36 : USB裝置驅動器 3 7 :驅動器33 : Clock 3 4 : Controller 3 5 : Recorder 36 : USB device driver 3 7 : Driver

38 : RAM 3 9 :激發驅動器38 : RAM 3 9 : Excitation driver

4 0 :程式和數據快閃記憶體 4 1 :激發記錄器 42 :處理器 4 3 :程式儲存器 44 :光感測器 4 5 :指示器 4 6 :蓋罩 47 : USB電源/指示器-限定模組 48 : CMOS + MST 裝置 -126- 201209159 49 :多孔元件 5 1 :蓋罩 5 2 :雜交和偵測區 5 4 :貯槽 5 6 :貯槽 5 7 :印刷電路板 5 8 :貯槽 60.1 :試劑貯槽 60.2 :試劑貯槽 62.1 :試劑貯槽 62.2 :試劑貯槽 64 :密封墊 6 6 :屋頂層 6 8 :樣本入口 7 0 :透析區 72 :廢物通道 74 :標靶通道 76 :廢物貯槽 78 :貯槽層 80 :蓋罩通道層 82 :密封層 84 :矽基板 86 : CMOS 電路 87 : MST 層 201209159 8 8 :鈍化層 90 : MST通道 92 :下管道口 94 :蓋罩通道 96 :上管道口 9 7:壁區 9 8 :彎液面之錨 1 〇 〇 :底部通道層 101 :手提電腦/筆記型電腦 102 :毛細作用啓動特徵 103 :專用閱讀器 105 :桌上型電腦 106 :沸騰啓動閥 107 :電子書閱讀器 1 〇 8 :沸騰啓動閥 1 0 9 :平板電腦 1 1 〇 :雜交室陣列 1 1 1 :流行病學數據主機系統 1 1 2 . 1 .擴增區 1 1 2.2 :擴增區 113:遺傳學數據主機系統 1 1 4 ·培育區 1 1 5 :電子健康記錄(EHR )主機系統 1 1 6 :抗凝劑 -128- 201209159 1 1 8 :表面張力闘 1 1 9 :樣本流 1 2 0 :彎液面 121 :電子醫療記錄(EMR)主機系統 1 2 2 :通風孔 123 :個人健康記錄(PHR)主機系統 125 :網絡 126 :沸騰啓動閥 1 28 :表面張力閥 1 3 0 :化學裂解室 1 3 1 :混合區 1 3 2 :表面張力閥 1 3 3 :培育室入口通道 134 :下管道口 1 36 :光學窗口 1 3 8 :表面張力閥 1 4 0 :表面張力閥 146 :閥門入口 1 4 8 :閥門出口 150 :下管道口 152 :環形加熱器 153 :加熱器接頭 1 5 4 :加熱器 1 5 6 :加熱器接頭 -129- 201209159 158 :微通道 160:擴增區出口通道 1 6 4 :小孑匕 166 :毛細作用啓動特徵 1 6 8 :透析攝入口 1 7 0 :溫度感測器4 174 :液體感測器 1 7 5 :擴散屏障 1 76 :流動路徑 1 7 8 :液體感測器 1 80 :雜交室 1 8 2 :加熱器 1 84 :光二極體 1 8 5 :感光面 186: FRET 探針 187 :觸發光二極體 1 8 8 :水貯槽 190 :蒸發器 1 9 1 :環形加熱器 192 :供水通道 1 9 3 ··攝入口 1 94 :下管道口 195 :頂端金屬層 1 9 6 :加濕器 -130- 201209159 1 9 8 :攝入孔 202 :毛細作用啓動特徵 204:透析MST通道 206 :沸騰起動閥 207 :沸騰起動閥 210 :微通道 2 1 2 : MST 通道 218 : TiA1 電極 220 : TiAl 電極 2 2 2 :縫隙 2 3 2 :感測器 2 3 4 :加熱器 23 6 : FRET 探針 2 3 8 :標靶核酸序列 240 :環 242 : 244 : 246 : 248 : 250 : 臂 激發光 螢光團 淬滅劑 螢光信號 螢光發射 2 5 4 :透鏡 2 8 8 :製備階段 290 :萃取階段 201209159 2 9 1 :培育階段 292 :擴增階段 293 :預雜交過濾器純化階段 294 :偵測階段 296 :第一電極 298 :第二電極 300:程控之延遲 30 1: LOC 裝置 328:白血球透析區 3 7 6 :傳導柱 3 7 8 :陽性對照探針 3 80 :陰性對照探針 3 82 :校準室 3 84 : Mshunt 閘極 3 8 6 : t X閘極 3 8 8 :閘極 3 9 0 :採血針 392:採血針釋出按鈕 3 93 :閱讀閘極 3 9 4 :電晶體 M s h u n t 3 9 6 :電晶體 M t x 3 9 8 :電晶體 M r e s e t 4 0 0 ·電晶體M s f 4 02 :電晶體Mread 201209159 404 :電晶體Mbias 4 0 6 :節點’N S 1 408 :膜密封墊 4 1 0 :膜防護物 5 1 8 : L Ο C 變體 Μ 5 94 :界面層 600 :旁路通道4 0 : Program and data flash memory 4 1 : Excitation recorder 42 : Processor 4 3 : Program memory 44 : Light sensor 4 5 : Indicator 4 6 : Cover 47 : USB power / indicator - Qualification module 48: CMOS + MST device -126- 201209159 49: porous element 5 1 : cover 5 2 : hybridization and detection zone 5 4 : sump 5 6 : sump 5 7 : printed circuit board 5 8 : sump 60.1: Reagent storage tank 60.2: reagent storage tank 62.1: reagent storage tank 62.2: reagent storage tank 64: gasket 6 6 : roof layer 6 8 : sample inlet 7 0 : dialysis zone 72 : waste channel 74 : target channel 76 : waste storage tank 78 : storage tank layer 80: cover channel layer 82: sealing layer 84: 矽 substrate 86: CMOS circuit 87: MST layer 201209159 8 8 : passivation layer 90: MST channel 92: lower pipe port 94: cover channel 96: upper pipe port 9 7: Wall area 9 8 : Anchor of the meniscus 1 