TW201211240A - LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering - Google Patents

LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering Download PDF

Info

Publication number
TW201211240A
TW201211240A TW100119226A TW100119226A TW201211240A TW 201211240 A TW201211240 A TW 201211240A TW 100119226 A TW100119226 A TW 100119226A TW 100119226 A TW100119226 A TW 100119226A TW 201211240 A TW201211240 A TW 201211240A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
sample
loc device
hybridization
pcr
Prior art date
Application number
TW100119226A
Other languages
Chinese (zh)
Inventor
Mehdi Azimi
Geoffrey Richard Facer
Alireza Moini
Kia Silverbrook
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201211240(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201211240A publication Critical patent/TW201211240A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A lab-on-a-chip (LOC) device for detecting pathogens in a biological sample, the LOC device having an inlet for receiving the sample, a supporting substrate, a first dialysis section for separating pathogens from larger constituents in the sample, a lysis section downstream of the dialysis section for lysing the pathogens to release genetic material therein, the lysis section having a lysis chamber and a heater for lysing the pathogens while the sample is in the lysis chamber, a nucleic acid amplification section downstream of the lysis section for amplifying nucleic acid sequences in the genetic material, and, a second dialysis section downstream of the nucleic acid amplification section for prehybridization filtration of amplicon produced by the nucleic acid amplification section, the second dialysis section being configured to remove cell debris from the amplicon, wherein, the first dialysis section, the lysis section, the nucleic acid amplification section and the second dialysis section are all supported on the supporting substrate.

Description

201211240 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特 別是’本發明關於用於分子診斷之微流體及生化處理以及 分析》 【先前技術】 分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康照護的發生、增進病患預後(patient outcome) 、改進疾病管理及個體化患者照護。分子診斷的許多技術 係基於自生物樣本(諸如血液或唾液)萃取及擴增之特定 核酸(去氧核糖核酸(DNA)以及核糖核酸(RNA)兩者 )的檢測及辨識。核酸鹼基的互補特徵使得經合成DNA ( 寡核苷酸)短序列結合(雜交)至用於核酸試驗之特定核 酸序列。若發生雜交,則互補序列存在於樣本中。此使得 例如預測個人未來會得到的疾病、判定感染性病原體的種 類及病原體,或判定個人對藥物的反應成爲可能。 201211240 以核酸爲基之分子診斷試驗 以核酸爲基之試驗具有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3 ·核酸擴增(任意的) 4.檢測 許多樣本類型,諸如血液、尿液、痰和組織樣本,係 用於基因分析。診斷試驗判定所需的樣本類型,因並非所 有樣本代表疾病進程。這些樣本具有各種組分,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的檢測。因此,於開始時經常需要純化 及/或濃縮步驟。 血液爲較常請求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促 進凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃 縮之前令試樣與諸如乙二胺四乙酸(EDTA )之試劑混合 。通常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅 血球佔細胞物質之約99%但其不帶有DNA,因彼不具細胞 核。此外,紅血球含有諸如血紅素之可能干擾下游核酸擴 增程序(描述於下)的成分。可藉由示差(differentially )溶胞於溶胞液中之紅血球來移除紅血球,而留下剩餘的 完整細胞物質,可接著使用離心而自樣本將其分離。此提 供自彼萃取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程取決於樣本及待實施之診斷 -6 - 201211240 分析。例如,用於萃取病毒RN A之規程與用於萃取基因組 DN A之規程相當不同。然而,自標靶細胞萃取核酸通常包 含細胞溶胞步驟及接續的核酸純化。細胞溶胞步驟使細胞 及細胞核膜破裂,而釋放出遺傳物質。此經常使用溶胞清 潔劑來完成,溶胞清潔劑係諸如十二烷基硫酸鈉,其亦使 存在於細胞中之蛋白質大量變性。 接著以酒精(通常爲冰乙醇或異丙醇)沉澱步驟純化 核酸,或是經由固相純化步驟,於清洗之前在高濃度的離 液鹽(chaotropic salt)存在下,通常於分餾塔中的氧化 广矽基質、樹脂或順磁性珠上,接著以低離子強度緩衝液進 行洗提。核酸沉殿之前之任意的步驟爲添加剪切蛋白質之 蛋白酶,以進一步純化樣本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 將樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質中, 尤其是若標靶來自病原體來源。核酸擴增提供選擇性擴增 (即,複製)特定標靶(就可檢測程度而言爲低濃度者) 的能力。 最常使用之核酸擴增技術爲聚合酶鏈反應(PCR )。 PCR係業界已知悉,以及於E. van Pelt-Verkuil等人之 Principles and Technical Aspects of PCR Amplification, Springer,20〇8中提供此類反應之綜合理解性描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標耙 DNA序列。若欲(藉由PCR)擴增RNA,則首先必須使用 201211240 名爲反轉錄酶之酵素將之轉錄爲cDNA (互補DNA)。隨 後,藉由PCR擴增得到的CDNA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 則其可繼續進行。反應之成分爲:201211240 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to microfluidic and biochemical treatment and analysis for molecular diagnostics. [Prior Art] Molecular diagnostics have been used to provide an early indication of disease detection before symptoms develop. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the occurrence and improvement of ineffective health care Patient outcome, improved disease management, and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobases allows for the binding (hybridization) of synthetic DNA (oligonucleotide) short sequences to specific nucleic acid sequences for nucleic acid assays. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that an individual will get in the future, to determine the species and pathogen of an infectious pathogen, or to determine the individual's response to the drug. 201211240 Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3 • Nucleic acid amplification (optional) 4. Detection of many sample types, such as blood, urine , sputum and tissue samples are used for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the outset. Blood is one of the more frequently requested sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of the cellular material but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by differentially lysing the red blood cells in the lysate, leaving the remaining intact cellular material, which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact procedure used to extract nucleic acids depends on the sample and the diagnosis to be performed -6 - 201211240 Analysis. For example, the protocol used to extract viral RN A is quite different from the protocol used to extract genomic DN A. However, self-targeting cell extraction of nucleic acids typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often accomplished using a lysing detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells. The nucleic acid is then purified in a precipitation step with alcohol (usually ice ethanol or isopropanol) or via a solid phase purification step prior to washing in the presence of a high concentration of chaotropic salt, usually in a fractionation column. The substrate, resin or paramagnetic beads are extensively eluted with a low ionic strength buffer. Any step before the nucleic acid sink is to add a protein-cleaving protease to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. The target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogen source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target (in the case of a low concentration in terms of detectability). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR is known in the art and a comprehensive comprehensible description of such reactions is provided in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 20〇8. PCR is a useful technique for amplifying a standard DNA sequence with respect to a relatively complex DNA background. If RNA is to be amplified (by PCR), it must first be transcribed into cDNA (complementary DNA) using the 201211240 enzyme called reverse transcriptase. Subsequently, the obtained cDNA was amplified by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1. 引子對-具有約10-30個與毗鄰(flanking)標靶序 列區互補之核苷酸的短單股DN A 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP)-提供整合至新合成 之DNA股之核苷酸 4·緩衝液-提供DNA合成之最佳化學環境 PCR普通包含將這些反應物置於含有經萃取之核酸的 小管(〜10-5 0微升)。將管放置於聚合酶鏈反應器( thermal cycler)中;一種令反應經受一連串不等量時間之 不同溫度的儀器。各熱循環的標準規程(protocol )包括 變性相、黏著相及延伸相。延伸相有時代表引子延伸相。 除了此三-步驟規程外,可採用二-步驟熱規程,於其中黏 著及延伸相合併。變性相普通包含將反應溫度升溫至QO-pSY 以使 DNA股 變性; 於黏 著相中 ,將 溫度降 低至〜50-60°C以供引子黏著:接著於延伸相中,將溫度升溫至最佳 DNA聚合酶活性溫度60-72°C,以供引子延伸。此方法重 複循環約20-40次,最終結果爲產生數百萬拷貝之引子間 的標靶序列。 已發展出用於分子診斷之許多標準PCR規程之變體, 其中包括諸如多引子組PCR、聯結子引發(linker-primed 201211240 )PCR、直接PCR、重複序歹IJ ( tandem ) PCR、即時PCR以 及反轉錄酶PCR。 多引子組PCR使用單一 PCR混合物中之多重引子組以 產生對不同DNA序列具特異性之不同大小之擴增子。藉由 —次標靶多個基因,由單一試驗可得到額外的資訊(以其 他方式則需要數次試驗)。最佳化多引子組PCR更爲困難 ,因其需要選取具近似黏著溫度之引子及具近似長度與鹼 基組成之擴增子以確保各擴增子之擴增效率相等。 聯結子引發(linker-primed) PCR,又稱爲接合接合 子(ligation adaptor) PCR,爲用於致能複雜DNA混合物 中實質上所有DNA序列之核酸擴增的方法,而不需要標 靶-特異性引子。此方法首先以合適的限制性內核酸酶( 酵素)來剪切(digest )標靶DNA群體。使用接合酶酵素 ,具有合適的懸伸(overhanging)端之雙股寡核苷酸聯結 子(亦稱爲接合子)接著與標靶DN A片段之端子接合。接 下來使用對聯結子序列具有特異性之寡核苷酸引子實施核 酸擴增。藉此,可擴增毗鄰聯結子寡核苷酸之DNA來源的 所有片段。 直接PCR描述一種直接於樣本上實施PCR而不需要任 何核酸萃取(或最少核酸萃取)之系統。長久以來認爲, PCR反應受到存在於未純化的生物樣本中之許多成分的抑 制,諸如血液中的原血紅素成分》傳統上,於製備反應混 合物之前,PCR需要加強純化標靶核酸。然而,利用化學 性質的適當變化及樣本濃縮,可以最少化DNA純化而進行 -9 - 201211240 PCR或進行直接PCR。用於直接PCR之PCR化學性質的調整 包括加強緩衝液強度、使用高活性及進行性(processivity )之聚合酶及與潛在聚合酶抑制劑螯合之添加物。 重複序列PCR利用兩次獨立的核酸擴增以增進擴增正 確擴增子的機率。重複序列PCR中的一類型爲巢式PCR, 其中使用兩對PCR引子,以於分別的核酸擴增進行單一基 因座擴增。第一對引子與標靶核酸序列外部區域的核酸序 列雜交。第二次擴增中所使用的第二對引子(巢式引子) 結合於第一 PCR產物中並且產生含有標靶核酸的第二PCR 產物(較第一:PCR產物爲短)。此策略所運用的論理爲: 若於第一次核酸擴增期間因失誤而擴增錯誤的基因座,由 第二對引子再次擴增錯誤的基因座的機率非常低,因此確 保了特異性。 使用即時PCR或定量PCR以即時量測PCR產物之量。 藉使用含有探針或螢光染料之螢光團以及反應中的參考標 準,可測定樣本中之核酸的最初含量。此特別有用於分子 診斷,其中治療選擇可能取決於樣本中所載病原體而有所 不同。 反轉錄酶PCR ( RT-PCR)係用於自RNA來擴增DNA。 反轉錄酶爲將RNA反轉錄成互補DNA ( cDNA )之酵素,接 著藉由PCR擴增cDNA。RT-PCR廣泛地用於表現型態( expression profiling )以判定基因的表現或辨識RNA轉錄 本(包括轉錄起始及終止位址)之序列。其亦用於擴增 RNA病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。 -10- 201211240 恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 應期間之標靶DN A的熱變性,因此不需要複雜的機械。恆 溫核酸擴增方法可因此於原始位置進行或於實驗室環境外 易於被操作。包括股取代擴增(Strand Displacement Amplification)、轉錄介導擴增(Transcription Mediated Amplification )、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增( Recombinase Polymerase Amplification)、滾動循環擴增 (Rolling Circle Amplification )、分枝型擴增( Ramification Amplification )、解旋® 溫 DNA 擴增( Helicase-Dependent I s o t h e r m a 1 D N A Amp 1 i f i c a t i ο η )及環 形 ® 溫擴增(Loop-Mediated Isothermal Amplification) 之一些恆溫核酸擴增方法已被敘述。 恆溫核酸擴增法不依賴模板DNA之持續加熱變性來產 生作爲進一步擴增之模板的單股分子,而是依賴諸如於常 溫下藉由特異性限制內核酸酶之DNA分子的酵素性切割, 或是利用酵素分開DNA股之其他方法。 股取代擴增(SDA )依賴特定限制性酵素的能力以切 割半修飾(hemi-modified ) DNA之未經修飾股,及依賴 5’-3’外核酸酶-缺乏之聚合酶的能力以延伸並取代下游股 。然後藉由偶合義(sense)與反義(antisense)反應而達 成指數性核酸擴增,其中來自義反應之股取代作爲反義反 應之模板。使用不以普通方式切割DNA而是於DNA之一股 上產生切口之切口酶(諸如N. Alwl,N. BstNBl及Mlyl) -11 - 201211240 係有用於此反應。藉使用熱穩定限制性酵素(Χναΐ)及熱 穩定性外-聚合酶(聚合酶)之組合已改進SDA。此組 合顯現出使反應的擴增效率由1 〇8倍擴增增加至1 0 115倍擴增 ,以致可使用此技術來擴增獨特的單拷貝分子。 轉錄介導擴增(TMA)及依賴核酸序列擴增(NASBA )使用RNA聚合酶以複製RN A序列而非對應之基因組 DNA。此技術使用兩種引子及兩或三種酵素、RNA聚合酶 、反轉錄酶及任意的RNase Η (若反轉錄酶不具有RNase活 性)。一種引子含有供RNA聚合酶之啓動子序列。在核酸 擴增的第一步驟中,此引子於限定的位置與標靶核糖體 RN A ( rRN A )雜交。藉由自啓動子引子的3’端開始延伸, 反轉錄酶產生標靶rRNA之DNA拷貝。若存在另外的RNase Η,則所得的RNA : DNA雙股中的RNA經由反轉錄酶之 RNase活性而被分解。接著,第二引子結合至DNA拷貝。 藉反轉錄酶自此引子的末端合成新的DNA股而產生雙股 DN A分子。RN A聚合酶辨識DN A模板中的啓動子,並開始 轉錄。各個新合成的RN A擴增子再進入過程中並作爲新的 複製之模板。 於重組酵素聚合酶擴增(RPA )中,藉結合相對的寡 核苷酸子至模板DNA並且由DNA聚合酶將之延伸而達成特 定DNA片段之恆溫擴增。使雙股DNA ( dsDNA )模板變性 不需要熱。反之,RP A利用重組酵素-引子錯合體來掃描 dsDNA及促進同源(cognate)位置處的股交換。藉由單股 DN A結合蛋白與經取代模板股的交互作用來穩定所得到的 -12- 201211240 結構,因此防止引子因分支遷移而放出。重組酵素分解離 開可接近股取代DNA聚合酶(諸如whi/b P〇l I μ)的大片段)之寡核苷酸的V端,且引子接著開始 延伸。藉循環重複此步驟而達到指數性核酸擴增。 解旋酶擴增(HDA )模擬活體內系統,於活體內系統 中使用DN Α解旋酶來產生用於引子雜交之單股模板並接著 以DNA聚合酶延伸引子。於HDA反應的第一步驟中,解旋 酶穿過標靶DNA,破壞聯結兩股的氫鍵,此二股隨後由單 股結合蛋白所結合。由解旋酶所暴露之單股標靶區域使引 子得以黏著。DN A聚合酶使用自由的去氧核糖核苷三磷酸 (dNTP)以接著延伸各引子的3’端,以產生兩個DNA複製 (replicate)。兩個複製的dsDNA股獨立地進入下一個 HD A循環,造成標靶序列之指數性核酸擴增。 其他的基於DNA之恆溫技術包括滾動循環擴增(RCA ),於其中DNA聚合酶繞環狀DNA模板持續地延伸引子而 產生由許多環狀重複拷貝所組成之長的DNA產物。藉由終 止反應,聚合酶產生數千拷貝之環狀模板,其具有栓繫至 原始標靶DNA的拷貝鏈。此致使標靶之空間解析度及信號 之快速核酸擴增。於1小時內至多可產生101 2拷貝之模板。 分枝型擴增爲RCA之變體,並利用封閉的環狀探針(C-探 針)或扣鎖探針及具高進行性之DN A聚合酶,以於常溫情 況下指數地擴增C-探針。 環形恆溫擴增(LAMP )提供高選擇性且利用DNA聚 合酶及含有四個特別設計的引子之引子組,引子組辨識標 -13- 201211240 靶DNA上總共六個不同的序列。含有標靶DNA之義股及反 義股序列的內引子起始LAMP。由外引子引發之後續股取 代DNA合成釋出單股DNA。 此作爲由第二內及外引子所 引發之DN A合成的模板’第二內及外引子與標靶之另一端 雜交,產生莖-環(stem-loop) DNA結構。於接續的LAMP 循環中,內引子與產物上的環形雜交並起始取代DNA合成 ,產生原始莖-環DNA及具有兩倍莖長度之新莖-環DNA。 於一小時內持續循環反應而聚積1 09拷貝之標靶。最終產 物爲,具有數個反相重複標靶之莖-環DNA以及具有多個 環形(交替黏著相同股中之反相重複標靶所形成)之花椰 菜狀結構。 於完成核酸擴增之後,必須分析擴增的產物以判定是 否產生預期的擴增子(標靶核酸之擴增量)。分析產物的 方法有透過膠體電泳簡單測定擴增子的大小、使用DNA雜 交以識別擴增子之核苷酸組成。 膠體電泳爲檢査核酸擴增步驟使否產生預期之擴增子 之最簡單方式之一。膠體電泳利用施加至膠體基質之電場 來分離DNA片段。帶負電的DNA片段將以不同速率(主要 取決於其大小)移動通過基質。於電泳完成之後,可染色 膠體中的片段使其成爲可見。於UV光下發螢光之溴化乙 菲錠爲最常用的染劑。 藉由與DNA大小標記(DNA標準片段(DNA ladder) )相比較來判定片段的大小,DNA大小標記含有已知大小 的DN A片段,其與擴增子一同跑膠。因寡核苷酸引子結合 -14- 201211240 至毗鄰標靶DNA之特定位置,經擴增之產物的大小可被預 測且利用膠體上已知大小的帶(band )來檢測。爲確認擴 增子爲何或若產生數種擴增子時,常利用DNA探針與擴增 子雜交。 DNA雜交意指藉由互補鹼基配對而形成雙股DNA。用 於特定擴增產物之正面識別的DNA雜交需使用長度爲約20 個核苷酸的DN A探針。若探針具有與擴增子(標靶)DN A 序列互補的序列,則雜交將於有利的溫度、pH及離子濃度 條件下發生。若發生雜交,則表示關注的基因或DN A序列 出現於原始樣本中。 光學檢測爲最常見之檢測雜交的方法。標記擴增子或 是探針以經由發螢光或電致化學發光而發光。這些方法之 引發產光部分之激發態的方式不同,但兩者同樣致能核苷 酸股之共價標記。於電致化學發光(ECL ),當以電流刺 激時,由發光團分子或錯合體產生光。於發螢光時,以造 成發射之激發光來發光。 使用發光源以檢測螢光,發光源提供波長爲螢光分子 吸收之激發光以及檢測單元。檢測單元包含光感測器(諸 如光電倍增管或電荷耦合裝置(CCD )陣列)以檢測發射 的信號,以及防止激發光被包含於光感測器輸出之機制( 諸如波長-選擇濾波器)。回應激發光,螢光分子發射史 托克斯轉換光(Stokes-shifted light ),以及此發射的光 由檢測單元收集。史托克斯轉換爲發射的光與吸收的激發 光之間之頻率差或波長差。 -15- 201211240 使用光感測器來檢測ECL發射,光感測器對於所採用 之ECL種類之發射波長爲敏感。例如,過渡金屬配位錯合 體發射可見波長的光,因而採用傳統光二極體及CCD作爲 光感測器。ECL之優勢爲,若排除周圍光線,ECL發射可 爲檢測系統中唯一存在的光,因而增進靈敏度。 微陣列使數十萬的DNA雜交試驗得以同時進行。微陣 列爲有用的分子診斷工具,其可篩檢數千種遺傳疾病或於 單一試驗中檢測是否存在數種感染性病原體。微陣列由許 多不同的固定於基板上且呈點狀之DN A探針所組成。首先 以螢光或發光分子標記標靶DNA (擴增子)(於核酸擴增 期間或之後),然後將其施加至探針陣列。於經控制的溫 度下、潮濕的環境中培養微陣列數小時或數天,此時探針 及擴增子之間發生雜交。於培養後,必須以一連串緩衝液 清洗微陣列以移除未經結合股。一旦清洗後,以氣流(通 常爲氮)乾燥微陣列表面。雜交及清洗的嚴格度很重要。 不夠嚴格可能導致高度非特異性結合。過度嚴格可能導致 無法適當進行結合而造成減低的靈敏度。藉由檢測來自經 標記之與互補探針形成雜交的擴增子之光發射而辨識雜交 〇 使用微陣列掃描器檢測來自微陣列的螢光,微陣列掃 描器通常爲經電腦控制的反相掃描式螢光共軛焦顯微鏡, 其一般使用激發螢光染料的雷射及光感測器(諸如光電倍 增管或CCD )以檢測發射的信號。螢光分子發射經史托克 斯轉換的光(如上述),而光被檢測單元收集。 -16- 201211240 發射的螢光必須被收集、與未經吸收的激發波長分離 ,並被傳送至檢測器。於微陣列掃描器中常使用共轭焦配 置以藉由位於影像平面的共軛焦針孔來刪除失焦資訊。此 使得僅檢測光的聚焦部分。防止於物之焦點平面之上方或 下方的光進入檢測器,藉此增加信號對雜訊比。檢測器將 經檢測的螢光光子轉換成電能,電能並接著被轉換成數位 信號。此數位信號轉變成代表來自給定像素之螢光強度的 數字。陣列的各特徵係由一或多個此像素所構成。掃描的 最終結果爲陣列表面影像。由於已知微陣列上每一個探針 的確切序列及位置,因此可同時識別及分析雜交的標靶序 列。 可於下列找到更多有關螢光探針之資訊: http://www.premierbiosoft.com/tech_notes/FRET_probe.html 以及 http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html 就地醫護分子診斷 儘管分子診斷試驗提供了優勢,臨床檢驗中此類型試 驗的成長不如預期且仍僅占檢驗醫學之實施的小部分。此 主要歸因於,與基於非關核酸方法之試驗相比,核酸試驗 相關之複雜度與成本。分子診斷試驗之於臨床處理的廣泛 適用性係與可顯著降低成本、自始(樣本處理)至終(產 生結果)之快速及自動化分析,以及不需大量人爲操作之 -17- 201211240 儀器發展息息相關。 用於醫師診所、鄰近的或基於使用者的醫院、家中之 就地醫護技術提供以下優點: •彳夬$彳辱Ϊ!1 ,結果而致能快速促進治療及改進照護品質 〇 •經由試驗極少量樣本而得到檢驗値的能力。 •減少臨床工作量。 •減少實驗室工作量並因減少管理工作而增進工作效 率。 •因減少住院時間、門診病人於首次就診得知結果, 及簡化樣本的處理、儲存及運送而改善每個病人所需成本 〇 •促進臨床管理決策,諸如接種控制及抗生素使用。 以晶片上實驗室(LOC )爲基之分子診斷 基於爲流體技術之分子診斷系統提供自動化及加速分 子診斷分析的方法。較短的檢測時間主要歸因於微流體裝 置中之診斷方法步驟使用極少用量、自動化及內建低開銷 串級。奈升與微升級用量亦降低試劑消耗及成本。晶片上 實驗室(LOC )裝置爲微流體裝置之常見形式。晶片上實 驗室裝置於MST層中具有MST結構以將流體處理整合至單 一支撐基板(通常爲矽)。使用半導體產業之VLSI (超大 型積體電路)技術之製造,使各LOC裝置的單元成本非常 低。然而,控制流體流經LOC裝置、添加試劑、控制反應 -18- 201211240 條件等需要大體積的外部管路及電子裝置。將LOC裝置連 接至這些外部裝置實際上將用於分子診斷之LOC裝置之用 途限制爲檢驗處理。外部設備的成本及其操作上的複雜度 排除了利用以LOC爲基的分子診斷作爲就地醫護處理的實 用選擇。 鑒於上述,需要一種用於就地醫護之基於LOC裝置之 分子診斷系統。 【發明內容】 於以下的標號段落將描述本發明的各種面向。 GCF007.1 本發明之此面向提供一種用於檢測生物 樣本中之病原體之晶片上實驗室(LOC )裝置,LOC裝置 包含: 接收樣本的入口; 支撐基板; 使樣本中之病原體與較大組分分離之第一透析部; 位於透析部下游之溶胞部,用於溶胞病原體以釋出其 中之遺傳物質,溶胞部具有溶胞室及加熱器,以於樣本處 於溶胞室中時溶胞病原體; 位於溶胞部下游之核酸擴增部,用於擴增遺傳物質中 之核酸序列;以及 位於核酸擴增部下游之第二透析部,用於預雜交過濾 由核酸擴增部所產生之擴增子,第二透析部係配置以移除 來自擴增子之細胞碎片;其中, -19- 201211240 第一透析部、溶胞部、核酸擴增部以及第二透析部係 均被支撐於支撐基板上。 GCF007.2 較佳地,溶胞部具有用於熱溶胞病原體 之加熱器。 GCF007.3 較佳地,LOC裝置亦具有位於第二透析 部下游之雜交部,其具有用於與樣本中之標靶核酸序列雜 交之探針陣列;以及光感測器,其係用於檢測陣列之中任 何探針之雜交。 GCF007.4 較佳地,第一透析部具有與入口呈流體 連通之第一通道、與溶胞部呈流體連通之第二通道以及複 數個第一孔口,第一孔口係大於病原體且小於較大的組分 ,第二通道經由第一孔口與第一通道呈流體連通使得病原 體流入第二通道,而較大的組分係保留於第一通道中。 GCF007.5 較佳地,第一通道與第二通道係配置以 藉由毛細作用而塡充樣本。 GCF007.6 較佳地,第二透析部具有大組分通道、 小組分通道,以及流體性連結大組分通道至小組分通道之 複數個第二孔口,第二孔口經尺寸化以允許核酸序列自大 組分通道流至小組分通道而將大於第二孔口之細胞碎片保 留於大組分通道中,小組分通道係與雜交部呈流體連通。 GCF007.7 較佳地,核酸擴增部爲恆溫核酸擴增部 〇 GCF007.8 較佳地,LOC裝置亦具有供保持用於恆 溫核酸擴增的試劑之試劑貯槽;以及 -20- 201211240 表面張力閥,其具有配置成固定試劑的彎液面之孔口 ,使得彎液面將試劑保留於試劑貯槽中直至與液體樣本接 觸而移除彎液面並且試劑流出試劑貯槽。 GCF007.9 較佳地,核酸擴增部爲聚合酶鏈反應( PCR)擴增部。 GCF007. 1 0 較佳地,LOC裝置亦具有CMOS電路、 溫度感測器以及合併PCR部之微系統技術(MST )層’其 中CMOS電路位於支撐基板與MST層之間,以及CMOS電路 係配置以使用溫度感測器輸出來反饋控制PCR部。 GCF007.il 較佳地,P C R部具有供熱循環樣本以擴 增核酸序列之PCR微通道,PCR微通道界定部分樣本流路 且具有小於100,〇〇〇平方微米之橫越流路之截面積。 GCF007.1 2 較佳地,LOC裝置亦具至少一個用於加 熱伸長的PCR微通道之中的核酸序列之伸長的加熱器元件 ,伸長的加熱器元件平行PCR微通道而延伸。 GCF007.1 3 較佳地,PCR微通道的至少一個部形成 伸長的PCR室。 GCF007.14 較佳地,PCR部具有複數個各由PCR微 通道之分別的部所形成之伸長的PCR室,PCR微通道具有 由一連串寬曲折所形成之蜿蜒結構,各寬曲折爲形成一個 伸長的PCR室之通道部。 GCF007.1 5 較佳地,LOC裝置亦具有供保持PCR所 使用之試劑的試劑貯槽;以及, 表面張力閥,其具有配置成固定試劑的彎液面之孔口 -21 - 201211240 ,使得彎液面將試劑保留於試劑貯槽中直至與液體樣本接 觸而移除彎液面並且試劑流出試劑貯槽。 GCF007.1 6 較佳地,LOC裝置亦具有含有探針之雜 交室陣列,使得雜交室中之探針係配置以與標靶核酸序列 之一者雜交。 GCF007.1 7 較佳地,光感測器爲與雜交室配準( registration)定位之光二極體陣列。 GCF007.1 8 較佳地,CMOS電路具有用於儲存來自 光感測器輸出之雜交資料之數位記憶體以及用於將雜交資 料傳輸至外部裝置之資料界面。 GCF007.1 9 較佳地,PCR部具有於熱循環期間用於 保留液體於PCR部及回應來自CMOS電路之啓動訊號而允 許液體流至雜交室之主動閥(active valve) » GCF007.20 較佳地,主動閥爲沸騰引動閥,其具有 彎液面固定器及加熱器,彎液面固定器經配置以固定彎液 面而中止毛細作用驅動之液體流,加熱器係使液體沸騰而 自彎液面固定器釋放彎液面而恢復毛細作用驅動流。 易於使用、可大量製造且便宜的病原體檢測LOC裝置 透過其樣本收容器接收生物樣本、利用其透析部以分離樣 本中所含的任何病原體、於其熱溶胞室中溶胞病原體以釋 出病原體的遺傳物質、擴增任何標靶基因序列,以及透過 與寡核苷酸探針雜交且檢測其內部成像陣列並利用儲存於 LOC裝置的試劑貯槽中的試劑來分析樣本的核酸序列。 透析部功能自樣本汲取另外的資訊並增加靈敏度、信 -22- 201211240 號-對-雜訊比及分析系統的動態範圍。透析部與裝置爲一 體結構,其提供低系統組件量及簡單製造步驟,進而得到 便宜的分析系統。 溶胞方法萃取樣本中之細胞中待分析及診斷的標靶並 提供後續之標靶處理及分析。溶胞子單元與裝置爲一體結 構’其提供簡單分析步驟、低系統組件量,及簡單製造步 驟’進而得到便宜的分析系統。熱溶胞方法簡化分析化學 需求且提供適用於廣泛類型樣本的處理能力。 標靶基因序列的擴增增加了分析系統的靈敏度及信 號-對-雜訊比。 預雜交過濾移除得自樣本細胞之熱溶胞後的碎片,改 進雜交方法的效能及後續分析靈敏度、信號-對-雜訊比, 以及可靠度。因其產生的優勢,預雜交過濾亦使得熱溶胞 方法能被利用於廣泛的樣本類型。 經由雜交,探針雜交部提供標靶分析。整合的探針雜 交部提供易於使用、可大量處理及便宜的具低系統組件量 之整合的解決方案。 整合的影像感測器省去昂貴外部成像系統的需求,並 且提供便宜的具低系統組件量之整合的解決方案,其係小 巧、輕量且易於攜帶的系統。因大的光收集角度,整合的 影像感測器增加讀出靈敏度,其並省去光學元件串中之光 學組件的需求。 與LOC裝置爲一體結構並保持分析總試劑需求之試劑 貯槽,提供低系統組件量及簡單製造步驟,進而得到便宜 -23- 201211240 的分析系統。 【實施方式】 總論 此總論指明包含本發明之具體實施例之分子診斷 之主要組件。於以下說明書中討論系統結構及操作之 細節。 參照圖、1、2、3、109及1 10,系統具有下列最 的組件: 試驗模組10及11爲普通USB隨身碟的大小且可便 造。試驗模組1 〇及1 1各含有微流體裝置,其普通呈晶 實驗室(LOC )裝置30形式並預載有試劑,且普通 1000個以上之用於分子診斷分析之探針(見圖1及109 圖1中所槪示的試驗模組1 〇使用基於螢光之檢測技術 識標靶分子,而圖1 09中之試驗模組1 1使用基於電致 發光之檢測技術。LOC裝置30具有用於螢光或電致化 光檢測之整合的光感測器44 (於以下詳細描述)。試 組10及11均使用了用於電力、數據及控制之標準微型-接頭14、均具有印刷電路板(PCB ) 57,及均具有外 電之電容器3 2及感應器1 5。試驗模組1 〇及1 1均爲僅供 製造之單一用途且以可供使用之無菌包裝分銷。 外殼1 3具有用於接收生物樣本之大容器24及可移 無菌密封帶2 2,其較佳具低黏性黏著劑’以於使用前 大容器。具有膜防護件410之膜密封件40 8形成部份外 系統 綜合 重要 宜製 片上 具有 )° 以辨 化學 學發 驗模 -USB 部供 大量 除之 覆蓋 殻13 -24- 201211240 以減少試驗'模組中之抗濕性,而由小氣壓變動提供釋壓作 用。膜防護件410保護膜密封件408免於損傷。 經由微型-U S B埠1 6,試驗模組閱讀器1 2供電給試驗模 組10或1 1。試驗模組閱讀器I2可爲許多不同形式,及其選 擇係描述於後。圖1、3及109中所示之閱讀器I2版本爲智 慧型電話之具體實施例。閱讀器12之方塊圖係示於圖3中 。處理器42執行來自程式儲存器43的應用軟體。處理器42 亦與顯示螢幕18及使用者界面(UI)觸控螢幕17及按鈕19 、蜂巢式無線電21、無線網路連接23,以及衛星導航系統 25界接。蜂巢式無線電21及無線網路連接23係用於通訊》 衛星導航系統25係用於以位置資料更新流行病學資料庫。 替代性地,能夠以觸控螢幕1 7或按鈕1 9人爲輸入位置資料 。資料儲存器2 7保有遺傳及診斷資訊、試驗結果、患者資 訊、用於識別各探針之分析及探針數據及其陣列位置。資 料儲存器27及程式儲存器43可共享於共同記憶體設備。試 驗模組閱讀器1 2中安裝的應用軟體提供結果分析與另外的 試驗及診斷資訊。 爲執行診斷試驗,將試驗模組1 0 (或試驗模組1 1)插 入至試驗模組閱讀器12上的微型- USB埠16。將無菌密封帶 22翻起並將生物樣本(呈液體形式)載入至樣本大容器24 中。按下開始按鈕20以藉由應用軟體來起始試驗。樣本流 進LOC裝置30且在裝置中分析萃取、培養、擴增及以預合 成的雜交-反應性寡核苷酸探針與樣本核酸(標靶)雜交 。於試驗模組1 〇的情況中(其使用基於螢光的檢測),探 -25- 201211240 針係經螢光標記且置於殼1 3中的LED 26提供必要激發光以 誘發自經雜交探針的螢光發射(見圖1及2)。於試驗模組 Π中(其使用基於電致化學發光(ECL )的檢測),LOC 裝置30載有ECL探針(如上述)且LED 26對於產生光致發 射螢並非必要。反之,電極8 6 0及8 7 0提供激發電流(見圖 110)。使用與各LOC裝置上之CMOS電路整合的光感測器 44來檢測發射(螢光或光致發光)。擴增所檢測的信號並 將其轉換成藉由試驗模組閱讀器1 2分析之數位輸出。閱讀 器接著顯示結果。 可本地儲存數據及/或將數據上傳至含有患者記錄之 網路伺服器。自試驗模組閱讀器12移除試驗模組10或1 1並 將彼等適當處理。 圖1、3及109顯示配置成行動電話/智慧型電話28之試 驗模組閱讀器1 2。於其他形式中,試驗模組閱讀器爲醫院 、私人診所或實驗室中使用之膝上型電腦/筆記型電腦1 〇 1 、專用閱讀器103、電子書閱讀器107、平板電腦109或桌 上型電腦105 (見圖111)。閱讀器可與一些額外的應用程 式界接,諸如病患記錄、帳務、線上資料庫及多使用者環 境。其亦可與一些本地或遠端周邊設備界接,諸如印表機 及病患智慧卡。 參照圖1 12,透過閱讀器12及網路125,由試驗模組10 產生之資料可用來更新用於流行病學資料1 1 1之主機系統 所保有之流行病學資料庫、用於遺傳資料113之主機系統 所保有之遺傳資料庫、用於電子化健康記錄(EHR) 115 -26- 201211240 之主機系統所保有之電子化健康記錄、用於電子化醫療記 錄(EMR ) 121之主機系統所保有之電子化醫療記錄,以 及用於個人健康記錄(PHR ) 123之主機系統所保有之個 人健康記錄。相反地,經由網路125及閱讀器12,用於流 行病學資料1 1 1之主機系統所保有之流行病學資料、用於 遺傳資料113之主機系統所保有之遺傳資料、用於電子化 健康記錄(EHR) 115之主機系統所保有之電子化健康記 錄、用於電子化醫療記錄(EMR ) 121之主機系統所保有 之電子化醫療記錄,以及用於個人健康記錄(PHR ) 123 之主機系統所保有之個人健康記錄可用以更新試驗模組1 〇 LOC 30中之數位記憶體》 再次參照圖1、2、109及110,於行動電話配置中,閱 讀器12使用電池電力。行動電話閱讀器含有所有預載的試 驗及診斷資訊。經由一些網路或接觸界面亦可載入或上傳 資料以致能與週邊裝置、電腦或線上伺服器連通。設置微 型-USB埠16以連接電腦或主要電力供應以再充電電池。 圖70顯示試驗模組10之具體實施例,其係用於僅需要 得知特定標靶存在與否之試驗,諸如試驗個人是否受到例 如A型流行性感冒病毒H1N1感染。僅作爲內建之僅供USB 電力/指示器之模組47爲適當的。不需要其他閱讀器或應 用軟體。僅供USB電力/指示器之模組47上之指示器45示出 正或負結果。此配置非常適於大量篩檢。 供應給系統的額外物件可包括含有供預處理特定樣本 之試劑的試驗管,及包含供樣本收集之壓舌板及刺血針。 -27- 201211240 爲便利之故,圖7〇顯示之具體實施例的試驗模組包括有簧 壓式可伸縮刺血針3 90及刺血針釋出按鈕392。可於遠端地 區使用衛星電話。 試驗模組電子裝置 圖2和1 1 0分別爲試驗模組1 0和1 1中之電子組件的方塊 圖。整合於LOC裝置30之CMOS電路具有USB裝置驅動器36 、控制器34、USB相容LED驅動器29、時鐘33、電源調節 器3 1、RAM 3 8和程式及資料快閃記憶體40。此等提供用 於包括光感測器44、溫度感測器1 70、液體感測器I 74和各 種加熱器152、154、182、234之試驗模組10或1 1整體以及 關聯的驅動器37和39以及暫存器35和41的控制和記億體。 僅LED 26 (在試驗模組10的情況中)、外部電源電容器32 和微型USB接頭14在LOC裝置30的外部。LOC裝置30包括 用於連接至這些外部組件的黏合墊。RAM 38及程式和資 料快閃記憶體40具有用於超過1 000個探針之應用軟體和診 斷與試驗資訊(快閃/保全儲存,例如經由加密)。在針 對ECL檢測所配置之試驗模組1 1的情況中,無LED 26 (見 圖109和110)。資料由LOC裝置30加密以供保全儲存及與 外部裝置之安全通訊。LOC裝置30以電化學發光探針及雜 交室加載,其各具有ECL激發電極對8 60和87〇。 以一些試驗形式製造許多類型的試驗模組1 〇,其爲準 備好可現成使用者。試驗形式之不同在於機載分析(〇n board assay)之試劑和探針。 -28- 201211240 快速以此系統識別的感染性疾病的一些實例包括: • 流行性感冒-流行性感冒病毒A、B、C、傳染性 鮭魚貧血病毒、托高土病毒 • 肺炎-呼吸道融合病毒(RSV)、腺病毒、間質肺 炎病毒、肺炎雙球菌、金黃色葡萄球菌 • 結核病-結核分枝桿菌、牛型分枝桿菌、非洲分 枝桿菌、卡氏分枝桿菌和田鼠分枝桿菌 • 惡性瘧原蟲、弓漿蟲和其他寄生性原生蟲病 • 傷寒-傷寒桿菌 • 依波拉病毒 • 人類免疫不全病毒(HIV) • 登革熱-黃熱病毒 • 肝炎(A到E ) • 醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸 球菌以及抗藥性金黃色葡萄球菌 • 單純泡疹病毒(HSV) • 巨大細胞病毒(CMV ) • 愛彼斯坦-巴爾病毒(EBV ) • 腦炎-日本腦炎病毒、章地埔拉病毒 • 百日咳-百日咳菌 • 麻疼-副黏液病毒 • 腦膜炎-肺炎鏈球菌和腦膜炎雙球菌 • 炭疽病-炭疽桿菌 以此系統識別的遺傳性疾病的一些實例包括: -29- 201211240 • 囊性纖維變性 • 血友病 • 鐮狀細胞貧血病 • 黑矇性白癡病 • 血色素沉著症 • 腦動脈病 • 克隆氏病 • 多囊性腎臟病 • 先天性心臓病 • 蕾特氏症 由診斷系統識別之癌症的少數選擇包括: • 卵巢癌 • 結腸癌 • 多發性內分泌腫瘤 • 視網膜母細胞瘤 • 透克氏症(Turcot syndrome ) 上述清單並非窮舉的,且診斷系統可經配置以使用核 酸和蛋白質體分析來檢測許多不同疾病以及症狀。 系統組件的詳細結構 LOC裝置 LOC裝置3 0爲診斷系統之中心。其使用微流體平台快 速實施以核酸爲基之分子診斷分析的四個重要步驟,即樣 本準備、核酸萃取、核酸擴增和檢測。LOC裝置亦具有替 -30- 201211240 代的用途,並將詳述於下。如上述討論,試驗模組1 0及1 1 可採取許多不同配置以檢測不同的標靶。同樣地,LOC裝 置3 0具有很多針對關注的標靶打造之不同實施例。LOC裝 置3 0之一種形式爲用於全血樣本之病原體中的標靶核酸序 列之螢光檢測之LOC裝置301。爲了闡述的目的,LOC裝置 301的結構和操作係參考圖4至26及27至5 7而詳細描述。 圖4爲LOC裝置301結構之圖式槪要》爲了便利性,顯 •示於圖4的處理階段係以相應於實施處理階段之LOC裝置 301的功能部之元件符號表示。與各個以核酸爲基的分子 診斷分析的主要步驟有關的處理階段亦表示:樣本輸入及 製備28 8、萃取290、培養291、擴增292以及檢測294。 LOC裝置301之各種貯槽、室、閥以及其他組件將於以下 更仔細的描述。 圖5爲LOC裝置301之透視圖。其使用高容積CMOS和 MST (微系統技術)製造技術而製造。LOC裝置301之層狀 構造以圖1 2之槪要部分剖面圖(非按比例)闡述。LOC裝 置301具有支持COMS + MST晶片48之矽基板84,包含CMOS 電路86和MST層87,以蓋46覆蓋MST層87。爲了本專利說 明書目的,術語“MST層”關於以不同試劑處理樣本之結構 和層之集合。因此,這些結構和組件經配置以定義具有特 性尺寸的流動路徑,其支持具處理期間之物理性質與樣本 之物理性質相似之毛細作用驅動之液體流。據此,MST層 和組件通常使用面型微加工技術和/或體型微加工技術製 造。然而,其他製造方法亦可製造針對毛細作用驅動之液 -31 - 201211240 體流及加工非常小容積而尺寸化的結構和組件。描述於本 說明書之特定實施例顯示MST層爲支持在CMOS電路86上 之結構和主動組件,但排除蓋46之特徵。然而,熟此技藝 者將理解MST層不需要下方的CMOS或甚至不需要上覆的 蓋來使其處理該樣本。 顯示於下列圖式的LOC裝置之整體尺寸爲1 760微米 X5824微米。當然,爲了不同應用而製造的LOC裝置可具 有不同的尺寸》 圖6顯示與蓋特徵疊置之MST層87的特徵。顯示於圖6 中之插入物AA至AD、AG和AH個別放大於圖13、14、35、 56、55和63中,且對LOC裝置301內之各個結構的充分了 解詳細描述於下。當圖11獨立顯示CMOS + MST裝置48結構 時,圖7至10獨立顯示蓋46的特徵。 層狀結構 圖12和22爲圖形性顯示CMOS + MST裝置48、蓋46以及 彼等之間的流體交互作用之層狀構造之略圖。圖式因闡述 目的而未依比例繪製。圖12爲通過樣本入口 68之槪要剖面 圖且圖2 2爲通過貯槽5 4之槪要剖面圖。