TW201211243A - Microfluidic device with dialysis section having stomata tapering counter to flow direction - Google Patents

Microfluidic device with dialysis section having stomata tapering counter to flow direction Download PDF

Info

Publication number
TW201211243A
TW201211243A TW100119248A TW100119248A TW201211243A TW 201211243 A TW201211243 A TW 201211243A TW 100119248 A TW100119248 A TW 100119248A TW 100119248 A TW100119248 A TW 100119248A TW 201211243 A TW201211243 A TW 201211243A
Authority
TW
Taiwan
Prior art keywords
probe
nucleic acid
microfluidic device
hybridization
target
Prior art date
Application number
TW100119248A
Other languages
Chinese (zh)
Inventor
Mehdi Azimi
Kia Silverbrook
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201211243(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201211243A publication Critical patent/TW201211243A/en

Links

Abstract

A microfluidic device for removing cell debris from a biological sample, the microfluidic device having a dialysis section with a large constituent channel and a small constituent channel, and a series of stoma for fluid communication between the large constituent channel and the small constituent channel, the large constituent channel having an upstream end for receiving the biological sample, the biological sample being a liquid carrying a mixture of cell debris and target molecules, the small constituent channel having a downstream end for connection to a hybridization section with an array of probes for reaction with the target molecules to form probe-target complexes, wherein, each of the stoma is tapered in a counter-flow direction such that each have a small opening to the large constituent channel and a large opening to the small constituent channel, the small openings being sized to allow the target molecules to flow into the small constituent channel but retain the cell debris larger than a threshold size in the large constituent channel.

Description

201211243 六、發明說明: 【發明所屬之技術領域】_ 本發明關於使用微系統技術(MST)之診斷裝置。特 別是本發明關於用於分子診斷之微流體和生化之處理及分 析。 【先前技術】201211243 VI. Description of the Invention: [Technical Field to Which the Invention pertains] The present invention relates to a diagnostic apparatus using Microsystems Technology (MST). In particular, the present invention relates to the processing and analysis of microfluidics and biochemicals for molecular diagnostics. [Prior Art]

分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: • 遺傳病症 • 後天病症 • 傳染性疾病 • 與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康照護的發生、增進病患預後(patient outcome) 、改進疾病管理及個體化患者照護。分子診斷的許多技術 係基於自生物樣本(諸如血液或唾液)萃取及擴增之特定 核酸(去氧核糖核酸(DNA)以及核酸核酸(RNA)兩者 )的檢測及辨識。核酸鹼基的互補特徵使得經合成DNA (寡核苷酸)短序列結合(雜交)至用於核酸試驗之特定 核酸序列。若發生雜交,則互補序列存在於樣本中。此使 得例如預測個人未來會得到的疾病、判定感染性病原體的 種類及致病性,或判定個人對藥物的反應成爲可能。 201211243 以核酸爲基礎之分子診斷試驗 以核酸爲基之試驗具有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3. 核酸擴增(選用的) 4. 檢測Molecular diagnostics have been used to provide an early indication of disease detection before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the occurrence and improvement of ineffective health care Patient outcome, improved disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both DNA and nucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobases allows for the binding (hybridization) of synthetic DNA (oligonucleotide) short sequences to specific nucleic acid sequences for nucleic acid assays. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will receive in the future, determine the type and pathogenicity of an infectious pathogen, or determine the individual's response to the drug. 201211243 Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection

許多樣本類型,諸如血液、尿液、痰和組織樣本’係 用於基因分析。診斷試驗判定所需的樣本類型’因並非所 有樣本代表疾病進程。這些樣本具有各種組分’但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的檢測。因此,於核酸試驗開始時經常 需要純化及/或濃縮步驟。Many sample types, such as blood, urine, sputum, and tissue samples, are used for genetic analysis. Diagnostic tests determine the type of sample required 'because not all samples represent disease progression. These samples have various components' but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the beginning of a nucleic acid assay.

血液爲較常尋求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促 進凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃 縮之前令試樣與諸如乙二胺四乙酸(EDTA )之試劑混合 。通常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅 血球佔細胞物質之約99%,但其不帶有DNA因彼不具細 胞核。此外,紅血球含有諸如血紅素之可能干擾下游核酸 擴增程序(描述於下)的成分。可藉由示差( differentially )溶胞於溶胞溶液中之紅血球來移除紅血球 ,而留下剩餘的完整細胞物質,其可接著使用離心而與樣 本分離。此提供自其萃取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程(protocol )取決於樣本及 -6- 201211243 待實施之診斷分析。例如,用於萃取病毒RNA之規程與 用於萃取基因組DNA之規程相當不同。然而,自標靶細 胞萃取核酸通常包含細胞溶胞步驟及接續的核酸純化。細 胞溶胞步驟使細胞及細胞核膜破裂,而釋放出遺傳物質。 此經常使用溶胞清潔劑來完成,溶胞清潔劑係諸如十二烷 基硫酸鈉,其亦使存在於細胞中之大量蛋白質變性。Blood is one of the more commonly sought sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of cellular material, but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by differentially lysing the red blood cells in the lysis solution, leaving the remaining intact cellular material, which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact protocol used to extract the nucleic acid depends on the sample and the diagnostic analysis to be performed. For example, the protocol used to extract viral RNA is quite different from the protocol used to extract genomic DNA. However, self-targeting cell extraction of nucleic acids typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often done using a lysing detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells.

接著於清洗之前在高濃度的離液鹽(chaotropic salt )存在下,通常於分餾塔中的氧化矽基質、樹脂或順磁性 珠上,以醇類〔通常爲冰乙醇或異丙醇〕沉澱步驟,或是 經由固相純化步驟純化核酸,接著以低離子強度緩衝液進 行洗提。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之 蛋白酶,以進一步純化樣本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 將樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質中 ,尤其是若標靶來自致病性來源。核酸擴增提供選擇性擴 增(即,複製)特定標靶(就可檢測程度而言爲低濃度者 )的能力。 最常使用之核酸擴增技術爲聚合酶鏈反應(PCR)。 PCR係業界已知悉,以及於E· van Pelt-Verkuil等人之The step of precipitating with an alcohol (usually ice ethanol or isopropanol) in the presence of a high concentration of chaotropic salt, usually in a cerium oxide matrix, resin or paramagnetic beads in a fractionation column, prior to washing Alternatively, the nucleic acid is purified via a solid phase purification step followed by elution with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protein cleavage protease to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. Target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target (in the case of a low concentration in terms of detectability). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR system is known in the industry and is also available from E. van Pelt-Verkuil et al.

Principles and Technical Aspects of PCR Amplification, Springer,2008中提供此類反應之綜合理解性描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標 靶DNA序列。若欲(藉由PCR)擴增RNA,則首先必須 201211243 使用名爲反轉錄酶之酵素將之轉錄爲cDNA (互補DNA) 。隨後,藉由PCR擴增得到的cDNA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 則其可繼續進行。反應之成分爲:A comprehensive comprehensible description of such reactions is provided in Principles and Technical Aspects of PCR Amplification, Springer, 2008. PCR is a useful technique for amplifying a target DNA sequence relative to a complex DNA background. If RNA is to be amplified (by PCR), it must first be transcribed into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Subsequently, the obtained cDNA was amplified by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1. 引子對-具有約10-30個與毗鄰(flanking)標靶 序列區互補之核苷酸的短單股DN A 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP )-提供整合至新合 成之DNA股之核苷酸 4. 緩衝液-提供DNA合成之最佳化學環境 PCR —般包含將這些反應物置於含有經萃取之核酸的 小管(~1〇-5〇微升)。將管放置於熱循環器(thermal cycler )中;一種令反應經受一連串不等量時間之不同溫 度的儀器。各熱循環的標準規程包括變性相、黏著相及延 伸相。延伸相有時代表引子延伸相。除了此三-步驟規程 外,可採用二-步驟熱規程,於其中黏著及延伸相合倂。 變性相一般包含將反應溫度升溫至90-9 5°C以使DNA股變 性:於黏著相中,將溫度降低至〜5 0-60 °C以供引子黏著; 接著於延伸相中,將溫度升溫至最佳DNA聚合酶活性溫 度60-72°C,以供引子延伸。此方法重複循環約20-40次 ,最終結果爲產生數百萬拷貝之引子間的標靶序列。 已發展出用於分子診斷之許多標準PCR規程之變體 ,其中包括諸如多引子組PCR,聯結子引發(linker-primed) PCR、 直接 PCR' 重複序列(tandem) PCR、即 201211243 時PCR以及反轉錄酶PCR。 多引子組PCR使用單一PCR混合物中之多重引子組 以產生對不同DNA序列具特異性之不同大小之擴增子。 藉由一次標靶多個基因,由單一試驗可得到額外的資訊( 以其他方式則需要數次試驗)。最佳化多引子組PCR更 爲困難,因其需要選取具近似黏著溫度之引子及具近似長 度與鹼基組成之擴增子以確保各擴增子之擴增效率相等。1. Primer pair - a short single strand of DN A having about 10-30 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis DNA thermostable enzyme 3. Deoxyribose nucleus Glycoside triphosphate (dNTP) - provides nucleotides integrated into newly synthesized DNA strands. 4. Buffer - the best chemical environment for DNA synthesis. PCR generally involves placing these reagents in small tubes containing extracted nucleic acids (~ 1〇-5〇 microliters). The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. Standard procedures for each thermal cycle include the denatured phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension are combined. The denatured phase generally comprises heating the reaction temperature to 90-9 5 ° C to denature the DNA strand: in the adhesive phase, the temperature is lowered to ~50-60 °C for adhesion of the primer; then in the extended phase, the temperature is Warm up to an optimal DNA polymerase activity temperature of 60-72 ° C for extension of the primer. This method repeats the cycle for about 20-40 times with the end result of generating a target sequence between millions of copies of the primer. Variants of many standard PCR protocols for molecular diagnostics have been developed, including, for example, multiple primer set PCR, linker-primed PCR, direct PCR 'tandem PCR, ie 201211243 PCR and reverse Transcriptase PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. Additional information can be obtained from a single experiment by targeting multiple genes at once (in other ways, several trials are required). Optimizing multiple primer set PCR is more difficult because it requires the selection of primers with approximate adhesion temperatures and amplicon with approximate length and base composition to ensure equal amplification efficiency of each amplicon.

聯結子引發 PCR,又稱爲接合接合子(ligation adaptor) PCR,爲用於致能複雜DNA混合物中實質上所 有DNA序列之核酸擴增的方法,而不需要標靶-特異性引 子。此方法首先以合適的限制性內核酸酶(酵素)來剪切 (digest)標靶DNA群體。使用接合酶酵素,具有合適的 懸伸(overhanging )端之雙股寡核苷酸聯結子(亦稱爲 接合子)接著與標靶DNA片段之端子接合。接下來使用 對聯結子序列具有特異性之寡核苷酸引子實施核酸擴增。 藉此,可擴增毗鄰聯結子寡核苷酸之DNA來源的所有片 段。 直接PCR描述一種直接於樣本上實施PCR而不需要 任何核酸萃取(或最少核酸萃取)之系統。長久以來認爲 ,PCR反應受到存在於未純化的生物樣本中之許多成分的 抑制,諸如血液中的原血紅素成分。傳統上,於製備反應 混合物之前,PCR需要加強純化標靶核酸。然而,利用化 學性質的適當變化及樣本濃縮,可以最少化DNA純化而 進行PCR或進行直接PCR。用於直接PCR之PCR化學性 201211243 質的調整包括加強緩衝液強度、使用高活性及進行性( processivity )之聚合酶及與潛在聚合酶抑制劑螯合之添 加物。Linker-initiated PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of substantially all DNA sequences in complex DNA mixtures without the need for target-specific primers. This method first digests the target DNA population with a suitable restriction endonuclease (enzyme). Using a zymase enzyme, a double stranded oligonucleotide linker (also known as a zygote) with a suitable overhanging end is then ligated to the terminal of the target DNA fragment. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. Thereby, all fragments of the DNA source adjacent to the linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that the PCR reaction is inhibited by many components present in unpurified biological samples, such as the protohemoglobin component in the blood. Traditionally, PCR requires enhanced purification of target nucleic acids prior to preparation of the reaction mixture. However, with appropriate changes in chemical properties and sample concentration, PCR can be performed or direct PCR can be performed with minimal DNA purification. PCR chemistry for direct PCR 201211243 Qualitative adjustments include enhanced buffer strength, the use of highly active and processivity polymerases, and additions to potential polymerase inhibitors.

重複序列PCR利用兩次獨立的核酸擴增以增進擴增 正確擴增子的機率。重複序列PCR中的一類型爲巢式 PCR,其中使用兩對PCR引子,以於分別的核酸擴增進行 單一基因座擴增。第一對引子與標靶核酸序列外部區域的 核酸序列雜交。第二次擴增中所使用的第二對引子(巢式 引子)結合於第一 PCR產物中並且產生含有標靶核酸的 第二PCR產物(較第一 PCR產物爲短)。此策略所運用 的論理爲:若於第一次核酸擴增期間因失誤而擴增錯誤的 基因座,由第二對引子再次擴增錯誤的基因座的機率非常 低,因此確保了特異性。Repeated sequence PCR utilizes two independent nucleic acid amplifications to increase the probability of amplifying the correct amplicon. One type of repeat PCR is nested PCR in which two pairs of PCR primers are used to perform single locus amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product (short in the first PCR product) containing the target nucleic acid. The rationale used in this strategy is that if the wrong locus is amplified by mistakes during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very low, thus ensuring specificity.

使用即時PCR或定量PCR以即時量測PCR產物之量 。藉使用含有螢光團之探針或螢光染料以及反應中的一套 參考標準,可測定樣本中之核酸的最初含量。此特別有用 於分子診斷,其中治療選擇可能取決於樣本中所載病原體 而有所不同。 反轉錄酶PCR(RT-PCR)係用於自RNA來擴增DNA 。反轉錄酶爲將RNA反轉錄成互補DNA( cDNA )之酵素 ,接著藉由PCR擴增cDNA。RT-PCR廣泛地用於表現型 態(expression profiling)以判定基因的表現或辨識RNA 轉錄本(包括轉錄起始及終止位址)之序列。其亦用於擴 增RNA病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。 -10- 201211243The amount of PCR product was measured in real time using either real-time PCR or quantitative PCR. The initial amount of nucleic acid in a sample can be determined by using a probe containing a fluorophore or a fluorescent dye and a set of reference standards in the reaction. This is especially useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. A reverse transcriptase is an enzyme that reverse transcribes RNA into a complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used in expression profiling to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to augment RNA viruses such as human immunodeficiency virus or hepatitis C virus. -10- 201211243

恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 應期間之標靶DNA的熱變性,因此不需要複雜的機械。 恆溫核酸擴增方法可因此原始位置進行或於實驗室環境外 易於被操作。包括股取代擴增(Strand Displacement Amplification )、轉錄介導擴增(Transcription Medi ated Amplification )、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增( Recombinase Polymerase Amplification )、滾動循環擴增 (Rolling Circle Amplification )、分枝型擴增( Ramification Amplification )、解旋恆溫 DNA 擴增( Helicase-Dependent Isothermal DNA Amplification)及環 形® 溫擴增(Loop-Mediated Isothermal Amplification) 之一些恆溫核酸擴增方法已被敘述。 恆溫核酸擴增法不依賴模板DNA之持續加熱變性來 產生作爲進一步擴增之模板的單股分子,而是依賴諸如於 常溫下藉由特異性限制內核酸酶之DNA分子的酵素性切 割,或是利用酵素分開DNA股之其他方法。 股取代擴增(SDA )依賴特定限制性酵素的能力以切 割半修飾(hemi-modified) DNA之未經修飾股,及5’-3’ 外核酸酶-缺乏之聚合酶的能力以延伸並取代下游股。然 後藉由偶合義(sense )與反義(antisense )反應而達成 指數性核酸擴增,其中來自義反應之股取代作爲反義反應 之模板。使用不以慣例方式切割DNA而是於DNA之一股 上產生切口之切口酶(諸如N. Alwl,N. BstNBl及Mlyl -11 - 201211243 )係有用於此反應。藉使用熱穩定限制性酵素(J να 1 )及 熱穩定性外-聚合酶(聚合酶)之組合已改進SDA。此 組合顯現出使反應的擴增效率由1〇8倍擴增增加至101()倍 擴增,以致可使用此技術來擴增獨特的單拷貝分子。Constant temperature amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DNA during the amplification reaction, and thus does not require complicated machinery. The thermostatic nucleic acid amplification method can be performed at the original location or easily outside the laboratory environment. Including Strand Displacement Amplification, Transcription Meditation Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Some of the constant temperature nucleic acid amplification of Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification, and Loop-Mediated Isothermal Amplification The method of addition has been described. The constant temperature nucleic acid amplification method does not rely on the continuous heat denaturation of the template DNA to produce a single strand of the molecule as a template for further amplification, but relies on an enzymatic cleavage such as a DNA molecule which specifically limits the endonuclease at a normal temperature, or It is another way to separate DNA strands using enzymes. The ability of strand-substituted amplification (SDA) to rely on specific restriction enzymes to cleave unmodified strands of hemi-modified DNA, and 5'-3' exonuclease-deficient polymerases to extend and replace Downstream stocks. Exponential nucleic acid amplification is then achieved by a reaction between the sense and the antisense, wherein the strand of the sense reaction is substituted as a template for the antisense reaction. A nicking enzyme (such as N. Alwl, N. BstNBl and Mlyl -11 - 201211243) which cleaves DNA on one of the DNA strands without cutting the DNA in a conventional manner is useful for this reaction. SDA has been improved by the use of a combination of a thermostable restriction enzyme (J να 1 ) and a thermostable exo-polymerase (polymerase). This combination appears to increase the amplification efficiency of the reaction from 1 to 8 fold amplification to 101 (fold) amplification so that this technique can be used to amplify unique single copy molecules.

轉錄介導擴增(ΤΜΑ)及依賴核酸序列擴增(NASBA )使用RNA聚合酶以複製RNA序列而非對應之基因組 DN Α。此技術使用兩種引子及兩或三種酵素、RNA聚合酶 、反轉錄酶及任意的RNase Η (若反轉錄酶不具有Rnase 活性)。一種引子含有供RNA聚合酶之啓動子序列。在 核酸擴增的第一步驟中,此引子於限定的位置與標靶核糖 體RNA ( rRNA )雜交。藉由自啓動子引子的3’端開始延 伸,反轉錄酶產生標靶rRN A之DNA拷貝。若存在另外 的RNase Η,則所得的RNA : DNA雙股中的RNA經由反 轉錄酶之Rnase活性而被分解。接著,第二引子結合至 DNA拷貝。藉反轉錄酶自此引子的末端合成新的DNA股 而產生雙股DNA分子。RNA聚合酶辨識DNA模板中的啓 動子序列,並開始轉錄。各個新合成的RNA擴增子再進 入過程中並作爲新的複製之模板。 於重組酵素聚合酶擴增(RPA )中,藉結合相對的寡 核苷酸引子至模板DNA並且由DN A聚合酶將之延伸而達 成特定DNA片段之恆溫擴增。變性雙股DNA ( dsDNA ) 模板不需要熱。反之,RPA利用重組酵素-引子錯合體來 掃描dsDNA及促進同源(COgnate)位置處的股交換。藉 由單股DNA結合蛋白與經取代模板股的交互作用來穩定 -12- 201211243 所得到的結構,因此防止引子因分支遷移而放出。重組酵 素分解離開可爲股取代 DNA聚合酶(諸如Bacillus whi/k Pol I ( 的大片段)所接近之寡核苷酸的3’ 端,且引子接著開始延伸。藉循環重複此步驟而達到指數 性核酸擴增。Transcription-mediated amplification (ΤΜΑ) and nucleic acid sequence-dependent amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than the corresponding genomic DN Α. This technique uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have Rnase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to a target ribosomal RNA (rRNA) at a defined position. The reverse transcriptase produces a DNA copy of the target rRN A by extension from the 3' end of the promoter primer. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the Rnase activity of the reverse transcriptase. Next, the second primer binds to the DNA copy. A double-stranded DNA molecule is produced by synthesizing a new DNA strand from the end of the primer by reverse transcriptase. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each newly synthesized RNA amplicon is reintroduced into the process and serves as a template for new replication. In recombinant enzyme polymerase amplification (RPA), constant binding amplification of specific DNA fragments is achieved by binding the opposite oligonucleotide primer to the template DNA and extending it by DN A polymerase. Denatured double-stranded DNA (dsDNA) templates do not require heat. Conversely, RPA uses recombinant enzyme-primer mismatches to scan dsDNA and promote share exchange at homeostatic (COgnate) positions. The structure obtained by the -12-201211243 is stabilized by the interaction of the single-stranded DNA-binding protein with the substituted template strand, thus preventing the primer from being released due to branch migration. The recombinant enzyme decomposes and can be replaced by a DNA polymerase (such as the 3' end of the oligonucleotide close to Bacillus whi/k Pol I (large fragment), and the primer then begins to extend. Repeat this step by loop to reach the index Amplification of nucleic acids.

解旋酶擴增(HDA )模擬活體內系統,於活體內系統 中使用DNA解旋酶來產生用於引子雜交之單股模板並接 著以DNA聚合酶延伸引子。於HD A反應的第一步驟中, 解旋酶穿過標靶DNA,破壞聯結兩股的氫鍵,此二股隨 後由單股結合蛋白所結合。由解旋酶所暴露之單股標靶區 域使引子得以黏著。DNA聚合酶使用自由的去氧核糖核 苷三磷酸(dNTP )以接著延伸各引子的3’端,以產生兩 個DNA複製(replicate)。兩個複製的dsDNA股獨立地 進入下一個HDA循環,造成標靶序列之指數性核酸擴增 其他的基於DNA之恆溫技術包括滾動循環擴增( RCA ) ’於其中DNA聚合酶繞環狀DNA模板持續地延伸 引子而產生由許多環狀重複拷貝所組成之長的DNA產物 。藉由終止反應’聚合酶產生數千拷貝之環狀模板,其具 有栓繫至原始標靶DNA的拷貝鏈。此致使標靶之空間解 析度及訊號之快速核酸擴增。於i小時內至多可產生1〇12 拷貝之模板。分枝型擴增爲RC A之變體,並利用封閉的 環狀探針(C-探針)或扣鎖探針及具高進行性之〇ΝΑ聚 合酶’以於常溫情況下指數地擴增c _探針。 -13- 201211243 環形恆溫擴增(LAMP )提供高選擇性且利用DNA聚 合酶及含有四個特別設計的引子之引子組,引子組辨識標 靶DNA上總共六個不同的序列。含有標靶DNA之義股及 反義股序列的內引子起始LAMP。由外引子引發之後續股 取代DNA合成釋出單股DNA。 此作爲由第二內及外引 子所引發之DNA合成的模板,第二內及外引子與標靶之 另一端雜交,產生莖-環(stem-loop) DNA結構。於接續 的LAMP循環中,內引子與產物上的環形雜交並起始取代 DNA合成,產生原始莖-環DNA及具有兩倍莖長度之新 莖-環DNA。於少於一小時內持續循環反應而聚積1〇9拷 貝之標靶。最終產物爲具有數個反相重複標靶之莖-環 DNA,以及具有多個環形(交替黏著相同股中之反相重複 標靶所形成)之花椰菜狀結構。 於完成核酸擴增之後,必須分析擴增的產物以判定是 否產生預期的擴增子(標靶核酸之擴增量)。分析產物的 方法有透過膠體電泳簡單測定擴增子的大小、使用DNA 雜交以識別擴增子之核苷酸組成。 膠體電泳爲檢査核酸擴增步驟是否產生預期之擴增子 之最簡單方式之一。膠體電泳利用施加至膠體基質之電場 來分離DNA片段。帶負電的DNA片段將以不同速率(主 要取決於其大小)移動通過基質。於電泳完成之後,可染 色膠體中的片段使其成爲可見。於UV光下發螢光之溴化 乙菲錠爲最常用的染劑。 藉由與DNA大小標記(DNA標準片段(DNA ladder 201211243 ))相比較來判定片段的大小,DNA大小標記含有已知 大小的DNA片段,其與擴增子一同跑膠。因寡核苷酸引 子結合至毗鄰標靶DNA之特定位置,經擴增之產物的大 小可被預測且以膠體上已知大小的帶被檢測。爲確認擴增 子爲何或若產生數種擴增子時,常利用DNA探針與擴增 子雜交。The helicase amplification (HDA) mimics the in vivo system, using DNA helicase in an in vivo system to generate a single strand template for primer hybridization followed by a DNA polymerase extension primer. In the first step of the HD A reaction, the helicase passes through the target DNA, damaging the two hydrogen bonds, which are then bound by a single-stranded binding protein. The single-strand target region exposed by the helicase allows the primer to adhere. The DNA polymerase uses free deoxyribonucleoside triphosphate (dNTP) to subsequently extend the 3' end of each primer to produce two DNA replicas. Two replicated dsDNA strands enter the next HDA cycle independently, causing exponential nucleic acid amplification of the target sequence. Other DNA-based thermostating techniques include rolling cycle amplification (RCA) in which DNA polymerase surrounds a circular DNA template The primer is continuously extended to produce a long DNA product consisting of a number of circular repeat copies. Thousands of copies of the circular template are generated by terminating the reaction ' polymerase, which has a copy strand tethered to the original target DNA. This results in a spatial resolution of the target and rapid nucleic acid amplification of the signal. A template of up to 1〇12 copies can be produced in an hour. Branch-type amplification is a variant of RC A, and uses a closed circular probe (C-probe) or a latching probe and a highly progressive 〇ΝΑ polymerase' to expand exponentially at normal temperature. Increase c _ probe. -13- 201211243 Circular Thermostat Amplification (LAMP) provides high selectivity and utilizes DNA polymerase and a primer set containing four specially designed primers. The primer set recognizes a total of six different sequences on the target DNA. The inner primer, which contains the sense strand of the target DNA and the antisense strand sequence, initiates the LAMP. Subsequent strands initiated by exogenous substitutions replace DNA synthesis to release single-stranded DNA. This serves as a template for DNA synthesis initiated by the second internal and external primers, and the second inner and outer primers hybridize to the other end of the target to produce a stem-loop DNA structure. In the subsequent LAMP cycle, the inner primer hybridizes to the loop on the product and initiates the replacement DNA synthesis, producing the original stem-loop DNA and the new stem-loop DNA with twice the stem length. Continuously circulate the reaction in less than one hour to accumulate 1 〇 9 copies of the target. The final product is stem-loop DNA with several inverted repeat targets, and a broccoli-like structure with a plurality of loops (formed alternately with inverted repeat targets in the same strand). After completion of the nucleic acid amplification, the amplified product must be analyzed to determine whether the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product is to simply determine the size of the amplicon by colloidal electrophoresis and use DNA hybridization to identify the nucleotide composition of the amplicon. Colloidal electrophoresis is one of the simplest ways to check if a nucleic acid amplification step produces the desired amplicon. Colloidal electrophoresis utilizes an electric field applied to a colloidal matrix to separate DNA fragments. Negatively charged DNA fragments will move through the matrix at different rates (mainly depending on their size). After the electrophoresis is completed, the fragments in the colloid can be made visible. Brominated fluorinated fluorene fluorene under UV light is the most commonly used dye. The size of the fragment is determined by comparison with a DNA size marker (DNA ladder 201211243) which contains a DNA fragment of a known size which is run along with the amplicon. Since the oligonucleotide primer binds to a specific position adjacent to the target DNA, the size of the amplified product can be predicted and detected as a band of known size on the colloid. In order to confirm why an amplicon or a plurality of amplicons are generated, a DNA probe is often used to hybridize with an amplicon.

DNA雜交意指藉由互補鹼基配對而形成雙股DNA。 用於特定擴增產物之正面識別的DNA雜交需使用長度爲 約20個核苷酸的DNA探針。若探針具有與擴增子(標靶 )DNA序列互補的序列,則雜交將於有利的溫度、pH及 離子濃度條件下發生。若發生雜交,則表示關注的基因或 DNA序列出現於原始樣本中。 光學檢測爲最常見之檢測雜交的方法。標記擴增子或 是探針以經由發螢光或電致化學發光而發光。這些方法之 引發產光部分之激發態的方式不同,但兩者同樣致能核苷 酸股之共價標記。於電致化學發光(ECL ),當以電流刺 激時,由發光團分子或錯合體產生光。於發螢光時,以造 成發射之激發光來發光。 使用發光源以檢測螢光,發光源提供波長爲螢光分子 吸收之激發光以及檢測單元。檢測單元包含光感測器(諸 如光電倍增管或電荷耦合裝置(CCD )陣列)以檢測發射 的訊號,以及防止激發光被包含於光感測器輸出之機構( 諸如波長-選擇濾波器)。回應激發光,螢光分子發射斯 托克斯位移(Stokes-shifted )光,以及此發射的光由檢 -15- 201211243 測單元收集。托克斯位移爲發射的光與吸收的激發光之間 之頻率差或波長差。 使用光感測器來檢測ECL發射,光感測器對於所採 用之ECL種類之發射波長爲敏感。例如,過渡金屬配位 錯合體發射可見波長的光,因而採用傳統光二極體及 CCD作爲光感測器。ECL之優勢爲,若排除周圍光線, ECL發射可爲檢測系統中唯一存在的光,因而增進靈敏度DNA hybridization means the formation of double-stranded DNA by complementary base pairing. DNA hybridization for the positive recognition of a particular amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DNA sequence, hybridization will occur under conditions of favorable temperature, pH and ion concentration. If hybridization occurs, the gene or DNA sequence of interest is present in the original sample. Optical detection is the most common method of detecting hybridization. The amplicon or probe is labeled to emit light via fluorescing or electrochemiluminescence. These methods have different ways of inducing the excited state of the luminescent moiety, but both are equally capable of covalent labeling of the nucleoside stock. In electrochemiluminescence (ECL), when excited by a current, light is generated by a luminophore molecule or a complex. When the fluorescent light is emitted, the emitted light is emitted to emit light. The illuminating source is used to detect fluorescence, and the illuminating source provides excitation light having a wavelength absorbed by the fluorescent molecules and a detecting unit. The detection unit includes a photosensor (such as a photomultiplier tube or a charge coupled device (CCD) array) to detect the transmitted signal and a mechanism (such as a wavelength-select filter) that prevents excitation light from being included in the output of the photosensor. Back-stress luminescence, fluorescent molecules emit Stokes-shifted light, and this emitted light is collected by the -15-201211243 unit. The Toks shift is the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. A light sensor is used to detect the ECL emission, and the light sensor is sensitive to the emission wavelength of the ECL type used. For example, a transition metal coordination complex emits light of a visible wavelength, and thus a conventional photodiode and a CCD are used as photosensors. The advantage of ECL is that if the ambient light is excluded, the ECL emission can be the only light present in the detection system, thus increasing sensitivity.

微陣列使數十萬的DNA雜交試驗得以同時進行。微 陣列爲有用的分子診斷工具,其可飾檢數千種遺傳疾病或 於單一試驗中檢測是否存在數種感染性病原體。微陣列由 許多不同的固定於基板上且成點狀之DNA探針所組成。 首先以螢光或發光分子標記標靶DNA (擴增子)(於核 酸擴增期間或之後),然後將其施加至探針陣列。於經控 制的溫度下、潮濕的環境中培養微陣列數小時或數天,此 時探針及擴增子之間發生雜交。於培養後,必須以一連串 緩衝液清洗微陣列以移除未經結合股。一旦清洗後,以氣 流(通常爲氮)乾燥微陣列表面。雜交及清洗的嚴格度很 重要。不夠嚴格可能導致高度非特異性結合。過度嚴格可 能導致無法適當進行結合而造成減低的靈敏度。藉由檢測 來自經標記之與互補探針形成雜交的擴增子之光發射而辨 識雜交。 使用微陣列掃描器檢測來自微陣列的螢光,微陣列掃 描器通常爲經電腦控制的反相掃描式螢光共軛焦顯微鏡, -16- 201211243 其一般使用激發螢光染料的雷射及光感測器(諸如光電倍 增管或CCD )以檢測發射的訊號》螢光分子發射經下轉 換的光(如上述),而光被檢測單元收集。Microarrays allow hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are useful molecular diagnostic tools that can detect thousands of genetic diseases or detect the presence of several infectious pathogens in a single experiment. The microarray consists of a number of different DNA probes that are fixed to the substrate and are spotted. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (either during or after nucleic acid amplification) and then applied to the probe array. The microarray is cultured for several hours or days at a controlled temperature in a humid environment where hybridization occurs between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. Once cleaned, the microarray surface is dried with a stream of air (usually nitrogen). The stringency of hybridization and cleaning is important. Less stringent may result in highly non-specific binding. Excessive rigor may result in inability to properly combine and result in reduced sensitivity. Hybridization is identified by detecting the light emission from the labeled amplicon that hybridizes to the complementary probe. Fluorescence from a microarray is detected using a microarray scanner, typically a computer-controlled, inverting-scanning fluorescent conjugated focus microscope, -16-201211243, which typically uses lasers and light that excite fluorescent dyes. A sensor (such as a photomultiplier tube or CCD) detects the emitted signal "fluorescent molecules emit down-converted light (as described above), while light is collected by the detection unit.

發射的螢光必須被收集、與未經吸收的激發波長分離 ,並被傳送至檢測器。於微陣列掃描器中常使用共軛焦配 置以藉由位於影像平面的共軛焦針孔來刪除失焦資訊。此 使得僅檢測光的聚焦部分。防止於物之焦點平面之上方或 下方的光進入檢測器,藉此增加訊號對雜訊比。檢測器將 經檢測的螢光光子轉換成電能,電能並接著被轉換成數位 訊號。此數位訊號轉變成代表來自給定像素之螢光強度的 數字。陣列的各特徵係由一或多個此像素所構成。掃描的 最終結果爲陣列表面影像。由於已知微陣列上每一個探針 的確切序列及位置,因此可同時識別及分析雜交的標靶序 列。 可於下列找到更多有關螢光探針之資訊: http://www.premierbiosoft.com/tech_notes/FRET_probe. html以及 http://www.invitrogen.com/site/us/en/home/References /Molecular-probes-The-Handbook/Technical-Notes-and- product-Highlights/Fluorescence-Resonance-Energy-The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. A conjugate focal configuration is often used in microarray scanners to remove out-of-focus information by conjugated focal pinholes located in the image plane. This makes it possible to detect only the focused portion of the light. Prevents light above or below the focal plane of the object from entering the detector, thereby increasing the signal-to-noise ratio. The detector converts the detected fluorescent photons into electrical energy, which is then converted into a digital signal. This digital signal is converted to a number representing the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the hybrid target sequence can be identified and analyzed simultaneously. More information on fluorescent probes can be found below: http://www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References / Molecular-probes-The-Handbook/Technical-Notes-and- product-Highlights/Fluorescence-Resonance-Energy-

Transfer-FRET.html 就地醫護分子診斷 儘管分子診斷試驗提供了優勢,臨床檢驗中此類型試 -17- 201211243 驗的成長不如預期且仍僅占檢驗醫學之實施的小部分。此 主要歸因於,與基於非關核酸方法之試驗相比’核酸試驗 相關之複雜度與成本。分子診斷試驗之於臨床處理的廣泛 適用性係與可顯著降低成本、提供自始(樣本處理)至終 (產生結果)之快速及自動化分析,以及不需大量人爲操 作之儀器發展息息相關。Transfer-FRET.html In-situ Care Molecular Diagnostics Despite the advantages of molecular diagnostic tests, the growth of this type of test in clinical tests is not as good as expected and still only accounts for a small portion of the implementation of laboratory medicine. This is primarily due to the complexity and cost associated with 'nucleic acid assays' compared to assays based on non-closed nucleic acid methods. The broad applicability of molecular diagnostic tests to clinical treatment is closely related to the rapid and automated analysis that can significantly reduce costs, provide initial (sample processing) to final (results), and the development of instruments that do not require extensive human manipulation.

用於醫師診所、鄰近的或基於使用者的醫院、家中之 就地醫護技術提供以下優點: •快速得到結果而致能快速促進治療及改進照護品質 •經由試驗極少量樣本而得到檢驗値的能力。 •減少臨床工作量。 •減少實驗室工作量並因減少管理工作而增進工作效 率。For physicians' clinics, proximity or user-based hospitals, home-based in-home healthcare technologies offer the following benefits: • Quick results to enable rapid treatment and improved care quality • Ability to test sputum by testing a very small number of samples . • Reduce clinical workload. • Reduce laboratory workload and increase work efficiency by reducing management efforts.