〇〇: bottom channel layer 101: laptop/notebook 102: capillary action activation feature 103: dedicated reader 105: desktop computer 106: boiling start valve 107: electronic Book Reader 1 〇8: Boiling Start Valve 1 0 9 : Tablet PC 1 1 〇: Hybrid Chamber Array 1 1 1 : Epidemiology Host system 1 1 2 1 . Amplification area 1 1 2.2 : Amplification area 113: Genetic data host system 1 1 4 · Cultivation area 1 1 5 : Electronic health record (EHR) host system 1 1 6 : Anticoagulant -128- 201209159 1 1 8 : Surface tension 闘 1 1 9 : Sample flow 1 2 0 : Meniscus 121 : Electronic medical record (EMR) host system 1 2 2 : Ventilation hole 123 : Personal health record (PHR) host system 125: Network 126: Boiling start valve 1 28: Surface tension valve 1 3 0 : Chemical cracking chamber 1 3 1 : Mixing zone 1 3 2 : Surface tension valve 1 3 3 : Incubator inlet channel 134: Lower pipe port 1 36 : Optical window 1 3 8 : Surface tension valve 1 4 0 : Surface tension valve 146 : Valve inlet 1 4 8 : Valve outlet 150 : Lower pipe port 152 : Ring heater 153 : Heater connector 1 5 4 : Heater 1 5 6 : Heater connector -129- 201209159 158 : Microchannel 160: Amplification zone outlet channel 1 6 4 : Small 孑匕 166 : Capillary action activation feature 1 6 8 : Dialysis intake port 1 7 0 : Temperature sensor 4 174 : Liquid sensor 1 7 5 : diffusion barrier 1 76 : flow path 1 7 8 : liquid sensor 1 80 : hybridization chamber 1 8 2 : heater 1 84 : light diode 1 8 5 : Photosensitive surface 186: FRET probe 187 : Trigger light diode 1 8 8 : Water tank 190 : Evaporator 1 9 1 : Ring heater 192 : Water supply channel 1 9 3 · Intake port 1 94 : Lower pipe mouth 195: Top metal layer 1 9 6 : Humidifier -130 - 201209159 1 9 8 : Intake hole 202 : Capillary activation feature 204 : Dialysis MST channel 206 : Boiling start valve 207 : Boiling start valve 210 : Microchannel 2 1 2 : MST channel 218 : TiA1 electrode 220 : TiAl electrode 2 2 2 : slit 2 3 2 : sensor 2 3 4 : heater 23 6 : FRET probe 2 3 8 : target nucleic acid sequence 240 : ring 242 : 244 : 246 : 248 : 250 : Arm Excitation Light Fluorescent Group Quencher Fluorescent Signal Fluorescence Emission 2 5 4 : Lens 2 8 8 : Preparation Stage 290 : Extraction Stage 201209159 2 9 1 : Cultivation Stage 292 : Amplification Stage 293 Pre-hybridization filter purification stage 294: detection stage 296: first electrode 298: second electrode 300: programmed delay 30 1: LOC device 328: white blood cell dialysis zone 3 7 6 : conduction column 3 7 8 : positive control Needle 3 80: Negative control probe 3 82 : Calibration chamber 3 84 : Mshunt gate 3 8 6 : t X gate 3 8 8 : Gate 3 9 0: blood collection needle 392: blood collection needle release button 3 93 : reading gate 3 9 4 : transistor M shunt 3 9 6 : transistor M tx 3 9 8 : transistor M reset 4 0 0 · transistor M sf 4 02: Transistor Mread 201209159 404: Transistor Mbias 4 0 6 : Node 'NS 1 408 : Membrane seal 4 1 0 : Membrane shield 5 1 8 : L Ο C Variant Μ 5 94 : Interfacial layer 600: Bypass aisle