如最佳顯示於圖1 2 ,CMOS + MST裝置48具有矽基板84,其支持著操作上述 MST層87內之主動元件之CMOS電路86。鈍化層88密封且 保護CMOS層86免於流體流過MST層87。1. Primer pair - a short single strand of DN A having approximately 10-30 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis DNA thermostable enzyme 3. Deoxyribose nucleus Glycoside triphosphate (dNTP) - provides nucleotides integrated into newly synthesized DNA strands - Buffer - The best chemical environment for DNA synthesis PCR generally involves placing these reagents in small tubes containing extracted nucleic acids (~10 -5 0 microliters). The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. The standard protocols for each thermal cycle include the denatured phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension phases are combined. The denaturation phase generally involves heating the reaction temperature to QO-pSY to denature the DNA strand; in the adhesive phase, the temperature is lowered to ~50-60 ° C for adhesion of the primer: then in the extended phase, the temperature is raised to the optimum The DNA polymerase activity temperature is 60-72 ° C for extension of the primer. This method repeats the cycle approximately 20-40 times, with the end result being a target sequence between millions of copies of the primer. Variants of many standard PCR protocols for molecular diagnostics have been developed, including, for example, multi-primer PCR, linker-primed 201211240 PCR, direct PCR, tandem IJ (tandem) PCR, real-time PCR, and Reverse transcriptase PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. Additional information can be obtained from a single experiment by sub-targeting multiple genes (in other ways, several trials are required). It is more difficult to optimize multi-primer PCR because it requires the selection of primers with approximate adhesion temperature and amplicon with approximate length and base composition to ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of virtually all DNA sequences in complex DNA mixtures without the need for target-specific Sexual introduction. This method first digests the target DNA population with a suitable restriction endonuclease (enzyme). Using a zymase enzyme, a double-stranded oligonucleotide linker (also known as a zygote) with a suitable overhanging end is then ligated to the terminal of the target DN A fragment. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. Thereby, all fragments of the DNA source adjacent to the linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that PCR reactions are inhibited by many components present in unpurified biological samples, such as protohemoglobin components in blood. Traditionally, PCR requires enhanced purification of target nucleic acids prior to preparation of the reaction mixture. However, using appropriate changes in chemical properties and sample concentration, DNA purification can be minimized for -9 - 201211240 PCR or direct PCR. Modification of PCR chemistries for direct PCR involves potentiating buffer strength, using high activity and processivity polymerases and additions to potential polymerase inhibitors. Repetitive PCR utilizes two independent nucleic acid amplifications to increase the probability of amplifying the correct amplicon. One type of repeat PCR is nested PCR in which two pairs of PCR primers are used to perform single-nucleotide amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product containing the target nucleic acid (shorter than the first: PCR product). The rationale used in this strategy is: If the wrong locus is amplified due to a mistake during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very low, thus ensuring specificity. Instant PCR or quantitative PCR was used to measure the amount of PCR product in real time. The initial amount of nucleic acid in a sample can be determined by using a fluorophore containing a probe or fluorescent dye and a reference standard in the reaction. This is especially useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. A reverse transcriptase is an enzyme that reverse transcribes RNA into a complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used in expression profiling to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus. -10- 201211240 Thermostat amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DN A during the amplification reaction, thus eliminating the need for complex machinery. The constant temperature nucleic acid amplification method can thus be performed at the original location or easily outside the laboratory environment. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Expansion Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent I sotherma 1 DNA Amp 1 ificati ο η and Loop-Mediated Isothermal Amplification Some of the constant temperature nucleic acid amplification methods have been described. The constant temperature nucleic acid amplification method does not rely on the continuous heat denaturation of the template DNA to produce a single strand of the molecule as a template for further amplification, but relies on an enzymatic cleavage such as a DNA molecule that specifically limits the endonuclease at a normal temperature, or It is another way to separate DNA strands using enzymes. The ability of strand-substituted amplification (SDA) to rely on specific restriction enzymes to cleave unmodified strands of hemi-modified DNA, and the ability to rely on 5'-3' exonuclease-deficient polymerases to extend and Replace the downstream stocks. An exponential nucleic acid amplification is then achieved by a coupling sense and an antisense reaction, wherein the strands from the sense reaction are substituted as a template for the antisense reaction. A nicking enzyme (such as N. Alwl, N. BstNBl and Mlyl) -11 - 201211240 which is used to cleave DNA on one of the strands of DNA without using an ordinary method to cut DNA is useful for this reaction. SDA has been improved by the use of a combination of a thermostable restriction enzyme (Χναΐ) and a thermostable exo-polymerase (polymerase). This combination appears to increase the amplification efficiency of the reaction from 1 〇 8 fold amplification to 10 115 fold amplification so that this technique can be used to amplify unique single copy molecules. Transcription-mediated amplification (TMA) and nucleic acid-dependent sequence amplification (NASBA) use RNA polymerase to replicate RN A sequences rather than corresponding genomic DNA. This technique uses two primers and two or three enzymes, RNA polymerase, reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to the target ribosome RN A (rRN A ) at a defined position. The reverse transcriptase produces a DNA copy of the target rRNA by extension from the 3' end of the promoter primer. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the RNase activity of the reverse transcriptase. Next, the second primer binds to the DNA copy. A double-stranded DN A molecule is produced by synthesizing a new DNA strand from the end of the primer by reverse transcriptase. RN A polymerase recognizes the promoter in the DN A template and initiates transcription. Each newly synthesized RN A amplicon is re-entered and used as a template for new replication. In recombinant enzyme polymerase amplification (RPA), constant temperature amplification of a specific DNA fragment is achieved by binding the opposite oligonucleotide to the template DNA and extending it by the DNA polymerase. Denaturation of the double-stranded DNA (dsDNA) template does not require heat. Conversely, RP A uses recombinant enzyme-primer mismatches to scan dsDNA and promote share exchange at cognate locations. The resulting -12-201211240 structure is stabilized by the interaction of a single DN A binding protein with a substituted template strand, thus preventing the primer from being released due to branch migration. The recombinant enzyme decomposes off the V-terminus of the oligonucleotide which is adjacent to the strand replacing the large fragment of the DNA polymerase (such as whi/b P〇l I μ), and the primer then begins to extend. This step is repeated by cycling to achieve exponential nucleic acid amplification. The helicase amplification (HDA) mimics the in vivo system, using DN Α helicase in an in vivo system to generate a single-strand template for primer hybridization and then extending the primer with a DNA polymerase. In the first step of the HDA reaction, the helicase passes through the target DNA, destroying the hydrogen bonds that bind the two strands, which are then bound by a single-stranded binding protein. The single-strand target region exposed by the helicase allows the primer to adhere. DN A polymerase uses free deoxyribonucleoside triphosphate (dNTP) to subsequently extend the 3' end of each primer to create two DNA replicas. The two replicated dsDNA strands independently enter the next HD A cycle, resulting in exponential nucleic acid amplification of the target sequence. Other DNA-based thermostating techniques include rolling cycle amplification (RCA) in which a DNA polymerase continuously extends a primer around a circular DNA template to produce a long DNA product consisting of a number of circular repeat copies. By terminating the reaction, the polymerase produces thousands of copies of the circular template with a copy strand tethered to the original target DNA. This results in a spatial resolution of the target and rapid nucleic acid amplification of the signal. A maximum of 101 2 copies of the template can be produced in one hour. Branched amplification is a variant of RCA and utilizes a closed circular probe (C-probe) or a snap-on probe and a highly progressive DN A polymerase for exponential amplification at ambient temperature C-probe. Circular thermostat amplification (LAMP) provides high selectivity and utilizes DNA polymerase and a primer set containing four specially designed primers, and the primer set recognizes a total of six different sequences on the target DNA of the -13-201211240. The inner primer, which contains the sense strand of the target DNA and the antisense strand sequence, initiates the LAMP. The subsequent strand-derived DNA synthesis initiated by the external primer releases a single strand of DNA. This serves as a template for the synthesis of DN A initiated by the second internal and external primers. The second inner and outer primers hybridize to the other end of the target to produce a stem-loop DNA structure. In the subsequent LAMP cycle, the inner primer hybridizes to the loop on the product and initiates the replacement DNA synthesis, producing the original stem-loop DNA and the new stem-loop DNA with twice the stem length. The cycle reaction was continued for one hour to accumulate a 109 copy target. The final product is a stem-loop DNA with several inverted repeat targets and a broccoli-like structure with a plurality of loops (formed alternately with inverted repeat targets in the same strand). After completion of the nucleic acid amplification, the amplified product must be analyzed to determine whether the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product is to simply measure the size of the amplicon by colloidal electrophoresis and use DNA hybridization to identify the nucleotide composition of the amplicon. Colloidal electrophoresis is one of the simplest ways to check the nucleic acid amplification step to produce the desired amplicon. Colloidal electrophoresis utilizes an electric field applied to a colloidal matrix to separate DNA fragments. Negatively charged DNA fragments will move through the matrix at different rates, depending primarily on their size. After the electrophoresis is completed, the fragments in the colloid can be stained to make them visible. Brominated phenanthrenequinone, which is fluorescent under UV light, is the most commonly used dye. The size of the fragment is determined by comparison with a DNA size marker (DNA ladder) containing a DN A fragment of known size which is run along with the amplicon. Since the oligonucleotide primer binds to a specific position adjacent to the target DNA from -14-201211240, the size of the amplified product can be predicted and detected using a band of known size on the colloid. In order to confirm the amplification or if several amplicon are produced, a DNA probe is often used to hybridize with the amplicon. DNA hybridization means the formation of double-stranded DNA by complementary base pairing. DNA hybridization for positive recognition of a particular amplification product requires the use of a DN A probe of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DN A sequence, hybridization will occur at favorable temperature, pH and ion concentration conditions. If hybridization occurs, the gene or DN A sequence of interest is present in the original sample. Optical detection is the most common method of detecting hybridization. The amplicon or probe is labeled to emit light via fluorescing or electrochemiluminescence. These methods have different ways of inducing the excited state of the luminescent moiety, but both are equally capable of covalent labeling of the nucleoside stock. In electrochemiluminescence (ECL), when excited by a current, light is generated by a luminophore molecule or a complex. When the fluorescent light is emitted, the emitted light is emitted to emit light. The illuminating source is used to detect fluorescence, and the illuminating source provides excitation light having a wavelength absorbed by the fluorescent molecules and a detecting unit. The detection unit includes a photosensor, such as a photomultiplier tube or a charge coupled device (CCD) array, to detect the transmitted signal and a mechanism to prevent excitation light from being included in the photosensor output (such as a wavelength-select filter). Back stress luminescence, fluorescence molecular emission history Stokes-shifted light, and this emitted light is collected by the detection unit. Stokes converts the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. -15- 201211240 The light sensor is used to detect ECL emissions, and the light sensor is sensitive to the emission wavelength of the ECL type used. For example, a transition metal coordination complex emits light of a visible wavelength, and thus a conventional photodiode and a CCD are used as photosensors. The advantage of ECL is that if ambient light is excluded, the ECL emission can be the only light present in the detection system, thus increasing sensitivity. Microarrays allow hundreds of thousands of DNA hybridization experiments to be performed simultaneously. Microarrays are useful molecular diagnostic tools that can screen thousands of genetic diseases or detect the presence of several infectious pathogens in a single experiment. The microarray consists of a number of different DN A probes that are attached to the substrate and are spotted. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (during or after nucleic acid amplification) and then applied to the probe array. The microarray is cultured for several hours or days at a controlled temperature in a humid environment where hybridization occurs between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. Once cleaned, the surface of the microarray is dried with a stream of air (usually nitrogen). The stringency of hybridization and cleaning is important. Less stringent may result in highly non-specific binding. Excessive rigor may result in inability to properly combine and result in reduced sensitivity. Identification of hybridizations by detecting light emission from labeled amplicon-forming hybrids. The microarray scanner is typically a computer-controlled inverted scan using a microarray scanner to detect fluorescence from the microarray. Fluorescent conjugated focus microscopy, which typically uses a laser and photosensor that excites a fluorescent dye, such as a photomultiplier tube or CCD, to detect the emitted signal. The fluorescent molecules emit light converted by Stokes (as described above), and the light is collected by the detecting unit. -16- 201211240 The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. A conjugate focal configuration is often used in microarray scanners to remove out-of-focus information by conjugated focal pinholes located in the image plane. This makes it possible to detect only the focused portion of the light. Light that is prevented above or below the focal plane of the object enters the detector, thereby increasing the signal-to-noise ratio. The detector converts the detected fluorescent photons into electrical energy, which is then converted into a digital signal. This digital signal is converted to a number representing the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the hybrid target sequence can be identified and analyzed simultaneously. More information on fluorescent probes can be found below: http://www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References/ Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html In-situ Care Molecular Diagnostics Despite the advantages of molecular diagnostic tests, the growth of this type of test in clinical tests Not as expected and still only account for a small portion of the implementation of laboratory medicine. This is mainly due to the complexity and cost associated with nucleic acid testing compared to experiments based on non-amino acid methods. The broad applicability of molecular diagnostic tests to clinical treatment is associated with rapid and automated analysis that significantly reduces costs, from initial (sample processing) to final (results), and the development of instruments that do not require extensive human intervention. It is closely related. For physicians' clinics, proximity or user-based hospitals, home-based healthcare technologies offer the following advantages: • 彳 $ insults! 1 , resulting in rapid promotion of treatment and improved care quality • through trials The ability to test defects with a small sample. • Reduce clinical workload. • Reduce laboratory workload and increase work efficiency by reducing management efforts. • Improve the cost per patient by reducing hospital stays, getting results from first visits, and simplifying the handling, storage, and delivery of samples 〇 • Promoting clinical management decisions such as vaccination control and antibiotic use. Molecular Diagnostics Based on On-Wafer Laboratory (LOC) Based on methods for providing automated and accelerated molecular diagnostic analysis for molecular diagnostic systems for fluid technology. The shorter detection time is mainly due to the use of very small amounts of automation, built-in and low overhead cascades in the diagnostic method steps in the microfluidic device. The use of nanoliters and micro-upgrades also reduces reagent consumption and cost. On-wafer laboratory (LOC) devices are a common form of microfluidic devices. The on-wafer laboratory device has an MST structure in the MST layer to integrate fluid processing into a single support substrate (typically germanium). The use of the VLSI (Ultra Large Integrated Circuit) technology of the semiconductor industry makes the unit cost of each LOC device very low. However, controlling the flow of fluid through the LOC device, adding reagents, controlling the reaction -18-201211240 conditions, etc. requires a large volume of external piping and electronics. Connecting the LOC device to these external devices actually limits the use of the LOC device for molecular diagnostics to inspection processing. The cost of external equipment and its operational complexity preclude the use of LOC-based molecular diagnostics as a practical option for in situ care. In view of the above, there is a need for a molecular diagnostic system based on LOC devices for in situ care. SUMMARY OF THE INVENTION Various aspects of the present invention will be described in the following paragraphs. GCF007.1 This aspect of the invention provides a wafer-on-lab (LOC) device for detecting a pathogen in a biological sample, the LOC device comprising: an inlet for receiving a sample; a support substrate; a pathogen and a larger component in the sample The first dialysis section is separated; the lysis part located downstream of the dialysis section is used for lysing the pathogen to release the genetic material therein, and the lysis part has a lysis chamber and a heater to dissolve the sample in the lysis chamber. a nucleic acid amplification unit located downstream of the lysis unit for amplifying a nucleic acid sequence in the genetic material; and a second dialysis unit located downstream of the nucleic acid amplification unit for pre-hybridization filtration generated by the nucleic acid amplification unit The second dialysis section is configured to remove cell debris from the amplicon; wherein, the first dialysis section, the lysis unit, the nucleic acid amplification section, and the second dialysis section are supported by -19-201211240 On the support substrate. GCF007.2 Preferably, the lysis unit has a heater for the hot lytic pathogen. GCF007.3 Preferably, the LOC device also has a hybridization portion downstream of the second dialysis section, having a probe array for hybridization with a target nucleic acid sequence in the sample; and a photosensor for detecting Hybridization of any probe in the array. GCF007.4 Preferably, the first dialysis portion has a first passage in fluid communication with the inlet, a second passage in fluid communication with the lysis portion, and a plurality of first orifices, the first orifice being larger than the pathogen and less than The larger component, the second channel is in fluid communication with the first channel via the first orifice such that the pathogen flows into the second channel and the larger component remains in the first