•因減少住院時間、門診病人於首次就診得知結果, 及簡化樣本的處理、儲存及運送而改善每個病人 所需成本。 •促進臨床管理決策,諸如感染控制及抗生素使用。 以晶片上實驗室(LOC)爲基之分子診斷 以微流體技術爲基礎之分子診斷系統提供可自動化及 加速分子診斷分析之裝置。較短之檢測時間主要是因爲所 需之樣本體積極少、自動化及在微流體裝置內之低開銷內 置級聯式之診斷方法步驟。以奈升及微升爲規模之體積亦 -18- 201211243• Improve the cost per patient by reducing hospital stays, getting results from first visits to clinic patients, and simplifying the handling, storage and delivery of samples. • Promote clinical management decisions such as infection control and antibiotic use. Molecular Diagnostics Based on On-Wafer Laboratory (LOC) Molecular diagnostic systems based on microfluidics provide devices that automate and accelerate molecular diagnostic analysis. The shorter detection time is primarily due to the fact that the required sample volume is less active, automated, and low-cost built-in cascaded diagnostic method steps within the microfluidic device. The volume of the scale of the nanoliter and microliter is also -18- 201211243

減少試劑消耗及成本。晶片上實驗室(LOC )裝置係常見 之微流體裝置形式。LOC裝置具有在MST辱內之MST結 構以用於將流體處理整合至單一支撐基材(通常爲矽)上 °利用半導體產業之VLSI (超大型積體電路)平版印刷 技術製造使各LOC裝置之單位成本非常低廉。然而,控 制流體流經L0C裝置、添加試劑、控制反應條件等等需 要大型之外部管路及電子裝置。連接LOC裝置至這些外 部裝置大幅地限制LOC裝置之分子診斷用途於實驗室環 境中。外部儀器之費用及其操作複雜性排除以LOC爲基 之分子診斷作爲就地醫護環境中之實用選擇。 鑒於上述,需要一種用於就地醫護之基於LOC裝置 之分子診斷系統。 【發明內容】 本發明之不同樣態現在描述於下列數個段落。 GDI0 3 9.1本發明之樣態提供用以自生物樣本移除細 胞碎片之微流體裝置。該微流體裝置包含:具有大組份通 道、小組份通道以及複數個用以在該大組份通道和該小組 份通道間流體連通之孔的透析部,該大組份通道具有用以 接收該生物樣本的上游末端,該生物樣本爲帶有細胞碎片 與標靶分子之混合物的液體,該小組份通道具有用以連接 至具有用以與該標靶分子反應以形成探針-標靶複合體的 探針陣列的雜交部之下游末端;其中, 該孔沿著該大組份通道以間距在1微米和1 〇微米之 -19- 201211243 間間隔,且孔之各者之尺寸可以容許該標靶分子流進該小 組份通道,但將大於閎尺寸的細胞碎片保留在該大組份通 道中。 GDI03 9.2較佳地,該大組份通道和該小組份通道具 有共同之側壁,且該複數個孔係延伸穿過該共同側壁之一 系列的錐孔,各個錐孔具有至該大組份通道的小開口和至 該小組份通道的反向漸窄的大開口。Reduce reagent consumption and cost. On-wafer laboratory (LOC) devices are in the form of common microfluidic devices. The LOC device has an MST structure within the MST for integrating fluid processing onto a single support substrate (usually 矽). Manufactured by VLSI (Ultra Large Integrated Circuit) lithography technology for the semiconductor industry to make each LOC device The unit cost is very low. However, large amounts of external piping and electronics are required to control the flow of fluid through the LOC unit, to add reagents, to control reaction conditions, and the like. Connecting the LOC devices to these external devices greatly limits the molecular diagnostic use of the LOC devices in the laboratory environment. The cost of external instruments and their operational complexity excludes LOC-based molecular diagnostics as a practical option in a local healthcare setting. In view of the above, there is a need for a molecular diagnostic system based on LOC devices for in situ care. SUMMARY OF THE INVENTION The dissimilarities of the present invention are now described in the following paragraphs. GDI0 3 9.1 The aspect of the invention provides a microfluidic device for removing cell debris from a biological sample. The microfluidic device comprises: a dialysis portion having a large component channel, a group channel, and a plurality of holes for fluid communication between the large component channel and the component channel, the large component channel having a An upstream end of the biological sample, the biological sample being a liquid with a mixture of cell debris and a target molecule, the set of channels having a link for reacting with the target molecule to form a probe-target complex The downstream end of the hybridization portion of the probe array; wherein the pores are spaced along the large component channel at intervals of 1 micrometer and 1 〇 micrometer -19-201211243, and the size of each of the pores can allow the label The target molecule flows into the panel channel, but cell debris larger than the 闳 size is retained in the large component channel. GDI03 9.2 Preferably, the large component channel and the component channel have a common sidewall, and the plurality of holes extend through a series of tapered holes of the common sidewall, each tapered hole having a plurality of channels to the component channel The small opening and the large opening to the opposite narrowing of the channel of the group.

GDI03 9.3較佳地,該微流體裝置亦具有複數個該小 組份通道,其各與該大組份通道分享共同的側壁且經由一 系列的錐孔流體連通。 GDI039.4較佳地,各個該錐孔的小開口具有1微米 和8微米之間的高和寬尺寸。 GDI039.5較佳地,該微流體裝置亦具有廢料貯槽, 其中該大組份通道具有連接至該廢料貯槽的下游末端。GDI03 9.3 Preferably, the microfluidic device also has a plurality of the plurality of component channels each sharing a common sidewall with the plurality of component channels and in fluid communication via a series of tapered bores. GDI 039.4 Preferably, each of the small openings of the tapered bore has a height and width dimension between 1 and 8 microns. GDI 039.5 Preferably, the microfluidic device also has a waste sump, wherein the large component passage has a downstream end connected to the waste sump.

GDI039.6較佳地,該微流體裝置亦具有透析部上游 的溶胞部,其中該標靶分子爲標靶核酸序列且該溶胞部係 被組構以溶解在該生物樣本中的細胞並釋放其中的該標靶 核酸序列。 GDI039.7較佳地,該微流體裝置亦具有用以擴增該 標靶核酸序列的核酸擴增部。 G D10 3 9.8較佳地,該探針係組構以係配置以和該標 靶核酸序列雜交以形成探針-標靶雜交體’該探針-標靶雜 交體可對激發光反應出螢光。 G D10 3 9.9較佳地,該微流體裝置亦具有用以操作性 -20- 201211243 控制該核苷酸擴增區段的CMOS電路,該CMOS電路亦 具有用以自該探針-標靶雜交體感測螢光發射的光感測器 GDI039.1 0較佳地,該雜交部具有包含用於與該標靶 核酸序列雜交之探針的雜交腔室陣列。 GDI039.il較佳地,該光感測器係位於鄰近各雜交腔 室之各自的光二極體陣列。GDI039.6 preferably, the microfluidic device also has a lysis portion upstream of the dialysis portion, wherein the target molecule is a target nucleic acid sequence and the lysate portion is configured to dissolve cells in the biological sample and The target nucleic acid sequence therein is released. GDI039.7 Preferably, the microfluidic device also has a nucleic acid amplification unit for amplifying the target nucleic acid sequence. G D10 3 9.8 Preferably, the probe system is configured in a line to hybridize to the target nucleic acid sequence to form a probe-target hybrid. The probe-target hybrid can react to the excitation light. Light. G D10 3 9.9 Preferably, the microfluidic device also has a CMOS circuit for controlling the nucleotide amplification section for operability -20-201211243, the CMOS circuit also having a hybridization from the probe-target Photosensing Fluorescence Emission Photosensor GDI039.1 0 Preferably, the hybridization portion has an array of hybridization chambers comprising probes for hybridization to the target nucleic acid sequence. Preferably, the photosensor is located adjacent to the respective array of photodiodes of each of the hybridization chambers.

GDI03 9.1 2較佳地,該CMOS電路具有用於儲存關於 處理該流體的數據之數位記憶體,該數據包括探針細節和 各個探針在該雜交腔室陣列中的位置。 GDI03 9.1 3較佳地,該CMOS電路具有至少一個在該 雜交腔室陣列用於感測溫度之溫度感測器。 GDI03 9.1 4較佳地,該微流體裝置亦具有由該CMOS 電路使用自用於在雜交溫度下維持該探針和該標靶核酸序 列之該溫度感測器的回饋來控制的加熱器。 GDI03 9.1 5較佳地,該光二極體係離該相對應的雜交 腔室小於249微米。 GDI03 9.1 6較佳地,該探針爲螢光共振能量轉移( FRET)探針。 GDI039.1 7較佳地,該雜交腔室具有設置以暴露該 FRET探針於激發光下的光學窗。 GDI039.1 8較佳地,該FRET探針各具有螢光團和淬 熄劑,當該FRET探針已形成探針-標靶雜交體時,該螢 光團係設置以發射螢光訊號至該光二極體以回應該激發光 -21 - 201211243 ,該CMOS電路係設置以在該激發光消光後一預定延遲後 賦能該光二極體,該數位記憶體包括該預定之延遲。 GDI039.19較佳地,該CMOS電路具有用以電連結至 外部裝置的接合墊,且係組構用以自該光二極體轉換輸出 成爲代表和該標靶核酸序列雜交的該FRET探針的訊號, 並提供該訊號至該接合墊以傳送到該外部裝置。GDI03 9.1 2 Preferably, the CMOS circuit has digital memory for storing data relating to processing the fluid, the data including probe details and the location of each probe in the hybridization chamber array. GDI03 9.1 3 Preferably, the CMOS circuit has at least one temperature sensor for sensing temperature in the hybridization chamber array. GDI03 9.1 4 Preferably, the microfluidic device also has a heater controlled by the CMOS circuit using feedback from the temperature sensor for maintaining the probe and the target nucleic acid sequence at the hybridization temperature. GDI03 9.1 5 Preferably, the photodiode system is less than 249 microns from the corresponding hybridization chamber. GDI03 9.1 6 Preferably, the probe is a fluorescence resonance energy transfer (FRET) probe. GDI 039.1 7 Preferably, the hybridization chamber has an optical window disposed to expose the FRET probe under excitation light. GDI039.1 8 preferably, the FRET probes each have a fluorophore and a quenching agent, and when the FRET probe has formed a probe-target hybrid, the fluorophore is configured to emit a fluorescent signal to The photodiode is responsive to excitation light-21 - 201211243, the CMOS circuit being arranged to energize the photodiode after a predetermined delay after extinction of the excitation light, the digital memory comprising the predetermined delay. GDI039.19 Preferably, the CMOS circuit has a bonding pad for electrically connecting to an external device, and is configured to convert the output from the photodiode into a FRET probe representative of hybridization with the target nucleic acid sequence. a signal, and the signal is supplied to the bonding pad for transmission to the external device.

GDI03 9.20較佳地,該微流體裝置亦具有複數個貯槽 用以保留流體試劑以供加入至樣本。 該容易使用、可大量製造且便宜的微流體裝置接受生 物樣本、使用用以分離該不同大小的樣本組份之透析部且 分別處理基於其大小分離的樣本組份。GDI03 9.20 Preferably, the microfluidic device also has a plurality of reservoirs for retaining fluid reagents for addition to the sample. The easy-to-use, mass-produced, and inexpensive microfluidic device accepts a biological sample, uses a dialysis section for separating the different sized sample components, and separately processes sample components separated based on their size.

該透析部直接選擇包含該標靶之樣本的成分,移除經 處理混合物之不欲成分,其可能干擾標靶的後續檢測、抑 制後續分析步驟或可能阻塞該腔室或在微流體裝置和降解 操作內的連接。該透析部功能性亦自該樣本萃取額外資訊 並增加靈敏度、訊雜比和分析系統之動態範圍。 該裝置之不可缺的該透析部提供用於低系統組件計數 和簡單製備程序,成爲不昂貴之分析系統。只經由表面細 微加工製造之透析部亦提供用於該簡單且不昂貴製備程序 ,造成分析系統花費之進一步降低。 GDI040.1本發明之樣態提供用以自生物樣本移除細 胞碎片之微流體裝置。該微流體裝置包含:具有大組份通 道、小組份通道以及一系列用以在該大組份通道和該小組 份通道間流體連通的錐孔的透析部,該大組份通道具有用 -22- 201211243 以接收該生物樣本的上游末端,該生物樣本爲帶有細胞碎 片與標靶分子之混合物的液體,該小組份通道具有用以連 接至具有用以與該標靶分子反應以形成探針-標靶複合體 的探針陣列的雜交部之下游末端;其中,The dialysis section directly selects a component comprising the sample of the target, removing unwanted components of the treated mixture, which may interfere with subsequent detection of the target, inhibit subsequent analysis steps, or may block the chamber or be in a microfluidic device and degrade The connection within the operation. The dialysis functionality also extracts additional information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the analysis system. The dialysis section, which is indispensable for the device, provides an inexpensive analysis system for low system component counting and simple preparation procedures. The dialysis section, which is manufactured only by surface micromachining, is also provided for this simple and inexpensive preparation procedure, resulting in a further reduction in the cost of the analytical system. GDI040.1 The aspect of the invention provides a microfluidic device for removing cell debris from a biological sample. The microfluidic device comprises: a dialysis portion having a large component channel, a component channel, and a series of tapered holes for fluid communication between the large component channel and the component channel, the large component channel having a -22 - 201211243 to receive an upstream end of the biological sample, the biological sample being a liquid with a mixture of cell debris and a target molecule having a channel for attachment to react with the target molecule to form a probe a downstream end of the hybridization portion of the probe array of the target complex; wherein

該錐孔的各者以流動相反之方向漸窄,使得其各者具 有一個至該大組份通道的小開口和一個至該小組份通道的 大開口,該等小開口的尺寸可以容許該標靶分子流進該小 組份通道,但將大於閾尺寸的細胞碎片保留在該大組份通 道中。 GDI040.2較佳地,該錐孔沿著該大組份通道以間距 在1微米和1 0微米之間間隔。 GDI040.3較佳地,該微流體裝置亦具有複數個該小 組份通道,該小組份通道各與該大組份通道共用相同側壁 並經由該一系列錐孔流體連通》 GDI040.4較佳地,各錐孔之該小開口具有在1微米 和8微米之間的高和寬尺寸。 GDI040.5較佳地,該微流體裝置亦具有廢料貯槽, 其中該大組份通道具有連接至該廢料貯槽之下游末端。 GDI040.6較佳地,該微流體裝置亦具有在該透析部 上游之溶胞部,其中該標靶分子係標靶核酸序列且該溶胞 部係配置以溶胞該生物樣本中之細胞並釋放其中之標靶核 酸序列。 GDI040.7較佳地,該微流體裝置亦具有用以擴增該 標·靶核酸序列之核酸擴增部。 -23- 201211243 GDI040.8較佳地,該探針係建構以與該標靶核酸序 列雜交以形成探針-標靶雜交體,該探針-標靶雜交體可對 激發光反應出螢光。 GDI040.9較佳地,該微流體裝置亦具有用以操作性 控制該核酸擴增部之CMOS電路,該CMOS電路亦具有 用以自該探針-標靶雜交體感測螢光發射之光感測器》Each of the tapered holes is tapered in a direction opposite to the flow such that each has a small opening to the large component channel and a large opening to the group of channels, the small openings being sized to allow the target The target molecule flows into the panel channel, but cell debris larger than the threshold size is retained in the large component channel. Preferably, the GDI 040.2 is spaced along the large component channel by a spacing between 1 micrometer and 10 micrometers. Preferably, the microfluidic device also has a plurality of the plurality of channels, wherein the plurality of channels share the same side wall with the large component channel and are in fluid communication via the series of tapered holes. GDI040.4 preferably. The small opening of each of the tapered holes has a height and a width of between 1 micrometer and 8 micrometers. GDI 040.5 Preferably, the microfluidic device also has a waste sump, wherein the large component passage has a downstream end connected to the waste sump. GDI040.6 preferably, the microfluidic device also has a lysis portion upstream of the dialysis portion, wherein the target molecule is a target nucleic acid sequence and the lysis portion is configured to lyse cells in the biological sample and The target nucleic acid sequence therein is released. GDI040.7 Preferably, the microfluidic device also has a nucleic acid amplification unit for amplifying the target nucleic acid sequence. -23- 201211243 GDI040.8 Preferably, the probe is constructed to hybridize to the target nucleic acid sequence to form a probe-target hybrid that reflects fluorescence of the excitation light . GDI040.9 preferably, the microfluidic device also has a CMOS circuit for operatively controlling the nucleic acid amplification portion, the CMOS circuit also having light for sensing fluorescence emission from the probe-target hybrid Sensor

GDI040.10較佳地,該雜交部具有包含用於與該標靶 核酸序列雜交之探針的雜交腔室陣列。 GDI040.il較佳地,該光感測器係位於鄰近各雜交腔 室之各自的光二極體陣列。 GD1040.1 2較佳地,該CMOS電路具有用於儲存關於 處理該流體的數據之數位記憶體,該數據包括探針細節和 各個探針在該雜交腔室陣列中的位置。 GDI040.1 3較佳地,該CMOS電路具有至少一個在該 雜交腔室陣列用於感測溫度之溫度感測器。Preferably, the hybridization portion has a hybridization chamber array comprising probes for hybridization to the target nucleic acid sequence. Preferably, the photosensor is located adjacent to the respective array of photodiodes of each of the hybridization chambers. GD 1040.1 2 Preferably, the CMOS circuit has a digital memory for storing data relating to processing the fluid, the data including probe details and the location of each probe in the array of hybridization chambers. GDI040.1 3 Preferably, the CMOS circuit has at least one temperature sensor for sensing temperature in the hybridization chamber array.

GDI040.1 4較佳地,該微流體裝置亦具有由該CMOS 電路使用自用於在雜交溫度下維持該探針和該標靶核酸序 列之該溫度感測器的回饋來控制的加熱器。 GDI040.1 5較佳地,該光二極體係離該相對應的雜交 腔室小於249微米。 GD 10 40.1 6較佳地,該探針爲螢光共振能量轉移( FRET )探針。 GDI040.1 7較佳地,該雜交腔室具有設置以暴露該 FRET探針於激發光下的光學窗。 -24- 201211243 GDI040.1 8較佳地,該FRET探針各具有螢光團和淬 熄劑,當該FRET探針已形成探針-標靶雜交體時,該螢 光團係設置以發射螢光訊號至該光二極體以回應該激發光 ’該CMOS電路係設置以在該激發光消光後一預定延遲後 賦能該光二極體,該數位記億體包括該預定之延遲。GDI040.1 4 Preferably, the microfluidic device also has a heater controlled by the CMOS circuit using feedback from the temperature sensor for maintaining the probe and the target nucleic acid sequence at the hybridization temperature. GDI040.1 5 Preferably, the photodiode system is less than 249 microns from the corresponding hybridization chamber. GD 10 40.1 6 Preferably, the probe is a fluorescence resonance energy transfer (FRET) probe. GDI040.1 7 Preferably, the hybridization chamber has an optical window disposed to expose the FRET probe under excitation light. -24- 201211243 GDI040.1 8 Preferably, the FRET probes each have a fluorophore and a quenching agent, and when the FRET probe has formed a probe-target hybrid, the fluorophore is set to emit A fluorescent signal is applied to the photodiode to illuminate the light. The CMOS circuit is configured to energize the photodiode after a predetermined delay after extinction of the excitation light, the digital inclusion comprising the predetermined delay.

GDI040.1 9較佳地,該CMOS電路具有用以電連結至 外部裝置的接合墊,且係組構用以自該光二極體轉換輸出 成爲代表和該標靶核酸序列雜交的該FRET探針的訊號, 並提供該訊號至該接合墊以傳送到該外部裝置。 GDI040.20較佳地,該微流體裝置亦具有複數個貯槽 用以保留流體試劑以供加入至樣本。 該容易使用、可大量製造且便宜的微流體裝置接受生 物樣本、使用用以分離該不同大小的樣本組份之透析部且 分別處理基於其大小分離的樣本組份。 該透析部直接選擇包含該標靶之樣本的成分,移除經 處理混合物之不欲成分,其可能干擾標靶的後續檢測、抑 制後續分析步驟或可能阻塞該腔室或在微流體裝置和降解 操作內的連接。該透析部功能性亦自該樣本萃取額外資訊 並增加靈敏度、訊雜比和分析系統之動態範圍。透析部包 含以梯形扁平柱爲基礎的錐孔;此樣態之設計針對給定之 光蝕刻空間寬度降低許多應用所需之錐孔的大小。 該裝置之不可缺的該透析部提供用於低系統組件計數 和簡單製備程序,成爲不昂貴之分析系統。只經由表面細 微加工製造之透析部亦提供用於該簡單且不昂貴製備程序 -25- 201211243 ,造成分析系統花費之進一步降低。 【實施方式】 較佳具體實施例之詳細說明 總論GDI040.1 9 preferably, the CMOS circuit has a bonding pad for electrically connecting to an external device, and is configured to convert the output from the photodiode into the FRET probe representative of hybridization with the target nucleic acid sequence. The signal is provided to the bonding pad for transmission to the external device. GDI 040.20 Preferably, the microfluidic device also has a plurality of reservoirs for retaining fluid reagents for addition to the sample. The easy-to-use, mass-produced, and inexpensive microfluidic device accepts a biological sample, uses a dialysis section for separating the different sized sample components, and separately processes sample components separated based on their size. The dialysis section directly selects a component comprising the sample of the target, removing unwanted components of the treated mixture, which may interfere with subsequent detection of the target, inhibit subsequent analysis steps, or may block the chamber or be in a microfluidic device and degrade The connection within the operation. The dialysis functionality also extracts additional information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the analysis system. The dialysis section contains a tapered bore based on a trapezoidal flat column; this design is designed to reduce the size of the tapered bore required for many applications for a given photoetching space width. The dialysis section, which is indispensable for the device, provides an inexpensive analysis system for low system component counting and simple preparation procedures. The dialysis section, which is manufactured only by surface micromachining, is also provided for this simple and inexpensive preparation procedure -25-201211243, resulting in a further reduction in the cost of the analytical system. [Embodiment] Detailed Description of Preferred Embodiments

此總論指明包含本發明具體實施例之分子診斷系統的 主要組件。該系統構造及操作之綜合細節於以下說明書中 說明。 參照圖1, 2,3,108和109,該系統具有下列最重要 的組件:This general specification identifies the major components of a molecular diagnostic system incorporating a particular embodiment of the invention. The details of the construction and operation of this system are described in the following description. Referring to Figures 1, 2, 3, 108 and 109, the system has the following most important components:

試驗模組10和11爲典型USB隨身碟的尺寸且非常 便宜可以製得。試驗模組1 〇和1 1各包含微流體裝置,典 型地呈晶片上實驗室(LOC )裝置30的形式,且預載有 試劑以及典型地1 000個以上之用於該分子診斷分析的探 針(見圖1和108 )。當在圖108中之試驗模組1 1使用 以電致化學發光爲基礎的檢測技術同時,槪示於圖1之試 驗模組1 〇使用以螢光爲基礎的檢測技術以辨識標靶分子 。該LOC裝置30具有用於螢光或電致化學發光檢測(詳 述於下)之整合光感測器44。試驗模組1 0和1 1兩者皆 使用用於電源、數據和控制之標準微型USB接頭14,均 具有印刷電路板(PCB ) 57,且均具有外部供電之電容器 3 2和電感器1 5。該試驗模組1 〇和1 1兩者均爲僅供大量 製造之單一用途且以可供使用之無菌包裝分銷。 外殼13具有用於接收生物樣本之大容器24及可移除 -26- 201211243 之無菌密封帶22,其較佳具低黏性黏著劑,以於使用前 覆蓋大容器。具有膜防護件410之膜密封件408形成部份 外殼1 3以減少試驗模組中之抗濕性,而由小氣壓變動提 供釋壓作用。膜防護件4 1 0保護膜密封件408免於損傷。 經由微型- USB埠16,試驗模組讀取器12供電給試 驗模組10或11。試驗模組讀取器12可爲許多不同形式 ’及其選擇係描述於後。圖1、3及1〇8中所示之讀取器 12版本爲智慧型電話之具體實施例。讀取器12之方塊圖 係示於圖3中。處理器42執行來自程式儲存器43的應用 軟體。處理器42亦與顯示蜜幕18及使用者界面(UI)觸 控螢幕17及按鈕19、蜂巢式無線電21、無線網路連接 23’以及衛星導航系統25界接。蜂巢式無線電21及無線 網路連接23係用於通訊。衛星導航系統25係用於以位置 資料更新流行病學資料庫。替代性地,能夠以觸控螢幕 17或按鈕19手動輸入位置資料。資料儲存器27保有遺 φ 傳及診斷資訊、試驗結果、患者資訊、用於識別各探針之 分析及探針數據及其陣列位置。資料儲存器27及程式儲 存器43可共享於共同記憶體設備。試驗模組.讀取器12中 安裝的應用軟體提供結果分析與另外的試驗及診斷資訊。 爲執行診斷試驗,將試驗模組1 〇 (或試驗模組i i ) 插入至試驗模組讀取器12上的微型_USB淖16。將無菌 世封帶22翻起並將生物樣本(呈液體形式)載入至樣本 大谷器24中。按下開始按鈕2〇以藉由應用軟體來起始試 驗。樣本流進LOC裝置30且以機載分析(〇n_b〇ard -27- 201211243Test modules 10 and 11 are typical USB flash drives and are very inexpensive to manufacture. The test modules 1 and 11 each comprise a microfluidic device, typically in the form of a laboratory on-wafer (LOC) device 30, preloaded with reagents and typically more than 1 000 probes for diagnostic analysis of the molecule. Needle (see Figures 1 and 108). While the test module 1 1 in Fig. 108 uses an electrochemiluminescence-based detection technique, the test module 1 shown in Fig. 1 uses a fluorescence-based detection technique to identify the target molecules. The LOC device 30 has an integrated light sensor 44 for fluorescence or electrochemiluminescence detection (described in detail below). Both test modules 10 and 1 1 use standard micro USB connectors 14 for power, data, and control, each having a printed circuit board (PCB) 57, and each having an externally powered capacitor 3 2 and an inductor 15 . Both test modules 1 and 11 are for single use in large quantities and are distributed in sterile packaging for use. The outer casing 13 has a large container 24 for receiving biological samples and a sterile sealing tape 22 of removable -26-201211243, which preferably has a low viscosity adhesive to cover the large container prior to use. The membrane seal 408 having the membrane guard 410 forms part of the outer casing 13 to reduce the moisture resistance in the test module, while the pressure drop is provided by the small pressure fluctuation. The membrane guard 4 10 protects the membrane seal 408 from damage. The test module reader 12 supplies power to the test module 10 or 11 via the micro-USB port 16. The test module reader 12 can be described in a number of different forms' and its selection. The reader 12 version shown in Figures 1, 3 and 1 is a specific embodiment of a smart phone. A block diagram of the reader 12 is shown in FIG. The processor 42 executes the application software from the program storage 43. The processor 42 is also interfaced with the display honey screen 18 and the user interface (UI) touch screen 17 and buttons 19, the cellular radio 21, the wireless network connection 23', and the satellite navigation system 25. The cellular radio 21 and the wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location information. Alternatively, the location data can be manually entered using the touch screen 17 or button 19. The data store 27 maintains φ transmission and diagnostic information, test results, patient information, analysis and probe data for identifying each probe, and its array position. The data store 27 and the program store 43 can be shared by a common memory device. Test Module. The application software installed in the reader 12 provides results analysis and additional test and diagnostic information. To perform a diagnostic test, the test module 1 〇 (or test module i i ) is inserted into the micro_USB port 16 on the test module reader 12. The sterile world seal 22 is turned up and the biological sample (in liquid form) is loaded into the sample trough 24 . Press the start button 2〇 to start the test by applying the software. The sample flows into the LOC device 30 and is analyzed onboard (〇n_b〇ard -27- 201211243

assay )萃取、培養、擴增及以預合成的雜交-反應性寡核 苷酸探針與樣本核酸(標靶)雜交。於試驗模組1 0的情 況中(其使用基於螢光的檢測),探針係經螢光標記且置 於殼13中的LED 26提供必要激發光以誘發自經雜交探 針的螢光發射(見圖1及2)。於試驗模組U中(其使 用基於電致化學發光(ECL)的檢測),LOC裝置30載 有ECL探針(如上述)且LED 26對於產生光致發射螢並 非必要。反之,電極860及870提供激發電流(見圖109 )。使用與各LOC裝置上之CMOS電路整合的光感測器 44來檢測發射(螢光或光致發光)。擴增所檢測的訊號 並將其轉換成藉由試驗模組讀取器1 2分析之數位輸出。 讀取器接著顯示結果。 可本地儲存數據及/或將數據上傳至含有患者記錄之 網路伺服器。自試驗模組讀取器1 2移除試驗模組1 0或 11並將彼等適當處理。Assays are extracted, cultured, amplified and hybridized with a pre-synthesized hybrid-reactive oligonucleotide probe and a sample nucleic acid (target). In the case of the test module 10 (which uses fluorescence-based detection), the probe is fluorescently labeled and the LED 26 placed in the housing 13 provides the necessary excitation light to induce fluorescence emission from the hybridized probe. (See Figures 1 and 2). In test module U (which uses electrochemiluminescence (ECL) based detection), LOC device 30 carries an ECL probe (as described above) and LED 26 is not necessary to generate photoluminescent fire. Conversely, electrodes 860 and 870 provide an excitation current (see Figure 109). The emission (fluorescence or photoluminescence) is detected using a photo sensor 44 integrated with a CMOS circuit on each LOC device. The detected signal is amplified and converted to a digital output analyzed by the test module reader 12. The reader then displays the result. Data can be stored locally and/or uploaded to a web server containing patient records. The test module 10 or 11 is removed from the test module reader 1 2 and processed as appropriate.

圖1、3及108顯示組態成行動電話/智慧型電話28 之試驗模組讀取器1 2。於其他形式中,試驗模組讀取器 爲醫院、私人診所或實驗室中使用之膝上型電腦/筆記型 電腦101、專用讀取器103、電子書讀取器107、平板電 腦109或桌上型電腦1〇5(見圖110)。讀取器可與一些 額外的應用程式界接,諸如病患記錄、帳務、線上資料庫 及多使用者環境。其亦可與一些本地或遠端周邊設備界接 ,諸如印表機及病患智慧卡。 參照圖1 1 1,透過讀取器1 2及網路1 25,由試驗模組 -28- 2012112431, 3 and 108 show a test module reader 12 configured as a mobile/smartphone 28. In other forms, the test module reader is a laptop/notebook 101, a dedicated reader 103, an e-book reader 107, a tablet 109 or a table used in a hospital, private clinic or laboratory. The upper computer is 1〇5 (see Figure 110). The reader can be interfaced with additional applications such as patient records, accounting, online databases and multi-user environments. It can also interface with some local or remote peripheral devices, such as printers and patient smart cards. Referring to Figure 1 1 1, through the reader 1 2 and the network 1 25, by the test module -28- 201211243

10產生之資料可用來更新用於流行病學資料111之主機 系統所載有之流行病學資料庫、用於遺傳資料11 3之主機 系統所載有之遺傳資料庫、用於電子化健康記錄(EHR ) 115之主機系統所載有之電子化健康記錄、用於電子化醫 療記錄(EMR) 121之主機系統所載有之電子化醫療記錄 ,以及用於個人健康記錄(PHR) 123之主機系統所載有 之個人健康記錄。相反地,經由網路125及讀取器12, 用於流行病學資料111之主機系統所載有之流行病學資料 、用於遺傳資料113之主機系統所載有之遺傳資料、用於 電子化健康記錄(EHR ) 1 15之主機系統所載有之電子化 健康記錄、用於電子化醫療記錄(EMR) 121之主機系統 所載有之電子化醫療記錄,以及用於個人健康記錄(PHR )123之主機系統所載有之個人健康記錄可用以更新試驗 模組10 LOC 30中之數位記憶體。 再次參照圖1、2、108及109,於行動電話組態中’ 讀取器12使用電池電力。行動電話讀取器含有所有預載 的試驗及診斷資訊。經由一些無線或接觸界面亦可載入或 更新資料以致能與週邊裝置、電腦或線上伺服器連通。設 置微型-USB埠16以連接電腦或主要電力供應以再充電電 池。 圖7〇顯示試驗模組1 〇之具體實施例,其係用於僅需 要得知特定標靶存在與否之試驗,諸如試驗個人是否受到 例如A型流行性感冒病毒Η 1 N 1感染。僅作爲內建之僅供 USB電力/指示器之模組47爲適當的。不需要其他讀取器 • 29 - 201211243 或應用軟體。僅供USB電力/指示器之模組47上之指示 器45示出正或負結果。此組態非常適於大量篩檢。 供應給系統的額外物件可包括含有供預處理特定樣本 之試劑的試驗管,及包含供樣本收集之壓舌板及刺血針。 爲便利之故,圖7〇顯示之具體實施例的試驗模組包括有 簧壓式可伸縮刺血針390及刺血針釋出按鈕392。可於遠 端地區使用衛星電話。10 The data generated can be used to update the epidemiological database contained in the host system for epidemiological data 111, the genetic database contained in the host system for genetic data, and for electronic health records. (EHR) 115 host computer system with electronic health records, electronic medical records contained in the host system for electronic medical record (EMR) 121, and host for personal health record (PHR) 123 Personal health records contained in the system. Conversely, via the network 125 and the reader 12, the epidemiological data contained in the host system for the epidemiological data 111, the genetic data contained in the host system for the genetic material 113, and the electronic An electronic health record contained in the host system of the Health Record (EHR) 1 15 , an electronic medical record contained in the host system for the Electronic Medical Record (EMR) 121, and a personal health record (PHR) The personal health record contained in the host system of 123 can be used to update the digital memory in the test module 10 LOC 30. Referring again to Figures 1, 2, 108 and 109, the reader 12 uses battery power in a mobile telephone configuration. The mobile phone reader contains all pre-loaded test and diagnostic information. Data can also be loaded or updated via some wireless or contact interface to enable communication with peripheral devices, computers or online servers. Set the mini-USB port 16 to connect to the computer or main power supply to recharge the battery. Figure 7A shows a specific embodiment of the test module 1 for testing only the presence or absence of a particular target, such as whether the test individual is infected with, for example, influenza A virus Η 1 N 1 . It is only suitable as a built-in module 47 for USB power/indicator only. No other readers are required • 29 - 201211243 or application software. The indicator 45 on the module 47 of the USB power/indicator only shows a positive or negative result. This configuration is ideal for large screenings. Additional items supplied to the system may include test tubes containing reagents for pre-treating a particular sample, and a tongue depressor and lancet containing sample collection. For convenience, the test module of the embodiment shown in Fig. 7A includes a spring-loaded retractable lancet 390 and a lancet release button 392. Satellite phones can be used in remote areas.

試驗模組電子裝置Test module electronic device

圖2和1 09各自爲試驗模組1 〇和1 1中之電子組件的 方塊圖。整合於該晶片上實驗室裝置30之該CMOS電路 具有USB裝置驅動器36、控制器34、USB相容LED驅 動器29、計時器33、電源調節器31、RAM38和程式及資 料快閃記憶體4〇。這些提供用於整個包括該光感測器44 、該溫度感測器1 70 '該液體感測器1 74和各種加熱器 152、154、182、234之試驗模組1〇或η以及關聯的驅 動器3 7和3 9以及暫存器3 5和4 1的控制和記憶體。僅該 LED26 (在試驗模組10的例子中)、外部電源電容器32 和該微型USB插頭14在晶片上實驗室裝置30的外部。 該晶片上實驗室裝置30包括用於連結至這些外部組份的 黏合墊。該RAM38及該程式和資料快閃記憶體40具有用 於1 000個探針之應用軟體和診斷與檢測資訊(快閃/保全 儲存,例如經由加密)。在配置以ECL探測之試驗模組 11的例子中’無LED26(見圖1〇8和1〇9)。資料由該晶 -30- 201211243 片上實驗室裝置30加密以保全儲存及與外部裝置通訊。 該晶片上實驗室裝置30以電致化學發光探針和該雜交腔 室負載,各具有ECL激發電極對860和870。 試驗模組1 〇的許多類型以一些檢測形式製造,準備 好可現成使用。該等檢測形式之不同在於試劑和探針之機 載分析。Figures 2 and 1 09 are each a block diagram of the electronic components of test modules 1 and 11. The CMOS circuit integrated in the on-wafer laboratory device 30 has a USB device driver 36, a controller 34, a USB compatible LED driver 29, a timer 33, a power conditioner 31, a RAM 38, and a program and data flash memory. . These are provided for the entire test module 1 or η including the photo sensor 44, the temperature sensor 1 74 and the various heaters 152, 154, 182, 234 and associated Drivers 3 7 and 3 9 and the control and memory of registers 35 and 41. Only the LED 26 (in the example of the test module 10), the external power supply capacitor 32, and the micro USB plug 14 are external to the lab device 30 on the wafer. The on-wafer laboratory device 30 includes an adhesive pad for joining to the outer components. The RAM 38 and the program and data flash memory 40 have application software and diagnostic and detection information (flash/security storage, such as via encryption) for 1 000 probes. In the example of the test module 11 configured with ECL detection, there is no LED 26 (see Figures 1〇8 and 1〇9). The data is encrypted by the Crystal -30-201211243 on-chip laboratory unit 30 to preserve storage and communicate with external devices. The on-wafer laboratory device 30 is loaded with electrochemiluminescent probes and the hybridization chamber, each having an ECL excitation electrode pair 860 and 870. Many types of test modules 1 are manufactured in some form of inspection and are ready for ready use. These test formats differ in the onboard analysis of reagents and probes.