602 :界面標靶通道 604:界面廢物通道 669 : LOC 變體 XXXIX 67 3 : LOC 變體 XLIII 674 : LOC 變體 XLIV 677 : LOC 變體 XLVH 6 8 2 :透析步驟 小組分透析區 6 8 6 :透析步驟 7 1 2 :第一光學棱鏡 7 1 4 :第二光學棱鏡 728 : LOC 變體 X 75 8 : LOC 變體 X Π 760 :大組分通道 762 :小組分通道 764 :流通口 766: 760之封閉端 201209159 76 8 :封閉端 778: Mshunt電晶體394之可能配置 7 8 0 : M s h u n t電晶體3 9 4之可能配置 7 8 2 : Mshunt電晶體3 94之可能配置 7 8 5 : LOC 裝置 7 8 8 :差分成像器電路 7 9 0 :像素 792 : “虛擬”像素 794 :讀取_列 795 :讀取_列_虛擬 796 :螢光團 7 9 7 : Μ 4電晶體 798 :淬滅劑 8 0 1 : M D 4電晶體 8 〇 3 :像素電容器 8 05 :虛擬像素電容器 8 0 7 :開關 809 :開關 811 : “read_col” 開關 813 :虛擬 “read_col” 開關 815:電容器擴增器 8 1 7 :差分信號 8 6 0 :電極 8 7 0 :電極 -134-602: Interface Target Channel 604: Interface Waste Channel 669: LOC Variant XXXIX 67 3: LOC Variant XLIII 674: LOC Variant XLIV 677: LOC Variant XLVH 6 8 2: Dialysis Step Small Component Dialysis Zone 6 8 6 : Dialysis step 7 1 2 : first optical prism 7 1 4 : second optical prism 728 : LOC variant X 75 8 : LOC variant X Π 760 : large component channel 762 : small component channel 764 : flow port 766: 760 Closed end 201209159 76 8 : Closed end 778: Possible configuration of Mshunt transistor 394 7 8 0 : M shunt transistor 3 9 4 possible configuration 7 8 2 : Mshunt transistor 3 94 possible configuration 7 8 5 : LOC device 7 8 8 : Differential Imager Circuit 7 9 0 : Pixel 792 : "Virtual" Pixel 794 : Read _ Column 795 : Read _ Column _ Virtual 796 : Fluorescent Cluster 7 9 7 : Μ 4 Transistor 798 : Quenched Agent 8 0 1 : MD 4 transistor 8 〇 3 : pixel capacitor 8 05 : virtual pixel capacitor 8 0 7 : switch 809 : switch 811 : "read_col" switch 813 : virtual "read_col" switch 815 : capacitor amplifier 8 1 7: differential signal 8 6 0 : electrode 8 7 0 : electrode -134-