channel. GCF007.5 Preferably, the first channel and the second channel are configured to buffer the sample by capillary action. GCF007.6 Preferably, the second dialysis portion has a large component passage, a small component passage, and a plurality of second orifices fluidly connecting the large component passage to the small component passage, the second orifice being sized to allow The nucleic acid sequence flows from the large component channel to the small component channel leaving cell fragments larger than the second port in the bulk channel, the small component channel being in fluid communication with the hybrid. GCF007.7 Preferably, the nucleic acid amplification unit is a constant temperature nucleic acid amplification unit 〇GCF007.8. Preferably, the LOC device also has a reagent storage tank for holding a reagent for constant temperature nucleic acid amplification; and -20-201211240 surface tension A valve having an orifice configured to hold a meniscus of the reagent such that the meniscus retains the reagent in the reagent reservoir until contact with the liquid sample removes the meniscus and the reagent exits the reagent reservoir. GCF007.9 Preferably, the nucleic acid amplification unit is a polymerase chain reaction (PCR) amplification unit. GCF007.1 Preferably, the LOC device also has a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer of the combined PCR portion, wherein the CMOS circuit is located between the support substrate and the MST layer, and the CMOS circuit system is configured The temperature sensor output is used to feedback control the PCR section. GCF007.il Preferably, the PCR portion has a PCR microchannel for heating a circulating sample to amplify a nucleic acid sequence, the PCR microchannel defining a portion of the sample flow path and having a cross-sectional area of less than 100, 〇〇〇 square micron across the flow path . GCF007.1 2 Preferably, the LOC device also has at least one elongated heater element for heating the nucleic acid sequence in the elongated PCR microchannel, the elongated heater element extending parallel to the PCR microchannel. GCF007.1 3 Preferably, at least one portion of the PCR microchannel forms an elongated PCR chamber. GCF007.14 Preferably, the PCR portion has a plurality of elongated PCR chambers each formed by a respective portion of the PCR microchannel, and the PCR microchannel has a crucible structure formed by a series of wide tortuous curves, each of which is curved to form a The channel portion of the elongated PCR chamber. GCF007.1 5 Preferably, the LOC device also has a reagent storage tank for holding the reagent used for the PCR; and a surface tension valve having an orifice 21 - 201211240 configured to fix the meniscus of the reagent, so that the meniscus The reagent is retained in the reagent reservoir until the liquid sample is contacted to remove the meniscus and the reagent flows out of the reagent reservoir. GCF007.1 6 Preferably, the LOC device also has an array of hybrid chambers containing probes such that the probes in the hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. GCF007.1 7 Preferably, the photosensor is an array of photodiodes that are registered with the hybridization chamber. GCF007.1 8 Preferably, the CMOS circuit has a digital memory for storing hybridization data from the photosensor output and a data interface for transmitting the hybridization data to an external device. GCF007.1 9 Preferably, the PCR section has an active valve for retaining liquid in the PCR section and in response to an activation signal from the CMOS circuit to allow liquid to flow to the hybridization chamber during thermal cycling » GCF007.20 is preferred The active valve is a boiling pilot valve having a meniscus holder and a heater. The meniscus holder is configured to fix the meniscus and stop the liquid flow driven by the capillary action, and the heater causes the liquid to boil and self-bend. The level holder releases the meniscus and restores the capillary action drive flow. The easy-to-use, mass-produced and inexpensive pathogen detection LOC device receives biological samples through its sample container, utilizes its dialysis section to separate any pathogens contained in the sample, and lyses pathogens in its hot lysate to release pathogens. The genetic material, amplifies any target gene sequence, and analyzes the nucleic acid sequence of the sample by hybridizing to the oligonucleotide probe and detecting its internal imaging array and utilizing reagents stored in a reagent reservoir of the LOC device. The dialysis function takes additional information from the sample and increases the sensitivity, the -22-201211240-to-noise ratio and the dynamic range of the analysis system. The dialysis unit and device are of a unitary structure that provides low system component quantities and simple manufacturing steps to provide an inexpensive analytical system. The lysis method extracts the target to be analyzed and diagnosed from the cells in the sample and provides subsequent target treatment and analysis. The lysing unit is integral with the device' which provides a simple analytical step, a low amount of system components, and a simple manufacturing step' to provide an inexpensive analytical system. The thermal lysis method simplifies the analytical chemistry requirements and provides processing power for a wide range of samples. Amplification of the target gene sequence increases the sensitivity of the analytical system and the signal-to-noise ratio. Pre-hybridization filters remove hot lysed fragments from sample cells, improving the efficiency of the hybridization method and subsequent analytical sensitivity, signal-to-noise ratio, and reliability. Pre-hybridization filtration also allows the hot lysis method to be utilized in a wide range of sample types due to its advantages. The probe hybridization provides target analysis via hybridization. The integrated probe hybrid provides an easy-to-use, mass-processable and inexpensive solution with a low level of system component integration. The integrated image sensor eliminates the need for expensive external imaging systems and provides an inexpensive, low-system component integration solution that is small, lightweight, and easy to carry. Due to the large light collection angle, the integrated image sensor increases read sensitivity and eliminates the need for optical components in the string of optical components. A reagent storage tank that is integral with the LOC unit and maintains the analysis of total reagent requirements, provides low system component quantities and simple manufacturing steps, resulting in an inexpensive analytical system from -23 to 201211240. [Embodiment] This general specification indicates the main components of the molecular diagnosis including the specific embodiment of the present invention. Details of the system structure and operation are discussed in the following description. Referring to Figures 1, 2, 3, 109 and 1 10, the system has the following most components: The test modules 10 and 11 are of the size of a conventional USB flash drive and are easily manufactured. The test modules 1 and 1 each contain a microfluidic device in the form of a conventional crystallographic laboratory (LOC) device 30 and preloaded with reagents, and generally more than 1000 probes for molecular diagnostic analysis (see Figure 1). And 109 the test module 1 shown in FIG. 1 uses a fluorescence-based detection technique to identify the target molecule, and the test module 11 in FIG. 09 uses an electroluminescence-based detection technique. The LOC device 30 has An integrated photosensor 44 for fluorescent or electrochemographic detection (described in detail below). Both test sets 10 and 11 use standard micro-joints 14 for power, data, and control, all with printing A circuit board (PCB) 57, and a capacitor 3 2 and an inductor 15 each having an external power. The test modules 1 and 11 are both for manufacturing single use and are distributed in aseptic packaging for use. There is a large container 24 for receiving a biological sample and a removable sterile sealing strip 22, which preferably has a low-viscosity adhesive 'for large containers before use. A membrane seal 40 with a membrane guard 410 forms part The external system is integrated and important on the film.) -USB test mode for large portions of the cover casing 13 in addition to reduction assay -24-201211240 'module in the moisture resistance, is provided by a small change in pressure relief role. The membrane guard 410 protects the membrane seal 408 from damage. The test module reader 12 is powered to the test module 10 or 11 via a micro-U S B埠1 6. The test module reader I2 can be in many different forms, and its selection is described later. The reader I2 version shown in Figures 1, 3 and 109 is a specific embodiment of a smart phone. A block diagram of the reader 12 is shown in FIG. The processor 42 executes application software from the program storage 43. The processor 42 is also interfaced with a display screen 18 and a user interface (UI) touch screen 17 and button 19, a cellular radio 21, a wireless network connection 23, and a satellite navigation system 25. The cellular radio 21 and the wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location data. Alternatively, the location data can be input by the touch screen 1 7 or the button 1 9 person. The data store 27 holds genetic and diagnostic information, test results, patient information, analysis and probe data for identifying each probe, and its array position. The data storage 27 and the program storage 43 can be shared by a common memory device. The application software installed in the Test Module Reader 1 2 provides results analysis and additional test and diagnostic information. To perform a diagnostic test, the test module 10 (or test module 1 1) is inserted into the micro-USB port 16 on the test module reader 12. The sterile sealing strip 22 is turned up and the biological sample (in liquid form) is loaded into the large sample container 24. The start button 20 is pressed to initiate the test by applying the software. The sample is passed to LOC unit 30 where it is analyzed for extraction, culture, amplification and hybridization of the pre-synthesized hybrid-reactive oligonucleotide probe to the sample nucleic acid (target). In the case of the test module 1 ( (which uses fluorescence-based detection), probes 25-201211240 are fluorescently labeled and LEDs 26 placed in the shell 13 provide the necessary excitation light to induce self-hybridization Fluorescent emission of the needle (see Figures 1 and 2). In a test module (which uses electrochemiluminescence (ECL) based detection), the LOC device 30 carries an ECL probe (as described above) and the LED 26 is not necessary to generate a photoluminescence. Conversely, electrodes 860 and 807 provide excitation current (see Figure 110). The emission (fluorescence or photoluminescence) is detected using a photo sensor 44 integrated with a CMOS circuit on each LOC device. The detected signal is amplified and converted to a digital output analyzed by the test module reader 12. The reader then displays the results. Data can be stored locally and/or uploaded to a web server containing patient records. The test module 10 or 11 is removed from the test module reader 12 and processed as appropriate. 1, 3 and 109 show a test module reader 12 configured as a mobile/smartphone 28. In other forms, the test module reader is a laptop/notebook 1 〇1, a dedicated reader 103, an e-book reader 107, a tablet 109 or a table used in a hospital, private clinic or laboratory. Computer 105 (see Figure 111). The reader can be interfaced with additional applications such as patient records, accounting, online databases and multi-user environments. It can also interface with some local or remote peripherals, such as printers and patient smart cards. Referring to Figure 12, through the reader 12 and the network 125, the data generated by the test module 10 can be used to update the epidemiological database maintained by the host system for epidemiological data 1 1 1 for genetic data. The genetic database maintained by the host system of 113, the electronic health record maintained by the host system for electronic health record (EHR) 115 -26- 201211240, and the host system for electronic medical record (EMR) 121 Maintained electronic medical records, as well as personal health records maintained by the host system for personal health records (PHR) 123. Conversely, epidemiological data held by the host system for epidemiological data 1 1 1 , genetic data held by the host system for genetic data 113, for electronic use via the network 125 and the reader 12 An electronic health record maintained by the host system of the Health Record (EHR) 115, an electronic medical record maintained by the host system for the Electronic Medical Record (EMR) 121, and a host for personal health record (PHR) 123 The personal health record maintained by the system can be used to update the digital memory in test module 1 〇 LOC 30. Referring again to Figures 1, 2, 109 and 110, in a mobile phone configuration, reader 12 uses battery power. The mobile phone reader contains all pre-loaded test and diagnostic information. Data can also be loaded or uploaded via some network or contact interface to enable communication with peripheral devices, computers or online servers. Set the Micro-USB port 16 to connect the computer or main power supply to recharge the battery. Figure 70 shows a specific embodiment of the test module 10 for testing that only requires the presence or absence of a particular target, such as whether the test individual is infected with, for example, influenza A virus H1N1. It is only suitable as a built-in module 47 for USB power/indicator only. No other readers or application software is required. The indicator 45 on the module 47 of the USB power/indicator only shows a positive or negative result. This configuration is ideal for a large number of screenings. Additional items supplied to the system may include test tubes containing reagents for pre-treating a particular sample, and a tongue depressor and lancet containing sample collection. -27- 201211240 For convenience, the test module of the embodiment shown in Fig. 7A includes a spring-loaded retractable lancet 3 90 and a lancet release button 392. Satellite phones can be used in remote areas. Test Module Electronics Figure 2 and 1 1 0 are block diagrams of the electronic components in test modules 10 and 11. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36, a controller 34, a USB compatible LED driver 29, a clock 33, a power conditioner 31, a RAM 38, and a program and data flash memory 40. These are provided for test module 10 or 11 integral and associated driver 37 including light sensor 44, temperature sensor 170, liquid sensor I 74 and various heaters 152, 154, 182, 234 And 39 and the control and memory of the registers 35 and 41. Only LED 26 (in the case of test module 10), external power supply capacitor 32 and micro USB connector 14 are external to LOC device 30. The LOC device 30 includes an adhesive pad for attachment to these external components. RAM 38 and program and data flash memory 40 have application software and diagnostic and experimental information for more than 1 000 probes (flash/security storage, such as via encryption). In the case of the test module 1 1 configured for ECL detection, there is no LED 26 (see Figures 109 and 110). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 is loaded with an electrochemiluminescent probe and a hybrid chamber, each having an ECL excitation electrode pair 8 60 and 87 〇. Many types of test modules are manufactured in a number of test formats that are ready for ready-to-use users. The test format differs in the reagents and probes of the onboard assay. -28- 201211240 Some examples of infectious diseases that are rapidly identified by this system include: • Influenza-influenza virus A, B, C, infectious salmon anemia virus, toco soil virus • pneumonia-respiratory fusion virus ( RSV), adenovirus, interstitial pneumonia virus, pneumococci, staphylococcus aureus • tuberculosis - mycobacterium tuberculosis, mycobacterium bovis, mycobacteria, mycobacteria, and mycobacterium vulgaris • malignant Plasmodium, Toxoplasma and other parasitic protozoa • Typhoid-cold bacillus • Ebola virus • Human immunodeficiency virus (HIV) • Dengue-yellow virus • Hepatitis (A to E) • Iatrogenic infection - for example, Clostridium botulinum, vancomycin-resistant enterococci and drug-resistant Staphylococcus aureus • Herpes simplex virus (HSV) • Giant cell virus (CMV) • Epstein-Barr virus (EBV) • Encephalitis- Japanese encephalitis virus, Zhangdipula virus • Pertussis-pertussis • Hemorrhoids - paramyxovirus • Meningitis - Streptococcus pneumoniae and meningococcus • Anthracnose - Bacillus anthracis Some examples of hereditary diseases identified by this system include: -29- 201211240 • Cystic fibrosis • Hemophilia • Sickle cell anemia • Black idiots • Hemochromatosis • Cerebral arterial disease • Crohn's disease • Polycystic kidney disease • Congenital heart disease • A few options for disease identified by the diagnostic system: • Ovarian cancer • Colon cancer • Multiple endocrine neoplasms • Retinoblastoma • Turcot syndrome The above list is not exhaustive, and the diagnostic system can be configured to detect many different diseases and symptoms using nucleic acid and proteomic analysis. Detailed structure of system components LOC device LOC device 30 is the center of the diagnostic system. It uses microfluidic platforms to rapidly perform four important steps in nucleic acid-based molecular diagnostic analysis, namely sample preparation, nucleic acid extraction, nucleic acid amplification and detection. The LOC device also has a use for the -30-201211240 generation and will be detailed below. As discussed above, test modules 10 and 1 1 can take many different configurations to detect different targets. Similarly, the LOC device 30 has many different embodiments for targeting the target of interest. One form of LOC device 30 is a LOC device 301 for fluorescence detection of a target nucleic acid sequence in a pathogen of a whole blood sample. For purposes of illustration, the structure and operation of LOC device 301 is described in detail with reference to Figures 4 through 26 and 27 through 57. 4 is a schematic view of the structure of the LOC device 301. For convenience, the processing stages shown in FIG. 4 are represented by the component symbols corresponding to the functional portions of the LOC device 301 that implements the processing stage. The processing stages associated with the major steps of each nucleic acid-based molecular diagnostic assay also represent: sample input and preparation 28, extraction 290, culture 291, amplification 292, and detection 294. The various reservoirs, chambers, valves, and other components of the LOC device 301 are described in more detail below. FIG. 5 is a perspective view of the LOC device 301. It is manufactured using high volume CMOS and MST (microsystem technology) manufacturing techniques. The layered construction of the LOC device 301 is illustrated in a partial cross-sectional view (not to scale) of Figure 12. The LOC device 301 has a germanium substrate 84 supporting a COMS + MST wafer 48, including a CMOS circuit 86 and an MST layer 87, covering the MST layer 87 with a cover 46. For the purposes of this patent specification, the term "MST layer" relates to a collection of structures and layers of a sample treated with different reagents. Accordingly, these structures and components are configured to define a flow path having a characteristic size that supports a capillary action driven liquid stream having physical properties similar to the physical properties of the sample during processing. Accordingly, MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also produce fluids that are driven by capillary action -31 - 201211240 and process structures and components that are very small in size and size. The particular embodiment described in this specification shows that the MST layer is a structure and active component supported on CMOS circuitry 86, but excludes the features of cover 46. However, those skilled in the art will appreciate that the MST layer does not require the underlying CMOS or even the overlying cover to handle the sample. The overall dimensions of the LOC device shown in the following figures are 1 760 microns X 5824 microns. Of course, LOC devices fabricated for different applications may have different dimensions. Figure 6 shows the features of the MST layer 87 overlaid with the cover features. The inserts AA to AD, AG and AH shown in Fig. 6 are individually enlarged in Figs. 13, 14, 35, 56, 55 and 63, and a sufficient understanding of the respective structures in the LOC device 301 will be described in detail below. When Fig. 11 independently shows the structure of the CMOS + MST device 48, Figs. 7 through 10 independently show the features of the cover 46. Layered Structure Figures 12 and 22 are schematic views of the layered configuration of the CMOS + MST device 48, the cover 46, and the fluid interaction therebetween. The drawings are not drawn to scale for the purpose of illustration. Figure 12 is a cross-sectional view through the sample inlet 68 and Figure 22 is a cross-sectional view through the sump 54. As best shown in FIG. 12, CMOS + MST device 48 has a germanium substrate 84 that supports CMOS circuitry 86 that operates the active components within MST layer 87 described above. Passivation layer 88 seals and protects CMOS layer 86 from fluid flow through MST layer 87.