快速以此系統鑑別的感染性疾病的一些例子包括: •流行性感冒-流行性感冒病毒A、B、C、傳染性鮭 魚貧血病毒、托高土病毒 •肺炎-呼吸道融合病毒(RSV )、腺病毒、間質肺 炎病毒、肺炎雙球菌、金黃色葡萄球菌 •結核病-結核分枝桿菌、牛型分枝桿菌、非洲分枝 桿菌、卡氏分枝桿菌和田鼠分枝桿菌 •惡性瘡原蟲、弓漿蟲和其他寄生性原生蟲病 •傷寒-傷寒桿菌 •伊波拉病毒 •人類免疫不全病毒(HIV) •登革熱-黃病毒 •肝炎(A到E) •醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸球 菌以及抗藥性金黃色葡萄球菌 •單純泡疹病毒(HSV) •巨大細胞病毒(CMV) •愛彼斯坦-巴爾病毒(EBV) -31 - 201211243 •腦炎-日本腦炎病毒、章地埔拉病毒 •百日咳-百日咳菌 •麻疼·副黏液病毒 •腦膜炎-肺炎鏈球菌和腦膜炎雙球菌 •炭疽病-炭疽桿菌 以此系統鑑別的遺傳性疾病的一些例子包括: •囊性纖維變性 •血友病Some examples of infectious diseases that are quickly identified by this system include: • Influenza-influenza virus A, B, C, infectious salmon anemia virus, tocovirus • pneumonia-respiratory fusion virus (RSV), gland Virus, interstitial pneumonia virus, pneumococci, Staphylococcus aureus • tuberculosis - Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africana, Mycobacterium vaccae and Mycobacterium vaccae • Malignant sore, Toxoplasma and other parasitic protozoa • Typhoid- typhoid bacillus • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever - flavivirus • Hepatitis (A to E) • Iatrogenic infections – such as refractory spores Bacteria, vancomycin-resistant enterococci, and drug-resistant Staphylococcus aureus • Herpes simplex virus (HSV) • Giant cell virus (CMV) • Epstein-Barr virus (EBV) -31 - 201211243 • Encephalitis - Japanese brain Inflammatory virus, Zhangdipula virus • Pertussis-pertussis • Hemp pain • Paramyxovirus • Meningitis – Streptococcus pneumoniae and meningitis • Anthracnose – Anthrax Some examples of sexually transmitted diseases include: • Cystic fibrosis • Hemophilia

•鐮狀細胞貧血病 •黑朦性白癡病 •血色素沉著症 •腦動脈病 •克隆氏病 •多囊性腎臟病 •先天性心臓病 •蕾特氏症 由該診斷系統鑑別之癌症的少數選胃: •卵巢癌 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 •透克氏症(Turcot syndrome) 上述清單並非詳盡無疑的’且該診斷系統可被配置以 使用核酸和蛋白質分析偵測許多不同g &及^ $爿犬。 -32-• sickle cell anemia • black scrotic idiotism • hemochromatosis • cerebral arterial disease • Crohn's disease • polycystic kidney disease • congenital heart disease • a few of the cancers identified by the diagnostic system Stomach: • Ovarian cancer • Colon cancer • Multiple endocrine neoplasms • Retinoblastoma • Turcot syndrome The above list is not exhaustive' and the diagnostic system can be configured to detect many using nucleic acid and protein analysis Different g & and ^ $ 爿 dogs. -32-

201211243 系統組份的詳細結構 LOC裝置 LOC裝置30爲診斷系統之中心。其使用微流體 快速實施以核酸爲基礎之分子診斷分析的四個重要步 即樣本製備、核酸萃取、核酸擴增和檢測。LOC裝置 有替代的用途,並將詳述於下。如上述討論,試驗 1 〇及11可採取許多不同組態以檢測不同的標靶。同 ’ LOC裝置30具有很多針對關注的標靶打造之不同 實施例。LOC裝置30之一種形式爲用於全血樣本之 體中的標靶核酸序列之螢光檢測之LOC裝置301。爲 述的目的,LOC裝置301的結構和操作係參考圖4 : 及27至57而詳細描述。 圖4爲LOC裝置301結構之圖式槪要。爲了便 ’顯示於圖4的處理階段係以相應於實施處理階段之 裝置301的功能部之元件符號表示。與各個以核酸爲 的分子診斷分析的主要步驟有關的處理階段亦表示: 輸入及製備288、萃取290、培養291、擴增292以 測294。LOC裝置301之各種貯槽、腔室、閥以及其 件將於以下更仔細的描述》 圖5爲LOC裝置 301之透視圖。其使用高 CMOS和MST (微系統技術)製造技術而製造。LOC 3 〇 1之層狀構造以圖1 2之槪要部分剖面圖(非按比 闡述》LOC裝置301具有支持COMS + MST晶片48之 平台 驟, 亦具 模組 樣地 具體 病原 了闡 巨26 利性 LOC 基礎 樣本 及檢 他組 容積 裝置 例) 矽基 -33- 201211243201211243 Detailed structure of system components LOC device LOC device 30 is the center of the diagnostic system. It uses microfluidics to rapidly perform four important steps in nucleic acid-based molecular diagnostic analysis: sample preparation, nucleic acid extraction, nucleic acid amplification, and detection. The LOC device has an alternative use and will be detailed below. As discussed above, Trials 1 and 11 can take many different configurations to detect different targets. The same ' LOC device 30 has many different embodiments for targeting the target of interest. One form of LOC device 30 is a LOC device 301 for fluorescence detection of a target nucleic acid sequence in a body of a whole blood sample. For the purposes of this description, the structure and operation of LOC device 301 are described in detail with reference to Figures 4: and 27 through 57. 4 is a schematic diagram showing the structure of the LOC device 301. The processing stage shown in Fig. 4 is represented by the component symbols corresponding to the functional portions of the apparatus 301 that implements the processing stage. The stages of processing associated with each of the major steps in the diagnostic analysis of nucleic acids are also indicated: Input and Preparation 288, Extraction 290, Culture 291, and Expansion 292 to determine 294. The various reservoirs, chambers, valves, and components of the LOC device 301 will be described more closely below. Figure 5 is a perspective view of the LOC device 301. It is manufactured using high CMOS and MST (microsystem technology) manufacturing techniques. The layered structure of LOC 3 〇1 is a partial cross-sectional view of Figure 12 (not to scale) LOC device 301 has a platform that supports COMS + MST wafer 48, and also has a specific pathogen for the module. Advantages of LOC basic sample and inspection group volume device) 矽基-33- 201211243

板84,包含CMOS電路86和MST層87,以蓋46覆蓋 MST層87。爲了本專利說明書目的,術語“ MST層”關 於以不同試劑處理樣本之結構和層之集合。因此,這些結 構和組件經組態以定義具有特性尺寸的流動路徑,其支持 具處理期間之物理性質與樣本之物理性質相似之毛細作用 驅動之液體流。據此,MST層和組件通常使用面型微加 工技術和/或體型微加工技術製造》然而,其他製造方法 亦可製造針對毛細作用驅動之液體流及加工非常小容積而 尺寸化的結構和組件。描述於本說明書之特定具體實施例 顯示MST層爲支持在CMOS電路86上之結構和主動組件 ,但排除蓋46之特徵。然而,熟此技藝者將理解MST層 不需要下方的CMOS或甚至不需要上覆的蓋來使其處理該 樣本。The board 84, which includes a CMOS circuit 86 and an MST layer 87, covers the MST layer 87 with a cover 46. For the purposes of this patent specification, the term "MST layer" relates to a collection of structures and layers of a sample treated with different reagents. Thus, these structures and components are configured to define a flow path having a characteristic size that supports a capillary action driven liquid flow having physical properties similar to the physical properties of the sample during processing. Accordingly, MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other fabrication methods can also produce structures and assemblies that are sized for capillary action and that are processed to very small volumes. . The particular embodiment described in this specification shows that the MST layer is a structural and active component supported on CMOS circuitry 86, but excluding the features of cover 46. However, those skilled in the art will appreciate that the MST layer does not require the underlying CMOS or even the overlying cover to handle the sample.

顯示於下列圖式的LOC裝置之整體尺寸爲1 760微米 X5 824微米。當然,爲了不同應用而製造的LOC裝置可具 有不同的尺寸。 圖6顯示與蓋特徵疊置之MST層87的特徵。顯示於 圖6中之插圖AA至AD、AG和AH個別放大於圖13、14 、35、56、55和63中,且對LOC裝置301內之各個結構 的充分了解詳細描述於下。當圖11獨立顯示CMOS+MST 裝置48結構時,圖7至10獨立顯示蓋46的特徵。 層狀構造 圖12和22爲槪略顯示該CMOS + MST裝置48之層狀 -34-The overall dimensions of the LOC device shown in the following figures are 1 760 microns X 5 824 microns. Of course, LOC devices made for different applications can have different sizes. Figure 6 shows the features of the MST layer 87 overlaid with the cover features. The illustrations AA to AD, AG and AH shown in Fig. 6 are individually enlarged in Figs. 13, 14, 35, 56, 55 and 63, and a sufficient understanding of the respective structures in the LOC device 301 will be described in detail below. When FIG. 11 independently shows the structure of the CMOS+MST device 48, FIGS. 7 through 10 independently show the features of the cover 46. Layered structure Figures 12 and 22 show the layered shape of the CMOS + MST device 48 -34-

201211243 構造、該蓋46以及該兩者之間的流體交互作用之略 該些圖表爲了圖示說明目的所以沒有依照比例繪製 12爲通過該樣本入口 68之槪要剖面圖且圖22爲通 貯槽 54之槪要剖面圖。如最佳顯示於圖 12 CMOS + MST裝置48具有矽基板84,其支撐著操作上 MST層87內之有效元件之該CMOS電路86。鈍化Θ 密封且保護該CMOS層86免於流體流經該MST層87 流體流經於該蓋層46及MST通道層100中之各 該蓋通道94及該MST通道90兩者(見例如圖7和 。當在該較小的MST通道90實施生化處理同時,細 送發生在於該蓋46中製造之該較大的通道94中。細 送通道按尺寸製作以便能運送該樣本中之細胞至該 通道90中之預定點。運送尺寸大於20微米的細胞( ,某些白血球)需要通道尺寸大於20微米,且因此 該流的截面積大於40 0平方微米。特別在不需要運送 的LOC中的位置之MST通道可以顯著地小》 將理解的是蓋通道94和MST通道90爲通用的 ,且特別的MS T通道90亦可根據其特定的功能而指 如)經加熱的微通道或透析MST通道。MST通道90 蝕刻通過在該鈍化層8 8上沉積且以光阻劑圖案化之 通道層1〇〇形成。該MST通道90由頂部層66環繞 頂部層形成該CMOS + MST裝置48之頂部(相對於顯 圖中之方位)。 儘管有時作爲獨立的層顯示,該蓋通道層80和 圖。 。圖 過該 ,該 述該 I 88 〇 自地 16) 胞運 胞運 MST 例如 橫跨 細胞. 指稱 (例 藉由 MST ,該 示於 該貯 -35- 201211243 存層78係自單一材料片形成。當然,該材料片亦可爲非 單一性。材料片係自兩邊蝕刻以形成蓋通道層與貯存 層78 ’在蓋通道層8〇中蝕刻該蓋通道94,在貯存層78 中触刻貯槽54、56、58、60和62。另外,該貯槽和該蓋 通道由微成形加工方法形成。蝕刻和微成形加工技術兩者 皆用以製造具有橫跨該流體的截面積與2〇,〇〇〇平方微米 一樣大及與8平方微米—樣小的通道。201211243 Construction, the cover 46, and the fluid interaction between the two are omitted. For the purposes of illustration, the drawings are not drawn to scale for a cross-sectional view through the sample inlet 68 and FIG. 22 is a sump 54. The outline is to be a sectional view. As best shown in FIG. 12, CMOS + MST device 48 has a germanium substrate 84 that supports the CMOS circuit 86 that operates the active components in the MST layer 87. Passivation 密封 seals and protects the CMOS layer 86 from fluid flow through the MST layer 87 fluid through both the cap layer 94 and the MST channel 90 in the cap layer 46 and the MST channel layer 100 (see, eg, Figure 7). While performing the biochemical treatment on the smaller MST channel 90, the fine delivery occurs in the larger channel 94 made in the cover 46. The fine delivery channel is sized to carry the cells in the sample to the A predetermined point in channel 90. Cells carrying a size greater than 20 microns (some white blood cells) require a channel size greater than 20 microns, and thus the cross-sectional area of the stream is greater than 40 0 square microns, particularly in LOCs that do not require shipping. The MST channel can be significantly smaller. It will be understood that the cover channel 94 and the MST channel 90 are versatile, and the particular MS T channel 90 can also be referred to as a heated microchannel or dialysis MST channel depending on its particular function. . The MST channel 90 etch is formed by a channel layer 1 沉积 deposited on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is formed by a top layer 66 around the top layer to form the top of the CMOS + MST device 48 (relative to the orientation in the display). Although sometimes shown as a separate layer, the cover channel layer 80 and the figure. . </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Of course, the sheet of material may also be non-unitary. The sheet of material is etched from both sides to form a lid channel layer and a reservoir layer 78'. The lid channel 94 is etched in the lid channel layer 8 and the reservoir 54 is engraved in the reservoir layer 78. 56, 58, 60, and 62. Additionally, the sump and the cover channel are formed by a micro-shaping process. Both etching and micro-shaping techniques are used to fabricate a cross-sectional area across the fluid. It is as large as a square micron and has a small channel of 8 square microns.

於該LOC裝置中不同位置有針對橫跨該流體之通道 的截面積之一系列適當的選擇。其中大量的樣本或具有大 組份的樣本係容納於該通道,高於20,000平方微米之截 面積(例如,在100微米厚之層中的200微米寬的通道) 是適合的。其中少量的液體或無大細胞存在的混合物係容 納於該通道’較佳係橫跨該流體之非常小的截面積。 下密封部64環繞該蓋通道94且該上密封層82環繞 該貯槽 54' 56、58、60 和 62。There are a series of suitable choices for one of the cross-sectional areas of the channel across the fluid at different locations in the LOC device. A large number of samples or samples having a large component are accommodated in the channel, and a cross-sectional area of more than 20,000 square micrometers (e.g., a 200 micrometer wide channel in a layer of 100 micrometers thick) is suitable. A small amount of liquid or a mixture free of large cells is accommodated in the channel' preferably a very small cross-sectional area across the fluid. A lower seal 64 surrounds the cover channel 94 and the upper seal layer 82 surrounds the sump 54' 56, 58, 60 and 62.

該五個貯槽54、56、58、60和62係預裝載分析特定 之試劑。此描述的具體實施例中,該貯槽預裝載下列試劑 ,但可簡易的以其他試劑取代: •貯槽54:抗凝血劑,其具有包括紅血球溶胞緩衝 液的選擇 •貯槽56 :溶胞試劑The five reservoirs 54, 56, 58, 60 and 62 are preloaded to analyze specific reagents. In the particular embodiment described, the reservoir is preloaded with the following reagents, but can be easily replaced with other reagents: • Storage tank 54: anticoagulant with selection of red blood cell lysis buffer • Storage tank 56: lysis reagent

•貯槽5 8 :限制酵素、接合酶和聯結子(用於聯結 子-引發 PCR (見圖 69,自 T. Stachan et al., Human Molecular Genetics 2, Garland Science, NY -36- 201211243 and London, 1 999 節錄) •貯槽60·擴增混合物(去氧核苷酸三磷酸(dNTp )、引子、緩衝液)以及 •貯槽62 : DNA聚合酶• Slots 58: Restriction of enzymes, ligases, and junctions (for junction-priming PCR (see Figure 69, from T. Stachan et al., Human Molecular Genetics 2, Garland Science, NY-36-201211243 and London, 1 999 Excerpts • Storage tank 60·Amplification mixture (deoxynucleotide triphosphate (dNTp), primer, buffer) and • Storage tank 62: DNA polymerase

該蓋46和該CMOS + MST層48經由在該下密封部64 和該頂部層66中之相應的開口流體連通。該等開口係依 據流體是否自該MST通道90流至該蓋通道94或相反而 代表上管道96及下管道92。 LOC裝置操作 該LOC裝置301的操作係參考在血液樣本中之分析 病原體DNA逐步描述於下。當然,其他生物或非生物液 體的種類亦使用適當的試劑、檢測規程、LOC變體和偵測 系統之套組或組合分析。再參考圖4,分析生物樣本涉及 五個主要步驟,包含:樣本輸入和準備288、核酸萃取 2 90、核酸培養291、核酸擴增292和偵測及分析294。 該樣本輸入和準備步驟288涉及混合該血液與抗凝血 劑116且接著以該病原體透析部70將病原體與白血球和 紅血球分開。如最佳顯示於圖7和1 2中,該血液樣本經 由該樣本入口 68進入該裝置。毛細作用吸引該血液樣本 沿著該蓋通道94至該貯槽54。當該樣本血流開啓其表面 張力閥118時,抗凝血劑自該貯槽54釋出(見圖15和 22)。該抗凝血劑可防止形成會阻塞流動的血凝塊。 如最佳顯示於圖22中,該抗凝血劑1 1 6藉由毛細作 -37- 201211243 用自該貯槽54抽出且經由該下管道92進入該MST通道 90。該下管道92具有毛細起始構造特徵(CIF) 102以形 成彎液面的幾何形狀,使其不固定在該下管道92的邊緣 。當該抗凝血劑116自該貯槽54抽出時,在該上密封部 82中之通氣孔I22允許空氣取代該抗凝血劑1 16。The cover 46 and the CMOS + MST layer 48 are in fluid communication via respective openings in the lower seal 64 and the top layer 66. The openings represent the upper conduit 96 and the lower conduit 92 depending on whether fluid flows from the MST passage 90 to the cover passage 94 or vice versa. LOC Device Operation The operation of the LOC device 301 is described step by step with reference to the analysis of pathogen DNA in a blood sample. Of course, other types of biological or non-biological fluids are also analyzed using kits or combinations of appropriate reagents, assay protocols, LOC variants, and detection systems. Referring again to Figure 4, the analysis of the biological sample involves five major steps, including: sample input and preparation 288, nucleic acid extraction 2 90, nucleic acid culture 291, nucleic acid amplification 292, and detection and analysis 294. The sample input and preparation step 288 involves mixing the blood with the anticoagulant 116 and then separating the pathogen from the white blood cells and red blood cells by the pathogen dialysis unit 70. As best shown in Figures 7 and 12, the blood sample enters the device via the sample inlet 68. Capillary action draws the blood sample along the lid channel 94 to the sump 54. When the sample blood flow opens its surface tension valve 118, the anticoagulant is released from the sump 54 (see Figures 15 and 22). The anticoagulant prevents the formation of blood clots that can block flow. As best shown in Figure 22, the anticoagulant 116 is withdrawn from the sump 54 by capillary -37-201211243 and enters the MST channel 90 via the lower conduit 92. The lower duct 92 has a capillary initiation configuration feature (CIF) 102 to define the geometry of the meniscus such that it is not fixed to the edge of the lower duct 92. When the anticoagulant 116 is withdrawn from the sump 54, the vent hole I22 in the upper seal portion 82 allows air to replace the anticoagulant 166.

顯示於圖22之該MST通道90爲表面張力閥118的 —部分。該抗凝血劑116塡充該表面張力閥118且固定至 該上管道96之彎液面120於彎液面固定器98。在使用前 ,該彎液面120維持固定於該上管道96,使得該抗凝血 劑不會流入該蓋通道94。當該血液流經該蓋通道94至該 上管道96時,移除該彎液面120且將該抗凝血劑吸入該 流體。The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 fills the surface tension valve 118 and is secured to the meniscus 120 of the upper conduit 96 to the meniscus holder 98. The meniscus 120 remains fixed to the upper conduit 96 prior to use such that the anticoagulant does not flow into the lid passage 94. As the blood flows through the cover channel 94 to the upper conduit 96, the meniscus 120 is removed and the anticoagulant is drawn into the fluid.

圖15至21顯示插圖AE,其爲顯示於圖13之插圖 AA之一部分。如顯示於圖15、16和17,該表面張力閥 118具有三個獨立的MST通道90延伸於個別的下管道92 及上管道96之間。在表面張力閥中之這些MST通道90 可變化以改變進入該樣本混合物之試劑得流速。如由擴散 所混合在一起之該樣本混合物以及該些試劑,離開該貯槽 之流速決定在該樣本流中之試劑的濃度。因此,每各該貯 槽的該表面張力閥配置以符合該所需之試劑濃度。 該血液通過進入病原體透析部70 (見圖4和15), 其中標靶細胞使用根據預定閥値制定大小之孔1 64的陣列 自該樣本濃縮。小於該閥値的細胞通過該些孔,而大細胞 不能通過該些孔。在該標靶細胞持續作爲分析的一部分同 -38- 201211243 時,不欲之細胞重新被導入廢料單元76。該不欲之細胞 爲經由該等孔1 64陣列阻擋之大細胞,或通過該等孔之小 細胞。Figures 15 through 21 show an inset AE which is part of the inset AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three separate MST passages 90 extending between the individual lower conduits 92 and the upper conduits 96. These MST channels 90 in the surface tension valve can be varied to vary the flow rate of the reagent entering the sample mixture. The flow rate of the sample mixture in the sample stream is determined by the flow rate of the sample mixture as it is mixed by diffusion and the reagents. Thus, the surface tension valve for each of the sump is configured to meet the desired reagent concentration. The blood passes through the pathogen dialysis section 70 (see Figures 4 and 15), wherein the target cells are concentrated from the sample using an array of wells 1 64 sized according to a predetermined valve. Cells smaller than the valve pass through the holes, and large cells cannot pass through the holes. When the target cell continues to be part of the analysis -38-201211243, the unwanted cells are reintroduced into the waste unit 76. The unwanted cells are large cells that are blocked by the array of such holes 1 64, or small cells that pass through the holes.

在描述於此之病原體透析部7〇中,自該全血樣本之 病原體濃縮以供微生物DNA分析。該些孔之陣列藉由流 體連通該蓋通道94中之輸入流至標靶通道74的許多3微 米直徑的孔164而形成。該3微米直徑的孔164和用於該 標靶通道74之該透析吸入孔168係由一系列的透析MST 通道204連接(最佳顯示於圖15和21)。病原體小到足 以經由該透析MST通道204通過該3微米直徑孔164且 塡充該標靶通道74。大於3微米的細胞諸如紅血球和白 血球留在在該蓋46之該廢料通道72中,該廢料通道通向 廢料貯槽76 (見圖7)。 其他孔形狀、大小和長寬比可用以分離特定病原體或 其他標靶細胞諸如用於人類DNA分析的白血球。梢後提 供透析部和透析變體更詳細的詳情。 再參照圖6和7,該流體被吸入通過該標靶通道74 至該溶胞試劑貯槽56中之該表面張力閥128。該表面張 力閥128具有七個MST通道90延伸於該溶胞試劑貯槽 56和該標靶通道74之間。當該彎液面由該樣本流脫除時 ,自所有七個該MS T通道90之該流速將大於自該抗凝血 劑貯槽54之流速,其中該表面張力閥118具有三個MST 通道90 (假設該流體的物理特性爲大致相等的)。因此 在該樣本混合物中之溶胞試劑的比例係大於該抗凝血劑之 -39 - 201211243 比例。In the pathogen dialysis section 7 described herein, the pathogen from the whole blood sample is concentrated for microbial DNA analysis. The array of holes is formed by fluidly communicating the input flow in the cover channel 94 to a plurality of 3 micron diameter holes 164 of the target channel 74. The 3 micron diameter aperture 164 and the dialysis suction aperture 168 for the target channel 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21). The pathogen is small enough to pass through the 3 micron diameter aperture 164 via the dialysis MST channel 204 and to fill the target channel 74. Cells larger than 3 microns, such as red blood cells and white blood cells, remain in the waste channel 72 of the lid 46, which leads to the waste reservoir 76 (see Figure 7). Other pore shapes, sizes, and aspect ratios can be used to isolate specific pathogens or other target cells such as white blood cells for human DNA analysis. More detailed details of the dialysis section and dialysis variants are provided at the tip. Referring again to Figures 6 and 7, the fluid is drawn through the target passage 74 to the surface tension valve 128 in the lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed from the sample stream, the flow rate from all seven of the MS T channels 90 will be greater than the flow rate from the anticoagulant reservoir 54, wherein the surface tension valve 118 has three MST channels 90. (Assume that the physical properties of the fluid are approximately equal). Therefore, the proportion of the lysing reagent in the sample mixture is greater than the ratio of the anticoagulant -39 - 201211243.

該溶胞試劑和標靶細胞在該化學溶胞部1 3 0內之標靶 通道74中藉由擴散混合。沸騰引發閥126停止該流動直 到擴散和溶胞發生了足夠的時間,自該標靶細胞釋放該遺 傳物質(見圖6和7)。該沸騰引發閥之結構和操作參考 圖31和32詳細描述於下。其他主動閥種類(與被動閥相 反之諸如該表面張力閥118)亦已由申請人開發,其可用 於此以替代該沸騰引發閥》這些替代閥設計亦描述於下。 當該沸騰引發閥1 26開啓時,該經溶胞之細胞流入混 合部131以預擴增限制酶切(restriction digestion)以及 聯結子接合(linker ligation)。The lysis reagent and target cells are mixed by diffusion in the target channel 74 within the chemical lysis unit 130. The boiling initiation valve 126 stops the flow until diffusion and lysis occur for a sufficient time to release the genetic material from the target cells (see Figures 6 and 7). The structure and operation of the boiling initiation valve are described in detail below with reference to Figs. 31 and 32. Other active valve types (as opposed to passive valves such as the surface tension valve 118) have also been developed by the Applicant, which can be used in place of the boiling initiation valve. These alternative valve designs are also described below. When the boiling initiation valve 126 is opened, the lysed cells flow into the mixing portion 131 for pre-amplification restriction digestion and linker ligation.

參考圖13,當該流體移除在混合部131起始之表面 張力閥1 3 2上的灣液面時,限制酵素、聯結子和接合酶自 該貯槽58釋放。該混合物爲了擴散混合流經該混合部 131的長度。在該混合部131的末端爲通到該培養部114 之該培養器入口通道133的下管道134(見.圖13)。該培 養器入口通道133將該混合物饋入經加熱之微通道210的 蜿蜒構造,其提供在限制酶切以及聯結子接合期間保留該 樣本之培養腔室(見圖1 3和1 4 )。 圖23' 24、25、26、27、28和29顯示在圖6之插圖 AB內的LOC裝置301之該等層。各個圖顯示形成該 CMOS + MST層48和該蓋46結構之該等層的連續附加。 插圖A B顯示該培養部1 1 4的結束和該擴增部1 1 2的開始 。如最佳顯示於圖1 4和23,該流體塡入該培養部1 1 4之 -40- 201211243 該等微通道210直到抵達該沸騰引發閥106,其中該流體 在擴散發生同時停止。如上所討論,該沸騰引發閥1 06上 游之該微通道210成爲含有該樣本、限制酵素、接合酶和 聯結子的培養腔室。該加熱器154之後啓動且維持穩定溫 度以針對一段特定時間用於發生限制酶切和聯結子接合。Referring to Fig. 13, when the fluid is removed from the surface of the bay on the surface tension valve 132 which is initiated by the mixing portion 131, the restriction enzyme, the linker and the ligase are released from the sump 58. The mixture flows through the length of the mixing portion 131 for diffusion mixing. At the end of the mixing portion 131 is a lower duct 134 leading to the incubator inlet passage 133 of the culture portion 114 (see Fig. 13). The culturer inlet channel 133 feeds the mixture into the crucible configuration of the heated microchannel 210, which provides a culture chamber that retains the sample during restriction digestion and junction ligation (see Figures 13 and 14). Figures 23', 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in the inset AB of Figure 6. The various figures show the continuous addition of the layers forming the CMOS + MST layer 48 and the structure of the cover 46. The inset A B shows the end of the culture portion 1 14 and the start of the amplification portion 1 1 2 . As best shown in Figures 14 and 23, the fluid breaks into the microchannels 210 of the culture section 1 - 4 - 201211243 until the boiling initiation valve 106 is reached, wherein the fluid stops while diffusion occurs. As discussed above, the microchannel 210 upstream of the boiling initiation valve 106 becomes a culture chamber containing the sample, restriction enzymes, ligase, and linker. The heater 154 is then activated and maintains a steady temperature for the occurrence of restriction enzyme digestion and junction bonding for a specific period of time.

熟此技藝者將理解此培養步驟29 1 (見圖4)爲選擇 的且只需要於一些核酸擴增分析類型。再者,在一些例子 中,可能需要在該培養期間的末端具有一個加熱步驟以將 溫度增高到超過培養溫度。在進入該擴增部112前該溫度 增高使該限制酵素和接合酶不活化。當使用恆溫核酸擴增 時,限制酵素和接合酶的不活化具有特定關聯。 培養之後,該沸騰引發閥106啓動(開啓)且該流體 再流回該擴增部112。參考圖31和32,該混合物塡充該 經加熱微通道1 5 8之蜿蜒結構直到到達該沸騰引發閥1 0 8 ,該等微通道形成一或更多擴增腔室。如最佳顯示於圖 30之剖面示意圖,擴增混合物(dNTP、引子、緩衝液) 自貯槽60釋放且聚合酶接著自貯槽62釋放進連接該培養 部和該擴增部(各爲114和112)之該中介MST通道212 圖35至51顯示在圖6之插圖AC中的LOC裝置301 之層。各圖顯示連續疊加形成CMOS + MST裝置48和蓋 46結構之層。插圖AC係擴增部112的末端和雜交及檢測 部5 2的起始。經培養的樣本、擴增混合物和聚合酶流經 微通道158而至沸騰引發閥1〇8。在擴散混合經足夠時間 -41 - 201211243 後,啓動在微通道158中之加熱器154以供熱循環或恆溫 擴增。擴增混合物經歷預定數目的熱循環或預設之擴增時 間以擴增充分的標靶DNA。在核酸擴增程序之後,沸騰 引發閥108開啓且流體再進入雜交及檢測部52。沸騰引 發閥之操作更詳細描述於下。Those skilled in the art will appreciate that this incubation step 29 1 (see Figure 4) is selected and only requires some type of nucleic acid amplification analysis. Again, in some instances, it may be desirable to have a heating step at the end of the incubation period to increase the temperature above the culture temperature. This temperature increase before entering the amplification section 112, so that the restriction enzyme and the ligase are not activated. When using thermostated nucleic acid amplification, there is a specific association between restriction enzymes and ligase inactivation. After the incubation, the boiling initiation valve 106 is activated (turned on) and the fluid is returned to the amplification portion 112. Referring to Figures 31 and 32, the mixture fills the heated microchannel 1 58 structure until the boiling initiation valve 108 is reached, which form one or more amplification chambers. As best shown in the cross-sectional view of Figure 30, the amplification mixture (dNTPs, primers, buffers) is released from the reservoir 60 and the polymerase is then released from the reservoir 62 into the culture section and the amplification section (114 and 112, respectively). The intermediate MST channel 212 of FIGS. 35 through 51 shows the layers of the LOC device 301 in the inset AC of FIG. The figures show successive layers of layers forming the CMOS + MST device 48 and cover 46 structures. The end of the AC-based amplification unit 112 and the start of the hybridization and detection unit 52 are shown. The cultured sample, amplification mixture, and polymerase flow through microchannel 158 to boiling initiation valve 1〇8. After diffusion mixing for a sufficient time -41 - 201211243, the heater 154 in the microchannel 158 is activated for thermal cycling or constant temperature amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification procedure, the boiling initiation valve 108 is opened and the fluid re-enters the hybridization and detection portion 52. The operation of the boiling pilot valve is described in more detail below.

如顯示於圖5 2,雜交及檢測部5 2具有雜交腔室之陣 列110»圖52、53、54及56詳細顯示雜交腔室陣列110 和個別雜交腔室180。雜交腔室180的入口爲擴散屏障 175,其在雜交期間防止標靶核酸、探針股和雜交探針於 雜交腔室1 80之間擴散,以防止錯誤的雜交檢測結果。擴 散屏障175之流動路徑長度足夠長以在探針和核酸雜交以 及檢測訊號的時間內,防止標靶序列和探針從一個腔室擴 散出且污染另一腔室,因此避免錯誤的結果。As shown in Figure 52, hybridization and detection portion 52 has an array of hybridization chambers 110» Figures 52, 53, 54, and 56 show hybridization chamber array 110 and individual hybridization chambers 180 in detail. The entrance to hybridization chamber 180 is a diffusion barrier 175 that prevents diffusion of the target nucleic acid, probe strands, and hybridization probes between hybridization chambers 180 during hybridization to prevent erroneous hybridization assay results. The flow path length of the diffusion barrier 175 is long enough to prevent the target sequence and probe from diffusing from one chamber and contaminating the other during the time the probe and nucleic acid hybridize and detect the signal, thus avoiding erroneous results.

另一防止錯誤讀取的機制是在一些該雜交腔室中具有 相同的探針。該CMOS電路86自相對於包含相同的探針 之雜交腔室180之光二極體184導出單筆結果。導出該單 筆結果中異常的結果可被忽略或給以不同比重。 供給雜交所需的熱能係由CMOS控制加熱器1 82所提 供(更詳細描述於下)。在該加熱器啓動後,雜交發生於 互補標靶探針序列之間。在該CMOS電路86中之該LED 驅動器29傳送訊息使位於該試驗模組10之leD26發光 。彼等探針僅於當雜交發生時發螢光從而避免通常需要用 以移除未繫結的股之清洗和乾燥步驟。雜交強制該FRET 探針186之該莖·及-環結構打開,其允許該螢光團發射回 -42- 201211243Another mechanism to prevent erroneous reading is to have the same probe in some of the hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 of the hybridization chamber 180 containing the same probe. The results of exporting anomalies in this single result can be ignored or given a different weight. The thermal energy required to supply hybridization is provided by a CMOS controlled heater 128 (described in more detail below). Hybridization occurs between the complementary target probe sequences after initiation of the heater. The LED driver 29 in the CMOS circuit 86 transmits a message to cause the leD 26 located in the test module 10 to illuminate. These probes only fluoresce when hybridization occurs to avoid the cleaning and drying steps typically required to remove unbound strands. Hybridization forces the stem and/or ring structure of the FRET probe 186 to open, which allows the fluorophore to be emitted back -42-201211243

應該LED激發光的螢光能量,詳述於下。螢光由位於各 雜交腔180下之該CMOS電路86中之光二極體184所偵 測(見下面之雜交腔室敘述)。用於所有雜交腔室之該光 二極體1 84以及相關的電子裝置共同形成該光感測器44 (見圖64 )。在其他實施例,該光感測器可爲電荷耦合 裝置陣列(CCD陣列)。自該光二極體1 84偵測之訊號 被放大且轉換成可以由該試驗模組讀取器12分析的數位 輸出。該偵測方法進一步的細節描述於下。 LOC裝置之其他詳細說明 \ 模組化設計 LOC裝置301具有許多功能部,包括試劑貯槽54、 56、58、60及62、透析部70、溶胞部130、培養部114 及擴增部112、閥類型、增濕器及濕度感測器。於LOC裝 置之其他具體實施例,可省略此等功能部,可附加另外的 φ 功能部或用於上述裝置之替代用途的功能部。 例如,可使用培養部1 1 4作爲重複序列擴增分析系統 之第一擴增部112,且使用化學溶胞試劑貯槽56來加入 引子' dNTP及緩衝液的第一擴增混合,並且使用試劑貯 槽58來添加反轉錄酶及/或聚合酶。若樣本需進行化學 溶胞,亦可添加化學溶胞試劑(連同擴增混合)至貯槽 5 6 ’或替代性地,可藉由加熱樣本一段預定的時間以在培 養部中發生熱溶胞。在一些具體實施例中,若需要化學溶 胞並使化學溶胞試劑與此混合分離,可在用於引子、 -43- 201211243 dNTP及緩衝液的混合之貯槽58之毗連上游合併另外的貯 槽。The fluorescent energy of the LED excitation light should be detailed below. Fluorescence is detected by photodiode 184 in the CMOS circuit 86 located below each hybrid cavity 180 (see hybrid cell description below). The photodiode 1 84 and associated electronics for all of the hybridization chambers together form the photosensor 44 (see Figure 64). In other embodiments, the photosensor can be a charge coupled device array (CCD array). The signal detected from the photodiode 1 84 is amplified and converted to a digital output that can be analyzed by the test module reader 12. Further details of this detection method are described below. Other Detailed Description of the LOC Device The modular design LOC device 301 has a number of functional components including reagent reservoirs 54, 56, 58, 60 and 62, a dialysis section 70, a lysis section 130, a culture section 114, and an amplification section 112, Valve type, humidifier and humidity sensor. In other embodiments of the LOC device, such functional portions may be omitted, and additional φ functional portions or functional portions for alternative uses of the above devices may be added. For example, the culture portion 1 14 can be used as the first amplification portion 112 of the repetitive sequence amplification analysis system, and the chemical lysis reagent reservoir 56 can be used to add the first amplification mixture of the primer 'dNTP and the buffer, and the reagent is used. Sump 58 is used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, a chemical lysis reagent (along with amplification mix) may be added to the sump 5 6 ' or alternatively, thermal lysis may occur in the culture by heating the sample for a predetermined period of time. In some embodiments, if chemical lysis is desired and the chemical lysis reagent is mixed therewith, additional reservoirs can be combined upstream of the sump 58 for the mixing of the primers, -43-201211243 dNTPs, and buffer.