Claims (1)

201209159 七、申請專利範圍·· 1 · 一種用於基因分析包含標帛E核酸序列之樣本的晶片 上實驗室(LOC)裝置’該LOC裝置包含: 用於接收該樣本之樣本入口; 多個試劑貯槽,其包含供添加入樣本中之dNTP、引 子、聚合酶及緩衝液; 用於熱控制該樣本以擴增該標靶核酸序列之第一核酸 擴增區:及, 用於熱控制來自該第一核酸擴增區之擴增子以進一步 擴增該標靶核酸序列之第二核酸擴增區。 2.如申請專利範圍第1項之LOC裝置,其中該第一 核酸擴增區係經配置以供進行全基因組擴增,而該第二核 酸擴增區係經配置以供擴增預定之核酸序列。 3 ·如申請專利範圍第2項之LOC裝置,其中該第一 核酸擴增區係經配置以供進行聚合酶鏈反應(PCR )擴增 ,且該熱控制包括樣本之熱循環。 4. 如申請專利範圍第2項之LOC裝置,其中該第一 核酸擴增區係經配置以供進行恆溫全基因組擴增,且該熱 控制包括將該樣本保持在預定之溫度。 5. 如申請專利範圍第2項之LOC裝置,其中該第二 核酸擴增區係爲經配置以擴增預定之核酸序列的PCR擴增 區。 6·如申請專利範圍第1項之LOC裝置,其中該第一 核酸擴增區係經配置以擴增·第一預定核酸序列,且該第二 -135- 201209159 核酸擴增區係經配置以擴增第二預定核酸序列,該第一預 定核酸序列爲該第二預定核酸序列之子部分。 7.如申請專利範圍第1項之LOC裝置,其中該試劑 貯槽包括第一試劑貯槽和第二試劑貯槽’該第一試劑貯槽 含有用於在該第一核酸擴增區中進行擴增前添加入樣本中 之第一 dNTP、弓丨子、聚合酶及緩衝液’而該第二試劑貯 槽含有用於在該第二核酸擴增區中進行擴增前添加入來自 該第一核酸擴增區之擴增子的第二dNTP、引子、聚合酶 及緩衝液。 8 ·如申請專利範圍第7項之LO C裝置,其中該等試 劑貯槽各具有一帶有小孔之表面張力閥,該小孔係經配置 以固定將液態試劑保留在其中之彎液面,直到與樣本接觸 而移除該彎液面。 9. 如申請專利範圍第1項之LOC裝置,其中該第一 核酸擴增區具有多個延長擴增室,各室中具有至少一個平 行於該擴增室之縱向延伸區的延長加熱器。 10. 如申請專利範圍第9項之LOC裝置,其中該核 酸擴增區具有微通道,且該等延長擴增室爲該微通道之各 區。 1 1 ·如申請專利範圍第10項之LOC裝置’其中該微 通道具有由一系列寬曲流所形成之彎曲構型’各個該寬曲 流爲形成其中一個延長擴增室的通道區。 12·如申請專利範圍第9項之LOC裝置,其進一步 包含與該至少一個用於在擴增期間進行樣本之熱控制的加 -136- 201209159 熱器連接之CMOS電路。 13. 如申請專利範圍第12項之LOC裝置,其 包含至少一個與該CMOS電路連接的溫度感測器以 制該至少一個加熱器。 14. 如申請專利範圍第13項之L0C裝置,其 包含用於與該標靶核酸序列雜交之探針陣列,以 針-標靶雜交物。 15. 如申請專利範圍第14項之L0C裝置,其 包含用於偵測該探針-標靶雜交物之光感測器。 16. 如申請專利範圍第15項之L0C裝置,其 感測器爲與該探針陣列配準(registration)之光二極 〇 17. 如申請專利範圍第16項之LOC裝置,其 第一核酸擴增區中之液體的體積少於400奈升。 18. 如申請專利範圍第17項之L0C裝置,其 通道之與流動向呈橫切向的截面面積爲1平方微米 平方微米。 19. 如申請專利範圍第13項之LOC裝置,其 通道區具有多個加熱器,各加熱器經延長並沿著通 至端(end to end)地放置,且該CMOS電路係經配置 獨立操作該多個延長加熱器中的各加熱器。 20. 如申請專利範圍第19項之LOC裝置,其 包含支撐基板,其中該CM〇S電路係位於該探針陣 支撐基板之間。 進一步 反饋控 進一步 成探 進一步 中該光 體陣列 中該在 中該微 至400 中各該 道區端 成用於 進一步 列與該 -137-201209159 VII. Scope of Application for Patention·· 1 · A wafer-on-lab (LOC) device for genetic analysis of a sample containing the nucleic acid sequence of the standard E. The LOC device comprises: a sample inlet for receiving the sample; a sump comprising dNTPs, primers, polymerases and buffers for addition to the sample; a first nucleic acid amplification region for thermally controlling the sample to amplify the target nucleic acid sequence: and, for thermal control from An amplicon of the first nucleic acid amplification region to further amplify a second nucleic acid amplification region of the target nucleic acid sequence. 2. The LOC device of claim 1, wherein the first nucleic acid amplification region is configured for whole genome amplification and the second nucleic acid amplification region is configured to amplify a predetermined nucleic acid sequence. 3. The LOC device of claim 2, wherein the first nucleic acid amplification region is configured for polymerase chain reaction (PCR) amplification and the thermal control comprises thermal cycling of the sample. 4. The LOC device of claim 2, wherein the first nucleic acid amplification region is configured for constant temperature whole genome amplification and the thermal control comprises maintaining the sample at a predetermined temperature. 5. The LOC device of claim 2, wherein the second nucleic acid amplification region is a PCR amplification region configured to amplify a predetermined nucleic acid sequence. 6. The LOC device of claim 1, wherein the first nucleic acid amplification region is configured to amplify a first predetermined nucleic acid sequence, and the second -135-201209159 nucleic acid amplification region is configured to A second predetermined nucleic acid sequence is amplified, the first predetermined nucleic acid sequence being a sub-portion of the second predetermined nucleic acid sequence. 