流體分別流過於蓋層46及MST通道層100中之蓋通道 94及MST通道90兩者(例如見圖7及16 )。當在較小的MST -32- 201211240 通道90實施生化處理時,細胞輸送發生在於蓋46中製造之 較大的通道94中。細胞輸送通道係按尺寸製作以便能輸送 樣本中之細胞至MST通道90中之預定位置。輸送尺寸大於 20微米的細胞(例如,某些白血球)需要通道尺寸大於20 微米,且因此橫越流的截面積大於400平方微米。特別在 不需要輸送細胞的LOC中的位置之MST通道可以顯著地較 小0 將理解的是蓋通道94和MST通道90爲普通參考且特別 的MST通道90亦可因其特定的功能而爲(例如)經加熱的 微通道或透析MST通道。MST通道90藉由蝕刻通過在鈍化 層88上沉積.且以光阻劑圖案化之MST通道層1〇〇而形成。 MST通道90由頂部層66環繞,頂部層形成CMOS + MST裝置 48之頂部(相對於顯示於圖中之方位)。 儘管有時作爲獨立的層顯示,蓋通道層80和貯槽層78 係由單一材料片所形成。當然,材料片亦可爲非單—性。 自兩邊蝕刻材料片以形成蓋通道層80與貯槽層78 ,在蓋通 道層80中蝕刻蓋通道94,在貯槽層78中蝕刻貯槽54、56、 58、60和62。替代性地’貯槽和蓋通道由微成形法形成。 蝕刻和微成形技術兩者皆用以製造具有橫越流體的至大爲 2〇,〇〇〇平方微米且至小爲8平方微米之的通道。 於LOC裝置中不同位置有針對橫越流體之通道的截面 積之適當的選擇。其中大量的樣本或具有大組分的樣本係 容納於通道中’至多2 0, 〇〇〇平方微米之截面積(例如,在 100微米厚之層中的200微米寬的通道)是適合的。其中少 -33- 201211240 量的液體或無大細胞存在的混合物係容納於通道中’較佳 者係橫越流體之非常小的截面積。 下密封64環繞蓋通道94且上密封層82環繞貯槽54、56 、5 8、6 0 和 6 2 ° 五個貯槽54、56、58、60和62係預載特定分析之試劑 。於此描述的實施例中,貯槽預載有下列試劑,但可簡易 的以其他試劑取代: • 貯槽54 :抗凝血劑,其選擇性包括紅血球溶胞緩 衝液 • 貯槽56 :溶胞試劑 • 貯槽58:限制性酵素、接合酶和聯結子(用於聯 結子引發PCR (見圖69,節錄自T. Stachan et al·,HumanThe fluid flows through both the capping channel 94 and the MST channel layer 100 and the MST channel 90 (see, for example, Figures 7 and 16). When biochemical treatment is performed on the smaller MST-32-201211240 channel 90, cell delivery occurs in the larger channel 94 made in the cover 46. The cell delivery channels are sized to deliver cells in the sample to predetermined locations in the MST channel 90. Cells that deliver a size greater than 20 microns (e.g., certain white blood cells) require channel sizes greater than 20 microns, and thus cross-sectional areas across the flow are greater than 400 square microns. In particular, the MST channel at a location in the LOC that does not require delivery of the cells can be significantly smaller. It will be understood that the cover channel 94 and the MST channel 90 are common references and that the particular MST channel 90 can also be due to its particular function ( For example) heated microchannels or dialyzed MST channels. The MST channel 90 is formed by etching through a MST channel layer 1 deposited on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is surrounded by a top layer 66 that forms the top of the CMOS + MST device 48 (relative to the orientation shown in the figure). Although sometimes shown as a separate layer, the cover channel layer 80 and the sump layer 78 are formed from a single piece of material. Of course, the piece of material can also be non-singular. A sheet of material is etched from both sides to form a cap channel layer 80 and a sump layer 78, a cap channel 94 is etched in the cap channel layer 80, and sumpes 54, 56, 58, 60 and 62 are etched in the sump layer 78. Alternatively, the sump and cover channels are formed by micro-forming. Both etching and microforming techniques are used to fabricate channels having traverse fluids of up to 2 Å, 〇〇〇 square microns and up to 8 pm microns. Appropriate choices for the cross-sectional area of the channel across the fluid are available at different locations in the LOC device. A large number of samples or samples having a large component are accommodated in the channel 'up to 20, and the cross-sectional area of the square micron (e.g., a 200 micron wide channel in a layer of 100 micrometers thick) is suitable. Among them, a small amount of -33-201211240 liquid or a mixture free of large cells is contained in the channel'. Preferably, it is a very small cross-sectional area across the fluid. The lower seal 64 surrounds the lid passage 94 and the upper seal layer 82 surrounds the sump 54, 56, 580, 60 and 6 2 °. The five sump 54, 56, 58, 60 and 62 are preloaded with reagents for specific analysis. In the embodiments described herein, the reservoir is preloaded with the following reagents, but can be easily replaced with other reagents: • Storage tank 54: anticoagulant, optionally including red blood cell lysis buffer • Storage tank 56: lysis reagent • Slot 58: Restriction enzymes, ligases, and junctions (for junction initiation PCR (see Figure 69, excerpted from T. Stachan et al., Human)

Molecular Genetics 2,Garland Science, NY and London, 1999)) • 貯槽60 :擴增混合物(去氧核糖核苷三磷酸( dNTP)、引子、緩衝液),以及 • 貯槽62 : DNA聚合酶。 蓋46和CMOS+MST層48經由在下密封64和頂部層66中 之相應的開口而呈流體連通。依據流體是否自MST通道90 流至蓋通道94或反向而代表開口爲上管道96及下管道92。 LOC裝置操作 LOC裝置301的操作係參考在血液樣本中之分析病原 體(pathogenic ) DN A而逐步描述於下。當然,其他生物 -34- 201211240 或非生物流體的種類亦使用適當的套組或試劑、試驗規程 、LOC變體和檢測系統之組合來分析。參考圖4,分析生 物樣本涉及五個主要步驟,包含:樣本輸入和製備288、 核酸萃取290、核酸培養291、核酸擴增292和檢測及分析 294 〇 樣本輸入和製備步驟2 8 8係混合血液與抗凝血劑1 1 6且 接著利用病原體透析部7 0使病原體與白血球及紅血球分開 。如最佳顯示於圖7和1 2中者,血液樣本經由樣本入口 6 8 進入裝置。毛細作用吸引血液樣本沿著蓋通道94而到達貯 槽54。當樣本血液流開啓其表面張力閥118時,抗凝血劑 自貯槽54釋出(見圖15和22 )。抗凝血劑防止形成會阻塞 流動的血凝塊。 如最佳顯示於圖22中者,抗凝血劑116藉由毛細作用 自貯槽54被抽出且經由下管道92進入MST通道90。下管道 92具有毛細作用起始特徵(CIF) 102以形成彎液面幾何, 使其不固定在下管道92的邊緣。當抗凝血劑116自貯槽54 被抽出時,在上密封82中之通氣孔122允許空氣取代抗凝 血劑1 1 6。 顯示於圖22之MST通道90爲表面張力閥118的一部分 。抗凝血劑116塡充表面張力閥118且固定至上管道96之彎 液面120於彎液面固定器98。在使用前,彎液面120保持固 定於上管道96,使得抗凝血劑不會流入蓋通道94。當血液 流經蓋通道94至上管道96時,移除彎液面120且將抗凝血 劑吸入流體中。 -35- 201211240 圖15至21顯示插入物AE,其爲顯示於圖13之插入物 AA之一部分。如顯示於圖15、16和17中者’表面張力閥 118具有三個分開的MST通道90延伸於個別的下管道92及 上管道96之間。在表面張力閥中之這些MST通道90可變化 以改變進入樣本混合物之試劑的流速。當樣本混合物以及 試劑藉由擴散而混合時,離開貯槽之流速決定在樣本流中 之試劑的濃度。因此,各貯槽的表面張力閥係配置以符合 所需之試劑濃度。 血液通入病原體透析部70(見圖4和15),其中使用 根據預定閥値制定大小之孔口 1 64的陣列自樣本濃縮標靶 細胞。小於閥値的細胞通過孔口,而大細胞不能通過孔口 。在標靶細胞持續作爲分析的一部分之同時,非所欲之細 胞重新被導入廢料單元76。非所欲之細胞爲經由孔口 164 陣列阻擋之大細胞或爲通過孔口之小細胞。 在描述於此之病原體透析部70中,來自全血樣本之病 原體被濃縮以供微生物DNA分析。孔口之陣列藉由流體性 連通蓋通道94中之輸入流至標靶通道74的多個3微米直徑 的孔口 1 64所形成。3微米直徑的孔口 1 64和用於標靶通道 74之透析汲取孔168係由一系列的透析MST通道204連接( 最佳顯示於圖15和21 )。病原體小到足以經由透析MS T通 道204通過3微米直徑孔口 164且塡充標靶通道74。諸如紅 血球和白血球之大於3微米的細胞留在蓋46之廢料通道72 中,蓋通向廢料儲器76 (見圖7)。 其他孔口形狀、大小和長寬比可用以分離特定病原體 -36- 201211240 或其他標靶細胞,諸如用於人DNA分析的白血球。後面提 供透析部和透析變體之更詳細的詳情。 再次參照圖6和7,流體被吸入通過標靶通道74而到達 溶胞試劑貯槽56中之表面張力閥128。表面張力閥128具有 七個MST通道90延伸於溶胞試劑貯槽56和標靶通道74之間 。當彎液面由樣本流脫除時,所有的七個MS T通道90之流 速將大於抗凝血劑貯槽54之流速,其中表面張力閥118具 有三個MS T通道90 (假設流體的物理特性爲大致相等的) 。因此在樣本混合物中之溶胞試劑的比例係大於抗凝血劑 之比例。 溶胞試劑和標靶細胞在化學溶胞部130內之標靶通道 74中藉由擴散而混合。沸騰引動閥126使流動停止直到擴 散和溶胞進行了足夠的時間,自標靶細胞釋放遺傳物質( 見圖6和7 )。參考圖31和32,於下詳細描述沸騰引動閥之 結構和操作。其他主動閥類型(與被動閥相反,諸如表面 張力閥1 1 8 )亦已由申請人開發,其可用於此以替代沸騰 引動閥。這些替代閥設計亦描述於下。 當開啓沸騰引動閥1 2 6時,經溶胞之細胞流入混合部 13 1以預擴增限制酶剪切(restriction digestion)以及聯結 子接合(linker ligation )。 參考圖13,當流體移除在混合部131起始處之表面張 力閥132上的彎液面時,限制酵素、聯結子和接合酶自貯 槽58釋放。爲了擴散混合,混合物流過混合部131的長度 。在混合部131的末端爲通到培養部114之培養器入口通道 -37- 201211240 133的下管道134(見圖13)。培養器入口通道133將混合 物饋入經加熱之微通道2 1 0的蜿蜒結構’其提供在限制酶 剪切以及聯結子接合期間用來保留樣本之培養室(見圖1 3 及 14 ) 〇 圖23、24、25、26、27、28及29顯示在圖6之插入物 AB內的LOC裝置301之層。各圖顯示連續疊加(addition) 形成CMOS + MST層48和蓋46結構之層。插入物AB顯示培養 部1 14的末端和擴增部1 12的起始。如最佳顯示於圖14及23 中者,流體塡充培養部1 1 4之微通道2 1 0直到抵達沸騰引動 閥1 06,其中流體在擴散發生時停止。如上所討論,沸騰 引動閥106上游之微通道210成爲含有樣本、限制酵素、接 合酶和聯結子的培養室。加熱器1 54接著啓動且維持於穩 定溫度以使限制酶剪切和聯結子接合發生一段特定時間。 熟此技藝者將理解此培養步驟291 (見圖4)爲任意的 且僅爲一些核酸擴增分析類型所需要。再者,在一些例子 中,可能需要在培養期間結束時具有加熱步驟以將溫度增 高到超過培養溫度。在進入擴增部112前,溫度增高使限 制酵素和接合酶失活。當使用等溫合酸擴增時,限制酵素 和接合酶的失活具有特定影響。 培養之後,沸騰引動閥1 06啓動(打開)且流體再進 入擴增部1 1 2。參考圖3 1及3 2 ’混合物塡充經加入微通道 1 5 8之蜿蜒結構直到到達沸騰引動閥1 08,微通道形成一或 更多擴增室。如最佳顯示於圖30之剖面示意圖,擴增混合 物(dNTP '引子、緩衝液)自貯槽60釋放且聚合酶接著自 -38- 201211240 貯槽62釋放而進入連接培養部和擴增部(分別爲11 4及112 )之中間MST通道212。 圖35至51顯示在圖6之插入物AC中的LOC裝置301之層 。各圖顯示連續疊加形成CMOS + MST裝置48和蓋46結構之 層。插入物AC顯示擴增部112的末端和雜交及檢測部52的 起始。經培養的樣本、擴增混合物和聚合酶流經微通道 158而至沸騰引動閥108。在擴散混合經足夠時間後,啓動 在微通道158中之加熱器15 4以供熱循環或等溫擴增。擴增 混合物經歷預定數目的熱循環或預設之擴增時間以擴增充 分的標靶DNA。在核酸擴增程序之後,沸騰引動閥108開 啓且流體再進入雜交及檢測部52。沸騰引動閥之操作更詳 細描述於下。 如顯示於圖52,雜交及檢測部52具有雜交室之陣列 1 1 0。圖5 2、5 3、5 4及5 6詳細顯示雜交室陣列1 1 〇和個別雜 交室180。雜交室180的入口爲擴散屏障175,其在雜交期 間防止標靶核酸、探針股和雜交探針於雜交室1 8 0之間擴 散’以防止錯誤的雜交檢測結果。擴散屏障1 7 5之流動路 徑長度足夠長以在探針和核酸雜交以及檢測訊號的時間內 ’防止標靶序列和探針擴散出一個室且污染另一室,因此 避免錯誤的結果。 另一防止錯誤讀取的機制是在一些雜交室中具有相同 的探針。CMOS電路86自對應於包含相同的探針之雜交室 180之光二極體184導出單—結果。導出的單—結果中之異 常的結果可被忽略或給予不同權重。 -39- 201211240 用於雜交所需的熱能係由CMOS控制的加熱器1 82所提 供(更詳細描述於下)。在啓動加熱器後,雜交發生於互 補標靶探針序列之間。CMOS電路86中之LED驅動器29傳 送訊息使位於測試模組1 〇中之LED 2 6發光。這些探針僅於 當雜交發生時發螢光’從而免除移除未結合的股時經常需 要之清洗和乾燥步驟。雜交強制FRET探針186之莖與環結 構打開,其允許螢光團發射螢光能量以回應L E D激發光, 詳述於下》螢光由位於各雜交室180下之CMOS電路86中之 光二極體184所檢測(見以下之雜交室的敘述)。用於所 有雜交室之光二極體184以及相關的電子裝置共同形成光 感測器44 (見圖64 )。在其他實施例,光感測器可爲電荷 耦合裝置陣列(CCD陣列)。自光二極體184所檢測之訊 號被放大且轉換成可以由測試模組閱讀器1 2分析的數位輸 出。檢測方法進一步的細節係描述於下。 LOC裝置之其他詳細說明 模組化設計 LOC裝置301具有許多功能部,包括試劑貯槽54、56 、58、60及62、透析部70、溶胞部130、培養部114及擴增 部1 1 2、閥類型、增濕器及濕度感測器。於其他具體實施 例之LOC裝置中,可省略此等功能部,然可附加另外的功 能部或與上述裝置之用途不同的功能部。 例如,可使用培養部1 14作爲重複序列擴增分析系統 之第一擴增部112,且使用溶胞試劑貯槽56來加入引子、 -40- 201211240 dNTP及緩衝液的第一擴增混合,並且使用試劑貯槽58來添 加反轉錄酶及/或聚合酶。若樣本需進行化學溶胞,亦可 添加化學溶胞試劑(連同擴增混合)至貯槽5 6,或替代性 地’可藉由加熱樣本一段預定的時間以在培養部中發生熱 溶胞。在一些具體實施例中,若需要化學溶胞並使化學溶 胞試劑與此混合分離,可在用於引子、dNTP及緩衝液的混 合之貯槽58之毗連上游合倂另外的貯槽^ 於一些情況中,欲省略諸如培養步驟291之步驟。於 此情況中,可特別地製造LOC裝置以免去試劑貯槽58及培 養部H4或是貯槽可僅載有試劑,或存在主動閥時,其不 被啓動來分配試劑至樣本流中,及培養部單純成爲將樣本 自溶胞部130傳送至擴增部11 2之通道。加熱器係獨立地操 作,因此當反應仰賴熱時,諸如熱溶胞,令加熱器不於此 步驟期間啓動,確保熱溶胞不會發生在不需熱溶胞之LOC 裝置中。透析部70可位於微流體裝置內之流體系統的開端 ,如圖4中所示者,或可位於微流體裝置內之任何其他位 置》於一些情況中,例如,於擴增階段292之後,雜交及 檢測步驟294之前,進行透析以移除細胞碎片係有利者。 替代性地,可於LOC裝置上任何位置合倂二或多個透析部 。同樣地,可合倂另外的擴增部1 1 2以致能在雜交室陣列 U0中利用特定核酸探針進行檢測之前之多標靶的同時或 連續擴增。爲分析例如其中不需要進行透析之全血液的樣 本,簡單地於LOC設計之樣本輸入及製備部288省略透析 部70。於一些情況中,即便分析不需要進行透析,不必要 -41 - 201211240 於LOC裝置省略透析部70。若透析部的存在不會造成幾何 性阻礙,仍可使用於樣本輸入及製備部具有透析部70之 LOC而不會損失所需之功能。 此外,檢測部294可包括蛋白質體室陣列’其係與雜 交室陣列相同但載有設計成與存在於非擴增之樣本中之蛋 白質共軛或雜交之探針,而不是設計用來與標靶核酸序列 雜交之核酸探針。 將了解的是,爲用於此診斷系統而製造之L0C裝置係 不同於根據特別LOC應用而選擇的功能部之組合。絕大部 分之功能部對於許多LOC裝置而言爲普通’而針對新應用 之額外的LOC裝置之設計,有關於自現存LOC裝置中所使 用之大幅功能部選項中組構適當組合之功能部。 本說明中僅顯示少數LOC裝置,並顯示一些其他者以 閫述爲此系統所製造之LOC裝置的設計彈性。熟此技藝者 將可輕易地明白本文所示之LOC裝置並非窮舉’且許多另 外的LOC設計係關於組構適當功能部之組合。 樣本類型 LOC變體可接受及分析各種呈液體形式之樣本類型之 核酸或蛋白質內容,液體形式包括,但不限於’血液及血 液產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶血 、母乳、汗液、肋膜積液、淚液、心囊液、腹腔液、環境 水樣本及飲料樣本。亦可使用LOC裝置分析得自巨觀核酸 擴增之擴增子;於此情況中,所有試劑貯槽將爲空的或是 -42- 201211240 係配置成不釋出其內容物,並僅使用透析、溶胞、培養及 擴增部來將樣本從樣本入口 68傳送至供核酸檢測之雜交室 1 8 0,如上所述。 針對一些樣本類型,需要預處理步驟,例如於輸入至 LOC裝置中之前,可能需要使精液液化及可能需以酵素預 處理黏液以減低黏性。 樣本輸入 參照圖1及12,添加樣本至試驗模組10之大容器24。 大容器24爲截錐,其係藉毛細作用而饋入LOC裝置301之 入口 68。於此,其流至64μιη寬χ60μιη深之蓋通道94中並亦 藉由毛細作用而被吸引至抗凝劑貯槽54。 試劑貯槽 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小量試劑使得試劑貯槽含有生化處理之所有必須試劑 ,且各試劑貯槽爲小體積。此體積確實小於1,000,000,000 立方微米,於絕大多數的情況中係小於3 00,000,000立方微 米,普通小於70,〇〇〇,〇〇〇立方微米,及於圖式中顯示的 LOC裝置301的情況中係小於20,000,000立方微米。 透析部 參照圖15至21、33及34,病原體透析部70係經設計以 濃縮來自樣本之病原體標靶細胞。如前述者,頂部層66中 -43- 201211240 呈直徑爲3微米之孔口 164之複數個孔口,過濾來自大量樣 本之標靶細胞。當樣本流經直徑爲3微米之孔口 1 64,微生 物病原體通過孔而進入一系列透析MST通道204並經由 16μιη透析汲取孔168回流至標靶通道74中(見圖33及34 ) 。剩餘的樣本(紅血球等)滯留於蓋通道94中。於病原體 透析部70之下游,蓋通道94成爲通往廢料儲器76之廢料通 道72。針對產生相當廢物量之生物樣本類型,試驗模組10 之外殼13內之泡沫體(foam)插入物或其他多孔元件49係 配置成與廢料儲器76呈流體連通(見圖1)。 病原體透析部70係皆以流體樣本之毛細作用運作。位 於病原體透析部70上游端之直徑爲3微米之孔口 164具有毛 細作用起始特徵(CIF ) 166 (見圖33 ),以致流體被向下 拉至下方的透析MST通道204之中。用於標靶通道74之第 —汲取孔198亦具有CIF 2〇2 (見圖15 )以防止流體輕易地 固定彎液面於透析汲取孔1 6 8之上。 於圖7 9中槪要顯示之小組分透析部6 8 2可具有類似於 病原體透析部70之結構。藉由尺寸化(且成形,若必要) 適於允許小標靶細胞或分子通向標靶通道並繼續進一步分 析之孔口,小組分透析部分離來自樣本之任何小標靶細胞 或分子。大尺寸的細胞或分子被移除至廢料儲器7 66。因 此,LOC裝置30 (見圖1及109)並不受限於分離尺寸小於 3 μηι之病原體’而可用於分離任何所欲尺寸之細胞或分子 -44- 201211240 溶胞部 再次參照圖7、1 1及1 3,藉化學溶胞處理,樣本中之 遺傳物質自細胞釋出。如上述者,來自溶胞貯槽56之溶胞 試劑與用於溶胞貯槽56之表面張力閥128下游之標靶通道 74中流動的樣本混合。然而,一些診斷分析較佳使用熱溶 胞處理,或甚至是標靶細胞之化學及熱溶胞的組合。LOC 裝置3 0 1容納此及培養部1 1 4之加熱的微通道2 1 0。樣本流 塡充培養部114並停止於沸騰引動閥1〇6。培養微通道210 將樣本加熱至細胞膜破裂之溫度》 於一些熱溶胞應用中,化學溶胞部130中不需要酵素 反應,且熱溶胞全然取代化學溶胞部130中之酵素反應。 沸騰引動閥 如以上討論者,LOC裝置301具有,三個沸騰引動閥126 、106及108。於圖6中顯示這些閥的位置。圖31爲擴增部 112之加熱的微通道158側之獨立的沸騰引動閥108之放大 的平面圖。 藉由毛細作用,樣本流1 1 9沿加熱的微通道1 5 8被吸引 直至到達沸騰引動閥1〇8爲止。樣本流之前沿的彎液面120 固定於閥入口 146之彎液面固定器98。彎液面固定器98幾 何使彎液面停止前進而阻止毛細作用流。如圖3 1及3 2中所 示者,彎液面固定器98係藉由自MST通道90至蓋通道94之 上管道開口而設置之孔口上管道。彎液面120之表面張力 使閥保持閉合。環形加熱器1 52位於閥入口 146的周圍。環 -45- 201211240 形加熱器152經由沸騰引動閥加熱器接點153而受CMOS控 制。 爲打開閥,CMOS電路86發送電脈衝至閥加熱器接點 1 53。環形加熱器1 52電阻式地進行加熱直到液體樣本1 1 9 沸騰爲止。沸騰使彎液面120自閥入口 146脫除並開始濕潤 蓋通道94。一但開始濕潤蓋通道94,毛細作用恢復。流體 樣本119塡充蓋通道94且流經閥下管道150而至閥出口 148 ,其中毛細作用驅動之液體流沿擴增部出口通道160前進 至雜交及檢測部52之中。液體感測器174置於用於診斷的 閥之前及之後。 將能了解的是,一但沸騰引動閥被打開,則不可能再 關上。然而,因LOC裝置301及試驗模組10爲單一用途裝 置,不需要再關閉閥。 培養部及核酸擴增部 圖6、 7、 13、 14、 23、 24、 25、 35至 45、 50及51顯示 培養部114及擴增部112。培養部114具有單一的、加熱的 培養微通道210 ’其係經蝕刻而成爲自下管道開口 134至沸 騰引動閥106之MST通道層100中的蜿蜒圖案(見圖13及14 )。控制培養部1 1 4的溫度致能更有效的酵素性反應。同 樣地,擴增部1 12具有從沸騰引動閥1〇6通向沸騰引動閥 108之呈蜿蜒結構之加熱的擴增微通道158 (見圖6及14) 。於混合、培養及核酸擴增發生時’此等閥中止流動以將 標靶細胞保留於加熱的培養或擴增微通道210或158中。微 -46- 201211240 通道之蜿蜒圖案亦促進(在某種程度上)標靶細胞與試劑 混合》 於培養部1 1 4及擴增部1 1 2中,樣本細胞及試劑經由使 用脈衝寬度調變(PWM)之CMOS電路86所控制的加熱器 154而被加熱。加熱的培養微通道210及擴增微通道158之 蜿蜒結構之每一個曲折具有三個獨立地可操作加熱器154 (延伸於彼之個別加熱器接點1 5 6之間(見圖1 4 )),其 提供輸入熱通量密度之二維控制。如最佳顯示於圖51中者 ,加熱器154係支撐於頂部層66上並埋入下密封64中。加 熱器材料爲TiAl,但許多其他的傳導性金屬也適用。伸長 的加熱器154平行於形成蜿蜒狀的寬曲折之各通道部的縱 向長度。於擴增部1 1 2中,經由個別加熱器控制,可操作 各寬曲折以作爲獨立的PCR室。 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小體積的擴增子允許於擴增部1 1 2中擴增使用小體積 的擴增混合物。此體積大槪小於400奈升,於絕大多數情 況中小於170奈升,普通小於7〇奈升,及於LOC裝置301的 情況中,此體積係介於2奈升與3 0奈升之間。 加熱速率增加及較佳擴散混合 各通道部的小截面積增加擴增流體混合物的加熱速率 。所有流體與加熱器1 54保持相當短的距離。減少通道截 面積(即擴增微通道158截面)至小於100,000平方微米, 而較“大規模”設備具有顯著較高之加熱速率。微影製造技 -47- 201211240 術使得擴增微通道158具有橫越小於16,000平方微米之實 質上提供較高的加熱速率之截面。以微影製造技術輕易地 獲致1微米級尺寸特徵。若僅需要非常小量的擴增子(如 LOC裝置301中的情況),可使截面縮小至小於2,500平方 微米。針對以LOC裝置上之1,000至2,000個探針進行且於1 分鐘內之“樣本入,答案出”所需之診斷分析,橫越流體之 適當的截面積爲400平方微米及1平方微米之間。 擴增微通道158中之加熱器元件以每秒大於80絕對溫 度(K )之速率加熱核酸序列,於大多數的情況中爲每秒 大於100 K之速率。普通地,加熱器元件以每秒大於1000 K之速率加熱核酸序列,以及於許多情況中,加熱器元件 以每秒大於1 0000 K之速率加熱核酸序列。通常,基於分 析系統的需求,加熱器元件以每秒大於〗〇〇,〇〇〇 κ、每秒 大於1,000,000 K、每秒大於10,〇〇〇,〇〇〇 κ、每秒大於 20.000. 000 κ、每秒大於40,000,000 K、每秒大於 80.000. 000 K及每秒大於160,000,000 K之速率加熱核酸序 列。 小截面積通道亦有益於任何試劑與樣本流體之擴散性 混合。於擴散性混合完成之前,靠近兩液體間之界面處, 一種液體擴散至另—液體之擴散現象最顯著。現象發生密 度隨遠離界面距離而減少。使用具相當小截面積之橫越流 體方向之微通道’而保持兩流體靠界面流動以快速擴散混 合。縮小通道截面至小於1 00,0〇〇平方微米’獲致較“大規 模”設備具有顯著較高之擴散速率。微影製造技術使得微 -48- 201211240 通道具有橫越小於1 600 0平方微米之實質上提供較高的混 合速率之截面》若僅需要非常小量的擴增子(如LOC裝置 3 〇 1中的情況),可使截面縮小至小於2,5 0 0平方微米。針 對以LOC裝置上之1,〇〇〇至2,000個探針進行且於1分鐘內之 “樣本入’答案出”所需之診斷分析,橫越流體之適當的截 面積爲400平方微米及1平方微米之間。 短的熱循環時間 使樣本混合物保持接近加熱器且使用極小流體量,致 使核酸擴增法期間之快速熱循環。針對至高150鹼基對( bp )長之標靶序列,於30秒內完成各個熱循環(即,變性 、黏著及引子延伸)。在絕大多數之診斷分析中,個別熱 循環時間小於1 1秒,且大部分小於4秒。針對至高1 50鹼基 對(bp)長之標靶序列,用於一些最常見診斷分析之LOC 裝置30的熱循環時間爲0.45秒至1.5秒之間。此速度之熱循 環使得試驗模組能在遠少於分鐘之內完成核酸擴增程序 ;經常爲220秒之內。針對大多數分析,擴增部於80秒之 內由進入樣本入口的樣本流體產生充足的擴增子《針對大 部分的分析,於30秒內產生充足的擴增子。 於完成預定數目擴增循環時’經由沸騰引動閥1 08將 擴增子饋入雜交及檢測部5 2 ° 雜交室 圖52、53、54、56及57顯示雜交室陣列11〇中的雜交 -49- 201211240 室180。雜交及檢測部52具有雜交室180之24 χ 45陣列1 10 ,其各具有雜交-反應性FRET探針186、加熱器元件182及 整合的光二極體1 84。倂入光二極體1 84以檢測得自標靶核 酸序列或蛋白質與FRET探針186雜交之螢光。藉由CMOS 電路86獨立地控制各光二極體184。對發射的光而言, FRET探針186及光二極體184之間的任何物質必須爲透明 。因此,探針186及光二極體184之間的壁部97亦必須對發 射的光呈光學透明。於LOC裝置301中,壁部97爲二氧化 矽之薄層(約0.5微米)。 於各雜交室180之下直接地倂入光二極體184允許使用 極小體積之探針-標靶雜交,卻仍產生可檢測的螢光信號 (見圖54)。因爲小量而能使用小體積的雜交室。於雜交 之前,可檢測的探針-標靶雜交量所需之探針量大槪小於 270微微克(卩丨<:〇8”111)(對應至900,000立方微米),,於 大多數的情況中小於60微微克(對應至200,000立方微米 ),普通小於12微微克(對應至4〇,〇〇〇立方微米),並且 於附圖中所示之LOC裝置301的情況中爲小於2.7微微克( 對應至體積爲9,000立方微米之室)。當然,縮小雜交室 的尺寸容許較高的室密度及因此更多的LOC裝置上的探針 。於LOC裝置301中,於1,500微米乘uoo微米的面積內, 雜交部具有超過1,〇〇〇個室(即,每個室小於2,250平方微 米)。較小的體積亦減少反應時間,使得雜交及檢測更快 速。各個室需求之小量探針的另一優點爲,於LOC裝置製 造期間,僅需要配置極小量的探針溶液至各個室中。根據 -50- 201211240 本發明之LOC裝置之具體實施例可配置有1奈毫升或更少 之探針溶液。 於核酸擴增之後,沸騰引動閥1 08被啓動且擴增子沿 流路176流動並流進各雜交室180 (見圖52及56)。端點液 體感測器178指示雜交室180塡充有擴增子及可啓動加熱器 1 8 2之時點。 於充分雜交時間後,啓動LED 26 (見圖2 )。各雜交 室180中之開口設有光學窗136以將FRET探針186暴露於激 發輻射(見圖52、54及56) 。LED 26發光持續充分長的時 間以誘發自探針之高強度的螢光信號。於激發期間,光二 極體184短路(shorted )。經預編程延遲3 00 (見圖2 )之 後,於無激發光下,致能光二極體184及檢測螢光發射。 將光二極體184之主動區1 85上之入射光(見圖54 )轉換成 可使用CMOS電路8 6測量之光電流。 各雜交室1 80載有用於檢測單一標靶核酸序列之探針 。若希望,則各雜交室180可載有檢測超過1,〇〇〇種不同標 靶的探針。替代性地,許多或全部雜交室可載有重複地檢 測相同標靶核酸之相同探針。於雜交室陣列1 1 〇中以此方 式複製探針使得所得結果之可信度增加,以及若希望,可 藉由相鄰雜交室之光二極體來合倂所有結果以得到單一結 果。熟此技藝者將了解,依據分析明細,於雜交室陣列 110上可具有1至超過1,000種不同的探針。 增濕器及濕度感測器 -51 - 201211240 圖6的插入物AG指示增濕器196的位置。增濕器免於 LOC裝置3 0 1操作期間之試劑及探針的蒸發。如最佳顯示 於圖55之放大圖中者,水貯槽188係流體地連接至三個蒸 發器190。水貯槽188塡充有分子生物等級用水且於製造期 間爲密封的。如最佳顯示於圖55及67中者,藉由毛細作用 ,水被抽拉至三個下管道194且沿著個別水供應通道192而 到達蒸發器190之三個上管道193組。彎液面固定於各個上 管道193以保持水。蒸發器具有環形加熱器191,其環繞上 管道193。藉由導熱柱376,環形加熱器191係連接至CMOS 電路86而至頂金屬層195(見圖37)。於啓動時,環形加 熱器1 9 1加熱水而致使水蒸發並濕潤周圍的裝置。 於圖6中亦顯示濕度感測器23 2的位置。然而,最佳如 顯示於圖63中之插入物AH的放大圖者,濕度感測器具有 電容式梳狀結構。經微影地蝕刻之第一電極296及與經微 影地蝕刻之第二電極298彼此相對,使得彼等之齒交插。 相對的電極形成電容器,其具有可藉由CMOS電路86來監 測之電容。隨濕度增加,電極間之空氣隙的介電常數增加 ,致使電容亦增加。濕度感測器23 2鄰接雜交室陣列1 1 〇 ( 最主要之濕度測量位置),以減緩含有暴露的探針之溶液 蒸發。 反饋感測器 溫度及液體感測器係倂入LOC裝置3 0 1整體以於裝置 操作期間提供反饋及診斷。參照圖3 5,將九個溫度感測器 -52- 201211240 170分配至擴增部112之全部。同樣地,培養部114亦具有 九個溫度感測器1 70。這些感測器各使用2x2陣列之雙極接 面電晶體(BJT)以監測流體溫度及提供反饋至CMOS電路 86。CMOS電路86利用此以準確地控制核酸擴增期間的熱 循環以及熱溶胞及培養期間之任何加熱。 於雜交室180中,CMOS電路86使用雜交加熱器182作 爲溫度感測器(見圖56 )»雜交加熱器182之電阻係溫度 相依,且CMOS電路86利用此以驅動各雜交室180之溫度讀 取。 LOC裝置301亦具有一些MST通道液體感測器174及蓋 通道液體感測器208。圖35顯示於經加熱的微通道158中之 每間隔曲折之一端的M S T通道液體感測器1 7 4之線。最佳 如顯示於圖37中者,MST通道液體感測器174爲藉由CMOS 結構86中之頂金屬層195之暴露的區域所形成之一對電極 。液體封閉電極間的電流以指示其存在於感測器的位置。 圖25顯示蓋通道液體感測器208之放大透視圖。相對 的TiAl電極對218及220係沉積於頂部層66上。電極218及 220之間爲間隙222,以於缺少液體的情況中保持電路爲開 路》液體存在時使電路閉合及CMOS電路86利用此反饋以 監測流動。 重力自主(GRAVITATIONAL INDEPENDENCE) 試驗模組10.爲方向自主。其不需被緊固至平穩表面而 操作。因毛細作用驅動之流體流以及缺少至輔助設備之外 -53- 201211240 部管路,使得模組確實爲可攜式並可簡易地插入至類似的 可攜式手持閱讀器,諸如行動電話。重力自主操作代表試 驗模組亦加速度性地獨立於所有實用範圍。其耐衝擊及振 動並能於移動的載具上或是於攜帶的行動電話上操作》 透析變體 具有通道以避免捕集的氣泡之透析部 下述爲參照圖72、73、74及75所示之LOC變體VIII 5 18之LOC裝置之具體實施例。此LOC裝置具有以流體樣本 塡充且無氣泡被捕集於通道中之透析部。LOC變體VIII 518亦具有另外的材料層,參照界面層5 94。界面層5 94係 設置於蓋通道層80與CMOS + MST裝置48之MST通道層100 之間。界面層594致使試劑貯槽與MST層87之間更複雜的 流體互連而不會增加矽基板84的尺寸。 參照圖73,設計旁路通道600以於自界面廢料通道604 至界面標靶通道602之流體樣本中引入時間延遲。此時間 延遲使得流體樣本流經透析MST通道204而至固定彎液面 之透析汲取168。利用於上管道處之旁路通道600至界面標 靶通道602之毛細作用起始特徵(C IF) 2 02,自透析MST 通道204之所有透析汲取168之上游之點,樣本流體塡充界 面標靶通道602。 不需旁路通道600,界面標靶通道602仍開始自上游端 進行塡充,但最終,行進的彎液面到達並通過尙未被塡充 之MST通道之上管道,通向於該點捕獲的空氣。捕集的空 -54- 201211240 氣降低通過白血球透析部3 2 8之樣本流率。 預-雜交過濾 LOC裝置之變體,LOC變體XII 758,使用位於擴增部 112的出口之小組分透析部682 (見圖93至100 )。小組分 透析部68 2提供預-雜交過濾純化階段293 (見圖93 )。預-雜交過濾移除細胞溶胞後殘留於樣本流中之細胞碎片。雜 交效率可受到細胞碎片的影響,因此於雜交前降低細胞碎 片的濃度係有利的。 參照圖98、99及100,小組分透析部682具有位於底通 道層100中之三個相鄰通道;兩個小組分通道762毗鄰大組 分通道760兩側。沿著大組分通道760之呈倒錐形開口 764 之一系列小孔提供與小組分通道7 6 2之流體連結。於大多 數實際應用中,小孔爲1至8微米寬且1至8微米高。當樣本 向下流至大組分通道760時,足夠小而得以通過倒錐形開 口的粒子(如,擴增子)流過小組分通道7 6 2,而較大的 粒子(如,細胞碎片)留置於最終結束於盲終端766之大 組分通道。較小的粒子沿著小組分通道繼續流至雜交室陣 列1 1 0之相對側,兩較小的粒子流均沿通過陣列之蜿蜒路 徑而到達分別的盲終端7 6 8 (見圖1 〇 〇 )。於檢測前,小組 分擴增子塡充所有獨立的雜交室18〇。