於一些情況中,欲省略諸如培養步驟291之步驟。於 此情況中,可特別地製造LOC裝置以免去試劑貯槽58及 培養部114或是貯槽可不止載有試劑,或若存在主動閥, 其不被啓動來分配試劑至樣本流中,及培養部單純成爲將 樣本自溶胞部130傳送至擴增部112之通道。加熱器係獨 立地操作,因此當反應仰賴熱時,諸如熱溶胞,令加熱器 不於此步驟期間啓動,確保熱溶胞不會發生在不需熱溶胞 之LOC裝置中。透析部70可位於微流體裝置內之流體系 統的開端,如圖4中所示者,或可位於微流體裝置內之任 何其他位置。於一些情況中,例如,於擴增階段292之後 ,雜交及檢測步驟294之前,進行透析以移除細胞碎片係 有利者。替代性地,可於LOC裝置上任何位置合倂二或 多個透析部。同樣地,可合倂另外的擴增部1 1 2以致能在 雜交腔室陣列1 1 0中利用特定核酸探針進行檢測之前之多 標靶的同時或連續擴增。爲分析例如其中不需要進行透析 之全血液的樣本,簡單地於LOC設計之樣本輸入及製備 部2 8 8省略透析部70。於一些情況中,即便分析不需要 進行透析’不必要於LOC裝置省略透析部70。若透析部 的存在不會造成幾何性阻礙,仍可使用於樣本輸入及製備 部具有透析部70之LOC而不會損失所需之功能。 此外’檢測部294可包括蛋白質體室陣列,其係與雜 交腔室陣列相同但載有設計成與存在於非擴增之樣本中之 -44 - 201211243 樣本標靶蛋白質共軛或雜交之探針,而不是設計用來與標 靶核酸序列雜交之核酸探針。 將了解的是,爲用於此診斷系統而製造之LOC裝置 係不同之根據特別LOC應用而選擇的功能部之組合。絕 大部分之功能部常見於許多LOC裝置,而針對新應用之 額外的LOC裝置之設計,有關於自現存LOC裝置中所使 用之大幅功能部選項中組構適當功能部之組合。In some cases, steps such as incubation step 291 are omitted. In this case, the LOC device can be specially manufactured to prevent the reagent storage tank 58 and the culture portion 114 or the storage tank from carrying more than the reagent, or if there is an active valve, it is not activated to dispense the reagent into the sample flow, and the culture portion It is simply a channel for transferring the sample from the lysis unit 130 to the amplification unit 112. The heater operates independently, so when the reaction relies on heat, such as hot lysis, the heater is not activated during this step, ensuring that hot lysis does not occur in LOC devices that do not require hot lysis. The dialysis section 70 can be located at the beginning of the flow system within the microfluidic device, as shown in Figure 4, or can be located at any other location within the microfluidic device. In some cases, for example, after the amplification phase 292, prior to the hybridization and detection step 294, dialysis is performed to remove the cell debris system. Alternatively, two or more dialysis sections can be combined at any location on the LOC device. Similarly, additional amplifications 1 1 2 can be combined to enable simultaneous or sequential amplification of multiple targets prior to detection using a particular nucleic acid probe in hybridization chamber array 110. To analyze, for example, a sample of whole blood in which dialysis is not required, the dialysis portion 70 is simply omitted from the sample input and preparation portion of the LOC design. In some cases, even if the analysis does not require dialysis, it is not necessary to omit the dialysis section 70 from the LOC device. If the presence of the dialysis section does not cause geometrical obstruction, the sample input and preparation portion can still have the LOC of the dialysis section 70 without losing the desired function. Further, the detection portion 294 can include a protein body array array that is identical to the hybridization chamber array but carries a probe that is designed to conjugate or hybridize to the -44 - 201211243 sample target protein present in the non-amplified sample. Instead of a nucleic acid probe designed to hybridize to a target nucleic acid sequence. It will be appreciated that the LOC devices manufactured for use with this diagnostic system are different combinations of functional components selected for particular LOC applications. Most of the functional components are common to many LOC devices, and the design of additional LOC devices for new applications has a combination of appropriate functional components in the bulk of the functional options used in existing LOC devices.

本說明中僅顯示少數LOC裝置,並顯示一些其他者 以闡述爲此系統所製造之LOC裝置的設計彈性。熟此技 藝者將可輕易地明白本文所示之LOC裝置並非窮舉,且 許多另外的LOC設計係關於組構適當功能部之組合。 樣本類型 LOC變體可接受及分析各種呈液體形式之樣本類型之 核酸或蛋白質內容,液體形式包括,但不限於,血液及血 液產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶血 、母乳、汗液、肋膜積液、淚液、心囊液、腹腔液、環境 水樣本及飮料樣本。亦可使用LOC裝置分析得自巨觀核 酸擴增之擴增子;於此情況中,所有試劑貯槽將爲空的或 是係組態成不釋出其內容物,並僅使用透析、溶胞、培養 及擴增部來將樣本從樣本入口 68傳送至供核酸檢測之雜 交腔室180,如上所述。 針對一些樣本類型,需要預處理步驟’例如於輸入至 LOC裝置中之前,可能需要使精液液化及可能需以酵素預 -45- 201211243 處理黏液以減低黏性。 樣本輸入 參照圖1及1 2,添加樣本至試驗模組1 0之大容器24 。大容器24爲截錐,其係藉毛細作用而饋入LOC裝置 301之入口 68。於此,其流至64μιη寬χ60μηι深之蓋通道 94中並亦藉由毛細作用而被吸引至抗凝劑貯槽54。Only a few LOC devices are shown in this description, and some others are shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown herein are not exhaustive, and that many additional LOC designs are related to the combination of appropriate functional components. Sample Type LOC Variants can accept and analyze a variety of nucleic acid or protein contents in liquid form, including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord Blood, breast milk, sweat, pleural effusion, tears, pericardial fluid, peritoneal fluid, environmental water samples, and dips. Amplicon derived from meganucleic acid amplification can also be analyzed using a LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, and only use dialysis, lysis The culture and amplification section delivers the sample from the sample inlet 68 to the hybridization chamber 180 for nucleic acid detection, as described above. For some sample types, a pre-treatment step is required&apos;, for example, prior to input into the LOC device, it may be necessary to liquefy the semen and may need to treat the mucus with enzyme pre-45-201211243 to reduce stickiness. Sample Input Referring to Figures 1 and 12, a sample is added to the large container 24 of the test module 10. The large container 24 is a truncated cone that is fed into the inlet 68 of the LOC unit 301 by capillary action. Here, it flows into the 64 μm wide 60 μηι deep cover channel 94 and is also attracted to the anticoagulant reservoir 54 by capillary action.

試劑貯槽Reagent storage tank

使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小量試劑使得試劑貯槽含有生化處理之所有必須試劑 ,且各試劑貯槽爲小體積》此體積確實小於 1,000,000,000立方微米,於絕大多數的情況中係小於 300,000,000立方微米,普通小於70,000,000立方微米, 及於圖式中顯示的 LOC裝置 301的情況中係小於 20,000,000立方微米。 透析部 參照圖15至21、33及34,病原體透析部70係經設 計以濃縮來自樣本之病原體標靶細胞。如前述者,頂部層 66中呈直徑爲3微米之孔口 164之複數個孔口,過濾來 自大量樣本之標靶細胞。當樣本流經直徑爲3微米之孔口 164,微生物病原體通過孔而進入一系列透析MST通道 2 04並經由16μπι透析吸入孔168回流至標靶通道74中( -46- 201211243 見圖33及34)。剩餘的樣本(紅血球等)滯留於蓋通道 94中。於病原體透析部70之下游,蓋通道94成爲通往 廢料儲器76之廢料通道72。針對產生相當廢物量之生物 樣本類型,試驗模組1 0之外殼1 3內之泡沬體(foam )插 圖或其他多孔元件49係組態成與廢料儲器76呈流體連通 (見圖1 )。Using a microfluidic device, such as the LOC device 301, the small amount of reagent required for the analysis system allows the reagent reservoir to contain all of the necessary reagents for biochemical treatment, and each reagent reservoir is in a small volume. This volume is indeed less than 1,000,000,000 cubic microns. In most cases, it is less than 300,000,000 cubic microns, typically less than 70,000,000 cubic microns, and in the case of the LOC device 301 shown in the figures is less than 20,000,000 cubic microns. Dialysis section Referring to Figures 15 to 21, 33 and 34, the pathogen dialysis section 70 is designed to concentrate the pathogen target cells from the sample. As previously described, a plurality of apertures in the top layer 66 are apertures 164 having a diameter of 3 microns, filtering the target cells from a large number of samples. As the sample flows through a 3 micron diameter orifice 164, the microbial pathogen passes through the orifice into a series of dialysis MST channels 206 and is returned to the target channel 74 via the 16 μιη dialysis suction port 168 (-46-201211243 see Figures 33 and 34). ). The remaining sample (red blood cells, etc.) is retained in the cover channel 94. Downstream of the pathogen dialysis section 70, the cover channel 94 becomes a waste channel 72 to the waste reservoir 76. The foam illustration or other porous element 49 in the outer casing 13 of the test module 10 is configured to be in fluid communication with the waste reservoir 76 for a biological sample type that produces a substantial amount of waste (see Figure 1). .

病原體透析部70係皆以流體樣本之毛細作用運作。 位於病原體透析部70上游端之直徑爲3微米之孔口 164 具有毛細作用起始特徵(CIF ) 166 (見圖33 ),以致流 體被向下拉至下方的透析MST通道204之中。用於標靶 通道74之第一吸入孔198亦具有CIF 202 (見圖15 )以 防止流體輕易地固定彎液面於透析吸入孔168之上。 於圖78中槪要顯示之小組分透析部682可具有類似 於病原體透析部70之結構。藉由尺寸化(且成形,若必 要)適於允許小標靶細胞或分子通向標靶通道並繼續進一 步分析之孔口,小組分透析部分離樣本與任何小標靶細胞 或分子。大尺寸的細胞或分子被移除至廢料儲槽766。因 此,LOC裝置30 (見圖1及108 )並不受限於分離尺寸小 於3 μιη之病原體,而可用於分離任何所欲尺寸之細胞或 分子。 溶胞部 再次參照圖7、11及13,藉化學溶胞處理,樣本中 之遺傳物質自細胞釋出。如上述者,來自溶胞貯槽5 6之 47- 201211243 溶胞試劑與用於溶胞貯槽56之表面張力閥128下游之標 靶通道74中的樣本流混合。然而,一些診斷分析較佳適 合熱溶胞處理,或甚至是標靶細胞之化學及熱溶胞的組合 。LOC裝置301容納此及培養部114之加熱的微通道210 。樣本流塡充培養部114並停止於沸騰引發閥106。培養 微通道210將樣本加熱至細胞膜破裂之溫度。The pathogen dialysis unit 70 operates with the capillary action of the fluid sample. An orifice 164 having a diameter of 3 microns at the upstream end of the pathogen dialysis section 70 has a capillary action initiation feature (CIF) 166 (see Fig. 33) such that the fluid is pulled downward into the dialysis MST channel 204 below. The first suction aperture 198 for the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid from easily securing the meniscus above the dialysis suction aperture 168. The small component dialysis section 682, which is schematically shown in Fig. 78, may have a structure similar to that of the pathogen dialysis section 70. The small component dialysis section separates the sample from any small target cells or molecules by sizing (and shaping, if necessary) to allow small target cells or molecules to pass to the target channel and continue to further analyze the well. Large size cells or molecules are removed to waste reservoir 766. Thus, the LOC device 30 (see Figures 1 and 108) is not limited to isolation of pathogens smaller than 3 μηη, but can be used to isolate cells or molecules of any desired size. Lysis Department Referring again to Figures 7, 11, and 13, the chemical species in the sample are released from the cells by chemical lysis. As described above, the lysing reagent from the lysate reservoir 56 is mixed with the sample stream in the target channel 74 downstream of the surface tension valve 128 of the lysis tank 56. However, some diagnostic assays are preferably suitable for hot lysis treatment, or even a combination of chemical and thermal lysis of target cells. The LOC device 301 houses the heated microchannels 210 of the culture portion 114. The sample stream is flooded with the culture portion 114 and stopped at the boiling initiation valve 106. The culture microchannel 210 heats the sample to the temperature at which the cell membrane ruptures.

於一些熱溶胞應用中,化學溶胞部130中不需要酵素 反應,且熱溶胞全然取代化學溶胞部130中之酵素反應。 沸騰引發閥 如以上討論者,LOC裝置3 01具有三個沸騰引發閥 126、106及108。於圖6中顯示這些閥的位置。圖31爲 擴增部112之加熱的微通道158端部之獨立的沸騰引發閥 108之放大的平面圖。In some hot lysis applications, the enzyme reaction is not required in the chemical lysis unit 130, and the hot lysis completely replaces the enzyme reaction in the chemical lysis unit 130. Boiling Initiating Valve As discussed above, LOC unit 310 has three boiling inducing valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independent boiling initiation valve 108 at the end of the heated microchannel 158 of the amplification section 112.

藉由毛細作用,樣本流1 1 9沿加熱的微通道1 5 8被吸 引直至到達沸騰引發閥1 0 8爲止。樣本流之前沿的彎液面 120固定於閥入口 146之彎液面固定器98。彎液面固定器 98幾何使彎液面停止前進而阻止毛細作用流。如圖3 1及 32中所示者’彎液面固定器98係藉由自MST通道90至 蓋通道94之上管道開口而設置之孔口。彎液面12〇之表 面張力使閥保持閉合。環形加熱器152位於閥入口 146的 周圍。環形加熱器1 52經由沸騰引發閥加熱器接點〗53而 受C Μ Ο S控制。 爲打開閥’ CMOS電路86發送電脈衝至閥加熱器接 -48- 201211243 點153。環形加熱器152電阻式地進行加熱直到液體樣本 119沸騰爲止。沸騰使彎液面120自閥入口 146脫除並開 始濕潤蓋通道94。一但開始濕潤蓋通道94’毛細作用恢 復。流體樣本119塡充蓋通道94且流經閥下管道150而 至閥出口 148,其中毛細作用驅動之液體流沿擴增部出口 通道160前進至雜交及檢測部52之中。液體感測器174 置於用於診斷的閥之前及之後。By capillary action, the sample stream 1 1 9 is drawn along the heated microchannel 1 58 until it reaches the boiling initiation valve 108. The meniscus 120 at the leading edge of the sample stream is secured to the meniscus holder 98 of the valve inlet 146. The meniscus holder 98 geometry stops the meniscus from moving forward and prevents capillary flow. As shown in Figures 31 and 32, the meniscus holder 98 is an orifice provided by the opening of the pipe from the MST passage 90 to the cover passage 94. The surface tension of the meniscus 12 使 keeps the valve closed. A ring heater 152 is located around the valve inlet 146. The ring heater 1 52 is controlled by C Μ Ο S via a boiling induced valve heater contact 53. To open the valve 'CMOS circuit 86, send an electrical pulse to the valve heater to connect -48- 201211243 point 153. The ring heater 152 is resistively heated until the liquid sample 119 is boiled. Boiling removes meniscus 120 from valve inlet 146 and begins to wet cover passage 94. Once the wet cover channel 94' begins to recover, the capillary action is restored. The fluid sample 119 is filled with the passage 94 and flows through the lower valve line 150 to the valve outlet 148, wherein the capillary driven liquid flow advances along the expansion outlet passage 160 into the hybridization and detection portion 52. The liquid sensor 174 is placed before and after the valve for diagnosis.

將能了解的是,一但沸騰引發閥被打開,則不可能再 關上。然而,因LOC裝置301及試驗模組10爲單一用途 裝置,不需要再關閉閥。 培養部及核酸擴增部 圖 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 及 51 顯示培養部114及擴增部112。培養部114具有單一的、 加熱的培養微通道2 1 0,其係經蝕刻而成爲自下管道開口 134至沸騰引發閥106之MS T通道層100中的蜿蜒圖案 (見圖13及14)。控制培養部114的溫度致能更有效的 酵素性反應。同樣地,擴增部112具有從沸騰引發閥106 通向沸騰引發閥108之呈蜿蜒結構之加熱的擴增微通道 158(見圖6及14)。於混合、培養及核酸擴增發生時, 此等閥中止流動以將標靶細胞保留於加熱的培養或擴增微 通道210或158中。微通道之蜿蜒圖案亦促進(在某種程 度上)標靶細胞與試劑混合。 於培養部1 1 4及擴增部丨i 2中,樣本細胞及試劑經由 -49- 201211243 使用脈衝寬度調變(PWM )之CMOS電路86所控制的加 熱器154而被加熱。加熱的培養微通道210及擴增微通道 158之蜿蜒結構之每一個曲折具有三個獨立地可操作加熱 器154 (延伸於彼之個別加熱器接點156之間(見圖14 )It will be understood that once the boiling trigger valve is opened, it is impossible to close it again. However, since the LOC device 301 and the test module 10 are single-purpose devices, it is not necessary to close the valve. Culture section and nucleic acid amplification section The culture section 114 and the amplification section 112 are shown in Figs. 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51. The culture portion 114 has a single, heated culture microchannel 210 that is etched to form a ruthenium pattern in the MS T channel layer 100 from the lower conduit opening 134 to the boiling initiation valve 106 (see Figures 13 and 14). . Controlling the temperature of the culture portion 114 enables a more efficient enzyme reaction. Similarly, the amplifying portion 112 has an amplifying microchannel 158 (see Figs. 6 and 14) which is heated from the boiling inducing valve 106 to the boiling initiation valve 108. Upon mixing, culture, and nucleic acid amplification, the valves stop flow to retain the target cells in the heated culture or amplification microchannels 210 or 158. The microchannel 蜿蜒 pattern also promotes (to some extent) the target cells to be mixed with the reagents. In the culture unit 141 and the amplification unit 丨i 2, the sample cells and reagents are heated via a heater 154 controlled by a pulse width modulation (PWM) CMOS circuit 86 at -49-201211243. Each of the meandering structures of the heated culture microchannel 210 and the amplification microchannel 158 has three independently operable heaters 154 extending between the individual heater contacts 156 (see Figure 14).

),其提供輸入熱通量密度之二維控制。如最佳顯示於圖 51中者,加熱器154係支撐於頂部層66上並埋入下密封 64中。加熱器材料爲TiAl,但許多其他的傳導性金屬也 適用。伸長的加熱器154平行於形成蜿蜒狀的寬曲折之各 通道部的縱向長度。於擴增部112中,經由個別加熱器控 制,可操作各寬曲折以作爲獨立的PCR腔室。 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小體積的擴增子允許於擴增部112中擴增使用小體積 的擴增混合物。此體積大槪小於400奈升,於絕大多數情 況中小於170奈升,普通小於70奈升,及於LOC裝置 3 0 1的情況中,此體積係介於2奈升與3 0奈升之間。), which provides two-dimensional control of the input heat flux density. As best shown in Figure 51, heater 154 is supported on top layer 66 and buried in lower seal 64. The heater material is TiAl, but many other conductive metals are also suitable. The elongated heater 154 is parallel to the longitudinal length of each of the channel portions forming the meandering meandering. In the amplification section 112, each of the wide meanders can be operated as an independent PCR chamber via individual heater control. The use of a microfluidic device, such as LOC device 301, requires a small volume of amplicons required for the analysis system to allow amplification of the small volume of amplification mixture in amplification portion 112. This volume is less than 400 nanoliters, in most cases less than 170 nanoliters, less than 70 nanoliters, and in the case of LOC device 310, this volume is between 2 nanoliters and 30 nanoliters. between.

加熱速率增加及較佳擴散混合 各通道部的小截面積增加擴增流體混合物的加熱速率 。所有流體與加熱器1 5 4保持相當短的距離。減少通道截 面積(即擴增微通道158截面)至小於1〇〇, 〇〇〇平方微米 ,而較“大規模”設備具有顯著較高之加熱速率。微影製造 技術使得擴增微通道158具有橫跨小於1 6,000平方微米 之實質上提供較高的加熱速率之流動路徑之截面。以微影 製造技術輕易地獲致1微米級尺寸特徵。若僅需要非常小 -50- 201211243 量的擴增子(如LOC裝置301中的情況),可使截面縮 小至小於2,500平方微米。針對以LOC裝置上之1,〇〇〇至 2,〇〇〇個探針進行且於1分鐘內之“樣本入,答案出”所需 之診斷分析,橫跨流體之適當的截面積爲400平方微米及 1平方微米之間。Increased heating rate and better diffusion mixing The small cross-sectional area of each channel portion increases the heating rate of the amplification fluid mixture. All fluids are kept at a fairly short distance from the heater 1 5 4 . The channel cross-sectional area (i.e., the cross section of the augmented microchannel 158) is reduced to less than 1 〇〇, 〇〇〇 square micron, and has a significantly higher heating rate than the "large scale" device. The lithography manufacturing technique allows the amplifying microchannel 158 to have a cross-section that spans a flow path that provides a relatively high heating rate of less than 1 6,000 square microns. The 1 micron size feature is easily achieved with lithography manufacturing techniques. If only very small amplicons of -50-201211243 (as is the case in LOC unit 301) are required, the cross-section can be reduced to less than 2,500 square microns. For a diagnostic analysis required to perform a "sample entry, answer out" within 1 minute on a LOC device, the appropriate cross-sectional area across the fluid is 400. Between square micron and 1 square micron.

擴增微通道158中之加熱器元件以每秒大於80絕對 溫度(K)之速率加熱核酸序列,於大多數的情況中爲每 秒大於1 00 K之速率。普通地,加熱器元件以每秒大於 1 〇〇〇 K之速率加熱核酸序列,以及於許多情況中,加熱 器元’件以每秒大於10,000 K之速率加熱核酸序列。通常 ,基於分析系統的需求,加熱器元件以每秒大於100,000 K、每秒大於1,000,000 K、每秒大於10,000,000 K、每秒 大於 20,000,000 K、每秒大於40,000,000 K、每秒大於 80,000,000 K及每秒大於1 60,000,000 K之速率加熱核酸 序列。 小截面積通道亦有益於任何試劑與樣本流體之擴散性 混合。於擴散性混合完成之前,靠近兩液體間之界面處, 一種液體擴散至另一液體之擴散現象最顯著。現象發生密 度隨遠離界面距離而減少。使用具相當小截面積之橫跨流 體方向之微通道,而保持兩流體靠界面流動以快速擴散混 合。縮小通道截面至小於1〇〇,〇〇〇平方微米,獲致較“大 規模”設備具有顯著較高之擴散速率。微影製造技術使得 微通道具有橫跨小於1 6000平方微米之實質上提供較高的 混合速率之流動路徑的截面。若僅需要非常小量的擴增子 -51 - 201211243 (如L O C裝置3 0 1中的情況),可使截面縮小至小於 2,5 00平方微米。針對以LOC裝置上之1,〇〇〇至2,000個 探針進行且於1分鐘內之“樣本入,答案出”所需之診斷分 析,橫跨流體之適當的截面積爲400平方微米及1平方微 米之間。 短的熱循環時間The heater element in the amplification microchannel 158 heats the nucleic acid sequence at a rate of greater than 80 absolute temperatures (K) per second, which in most cases is greater than 100 K per second. Typically, the heater element heats the nucleic acid sequence at a rate greater than 1 〇〇〇 K per second, and in many cases, the heater element is heated at a rate greater than 10,000 K per second. Typically, based on the needs of the analytical system, the heater elements are greater than 100,000 K per second, greater than 1,000,000 K per second, greater than 10,000,000 K per second, greater than 20,000,000 K per second, greater than 40,000,000 K per second, and greater than 80,000,000 per second. K and the nucleic acid sequence are heated at a rate greater than 1 60,000,000 K per second. A small cross-sectional area channel is also beneficial for the diffusive mixing of any reagent with the sample fluid. The diffusion of one liquid to another is most pronounced near the interface between the two liquids before the diffusion mixing is completed. The density of the phenomenon decreases with distance from the interface. A microchannel with a relatively small cross-sectional area across the flow direction is used while keeping the two fluids flowing through the interface for rapid diffusion mixing. Reducing the cross-section of the channel to less than 1 〇〇, 〇〇〇 square micron, results in a significantly higher diffusion rate than the "large scale" devices. The lithography manufacturing technique allows the microchannels to have a cross-section that spans a flow path that provides a higher mixing rate of less than 16,000 square microns. If only a very small amount of amplicons -51 - 201211243 (as in L O C device 301) is required, the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1 to 2,000 probes on the LOC device and "sample entry, answer out" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and 1 Between square microns. Short thermal cycle time

使樣本混合物保持接近加熱器且使用極小流體量,致 使核酸擴增法期間之快速熱循環。針對至高150鹼基對( bp )長之標靶序列,於30秒內完成各個熱循環(即,·變 性、黏著及引子延伸)。在絕大多數之診斷分析中,個別 熱循環時間小於1 1秒,且大部分小於4秒。針對至高 150鹼基對(bp)長之標靶序列,用於一些最常見診斷分 析之LOC裝置30的熱循環時間爲0.45秒至1.5秒之間。 此速度之熱循環使得試驗模組能在遠少於1 0分鐘之內完 成核酸擴增程序;經常爲22〇秒之內。針對大多數分析, 擴增部於80秒之內由進入樣本入口的樣本流體產生充足 的擴增子。針對大部分的分析,於30秒內產生充足的擴 增子。 於完成預定數目擴增循環時,經由沸騰引發閥1 08將 擴增子饋入雜交及檢測部52。 雜交腔室 圖52、53、54、56及57顯示雜交腔室陣列11〇中的 -52- 201211243Keeping the sample mixture close to the heater and using a very small amount of fluid results in rapid thermal cycling during the nucleic acid amplification process. Each thermal cycle (i.e., variability, adhesion, and primer extension) was completed in 30 seconds for a target sequence of up to 150 base pairs (bp) long. In most diagnostic analyses, individual thermal cycle times are less than 11 seconds and most are less than 4 seconds. For a target sequence of up to 150 base pairs (bp) long, the LOC device 30 for some of the most common diagnostic assays has a thermal cycle time between 0.45 seconds and 1.5 seconds. This rate of thermal cycling allows the test module to perform nucleic acid amplification procedures in far less than 10 minutes; often within 22 seconds. For most analyses, the amplification section produces sufficient amplicons from the sample fluid entering the sample inlet within 80 seconds. For most of the analysis, sufficient amplicon is generated in 30 seconds. Upon completion of the predetermined number of amplification cycles, the amplicon is fed to the hybridization and detection section 52 via the boiling initiation valve 108. Hybridization Chambers Figures 52, 53, 54, 56, and 57 show hybridization chamber arrays in 11〇 -52- 201211243

雜交腔室180。雜交及檢測部52具有雜交腔室180之24 X 45陣列1 10,其各具有雜交-反應性FRET探針186、加 熱器元件182及整合的光二極體184»倂入光二極體184 以檢測得自標靶核酸序列或蛋白質與FRET探針1 8 6雜交 之螢光。藉由CMOS電路86獨立地控制各光二極體184 。對發射的光而言,FRET探針186及光二極體184之間 的任何物質必須爲透明。因此,探針1 8 6及光二極體1 8 4 之間的壁部97亦必須對發射的光呈光學透明。於L〇C裝 置301中,壁部97爲二氧化矽之薄層(約0·5微米)。 於各雜交腔室180之下直接地倂入光二極體184允許 使用極小體積之探針-標靶雜交體,卻仍產生可檢測的螢 光訊號(見圖54)。因爲小量而能使用小體積的雜交腔 室。於雜交之前,可檢測的探針-標靶雜交體量所需之探 針量大槪小於270微微克(picogram)(對應至900,000 立方微米),於大多數的情況中小於60微微克(對應至 200,000立方微米),普通小於12微微克(對應至 40,000立方微米),並且於附圖1中所示之LOC裝置 301的情況中爲小於2.7.微微克(對應至腔室體積爲 9,000立方微米)。當然,縮小雜交腔室的尺寸容許較高 的室密度及因此更多的LOC裝置上的探針。於LOC裝置 301中,於1,500微米乘1,500微米的面積內,雜交部具 有超過1,000個腔室(即,每個腔室小於2,250平方微米 )。較小的體積亦減少反應時間,使得雜交及檢測更快速 。各個腔室需求之小量探針的另一優點爲,於L0C裝置 -53- 201211243 製造期間,僅需要配置極小量的探針溶液至各個腔室中。 根據本發明之LOC裝置之具體實施例可使用有1奈毫升 或更少之探針溶液配置。 於核酸擴增之後,沸騰引發閥1 08被啓動且擴增子沿 流動路徑176流動並流進各雜交腔室180(見圖52及56 )。端點液體感測器1 7 8指示雜交腔室1 8 0塡充有擴增子 及可啓動加熱器182之時點。Hybridization chamber 180. The hybridization and detection section 52 has a 24 X 45 array 110 of hybridization chambers 180 each having a hybrid-reactive FRET probe 186, a heater element 182, and an integrated photodiode 184» into the photodiode 184 for detection. Fluorescence from a target nucleic acid sequence or protein that hybridizes to the FRET probe 186. Each of the photodiodes 184 is independently controlled by the CMOS circuit 86. For the emitted light, any material between the FRET probe 186 and the photodiode 184 must be transparent. Therefore, the wall portion 97 between the probe 186 and the photodiode 1 8 4 must also be optically transparent to the emitted light. In the L〇C device 301, the wall portion 97 is a thin layer of cerium oxide (about 0.5 μm). Direct intrusion of photodiode 184 beneath each hybridization chamber 180 allows the use of a very small volume of probe-target hybrid, yet still produces detectable fluorescent signals (see Figure 54). A small volume of hybridization chamber can be used because of the small amount. Prior to hybridization, the amount of probe required to detect the probe-target hybrid is greater than 270 picograms (corresponding to 900,000 cubic micrometers), and in most cases less than 60 picograms (corresponding to Up to 200,000 cubic micrometers, typically less than 12 picograms (corresponding to 40,000 cubic micrometers), and in the case of the LOC device 301 shown in Figure 1 is less than 2.7. picograms (corresponding to a chamber volume of 9,000 cubic micrometers) ). Of course, reducing the size of the hybridization chamber allows for higher chamber densities and therefore more probes on the LOC device. In LOC unit 301, the hybridization portion has more than 1,000 chambers (i.e., less than 2,250 square microns per chamber) in an area of 1,500 microns by 1,500 microns. The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the small number of probes required for each chamber is that during the manufacture of the L0C device -53-201211243, only a very small amount of probe solution needs to be configured into each chamber. A specific embodiment of the LOC device according to the present invention may be configured using a probe solution of 1 nanoliter or less. After nucleic acid amplification, the boiling initiation valve 108 is activated and the amplicon flows along the flow path 176 and into each of the hybridization chambers 180 (see Figures 52 and 56). The endpoint liquid sensor 178 indicates the point at which the hybridization chamber 1 1000 is charged with the amplicon and the heater 182 can be activated.

於充分雜交時間後,啓動LED 26 (見圖2 )。各雜 交腔室180中之開口設有光學窗136以將FRET探針186 暴露於激發輻射(見圖52、54及56) 。LED 26發光持 續充分長的時間以誘發自探針之高強度的螢光訊號。於激 發期間,光二極體184短路(shorted )。經預編程延遲 3 00 (見圖2)之後,於無激發光下,致能光二極體184 及檢測螢光發射。將光二極體184之有效區185上之入射After sufficient hybridization time, LED 26 is activated (see Figure 2). The opening in each of the hybrid chambers 180 is provided with an optical window 136 to expose the FRET probe 186 to the excitation radiation (see Figures 52, 54 and 56). The LED 26 illuminates for a sufficiently long period of time to induce a high intensity fluorescent signal from the probe. During the excitation, the photodiode 184 is shorted. After a preprogrammed delay of 300 (see Figure 2), the photodiode 184 is enabled and the fluorescent emission is detected under no excitation light. Incidence of the active region 185 of the photodiode 184

光(見圖54)轉換成可使用CMOS電路86測量之光電流 〇 各雜交腔室180載有用於檢測單一標靶核酸序列之探 針。若希望,則各雜交腔室180可載有檢測超過1,000種 不同標靶的探針。替代性地,許多或全部雜交腔室可載有 重複地檢測相同標靶核酸之相同探針。於雜交腔室陣列 1 1 〇中以此方式複製探針使得所得結果之可信度增加,以 及若希望’可藉由相鄰雜交腔室之光二極體來合倂所有結 果以得到單一結果。熟此技藝者將了解,依據分析明細, 於雜交腔室陣列U0上可具有1至超過1,000種不同的探 -54- 201211243 針。 增濕器及濕度感測器Light (see Figure 54) is converted to a photocurrent that can be measured using CMOS circuitry 86. Each hybridization chamber 180 carries a probe for detecting a single target nucleic acid sequence. If desired, each hybridization chamber 180 can carry probes that detect more than 1,000 different targets. Alternatively, many or all of the hybridization chambers may carry the same probe that repeatedly detects the same target nucleic acid. Copying the probes in this manner in the hybrid chamber array 1 1 使得 increases the confidence of the results obtained, and if desired, all results can be combined by photodiodes of adjacent hybridization chambers to obtain a single result. Those skilled in the art will appreciate that depending on the analysis details, there may be from 1 to over 1,000 different probes in the hybrid chamber array U0. Humidifier and humidity sensor

圖6的插圖AG指示增濕器196的位置。增濕器免於 LOC裝置301操作期間之試劑及探針的蒸發。如最佳顯示 於圖55之放大圖中者,水貯槽188係流體地連接至三個 蒸發器190。水貯槽188塡充有分子生物等級用水且於製 造期間爲密封的。如最佳顯示於圖55及67中者’藉由毛 細作用,水被抽拉至三個下管道1 94且沿著個別水供應通 道192而到達蒸發器190之三個上管道193組。彎液面固 定於各個上管道193以保持水。蒸發器具有環形加熱器 191,其環繞上管道193。藉由導熱柱3 76,環形加熱器 191係連接至CMOS電路86而至頂金屬層195 (見圖37 )。於啓動時,環形加熱器191加熱水而致使水蒸發並濕 潤周圍的裝置。 於圖6中亦顯示濕度感測器232的位置。然而,最佳 如顯示於圖63中之插圖AH的放大圖者,濕度感測器具 有電容式梳狀結構。經微影地蝕刻之第一電極296及與經 微影地蝕刻之第二電極298彼此相對,使得彼等之齒交插 。相對的電極形成電容器,其具有可藉由CMOS電路86 來監測之電容。隨濕度增加,電極間之空氣隙的介電常數 增加,致使電容亦增加。濕度感測器23 2鄰接雜交腔室陣 列1 1 〇 (最主要之濕度測量位置),以減緩含有暴露的探 針之溶液蒸發。 -55- 201211243 反饋感測器The inset AG of Figure 6 indicates the position of the humidifier 196. The humidifier is free of evaporation of reagents and probes during operation of the LOC device 301. As best shown in the enlarged view of Fig. 55, the water sump 188 is fluidly connected to the three evaporators 190. The water storage tank 188 is filled with molecular biological grade water and is sealed during manufacture. As best shown in Figures 55 and 67, by capillary action, water is drawn to the three lower tubes 1 94 and along the individual water supply channels 192 to the three upper tubes 193 of the evaporator 190. The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has an annular heater 191 that surrounds the upper conduit 193. The annular heater 191 is connected to the CMOS circuit 86 to the top metal layer 195 (see Fig. 37) by the heat conducting column 3 76. At startup, the ring heater 191 heats the water causing the water to evaporate and wet the surrounding devices. The position of the humidity sensor 232 is also shown in FIG. However, preferably, as shown in the enlarged view of the illustration AH shown in Fig. 63, the humidity sensing device has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The opposing electrodes form a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, causing the capacitance to increase. The humidity sensor 23 2 abuts the hybridization chamber array 1 1 〇 (the most important humidity measurement location) to slow the evaporation of the solution containing the exposed probe. -55- 201211243 Feedback Sensor

溫度及液體感測器係倂入LOC裝置3 0 1整體以於裝 置操作期間提供反饋及診斷。參照圖35,將九個溫度感 測器1 7 0分配至擴增部1 1 2整體。同樣地,培養部1 1 4亦 具有九個溫度感測器1 70。這些感測器各使用2x2陣列之 雙極接面電晶體(B】T )以監測流體溫度及提供反饋至 CMOS電路86。CMOS電路86利用此以準確地控制核酸 擴增處理期間的熱循環以及熱溶胞及培養期間之任何加熱 於雜交腔室180中,CMOS電路86使用雜交加熱器 1 8 2作爲溫度感測器(見圖5 6 )。雜交加熱器1 8 2之電阻 係溫度相依,且CMOS電路86利用此以得到各雜交腔室 180之溫度讀取。The temperature and liquid sensor system is integrated into the LOC device 310 to provide feedback and diagnostics during device operation. Referring to Fig. 35, nine temperature sensors 170 are assigned to the entire amplification unit 1 1 2 . Similarly, the culture unit 1 14 also has nine temperature sensors 170. These sensors each use a 2x2 array of bipolar junction transistors (B)T to monitor fluid temperature and provide feedback to CMOS circuitry 86. The CMOS circuit 86 utilizes this to accurately control the thermal cycling during the nucleic acid amplification process as well as any heating during the thermal lysis and incubation in the hybridization chamber 180, which uses the hybridization heater 1 8 2 as a temperature sensor ( See Figure 5 6). The resistance of the hybrid heater 108 is temperature dependent and the CMOS circuit 86 utilizes this to obtain a temperature reading of each of the hybridization chambers 180.