7. The LOC device of claim 1, wherein the reagent storage tank comprises a first reagent storage tank and a second reagent storage tank. The first reagent storage tank contains a pre-amplification addition in the first nucleic acid amplification region. Entering a first dNTP, a scorpion, a polymerase, and a buffer in the sample, and the second reagent storage tank is configured to be added to the first nucleic acid amplification region before being amplified in the second nucleic acid amplification region The second dNTP, primer, polymerase and buffer of the amplicon. 8. The LO C device of claim 7, wherein the reagent reservoirs each have a surface tension valve with a small aperture configured to hold a meniscus in which the liquid reagent remains therein until The meniscus is removed by contact with the sample. 9. The LOC device of claim 1, wherein the first nucleic acid amplification region has a plurality of elongated amplification chambers, each chamber having at least one elongated heater parallel to the longitudinal extension of the amplification chamber. 10. The LOC device of claim 9, wherein the nucleic acid amplification region has microchannels, and the extended amplification chambers are regions of the microchannel. 1 1 The LOC device of claim 10, wherein the microchannel has a curved configuration formed by a series of wide meandering flows, each of which is a channel region forming one of the elongated amplification chambers. 12. The LOC device of claim 9, further comprising a CMOS circuit coupled to the at least one heater for performing thermal control of the sample during amplification. 13. The LOC device of claim 12, comprising at least one temperature sensor coupled to the CMOS circuit to make the at least one heater. 14. The L0C device of claim 13, comprising a probe array for hybridization to the target nucleic acid sequence, a needle-target hybrid. 15. The L0C device of claim 14, which comprises a photosensor for detecting the probe-target hybrid. 16. The L0C device of claim 15 wherein the sensor is a photodiode that is registered with the probe array. 17. The LOC device of claim 16 is the first nucleic acid extension. The volume of liquid in the zone is less than 400 nanoliters. 18. The L0C device of claim 17 of the patent application, wherein the cross-sectional area of the channel and the flow direction is 1 square micrometer square micrometer. 19. The LOC device of claim 13 wherein the channel region has a plurality of heaters, each heater being extended and placed end to end, and the CMOS circuit is configured to operate independently Each of the plurality of elongated heaters. 20. The LOC device of claim 19, comprising a support substrate, wherein the CM〇S circuit is located between the probe array support substrates. Further feedback control further explores further in the light body array, the micro-to-400 end of each of the channel regions is used for further column alignment with the -137-
TW100119251A 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section TW201209159A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201209159A true TW201209159A (en) 2012-03-01