Molecular Genetics 2, Garland Science, NY and London, 1999)) • Storage tank 60: amplification mixture (deoxyribonucleoside triphosphate (dNTP), primer, buffer), and • sump 62: DNA polymerase. Cover 46 and CMOS+MST layer 48 are in fluid communication via respective openings in lower seal 64 and top layer 66. The upper conduit 96 and the lower conduit 92 are representative of whether the fluid flows from the MST passage 90 to the cover passage 94 or vice versa. LOC Device Operation The operation of LOC device 301 is described step by step with reference to the analytical pathogenic DN A in the blood sample. Of course, other organisms -34- 201211240 or non-biological fluid species are also analyzed using a suitable kit or combination of reagents, test protocols, LOC variants, and detection systems. Referring to Figure 4, the analysis of a biological sample involves five major steps, including: sample input and preparation 288, nucleic acid extraction 290, nucleic acid culture 291, nucleic acid amplification 292, and detection and analysis 294 〇 sample input and preparation steps 2 8 8 mixed blood The pathogen is separated from the white blood cells and red blood cells by the anticoagulant 1 16 and then by the pathogen dialysis unit 70. As best shown in Figures 7 and 12, the blood sample enters the device via sample inlet 68. Capillary action draws the blood sample along the lid channel 94 to the sump 54. When the sample blood stream opens its surface tension valve 118, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). Anticoagulants prevent the formation of blood clots that can block flow. As best shown in Figure 22, the anticoagulant 116 is withdrawn from the reservoir 54 by capillary action and enters the MST channel 90 via the lower conduit 92. The lower duct 92 has a capillary action initiation feature (CIF) 102 to form a meniscus geometry that is not fixed to the edge of the lower duct 92. When the anticoagulant 116 is withdrawn from the sump 54, the vent 122 in the upper seal 82 allows air to replace the anticoagulant 1 16 . The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 is filled with a surface tension valve 118 and secured to the meniscus 120 of the upper conduit 96 to the meniscus holder 98. Prior to use, the meniscus 120 remains fixed to the upper conduit 96 such that the anticoagulant does not flow into the lid passage 94. As the blood flows through the lid channel 94 to the upper tube 96, the meniscus 120 is removed and the anticoagulant is drawn into the fluid. -35- 201211240 Figures 15 through 21 show the insert AE which is part of the insert AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three separate MST passages 90 extending between the individual lower conduits 92 and the upper conduits 96. These MST channels 90 in the surface tension valve can be varied to vary the flow rate of the reagent entering the sample mixture. When the sample mixture and reagents are mixed by diffusion, the flow rate away from the sump determines the concentration of the reagent in the sample stream. Therefore, the surface tension valve of each sump is configured to meet the desired reagent concentration. Blood is passed to the pathogen dialysis section 70 (see Figures 4 and 15), wherein the target cells are concentrated from the sample using an array of orifices 1 64 sized according to a predetermined valve. Cells smaller than the valve stomata pass through the orifice, while large cells cannot pass through the orifice. As the target cells continue to be part of the analysis, the undesired cells are reintroduced into the waste unit 76. Undesired cells are large cells that are blocked by an array of orifices 164 or small cells that pass through the orifice. In the pathogen dialysis section 70 described herein, the pathogen from the whole blood sample is concentrated for microbial DNA analysis. The array of orifices is formed by fluidly communicating the input in the lid passage 94 to a plurality of 3 micron diameter orifices 1 64 of the target passage 74. The 3 micron diameter orifice 1 64 and the dialysis extraction orifice 168 for the target channel 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21). The pathogen is small enough to pass through the dialysis MS T channel 204 through the 3 micron diameter orifice 164 and to fill the target channel 74. Cells larger than 3 microns, such as red blood cells and white blood cells, remain in the waste channel 72 of the lid 46, which leads to the waste reservoir 76 (see Figure 7). Other orifice shapes, sizes, and aspect ratios can be used to isolate specific pathogens -36 - 201211240 or other target cells, such as white blood cells for human DNA analysis. More detailed details of the dialysis section and dialysis variants are provided later. Referring again to Figures 6 and 7, fluid is drawn through target channel 74 to surface tension valve 128 in lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed from the sample stream, the flow rate of all seven MS T channels 90 will be greater than the flow rate of the anticoagulant reservoir 54, which has three MS T channels 90 (assuming physical properties of the fluid) To be roughly equal). Thus the proportion of lytic reagent in the sample mixture is greater than the ratio of anticoagulant. The lysis reagent and the target cells are mixed by diffusion in the target channel 74 in the chemical lysis unit 130. Boiling the pilot valve 126 stops the flow until diffusion and lysis are performed for a sufficient time to release the genetic material from the target cells (see Figures 6 and 7). Referring to Figures 31 and 32, the construction and operation of the boiling pilot valve will be described in detail below. Other active valve types (as opposed to passive valves, such as surface tension valve 1 18) have also been developed by the applicant, which can be used in place of the boiling pilot valve. These alternative valve designs are also described below. When the boiling pilot valve 1 2 6 is turned on, the lysed cells flow into the mixing portion 13 1 to pre-amplify restriction digestion and linker ligation. Referring to Figure 13, when the fluid removes the meniscus on the surface tension valve 132 at the beginning of the mixing portion 131, the restriction enzyme, linker and ligase are released from the reservoir 58. For diffusion mixing, the mixture flows through the length of the mixing portion 131. At the end of the mixing portion 131 is a lower duct 134 (see Fig. 13) leading to the incubator inlet passage -37 - 201211240 133 of the culture portion 114. The incubator inlet channel 133 feeds the mixture into the heated microchannel 2 10 '蜿蜒 structure' which provides a culture chamber for retaining the sample during restriction enzyme cleavage and junction ligation (see Figures 13 and 14). Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 within the insert AB of Figure 6. The figures show successive layers forming a layer of CMOS + MST layer 48 and cover 46 structure. The insert AB shows the end of the culture portion 1 14 and the start of the amplification portion 1 12 . As best shown in Figures 14 and 23, the fluid fills the microchannel 2 1 0 of the culture section 1 1 4 until it reaches the boiling pilot valve 106, where the fluid stops when diffusion occurs. As discussed above, the microchannel 210 upstream of the boiling pilot valve 106 becomes a culture chamber containing samples, restriction enzymes, binding enzymes, and linkers. The heater 1 54 is then activated and maintained at a steady temperature to cause the restriction enzyme shear and junction bonding to occur for a specific period of time. Those skilled in the art will appreciate that this incubation step 291 (see Figure 4) is arbitrary and is only required for some types of nucleic acid amplification assays. Again, in some instances, it may be desirable to have a heating step at the end of the incubation period to increase the temperature above the culture temperature. The temperature is increased to inactivate the limiting enzyme and the ligase before entering the amplification section 112. Limiting the inactivation of enzymes and ligases has a specific effect when amplified with isothermal acid. After the incubation, the boiling pilot valve 106 is activated (opened) and the fluid is again introduced into the amplifying portion 1 1 2 . Referring to Figures 31 and 3 2 ', the mixture is filled with the microchannel 1 5 8 structure until it reaches the boiling pilot valve 108, which forms one or more amplification chambers. As best shown in the cross-sectional view of Figure 30, the amplification mixture (dNTP 'primer, buffer) is released from the storage tank 60 and the polymerase is then released from the -38-201211240 storage tank 62 into the junction culture section and the amplification section (respectively Intermediate MST channel 212 of 11 4 and 112). Figures 35 through 51 show the layers of the LOC device 301 in the insert AC of Figure 6. The figures show successive layers of layers forming the CMOS + MST device 48 and cover 46 structures. The insert AC shows the end of the amplification section 112 and the initiation of the hybridization and detection section 52. The cultured sample, amplification mixture, and polymerase flow through microchannel 158 to boiling pilot valve 108. After diffusion mixing for a sufficient time, the heaters 15 in the microchannels 158 are activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification procedure, the boiling pilot valve 108 is opened and the fluid re-enters the hybridization and detection portion 52. The operation of the boiling pilot valve is described in more detail below. As shown in Fig. 52, the hybridization and detection section 52 has an array 1 10 of hybridization chambers. Figures 5, 5, 3, 5 and 5 show the hybridization chamber array 1 1 〇 and individual hybrid chambers 180 in detail. The entrance to hybridization chamber 180 is a diffusion barrier 175 that prevents the target nucleic acid, probe strands, and hybridization probes from diffusing between hybridization chambers 108 during hybridization to prevent erroneous hybridization assay results. The flow path of the diffusion barrier 175 is long enough to prevent the target sequence and probe from diffusing out of one chamber and contaminating the other during the time the probe and nucleic acid hybridize and detect the signal, thus avoiding erroneous results. Another mechanism to prevent erroneous reading is to have the same probe in some hybridization chambers. The CMOS circuit 86 derives a single-result from the photodiode 184 corresponding to the hybridization chamber 180 containing the same probe. The exported orders—the results of the exceptions in the results can be ignored or given different weights. -39- 201211240 The thermal energy required for hybridization is provided by a CMOS controlled heater 1 82 (described in more detail below). Hybridization occurs between the complementary target probe sequences after the heater is activated. The LED driver 29 in the CMOS circuit 86 transmits a message to cause the LEDs 26 located in the test module 1 to emit light. These probes only fluoresce when the hybridization occurs, thereby eliminating the cleaning and drying steps that are often required to remove unbound strands. The stem and loop structure of the hybrid forced FRET probe 186 is opened, which allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as detailed below, by the photodiode in the CMOS circuit 86 located below each hybrid chamber 180. Detected by body 184 (see the description of the hybridization chamber below). Photodiodes 184 and associated electronics for all hybrid chambers together form photosensor 44 (see Figure 64). In other embodiments, the photosensor can be a charge coupled device array (CCD array). The signal detected by the photodiode 184 is amplified and converted to a digital output that can be analyzed by the test module reader 12. Further details of the detection method are described below. Other Detailed Description of the LOC Device The modular design LOC device 301 has a number of functional components including reagent reservoirs 54, 56, 58, 60 and 62, dialysis section 70, lysis section 130, culture section 114, and amplification section 1 1 2 , valve type, humidifier and humidity sensor. In the LOC device of other specific embodiments, these functional portions may be omitted, but another functional portion or a functional portion different from the use of the above-described device may be added. For example, the culture portion 1 14 can be used as the first amplification portion 112 of the repetitive sequence amplification analysis system, and the lysis reagent reservoir 56 can be used to add the first amplification mixture of the primer, -40-201211240 dNTP, and buffer, and A reagent reservoir 58 is used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, a chemical lysis reagent (along with amplification mix) may be added to the sump 5 6 or alternatively 'heat lysing may occur in the culture section by heating the sample for a predetermined period of time. In some embodiments, if chemical lysis is required and the chemical lysis reagent is mixed with the mixture, additional sump can be combined upstream of the sump 58 for mixing the primer, dNTP, and buffer. In the above, the steps such as the cultivation step 291 are omitted. In this case, the LOC device can be specially manufactured to avoid the reagent storage tank 58 and the culture portion H4 or the storage tank can carry only the reagent, or when there is an active valve, it is not activated to dispense the reagent into the sample flow, and the culture portion It is simply a channel for transferring the sample from the lysis unit 130 to the amplification unit 11 2 . The heaters operate independently, so when the reaction relies on heat, such as hot lysis, the heater is not activated during this step, ensuring that hot lysis does not occur in LOC devices that do not require hot lysis. The dialysis section 70 can be located at the beginning of the fluid system within the microfluidic device, as shown in Figure 4, or can be located at any other location within the microfluidic device. In some cases, for example, after the amplification phase 292, hybridization Prior to detection step 294, dialysis is performed to remove cell debris. Alternatively, two or more dialysis sections can be combined at any location on the LOC device. Similarly, additional amplifications 1 1 2 can be combined to enable simultaneous or sequential amplification of multiple targets prior to detection using specific nucleic acid probes in hybridization array U0. To analyze, for example, a sample of whole blood in which dialysis is not required, the dialysis portion 70 is simply omitted from the sample input and preparation portion 288 of the LOC design. In some cases, even if the analysis does not require dialysis, it is not necessary to omit the dialysis section 70 from the LOC device. If the presence of the dialysis section does not cause geometrical obstruction, the sample input and preparation section can still have the LOC of the dialysis section 70 without losing the desired function. In addition, the detection portion 294 can include a protein body array array that is identical to the hybrid chamber array but carries a probe that is designed to conjugate or hybridize to a protein present in the non-amplified sample, rather than being designed to A nucleic acid probe that hybridizes to a target nucleic acid sequence. It will be appreciated that the LOC devices manufactured for use with this diagnostic system are different from the combinations of functional components selected for the particular LOC application. The vast majority of functional units are common to many LOC devices and the design of additional LOC devices for new applications has functional components that are appropriately combined in the configuration of the large functional units used in existing LOC devices. Only a few LOC devices are shown in this description, and some others are shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown herein are not exhaustive' and that many other LOC designs are associated with a combination of suitable functional components. Sample type LOC variants accept and analyze a variety of nucleic acid or protein contents in a liquid form, including but not limited to 'blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord Blood, breast milk, sweat, pleural effusion, tears, pericardial fluid, peritoneal fluid, environmental water samples and beverage samples. Amplicon derived from meganucleic acid amplification can also be analyzed using a LOC device; in this case, all reagent reservoirs will be empty or -42-201211240 can be configured to not release its contents and use only dialysis The lysis, culture and amplification sections are used to transfer the sample from the sample inlet 68 to the hybridization chamber for nucleic acid detection 180, as described above. For some sample types, a pre-treatment step is required, for example, prior to input into the LOC device, it may be necessary to liquefy the semen and possibly pre-treat the mucus with enzyme to reduce stickiness. Sample Input Referring to Figures 1 and 12, a sample is added to the large container 24 of the test module 10. The large container 24 is a truncated cone that is fed into the inlet 68 of the LOC unit 301 by capillary action. Here, it flows into the 64 μm wide 60 μm deep cover channel 94 and is also attracted to the anti-coagulant storage tank 54 by capillary action. Reagent Tanks A microfluidic device, such as LOC unit 301, is used to analyze the system with a small amount of reagent that allows the reagent reservoir to contain all of the necessary reagents for biochemical treatment, and each reagent reservoir is in a small volume. This volume is indeed less than 1,000,000,000 cubic microns, in most cases less than 3,000,000,000,000 cubic microns, typically less than 70, 〇〇〇, 〇〇〇 cubic microns, and in the case of the LOC device 301 shown in the figures. The medium system is less than 20,000,000 cubic microns. Dialysis Section Referring to Figures 15 through 21, 33 and 34, the pathogen dialysis section 70 is designed to concentrate the pathogen target cells from the sample. As previously described, -43-201211240 in the top layer 66 is a plurality of orifices of orifices 164 having a diameter of 3 microns, filtering target cells from a large number of samples. As the sample flows through a 3 micron diameter orifice 1 64, the microbial pathogen passes through the well into a series of dialysis MST channels 204 and is returned to the target channel 74 via a 16 μιη dialysis extraction well 168 (see Figures 33 and 34). The remaining sample (red blood cells, etc.) is retained in the cover channel 94. Downstream of the pathogen dialysis section 70, the cover channel 94 becomes a waste channel 72 to the waste reservoir 76. Foam inserts or other porous elements 49 in the outer casing 13 of the test module 10 are configured to be in fluid communication with the waste reservoir 76 (see Figure 1) for a biological sample type that produces a substantial amount of waste. The pathogen dialysis unit 70 operates with the capillary action of the fluid sample. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis section 70 has a capillary action initiation feature (CIF) 166 (see Figure 33) such that fluid is drawn down into the underlying dialysis MST channel 204. The first extraction aperture 198 for the target channel 74 also has a CIF 2〇2 (see Figure 15) to prevent fluid from easily securing the meniscus above the dialysis extraction aperture 168. The small component dialysis section 682 shown in Fig. 79 may have a structure similar to that of the pathogen dialysis section 70. The small component dialysis section separates any small target cells or molecules from the sample by size (and shaping, if necessary) suitable for the orifices that allow the small target cells or molecules to pass to the target channel and continue to be further analyzed. Large size cells or molecules are removed to the waste reservoir 7 66. Therefore, the LOC device 30 (see FIGS. 1 and 109) is not limited to the isolation of pathogens having a size of less than 3 μηι, and can be used to separate cells or molecules of any desired size. 44-201211240 Lysis Department Referring again to Figures 7, 1 1 and 1 3, by chemical lysis, the genetic material in the sample is released from the cell. As described above, the lysing reagent from the lysis tank 56 is mixed with the sample flowing in the target channel 74 downstream of the surface tension valve 128 of the lysis tank 56. However, some diagnostic assays preferably use hot lysis treatment, or even a combination of chemical and thermal lysis of target cells. The LOC device 301 accommodates the heated microchannel 2 1 0 of the culture portion 1 1 4 . The sample stream is swelled to the culture portion 114 and stopped at the boiling pilot valve 1〇6. The culture microchannel 210 heats the sample to the temperature at which the cell membrane ruptures. In some hot lysis applications, the enzyme reaction is not required in the chemical lysis unit 130, and the hot lysis completely replaces the enzyme reaction in the chemical lysis unit 130. Boiling Pilot Valve As discussed above, the LOC device 301 has three boiling pilot valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independent boiling pilot valve 108 on the heated microchannel 158 side of the amplifying portion 112. By capillary action, the sample stream 1 1 9 is attracted along the heated microchannel 1 58 until it reaches the boiling pilot valve 1〇8. The meniscus 120 at the leading edge of the sample stream is secured to the meniscus holder 98 of the valve inlet 146. The meniscus holder 98 causes the meniscus to stop moving forward to prevent capillary flow. As shown in Figures 31 and 3, the meniscus holder 98 is a conduit on the orifice provided by the upper opening of the pipe from the MST passage 90 to the cover passage 94. The surface tension of the meniscus 120 keeps the valve closed. A ring heater 1 52 is located around the valve inlet 146. Ring-45-201211240 shaped heater 152 is CMOS controlled by boiling the valve heater contact 153. To open the valve, CMOS circuit 86 sends an electrical pulse to valve heater contact 1 53. The ring heater 1 52 is resistively heated until the liquid sample 1 19 is boiled. Boiling removes meniscus 120 from valve inlet 146 and begins to wet cover passage 94. Once the wet cover channel 94 is started, the capillary action is restored. The fluid sample 119 is filled with the passage 94 and flows through the sub-valve conduit 150 to the valve outlet 148, wherein the capillary-driven liquid flow advances along the expansion outlet passage 160 into the hybridization and detection portion 52. The liquid sensor 174 is placed before and after the valve for diagnosis. It will be appreciated that once the boiling pilot valve is opened, it is impossible to close it again. However, since the LOC device 301 and the test module 10 are single-purpose devices, it is not necessary to close the valve. Culture section and nucleic acid amplification section The culture section 114 and the amplification section 112 are shown in Figs. 