LOC裝置301亦具有一些MST通道液體感測器174 及蓋通道液體感測器208。圖35顯示於經加熱的微通道 158中之每間隔曲折之一端的MST通道液體感測器174 之線。最佳如顯示於圖37中者,MST通道液體感測器 174爲藉由CMOS結構86中之頂金屬層195之暴露的區 域所形成之一對電極。液體封閉電極間的電路以指示其存 在於感測器的位置。 圖25顯示蓋通道液體感測器208之放大透視圖。相 對的TiAl電極對218及220係沉積於頂部層66上。電極 2 1 8及2 2 0之間爲間隙2 22,以於缺少液體的情況中保持 -56- 201211243 電路爲開路。液體存在時使電路閉合及CMOS電路86利 用此反饋以監測流動。 重力自主(GRAVITATIONAL INDEPENDENCE)The LOC device 301 also has a number of MST channel liquid sensors 174 and a cover channel liquid sensor 208. Figure 35 shows the line of the MST channel liquid sensor 174 at one of the ends of each of the heated microchannels 158. Preferably, as shown in FIG. 37, the MST channel liquid sensor 174 is a pair of electrodes formed by the exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid closes the circuit between the electrodes to indicate where they are located in the sensor. Figure 25 shows an enlarged perspective view of the lid channel liquid sensor 208. Pairs of TiAl electrode pairs 218 and 220 are deposited on top layer 66. Between the electrodes 2 1 8 and 2 2 0 is a gap 2 22 to keep the circuit open in the absence of liquid -56-201211243. The circuit is closed when the liquid is present and the CMOS circuit 86 uses this feedback to monitor the flow. Gravity autonomous (GRAVITATIONAL INDEPENDENCE)

試驗模組10爲方向自主》其不需被緊固至平穩表面 而操作。因毛細作用驅動之流體流以及缺少至輔助設備之 外部管路,使得模組確實爲可攜式並可簡易地插入至類似 的可攜式手持讀取器,諸如行動電話。重力自主操作代表 試驗模組亦加速度性地獨立於所有實用範圍。其耐衝擊及 耐振動並能於移動的載具上或是於攜帶的行動電話上操作 透析變體 具有流體通道以避免捕集的氣泡之透析部 下述爲參照圖72、73、74及75所示之LOC變體 VIII 518之LOC裝置之具體實施例。此LOC裝置具有以 流體樣本塡充且無氣泡被捕集於通道中之透析部。LOC變 體VIII 518亦具有另外的材料層,參照爲界面層594。界 面層594係設置於蓋通道層80與CMOS + MST裝置48 之MST通道層100之間。界面層5 94致使試劑貯槽與 MST層87之間更複雜的流體互連而不會增加矽基板84 的尺寸。 參照圖73,設計旁路通道600以於自界面廢料通道 604至界面標靶通道602之流體樣本中引入時間延遲。此 201211243 時間延遲使得流體樣本流經透析MST通道204而至固定 彎液面之透析汲取168。利用於上管道處之旁路通道600 至界面標靶通道6 02之毛細作用起始特徵(CIF) 2 02,自 透析MST通道204之所有透析吸入孔168之上游之點, 樣本流體塡充界面標靶通道602。 不需旁路通道600,界面標靶通道602仍開始自上游 端進行塡充,但最終,行進的彎液面到達並通過尙未被塡 充之MST通道之上管道,通向於該點捕獲的空氣。捕集 的空氣降低通過白血球透析部328之樣本流率。 預-雜交過濾 LOC裝置之變體,LOC變體XII 758,使用位於擴增 部1 1 2的出口之小組分透析部6 8 2 (見圖9 2至9 9 )。小 組分透析部6 8 2提供預-雜交過濾純化階段29 3 (見圖92 )。預-雜交過濾移除細胞溶胞後殘留於樣本流中之細胞 碎片。雜交效率可受到細胞碎片的影響,因此於雜交前降 低細胞碎片的濃度係有利的。 參照圖97、98及99,小組分透析部68 2具有位於底 通道層100中之三個相鄰通道;兩個小組分通道762毗鄰 大組分通道7 6 0兩側。沿著大組分通道7 6 0之呈倒錐形開 口 7 64之一系列錐孔提供與小組分通道762之流體連結。 於大多數實際應用中,錐孔爲1至8微米寬且1至8微米 高。當樣本向下流至大組分通道760時,足夠小而得以通 過倒錐形開口的粒子(如,擴增子)流過小組分通道762 -58- 201211243 ,而較大的粒子(如,細胞碎片)留置於最終結束於盲終 端766之大組分通道。較小的粒子沿著小組分通道繼續流 至雜交腔室陣列1 1 0之相對側,兩較小的粒子流均沿通過 陣列之蜿蜒路徑而到達分別的盲終端768 (見圖99 )。於 檢測前,小組分擴增子塡充所有獨立的雜交腔室180。 核酸擴增變體The test module 10 is directional and operates without being fastened to a smooth surface. The fluid flow driven by capillary action and the lack of external tubing to the auxiliary device make the module truly portable and easily plugged into a similar portable handheld reader, such as a mobile phone. The gravity autonomous operation represents that the test module is also acceleration independent of all practical ranges. The dialysis unit which is resistant to impact and vibration and can operate the dialysis variant on a moving vehicle or on a mobile phone to have a fluid passage to avoid trapped bubbles is described below with reference to Figures 72, 73, 74 and 75. A specific embodiment of the LOC device of LOC variant VIII 518 is shown. The LOC device has a dialysis section that is filled with a fluid sample and trapped in a channel without bubbles. LOC Variant VIII 518 also has an additional layer of material, referenced to interface layer 594. Interface layer 594 is disposed between cover channel layer 80 and MST channel layer 100 of CMOS + MST device 48. Interfacial layer 5 94 causes a more complex fluid interconnection between the reagent sump and MST layer 87 without increasing the size of ruthenium substrate 84. Referring to Figure 73, bypass channel 600 is designed to introduce a time delay from the fluid sample from interface waste channel 604 to interface target channel 602. This 201211243 time delay causes the fluid sample to flow through the dialysis MST channel 204 to the dialysis draw 168 of the fixed meniscus. The capillary action initiation feature (CIF) 2 02 of the bypass channel 600 to the interface target channel 2020 at the upper conduit, the point upstream of all the dialysis suction holes 168 of the dialysis MST channel 204, the sample fluid filling interface Target channel 602. Without the bypass channel 600, the interface target channel 602 still begins to charge from the upstream end, but eventually, the traveling meniscus arrives and passes through the untwisted MST channel above the pipe, leading to the point capture air. The trapped air reduces the sample flow rate through the leukocyte dialysis section 328. A pre-hybridization filter variant of the LOC device, LOC variant XII 758, uses a small component dialysis section 682 located at the outlet of the amplification section 112 (see Figures 9 2 to 9 9). The small component dialysis section 682 provides a pre-hybridization filtration purification stage 29 3 (see Figure 92). Pre-hybridization filters remove cell debris that remains in the sample stream after cell lysis. Hybridization efficiency can be affected by cell debris, so it is advantageous to reduce the concentration of cell debris prior to hybridization. Referring to Figures 97, 98 and 99, the small component dialysis section 68 2 has three adjacent channels in the bottom channel layer 100; the two small component channels 762 are adjacent to both sides of the large component channel 760. A series of tapered bores along the large component passage 760 are provided with a series of tapered bores that provide fluid connection with the small component passages 762. In most practical applications, the taper is 1 to 8 microns wide and 1 to 8 microns high. When the sample flows down to the large component channel 760, particles that are small enough to pass through the inverted tapered opening (eg, amplicons) flow through the small component channels 762-58-201211243, while larger particles (eg, cells) The fragments are left in the large component channels that end up at the blind terminal 766. The smaller particles continue to flow along the small component channels to the opposite side of the hybridization chamber array 110, and the two smaller particle streams all travel along the enthalpy path through the array to the respective blind terminals 768 (see Figure 99). The small component amplicons fill all of the individual hybridization chambers 180 prior to detection. Nucleic acid amplification variant

直接PCR 傳統上,於製備反應混合物之前,PCR需要大量純化 標靶DNA »然而,適當地改變化學及樣本濃度,可利用 最少量的DNA純化實施核酸擴增,或進行直接擴增。當 以PCR進行核酸擴增時,此方法便稱做直接PCR。於 LOC裝置中於經控制的常溫下實施核酸擴增時,此方法爲 直接恆溫擴增。當用於LOC裝置時,尤其是關於所需流 體設計的簡化時,直接核酸擴增技術具相當多的優勢。直 接PCR或是直接恆溫擴增之擴增化學調整包括增加緩衝 液強度、使用高活性及高進行性之聚合酶及與潛在聚合酶 抑制劑螯合之添加物。稀釋樣本中存在之抑制劑亦爲重要 的。 爲利用直接核酸擴增技術,LOC裝置設計倂入兩個額 外的特徵。第一特徵爲試劑貯槽(例如’圖8中的貯槽 5 8 ),其經適當地尺寸化以供應充分量之擴增反應混合或 稀釋劑,使得可能千擾擴增化學之樣本成分的最終濃度足 夠低以成功地進行核酸擴增。非細胞樣本成分的所欲稀釋 -59- 201211243Direct PCR Traditionally, PCR requires extensive purification of target DNA prior to preparation of the reaction mixture. However, by appropriately changing the chemical and sample concentrations, nucleic acid amplification can be performed using minimal amount of DNA purification, or direct amplification can be performed. When nucleic acid amplification is performed by PCR, this method is called direct PCR. When nucleic acid amplification is carried out in a LOC apparatus at a controlled normal temperature, the method is direct constant temperature amplification. Direct nucleic acid amplification techniques have considerable advantages when used in LOC devices, especially with regard to the simplification of the desired fluid design. Amplification chemical adjustments for direct PCR or direct isothermal amplification include increased buffer strength, the use of highly active and highly progressive polymerases, and additions to potential polymerase inhibitors. It is also important to dilute the inhibitors present in the sample. To exploit direct nucleic acid amplification techniques, LOC devices are designed to incorporate two additional features. The first feature is a reagent reservoir (eg, 'storage tank 58 in Figure 8) that is appropriately sized to supply a sufficient amount of amplification reaction mix or diluent such that the final concentration of sample components that may interfere with the amplification chemistry may be Low enough to successfully perform nucleic acid amplification. Desirable dilution of non-cellular sample components -59- 201211243

度爲5倍至20倍。當適度確認標靶核酸序列的濃度被維 持於足夠高以用於擴增及檢測時,使用不同的LOC結構 ,例如圖4中的病原體透析部70。於此具體實施例中( 進一步於圖6中說明),於樣本萃取部290之上游使用有 效地濃縮足夠小而得以進入擴增部292之病原體的濃度並 將較大細胞排出至廢料貯槽76之透析部。於另外的具體 實施例中,使用透析部以選擇性地去除血漿中之蛋白質及 鹽而保留關注的細胞。The degree is 5 to 20 times. When the concentration of the target nucleic acid sequence is moderately confirmed to be sufficiently high for amplification and detection, a different LOC structure, such as the pathogen dialysis section 70 of Figure 4, is used. In this particular embodiment (further illustrated in Figure 6), the concentration of the pathogen sufficient to enter the amplification portion 292 is effectively concentrated upstream of the sample extraction portion 290 and the larger cells are discharged to the waste storage tank 76. Dialysis department. In another specific embodiment, a dialysis section is used to selectively remove proteins and salts in plasma while retaining cells of interest.

支持直接核酸擴增之第二LOC結構性特徵爲設計通 道的深寬比以調整樣本及擴增混合成分之間的混合比。例 如,爲確保經由單一混合步驟之相關於樣本之抑制劑的稀 釋爲較佳的5倍-20倍範圍中,設計樣本及試劑通道之長 度與截面,以使混合起始位置之上游的樣本通道構成之流 組抗較試劑混合物流動之通道的流組抗高出4倍-1 9倍。 經由控制設計幾合而容易地控制微通道中之流組抗。針對 恆定截面積,微通道之流組抗隨通道長度而線性地增加。 對於混合設計而言爲重要的是,微通道中之流組抗較多取 決於最小截面積尺寸。例如,當深寬比極爲不均一時,方 形截面之微通道的流組抗與最小垂直尺寸之立方成反比。 反轉錄酶PCR ( RT-PCR) 當分析或萃取之樣本核酸種類爲RNA時’諸如來自 RNA病毒或信使RNA,於PCR擴增之前必須先將RNA反 轉錄爲互補DNA ( cDNA )。可於與PCR相同之腔室中實 -60- 201211243A second LOC structural feature that supports direct nucleic acid amplification is to design the aspect ratio of the channel to adjust the mixing ratio between the sample and the amplified mixture. For example, to ensure that the dilution of the inhibitor associated with the sample via a single mixing step is in the range of preferably 5 to 20 times, the length and cross section of the sample and reagent channels are designed such that the sample channel upstream of the mixing start position The composition of the flow group is 4 to 1 times higher than that of the channel through which the reagent mixture flows. The flow group resistance in the microchannel is easily controlled by controlling the design. For a constant cross-sectional area, the flow resistance of the microchannel increases linearly with the length of the channel. It is important for the hybrid design that the flow group resistance in the microchannel is more dependent on the minimum cross-sectional area size. For example, when the aspect ratio is extremely non-uniform, the flow resistance of the microchannels of the square cross section is inversely proportional to the cube of the smallest vertical dimension. Reverse Transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted is RNA, such as from RNA virus or messenger RNA, RNA must be reverse transcribed into complementary DNA (cDNA) prior to PCR amplification. Can be used in the same chamber as PCR -60- 201211243

施反轉錄反應(一步驟RT-PCR),或是其可爲分別的起 始反應(二步驟RT-PCR )。於此所述之LOC變體中’可 藉由添加反轉錄酶及聚合酶至試劑貯槽62以及程式化加 熱器154以先循環反轉錄步驟並接續進行核酸擴增步驟’ 而簡單地實施一步驟RT-PCR。藉由利用試劑貯槽58來儲 存及分配緩衝液、引子、dNTP及反轉錄酶,以及利用培 養部114以用於反轉錄步驟,接著於擴增部112中以普通 方式進行擴增,亦可簡單地完成二步驟RT-PCR。 恆溫核酸擴增 針對一些應用,較佳之核酸擴增方法爲恆溫核酸擴增 ,因此不需於各種溫度循環重複地循環反應成分,而是將 擴增部維持於常溫下,普通爲約37°C至41°C。已描述一 些恆溫核酸擴增方法,包括股取代擴增(SDA)、轉錄介 導擴增(TMA)、依賴核酸序列擴增(NASBA)、重組酵 素聚合酶擴增(RPA )、解旋恆溫DNA擴增(HDA )、 滾動循環擴增(RCA)、分枝型擴增(RAM)及環形恆溫 擴增(LAMP ) ’以及此等之任何或其他恆溫擴增方法可 用於本文之LOC裝置之特定具體實施例中。 爲實施恆溫核酸擴增,鄰接擴增部之試劑貯槽60及 62將載有用於特定恆溫方法之適當的試劑而不是載有 PCR擴增混合及聚合酶。例如,針對SDA,試劑貯槽60 含有擴增緩衝液、引子及dNTP,以及試劑貯槽62含有適 當的核酸內切酶及外切-DNA聚合酶。針對rpa,試劑貯 -61 - 201211243 槽60含有擴增緩衝液、引子、dNTP及重組酶蛋白,及試 劑貯槽62含有股取代〇ΝΑ聚合酶,諸如。同樣地, 針對HDA ’試劑貯槽60含有擴增緩衝液、引子及dNTP ’以及試劑貯槽62含有適當的DN A聚合酶及解旋酶(而 非使用熱)以解開雙股DNA。熟此技藝者將了解以任何 適用於核酸擴增法之方式,可將必要試劑分配於兩個試劑 貯槽。A reverse transcription reaction (one-step RT-PCR) is applied, or it may be a separate initiation reaction (two-step RT-PCR). In the LOC variant described herein, a step can be simply performed by adding a reverse transcriptase and a polymerase to the reagent storage tank 62 and the staging heater 154 to circulate the reverse transcription step and continue the nucleic acid amplification step. RT-PCR. The storage and distribution of the buffer, the primer, the dNTP, and the reverse transcriptase by the reagent storage tank 58 and the use of the culture portion 114 for the reverse transcription step, followed by amplification in the ordinary portion of the amplification portion 112 may be simple. The two-step RT-PCR was completed. Constant temperature nucleic acid amplification For some applications, the preferred nucleic acid amplification method is constant temperature nucleic acid amplification, so that it is not necessary to repeatedly circulate the reaction components at various temperature cycles, but the amplification portion is maintained at normal temperature, usually about 37 ° C. To 41 ° C. Some methods for thermostatic nucleic acid amplification have been described, including strand-substituted amplification (SDA), transcription-mediated amplification (TMA), nucleic acid sequence-dependent amplification (NASBA), recombinant enzyme polymerase amplification (RPA), uncoupling thermostated DNA Amplification (HDA), rolling cycle amplification (RCA), branched amplification (RAM), and circular thermostat amplification (LAMP) and any other or other isothermal amplification methods available for use in the LOC devices herein In a specific embodiment. To perform a constant temperature nucleic acid amplification, reagent reservoirs 60 and 62 adjacent to the amplification section will carry appropriate reagents for a particular constant temperature method rather than carrying PCR amplification mixes and polymerases. For example, for SDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reagent reservoir 62 contains appropriate endonucleases and exo-DNA polymerases. For rpa, reagent storage -61 - 201211243 tank 60 contains amplification buffer, primer, dNTP and recombinase protein, and reagent reservoir 62 contains a stock-substituted ruthenium polymerase, such as. Similarly, the HDA&apos; reagent reservoir 60 contains amplification buffer, primer and dNTP&apos; and reagent reservoir 62 contains appropriate DN A polymerase and helicase (without heat) to unwind the double stranded DNA. Those skilled in the art will appreciate that the necessary reagents can be dispensed into two reagent reservoirs in any manner suitable for nucleic acid amplification.

針對自RNA病毒,諸如HIV或C型肝炎病毒之病毒 核酸的擴增,NASB A或TMA係適當的因其不需先將RNA 轉錄成cDNA。於此實例中,試劑貯槽60塡充有擴增緩 衝液、引子及dNTP,以及試劑貯槽62塡充有RNA聚合 酶、反轉錄酶及任意的RNaseH。For amplification of viral viruses, such as HIV or hepatitis C virus nucleic acids, NASB A or TMA is appropriate because it does not require the transcription of RNA into cDNA. In this example, the reagent reservoir 60 is filled with amplification buffer, primer, and dNTP, and the reagent reservoir 62 is filled with RNA polymerase, reverse transcriptase, and any RNaseH.

針對一些恆溫核酸擴增類型,於維持恆溫核酸擴增之 溫度以利反應續行之前,必須採用初始變性循環以分開雙 股DNA模板。因可藉擴增微通道158中之加熱器154嚴 密地控制擴增部112中之混合的溫度,於本文中描述之 LOC裝置之所有具體實施例中均可輕易完成此變性循環( 見圖1 4 )。 恆溫核酸擴增對於樣本中潛在的抑制劑之耐受性較高 ,因而通常適用於自所欲樣本之直接核酸擴增。因此,恆 溫核酸擴增尤其有用於分別顯示於圖79、80及81中之 LOC 變體 XLIII 6 73、LOC 變體 XLIV 674 及 LOC 變體 XLVII 677。直接®溫擴增亦可與如圖79及81中所示之 —或多個預擴增透析步驟7〇、68 6或6 8 2及/或如圖80 -62- 201211243 中所示之預-雜交透析步驟682組合,以分別於核酸擴增 之前有助於樣本中之標靶細胞的部份濃縮或是於樣本進入 雜交腔室陣列110前移除不想要的細胞碎片。熟此技藝者 將了解可使用預·擴增透析及預-雜交透析之任何組合。 亦可以平行的擴增部,諸如,圖71、76及77中所槪 述者,實施恆溫核酸擴增。多工及一些恆溫核酸擴增方法 ,諸如LAMP,係與初始反轉錄步驟相容以擴增RNA。For some types of thermostatic nucleic acid amplification, an initial denaturation cycle must be employed to separate the double-stranded DNA template before maintaining the temperature of the thermostated nucleic acid amplification for continued reaction. Since the temperature of the mixing in the amplification section 112 can be tightly controlled by the heater 154 in the amplification microchannel 158, this denaturation cycle can be easily accomplished in all of the specific embodiments of the LOC device described herein (see Figure 1). 4). Thermostatic nucleic acid amplification is more tolerant to potential inhibitors in the sample and is therefore generally suitable for direct nucleic acid amplification from a desired sample. Thus, constant temperature nucleic acid amplification is particularly useful for LOC variant XLIII 6 73, LOC variant XLIV 674 and LOC variant XLVII 677, respectively, shown in Figures 79, 80 and 81. Direct® temperature amplification can also be as shown in Figures 79 and 81—or multiple pre-amplification dialysis steps 7〇, 68 6 or 6 8 2 and/or as shown in Figure 80-62-201211243 Hybridization dialysis step 682 combines to facilitate partial concentration of target cells in the sample prior to nucleic acid amplification, respectively, or to remove unwanted cell debris prior to entry of the sample into hybridization chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used. Constant temperature nucleic acid amplification can also be performed in parallel amplification sections, such as those described in Figures 71, 76 and 77. Multiplex and some constant temperature nucleic acid amplification methods, such as LAMP, are compatible with the initial reverse transcription step to amplify RNA.

螢光檢測系統之另外的細節 圖58及59顯示雜交-反應性FRET探針236。此等經 常被稱爲分子信標及係爲由單股核酸產生之莖-及-環探針 ,並於與互補核酸雜交時發螢光。圖58顯示於與標靶核 酸序列238雜交之前之單一FRET探針236。探針具有環 240、莖242、於5’端之螢光團246及於3’端之淬熄劑 248。環240包含與標靶核酸序列23 8互補之序列。探針 序列兩側的互補序列黏著在一起以形成莖242。 於缺少互補標靶序列時,如圖5 8中所示者,探針維 持閉合。莖242保持螢光團-淬熄劑對彼此相當接近,使 得大量的共振能量可於彼此間傳輸,而當以激發光244照 射時實質地消除螢光團發螢光團的能力。 圖59顯示呈開放或經雜交組態的FRET探針23 6。於 與互補標靶核酸序列23 8雜交時,莖-及-環結構被破壞, 螢光團及淬熄劑於空間上分離,因此恢復螢光團246發螢 光的能力。光學檢測地螢光發射250以作爲探針已雜交的 -63- 201211243 指標》 探針以極高專一性與互補標靶雜交,因探針之莖螺旋 係設計成較具單一不互補核苷酸之探針-標靶螺旋穩定。 因雙股DN A相對堅固,立體上探針—標靶螺旋與莖螺旋不 可能共存》 引子-聯結的探針Additional Details of the Fluorescence Detection System Figures 58 and 59 show hybridization-reactive FRET probes 236. These are often referred to as molecular beacons and are stem-and-loop probes produced from single-stranded nucleic acids and fluoresce when hybridized to complementary nucleic acids. Figure 58 shows a single FRET probe 236 prior to hybridization to the target nucleic acid sequence 238. The probe has a ring 240, a stem 242, a fluorophore 246 at the 5' end, and a quencher 248 at the 3' end. Loop 240 comprises a sequence that is complementary to the target nucleic acid sequence 238. The complementary sequences flanking the probe sequence are bonded together to form stem 242. In the absence of a complementary target sequence, as shown in Figure 58, the probe remains closed. The stems 242 maintain the fluorophore-quenching agents in close proximity to each other such that a large amount of resonant energy can be transmitted between each other and substantially eliminate the ability of the fluorophore to emit fluorophores when illuminated by the excitation light 244. Figure 59 shows a FRET probe 23 6 in an open or hybridized configuration. Upon hybridization with the complementary target nucleic acid sequence 23 8 , the stem-and-loop structure is disrupted, and the fluorophore and quencher are spatially separated, thereby restoring the ability of the fluorophore 246 to fluoresce. Optical detection of fluorescence emission 250 as a probe has been hybridized -63-201211243 Index" probes are highly specific to hybridization with complementary targets, because the probe stem system is designed to have a single non-complementary nucleotide The probe-target helix is stable. Because the double-stranded DN A is relatively strong, the stereo-top probe—the target helix and the stem helix cannot coexist.” The primer-coupled probe

引子-聯結的莖-及-環探針及引子-聯結的槔性探針, 亦稱作蠍子型探針,爲分子信標之替代物且可用於LOC 裝置之即時及定量核酸擴增。及時擴增可直接實施於LOC 裝置之雜交腔室中。使用引子-聯結的探針之優點爲探針 元件實體地聯結至引子,因此於核酸擴增期間僅需單次雜 交事件而不需要分別的引子雜交及探針雜交。此確.保即時 有效地反應且當使用分別的引子及探針時產生更強的訊號 、更短的反應時間’具有更佳的識別度。於製造期間,探 針(與聚合酶及擴增混合)將沉積於雜交腔室180中且不 需LOC裝置上之獨立的擴增部。替代性地,擴增部未被 使用或用於其他反應。 引子-聯結的線性探針 圖82及83分別顯示首輪核酸擴增期間之引子-聯結 的線性探針692及於後續核酸擴增期間之雜交的組態。參 照圖82,引子-聯結的線性探針692具有雙股莖區段242 。其中一股結合引子聯結的探針序列696,其係與標靶核 -64- 201211243 酸696上的區域同源且以螢光團246標記其5’端,以及 經由擴增阻斷物694聯結其3’端至寡核苷酸引子700。以 淬熄劑部分248標記莖242之另外一股的3’端。於完成 首輪核酸擴增之後,利用目前爲互補的序列698 ’探針可 環繞且雜交至延伸的股。於首輪核酸擴增期間,寡核苷酸 引子700黏著至標靶DN A 238(圖82)並接著延伸而形 成含有探針序列及擴增產物兩者之DNA股。擴增阻斷物Primer-linked stem-and-loop probes and primer-linked scorpion probes, also known as scorpion-type probes, are alternatives to molecular beacons and can be used for both immediate and quantitative nucleic acid amplification of LOC devices. Timely amplification can be performed directly in the hybridization chamber of the LOC device. The advantage of using a primer-ligated probe is that the probe element is physically linked to the primer, thus requiring only a single hybridization event during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures immediate and efficient response and produces stronger signals and shorter reaction times when using separate primers and probes' for better recognition. During manufacture, the probe (mixed with the polymerase and amplification) will be deposited in the hybridization chamber 180 without the need for a separate amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions. Primer-Linked Linear Probes Figures 82 and 83 show the configuration of the primer-ligated linear probe 692 during the first round of nucleic acid amplification and the hybridization during subsequent nucleic acid amplification, respectively. Referring to Figure 82, the primer-coupled linear probe 692 has a double stem section 242. One of the probe sequences 696, which binds to the primer, is homologous to the region on the target nucleus-64-201211243 acid 696 and is labeled with the fluorophore 246 at its 5' end, and linked via amplification blocker 694 Its 3' end to oligonucleotide primer 700. The 3' end of the other strand of stem 242 is labeled with quenching portion 248. After completion of the first round of nucleic acid amplification, the currently complementary sequence 698&apos; probe can be used to wrap around and hybridize to the extended strand. During the first round of nucleic acid amplification, oligonucleotide primer 700 is attached to target DN A 238 (Fig. 82) and then extended to form a DNA strand containing both the probe sequence and the amplification product. Amplification blocker

694防止聚合酶之讀取通過及拷貝探針區域6 96。於接續 的變性時,雜交之延伸的寡核苷酸引子700/模板及引子-聯結的線性探針之雙股莖242分離,因此釋出淬熄劑248 。一但用於黏著及延伸步驟的溫度降低,引子聯結的線性 探針之引子聯結的探針序列696捲曲並與延伸的股上之擴 增的互補序列698雜交,以及檢測出的螢光指出標靶 DNA存在。未延伸的引子-聯結的線性探針保留其雙股莖 且螢光保持淬熄。此檢測方法特別適於快速檢測系統,因 其依賴單一分子製程。 引子-聯結的莖-及-環探針 圖84A至84F顯示引子-聯結的莖-及-環探針704之 操作。參照圖84A ’引子-聯結的莖-及-環探針7〇4具有互 補雙股DNA之莖242及合倂探針序列的環240»以蛋光 團246標記其中一個莖股708之5,端。以3,-端淬熄劑 248標記另一股71〇,且另一股71〇帶有擴增阻斷物694 及寡核苷酸引子700兩者。於初始變性相(見圖84B), -65- 201211243694 prevents the polymerase from reading through and copying the probe region 6 96 . Upon subsequent denaturation, the hybridized extended oligonucleotide primer 700/template and the primer-linked linear probe of the double stem 242 are separated, thereby releasing the quencher 248. Once the temperature for the adhesion and extension steps is reduced, the primer-linked probe sequence 696 of the primer-joined linear probe is crimped and hybridized to the amplified complementary sequence 698 on the extended strand, and the detected fluorescent light indicates the target. DNA exists. The unextended primer-linked linear probe retains its double stem and the fluorescence remains quenched. This test method is particularly suitable for rapid detection systems because it relies on a single molecular process. Primer-Linked Stem-and-Ring Probes Figures 84A through 84F show the operation of the primer-coupled stem-and-loop probes 704. Referring to Figure 84A, the primer-and-loop probe 7〇4 has a complementary double-stranded DNA stem 242 and a loop-like probe sequence loop 240» labeled with one of the stem strands 708 by egg light 246. end. Another 71 标记 is labeled with 3,-end quencher 248, and the other 71 〇 carries both amplification blocker 694 and oligonucleotide primer 700. In the initial degeneration phase (see Figure 84B), -65- 201211243

標靶核酸23 8之股及引子聯結的莖242分開莖-及-環探針 704。當溫度冷卻以用於黏著相時(見圖84C ),引子-聯 結的莖-及-環探針704上之寡核苷酸引子700與標靶核酸 序列23 8雜交。於延伸期間(見圖84D ),合成標靶核酸 序列23 8之互補706以形成含有探針序列704及擴增的產 物兩者之DNA股。擴增阻斷物694防止聚合酶之讀取通 過及拷貝探針區域704»變性之後,當接著黏著探針時, 引子-聯結的莖-及·環探針之環區段240之探針序列(見 圖84F )黏著至延伸的股上之互補序列706。此組態使得 螢光團246與淬熄劑248相距甚遠,造成螢光發射的顯著 增強。 控制探針The stem of the target nucleic acid 23 8 and the stem 242 to which the primer is ligated are separated from the stem-and-loop probe 704. When the temperature is cooled for the adhesive phase (see Figure 84C), the oligonucleotide primer 700 on the primer-linked stem-and-loop probe 704 hybridizes to the target nucleic acid sequence 23 8 . During extension (see Figure 84D), the complement 706 of the target nucleic acid sequence 23 is synthesized to form a DNA strand containing both the probe sequence 704 and the amplified product. The amplification blocker 694 prevents the polymerase from being read through and the probe region 704 is denatured, and when the probe is subsequently attached, the probe sequence of the primer-linked stem-and-loop probe loop segment 240 (See Figure 84F) A complementary sequence 706 adhered to the extended strand. This configuration leaves the fluorophore 246 far from the quencher 248, resulting in a significant increase in fluorescence emission. Control probe

雜交腔室陣列110包括具有用於分析品質控制之正及 負控制探針之一些雜交腔室180。圖104及105槪要說明 無螢光團之負控制探針796,以及圖106及107描述無萍 熄劑之正控制探針798。正及負控制探針具有如前述 F R E T探針之莖-及-環結構。然而’不論探針雜交成爲開 放組態或保持封閉,將永遠自正控制探針7 9 8發射螢光訊 號2 50且負控制探針796從不發射螢光訊號250。 參照圖104及105,負控制探針796不具螢光團(及 可具有或不具有淬熄劑2 4 8 )。因此,不論標靶核酸序列 238與探針雜交(見圖1〇5)或是探針保持其莖-及·環組 態(見圖1 04 ),可忽略對激發光244之回應。替代性地 -66- 201211243 ’可設計負控制探針796使得其永遠保持淬熄。例如,藉 由合成環240而得到將不會與所硏究的樣本中之任何核酸 序列雜交之探針序列,探針分子之莖242將與其自身重新 雜交’及螢光團及淬熄劑將保持緊密相鄰且將不會發射可 見的螢光。此負控制訊號對應於來自雜交腔室180的低階 發射,於雜交腔室1 8 0中探針未經雜交但是淬熄劑未淬熄 來自指示劑的所有發射。Hybridization chamber array 110 includes a number of hybridization chambers 180 having positive and negative control probes for analytical quality control. Figures 104 and 105 summarize the negative control probe 796 without the fluorophore, and Figures 106 and 107 depict the positive control probe 798 without the extinguishing agent. The positive and negative control probes have a stem-and-loop structure as described above for the F R E T probe. However, regardless of whether the probe hybridizes to an open configuration or remains closed, the fluorescent signal 2 50 will always be emitted from the positive control probe 798 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 104 and 105, the negative control probe 796 does not have a fluorophore (and may or may not have a quencher 2 4 8 ). Thus, regardless of whether the target nucleic acid sequence 238 hybridizes to the probe (see Figure 1-5) or the probe maintains its stem-and-loop configuration (see Figure 104), the response to the excitation light 244 can be ignored. Alternatively, the -66-201211243' can be designed with a negative control probe 796 such that it remains quenched forever. For example, by synthesizing loop 240, a probe sequence will be obtained that will not hybridize to any of the nucleic acid sequences in the sample in question, and stem 242 of the probe molecule will rehybridize with itself' and the fluorophore and quencher will Stay in close proximity and will not emit visible fluorescence. This negative control signal corresponds to a low order emission from the hybridization chamber 180 where the probe is not hybridized but the quencher is not quenching all emissions from the indicator.