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section

Family Applications Before (21)

Application Number Title Priority Date Filing Date
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes

Country Status (1)

Country Link
TW (22) TW201211243A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247190A1 (en) * 2012-10-05 2015-09-03 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
US20170173585A1 (en) * 2014-07-11 2017-06-22 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
EP3286298A1 (en) * 2015-04-22 2018-02-28 Berkeley Lights, Inc. Culturing station for microfluidic device
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
WO2019013825A1 (en) * 2017-07-14 2019-01-17 Hewlett-Packard Development Company, L.P. Microfluidic valve
US20200278313A1 (en) * 2017-11-17 2020-09-03 Siemens Healthcare Diagnostics Inc. Sensor assembly and method of using same
WO2019140104A1 (en) * 2018-01-11 2019-07-18 NanoCav, LLC Microfluidic cellular device and methods of use thereof
WO2019150997A1 (en) 2018-02-01 2019-08-08 東レ株式会社 Device for evaluating particles in liquid and method for operating same
EP3560593B1 (en) * 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
WO2021216627A1 (en) * 2020-04-21 2021-10-28 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833A (en) * 2021-06-18 2022-12-20 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same

Also Published As

Publication number Publication date
TW201211534A (en) 2012-03-16
TW201211539A (en) 2012-03-16
TW201219770A (en) 2012-05-16
TW201211243A (en) 2012-03-16
TW201211242A (en) 2012-03-16
TW201211538A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201211533A (en) 2012-03-16
TW201219115A (en) 2012-05-16
TW201209406A (en) 2012-03-01
TW201209404A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201209403A (en) 2012-03-01
TW201211241A (en) 2012-03-16
TW201211532A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201209407A (en) 2012-03-01
TW201209158A (en) 2012-03-01
TW201211540A (en) 2012-03-16
TW201219776A (en) 2012-05-16
TW201209405A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TW201209159A (en) Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
JP6014227B2 (en) Integrated device for nucleic acid detection and identification
US8354074B2 (en) Test module with low-volume reagent reservoir