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51. The culture portion 114 has a single, heated culture microchannel 210' which is etched to form a serpentine pattern in the MST channel layer 100 from the lower conduit opening 134 to the boiling pilot valve 106 (see Figures 13 and 14). Controlling the temperature of the culture portion 1 14 enables a more efficient enzyme reaction. Similarly, the amplifying portion 1 12 has a heating microchannel 158 (see Figs. 6 and 14) which is heated from the boiling pilot valve 1〇6 to the boiling pilot valve 108. The valves stop flow to retain the target cells in the heated culture or amplification microchannels 210 or 158 during mixing, culture, and nucleic acid amplification. Micro-46- 201211240 The channel pattern also promotes (to some extent) the mixing of target cells and reagents. In the culture unit 1 1 4 and the amplification unit 1 1 2, the sample cells and reagents are adjusted by using pulse width. The heater 154 controlled by the CMOS circuit 86 of the variable (PWM) is heated. Each of the meandering structures of the heated culture microchannel 210 and the amplification microchannel 158 has three independently operable heaters 154 (extending between the individual heater contacts 1 5 6 (see Figure 1 4). )), which provides two-dimensional control of the input heat flux density. As best shown in FIG. 51, heater 154 is supported on top layer 66 and buried in lower seal 64. The heater material is TiAl, but many other conductive metals are also suitable. The elongated heater 154 is parallel to the longitudinal length of each of the channel portions forming the meandering meandering. In the amplification unit 1 1 2, each of the wide meanders can be operated as an independent PCR chamber via individual heater control. The use of a microfluidic device, such as the LOC device 301, requires a small volume of amplicons required by the analysis system to allow for the amplification of a small volume of amplification mixture in the amplification portion 1 1 2 . This volume is less than 400 nanoliters, in most cases less than 170 nanoliters, typically less than 7 nanoliters, and in the case of LOC device 301, this volume is between 2 nanoliters and 30 nanoliters. between. Increased heating rate and better diffusion mixing The small cross-sectional area of each channel portion increases the heating rate of the amplification fluid mixture. All fluids are kept at a relatively short distance from the heater 1 54. The channel cross-sectional area (i.e., the cross section of the augmented microchannel 158) is reduced to less than 100,000 square microns, while the "high scale" equipment has a significantly higher heating rate. The lithography fabrication technique - 47 - 201211240 allows the amplification microchannel 158 to have a cross section that provides a higher heating rate across substantially less than 16,000 square microns. The 1 micron size feature is easily achieved with lithography manufacturing techniques. If only a very small amount of amplicons are required (as is the case in LOC unit 301), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1,000 to 2,000 probes on a LOC device and "sample in, answer out" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and 1 square micron. between. The heater element in the amplification microchannel 158 heats the nucleic acid sequence at a rate greater than 80 absolute temperatures (K) per second, in most cases at a rate greater than 100 K per second. Typically, the heater element heats the nucleic acid sequence at a rate greater than 1000 K per second, and in many cases, the heater element heats the nucleic acid sequence at a rate greater than 1 0000 K per second. Typically, based on the requirements of the analysis system, the heater elements are greater than 〇〇, 〇〇〇 κ, greater than 1,000,000 K per second, greater than 10 per second, 〇〇〇, 〇〇〇 κ, greater than 20.000 per second, per second. . 000 κ, greater than 40,000,000 K per second, greater than 80.000. 000 K per second, and a nucleic acid sequence at a rate greater than 160,000,000 K per second. A small cross-sectional area channel is also beneficial for the diffusive mixing of any reagent with the sample fluid. Before the diffusion mixing is completed, near the interface between the two liquids, the diffusion of one liquid to the other is most pronounced. The density of the phenomenon decreases with distance from the interface. The microfluids ‘crossing the direction of the fluid with a relatively small cross-sectional area' are used to keep the two fluids flowing through the interface for rapid diffusion mixing. Reducing the channel cross-section to less than 100,0 〇〇 square micron' results in a significantly higher diffusion rate than "large-scale" devices. The lithography manufacturing technique allows the micro-48-201211240 channel to have a cross-section that provides a higher mixing rate across less than 1600 square microns. If only a very small amount of amplicons are required (eg LOC device 3 〇1) In the case of ), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis performed on a LOC device with 1 to 2,000 probes and a "sample into 'answer" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and 1 Between square microns. The short thermal cycle time keeps the sample mixture close to the heater and uses a very small amount of fluid, resulting in rapid thermal cycling during the nucleic acid amplification process. Each thermal cycle (i.e., denaturation, adhesion, and primer extension) was completed in 30 seconds for a target sequence of up to 150 base pairs (bp) long. In most diagnostic analyses, individual thermal cycle times are less than 11 seconds and most are less than 4 seconds. For a target sequence of up to 1 50 base pairs (bp) long, the thermal cycle time of the LOC device 30 for some of the most common diagnostic assays is between 0.45 seconds and 1.5 seconds. This speed of thermal cycling allows the test module to complete the nucleic acid amplification procedure in less than a minute; often within 220 seconds. For most analyses, the amplification section produces sufficient amplicons from the sample fluid entering the sample inlet within 80 seconds. For most analyses, sufficient amplicons are generated within 30 seconds. When the predetermined number of amplification cycles is completed, 'the amplicon is fed into the hybridization and detection section via the boiling priming valve 108. 2 2 Hybridization chambers. Figures 52, 53, 54, 56 and 57 show hybridization in the hybridization chamber array 11〇- 49- 201211240 Room 180. The hybridization and detection unit 52 has a 24 χ 45 array 1 10 of hybridization chambers 180 each having a hybrid-reactive FRET probe 186, a heater element 182, and an integrated photodiode 184. Photodiode 184 is incorporated to detect fluorescence from a target nucleic acid sequence or protein that hybridizes to FRET probe 186. Each of the photodiodes 184 is independently controlled by the CMOS circuit 86. For the emitted light, any material between the FRET probe 186 and the photodiode 184 must be transparent. Therefore, the wall portion 97 between the probe 186 and the photodiode 184 must also be optically transparent to the emitted light. In LOC device 301, wall portion 97 is a thin layer of hafnium oxide (about 0.5 microns). Direct intrusion of photodiode 184 beneath each hybridization chamber 180 allows the use of a very small volume of probe-target hybridization while still producing a detectable fluorescent signal (see Figure 54). A small volume of hybridization chamber can be used because of the small amount. Prior to hybridization, the amount of probe required for detectable probe-target hybridization is greater than 270 pg (卩丨<:〇8"111) (corresponding to 900,000 cubic microns), for most In the case less than 60 picograms (corresponding to 200,000 cubic micrometers), typically less than 12 picograms (corresponding to 4 inches, 〇〇〇 cubic micrometers), and in the case of the LOC device 301 shown in the figures, less than 2.7 pico Grams (corresponding to a chamber with a volume of 9,000 cubic microns). Of course, reducing the size of the hybridization chamber allows for higher chamber densities and therefore more probes on the LOC device. In the LOC device 301, at 1,500 micron. Within the uoo micron area, the hybrid has more than one chamber (ie, less than 2,250 square microns per chamber). The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the needle is that during the manufacture of the LOC device, only a very small amount of probe solution needs to be dispensed into each chamber. According to the specific embodiment of the LOC device of the invention according to -50 to 201211240, 1 nanoliter or less can be configured. Probe solution After nucleic acid amplification, the boiling priming valve 108 is activated and the amplicon flows along the flow path 176 and flows into each of the hybridization chambers 180 (see Figures 52 and 56). The endpoint liquid sensor 178 indicates that the hybridization chamber 180 is charged. The amplicon and the starter heater are 182. After sufficient hybridization time, the LED 26 is activated (see Figure 2). The opening in each hybridization chamber 180 is provided with an optical window 136 to expose the FRET probe 186 to Excitation radiation (see Figures 52, 54 and 56). LED 26 emits light for a sufficient period of time to induce a high intensity fluorescent signal from the probe. During excitation, photodiode 184 is shorted. Preprogrammed delay After 3 00 (see Fig. 2), the photodiode 184 is enabled and the fluorescent emission is detected under no excitation light. The incident light on the active region 1 85 of the photodiode 184 (see Fig. 54) is converted into usable. The photocurrent measured by the CMOS circuit 86. Each hybridization chamber 180 carries a probe for detecting a single target nucleic acid sequence. If desired, each hybridization chamber 180 can carry a detection of more than one, different targets. Probe. Alternatively, many or all of the hybridization chambers may be loaded with repeated detection of the same standard The same probe of the nucleic acid. The probe is replicated in this manner in the array of hybridization chambers in such a way that the confidence of the results obtained is increased, and if desired, all results can be combined by photodiodes of adjacent hybridization chambers. A single result is obtained. Those skilled in the art will appreciate that there may be from 1 to over 1,000 different probes on the hybrid chamber array 110 depending on the analysis details. Humidifier and Humidity Sensor - 51 - 201211240 The insert AG indicates the position of the humidifier 196. The humidifier is free of evaporation of reagents and probes during operation of the LOC device 310. As best shown in the enlarged view of Fig. 55, the water sump 188 is fluidly coupled to the three evaporators 190. The water storage tank 188 is filled with molecular biological grade water and is sealed during manufacture. As best shown in Figures 55 and 67, by capillary action, water is drawn to the three lower conduits 194 and along the individual water supply passages 192 to the three upper conduits 193 of the evaporator 190. The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has a ring heater 191 which surrounds the upper pipe 193. With a thermally conductive post 376, a ring heater 191 is coupled to the CMOS circuit 86 to the top metal layer 195 (see Figure 37). At start-up, the annular heater 191 heats the water causing the water to evaporate and wet the surrounding equipment. The position of the humidity sensor 23 2 is also shown in FIG. However, preferably, as shown in the enlarged view of the insert AH shown in Fig. 63, the humidity sensor has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The opposing electrodes form a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, causing the capacitance to increase. Humidity sensor 23 2 abuts the hybridization chamber array 1 1 〇 (the most important humidity measurement location) to slow the evaporation of the solution containing the exposed probe. Feedback Sensor The temperature and liquid sensor system is integrated into the LOC unit 3 0 1 to provide feedback and diagnostics during device operation. Referring to Fig. 35, nine temperature sensors - 52 - 201211240 170 are assigned to all of the amplification section 112. Similarly, the culture unit 114 also has nine temperature sensors 170. These sensors each use a 2x2 array of bipolar junction transistors (BJT) to monitor fluid temperature and provide feedback to CMOS circuitry 86. The CMOS circuit 86 utilizes this to accurately control thermal cycling during nucleic acid amplification as well as thermal lysis and any heating during incubation. In the hybridization chamber 180, the CMOS circuit 86 uses the hybridization heater 182 as a temperature sensor (see FIG. 56). The resistance of the hybrid heater 182 is temperature dependent, and the CMOS circuit 86 utilizes this to drive the temperature of each hybrid chamber 180. take. The LOC device 301 also has a number of MST channel liquid sensors 174 and a cover channel liquid sensor 208. Figure 35 shows the line of the M S T channel liquid sensor 147 at one of the intervals of each of the heated microchannels 158. Preferably, as shown in FIG. 37, the MST channel liquid sensor 174 is a pair of electrodes formed by the exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid closes the current between the electrodes to indicate their presence at the sensor. Figure 25 shows an enlarged perspective view of the lid channel liquid sensor 208. Opposite TiAl electrode pairs 218 and 220 are deposited on top layer 66. A gap 222 is provided between electrodes 218 and 220 to keep the circuit open in the absence of liquid. The circuit is closed when liquid is present and CMOS circuit 86 utilizes this feedback to monitor flow. GRAVITATIONAL INDEPENDENCE test module 10. Directional autonomy. It does not need to be fastened to a smooth surface to operate. The fluid flow driven by capillary action and the lack of access to the auxiliary equipment make the module truly portable and easily plugged into a similar portable handheld reader, such as a mobile phone. The gravity autonomous operation represents that the test module is also acceleration independent of all practical ranges. It is resistant to shock and vibration and can be operated on a moving vehicle or on a mobile phone. The dialysis variant has a passage to avoid trapped bubbles. The following is shown in Figures 72, 73, 74 and 75. A specific embodiment of the LOC device of LOC variant VIII 5 18 . This LOC device has a dialysis section that is trapped in a fluid sample and trapped in a channel without bubbles. LOC Variant VIII 518 also has an additional layer of material, reference interface layer 5 94. Interface layer 5 94 is disposed between cover channel layer 80 and MST channel layer 100 of CMOS + MST device 48. Interfacial layer 594 causes a more complex fluid interconnection between the reagent sump and MST layer 87 without increasing the size of ruthenium substrate 84. Referring to Figure 73, the bypass channel 600 is designed to introduce a time delay into the fluid sample from the interface waste channel 604 to the interface target channel 602. This time delay causes the fluid sample to flow through the dialysis MST channel 204 to the dialysis draw 168 of the fixed meniscus. The capillary action initiation feature (C IF) 2 02 of the bypass channel 600 to the interface target channel 602 at the upper conduit, the point upstream of all dialysis draws 168 from the dialysis MST channel 204, the sample fluid fill interface Target channel 602. Without the bypass channel 600, the interface target channel 602 still begins to charge from the upstream end, but eventually, the traveling meniscus arrives and passes through the untwisted MST channel above the pipe, leading to the point capture air. The trapped air -54- 201211240 gas reduced the sample flow rate through the white blood cell dialysis section 3 2 8 . The pre-hybridization filter variant of the LOC device, LOC variant XII 758, uses a small component dialysis section 682 (see Figures 93 to 100) located at the outlet of the amplification section 112. The small component dialysis section 68 2 provides a pre-hybridization filtration purification stage 293 (see Figure 93). Pre-hybridization filters remove cell debris that remains in the sample stream after cell lysis. Hybridization efficiency can be affected by cell debris, so it is advantageous to reduce the concentration of cell debris prior to hybridization. Referring to Figures 98, 99 and 100, the small component dialysis section 682 has three adjacent channels in the bottom channel layer 100; two small component channels 762 are adjacent to both sides of the large component channel 760. A series of apertures along the large tapered passage 764 of the large component passage 760 provide fluid connection to the small component passages 726. In most practical applications, the apertures are 1 to 8 microns wide and 1 to 8 microns high. When the sample flows down to the large component channel 760, particles that are small enough to pass through the inverted tapered opening (eg, amplicons) flow through the small component channel 716, while larger particles (eg, cell debris). It is left in the large component channel that ends up in the blind terminal 766. The smaller particles continue to flow along the small component channels to the opposite side of the hybridization chamber array 110, and the two smaller particle streams all travel along the enthalpy path through the array to the respective blind terminals 7 6 8 (see Figure 1). 〇). Prior to detection, the panel amplicon was filled with all independent hybridization chambers 18 〇.