相反地,建構無淬熄劑之正控制探針7 9 8,如圖1 0 6 及107中所示者。回應激發光244,不論正控制探針798 是否與標靶核酸序列238雜交,無物質使來自螢光團246 之螢光發射250淬熄。 圖52顯示雜交腔室陣列110中的正及負控制探針( 分別爲3 78及3 80 )之可行分佈。控制探針3 78及380係 置於雜交腔室1 80中並定位成橫越雜交腔室陣列1 1 0之線 。然而,陣列內之控制探針的配置係任意的(如同雜交腔 室陣列1 1 0之組態)。 螢光團設計 需要具長螢光壽命之螢光團以允許激發光具足夠時間 來衰變至較致能光感測器44時之螢光發射的強度爲低之 強度,藉此提高充分的訊號對雜訊比。而且,較長的螢光 壽命代表較大之整合的螢光子計數。 螢光團246 (見圖59)之螢光壽命大於1〇〇奈秒、經 常大於200奈秒、更常見爲大於3 00奈秒,以及於大多數 67- 201211243 的情況中爲大於400奈秒。 以過渡金屬或鑭系金屬爲底的金屬-配位子複合體具 長壽命(自數百奈秒至毫秒)、適當的量子產率,以及高 熱、化學及光化學穩定性,此等特性均爲相關於螢光檢測 系統需求之有利特性。Conversely, a positive control probe 7 8 8 without quenching is constructed as shown in FIGS. 106 and 107. Back to the stress luminescence 244, whether or not the positive control probe 798 is hybridized to the target nucleic acid sequence 238, the no substance quenches the fluorescent emission 250 from the fluorophore 246. Figure 52 shows a possible distribution of positive and negative control probes (378 and 380, respectively) in the hybridization chamber array 110. Control probes 3 78 and 380 are placed in hybridization chamber 180 and positioned across the line of hybridization chamber array 1 1 0 . However, the configuration of the control probes within the array is arbitrary (as is the configuration of the hybrid chamber array 110). The fluorophore design requires a fluorophore with a long fluorescence lifetime to allow the excitation light to have sufficient time to decay to a lower intensity than the intensity of the fluorescent emission when the photosensor 44 is enabled, thereby increasing the sufficient signal For the noise ratio. Moreover, a longer fluorescence lifetime represents a larger integrated fluorescence count. Fluorescence lifetime 246 (see Figure 59) has a fluorescence lifetime greater than 1 nanosecond, often greater than 200 nanoseconds, more commonly greater than 300 nanoseconds, and greater than 400 nanoseconds in most cases of 67-201211243. . Metal-coordination complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal, chemical, and photochemical stability. It is a beneficial feature related to the needs of fluorescent detection systems.

以過渡金屬離子釕(Ru ( II ))爲底之經特別地徹 底硏究之金屬-配位子複合體爲參(2,2’-聯吡啶)釕(II )([Ru(bpy)3]2+),彼之壽命爲約lMs»此複合體可購自 Biosearch Technologies &gt; 其商品名爲 Pulsar 650 »A particularly thorough study of the metal-coordination complex based on the transition metal ion ruthenium (Ru(II)) is ginseng (2,2'-bipyridyl) ruthenium (II) ([Ru(bpy)3) ]2+), the lifetime of which is about 1Ms»This complex is available from Biosearch Technologies &gt; under the trade name Pulsar 650 »

表1 : Pulsar 650 (釕螯合物)之光物理性質Table 1: Photophysical properties of Pulsar 650 (钌 chelate)

參數 符號 値 單位 吸收波長 ^abs 460 nm 發射波長 λβπι 650 nm 吸光係數 Ε 14800 M—1 cm·1 蛋光壽命 Xf 1.0 μδ 量子產率 Η 1 (去氧的) N/A 鑭系金屬-配位子複合體,鉞螯合物,已成功地顯示 作爲FRET探針系統中的螢光指示劑,且具有1 600μ5之 長壽命。 -68- 201211243 表2 :铽蜜合物之光物理性質 參數 符號 値 單位 吸收波長 330-350 nm 發射波長 λέπι 548 nm 吸光係數 Ε 13800 (與Us,及配位子相依,可高至30000 (¾ λβ=,40 nm) 蛋光壽命 Tf 1600 MS (雜交的探針) 量子產率 Η 1 N/A (與配位子相依) LO C裝置3 0 1所使用的螢光檢測系統不利用濾鏡來移 除不想要的背景螢光。若淬熄劑248無天然發射以增加訊 號-對-雜訊比,則因此具有優勢。無天然發射,則淬熄劑 248不貢獻至背景螢光。高淬熄效率亦爲重要者,此使得 雜交發生前沒有螢光。購自加州Novato市之Biosearch Technologies,Inc.的黑洞淬熄劑(BHQ)不具有天然發射 及具有高淬熄效率,以及係用於系統之合適的淬熄劑。 φ BHQ-1之最大吸收値發生於534 nm及淬熄範圍爲480- 5 80 nm,使得其爲用於Tb-螯合螢光團之合適的淬熄劑。 BHQ-2之最大吸收値發生於5 79 nm及淬熄範圍爲560_ 6 70 nm使得其爲用於Pulsar 650之合適的淬熄劑》 購自愛荷華州 Coralville市之 Intergrated DNA Technologies的愛荷華黑淬熄劑(Iowa Black FQ及RQ) 爲適合的具有少許或無背景發射之替代性淬熄劑。Iowa Black FQ之淬熄範圍爲42 0-620 nm,於531 nm具有最大 吸收値,並因此爲用於Tb-螯合螢光團之合適的淬熄劑。 -69- 201211243Parameter symbol 値 unit absorption wavelength ^abs 460 nm emission wavelength λβπι 650 nm absorption coefficient Ε 14800 M—1 cm·1 egg light lifetime Xf 1.0 μδ quantum yield Η 1 (deoxidized) N/A lanthanide metal-coordination The subcomplex, ruthenium chelate, has been successfully shown as a fluorescent indicator in the FRET probe system and has a long lifetime of 1 600 μ5. -68- 201211243 Table 2: Photophysical Properties of Bismuth Constituents Parameter Symbol 値 Unit Absorption Wavelength 330-350 nm Emission Wavelength λέπι 548 nm Absorption Coefficient Ε 13800 (with Us, and ligand-dependent, up to 30000 (3⁄4) Λβ=,40 nm) Egg photo lifetime Tf 1600 MS (hybridization probe) Quantum yield Η 1 N/A (coordination dependent) LO C device 3 0 1 Fluorescence detection system does not use filters To remove unwanted background fluorescence. If quencher 248 has no natural emission to increase the signal-to-noise ratio, then there is an advantage. Without natural emission, quencher 248 does not contribute to background fluorescence. Quenching efficiency is also important, which results in no fluorescence before hybridization. The black hole quencher (BHQ) from Biosearch Technologies, Inc., Novato, Calif., does not have natural emission and high quenching efficiency, and is used. A suitable quencher for the system. The maximum absorption 値 of φ BHQ-1 occurs at 534 nm and the quenching range is 480-580 nm, making it a suitable quencher for Tb-chelating fluorophores. The maximum absorption enthalpy of BHQ-2 occurs at 5 79 nm and the quenching range is 560_ 6 70 nm makes it a suitable quencher for Pulsar 650. Iowa Black FQ and RQ from Intergrated DNA Technologies, Coralville, Iowa, suitable for a little or no An alternative quencher for background emission. Iowa Black FQ has a quenching range of 42 0-620 nm with a maximum absorption enthalpy at 531 nm and is therefore a suitable quencher for Tb-chelating fluorophores. -69- 201211243

Iowa Black RQ於656 nm具有最大吸收値及淬熄範圍爲 5 00-700 nm,使得其爲用於Pulsar 650之理想淬熄劑。 於本文所述之具體實施例中,淬熄劑248爲初始時即 附著於探針之功能部分,但於其他具體實施例中,淬熄劑 可爲游離於溶液中之分離的分子。 激發源Iowa Black RQ has a maximum absorption enthalpy at 656 nm and a quenching range of 500-700 nm, making it an ideal quencher for Pulsar 650. In the specific embodiments described herein, quenching agent 248 is a functional portion that is initially attached to the probe, but in other embodiments, the quenching agent can be a separate molecule that is free of solution. Excitation source

在本文描述之螢光偵測爲基礎的具體實施例中,因爲 低功率消耗、低成本和小尺寸,LED係選做替代雷射二極 體、高功率電燈或雷射的激發源。參照圖85,LED26係 直接安置於LOC裝置301之外部表面上之來自各腔室之 雜交腔室陣列110上。在雜交腔室陣列Π〇之對側爲光感 測器44,其由用於偵測螢光訊號之光二極體1 84的陣列 所組成(見圖53、54和64 )。In the specific embodiment based on the fluorescence detection described herein, the LED is selected as an alternative to the excitation source of the laser diode, high power lamp or laser because of low power consumption, low cost, and small size. Referring to Figure 85, LEDs 26 are disposed directly on the hybrid chamber array 110 from each chamber on the exterior surface of LOC device 301. Opposite the hybrid cell array array is a photosensor 44 consisting of an array of photodiodes 1 84 for detecting fluorescent signals (see Figures 53, 54 and 64).

圖86、87和88槪述用於將探針暴露於激發光之其他 具體實施例。在顯示於圖86之LOC裝置30中,由激發 LED26所產生之激發光244係由透鏡254導向雜交腔室陣 列110之上。脈衝激發激發LED26且由光感測器44偵測 螢光發射》 在圖87所顯示之LOC裝置30中’由激發LED26所 產生之激發光244係由透鏡254、第一光稜鏡712和第二 光稜鏡714導向雜交腔室陣列11〇之上。脈衝激發激發 LED20且由光感測器44偵測螢光發射。 同樣地,顯示於圖88之 LOC裝置30 ’由激發 -70- 201211243 LED2 6所產生之激發光244係由透鏡254、第一鏡面716 和第二鏡面718導向雜交腔室陣列110之上。再次脈衝激 發激發LED26且由光感測器44偵測螢光發射^ LED26的激發波長係倚賴螢光染料的選擇。Philips LXK2-PR14-R00爲針對Pu 1 sar 650染料之合適的激發源 。SET UVT0P3 3 5T039BL LED係針對铽螯合物標記之合 適的激發源。 表 3 : Philips LXK2-PR14-R00 LED 規格Figures 86, 87 and 88 summarize other specific embodiments for exposing the probe to excitation light. In the LOC device 30 shown in FIG. 86, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254 onto the hybridization chamber array 110. The pulse excitation excites the LED 26 and is detected by the photo sensor 44. In the LOC device 30 shown in FIG. 87, the excitation light 244 generated by the excitation LED 26 is composed of a lens 254, a first aperture 712, and a first A second aperture 714 is directed over the array 11 of hybridization chambers. The pulse excitation excites the LED 20 and the photodetector 44 detects the fluorescent emission. Similarly, the excitation light 244 produced by the LOC device 30' shown in Fig. 88 from the excitation -70-201211243 LED26 is directed by the lens 254, the first mirror 716 and the second mirror 718 onto the hybridization chamber array 110. Re-pulsing the excitation LED 26 again and detecting the fluorescence emission by the photo sensor 44. The excitation wavelength of the LED 26 relies on the choice of fluorescent dye. Philips LXK2-PR14-R00 is a suitable excitation source for the Pu 1 sar 650 dye. SET UVT0P3 3 5T039BL LED is the appropriate excitation source for the ruthenium chelate label. Table 3: Philips LXK2-PR14-R00 LED Specifications

參數 符號 値 單位 波長 λβχ 460 nm 發射頻率 Vem 6.52(10)14 Hz 輸出功率 Pi 0.515 份鐘)@ ΙΑ W 輻射圖案 Lambertian數據圖 N/A 表格 4 : SET UVT0P334T039BL LED 規格Parameter Symbol 値 Unit Wavelength λβχ 460 nm Transmit frequency Vem 6.52(10)14 Hz Output power Pi 0.515 parts) @ ΙΑ W Radiation pattern Lambertian data sheet N/A Table 4 : SET UVT0P334T039BL LED Specifications

參數 符號 値 單位 波長 K 340 nm 發射頻率 Ve 8.82(10)14 Hz 功率 Pi 0.000240 (分鐘)@ 20mA W 脈衝正向電流 I 200 mA 輻射圖案 Lambertian N/AParameter Symbol 单位 Unit Wavelength K 340 nm Transmit frequency Ve 8.82(10)14 Hz Power Pi 0.000240 (minutes) @ 20mA W Pulse forward current I 200 mA Radiation pattern Lambertian N/A

紫外光激發光Ultraviolet light

矽在UV光譜中吸收少量光。因此,使用UV激發光 是有利的。可使用UV LED激發源,但LED26之寬光譜 降低此方法之效果。爲了說明此,使用經過濾的UV LED -71 - 201211243 。隨意地,UV雷射可爲激發源,除非相當高的雷射花費 對於特定的試驗模組市場不實用。 LED驅動器Helium absorbs a small amount of light in the UV spectrum. Therefore, it is advantageous to use UV excitation light. A UV LED excitation source can be used, but the broad spectrum of LED 26 reduces the effectiveness of this method. To illustrate this, a filtered UV LED -71 - 201211243 is used. Optionally, a UV laser can be an excitation source unless a relatively high laser cost is not practical for a particular test module market. LED driver

LED驅動器29針對所需的持續時間在固定電流下驅 動LED26。低功率USB2.0認證裝置可在至多1單位負載 (1 〇〇毫安培)以最小操作電壓4.4伏特得到。標準電力 調節電路係用於此目的》 光二極體LED driver 29 drives LED 26 at a fixed current for the desired duration. The low-power USB 2.0 certified device is available with a minimum operating voltage of 4.4 volts for up to 1 unit load (1 〇〇 mA). Standard power conditioning circuit is used for this purpose" Light Diode

圖54顯示光二極體184,其合倂於LOC裝置301之 CMOS電路86。光二極體184係在沒有額外遮罩或步驟下 製成CMOS電路86之一部分。這是CMOS光二極體優於 CCD之一項顯著的優點,CCD爲另一種感測技術,其可 使用非標準式加工步驟整合到同一晶片上或者製於相鄰晶 片上。晶片上偵測係花費低廉且降低分析系統的尺寸。較 短光學路徑長度降低來自週遭環境的雜訊以有效收集該螢 光訊號,以及抑制對於透鏡及濾鏡之傳統光學總成之需求 光二極體184之量子效率爲光子衝撞其有效區185之 分率,光子係有效轉換成光電子。對於標準矽處理,對於 可見光該量子效率根據處理參數(諸如覆蓋層之數量及吸 收性質)係在〇·3至〇·5的範圍中。 光二極體1 84之偵測閥値決定可被偵測之螢光訊號的 -72- 201211243 最小強度。偵測閥値亦決定光二極體1 84的尺寸大小以及 在雜交及檢測部52中之雜交腔室180數目(見圖52 )。 腔室的尺寸大小和數量爲技術參數,其由LOC裝置的尺 寸(LOC裝置301的實例中,其尺寸爲1760微米x5824 微米)所限制,且合倂其他功能性模組(諸如病原體透析 部70及擴增部112)之後可用之不動物件的尺寸所限制Figure 54 shows photodiode 184 that is integrated into CMOS circuit 86 of LOC device 301. Light diode 184 is formed as part of CMOS circuit 86 without additional masking or steps. This is a significant advantage of CMOS photodiodes over CCDs, another sensing technique that can be integrated onto the same wafer or fabricated on adjacent wafers using non-standard processing steps. The on-wafer detection system is inexpensive and reduces the size of the analysis system. The shorter optical path length reduces noise from the surrounding environment to effectively collect the fluorescent signal, and suppresses the need for conventional optical assemblies for lenses and filters. The quantum efficiency of the photodiode 184 is the photon collision with its effective area 185. Rate, the photon system is effectively converted into photoelectrons. For standard enthalpy treatment, the quantum efficiency is in the range of 〇·3 to 〇·5 depending on processing parameters such as the number of coating layers and the absorbing properties for visible light. The detection valve of the photodiode 1 84 determines the minimum intensity of the -122-201211243 of the fluorescent signal that can be detected. The detection valve 値 also determines the size of the photodiode 184 and the number of hybridization chambers 180 in the hybridization and detection section 52 (see Figure 52). The size and number of chambers are technical parameters that are limited by the size of the LOC device (in the example of LOC device 301, which is 1760 microns x 5824 microns) and incorporates other functional modules (such as pathogen dialysis unit 70). And the size of the non-animal parts that can be used after the expansion part 112)

對於標準矽處理,光二極體184最少偵測5個光子。 然而,爲了確認可信賴的偵測,最小値可設爲〗〇個光子 。因此以量子效率範圍在0·3至0.5 (如上所討論),來 自等探針之螢光發射爲最少1 7個光子,而針對可靠偵測 30個光子包含的的合適誤差界線。 校準腔室 光二極體184的電學特性之不均勻性、自動螢光和尙 φ 未完全衰減之剩餘激發光子通量將背景雜訊引入並偏移至 輸出訊號。使用一或多種校準訊號將背景自各輸出訊號移 除。校準訊號藉由將在陣列中之一或多種校準光二極體 184暴露於各自的校準源而產生。低校準源用來判斷標靶 尙未與探針反應之負結果。高校準源代表自探針-標靶複 合物造成的正結果。在本文所描述的具體實施例,低校準 光源由在雜交腔室陣列110中之校準腔室382所提供,其 不含任何探針; -73- 201211243 包含不具有螢光指示劑的探針;或_ 包含具有指示劑的探針和配置使得總是預期發生淬熄 的淬熄劑。For standard 矽 processing, photodiode 184 detects at least 5 photons. However, in order to confirm reliable detection, the minimum 値 can be set to 〇 a photon. Thus, with quantum efficiency ranging from 0. 3 to 0.5 (as discussed above), the fluorescence emission from the iso probe is a minimum of 17 photons, and a suitable margin of error for reliable detection of 30 photons is included. Calibration Chamber The non-uniformity of the electrical characteristics of the photodiode 184, autofluorescence, and residual excitation photon flux that is not fully attenuated by φ φ introduces background noise and shifts to the output signal. Use one or more calibration signals to remove the background from each output signal. The calibration signal is generated by exposing one or more of the calibration photodiodes 184 in the array to respective calibration sources. A low calibration source is used to determine the negative result of the target 尙 not reacting with the probe. A high calibration source represents a positive result from the probe-target complex. In the specific embodiment described herein, the low calibration source is provided by a calibration chamber 382 in the hybridization chamber array 110, which does not contain any probes; -73-201211243 contains a probe that does not have a fluorescent indicator; Or _ contains a probe with an indicator and a configuration such that quenching agents are always expected to quench.

來自此種校準腔室3 82之輸出訊號非常接近來自在 LOC裝置中之所有雜交腔室的輸出訊號中的雜訊和偏差。 自其他雜交腔室所產生的輸出訊號減去校準訊號大體上移 除了背景和留下由螢光發射產生的訊號(若有產生任何訊 號的話)。自腔室陣列之區域中的環境光線產生的訊號亦 被去除。The output signal from such a calibration chamber 382 is very close to the noise and bias in the output signal from all of the hybridization chambers in the LOC device. The output signal from the other hybridization chamber minus the calibration signal substantially removes the background and leaves the signal generated by the fluorescent emission (if any signal is generated). Signals generated by ambient light in the area of the array of chambers are also removed.

可理解的是參考圖104至107之上述負控制組探針可 用於校準腔室。然而,如圖90和91所示,其爲顯示於圖 89之LOC變體X728的插圖DG和DH之放大圖,另一選 項爲將校準腔室382與擴增子流體隔離。當雜交由流體隔 離阻止時,背景雜訊和補償可由將流體隔離之腔室淨空或 藉由包含缺少指示劑的探針或確切具有指示劑與淬熄劑兩 者的任何“標準”探針來判斷。 校準腔室382可提供高校準源以於對應的光二極體產 生高訊號。高訊號對應在已雜交腔室中的所有探針。以指 示劑且無淬熄劑或僅以指示劑點樣探針將一致地提供近似 雜交腔室訊號之訊號,主要數量之探針已於雜交腔室內雜 交。將可理解校準腔室382可用以代替控制探針或加至控 制探針上。 遍布雜交腔室陣列的校準腔室382的數量和安排是隨 意的。然而,若光二極體184由相對最近的校準腔室382 -74- 201211243 校準,則校準較準確。參考圖56,雜交腔室陣列110對 於每八個雜交腔室180具有一個校準腔室3 82 »也就是說 ,校準腔室382係安置於每個三乘三之正方形雜交腔室 180的中間。在這個配置中,雜交腔室180係由緊接鄰近 的雜交腔室3 82所校準。It will be appreciated that the negative control group probe described above with reference to Figures 104 through 107 can be used to calibrate the chamber. However, as shown in Figures 90 and 91, which is an enlarged view of the inset DG and DH of the LOC variant X728 shown in Figure 89, another option is to isolate the calibration chamber 382 from the amplicon fluid. When hybridization is prevented by fluid isolation, background noise and compensation can be cleared by chambers that isolate the fluid or by any probe that contains a missing indicator or any "standard" probe that has both an indicator and a quencher. Judge. The calibration chamber 382 can provide a high calibration source to produce a high signal for the corresponding photodiode. The high signal corresponds to all probes in the hybridized chamber. The indicator, with no quencher or only the indicator spotting probe, will consistently provide a signal that approximates the hybridization chamber signal, and the majority of the probes have been hybridized within the hybridization chamber. It will be appreciated that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and arrangement of calibration chambers 382 throughout the array of hybrid chambers is arbitrary. However, if the photodiode 184 is calibrated by the relatively closest calibration chamber 382-74-201211243, the calibration is more accurate. Referring to Figure 56, hybridization chamber array 110 has a calibration chamber 3 82 for every eight hybridization chambers 180. That is, calibration chamber 382 is positioned in the middle of each three by three square hybridization chamber 180. In this configuration, the hybridization chamber 180 is calibrated by the adjacent hybridization chambers 382.

由於從周圍雜交腔室180之自螢光訊號的激發光,圖 103顯示用以自對應校準腔室382之光二極體184減除訊 號的差分成像器電路78 8。差分成像器電路78 8自像素 790和“虛擬”像素792取樣訊號。在一個具體實施例中, “虛擬”像素792係被遮住以防光照射,所以其輸出訊號提 供暗參考像素。或者,“虛擬”像素792可和陣列的其餘部 分暴露於激發光。在一個具體實施例中,“虛擬”像素792 是可以接受光的,自腔室陣列之區域中的環境光線產生的 訊號亦可被減除。來自像素790的訊號是微弱的(例如, 接近暗訊號).,且沒有參考暗訊號位準會很難分辨背景値 與非常微弱的訊號。 在使用期間,啓動 “read_row” 794 和 “read_row_d” 795且開啓M4 797和MD4 801電晶體。關閉開關807 和809使得來自像素790及“虛擬”像素792的輸出各自儲 存在像素電容器803及虛擬像素電容器805上。在像素訊 號被儲存後’停用開關807和809。然後關閉“read_col” 開關811和虛擬“read_col”開關813,且在輸出的該轉換 的電容器放大器815放大差分訊號817。 -75- 201211243 光二極體之抑制及致能Due to the excitation light from the fluorescent signal from the surrounding hybridization chamber 180, FIG. 103 shows a differential imager circuit 78 8 for subtracting the signal from the photodiode 184 of the corresponding calibration chamber 382. Differential imager circuit 78 8 samples the signal from pixel 790 and "virtual" pixel 792. In one embodiment, the "virtual" pixel 792 is shielded from light illumination, so its output signal provides a dark reference pixel. Alternatively, the "virtual" pixel 792 can be exposed to the excitation light and the remainder of the array. In one embodiment, the "virtual" pixel 792 is light permeable and the signal from ambient light in the area of the array of cells can also be subtracted. The signal from pixel 790 is weak (eg, close to the dark signal). It is difficult to distinguish between background 値 and very weak signals without reference to the dark signal level. During use, "read_row" 794 and "read_row_d" 795 are enabled and the M4 797 and MD4 801 transistors are turned on. Switches 807 and 809 are turned off such that the outputs from pixel 790 and "virtual" pixel 792 are each stored on pixel capacitor 803 and virtual pixel capacitor 805. Switches 807 and 809 are disabled after the pixel signals are stored. The "read_col" switch 811 and the dummy "read_col" switch 813 are then turned off, and the converted capacitor amplifier 815 is amplified at the output of the differential signal 817. -75- 201211243 Inhibition and activation of light diodes

於L E D 2 6激發期間必須抑制光二極體1 8 4及於螢光 期間必須致能光二極體184。圖65爲單一光二極體184 之電路圖及圖66爲光二極體控制訊號之時序圖。電路具 有光二極體184及六個MOS電晶體’ Mshunt 3 94、Mtx 3 96 、Mreset 398、Msf 400、Mread 402 及 Mbias 4 04。於激發循 環開始時,藉由拖曳(pulling) MShunt閘極384及重設閘 極3 8 8爲高而開啓tl、電晶體Mshunt 394及Mreset 398 » 於此期間,激發光子於光二極體184中產生載子。當產生 的載子量可充分使光二極體184飽和時,此等載子必須被 移除。於此循環期間,因電晶體的洩漏或因基板中之激 發-產生的載子擴散,Mshunt 394直接地移除光二極體184 中所產生的載子,而Mreset 3 98重設累積於節點‘NS’ 406 之任何載子。於激發之後,於t4開始俘獲循環。於此循 環中,來自螢光團之發射的回應被俘獲並整合入節點‘NS’ 4 06上的電路。此藉由拖曳tx閘極3 8 6爲高而達成,此開 啓電晶體Mtx 3 96及轉移光二極體184上任何累積的載體 至節點‘NS’ 406。俘獲循環期間可如螢光發射般長。來自 雜交腔室陣列110中之所有光二極體184的輸出同時被俘 獲。 於結束俘獲循環t5與開始讀取循環t6之間具有延遲 。此延遲肇因於,在俘獲循環之後,分別讀取雜交腔室陣 列1 1〇中之各光二極體184的需求(見圖52)。待讀取 的第一光二極體184於讀取循環之前將具有最短的延遲, -76- 201211243 而最後光二極體184於讀取循環之前將具有最長的延遲。 於讀取循環期間,藉由拖曳閘極3 93爲高而開啓電晶體 Mread 402。使用源極-隨耦器電晶體Msf 400來緩衝及讀 出‘NS’節點406之電壓。 以下討論另外之任意的致能或抑制光二極體之方法: 1 ·抑制方法The photodiode 184 must be suppressed during the excitation of L E D 2 6 and the photodiode 184 must be enabled during the luminescence. 65 is a circuit diagram of a single photodiode 184 and FIG. 66 is a timing diagram of an optical diode control signal. The circuit has a photodiode 184 and six MOS transistors 'Mshunt 3 94, Mtx 3 96, Mreset 398, Msf 400, Mread 402 and Mbias 04. At the beginning of the excitation cycle, tl, transistor Mshunt 394, and Mreset 398 are turned on by pulling the MShunt gate 384 and resetting the gate 38 8 high. During this period, the photons are excited in the photodiode 184. Generate a carrier. When the amount of carrier generated is sufficient to saturate the photodiode 184, the carriers must be removed. During this cycle, Mshunt 394 directly removes the carriers generated in photodiode 184 due to leakage of the transistor or due to excitation-generated carrier diffusion in the substrate, while Mreset 3 98 resets to accumulate at the node' Any carrier of NS' 406. After excitation, the capture cycle begins at t4. In this loop, the response from the emission of the fluorophore is captured and integrated into the circuit on node 'NS' 608. This is achieved by dragging the tx gate 386 high, which turns on any accumulated carrier on the transistor Mtx 3 96 and the transfer photodiode 184 to node 'NS' 406. The capture cycle can be as long as a fluorescent emission. The outputs from all of the photodiodes 184 in the hybrid chamber array 110 are simultaneously captured. There is a delay between the end of the capture cycle t5 and the start of the read cycle t6. This delay is due to the need to read the respective photodiodes 184 in the array of hybridization chambers 1 1 after the capture cycle (see Figure 52). The first photodiode 184 to be read will have the shortest delay before the read cycle, -76-201211243 and the last photodiode 184 will have the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by dragging the gate 3 93 high. The source-slaffer transistor Msf 400 is used to buffer and read the voltage of the 'NS' node 406. Any other method of enabling or suppressing a photodiode is discussed below: 1 · Suppression method

圖100、101及102顯示用於Mshunt電晶體3 94之三 種可行的組態778、78 0、782。於激發期間被致能之最大 値5 V時,Mshunt電晶體3 94具有非常高的關閉比。 如圖100中所示者,Mshunt閘極3 84係組態成位於光二極 體184之緣上。任意地,如圖1〇1中所示者,Mshunt閘極 3 84係可組態成環繞光二極體1 84 »第三個選擇爲將 Mshunt閘極384組構於光二極體184之內,如圖102中所 示者。依此第三選擇,光二極體有效區185較少。 這三種組態778、780及782降低自光二極體184中 所有位置至Mshunt閘極384之平均路徑長度。於圖100中 ,Mshunt閘極3 84係於光二極體184之一側上。此爲用以 製造之最簡單且對於光二極體有效區185衝擊最小的組態 。然而,滯留於光二極體184遠端之任何載子需要較長時 間以擴散通過Mshunt閘極3 84。 於圖101中,Mshunt閘極3 84環繞光二極體184。此 進一步降低光二極體184中之載子至Mshunt閘極384之平 均路徑長度。然而,繞光二極體184周圍而延伸Mshunt閘 -77- 201211243 極384造成光二極體有效區185大幅縮減。於圖102中之 組態782將Mshunt閘極3 84定位於有效區185中。此提供 了至Mshunt閘極3 84的最短平均路徑長度及因此得到最短 過渡時間。然而,對於有效區185之衝擊最大。其亦造成 較寬的洩漏路徑。 2.致能方法Figures 100, 101 and 102 show three possible configurations 778, 78 0, 782 for Mshunt transistor 3 94. The Mshunt transistor 3 94 has a very high turn-off ratio at the maximum 値5 V that is enabled during the excitation period. As shown in FIG. 100, the Mshunt Gate 3 84 is configured to be located on the edge of the photodiode 184. Optionally, as shown in Figure 1-1, the Mshunt gate 3 84 can be configured to surround the photodiode 1 84 » The third option is to fabricate the Mshunt gate 384 within the photodiode 184. As shown in FIG. According to the third option, the photodiode effective area 185 is less. These three configurations 778, 780, and 782 reduce the average path length from all locations in the photodiode 184 to the Mshunt gate 384. In FIG. 100, the Mshunt gate 3 84 is attached to one side of the photodiode 184. This is the simplest configuration to make and the smallest impact on the active area of the photodiode 185. However, any carrier remaining at the distal end of the photodiode 184 requires a longer time to diffuse through the Mshunt gate 3 84. In FIG. 101, the Mshunt gate 3 84 surrounds the photodiode 184. This further reduces the average path length of the carrier in the photodiode 184 to the Mshunt gate 384. However, extending the Mshunt gate around the photodiode 184 -77 - 201211243 pole 384 causes the optical diode active region 185 to be substantially reduced. Configuration 782 in FIG. 102 positions Mshunt gate 3 84 in active area 185. This provides the shortest average path length to the Mshunt gate 3 84 and thus the shortest transition time. However, the impact on the active area 185 is greatest. It also creates a wide leak path. 2. Method of enabling

a·觸發器光二極體以固定的延遲來驅動並聯電晶體 b.觸發器光二極體以可程控的延遲來驅動並聯電晶 am 體。 C.由LED驅動脈衝以固定的延遲來驅動並聯電晶體 d.如2c般但以可程控的延遲來驅動並聯電晶體。a. The flip-flop photodiode drives the parallel transistor with a fixed delay. b. The flip-flop photodiode drives the parallel electro-crystal body with a programmable delay. C. Driving the parallel transistor with a fixed delay by the LED drive pulse d. Drive the parallel transistor as a 2c but with a programmable delay.

圖68爲透過雜交腔室180顯示埋入於CMOS電路86 中之光二極體184及觸發器光二極體187之槪略剖視圖。 以觸發器光二極體187取代光二極體184之角落中的小面 積。因相較於螢光發射時激發光的強度爲高,具小面積之 觸發器光二極體187係充分的。觸發器光二極體187係對 激發光244爲敏感。觸發器光二極體187顯示激發光2 44 已熄滅並於短暫延遲At 300之後啓動光二極體184 (見圖 2 )。此延遲使得螢光光二極體1 84得以於沒有激發光 2 4 4時檢測來自F R E T探針1 8 6之螢光發射。此致能檢測 -78- 201211243 及增進訊號對雜訊比。68 is a schematic cross-sectional view showing the photodiode 184 and the flip-flop photodiode 187 buried in the CMOS circuit 86 through the hybridization chamber 180. The small area in the corner of the photodiode 184 is replaced by the flip-flop photodiode 187. The trigger photodiode 187 having a small area is sufficient because the intensity of the excitation light is higher than that of the fluorescent emission. The flip-flop photodiode 187 is sensitive to the excitation light 244. The flip-flop photodiode 187 shows that the excitation light 2 44 is extinguished and the photodiode 184 is activated after a brief delay of At 300 (see Fig. 2). This delay allows the fluorescent photodiode 1 84 to detect the fluorescent emission from the F R E T probe 186 without the excitation light 24 4 . This enables detection of -78- 201211243 and enhanced signal-to-noise ratio.