核酸擴增變體 直接PCR 201211240 傳統上,於製備反應混合物之前,P C R需要大量純化 標靶DNA。然而,適當地改變化學及樣本濃度,可利用最 少量的DNA純化實施核酸擴增,或進行直接擴增。當以 PCR進行核酸擴增時,此方法便稱做直接PCR。於LOC裝 置中經控制的於常溫下實施核酸擴增時,此方法爲直接恆 溫擴增。當用於LOC裝置時,尤其是關於所需流體設計的 簡化時,直接核酸擴增技術具相當多的優勢。直接PCR或 是直接恆溫擴增之擴增化學調整包括增加緩衝液強度、使 用高活性及高進行性之聚合酶及與潛在聚合酶抑制劑螯合 之添加物。稀釋樣本中之抑制劑亦爲重要的。 爲利用直接核酸擴增技術,LOC裝置設計倂入兩個額 外的特徵。第一特徵爲試劑貯槽(例如,圖8中的貯槽5 8 ),其經適當地尺寸化以供應充分量之擴增反應混合或稀 釋劑,使得可能影響擴增化學之樣本成分的最終濃度足夠 低以成功地進行核酸擴增。非細胞樣本成分的所欲稀釋度 爲5倍至20倍。當適度確認標靶核酸序列的濃度被維持於 足夠高以用於擴增及檢測時,使用不同的LOC結構’例如 圖4中的病原體透析部70。於此具體實施例中(進一步於 圖6中說明),於樣本萃取部290之上游使用有效地濃縮足 夠小而得以進入擴增部292之病原體的濃度並將較大細胞 排出至廢料容器76之透析部。於另外的具體實施例中’使 用透析部以選擇性地去除血漿中之蛋白質及鹽而保留關注 的細胞。 支持直接核酸擴增之第二LOC結構性特徵爲設計通道 -56- 201211240 的深寬比以調整樣本及擴增混合成分之間的混合比》例如 ,爲確保經由單一混合步驟之相關於樣本之抑制劑的稀釋 爲較佳的5倍-20倍範圍中,設計樣本及試劑通道之長度與 截面,以使混合起始位置之上游的樣本通道構成之流組抗 較試劑混合物流動之通道的流組抗高出4倍-1 9倍。經由控 制設計幾合而容易地控制微通道中之流組抗。針對恆定截 面積’微通道之流組抗隨通道長度而線性地增加。對於混 合設計而言爲重要的是,微通道中之流組抗較多取決於最 小截面積尺寸。例如,當深寬比極爲不均一時,方形截面 之微通道的流組抗與最小垂直尺寸之立方成反比。 反轉錄酶PCR ( RT-PCR) 當分析或萃取之樣本核酸種類爲RNA時,諸如來自 RNA病毒或信使RNA,於PCR擴增之前必須先將RNA反轉 錄爲互補DNA(cDNA)。可於與PCR相同之室中實施反轉 錄反應(一步驟RT-PCR ),或是其可爲分別的起始反應 (二步驟RT-PCR)。於此所述之LOC變體中,可藉由添加 反轉錄酶及聚合酶至試劑貯槽62以及程式化加熱器154以 先循環反轉錄步驟並接續進行核酸擴增步驟,而簡單地實 施一步驟RT-PCR。藉由利用試劑貯槽58來儲存及分配緩 衝液、引子' dNTP及反轉錄酶,以及利用培養部1 14以用 於反轉錄步驟,接著於擴增部112中以普通方式進行擴增 ,亦可簡單地完成二步驟RT-PCR。 -57- 201211240 恆溫核酸擴增 針對一些應用,較佳之核酸擴增方法爲恆溫核酸擴增 ,因此不需於各種溫度循環重複地循環反應成分,而是將 擴增部維持於常溫下,普通爲約37°C至41°C。已描述一些 恆溫核酸擴增方法,包括股取代擴增(SDA )、轉錄介導 擴增(TMA )、依賴核酸序列擴增(NASBA )、重組酵素 聚合酶擴增(RPA )、解旋恆溫DNA擴增(HDA )、滾動 循環擴增(RCA )、分枝型擴增(RAM )及環形恆溫擴增 (LAMP ),以及此等之任何或其他恆溫擴增方法可特別 用於本文之LOC裝置之具體實施例中。 爲實施恆溫核酸擴增,鄰接擴增部之試劑貯槽60及62 將載有用於特定恆溫方法之適當的試劑而不是載有PCR擴 增混合及聚合酶。例如,針對SDA,試劑貯槽60含有擴增 緩衝液、引子及dNTP,以及試劑貯槽62含有適當的核酸內 切酶及外切-DNA聚合酶。針對RPA,試劑貯槽60含有擴增 緩衝液、引子、dNTP及重組酶蛋白,及試劑貯槽62含有股 取代DNA聚合酶,諸如。同樣地,針對HDA,試劑貯 槽60含有擴增緩衝液、引子及dNTP,以及貯槽62含有適當 的DN A聚合酶及解旋酶(而非使用熱)以解開雙股DN A。 熟此技藝者將了解以任何適用於核酸擴增法之方式,可將 必要試劑分配於兩個試劑貯槽。 針對自RNA病毒,諸如HIV或C型肝炎病毒之病毒核酸 的擴增,NASBA或TMA係適當的因其不需先將RNA轉錄成 cDNA。於此實例中,試劑貯槽60塡充有擴增緩衝液、引 -58- 201211240 子及dNTP,以及試劑貯槽62塡充有RNA聚合酶、反轉錄酶 及任意的RNase Η。 針對一些恆溫核酸擴增類型,於維持恆溫核酸擴增之 溫度以利反應續行之前,必須採用初始變性循環以分開雙 股DN Α模板。因可藉擴增微通道158中之加熱器154嚴密地 控制擴增部U2中之混合的溫度,於本文中描述之LOC裝 置之所有具體實施例中均可輕易完成此變性循環(見圖14 )。 恆溫核酸擴增對於樣本中潛在的抑制劑之耐受性較高 ,因而通常適用於自所欲樣本之直接核酸擴增。因此,恆 溫核酸擴增尤其有用於分別顯示於圖80、81及82中之LOC 變體 XLIII 673、LOC 變體 XLIV 674 及 LOC 變體 XLVII 677 。直接恆溫擴增亦可與如圖80及82中所示之一或多個預擴 增透析步驟70、686或682及/或如圖81中所示之預-雜交透 析步驟6 8 2組合,以分別於核酸擴增之前有助於樣本中之 標靶細胞的部份濃縮或是於樣本進入雜交室陣列1 1 0前移 除不想要的細胞碎片。熟此技藝者將了解可使用預-擴增 透析及預-雜交透析之任何組合。 亦可以平行的擴增部,諸如,圖71、76及77中所槪述 者,實施恆溫核酸擴增。多工及一些恆溫核酸擴增方法, 諸如LAMP,係與初始反轉錄步驟相容以擴增RNA。 螢光檢測系統之另外的細節 圖58及59顯示雜交-反應性FRET探針23 6。此等經常被 -59- 201211240 稱爲分子信標及係爲由單股核酸產生之莖-及-環探針,並 於與互補核酸雜交時發螢光。圖58顯示於與標靶核酸序列 23 8雜交之前之單一FRET探針23 6。探針具有環240、莖 242、於5'端之螢光團246及於3’端之淬熄劑248。環240包 含與標靶核酸序列23 8互補之序列。探針序列兩側的互補 序列黏著在一起以形成莖2 4 2。 於缺少互補標靶序列時,如圖5 8中所示者,探針維持 閉合。莖2U保持螢光團-淬熄劑對彼此相當接近,使得大 量的共振能量可於彼此間傳輸,而當以激發光244照射時 實質地消除螢光團發螢光團的能力。 圖59顯示呈開放或經雜交配置的FRET探針236。於與 互補標靶核酸序列23 8雜交時,莖-及-環結構被破壞,螢光 團及淬熄劑於空間上分離,因此恢復螢光團2 4 6發螢光的 能力。光學檢測地螢光發射2 5 0以作爲探針已雜交的指標 〇 探針以極高專一性與互補標靶雜交,因探針之莖螺旋 係設計成較具單一不互補核苷酸之探針-標靶螺旋穩定。 因雙股DNA相對堅固,立體上探針-標靶螺旋與莖螺旋不 可能共存。 引子-聯結的探針 引子-聯結的莖-及-環探針及引子-聯結的線性探針, 亦稱作蠍子型探針,爲分子信標之替代物且可用於LOC裝 置之即時及定量核酸擴增。及時擴增可直接實施於LOC裝 -60- 201211240 置之雜交室中。使用引子-聯結的探針之優點爲探針元件 實體地聯結至引子’因此於核酸擴增其間僅需單次雜交而 不需要分別的引子雜交及探針雜交。此確保即時有效地反 應並產生更強的信號、更短的反應時間,且當使用分別的 引子及探針時具有更佳的識別度。於製造期間,探針(與 聚合酶及擴增混合)將沉積於雜交室180中且不需LOC裝 置上之獨立的擴增部。替代性地,擴增部未被使用或用於 其他反應。 引子-聯結的線性探針 圖83及84分別顯示首輪核酸擴增期間之引子·聯結的 線性探針6 9 2及於後續核酸擴增期間之雜交的配置。參照 圖83,引子-聯結的探針692具有雙股莖區段242。其中一 股結合引子聯結的探針序列696,其係與標靶核酸696上的 區域同源且以螢光團246標記其5’端,以及經由擴增阻斷物 694聯結其3'端至寡核苷酸引子700 »以淬熄劑部分248標記 莖242之另外一股的3’端。於完成首輪核酸擴增之後,利用 目前爲互補的序列698 ’探針可環繞且雜交至延伸的股。 於首輪核酸擴增期間,寡核苷酸引子700黏著至標靶DNA 238 (圖83)並接著延伸而形成含有探針序列及擴增產物 兩者之DN A股。擴增阻斷物694防止聚合酶之讀取通過及 拷貝探針區域696。於接續的變性時,雜交之延伸的寡核 苷酸引子700/模板及引子-聯結的線性探針之雙股莖242分 離,因此釋出淬熄劑248。~但用於黏著及延伸步驟的溫 -61 - 201211240 度降低,引子聯結的線性探針之引子聯結的探針序列696 捲曲並與延伸的股上之擴增的互補序列698雜交’以及檢 測出的螢光指出標靶DN A存在。未延伸的引子-聯結的線 性探針保留其雙股莖且螢光保持淬熄。此檢測方法特別適 於快速檢測系統,因其依賴單一分子製程。 引子-聯結的莖-及-環探針 圖85A至8 5F顯示引子-聯結的莖-及-環探針7〇4之操作 。參照圖85A,引子-聯結的莖-及-環探針704具有互補雙 股DNA之莖242及合倂探針序列的環240。以螢光團246標 記其中一個莖股708之5’端。以3'-端淬熄劑248標記另一股 710,且另一股710帶有擴增阻斷物694及寡核苷酸引子700 兩者。於初始變性相(見圖85B ),標靶核酸23 8之股及引 子聯結的莖242分開莖-及-環探針704。當溫度冷卻以用於 黏著相時(見圖85C),引子-聯結的莖-及-環探針704上之 寡核苷酸引子700與標靶核酸序列23 8雜交。於延伸期間( 見圖85D ),合成標靶核酸序列2 3 8之互補706以形成含有 探針序列704及擴增的產物兩者之DN A股。擴增阻斷物694 防止聚合酶之讀取通過及拷貝探針區域704。變性之後, 當接著黏著探針時,引子-聯結的莖-及-環探針之環區段 240之探針序列(見圖85F )黏著至延伸的股上之互補序列 706。此配置使得螢光團246與淬熄劑248相距甚遠,造成 螢光發射的顯著增強。 -62- 201211240 控制探針 雜交室陣列110包括具有用於分析品質控制之正及陰 性對照探針之一些雜交室180。圖105及106槪要說明無螢 光團796之陰性對照探針,以及圖107及108描述無淬熄劑 798之陽性對照探針。正及陰性對照探針具有如前述FRET 探針之莖-及-環結構。然而’不論探針雜交成爲開放配置 或保持封閉,將永遠自陽性對照探針798發射螢光信號250 且陰性對照探針796從不發射螢光信號250。 參照圖105及106,陰性對照探針796不具螢光團(及 可具有或不具有淬熄劑248)。因此,不論標靶核酸序列 23 8與探針雜交(見圖1〇6)或是探針保持其莖·及-環配置 (見圖105 )’可忽略對激發光244之回應。替代性地,可 設計陰性對照探針796使得其永遠保持淬熄。例如,藉由 合成環240而得到將不會與所硏究的樣本中之任何核酸序 列雜交之探針序列,探針分子之莖242將與其自身重新雜 交’及螢光團及淬熄劑將保持緊密相鄰且將不會發射可見 ,的螢光。此負控制信號對應於來自雜交室180的低階發射 ’於雜交室1 8 0中探針未經雜交但是淬熄劑未淬熄來自報 導劑的所有發射。 相反地,建構無淬熄劑之陽性對照探針7 9 8,如圖1 〇 7 及108中所示者。回應激發光2 44,不論陽性對照探針798 是否與標靶核酸序列23 8雜交,無物質使來自螢光團246之 螢光發射250淬熄。 圖5 2顯示雜交室陣列1 1 〇中的正及陰性對照探針(分 -63- 201211240 別爲3 7 8及3 8 0 )之可行分佈。控制探針3 78及3 8 0係置於雜 交室1 8 0中並定位成橫越雜交室陣列1 1 〇之線。然而,陣列 內之控制探針的配置係任意的(如同雜交室陣列1 1 0之配 置)。 螢光團設計 需要具長螢光壽命之螢光團以允許激發光具足夠時間 以衰變至較致能光感測器44時之螢光發射的強度爲低之強 度,藉此提高充分的信號對雜訊比。而且’較長的螢光壽 命代表較大之整合的螢光子計數。 螢光團2 46 (見圖59)之螢光壽命大於100奈秒、經常 大於200奈秒、更常見爲大於3 00奈秒,以及於大多數的情 況中爲大於400奈秒。 以過渡金屬或鑭系金屬爲底的金屬-配位子錯合物具 長壽命(自數百奈秒至毫秒)、適當的量子產率,以及高 熱、化學及光化學穩定性,此等特性均爲相關於螢光檢測 系統需求之有利特性。 以過渡金屬離子釕(Ru ( II ))爲底之經特別地徹底 硏究之金屬-配位子錯合物爲參(2,2’·聯吡啶)釕(II)( (Ru ( bpy) 3〕2+),彼之壽命爲約1μ8。此錯合物可購自 Biosearch Technologies,其商品名爲Pulsar 650。 -64- 201211240 表1 : Pulsar 650 (釕螯合物)之光物理性質 參數 符號 値 單位 吸收波長 ^-abs 460 nm 發射波長 λέπι 650 nm 吸光係數 Ε 14800 ntW1 螢光壽命 Xf 1.0 μδ 量子產率 Η 1 (去氧的) Ν/Α 鑭系金屬-配位子錯合物,铽螯合物,已成功地顯示 作爲FRET探針系統中的螢光報導劑,且具有1 600μ5之長壽 命0 表2:铽螯合物之光物理性質 參數 符號 値 單位 吸收波長 ^abs 330-350 nm 發射波長 ^em 548 nm 吸光係數 Ε 13800 (、bs,及配位子相依,可高至 30000 @ λβ = 340nm) M'1 cm'1 螢光壽命 tf 1600 (雜交的探針) μδ 量子產率 Η 1 (配位子相依) Ν/Α LOC裝置3 0 1所使用的螢光檢測系統不利用過濾來移 除不想要的背景螢光。若淬熄劑248無天然發射以增加信 號-對·雜訊比,則因此具有優勢。無天然發射,則淬熄劑 248不貢獻至背景螢光。高淬熄效率亦爲重要者,此使得 雜父發生前沒有螢光。購自加州Novato市之Biosearch -65- 201211240Nucleic Acid Amplification Variants Direct PCR 201211240 Traditionally, P C R required extensive purification of target DNA prior to preparation of the reaction mixture. However, by appropriately changing the chemical and sample concentrations, nucleic acid amplification can be performed using a minimum amount of DNA purification, or direct amplification can be performed. When nucleic acid amplification is performed by PCR, this method is called direct PCR. When nucleic acid amplification is carried out at a normal temperature controlled in a LOC apparatus, this method is direct constant temperature amplification. Direct nucleic acid amplification techniques have considerable advantages when used in LOC devices, especially with regard to the simplification of the desired fluid design. Amplification chemical adjustments for direct PCR or direct isothermal amplification include increasing buffer strength, using highly active and highly progressive polymerases, and additions to potential polymerase inhibitors. It is also important to dilute the inhibitor in the sample. To exploit direct nucleic acid amplification techniques, LOC devices are designed to incorporate two additional features. The first feature is a reagent reservoir (eg, sump 58 in Figure 8) that is appropriately sized to supply a sufficient amount of amplification reaction mix or diluent such that the final concentration of sample components that may affect the amplification chemistry is sufficient Low to successfully perform nucleic acid amplification. The desired dilution of the non-cellular sample component is 5 to 20 times. When the concentration of the target nucleic acid sequence is moderately confirmed to be sufficiently high for amplification and detection, a different LOC structure is used, such as the pathogen dialysis section 70 of Fig. 4. In this particular embodiment (further illustrated in Figure 6), the concentration of the pathogen sufficient to enter the amplification portion 292 is effectively concentrated upstream of the sample extraction portion 290 and the larger cells are discharged to the waste container 76. Dialysis department. In another embodiment, a dialysis section is used to selectively remove proteins and salts in plasma while retaining cells of interest. A second LOC structural feature that supports direct nucleic acid amplification is to design the aspect ratio of channel-56-201211240 to adjust the mixing ratio between the sample and the amplified mixed components, for example, to ensure correlation with the sample via a single mixing step. The dilution of the inhibitor is preferably in the range of 5 to 20 times, and the length and cross section of the sample and the reagent channel are designed such that the sample channel formed upstream of the mixing start position is resistant to the flow of the flow channel of the reagent mixture. The group resistance was 4 times -1 to 9 times higher. The flow group resistance in the microchannel is easily controlled by controlling the design. The flow group resistance for a constant cross-sectional area 'microchannel' increases linearly with channel length. It is important for the hybrid design that the flow group resistance in the microchannel depends more on the minimum cross-sectional area size. For example, when the aspect ratio is extremely non-uniform, the flow resistance of the microchannels of square cross-section is inversely proportional to the cube of the smallest vertical dimension. Reverse Transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted is RNA, such as from RNA virus or messenger RNA, RNA must be reversed as complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction (one-step RT-PCR) can be carried out in the same chamber as the PCR, or it can be a separate initial reaction (two-step RT-PCR). In the LOC variant described herein, a reverse transcription step can be performed by adding a reverse transcriptase and a polymerase to the reagent storage tank 62 and the stylized heater 154 to successively perform the nucleic acid amplification step, and simply perform a step. RT-PCR. The buffer, the primer 'dNTP and the reverse transcriptase are stored and distributed by the reagent storage tank 58, and the culture unit 14 is used for the reverse transcription step, and then amplified in the amplification unit 112 in an ordinary manner. The two-step RT-PCR is simply done. -57- 201211240 Constant Temperature Nucleic Acid Amplification For some applications, the preferred nucleic acid amplification method is constant temperature nucleic acid amplification, so that it is not necessary to repeatedly circulate the reaction components at various temperature cycles, but the amplification portion is maintained at normal temperature, usually About 37 ° C to 41 ° C. Some methods for thermostatic nucleic acid amplification have been described, including strand-substituted amplification (SDA), transcription-mediated amplification (TMA), nucleic acid sequence-dependent amplification (NASBA), recombinant enzyme polymerase amplification (RPA), uncoupling thermostated DNA Amplification (HDA), rolling cycle amplification (RCA), branched amplification (RAM), and circular thermostat amplification (LAMP), and any or other isostatic amplification methods of this type may be particularly useful for LOC devices herein. In a specific embodiment. To perform a constant temperature nucleic acid amplification, reagent reservoirs 60 and 62 adjacent to the amplification section will carry appropriate reagents for a particular constant temperature method rather than carrying PCR amplification and polymerase. For example, for SDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reagent reservoir 62 contains appropriate endonucleases and exo-DNA polymerases. For RPA, reagent reservoir 60 contains amplification buffer, primers, dNTPs, and recombinase proteins, and reagent reservoir 62 contains strand-substituted DNA polymerase, such as. Similarly, for HDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reservoir 62 contains the appropriate DN A polymerase and helicase (rather than heat) to unwind the double strands of DN A. Those skilled in the art will appreciate that the necessary reagents can be dispensed into two reagent reservoirs in any manner suitable for nucleic acid amplification. For the amplification of viral nucleic acids from RNA viruses, such as HIV or hepatitis C virus, NASBA or TMA is appropriate because it does not require the transcription of RNA into cDNA. In this example, the reagent reservoir 60 is filled with an amplification buffer, a -58-201211240 and dNTP, and a reagent reservoir 62 is filled with RNA polymerase, reverse transcriptase, and any RNase. For some thermostatic nucleic acid amplification types, an initial denaturation cycle must be employed to separate the two-strand DN Α template before maintaining the temperature of the thermostated nucleic acid amplification for the reaction to continue. Since the temperature of the mixing in the amplifying portion U2 can be tightly controlled by the heater 154 in the amplifying microchannel 158, this denaturation cycle can be easily accomplished in all of the specific embodiments of the LOC device described herein (see Figure 14). ). Thermostatic nucleic acid amplification is more tolerant to potential inhibitors in the sample and is therefore generally suitable for direct nucleic acid amplification from a desired sample. Thus, constant temperature nucleic acid amplification is particularly useful for LOC variant XLIII 673, LOC variant XLIV 674 and LOC variant XLVII 677 shown in Figures 80, 81 and 82, respectively. Direct thermostatic amplification can also be combined with one or more preamplification dialysis steps 70, 686 or 682 as shown in Figures 80 and 82 and/or a pre-hybridization dialysis step 682 as shown in Figure 81, Partial concentration of the target cells in the sample is facilitated prior to nucleic acid amplification, respectively, or unwanted cell debris is removed before the sample enters the hybridization chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used. Thermostatic nucleic acid amplification can also be performed in parallel amplification sections, such as those described in Figures 71, 76, and 77. Multiplex and some constant temperature nucleic acid amplification methods, such as LAMP, are compatible with the initial reverse transcription step to amplify RNA. Additional Details of the Fluorescence Detection System Figures 58 and 59 show hybridization-reactive FRET probes 23 6 . These are often referred to as molecular beacons by -59-201211240 and are stem-and-loop probes produced from single-stranded nucleic acids and fluoresce when hybridized to complementary nucleic acids. Figure 58 shows a single FRET probe 23 prior to hybridization to the target nucleic acid sequence 23 8 . The probe has a ring 240, a stem 242, a fluorophore 246 at the 5' end, and a quencher 248 at the 3' end. Loop 240 comprises a sequence that is complementary to the target nucleic acid sequence 238. The complementary sequences flanking the probe sequences are glued together to form stems 24 2 . In the absence of a complementary target sequence, as shown in Figure 58, the probe remains closed. The stem 2U maintains the fluorophore-quenching agents relatively close to each other such that a large amount of resonant energy can be transmitted between each other and substantially eliminates the ability of the fluorophore to emit fluorophores when illuminated by the excitation light 244. Figure 59 shows FRET probe 236 in an open or hybridized configuration. Upon hybridization with the complementary target nucleic acid sequence 23 8 , the stem-and-loop structure is disrupted, and the fluorophore and quencher are spatially separated, thereby restoring the ability of the fluorophore to fluoresce. Optical detection of the fluorescence emission of 250 to serve as a probe for hybridization. The probe hybridizes to the complementary target with extremely high specificity, because the probe's stem helix is designed to be more unique than a single non-complementary nucleotide. The needle-target helix is stable. Due to the relatively strong double-stranded DNA, it is impossible for the probe-target helix and the stem helix to coexist. Primer-Linked Probe Primers - Linked Stem-and-Ring Probes and Primer-Linked Linear Probes, Also known as Mule Probes, are Alternatives to Molecular Beacons and Can Be Used for Instant and Quantitative LOC Devices Nucleic acid amplification. Timely amplification can be directly implemented in the hybridization chamber of LOC-60-201211240. The advantage of using a primer-ligated probe is that the probe element is physically linked to the primer' so only a single hybridization is required during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures an immediate and efficient response and produces a stronger signal, shorter reaction times, and better discrimination when using separate primers and probes. During manufacture, the probe (mixed with the polymerase and amplification) will be deposited in the hybridization chamber 180 without the need for a separate amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions. Primer-Linked Linear Probes Figures 83 and 84 show the arrangement of the primer-ligated linear probe 694 during the first round of nucleic acid amplification and the hybridization during subsequent nucleic acid amplification, respectively. Referring to Figure 83, the primer-coupled probe 692 has a double stem section 242. One of the probe sequences 696, which binds to the primer, is homologous to the region on the target nucleic acid 696 and is labeled with its 5' end by fluorophore 246, and its 3' end is coupled via amplification blocker 694 to Oligonucleotide primer 700 » marks the other 3' end of stem 242 with quenching moiety 248. After completion of the first round of nucleic acid amplification, the currently complementary sequence 698' probe can be used to wrap around and hybridize to the extended strand. During the first round of nucleic acid amplification, oligonucleotide primer 700 is attached to target DNA 238 (Fig. 83) and then extended to form a DN A strand containing both the probe sequence and the amplification product. Amplification blocker 694 prevents the reading of polymerase through and copying probe region 696. Upon subsequent denaturation, the hybridized extended oligonucleotide primer 700/template and the primer-linked linear probe of the double stem 242 are separated, thereby releasing the quencher 248. ~ But for the temperature-61 - 201211240 degree reduction of the adhesion and extension steps, the primer-linked probe sequence 696 of the primer-joined linear probe is crimped and hybridized with the amplified complementary sequence 698 on the extended strand' and detected Fluorescence indicates the presence of the target DN A. The unextended primer-linked linear probe retains its double stem and the fluorescence remains quenched. This test method is particularly suitable for rapid detection systems because it relies on a single molecular process. Primer-Linked Stem-and-Ring Probes Figures 85A through 8F show the operation of the primer-coupled stem-and-loop probes 7〇4. Referring to Figure 85A, the primer-ligated stem-and-loop probe 704 has a stem 242 of complementary double stranded DNA and a loop 240 of the combined probe sequence. The 5' end of one of the stems 708 is marked with a fluorophore 246. The other strand 710 is labeled with a 3'-end quencher 248 and the other strand 710 carries both an amplification blocker 694 and an oligonucleotide primer 700. In the initial denaturing phase (see Figure 85B), the stem of the target nucleic acid 23 8 and the stem 242 to which the primer is ligated are separated from the stem-and-loop probe 704. When the temperature is cooled for the adhesive phase (see Figure 85C), the oligonucleotide primer 700 on the primer-linked stem-and-loop probe 704 hybridizes to the target nucleic acid sequence 23 8 . During extension (see Figure 85D), the complementary 706 of the target nucleic acid sequence 2 38 is synthesized to form a DN A strand containing both the probe sequence 704 and the amplified product. Amplification blocker 694 prevents the polymerase from reading through and copying probe region 704. After denaturation, the probe sequence of the loop-and-loop probe loop segment 240 (see Figure 85F) is adhered to the complementary sequence 706 on the extended strand when the probe is subsequently attached. This configuration leaves the fluorophore 246 far from the quencher 248, resulting in a significant increase in fluorescence emission. - 62 - 201211240 Control Probes The hybridization chamber array 110 includes a number of hybridization chambers 180 having positive and negative control probes for analysis of quality control. Figures 105 and 106 illustrate negative control probes without fluorophore 796, and Figures 107 and 108 depict positive control probes without quencher 798. The positive and negative control probes have a stem-and-loop structure as described above for the FRET probe. However, whether the probe hybridizes to an open configuration or remains closed, the fluorescent signal 250 will always be emitted from the positive control probe 798 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 105 and 106, the negative control probe 796 does not have a fluorophore (and may or may not have a quencher 248). Thus, regardless of whether the target nucleic acid sequence 298 hybridizes to the probe (see Figure 1-6) or the probe maintains its stem-and-loop configuration (see Figure 105), the response to excitation light 244 can be ignored. Alternatively, the negative control probe 796 can be designed such that it remains quenched forever. For example, by synthesizing loop 