於各雜交腔室下,光二極體184及觸發器光二極體 1 87兩者均位於CMOS電路86中。光二極體陣列與適當 電子組件合倂以形成光感測器44 (見圖64)。光二極體 184爲CMOS結構製造期間所製成的pn接面而不需另外 的遮罩或步驟。於MST製造期間,光二極體184之上的 介電層(未顯示)係利用標準MST光蝕刻技術而任意地 薄化以使更多螢光照射光二極體184的有效區185。光二 極體184具有視場,使得來自雜交腔室180內之探針-標 靶雜交體的螢光訊號入射至感測器表面上。轉換螢光成爲 接著可使用CMOS電路86而被測量的光電流。 替代性地,一或多個雜交腔室180可僅專用於觸發器 光二極體187。可使用這些選擇於此等與上述之2a及2b 的組合中。 螢光的延遲偵測 下述推導說明針對上述之LED/螢光團組合之使用長 生命週期螢光團的螢光延遲偵測。在由圖60顯示之時間 h和Ο之間的固定強度Ie之理想脈衝激發之後,螢光強 度推導爲時間的函數》 令[^1]⑴於時間t等於激發態的強度,然後在激發期 間及之後,每單位體積每單位時間的激發態數量由下面微 分方程式描述: 迴(0+歷=丛…⑴ dt tf hve -79- 201211243 其中C爲螢光團的莫耳濃度,ε爲莫耳消光係數,Ve爲激 發頻率,且h = 6.62606896(l〇r34Js爲普朗克常數^ . 此微分方程式具有一般式: ^- + p{x)y = q{x) 其解爲: f e^p{x)dx q{x)dx + k —…(2)Under each hybridization chamber, both photodiode 184 and flip-flop photodiode 1 87 are located in CMOS circuit 86. The photodiode array is combined with appropriate electronic components to form a photosensor 44 (see Figure 64). The photodiode 184 is a pn junction made during the fabrication of the CMOS structure without the need for additional masking or steps. During MST fabrication, the dielectric layer (not shown) over the photodiode 184 is arbitrarily thinned using standard MST photolithography techniques to cause more phosphor to illuminate the active region 185 of the photodiode 184. The photodiode 184 has a field of view such that fluorescent signals from the probe-target hybrid within the hybridization chamber 180 are incident on the surface of the sensor. The converted fluorescence becomes a photocurrent that can then be measured using the CMOS circuit 86. Alternatively, one or more of the hybridization chambers 180 may be dedicated only to the trigger photodiode 187. These choices can be used in combination with 2a and 2b above. Fluorescent Delay Detection The following derivation shows the use of long-life fluorophore fluorescence delay detection for the above LED/fluorescent combination. After the ideal pulse excitation of the fixed intensity Ie between time h and Ο shown in Fig. 60, the fluorescence intensity is derived as a function of time. [^1] (1) is equal to the intensity of the excited state at time t, and then during the excitation period. And then, the number of excited states per unit volume per unit time is described by the following differential equation: Back (0 + calendar = plex... (1) dt tf hve -79- 201211243 where C is the molar concentration of the fluorophore, ε is the molar Extinction coefficient, Ve is the excitation frequency, and h = 6.62606896 (l〇r34Js is the Planck constant^. This differential equation has the general formula: ^- + p{x)y = q{x) The solution is: fe^p {x)dx q{x)dx + k —...(2)

現在使用此來解式(1) …⑶ 然後於時間h0,:由式(3 )得出 k ...(4) hve 將(4 )代入(3 ) [51](0 IΑ Tf IΑ τf c_U-hV τί hve hveNow use this to solve equations (1) ... (3) and then at time h0,: from equation (3), get k (4) hve substituting (4) into (3) [51] (0 IΑ Tf IΑ τf c_U -hV τί hve hve

於時間i2, ..(5) hve hve 於d 〇,激發態以指數衰減且以式(6 )描述: [51](〇 = [51](/2)e-(,-,l)/r^ ...⑹ 將(5 )代入(6 ): hVe 螢光強度由下列等式得到: -80- 201211243 I/(0 = -d[S£(t)hv/^ …⑻ 其中V/爲螢光頻率,η爲量子產率’且1爲光學路徑 長度。 於是由(7 )可知: d[S\](t) ^ Ieec dt hve 將(9 )代入(8 ) ··At time i2, ..(5) hve hve at d 〇, the excited state decays exponentially and is described by equation (6): [51](〇= [51](/2)e-(,-,l)/ r^ (6) Substituting (5) into (6): hVe The fluorescence intensity is obtained by the following equation: -80- 201211243 I/(0 = -d[S£(t)hv/^ (8) where V/ For the fluorescence frequency, η is the quantum yield 'and 1 is the optical path length. Then we can see from (7): d[S\](t) ^ Ieec dt hve Substituting (9) into (8) ··

If{t) = Ieecln^-[\-eH,1&quot;'),T^ ...(10) 因爲 iizilyoo, / ⑺―人If{t) = Ieecln^-[\-eH,1&quot;'),T^ ...(10) because iizilyoo, / (7)- people

Tf Ve 因此,我們可以寫出下列的近似式’該式描述在足夠 長的激發脈衝(ί2-ίι &gt;&gt;rf)後之發光強度衰減: 當 i 則 /〆〇 = /#/;;...(11) 在上一節,我們針對&gt;&gt; rf作的情況做總結, 當 則 Κ 。 從上述的等式,我們可以導出下列式子: nf{t) = nesc^e~{,~,l)lT/ ...(12) 其中 爲每單位面積每單位時間之螢光光子數且Tf Ve Therefore, we can write the following approximation' which describes the decay of the luminous intensity after a sufficiently long excitation pulse (ί2-ίι &gt;&gt;rf): when i then /〆〇= /#/;; ...(11) In the previous section, we summarized the situation for &gt;&gt; rf, and then Κ. From the above equation, we can derive the following formula: nf{t) = nesc^e~{,~,l)lT/ (12) where is the number of fluorescent photons per unit area per unit time and

..._ K n* =7— 爲每單位面積每單位時間之激發光子數。 因此, -81 - 00 201211243 nf{t) = [nf{t)dt ...(13) b 其中爲每單位面積之螢光光子數且^爲光二極體開啓的 時間點。將(12 )代入(13 ): 00 nf =^riesc^e~{,'ll)lTfdt ...(14) h 目前,每單位面積每單位時間到達光二極體之螢光光 子數,%(0,係由下式獲得:..._ K n* =7— is the number of excitation photons per unit area per unit time. Therefore, -81 - 00 201211243 nf{t) = [nf{t)dt (13) b where is the number of fluorescent photons per unit area and ^ is the time point at which the photodiode is turned on. Substituting (12) into (13): 00 nf =^riesc^e~{,'ll)lTfdt (14) h At present, the number of fluorescent photons reaching the photodiode per unit area per unit time, %( 0, obtained by:

其中九爲光學系統之光收集效率。 將(12 )代入(1 5 )我們發現 ηΙ(ί) = Φ〇^£ΐ:ιψ'(,',ι)ΙΤ/ &quot;.(16) 同樣地,每單位螢光面積义到達光二極體之螢光光子 數將如下述: 〇〇 n, =\ns(t)dt ,3 且代入(1 6 )並積分:Nine of them are the light collection efficiency of the optical system. Substituting (12) into (1 5 ) we find that ηΙ(ί) = Φ〇^£ΐ:ιψ'(,',ι)ΙΤ/ &quot;.(16) Similarly, each unit of fluorescent area reaches the photodiode The number of fluorescent photons will be as follows: 〇〇n, =\ns(t)dt , 3 and substituted (1 6 ) and integrated:

ns = φ^εοίητ fe~〇i~&lt;l)lTf 因此, ns ^Φο^εοΙητ^1^ ...(17) ί3的理想値係於當因螢光光子產生於光二極體184內 之電子率等於由激發光子產生於光二極體184內之電子率 時,因爲激發光子通量衰減比螢光光子通量衰減快更多° 由於螢光之每單位螢光面積的感測器輸出電子率爲: βί{ί)=φίη!{1) 其中&amp;爲在螢光波長之感測器的量子效率。 -82- 201211243 代入(1 7 )我們得到: ef{t) = φ^εοίηβ'^'^ ...(18) 同樣地,由於激發光子之每單位螢光面積的感測器輸 出電子率爲: ee(t) = ...(19) 其中么爲在激發波長之感測器的量子效率’且I爲Ns = φ^εοίητ fe~〇i~&lt;l)lTf Therefore, the ideal 値 of ns ^Φο^εοΙητ^1^ (17) ί3 is due to the generation of photons in the photodiode 184 due to fluorescence photons. The electron rate is equal to the electron rate generated by the excitation photons in the photodiode 184 because the excitation photon flux decays more rapidly than the fluorescence photon flux. ° Sensor output electrons per unit of fluorescence area due to fluorescence The rate is: βί{ί)=φίη!{1) where &amp; is the quantum efficiency of the sensor at the fluorescent wavelength. -82- 201211243 Substituting (1 7 ) We get: ef{t) = φ^εοίηβ'^'^ (18) Similarly, the sensor output electron rate per unit of fluorescence area of the excited photons : ee(t) = (19) where is the quantum efficiency of the sensor at the excitation wavelength and I is

相對於激發led之『切斷』特性的時間常數》在時間t2 之後,LED之衰減光子通量增加螢光訊號的強度且延長其 衰減時間,但我們假設對If ( t )有可忽略的影響,因此 我們採取保守的方法。 目前’如先前所提及,ί3的理想値爲當: 純)=狄) 因此,由(1 8 )和(1 9 )我們得到: = φ-a^h-hVr, 並且重整之後我們得到: ΗεοΙηίίΐ) …(20)The time constant of the "cut off" characteristic of the excited LED" After time t2, the attenuated photon flux of the LED increases the intensity of the fluorescent signal and prolongs its decay time, but we assume a negligible effect on If ( t ) So we take a conservative approach. At present, as mentioned earlier, the ideal ί of ί3 is: pure) = Di) Therefore, from (1 8 ) and (1 9 ) we get: = φ-a^h-hVr, and after reforming we get : ΗεοΙηίίΐ) ...(20)

Tf re 由上面兩段,我們得到下列兩個工作等式: .&quot;(21)Tf re From the above two paragraphs, we get the following two working equations: .&quot;(21)

...(22) 我們亦了解,實際上 其中 F = sclrj R = , »τί 0 -83- 201211243 用於螢光偵測的理想時間及使用Philips LXK2-PR1 4- R00 LED和pulsar 650染料偵測的螢光光子數決定如下 〇 理想偵測時間係使用式(22 )決定: 再呼叫(recall )擴增子的濃度,且假設所有擴增子 雜交,然後發螢光的螢光團濃度爲:c = 2.89(10)_6mol/L。 腔室的高度爲光學路徑長度1 = 8(10) ·6ιη。 已將螢光區域視爲等同於光二極體區域,然而實際的 螢光區域大體上大於光二極體區域:因此可大槪假設 九=0.5爲光學系統之光採集效率。光二極體的特性,$1 = 10 fe 爲在螢光波長之光二極體量子效率對在激發波長之光二極 體的量子效率之比的極保守値。 以典型的LED衰減生命週期之&amp; = 0.5奈秒和使用...(22) We also know that in fact F = sclrj R = , »τί 0 -83- 201211243 ideal time for fluorescence detection and use Philips LXK2-PR1 4- R00 LED and pulsar 650 dye detection The number of fluorescent photons measured is determined as follows: The ideal detection time is determined using equation (22): recall the concentration of the amplicon, and assuming that all amplicons are hybridized, then the fluorescent concentration of the fluorescent is :c = 2.89(10)_6mol/L. The height of the chamber is the optical path length 1 = 8 (10) · 6ιη. The fluorescent region has been considered to be equivalent to the photodiode region, but the actual fluorescent region is substantially larger than the photodiode region: therefore, it is assumed that nine = 0.5 is the optical collection efficiency of the optical system. The characteristics of the photodiode, $1 = 10 fe, are extremely conservative in the ratio of the quantum efficiency of the photodiode at the fluorescence wavelength to the quantum efficiency of the photodiode at the excitation wavelength. With a typical LED attenuation life cycle &amp; = 0.5 nanoseconds and use

Pulsar650規格,可決定泣: 尸=[1.48(10)6 ][2.89(10广][8(10)_6 ](1) =3.42(10)'5 ..ln([3.42(10)-5](10)(0.5)) Δί= i 1 1(10)-6 ~ 0.5(10)-9 =4.34(10)'9 s 偵測到的光子數目係使用等式(2 1 )決定。首先,每 單位時間發射的激發光子數目乂係由檢測照明幾何而定。Pulsar650 specifications, can decide the weeping: corpse = [1.48 (10) 6 ] [2.89 (10 wide) [8 (10) _6 ] (1) = 3.42 (10) '5 .. ln ([3.42 (10)-5 ](10)(0.5)) Δί= i 1 1(10)-6 ~ 0.5(10)-9 =4.34(10)'9 s The number of detected photons is determined using equation (2 1 ). The number of excitation photons emitted per unit time is determined by the detection illumination geometry.

Philips LXK2-PR1 4-R00 LED 具有 Lamb erti an 輻射模 式,因此: n, = nl0 cos(9) ...(23) 其中 %爲與該LED的向前軸線方向之角度爲Θ之每 201211243 單位立體角每單位時間發射的光子數目,且^爲β在該向 前軸線方向之値。 由該LED每單位時間所發射的光子之總數爲: ή, =|η;ί/Ω η Ω ...(24) 現在,The Philips LXK2-PR1 4-R00 LED has a Lamb erti an radiation mode, so: n, = nl0 cos(9) ...(23) where % is the angle to the forward axis of the LED is 每 every 201211243 units The number of photons emitted per unit time by the solid angle, and ^ is the β in the direction of the forward axis. The total number of photons emitted by the LED per unit time is: ή, =|η; ί/Ω η Ω ... (24) Now,

△Ω = 2;τ[1 - cos(0 + Δ0)] - 2;τ[1 - cos(0)] △Ω = 2;r[cos(0) - cos(0 + A0)] dQ. = 2π3ΐη(θ)(ίθ△Ω = 2;τ[1 - cos(0 + Δ0)] - 2;τ[1 - cos(0)] △Ω = 2;r[cos(0) - cos(0 + A0)] dQ. = 2π3ΐη(θ)(ίθ

代入(24): π 2 ή, = J 2m)0 cos(e)sin(9)d0 o = ^10 重新排列,我們得到:Substituting (24): π 2 ή, = J 2m)0 cos(e)sin(9)d0 o = ^10 Rearrange, we get:

=^L ΊΟ ...(26) LED的輸出功率爲0.515瓦且ν, 6.52(10)14 赫茲, 因此:=^L ΊΟ ...(26) The output power of the LED is 0.515 watts and ν, 6.52 (10) 14 Hz, therefore:

Pi hve ..彳 27) __0.515_ _[6.63(10)·34][6.52(10)μ] = 1.19(10)18 光子揪 將此値帶入 (26)我們得到: -85- 201211243 ... 1.19(10)18 «;〇=-— π = 3.79(10)17光子/秒嫌面度 參照圖61,光學中心252和LED26之透鏡254係如 示意圖所示。光二極體爲16微米χ16微米’且對於在陣 列中間的光二極體’自LED26所發射至光二極體184的 光錐的立體角(Ω)係大約: Ω =感測器面積/r2Pi hve ..彳27) __0.515_ _[6.63(10)·34][6.52(10)μ] = 1.19(10)18 Photon 揪 Bring this 値 into (26) We get: -85- 201211243 . .. 1.19(10)18 «; 〇 = - π = 3.79 (10) 17 photons / sec. Referring to Figure 61, the optical center 252 and the lens 254 of the LED 26 are shown in the schematic. The solid angle of the photodiode is 16 micrometers χ 16 micrometers and the solid angle (Ω) of the light cone emitted from the LED 26 to the photodiode 184 for the photodiode in the middle of the array is approximately: Ω = sensor area / r2

[ΙόΟΟ^ΐαόρΟ)&quot;6] ~[2.825(10) 3| =3_21(10)_5 球面度 將理解該光二極體陣列44之中央光二極體184爲用 於這些計算之用途。位於該陣列邊緣的光感測器在雜交事 件時僅接收2%之少量光子用於Lambertian激發源強度 分佈。 每單位時間發射的激發光子數: he =n,Cl ...(28)[ΙόΟΟ^ΐαόρΟ)&quot;6] ~[2.825(10) 3| =3_21(10)_5 Sphericality The central photodiode 184 of the photodiode array 44 will be understood for use in these calculations. Photosensors located at the edge of the array receive only 2% of the photons for the Lambertian excitation source intensity distribution during the hybridization event. Number of excitation photons emitted per unit time: he = n, Cl ... (28)

=[3.79(10)17][3.21(10)·5] =1.22(10)13 光子渺 現在參考等式(29): η, =Φ〇^τ/β'ΜΙΤ/ ns = (0.5)[1.22(10)'3][3.42(10)·5][1(10)-6&gt;-434(1〇γ,/1(ΙΟ)'&lt; = 208每感測器之光子 因此,使用 Philips LXK2-PR14-R00 LED 和 Pulsar 6 50螢光團,我們可以輕易地偵測任何造成被激發之光子 數目的雜交事件。 該SET LED照明幾何顯示於圖62中。在ID = 20毫 -86-=[3.79(10)17][3.21(10)·5] =1.22(10)13 Photon 渺 Now refer to equation (29): η, =Φ〇^τ/β'ΜΙΤ/ ns = (0.5)[ 1.22(10)'3][3.42(10)·5][1(10)-6&gt;-434(1〇γ, /1(ΙΟ)'&lt;= 208 photons per sensor Therefore, use Philips LXK2-PR14-R00 LED and Pulsar 6 50 fluorophore, we can easily detect any hybridization events that cause the number of excited photons. The SET LED illumination geometry is shown in Figure 62. At ID = 20 mA-86-

4.10(10)15 201211243 安培,LED具有最小光學功率輸出Pl= 240微瓦,波 心於λβ = 3 40奈米(铽螯合物之吸收波長)。驅動 於ID = 2 00毫安培線性增加該輸出功率至ρι = 2.4毫 藉由將LED的光學中心252置於離雜交腔室陣列1 離17.5毫米處,我們大約集中輸出通量於具有最大 爲2毫米的圓點大小》 在雜交陣列平面之2毫米直徑點中的光子通量由 (2 7 )得到。 2.4(10)~3 ~ [6.63(10)'34][8.82(10)14] = 4.10(10)15 光子渺 使用等式(28 ),我們得到: he = η;Ω [16(10)-6]2 对1(10)-3]2 3.34(10)11 光子渺 長中 LED 瓦。 0距 直徑 等式4.10(10)15 201211243 Ampere, the LED has a minimum optical power output of Pl = 240 microwatts, and the center of the wave is λβ = 3 40 nm (the absorption wavelength of the ruthenium chelate). Drive the ID = 00 mA linearly to increase the output power to ρι = 2.4 m by placing the optical center 252 of the LED at 17.5 mm from the hybridization chamber array 1 and we are concentrating the output flux to a maximum of 2 The dot size of millimeters] The photon flux in the 2 mm diameter point of the hybrid array plane is obtained from (2 7 ). 2.4(10)~3 ~ [6.63(10)'34][8.82(10)14] = 4.10(10)15 Photon 渺 Using equation (28), we get: he = η; Ω [16(10) -6] 2 pairs of 1(10)-3]2 3.34(10)11 photon 渺 long medium LED watts. 0 distance diameter equation

螯合 現在,再呼叫等式(22 )及使用先前列舉的Tb 物特性, A_ln[(6.94(10)-5)(10)(0.5)] _ _1___1 1(10)'3 ~ 0.5(10)-9 =3.98(10)·9 秒 現在自等式2 1 : ns = (0.5)[3.34(10)11][6.94(10)-5][l(10)-3]e-398&lt;l0r,/,(,o)'3 = 11,600每感測器之光子 87 - 201211243 由雜交事件使用SET LED和铽螯合物系統所發射之 光子理論數値係可簡單的偵測得到且遠超過3 0個光子數 之極小値’此極小値爲用於上述所指示之光感測器之可信 賴的偵測所需。 探針與光二極體間之最大間隔Chelation now, call equation (22) again and use the previously listed Tb properties, A_ln[(6.94(10)-5)(10)(0.5)] _ _1___1 1(10)'3 ~ 0.5(10) -9 =3.98(10)·9 seconds now from the equality 2 1 : ns = (0.5)[3.34(10)11][6.94(10)-5][l(10)-3]e-398&lt;l0r , /, (,o)'3 = 11,600 photons per sensor 87 - 201211243 The number of photons theoretically emitted by the SET LED and the ruthenium chelate system from the hybridization event can be easily detected and far exceeds 3 The minimum number of zero photons is 'this minimum size' is required for reliable detection of the photosensors indicated above. Maximum spacing between the probe and the photodiode

雜交之晶片上偵測避免以共焦顯微鏡(見本發明的背 景)偵測之需要。背離傳統偵測技術爲節省與系統有關的 時間和成本之重要的因素。傳統偵測需要必須使用透鏡和 彎曲鏡面之成像光學。藉由採用非成像光學,診斷系統避 免複雜及笨重的光學元件串之需求。將光二極體放置於非 常靠近探針具有極高收集效率的優點。當在探針和光二極 體間的材料厚度爲1微米的等級時,發射光之收集角係高 達173°。此角度藉由考慮自最靠近光二極體之雜交腔室 表面中心的探針發射的光來計算,光二極體具有平行於腔 室表面的平面活性表面區。光可以於其內由光二極體吸收 之發射角錐係定義爲在其頂點和在其平面之周圍上的感測 器角落具有發射探針。對於16微米χ16微米的感測器, 此錐體的頂角爲17 0°;在光二極體經擴充使得其面積符 合29微米χ19·75微米之雜交腔室面積的限制例中,頂角 爲】73°。在腔室表面和光二極體活性表面之間的分隔爲i 微米或更小是容易達成的。 應用非成像光學方法需要光二極體184非常靠近雜交 腔室以收集螢光輻射之足夠光子。在光二極體和探針之間 -88 - 201211243 的最大間隔係參照如下圖54所決定。 利用铽螯合物螢光團和 SET UVTOP33 5T039BL LED ,我們計算自個別雜交腔室180到達16微米xl6微米之 光二極體184的11600個光子。在實施此計算時,我們假 設雜交腔室180之光收集區域具有與光二極體有效區185 相同的底面積,且雜交光子之總數的一半到達光二極體 184。即光學系統之光收集效率爲九=0.5。Detection on hybrid wafers avoids the need for detection by a confocal microscope (see the background of the present invention). Deviating from traditional detection techniques is an important factor in saving time and cost associated with the system. Conventional detection requires imaging optics that must use lenses and curved mirrors. By using non-imaging optics, the diagnostic system avoids the need for complex and cumbersome strings of optical components. Placing the photodiode in a very close proximity to the probe has the advantage of extremely high collection efficiency. When the material thickness between the probe and the photodiode is 1 micron, the collection angle of the emitted light is as high as 173°. This angle is calculated by considering the light emitted from the probe closest to the center of the hybrid chamber surface of the photodiode, which has a planar active surface region parallel to the surface of the chamber. The emission pyramid system in which light can be absorbed by the photodiode is defined as having a radiation probe at its apex and at the sensor corners around its plane. For a 16 micron χ 16 micron sensor, the apex angle of the cone is 170°; in the case where the photodiode is expanded such that its area conforms to the hybridization chamber area of 29 μm χ19·75 μm, the apex angle is 】 73 °. It is easily achieved that the separation between the chamber surface and the photodiode active surface is i microns or less. The application of a non-imaging optical method requires that the photodiode 184 be in close proximity to the hybridization chamber to collect sufficient photons of the fluorescent radiation. The maximum spacing between -8 - 201211243 between the photodiode and the probe is determined as shown in Figure 54 below. Using the ruthenium chelate fluorophore and the SET UVTOP33 5T039BL LED, we calculated 11600 photons from individual hybridization chambers 180 to 16 micron x 16 micron photodiodes 184. In carrying out this calculation, we assume that the light collecting region of the hybridization chamber 180 has the same bottom area as the photodiode active region 185, and that half of the total number of hybrid photons reaches the photodiode 184. That is, the light collection efficiency of the optical system is nine = 0.5.

更精確我們可以寫出么=[(雜交腔室之光收集區域 的底面積)/ (光二極體區域)][Ω/4τι],其中由在雜交腔 室之基底於代表點之光二極體所對向的Ω =立體角。對於 正確的正方錐幾何: Ω = 4a^csin ( a2/(4d〇2 + a2)),其中 d〇=在腔室與 光二極體之間的距離,且α爲光二極體尺寸。 各雜交腔室釋放23200個光子,經選擇的光二極體具 有偵測極小値爲1 7個光子,因此,所需的最小光學效率More precisely, we can write out = [(the bottom area of the light collection area of the hybrid chamber) / (photodiode area)] [Ω / 4τι], which is the light diode from the base of the hybridization chamber at the representative point The opposite Ω = solid angle. For the correct square pyramid geometry: Ω = 4a^csin ( a2/(4d〇2 + a2)), where d〇 = the distance between the chamber and the photodiode, and α is the size of the photodiode. Each hybridization chamber releases 23,200 photons, and the selected photodiode has a detection of a minimum of 17 photons, thus requiring minimal optical efficiency.

φ0= 1 7/23200 = 7.3 3 χ10·4 雜交腔室180之光收集區域的底面積爲29微米 X 1 9.75 微米。 解出“,將得到在雜交腔室及光二極體1 84之間的 最大限制距離爲dG = 249微米。在此限制中,如上所定義 之收集錐角僅爲〇 · 8°。應注意的是此分析忽略了折射之可 忽略的影響。 -89- 201211243 LOC變體Φ0 = 1 7/23200 = 7.3 3 χ10·4 The bottom area of the light collection region of the hybridization chamber 180 is 29 μm X 1 9.75 μm. Solving ", the maximum limit distance between the hybridization chamber and the photodiode 1 84 will be dG = 249 microns. In this limitation, the collection cone angle as defined above is only 〇·8°. It should be noted This analysis ignores the negligible effect of refraction. -89- 201211243 LOC variant

以上詳細描述及說明之LOC裝置301僅爲許多可行 之LOC裝置設計中之一者。現將以槪略流程圖(自樣本 輸入至檢測)說明及/或顯示使用上述的各種功能部之不 同組合之LOC裝置變體而闡述一些可行的組合。將流程 圖適當的分成樣本輸入及製備階段2 8 8、萃取階段290、 培養階段291、擴增階段292、預-雜交階段293以及檢測 階段294。爲清楚及簡明表示之故’僅簡單說明或槪要顯 示所有的LOC變體而未顯示細節配置。亦爲清楚表示之 故,未顯示較小的功能單元,諸如液體感測器及溫度感測 器,但應理解的是此等功能單元已被倂入以下LOC裝置 設計之各者的適當位置。The LOC device 301, described and illustrated in detail above, is only one of many possible LOC device designs. Some possible combinations will now be set forth in the context of a flow chart (from sample input to detection) and/or display of LOC device variants using different combinations of the various functional aspects described above. The flow chart is appropriately divided into a sample input and preparation stage 2 8 8 , an extraction stage 290, a culture stage 291, an amplification stage 292, a pre-hybridization stage 293, and a detection stage 294. For the sake of clarity and conciseness, only a brief description or summary of all LOC variants is shown and no detailed configuration is shown. Also for clarity, smaller functional units, such as liquid sensors and temperature sensors, are not shown, but it should be understood that such functional units have been incorporated into the proper location of each of the following LOC device designs.

LOC變體XIILOC variant XII

LOC變體XII758顯示於圖92至99。此LOC裝置萃 取290、培養291、擴增292及檢測294病原體DNA’並 使用預雜交純化步驟以增加雜交效率。樣本(諸如全血樣 本)係加至樣本入口 68 (見圖94 )’並且毛細作用吸取 樣本至表面張力閥118’其中自貯槽54加入抗凝血劑。 樣本繼續於蓋通道94至病原體透析部70。透析部70具 有旁路通道600以避免捕集的氣泡(見圖94) ° 於病原體透析部70透析後’紅血球和白血球流被導 入廢料貯槽76,同時繼續於樣本流至表面張力閥128’其 中自貯槽56加入溶胞試劑。樣本塡滿化學溶胞腔室130 -90- 201211243 ,其中由沸騰引發閥206保留樣本直到溶胞試劑擴散通過 樣本以釋放大部分(若非全部)之病原體DNA。當沸騰 引發閥206打開,樣本流至表面張力閥132,其中自貯槽 5 8加入限制酵素、接合酶和聯結子引子。樣本塡滿培養 部114並且當病原體DN A之限制酶切和聯結子接合發生 時加熱樣本(見圖94)。The LOC variant XII758 is shown in Figures 92-99. This LOC device extracts 290, cultures 291, expands 292, and detects 294 pathogen DNA' and uses a pre-hybridization purification step to increase hybridization efficiency. A sample, such as a whole blood sample, is applied to the sample inlet 68 (see Figure 94)&apos; and capillaryly draws the sample to the surface tension valve 118&apos; where the anticoagulant is added from the reservoir 54. The sample continues to the cover channel 94 to the pathogen dialysis section 70. The dialysis section 70 has a bypass passage 600 to avoid trapped air bubbles (see FIG. 94). After the dialysis of the pathogen dialysis section 70, the red blood cells and white blood cell flow are introduced into the waste storage tank 76 while continuing to flow the sample to the surface tension valve 128'. The lysis reagent is added from the storage tank 56. The sample is filled with a chemical lysis chamber 130-90-201211243 in which the sample is retained by the boiling initiation valve 206 until the lysis reagent diffuses through the sample to release most, if not all, of the pathogen DNA. When the boiling initiation valve 206 is opened, the sample flows to the surface tension valve 132 where the restriction enzyme, ligase, and linker primer are added from the reservoir 58. The sample is filled with culture 114 and the sample is heated as the pathogen DN A restriction enzyme and junction junctions occur (see Figure 94).

限制酶切及聯結子接合後,沸騰引發閥207打開以讓 樣本流進擴增部112。當樣本流入擴增部112時,自貯槽 60之擴增混和物經由表面張力閥138加入,且來自貯槽 62之聚合酶通過表面張力閥140。在沸騰引發閥108開啓 使擴增子流至小組份透析部682之前,病原體DNA藉由 熱循環擴增,其中大組份被移除(見圖94)。 最佳顯示於圖97和98,小組分透析部682在形成於 底通道層1 00中之兩個小組份通道762間具有大組分通道 760 (見圖93 )。大組份通道760係由以一系列反向錐形 開口 764之形式的孔連接至小組份通道762 (在大組份通 道末端較小)。在大部分實際的應用中,孔爲1至8微米 寬且1至8微米高。當擴增子流進大組份通道760,小組 份(小於反向錐形開口 764 )開始擴散進入小組份通道 762。當流至小組份透析部682之下游端時,小組份在大 組份通道760中之濃度降低。微製造孔的另外優點爲沿著 通道每單位長度之孔的數目非常高,使得分離更爲有效率 。對於以尺寸爲關注點之組份的有效分離,相鄰孔之間的 間隔爲1微米和1 0微米之間;圖98所顯示之具體實施例 -91 - 201211243 中,相鄰孔之間的間隔爲8微米。 圖9 9顯示小組份透析部6 8 2之下游端。大組份通道 760轉向至終結在盲終端766之寬曲道,盲終端提供廢料 貯槽。兩個小組份通道762通到雜交腔室陣列1 1 〇之對側 ,其中兩者皆沿著蜿蜒路徑通過陣列至各自的盲終端7 6 8 。在雜交加熱器和接續之探針-標靶雜交偵測之定時起始 之前,小組份擴增子塡滿所有個別的雜交腔室1 80。After the restriction enzyme digestion and the junction bonding, the boiling initiation valve 207 is opened to allow the sample to flow into the amplification portion 112. As the sample flows into the amplification section 112, the amplification mixture from the sump 60 is added via the surface tension valve 138 and the polymerase from the sump 62 passes through the surface tension valve 140. Before the boiling initiation valve 108 is opened to allow the amplicon to flow to the panel dialysis section 682, the pathogen DNA is amplified by thermal cycling, with the large components removed (see Figure 94). Most preferably shown in Figures 97 and 98, the small component dialysis section 682 has a large component channel 760 (see Figure 93) between the two component channels 762 formed in the bottom channel layer 100. The bulk component channel 760 is connected to the sub-channel 762 (smaller at the end of the large component channel) by a hole in the form of a series of reverse tapered openings 764. In most practical applications, the pores are 1 to 8 microns wide and 1 to 8 microns high. As the amplicon flows into the large component channel 760, the population (less than the reverse tapered opening 764) begins to diffuse into the component channel 762. When flowing to the downstream end of the panel dialysis section 682, the concentration of the panel in the bulk channel 760 is lowered. An additional advantage of microfabricated holes is that the number of holes per unit length along the channel is very high, making separation more efficient. For effective separation of components of size by interest, the spacing between adjacent wells is between 1 micron and 10 micrometers; in the specific embodiment -91 - 201211243 shown in Figure 98, between adjacent wells The interval is 8 microns. Figure 9 shows the downstream end of the panel dialysis section 682. The large component channel 760 is turned to terminate at the wide track of the blind terminal 766, and the blind terminal provides a waste sump. Two sub-channels 762 are passed to the opposite side of the hybrid chamber array 1 1 , wherein both pass the array along the meandering path to the respective blind terminals 7 6 8 . The panel amplicon fills up all individual hybridization chambers 1 80 prior to the start of the timing of the hybridization heater and subsequent probe-target hybridization detection.

小組份透析部682移除可能仍在細胞溶胞後仍留在樣 本流中之細胞碎片。細胞碎片會干擾雜交效率。 結論The panel dialysis section 682 removes cellular debris that may remain in the sample stream after the cells have been lysed. Cell debris can interfere with hybridization efficiency. in conclusion

描述於本文之裝置、系統及方法促進分子診斷試驗成 爲低花費、快速且成爲重點照護試驗。描述於上文之系統 及其組件已完全說明,且於此領域之技藝工作者將可容易 地識別不偏離主要發明槪念之精神與範疇的許多變化和修 改。 【圖式簡單說明】 現將藉由僅參照附圖之實例描述本發明之較佳具體實 施例,其中: 圖1顯示經配置而用於螢光檢測之試驗模組和試驗模 組讀取器。 圖2爲經配置而用於螢光檢測之試驗模組中之電子組 件的圖式槪要。 -92- 201211243 圖3爲試驗模組讀取器中之電子組件的圖式槪要。 圖4爲LOC裝置之結構的圖式槪要。 圖5爲LOC裝置之透視圖。 圖6爲具有來自彼此疊加之所有層之特徵和結構之 LOC裝置的平面圖。 圖7爲具有獨立顯示之蓋結構之LOC裝置的平面圖The devices, systems, and methods described herein facilitate molecular diagnostic testing as a low cost, rapid, and focused care test. The system and its components described above are fully described, and those skilled in the art will be able to readily recognize many variations and modifications without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which: FIG. 1 shows a test module and a test module reader configured for fluorescence detection. . Figure 2 is a schematic representation of the electronic components in a test module configured for fluorescence detection. -92- 201211243 Figure 3 is a schematic diagram of the electronic components in the test module reader. Figure 4 is a schematic view of the structure of the LOC device. Figure 5 is a perspective view of the LOC device. Figure 6 is a plan view of an LOC device having features and structures from all of the layers superimposed on each other. Figure 7 is a plan view of a LOC device having a cover structure that is independently shown

圖8爲具有以虛線顯示之內通道和貯槽之蓋的頂部透 視圖。 圖9爲具有以虛線顯示之內通道和貯槽之蓋的爆炸頂 部透視圖。 圖10爲顯示頂部通道配置之蓋的底部透視圖。 圖11爲獨立顯示CMOS+MST裝置結構之LOC裝置 的平面圖。 圖12爲在樣本入口之l〇C裝置的剖面示意圖。 圖13爲圖6所示之插圖aa的放大視圖。 圖14爲圖6所示之插圖ab的放大視圖。 圖15爲圖13所示之插圖AE的放大視圖。 圖16爲圖解在插圖ae內部之LOC裝置的層狀構造 之部分透視圖。 圖17爲圖解在插圖ae內部之LOC裝置的層狀構造 之部分透視圖。 圖18爲圖解在插圖ae內部之LOC裝置的層狀構造 之部分透視圖。 -93- 201211243 圖19爲圖解在插圖AE內部之LOC裝置的層狀構造 之部分透視圖。 圖20爲圖解在插圖AE內部之LOC裝置的層狀構造 之部分透視圖。 圖21爲圖解在插圖AE內部之LOC裝置的層狀構造 之部分透視圖》 圖22爲顯示在圖21之該溶胞試劑貯槽之剖面示意圖Figure 8 is a top perspective view of the cover with the inner channel and the sump shown in phantom. Figure 9 is an exploded top perspective view of the cover with the inner passage and the sump shown in phantom. Figure 10 is a bottom perspective view showing the cover of the top channel configuration. Figure 11 is a plan view showing the LOC device independently showing the structure of the CMOS + MST device. Figure 12 is a schematic cross-sectional view of the device at the inlet of the sample. Figure 13 is an enlarged view of the illustration aa shown in Figure 6. Figure 14 is an enlarged view of the inset ab shown in Figure 6. Figure 15 is an enlarged view of the inset AE shown in Figure 13. Figure 16 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset ae. Figure 17 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset ae. Figure 18 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset ae. -93- 201211243 Figure 19 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 20 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AE. Figure 21 is a partial perspective view showing the layered structure of the LOC device inside the inset AE. Figure 22 is a schematic cross-sectional view showing the lysing reagent storage tank of Figure 21.

圖23爲圖解在插圖AB內部之LOC裝置的層狀構造 之部分透視圖。 圖24爲圖解在插圖ΑΒ內部之LOC裝置的層狀構造 之部分透視圖。 圖25爲圖解在插圖AI內部之LOC裝置的層狀構造 之部分透視圖。Figure 23 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 24 is a partial perspective view illustrating the layered configuration of the LOC device inside the illustration. Figure 25 is a partial perspective view illustrating the layered configuration of the LOC device inside the illustration AI.

圖26爲圖解在插圖AB內部之LOC裝置的層狀構造 之部分透視圖。 圖27爲圖解在插圖AB內部之LOC裝置的層狀構造 之部分透視圖。 圖28爲圖解在插圖AB內部之LOC裝置的層狀構造 之部分透視圖。 圖29爲圖解在插圖AB內部之LOC裝置的層狀構造 之部分透視圖。 圖30爲擴增混合貯槽及聚合酶貯槽之剖面示意圖。 圖3 1顯示獨立之沸騰引發閥的特徵。 -94- 201211243 圖32爲顯示於圖31行經線3 2-3 2之沸騰引發閥之剖 面示意圖。 圖33爲顯示於圖15之插圖AF的放大圖。 圖3 4爲顯示於圖3 3行經線3 4-3 4之沸騰引發閥之剖 面示意圖。 圖35爲顯示於圖6之插圖AC的放大圖。 圖36爲顯示擴增部之插圖AC內部之進一步放大圖Figure 26 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 27 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 28 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 29 is a partial perspective view illustrating the layered configuration of the LOC device inside the inset AB. Figure 30 is a schematic cross-sectional view of an amplification mixing tank and a polymerase reservoir. Figure 31 shows the characteristics of a separate boiling initiation valve. -94- 201211243 Figure 32 is a schematic cross-sectional view showing the boiling initiation valve of the line 3 2-3 2 of Figure 31. Figure 33 is an enlarged view of the inset AF shown in Figure 15. Figure 3 is a schematic cross-sectional view of the boiling initiation valve shown in Figure 3, line 3, line 4 4-3. Figure 35 is an enlarged view of the inset AC shown in Figure 6. Figure 36 is a further enlarged view showing the inside of the illustration AC of the amplification section

圖37爲顯示擴增部之插圖AC內部之進一步放大圖 圖38爲顯示擴增部之插圖AC內部之進一步放大圖 圖39爲顯示於圖38之插圖AK內部之進一步放大圖 圖40爲顯示擴增腔室之插圖AC內部之進一步放大37 is a further enlarged view showing the inside of the illustration AC of the amplification section. FIG. 38 is a further enlarged view showing the inside of the illustration AC of the amplification section. FIG. 39 is a further enlarged view of the inside of the illustration AK shown in FIG. 38. Illustration of the chamber is further enlarged inside the AC

圖41爲顯示擴增部之插圖AC內部之進一步放大圖 〇 圖42爲顯示擴增腔室之插圖AC內部之進一步放大 圖。 圖43爲顯不於圖42之插圖AL內部之進一步放大圖 〇 圖44爲顯示擴增部之插圖AC內部之進一步放大圖 〇Fig. 41 is a further enlarged view showing the inside of the illustration AC of the amplification section. Fig. 42 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 43 is a further enlarged view of the inside of the illustration AL which is not shown in Figure 42. Figure 44 is a further enlarged view showing the inside of the illustration AC of the amplification section.

-95 - C 201211243 圖45爲顯示於圖44之插圖AM內部之進—步放大圖 圖46爲顯示擴增腔室之插圖AC內部之進一步放大 圖。 圖47爲顯示於圖46之插圖AN內部之進一步放大圖 圖48爲顯示擴增腔室之插圖AC內部之進一步放大 圖。 圖49爲顯示擴增腔室之插圖AC內部之進一步放大 圖。 圖50爲顯示擴增部之插圖AC內部之進一步放大圖 圖51爲擴增部之剖面示意圖。 圖52爲雜交部之放大平面圖。 圖53爲兩個獨立之雜交腔室之進一步放大平面圖。 圖54爲單個雜交腔室之剖面示意圖。 圖55爲顯示於圖6之插圖AG中闡述之增濕器之放 大圖。 圖56爲顯示於圖52之插圖AD之放大圖。 圖57爲在插圖AD中之LOC裝置的爆炸透視圖。 圖58爲在封閉組態中FRET探針的圖。 圖59爲呈開放且雜交組態中FRET探針的圖。 圖60爲激發光密度隨著時間改變的曲線圖。 excitation-95 - C 201211243 Figure 45 is an enlarged view of the inside of the illustration AM shown in Figure 44. Figure 46 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Figure 47 is a further enlarged view of the inside of the illustration AN shown in Figure 46. Figure 48 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Fig. 49 is a further enlarged view showing the inside of the illustration AC of the amplification chamber. Fig. 50 is a further enlarged view showing the inside of the illustration AC of the amplification section. Fig. 51 is a schematic cross-sectional view showing the amplification section. Figure 52 is an enlarged plan view of the hybridization section. Figure 53 is a further enlarged plan view of two separate hybridization chambers. Figure 54 is a schematic cross-sectional view of a single hybridization chamber. Figure 55 is an enlarged view of the humidifier illustrated in the inset AG of Figure 6. Figure 56 is an enlarged view of the inset AD shown in Figure 52. Figure 57 is an exploded perspective view of the LOC device in the inset AD. Figure 58 is a diagram of a FRET probe in a closed configuration. Figure 59 is a diagram of a FRET probe in an open and hybrid configuration. Figure 60 is a graph of excitation light density as a function of time. Exc

圖6 1爲雜交腔室陣列之激發照明幾何( -96 - 201211243 illumination geometry)的圖。 圖62爲感測器電子技術LED照明幾何的圖示。 圖63爲顯示於圖六之插圖AH之濕度感測器的放大 平面圖。 圖64爲顯示部分光感測器之光二極體陣列之槪要圖 圖65爲單一光二極體之電路圖。Figure 61 is a graph of the excitation illumination geometry (-96 - 201211243 illumination geometry) of the hybrid chamber array. Figure 62 is a graphical representation of the sensor electronics electronics LED illumination geometry. Figure 63 is an enlarged plan view showing the humidity sensor of Figure AH of Figure 6. Figure 64 is a schematic diagram showing an array of photodiodes of a portion of the photosensor. Figure 65 is a circuit diagram of a single photodiode.

圖66爲光二極體控制訊號之時序圖。 圖67爲顯示於圖55之插圖AP之蒸發器的放大圖。 圖68爲以偵測光二極體和觸發光二極體通過雜交腔 室之剖面示意圖。 圖69爲聯結子-引發PCR之圖。 圖7 0爲表示具有刺血針之試驗模組的槪要圖。 圖71爲LOC變體VII之結構的圖形表示。 圖72爲具有彼此層疊的所有層之特徵和結構之LOC 變體VIII之平面圖。 圖73爲圖72顯示之插圖CA的放大圖。 圖74爲圖解圖72顯示之插圖CA內之LOC變體 VIII之層狀構造的部分透視圖。 圖75爲圖73顯示之插圖CE的放大圖。 圖76爲圖示LOC變體VIII之構造。 圖77爲LOC變體XIV之結構的圖形表示。 圖78爲LOC變體XLI之結構的圖形表示。 圖79爲LOC變體XLIII之結構的圖形表示。 -97- 201211243 圖80爲LOC變體XLIV之結構的圖形表示。 圖81爲LOC變體XLIVII之結構的圖形表示。 圖8 2爲在初次擴增期間之引子聯結之線性螢光探針 之圖。 圖83爲在接續擴增循環期間之引子聯結之線性螢光 探針之圖。Figure 66 is a timing diagram of the photodiode control signal. Figure 67 is an enlarged view of the evaporator of the illustration AP shown in Figure 55. Figure 68 is a schematic cross-sectional view showing the detection of the photodiode and the triggering photodiode through the hybridization chamber. Figure 69 is a diagram of junction-priming PCR. Figure 70 is a schematic view showing a test module having a lancet. Figure 71 is a graphical representation of the structure of LOC Variant VII. Figure 72 is a plan view of a LOC variant VIII having features and structures of all layers stacked one on another. Figure 73 is an enlarged view of the inset CA shown in Figure 72. Figure 74 is a partial perspective view illustrating the layered configuration of the LOC variant VIII in the inset CA shown in Figure 72. Figure 75 is an enlarged view of the inset CE shown in Figure 73. Figure 76 is a diagram showing the construction of LOC variant VIII. Figure 77 is a graphical representation of the structure of the LOC variant XIV. Figure 78 is a graphical representation of the structure of the LOC variant XLI. Figure 79 is a graphical representation of the structure of the LOC variant XLIII. -97- 201211243 Figure 80 is a graphical representation of the structure of the LOC variant XLIV. Figure 81 is a graphical representation of the structure of the LOC variant XLIVII. Figure 82 is a diagram of a linear fluorescent probe linked by a primer during the initial amplification. Figure 83 is a diagram of a linear fluorescent probe coupled to a primer during a subsequent amplification cycle.

圖84A至84F圖示說明引子-連結之螢光莖-及-環探 針的熱循環。 圖85爲關於雜交腔室陣列及光二極體之激發LED的 槪要說明。 圖86爲引導光進入LOC裝置之雜交腔室陣列的激發 LED和光學透鏡之槪要說明。 圖87爲用於引導光進入LOC裝置之雜交腔室陣列的 激發LED、光學透鏡和光學稜鏡之槪要說明。Figures 84A through 84F illustrate the thermal cycling of the primer-linked fluorescent stem-and-loop probe. Figure 85 is a schematic illustration of the excitation LEDs for the hybrid chamber array and photodiode. Figure 86 is a schematic illustration of the excitation LED and optical lens that direct light into the hybrid chamber array of the LOC device. Figure 87 is a schematic illustration of an excitation LED, an optical lens, and an optical raft for directing light into the hybrid chamber array of the LOC device.

圖88爲用於引導光進入LOC裝置之雜交腔室陣列的 激發LED、光學透鏡和鏡子排列之槪要說明。 圖89爲顯示彼此重疊之所有特徵並顯示插圖DA至 DK的位置之平面圖。 圖90爲顯不於圖89之插圖DG的放大圖。 圖91爲顯示於圖89之插圖DH的放大圖。 圖92爲圖示L0C變體XII之構造。 圖93爲LOC變體XII之透視圖。 圖94爲顯示彼此重疊之所有特徵並顯示插圖FA至 FC的位置之平面圖。 -98- 201211243 圖95爲僅顯示各別的蓋之特徵的LOC變體XII之平 面圖。 圖96爲顯示各別的CMOS + MST裝置的LOC變體XII 之平面圖。 圖97爲顯示於圖94之插圖FA的放大圖。 圖98爲顯示於圖94之插圖FB的放大圖。 圖99爲顯示於圖94之插圖FC的放大圖。Figure 88 is a schematic illustration of the excitation LED, optical lens and mirror arrangement for directing light into the hybrid chamber array of the LOC device. Figure 89 is a plan view showing all the features overlapping each other and showing the positions of the insets DA to DK. Figure 90 is an enlarged view of the illustration DG which is not shown in Figure 89. Figure 91 is an enlarged view of the inset DH shown in Figure 89. Fig. 92 is a diagram showing the configuration of the L0C variant XII. Figure 93 is a perspective view of the LOC variant XII. Figure 94 is a plan view showing all the features overlapping each other and showing the positions of the insets FA to FC. -98- 201211243 Figure 95 is a plan view of the LOC variant XII showing only the features of the respective covers. Figure 96 is a plan view showing the LOC variant XII of the respective CMOS + MST device. Figure 97 is an enlarged view of the illustration FA shown in Figure 94. Figure 98 is an enlarged view of the inset FB shown in Figure 94. Figure 99 is an enlarged view of the illustration FC shown in Figure 94.

圖1〇〇爲用於光二極體之並聯電晶體之一個具體實施 例。 圖1〇1爲用於光二極體之並聯電晶體之一個具體實施 例。 圖102爲用於光二極體之並聯電晶體之一個具體實施 例。 圖103爲示差成像器之電路圖。 圖104槪略說明呈莖-及-環結構中之負控制螢光探針Fig. 1A shows a specific embodiment of a parallel transistor for an optical diode. Fig. 1 is a specific embodiment of a parallel transistor for an optical diode. Figure 102 is a specific embodiment of a parallel transistor for an optical diode. Figure 103 is a circuit diagram of the differential imager. Figure 104 schematically illustrates the negative control fluorescent probe in the stem-and-loop structure

圖105槪略說明呈開放構造中之圖104的負控制螢光 探針。 圖106槪略說明呈莖-及-環結構中之正控制螢光探針 圖107槪略說明呈開放構造中之圖1〇6的正控制螢光 探針。 圖1 08顯示經配置和ECL偵測一起使用之試驗模組 和試驗模組讀取器。 -99- 201211243 圖1 09爲經配置和ECL偵測一起使用之試驗模組中 之電子組件的圖示槪要。 圖1 1 〇顯示試驗模組與替代的試驗模組讀取器。 圖1 1 1顯示試驗模組和試驗模組讀取器以及容納各種 資料庫之主機系統。 【主要元件符號說明】 1 〇 :試驗模組 1 1 :試驗模組 1 2 :試驗模組讀取器 13 :外殼 14 :微型-USB接頭 15 :感應器 1 6 :微型-USB埠 17 :觸控螢幕 18 :顯示螢幕 19 :按鈕 2 0 :開始按鈕 2 1 :蜂巢式無線電 22 :無菌密封帶 2 3 :無線網路連接 24 :大容器 25:衛星導航系統 26 :發光二極體 -100- 201211243 27 =資料儲存器 2 8 :電話 29: LED驅動器 30 : LOC裝置 3 1 :電源調節器 32 :電容器Figure 105 schematically illustrates the negative control fluorescent probe of Figure 104 in an open configuration. Figure 106 schematically illustrates the positive control fluorescent probe in the stem-and-loop configuration. Figure 107 schematically illustrates the positive control fluorescent probe of Figure 1-6 in an open configuration. Figure 1 08 shows the test module and test module reader that are configured for use with ECL detection. -99- 201211243 Figure 119 is a graphical representation of the electronic components in the test module that are configured for use with ECL detection. Figure 1 1 shows the test module and the alternative test module reader. Figure 1 1 1 shows the test module and test module reader and the host system that houses the various databases. [Main component symbol description] 1 〇: Test module 1 1 : Test module 1 2 : Test module reader 13 : Case 14 : Micro-USB connector 15 : Sensor 1 6 : Micro-USB 埠 17 : Touch Control Screen 18: Display Screen 19: Button 2 0: Start Button 2 1 : Honeycomb Radio 22: Aseptic Sealing Band 2 3: Wireless Network Connection 24: Large Container 25: Satellite Navigation System 26: Light Emitting Diode-100- 201211243 27 = Data Storage 2 8 : Telephone 29 : LED Driver 30 : LOC Device 3 1 : Power Regulator 32 : Capacitor

3 3 :計時器 34 :控制器 35 :暫存器 36 :微型USB裝置1 . 1或2.0 3 7 :驅動器 3 8 :隨機存取記憶體 39 : ECL激發驅動器 40 :程式和資料快取 41 : ECL激發暫存器3 3 : Timer 34 : Controller 35 : Register 36 : Micro USB device 1. 1 or 2.0 3 7 : Driver 3 8 : Random access memory 39 : ECL excitation driver 40 : Program and data cache 41 : ECL excitation register

43 :程式儲存器 44 :光感測器 45 :指示器 46 :蓋 47 :模組 48 : CMOS + MST 裝置 49 :多孔元件 52 :雜交及檢測部 -101 20121124343 : Program Memory 44 : Light Sensor 45 : Indicator 46 : Cover 47 : Module 48 : CMOS + MST Device 49 : Porous Element 52 : Hybridization and Detection Department -101 201211243

54 : 抗凝血劑貯槽 56、 56.1、 56.2、 56.3:貯槽 57 : 印刷電路板 58 ' 5 8 . 1、5 8 · 2 :貯槽 60、 6 0.1 - 6 0 . 1 2、6 0 . X :貯槽 62, 62.1 、 62.2 、 62.3 、 62.4 、 64 : 下密封部 66 : 頂部層 68 : 樣本入口 70 : 透析部 72 : 廢料通道 74 : 標靶通道 76 : 廢料貯槽 78 : 貯槽層 80 : 蓋通道層 82 : 上密封層 84 : 矽基板 86 : CMOS電路 87 : MST層 88 : 鈍化層 90 : MST通道 92 : 下管道 94 : 蓋通道 96 : 上管道 6 2 . X :貯槽 -102- 201211243 97 :壁部 98 :彎液面固定器 1 00 : MST通道層 101 :膝上型電腦/筆記型電腦 102 :毛細作用起始特徵 103 :專用讀取器 105 :桌上型電腦54: Anticoagulant storage tanks 56, 56.1, 56.2, 56.3: Storage tank 57: Printed circuit board 58' 5 8 . 1 , 5 8 · 2 : Storage tank 60, 6 0.1 - 6 0 . 1 2, 6 0 . X : Sumps 62, 62.1, 62.2, 62.3, 62.4, 64: Lower seal 66: Top layer 68: Sample inlet 70: Dialysis section 72: Waste channel 74: Target channel 76: Waste tank 78: Tank layer 80: Cover channel layer 82 : Upper sealing layer 84 : 矽 substrate 86 : CMOS circuit 87 : MST layer 88 : passivation layer 90 : MST channel 92 : lower pipe 94 : cover channel 96 : upper pipe 6 2 . X : sump - 102 - 201211243 97 : wall Part 98: Meniscus Holder 1 00 : MST Channel Layer 101: Laptop/Notebook 102: Capillary Action Start Feature 103: Dedicated Reader 105: Desktop Computer

106 :沸騰引發閥 107 :電子書讀取器 108 :沸騰引發閥 109 :平板電腦 110、110.1-110.12、110.X:雜交室陣列 1 1 1 :流行病學資料 112、112.1-112.12、112.X:擴增部 1 1 3 :遺傳資料106: boiling initiation valve 107: e-book reader 108: boiling initiation valve 109: tablet 110, 110.1-110.12, 110.X: hybridization chamber array 1 1 1 : epidemiological data 112, 112.1-112.12, 112. X: Amplification part 1 1 3 : genetic data

1 1 5 :電子化健康記錄 1 1 6 :抗凝血劑 1 1 8 :表面張力閥 1 1 9 :液體樣本 1 2 0 :彎液面 1 2 1 :電子化醫療記錄 1 2 2 :通氣孔 123 :個人健康記錄 -103- 201211243 1 2 5 :網路 126 :沸騰引發閥 128 、 128.2 、 128.3 :表面張力閥 130、130.1-130.3:溶胞部 1 3 1 :混合部 132、 132.1、 132.3:表面張力閥 1 3 3 :培養器入口通道1 1 5 : Electronic health record 1 1 6 : Anticoagulant 1 1 8 : Surface tension valve 1 1 9 : Liquid sample 1 2 0 : Meniscus 1 2 1 : Electronic medical record 1 2 2 : Vent 123: Personal Health Record-103-201211243 1 2 5 : Network 126: boiling initiation valve 128, 128.2, 128.3: surface tension valve 130, 130.1-130.3: lysis unit 1 3 1 : mixing unit 132, 132.1, 132.3: Surface tension valve 1 3 3 : incubator inlet channel

134 :下管道 1 36 :光學窗 1 3 8 :表面張力閥 1 40 :表面張力閥 1 46 :閥入口 1 48 :閥出口 150 :閥下管道 152 :環形加熱器134: Lower pipe 1 36 : Optical window 1 3 8 : Surface tension valve 1 40 : Surface tension valve 1 46 : Valve inlet 1 48 : Valve outlet 150 : Under-valve pipe 152 : Ring heater

1 5 3 :閥加熱器接點 1 5 4 :加熱器 1 5 6 :加熱器接點 1 5 8 :微通道 1 60 :出口通道 1 6 4 :孔口 166 :毛細作用起始特徵 1 6 8 :透析吸入孔 170 :溫度感測器 -104- 201211243 174 :液體感測器 175 :擴散屏障 176 :流動路徑 178 :液體感測器 180 :雜交腔室1 5 3 : Valve heater contact 1 5 4 : Heater 1 5 6 : Heater contact 1 5 8 : Microchannel 1 60 : Outlet channel 1 6 4 : Orifice 166 : Capillary action starting feature 1 6 8 : Dialysis suction port 170 : Temperature sensor - 104 - 201211243 174 : Liquid sensor 175 : Diffusion barrier 176 : Flow path 178 : Liquid sensor 180 : Hybridization chamber

1 8 2 :加熱器 184 :光二極體 1 8 5 :有效區 1 8 6 :探針 187 :光二極體 1 8 8 :水貯槽 190 :蒸發器 1 9 1 :環形加熱器 192 :水供應逋道 193 :上管道 194 :下管道 1 9 5 :頂金屬層 196 :增濕器 1 9 8 :吸入孔 202 :毛細作用起始特徵 204: MST 通道 206 :沸騰引發閥 207 :沸騰引發閥 208 :液體感測器 -105 201211243 210 :微通道 2 1 2 : MST 通道 2 1 8 :電極 22 0 :電極 222 :間隙 2 3 2 :濕度感測器 2 3 4 :加熱器 2 3 6 : FRET 探針 2 3 8 :標靶核酸序列 240 :環 242 :莖 244 :激發光 246 :螢光團 2 4 8 :淬熄劑 2 5 0 :螢光訊號 2 5 2 :光學中心 2 5 4 :透鏡 2 8 8 :樣本輸入及製備 2 9 0 :萃取階段 2 9 1 :培養階段 2 9 2 :擴增階段 29 3 :預-雜交階段 294 :檢測階段 29 6 :第一電極 201211243 2 9 8 :第二電極 3 00 :可程式化延遲 301 : L Ο C 裝置 328:白血球透析部 3 76 :導熱柱1 8 2 : heater 184 : photodiode 1 8 5 : effective area 1 8 6 : probe 187 : photodiode 1 8 8 : water storage tank 190 : evaporator 1 9 1 : ring heater 192 : water supply 逋Lane 193: Upper Pipe 194: Lower Pipe 1 9 5: Top Metal Layer 196: Humidifier 1 9 8 : Suction Hole 202: Capillary Action Starting Feature 204: MST Channel 206: Boiling Initiating Valve 207: Boiling Initiating Valve 208: Liquid sensor -105 201211243 210 : Microchannel 2 1 2 : MST channel 2 1 8 : Electrode 22 0 : Electrode 222 : Gap 2 3 2 : Humidity sensor 2 3 4 : Heater 2 3 6 : FRET probe 2 3 8 : Target nucleic acid sequence 240 : Ring 242 : Stem 244 : Excitation light 246 : Fluorescent group 2 4 8 : Quencher 2 5 0 : Fluorescence signal 2 5 2 : Optical center 2 5 4 : Lens 2 8 8 : sample input and preparation 2 9 0 : extraction stage 2 9 1 : culture stage 2 9 2 : amplification stage 29 3 : pre-hybridization stage 294 : detection stage 29 6 : first electrode 201211243 2 9 8 : second electrode 3 00 : Programmable delay 301 : L Ο C Device 328: White blood cell dialysis unit 3 76 : Thermally conductive column

3 7 8 :正控制探針 3 8 0 :負控制探針 3 82 :校準室 3 8 4 :闊極 3 8 6 :閘極 3 8 8 :閘極 3 9 0 :可伸縮刺血針 3 92 :刺血針釋出按鈕 3 9 3 :閑極 394: MOS電晶體 396: MOS電晶體 3 9 8 : Μ Ο S電晶體 400: MOS電晶體 402: MOS電晶體 404 : MOS電晶體 406 :節點 40 8 :膜密封件3 7 8 : Positive control probe 3 8 0 : Negative control probe 3 82 : Calibration chamber 3 8 4 : Wide pole 3 8 6 : Gate 3 8 8 : Gate 3 9 0 : Retractable lancet 3 92 : Lancet release button 3 9 3 : Idle 394: MOS transistor 396: MOS transistor 3 9 8 : Μ Ο S transistor 400: MOS transistor 402: MOS transistor 404: MOS transistor 406: node 40 8 : film seal

4 1 0 :膜防護件 5 1 8 : LOC 變體 VIII 201211243 5 94 :界面層 600 :旁路通道 602 :界面標靶通道 604 :界面廢料通道4 1 0 : Membrane guard 5 1 8 : LOC variant VIII 201211243 5 94 : Interfacial layer 600 : Bypass channel 602 : Interface target channel 604 : Interface waste channel

673 : LOC 變體 XLIII673 : LOC variant XLIII

674 : LOC 變體 XLIV 677 : LOC 變體 XLVII 682 :透析部 6 8 6 :透析步驟 692 :引子-聯結的線性探針 694 :擴增阻斷物 6 9 6 :探針區域 698 :互補序列674 : LOC variant XLIV 677 : LOC variant XLVII 682 : dialysis section 6 8 6 : dialysis step 692 : primer-linked linear probe 694 : amplification blocker 6 9 6 : probe region 698 : complementary sequence

700 :寡核苷酸引子 704 :莖-及-環探針 706 :互補序列 708 :莖股 710 :股 7 1 2 :第一光稜鏡 7 1 4 :第二光稜鏡 7 1 6 :第一鏡 7 1 8 :第二鏡 7 5 8 : LOC 變體 XII 7 6 0 :大組分通道 -108- 201211243 762 :小組分通道 764 :開口 766 :廢料貯槽 768 :盲終端 7 7 8 :組態 7 8 0 :組態 7 8 2 :組態700: Oligonucleotide primer 704: stem-and-loop probe 706: complementary sequence 708: stem 710: strand 7 1 2: first pupil 7 1 4: second pupil 7 1 6 : A mirror 7 1 8 : second mirror 7 5 8 : LOC variant XII 7 6 0 : large component channel -108 - 201211243 762 : small component channel 764 : opening 766 : waste storage tank 768 : blind terminal 7 7 8 : group State 7 8 0 : Configuration 7 8 2 : Configuration

788 :差分成像器電路 7 9 0 :像素 792 :虛擬像素 7 94 :讀取_列 795 :虛擬讀取_列 796 :負控制探針 797 :(電晶體) 7 9 8 :正控制探針788: Differential Imager Circuit 7 9 0 : Pixel 792 : Virtual Pixel 7 94 : Read_Column 795 : Virtual Read_Column 796 : Negative Control Probe 797 : (Crystal) 7 9 8 : Positive Control Probe

803 :像素電容器 805 :虛擬像素電容器 807 :開關 8 0 9 :開關 8 1 1 :開關 8 1 3 :開關 8 1 5 :電容器放大器 8 1 7 :示差訊號 -109- 201211243 8 60 : ECL激發電極 870: ECL激發電極803: pixel capacitor 805: virtual pixel capacitor 807: switch 8 0 9 : switch 8 1 1 : switch 8 1 3 : switch 8 1 5 : capacitor amplifier 8 1 7 : differential signal -109 - 201211243 8 60 : ECL excitation electrode 870 : ECL excitation electrode

Claims (1)

201211243 七、申請專利範圍: 1. 一種用以自生物樣本移除細胞碎片之微流體裝置 ,該微流體裝置包含:201211243 VII. Patent Application Range: 1. A microfluidic device for removing cell debris from a biological sample, the microfluidic device comprising: 具有大組份通道、小組份通道以及一系列用以在該大 組份通道和該小組份通道間流體連通的錐孔的透析部’該 大組份通道具有用以接收該生物樣本的上游末端’該生物 樣本爲帶有細胞碎片與標靶分子之混合物的液體,該小組 份通道具有用以連接至具有用以與該標靶分子反應以形成 探針-標靶複合體的探針陣列的雜交部之下游末端;其中 該錐孔的各者以流動相反之方向漸窄,使得其各者具 有至該大組份通道的小開口和至該小組份通道的大開口, 該等小開口的尺寸可以容許該標靶分子流進該小組份通道 ’但將大於閩限尺寸的細胞碎片保留在該大組份通道中。 2.如申請專利範圍第1項的微流體裝置,其中該錐 φ 孔沿著該大組份通道以1微米和1 〇微米之間的距離間隔 〇 3·如申請專利範圍第2項的微流體裝置,其進—步 包含複數個該小組份通道’其各與該大組份通道分享共同 之側壁且經由該一系列的錐孔流體連通。 4·如申§f專利範圍第2項的微流體裝置,其中該錐 孔之各者的該小開口具有1微米和8微米之間的高和寬尺 寸。 5.如申請專利範圍第4項的微流體裝置,其進一步 -111 - 201211243 包含廢料貯槽,其中該大組份通道具有連接至該廢料貯槽 的下游末端。 6-如申請專利範圍第2項的微流體裝置,其進一步 包含在該透析部上游的溶胞部,其中該標靶分子爲標靶核 酸序列且該溶胞部係被配置以溶解在該生物樣本中的細胞 並釋放其中的標靶核酸序列。 7.如申請專利範圍第6項的微流體裝置,其進一步 包含用以擴增該標靶核酸序列的核酸擴增部。 8 .如申請專利範圍第7項的微流體裝置,其中探針 係配置以和該標靶核酸序列雜交以形成探針-標靶雜交體 ,該探針-標靶雜交體可對激發光反應出螢光。 9. 如申請專利範圍第8項的微流體裝置,其進一步 包含用以操作性控制該核苷酸擴增部的CMOS電路,該 CMOS電路亦具有用以感測來自該探針-標靶雜交體螢光 發射的光感測器。 10. 如申請專利範圍第9項的微流體裝置,其中該雜 交部具有包含用於與該標靶核酸序列雜交之探針的雜交腔 室陣列。 11. 如申請專利範圍第1 0項的微流體裝置,其中該 光感測器係位於鄰近各雜交腔室之各自的光二極體陣列。 12. 如申請專利範圍第11項的微流體裝置,其中該 CMOS電路具有用於儲存關於處理該流體的數據之數位記 憶體,該數據包括探針細節和各個探針在該雜交腔室陣列 中的位置。 -112- 201211243 13.如申請專利範圍第12項的微流體裝置,其中該 CMOS電路具有至少一個在該雜交腔室陣列用於感測溫度 之溫度感測器。 14. 如申請專利範圍第13項的微流體裝置,其另外 包含由該CMOS電路使用自用於在雜交溫度維持該探針和 該標靶核酸序列之該溫度感測器的反饋來控制的加熱器。a dialysis section having a large component channel, a group channel, and a series of tapered holes for fluid communication between the large component channel and the component channel, the large component channel having an upstream end for receiving the biological sample 'The biological sample is a liquid with a mixture of cell debris and a target molecule having a probe array for attachment to a probe array having a reaction to react with the target molecule to form a probe-target complex. a downstream end of the hybrid portion; wherein each of the tapered holes is tapered in a direction opposite to the flow such that each has a small opening to the large component channel and a large opening to the group of channels, the small openings The size may allow the target molecule to flow into the panel channel 'but retain cell debris larger than the size limit in the large component channel. 2. The microfluidic device of claim 1, wherein the cone φ hole is spaced along the large component channel by a distance between 1 micrometer and 1 〇 micrometer 〇 3 as in the second aspect of the patent application scope The fluidic device, further comprising a plurality of the plurality of sub-channels each sharing a common sidewall with the large component channel and in fluid communication via the series of tapered apertures. 4. The microfluidic device of claim 2, wherein the small opening of each of the tapered holes has a height and a width between 1 micrometer and 8 micrometers. 5. The microfluidic device of claim 4, further comprising -111 - 201211243 comprising a waste storage tank, wherein the large component passage has a downstream end connected to the waste storage tank. 6 - The microfluidic device of claim 2, further comprising a lysis portion upstream of the dialysis portion, wherein the target molecule is a target nucleic acid sequence and the lysis portion is configured to dissolve in the organism The cells in the sample release the target nucleic acid sequence therein. 7. The microfluidic device of claim 6, further comprising a nucleic acid amplification portion for amplifying the target nucleic acid sequence. 8. The microfluidic device of claim 7, wherein the probe is configured to hybridize to the target nucleic acid sequence to form a probe-target hybrid, the probe-target hybrid reacting to the excitation light Fluorescent. 9. The microfluidic device of claim 8, further comprising a CMOS circuit for operatively controlling the nucleotide amplification portion, the CMOS circuit also having sensing for hybridization from the probe-target Light sensor for body emission. 10. The microfluidic device of claim 9, wherein the hybrid has an array of hybridization chambers comprising probes for hybridizing to the target nucleic acid sequence. 11. The microfluidic device of claim 10, wherein the photosensor is located adjacent to an array of respective photodiodes of each of the hybridization chambers. 12. The microfluidic device of claim 11, wherein the CMOS circuit has a digital memory for storing data relating to processing the fluid, the data comprising probe details and individual probes in the hybridization chamber array s position. The microfluidic device of claim 12, wherein the CMOS circuit has at least one temperature sensor for sensing temperature in the hybridization chamber array. 14. The microfluidic device of claim 13, further comprising a heater controlled by the CMOS circuit using feedback from the temperature sensor for maintaining the probe and the target nucleic acid sequence at a hybridization temperature . 15. 如申請專利範圍第14項的微流體裝置,其中該 光二極體係離該相對應的雜交腔室小於249微米。 16. 如申請專利範圍第15項的微流體裝置,其中該 探針爲螢光共振能量轉移(FRET)探針。 17. 如申請專利範圍第16項的微流體裝置,其中該 雜交腔室具有設置以暴露該FRET探針於激發光下的光學 窗。 1 8 .如申請專利範圍第1 7項的微流體裝置,其中該 FRET探針各具有螢光團和淬熄劑(quencher ),當該 FRET探針已形成探針-標靶雜交體時,該螢光團係配置以 發射螢光訊號至該光二極體以回應該激發光,該CMOS電 路係配置以在該激發光消光後預定延遲後賦能該光二極體 ,該數位記憶體包括該預定之延遲。 19.如申請專利範圍第18項的微流體裝置,其中該 CMOS電路具有用以電連結至外部裝置的接合墊,且係配 置用以自該光二極體轉換輸出成爲代表和該標靶核酸序列 雜交的該FRET探針的訊號,並提供該訊號至該接合墊以 傳送到該外部裝置。 -113- 201211243 20.如申請專利範圍第1 3項的微流體裝置,另外包 含複數個貯槽,用以保留液體試劑以供加入至該樣本。15. The microfluidic device of claim 14, wherein the photodiode system is less than 249 microns from the corresponding hybridization chamber. 16. The microfluidic device of claim 15 wherein the probe is a fluorescence resonance energy transfer (FRET) probe. 17. The microfluidic device of claim 16, wherein the hybridization chamber has an optical window disposed to expose the FRET probe to excitation light. 18. The microfluidic device of claim 17, wherein the FRET probes each have a fluorophore and a quencher, and when the FRET probe has formed a probe-target hybrid, The fluorophore is configured to emit a fluorescent signal to the photodiode to return the excitation light, and the CMOS circuit is configured to energize the photodiode after a predetermined delay after extinction of the excitation light, the digital memory including the Scheduled delay. 19. The microfluidic device of claim 18, wherein the CMOS circuit has a bond pad for electrically connecting to an external device, and is configured to convert the output from the photodiode into a representative and the target nucleic acid sequence. Hybridizing the signal of the FRET probe and providing the signal to the bond pad for delivery to the external device. -113- 201211243 20. A microfluidic device as claimed in claim 13 further comprising a plurality of reservoirs for retaining a liquid reagent for addition to the sample. -114--114-
TW100119248A 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction TW201211243A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201211243A true TW201211243A (en) 2012-03-16

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes

Family Applications Before (7)

Application Number Title Priority Date Filing Date
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section

Family Applications After (14)

Application Number Title Priority Date Filing Date
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes

Country Status (1)

Country Link
TW (22) TW201219770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770040B (en) * 2016-07-29 2022-07-11 德商拜耳廠股份有限公司 Sterilizable adapter for cell culture vessel, sterilizable device, use of sterilizable device, and method for cell cultivation under shaking conditions
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055963A1 (en) * 2012-10-05 2014-04-10 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
WO2016004539A1 (en) * 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
TWI712686B (en) * 2015-04-22 2020-12-11 美商柏克萊燈光有限公司 Culturing station for microfluidic device
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
JP2021503597A (en) * 2017-11-17 2021-02-12 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド Sensor assembly and how to use it
BR112020015595A2 (en) 2018-02-01 2021-01-05 Toray Industries, Inc DEVICE FOR EVALUATING PARTICLES IN LIQUID AND METHOD FOR OPERATING THE DEVICE FOR EVALUATING PARTICLES IN LIQUID
EP3560593A1 (en) * 2018-04-25 2019-10-30 OPTOLANE Technologies Inc. Catridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
JP2023522696A (en) * 2020-04-21 2023-05-31 エフ. ホフマン-ラ ロシュ アーゲー High-throughput nucleic acid sequencing using single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770040B (en) * 2016-07-29 2022-07-11 德商拜耳廠股份有限公司 Sterilizable adapter for cell culture vessel, sterilizable device, use of sterilizable device, and method for cell cultivation under shaking conditions
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof

Also Published As

Publication number Publication date
TW201209159A (en) 2012-03-01
TW201211539A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201219115A (en) 2012-05-16
TW201211240A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201211241A (en) 2012-03-16
TW201211538A (en) 2012-03-16
TW201209404A (en) 2012-03-01
TW201209405A (en) 2012-03-01
TW201209406A (en) 2012-03-01
TW201219776A (en) 2012-05-16
TW201211534A (en) 2012-03-16
TW201211242A (en) 2012-03-16
TW201211532A (en) 2012-03-16
TW201209407A (en) 2012-03-01
TW201219770A (en) 2012-05-16
TW201209403A (en) 2012-03-01
TW201209158A (en) 2012-03-01
TW201211533A (en) 2012-03-16
TW201211244A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
TW201211243A (en) Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW201213798A (en) Microfluidic thermal bend actuated surface tension valve
KR20170016915A (en) Microfluidic cartridges and apparatus with integrated assay controls for analysis of nucleic acids
JP2009529883A (en) Integrated nucleic acid assay