240, a probe sequence will be obtained that will not hybridize to any of the nucleic acid sequences in the sample in question, and stem 242 of the probe molecule will rehybridize with itself' and the fluorophore and quencher will Keep it close and will not emit visible, fluorescent light. This negative control signal corresponds to the low order emission from the hybridization chamber 180. The probe is not hybridized in the hybridization chamber 180 but the quencher does not quench all of the emission from the reporter. Conversely, a non-quenching positive control probe 7 9 8 was constructed as shown in Figures 1 〇 7 and 108. Back stress luminescence 2 44, regardless of whether the positive control probe 798 hybridizes to the target nucleic acid sequence 23 8 , no material quenches the fluorescent emission 250 from the fluorophore 246. Figure 5 2 shows the possible distribution of positive and negative control probes in the hybrid chamber array 1 1 ( (points -63 - 201211240 and 3 7 8 and 380). Control probes 3 78 and 380 are placed in the hybrid chamber 180 and positioned across the line of the hybrid chamber array 1 1 。. However, the configuration of the control probes within the array is arbitrary (as is the configuration of the hybridization chamber array 110). The fluorophore design requires a fluorophore with a long fluorescence lifetime to allow the excitation light to have sufficient time to decay to a lower intensity than the intensity of the fluorescent emission when the photosensor 44 is enabled, thereby increasing the sufficient signal. For the noise ratio. Moreover, the longer fluorescent lifetime represents a larger integrated fluorescence count. The fluorescence lifetime of fluorophore 2 46 (see Figure 59) is greater than 100 nanoseconds, often greater than 200 nanoseconds, more typically greater than 300 nanoseconds, and in most cases greater than 400 nanoseconds. Metal-coordination complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal, chemical, and photochemical stability. Both are advantageous features related to the needs of fluorescent detection systems. A particularly well-studied metal-coordination complex based on a transition metal ion ruthenium (Ru(II)) is ginseng (2,2'-bipyridyl) ruthenium (II) (Ru (bpy) 3] 2+), the lifetime of which is about 1 μ 8. This complex is available from Biosearch Technologies under the trade name Pulsar 650. -64- 201211240 Table 1: Photophysical properties of Pulsar 650 (钌 chelate) Symbol 値 unit absorption wavelength ^-abs 460 nm emission wavelength λέπι 650 nm absorption coefficient Ε 14800 ntW1 fluorescence lifetime Xf 1.0 μδ quantum yield Η 1 (deoxidized) Ν/Α lanthanide metal-coordination complex, The ruthenium chelate has been successfully shown as a fluorescent reporter in the FRET probe system and has a long lifetime of 1 600 μ5. Table 2: Photophysical properties of the ruthenium chelate. Symbol 値 Unit absorption wavelength ^abs 330- 350 nm emission wavelength ^em 548 nm absorption coefficient Ε 13800 (, bs, and ligand-dependent, up to 30000 @ λβ = 340nm) M'1 cm'1 fluorescence lifetime tf 1600 (hybridization probe) μδ quantum Yield Η 1 (coordination dependent) Ν/Α LOC device 3 0 1 The fluorescence detection system used is not Filtering is used to remove unwanted background fluorescence. If quencher 248 has no natural emission to increase the signal-to-noise ratio, then there is an advantage. Without natural emission, quencher 248 does not contribute to background fluorescence. High quenching efficiency is also important, which makes no fluorescence before the occurrence of the father. Biosearch -65- 201211240 from Novato, California

Technologies, Inc.的黑洞淬熄劑(BHQ)不具有天然發射 及具有高淬熄效率,以及係用於系統之合適的淬熄劑。 BHQ-1之最大吸收値發生於534 nm及淬熄範圍爲480-580 nm,使得其爲用於Tb-螯合螢光團之合適的淬熄劑。BHQ-2之最大吸收値發生於579 nm及淬熄範圍爲560-670 nm使 得其爲用於Pulsar 650之合適的淬熄劑。 購自愛荷華州Coralville市之Integrated DNA Technologies的愛荷華黑淬熄劑(Iowa Black FQ及RQ)爲 適合的具有少許或無背景發射之替代性淬熄劑。Iowa Black FQ之淬熄範圍爲420-620 nm,於531 nm具有最大吸 收値,並因此爲用於Tb-螯合螢光團之合適的淬熄劑。 Iowa Black RQ於65 6 nm具有最大吸收値及淬熄範圍爲500-700 nm,使得其爲用於Pulsar 650之理想淬熄劑》 於本文所述之具體實施例中,淬熄劑248爲初始時即 附著於探針之功能部分,但於其他具體實施例中,淬熄劑 可爲游離於溶液中之分離的分子。 激發源 在本文描述之螢光檢測爲基礎的具體實施例中,因爲 低功率消耗、低成本和小尺寸而選擇LED替代雷射二極體 '高功率燈或雷射的激發源。參照圖86,LED 26係直接安 置於LOC裝置301之外部表面上之雜交室陣列1 10上。在雜 交室陣列Π 0之對側爲光感測器44,其由自各室之用於檢 測螢光訊號之光二極體184的陣列所組成(見圖53、54及 -66- 201211240 6 4) ° 圖87、88及89槪略說明用於將探針暴露於激發光之其 他具體實施例。在顯示於圖87之LOC裝置30中,由激發 LED 26所產生之激發光244係由透鏡254導向雜交室陣列 1 10之上。脈衝激發LED 26且由光感測器44檢測螢光發射 〇 在圖88所顯示之LOC裝置30中,由激發LED 26所產生 之激發光244係由透鏡254、第一光稜鏡712和第二光稜鏡 7 14導向雜交室陣列1 1〇之上。脈衝激發LED 26且由光感測 器44檢測螢光發射。 同樣地,顯示於圖89中之LOC裝置30,由激發LED 26 所產生之激發光24 4係由透鏡254、第一鏡716和第二鏡718 導向雜交室陣列110之上。再次脈衝激發LED 26且由光感 測器44檢測螢光發射。 LED 26的激發波長係取決於螢光染料的選擇。Philips LXK2-PR14-R00爲針對Pulsar 650染料之合適的激發源。 SET UVT0P3 3 5T039BL LED係針對铽螯合物標記之合適的 激發源。 .表 3 : Philips LXK2-PR14-R00 LED規格The Black Hole Quencher (BHQ) from Technologies, Inc. does not have natural emissions and has high quenching efficiency, as well as suitable quenchers for use in systems. The maximum absorption enthalpy of BHQ-1 occurs at 534 nm and the quenching range is 480-580 nm, making it a suitable quencher for Tb-chelating fluorophores. The maximum absorption enthalpy of BHQ-2 occurs at 579 nm and the quenching range is 560-670 nm making it a suitable quencher for Pulsar 650. Iowa Black FQ and RQ, available from Integrated DNA Technologies of Coralville, Iowa, are suitable alternative quenchers with little or no background emission. The Iowa Black FQ has a quenching range of 420-620 nm with a maximum absorption enthalpy at 531 nm and is therefore a suitable quencher for Tb-chelating fluorophores. Iowa Black RQ has a maximum absorption enthalpy at 65 6 nm and a quenching range of 500-700 nm, making it an ideal quencher for Pulsar 650. In the specific examples described herein, quencher 248 is the initial It is attached to the functional portion of the probe, but in other embodiments, the quencher can be a separate molecule that is free of solution. Excitation Sources In the specific embodiment based on the fluorescence detection described herein, LEDs are selected to replace the laser diode 'high power lamp or laser excitation source because of low power consumption, low cost, and small size. Referring to Figure 86, LEDs 26 are directly placed on hybrid array 1 10 on the exterior surface of LOC device 301. Opposite to the hybrid chamber array Π 0 is a photo sensor 44 consisting of an array of photodiodes 184 from each chamber for detecting fluorescent signals (see Figures 53, 54 and -66-201211240 6 4). ° Figures 87, 88 and 89 illustrate other specific embodiments for exposing the probe to excitation light. In the LOC device 30 shown in Fig. 87, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254 onto the hybridization chamber array 110. The LED 26 is pulsed and the fluorescent emitter is detected by the photo sensor 44. In the LOC device 30 shown in FIG. 88, the excitation light 244 generated by the excitation LED 26 is emitted by the lens 254, the first aperture 712, and the first The two-beam 7 14 is directed over the hybrid array 1 1 〇. The LED 26 is pulsed and the fluorescent emission is detected by the photo sensor 44. Similarly, the LOC device 30 shown in FIG. 89, the excitation light 24 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 onto the hybridization chamber array 110. The LED 26 is pulsed again and the fluorescent emission is detected by the photo sensor 44. The excitation wavelength of LED 26 is dependent on the choice of fluorescent dye. Philips LXK2-PR14-R00 is a suitable excitation source for the Pulsar 650 dye. SET UVT0P3 3 5T039BL LED is the appropriate excitation source for the ruthenium chelate label. . Table 3 : Philips LXK2-PR14-R00 LED Specifications

參數 符號 値 單位 波長 λεχ 460 nm 發射頻率 Vem 6.52 (10) 14 Hz 輸出功率 Pi 0.515 (min) @ ΙΑ W 發射圖形 Lambertian數據圖 N/A -67- 201211240 表4 : SET UVT0P334T039BL LED規格Parameter Symbol 单位 Unit Wavelength λεχ 460 nm Transmit frequency Vem 6.52 (10) 14 Hz Output power Pi 0.515 (min) @ ΙΑ W Emission pattern Lambertian data sheet N/A -67- 201211240 Table 4: SET UVT0P334T039BL LED specifications

參數 符號 値 單位 波長 λβ 340 nm 發射頻率 Ve 8.82 (10) 14 Hz 功率 Pi 0.000240 (min) @20mA W 脈衝順向電流 I 200 mA 發射圖形 Lambertian N/A 紫外激發光 矽在UV光譜中吸收少量光。因此,使用UV激發光是 有利的。可使用UV LED激發源,但LED 26之寬光譜降低 此方法之效果。針對於此,可使用經過濾的UV LED。隨 意地,UV雷射可爲激發源,除非因雷射相當高的花費而 對於特定的測試模組市場不實用。 L E D驅動器 LED驅動器29針對所需的持續時間在固定電流下驅動 該LED 26。低功率USB2.0認證裝置可在至多1單位負載( 1〇〇毫安培)以最小操作電壓4.4伏特得到。標準電力調節 電路係用於此目的。 光二極體 圖54顯示光二極體184,其合倂於LOC裝置301之 CMOS電路86。光二極體184係在沒有額外遮罩或步驟下製 成CMOS電路86之部分。這是CMOS光二極體優於CCD2 — 項顯著的優點,CCD爲另一種感測技術,其可使用非標準 -68- 201211240 式加工步驟整合到同一晶片上或者製於相鄰晶片上。晶片 上檢測係花費低廉且縮小陣列系統的尺寸。較短光學路徑 長度降低來自週遭環境的雜訊以有效收集螢光訊號,以及 減少對於透鏡及濾鏡之傳統光學總成之需求。 光二極體184之量子效率爲光子衝撞其活性區域185之 分率,光子係有效轉換成光電子。對於標準矽處理,可見 光之量子效率根據處理參數(諸如覆蓋層之數量及吸收特 性)係在0.3至0.5的範圍中。 光二極體1 84之檢測閥値決定可被檢測之螢光訊號的 最小強度。檢測閥値亦決定光二極體1 84的尺寸大小以及 在雜交及檢測部52中之雜交室180的數目(見圖52 )。室 的尺寸大小和數量爲技術參數,係由LOC裝置的尺寸( LOC裝置301的實例中,其尺寸爲1 760微米 X 5824微米 )所限制,且受合倂其他功能性模組(諸如病原體透析部 7〇及擴增部1 1 2 )之後可用之不動物件的尺寸所限制。 對於標準矽處理,光二極體184檢測最低5個光子。然 而,爲了確認可信賴的檢測’最小値可設爲1 〇個光子。因 此量子效率範圍在0.3至0.5 (如上所討論),自探針之螢 光發射爲最小17個光子,而30個光子包含針對可靠檢測的 誤差的合適餘裕。 校準室 光二極體184的不均勻電學特性、自動螢光和尙未完 全衰減之剩餘激發光子通量將背景雜訊引入並偏移至輸出 -69 - 201211240 訊號。使用一或多種校準訊號將背景自各輸出訊 藉由將在陣列中之一或多種校準光二極體184暴 的校準源而產生校準訊號。低校準源用來判斷標 探針反應之負結果。高校準源代表自探針·標靶 正結果。在本文所描述的具體實施例中,低校準 雜交室陣列110中之校準室382所提供,其: 不含任何探針: 包含不具有螢光報導劑的探針;或 包含具有報導劑的探針和配置成永遠預期發 淬熄劑。 自此種校準室3 82之輸出訊號非常接近來自 中之所有雜交室的輸出訊號中的雜訊和偏差。自 室所產生的輸出訊號減去校準訊號,實質上移除 留下由螢光發射產生的訊號(若有產生任何訊號 自室陣列之區域中的環境光線產生的訊號亦被去H 可理解的是參考圖105至108之上述負控制組 於校準室。然而,如圖91及92所示,其爲顯示 LOC變體X 728的插入物DG和DH之放大圖,另一 校準室3 82與擴增子流體性隔離。當雜交由流體 時,背景雜訊和偏差可由將流體性隔離之室淨空 含缺少報導劑的探針或確實具有報導劑與淬熄劑 何“標準”探針來判斷。 校準室382可提供高校準源以產生高訊號於 二極體。高訊號對應在已雜交之室中的所有探針 號移除。 露於各自 靶尙未與 複合物的 光源由在 生淬熄的 LOC裝置 其他雜交 了背景和 的話)。 转。 探針可用 於圖9 0之 選項爲將 隔離阻止 或藉由包 兩者的任 對應的光 。以報導 -70- 201211240 劑且無淬熄劑或僅以報導劑點樣探針,將一致地提供近似 雜交室中大量探針已於雜交室內雜交之訊號。亦可理解校 準室3 82可用以代替控制探針或加至控制探針上。 整個雜交室陣列的校準室3 82的數量和安排是隨意的 。然而,若光二極體184由相對近的校準室382校準,校準 較準確。參考圖56,雜交室陣列110針對每八個雜交室180 具有一個校準室382。也就是說,校準室382係安置於每個 三乘三之正方形雜交室180的中間。在此配置中,雜交室 ISO係由緊鄰的校準室3M所校準。 由於從周圍雜交室180之自螢光訊號的激發光,圖104 顯示用以自對應校準室382之光二極體18 4減除訊號的示差 成像器電路78 8。示差成像器電路788自像素790和“虛擬 ”像素792取樣訊號。在一個具體實施例中,“虛擬”像 素7 92係被遮住以防光照射,所以其輸出訊號提供暗參考 。或者,“虛擬”像素792可和陣列的其餘部分暴露於激 發光。在“虛擬”像素792是可以接受光的具體實施例中 ,自室陣列之區域中的環境光線產生的訊號亦被減除。來 自像素790的訊號是微弱的(例如,接近暗訊號),且因 沒有參考暗訊號位準而很難分辨背景値與非常微弱的訊號 〇 在使用期間,啓動“讀取_列” 794和“讀取_列_<1” 795 且開啓M4 797和 MD4 801電晶體。關閉開關807和809使 得來自像素790及“虛擬”像素792的輸出分別地儲存在像 素電容器803及虛擬像素電容器805上。在像素訊號被儲存 -71 - 201211240 後,停用開關807和809。然後關閉該“讀取_行”開關81 1和 虛擬“讀取_行”開關8 1 3,且在輸出之經切換的電容器放大 器815放大示差訊號817。 光二極體之抑制及致能 於LED 26激發期間必須抑制光二極體184及於螢光期 間必須致能光二極體184 »圖65爲單一光二極體184之電路 圖及圖66爲光二極體控制信號之時序圖。電路具有光二極 體 184及六個 MOS電晶體,Mshunt 394、Mtx 396、Mreset 3 98、Msf 400、Mread 402 及 Mbias 404。於激發循環開始時 ,藉由拖曳(pulling) Mshunt閘極3 84及重設閘極3 88爲高 而開啓tl、電晶體Mshunt 394及Mreset 3 98。於此期間,激 發光子於光二極體184中產生載子。當產生的載子量可充 分使光二極體184飽和時,此等載子必須被移除。於此循 環期間,因電晶體的洩漏或因基板中之激發-產生的載子 擴散,Mshunt 394直接地移除光二極體184中所產生的載子 ,而Mreset 398重設累積於節點‘NS’ 406之任何載子。於激 發之後,於t4開始俘獲循環。於此循環中,來自螢光團之 發射的回應被俘獲並整合入節點‘NS’ 406上的電路。此藉 由拖曳tx閘極3 86爲高而達成,此開啓電晶體Mtx 396及轉 移光二極體184上任何累積的載體至節點‘NS’ 406。俘獲 循環期間可如螢光發射般長。來自雜交室陣列1 1 〇中之所 有光二極體18 4的輸出同時被俘獲。 於結束俘獲循環t5與開始讀取循環t6之間具有延遲。 -72- 201211240 此延遲肇因於,在俘獲循環之後,分別讀取雜交室陣列 110中之各光二極體184的需求(見圖52)。待讀取的第一 光二極體184於讀取循環之前將具有最短的延遲,而最後 光二極體184於讀取循環之前將具有最長的延遲。於讀取 循環期間,藉由拖曳讀取閘極3 93爲高而開啓電晶體 Mread 402。使用源極-隨耦器電晶體Msf 400來緩衝及讀出 ‘NS’節點406之電壓。 以下討論另外之任意的致能或抑制光二極體之方法: 1 . 抑制方法Parameter symbol 値 unit wavelength λβ 340 nm emission frequency Ve 8.82 (10) 14 Hz power Pi 0.000240 (min) @20mA W pulse forward current I 200 mA emission pattern Lambertian N/A ultraviolet excitation pupil absorbs a small amount of light in the UV spectrum . Therefore, it is advantageous to use UV excitation light. A UV LED excitation source can be used, but the broad spectrum of LED 26 reduces the effectiveness of this method. For this, a filtered UV LED can be used. Incidentally, the UV laser can be an excitation source unless it is not practical for a particular test module market due to the relatively high cost of the laser. L E D Driver The LED driver 29 drives the LED 26 at a fixed current for a desired duration. The low-power USB 2.0 certified device can be obtained with a minimum operating voltage of 4.4 volts at up to 1 unit load (1 mA). Standard power conditioning circuits are used for this purpose. Photodiode Figure 54 shows photodiode 184 that is integrated into CMOS circuit 86 of LOC device 301. Light diode 184 is part of CMOS circuit 86 without additional masking or steps. This is a significant advantage of CMOS photodiodes over CCD2, another sensible technique that can be integrated onto the same wafer or fabricated on adjacent wafers using non-standard -68-201211240 processing steps. On-wafer inspection is inexpensive and reduces the size of the array system. The shorter optical path length reduces noise from the surrounding environment to efficiently collect fluorescent signals and reduce the need for conventional optical assemblies for lenses and filters. The quantum efficiency of the photodiode 184 is the fraction of photons colliding with its active region 185, and the photon system is efficiently converted into photoelectrons. For standard enthalpy treatment, the quantum efficiency of visible light is in the range of 0.3 to 0.5 depending on processing parameters such as the number of cover layers and absorption characteristics. The detection valve of the photodiode 1 84 determines the minimum intensity of the fluorescent signal that can be detected. The detection valve 値 also determines the size of the photodiode 1 84 and the number of hybrid chambers 180 in the hybridization and detection portion 52 (see Figure 52). The size and number of chambers are technical parameters that are limited by the size of the LOC device (1 760 μm x 5824 μm in the example of LOC device 301) and are subject to other functional modules (such as pathogen dialysis). The size of the portion 7 〇 and the amplifying portion 1 1 2 ) can be limited by the size of the animal piece that can be used. For standard 矽 processing, photodiode 184 detects a minimum of 5 photons. However, in order to confirm the reliable detection, the minimum 値 can be set to 1 光 photons. Therefore, the quantum efficiency range is from 0.3 to 0.5 (as discussed above), the fluorescence emission from the probe is a minimum of 17 photons, and the 30 photons contain a suitable margin for the error of reliable detection. The non-uniform electrical characteristics of the photodiode 184, the auto-fluorescence, and the residual excitation photon flux that is not fully attenuated introduce background noise and shift to the output -69 - 201211240 signal. The calibration signal is generated from each of the output signals by one or more calibration signals using a calibration source that will calibrate one or more of the calibration photodiodes 184 in the array. A low calibration source is used to determine the negative result of the target probe reaction. The high calibration source represents the positive result from the probe/target. In the specific embodiment described herein, the calibration chamber 382 in the low calibration hybridization chamber array 110 is provided: it does not contain any probes: contains probes that do not have a fluorescent reporter; or contains probes with reporters The needle is configured to always expect a quenching agent. The output signal from such a calibration chamber 3 82 is very close to the noise and bias in the output signals from all of the hybrid chambers in the medium. The output signal generated by the chamber is subtracted from the calibration signal, and the signal generated by the fluorescent emission is substantially removed (if any signal generated by the ambient light in the area of the array is generated, it is also referred to as H. The above negative control sets of Figures 105 through 108 are in the calibration chamber. However, as shown in Figures 91 and 92, which are enlarged views of the inserts DG and DH showing LOC variant X 728, another calibration chamber 3 82 and amplification Sub-fluidic isolation. When hybridizing from a fluid, background noise and bias can be judged by a chamber that is fluidly isolated, with a probe that lacks a reporter or that does have a reporter and a quencher, a "standard" probe. The chamber 382 can provide a high calibration source to generate a high signal in the diode. The high signal corresponds to removal of all probe numbers in the hybridized chamber. The light source exposed to the respective target is not quenched by the source. The LOC device has other hybrid backgrounds and words). turn. The probe can be used with the option of Figure 90 to block or either pass any of the packets of the package. It is reported that the -70-201211240 agent and no quencher or only the reporter spotting probe will consistently provide a signal that a large number of probes in the hybridization chamber have hybridized in the hybridization chamber. It is also understood that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and arrangement of calibration chambers 382 for the entire array of hybrid chambers is arbitrary. However, if the photodiode 184 is calibrated by a relatively close calibration chamber 382, the calibration is more accurate. Referring to Figure 56, hybridization chamber array 110 has one calibration chamber 382 for every eight hybridization chambers 180. That is, the calibration chamber 382 is disposed in the middle of each of the three by three square hybrid chambers 180. In this configuration, the hybridization chamber ISO is calibrated by the immediately adjacent calibration chamber 3M. Due to the excitation of the self-fluorescent signal from the surrounding hybridization chamber 180, FIG. 104 shows a differential imager circuit 78 8 for subtracting the signal from the photodiode 18 4 of the corresponding calibration chamber 382. The differential imager circuit 788 samples the signals from the pixels 790 and the "virtual" pixels 792. In one embodiment, the "virtual" pixel 7 92 is shielded from light illumination, so its output signal provides a dark reference. Alternatively, the "virtual" pixel 792 can be exposed to the laser with the remainder of the array. In a particular embodiment where the "virtual" pixel 792 is light responsive, the signal generated by ambient light in the area of the array is also subtracted. The signal from pixel 790 is weak (eg, close to the dark signal), and it is difficult to distinguish between the background and the very weak signal because there is no reference to the dark signal level. During the use, the "read_column" 794 and "start" are activated. Read_column_<1" 795 and turn on the M4 797 and MD4 801 transistors. Turning off switches 807 and 809 causes the outputs from pixel 790 and "virtual" pixel 792 to be stored on pixel capacitor 803 and virtual pixel capacitor 805, respectively. After the pixel signal is stored -71 - 201211240, switches 807 and 809 are disabled. The "read_row" switch 81 1 and the virtual "read_row" switch 8 1 3 are then turned off, and the switched capacitor amplifier 815 at the output amplifies the differential signal 817. The suppression and enabling of the photodiode must suppress the photodiode 184 during the excitation of the LED 26 and the photodiode 184 must be enabled during the fluorescence period. FIG. 65 is a circuit diagram of the single photodiode 184 and FIG. 66 is the photodiode control. Timing diagram of the signal. The circuit has a photodiode 184 and six MOS transistors, Mshunt 394, Mtx 396, Mreset 3 98, Msf 400, Mread 402, and Mbias 404. At the beginning of the excitation cycle, tl, transistor Mshunt 394, and Mreset 3 98 are turned on by pulling Mshunt gate 3 84 and resetting gate 3 88 high. During this period, the excitons generate carriers in the photodiode 184. When the amount of carrier generated is sufficient to saturate the photodiode 184, the carriers must be removed. During this cycle, Mshunt 394 directly removes the carriers generated in photodiode 184 due to leakage of the transistor or due to excitation-generated carrier diffusion in the substrate, while Mreset 398 resets to accumulate at node 'NS ' 406 any carrier. After the activation, the capture cycle begins at t4. In this loop, the response from the emission of the fluorophore is captured and integrated into the circuitry on node 'NS' 406. This is achieved by dragging the tx gate 3 86 high, which turns on the transistor Mtx 396 and any accumulated carrier on the transfer photodiode 184 to the node 'NS' 406. The capture cycle can be as long as a fluorescent emission. The output from all of the photodiodes 18 4 in the hybrid cell array 1 1 同时 is simultaneously captured. There is a delay between the end of the capture cycle t5 and the start of the read cycle t6. -72- 201211240 This delay is due to the need to read the respective photodiodes 184 in the hybridization chamber array 110 after the capture cycle (see Figure 52). The first photodiode 184 to be read will have the shortest delay before the read cycle, while the last photodiode 184 will have the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by dragging the read gate 3 93 high. The source-slaffer transistor Msf 400 is used to buffer and read the voltage of the 'NS' node 406. Any other method of enabling or suppressing a photodiode is discussed below: 1. Inhibition method

圖101、102及103顯示用於Mshunt電晶體394之可行的 配置778、780、782。於激發期間被致能之最大値|k|= 5 V 時,Mshunt電晶體3 94具有非常高的關閉比。如圖101中所 示者,Mshunt閘極3 84係配置成位於光二極體184之緣上。 任意地,如圖102中所示者,Mshunt閘極3 84係可配置成環 繞光二極體184。第三個選擇爲將Mshunt閘極384組構於光 二極體184之內,如圖103中所示者。依此第三選擇,光二 極體主動區185較少。 這三種配置778、7S0及782降低自光二極體184中所有 位置至Mshunt閘極384之平均路徑長度。於圖101中,Mshunt 閘極3 84係於光二極體184之一側上。此爲用以製造之最簡 單且對於光二極體主動區185衝擊最小的配置。然而,滯 留於光二極體1 84遠端之任何載子需要較長時間以擴散通 過 Mshunt閘極 3 84。 -73- 201211240 於圖102中,Mshunt閘極3 84環繞光二極體184。此進一 步降低光二極體184中之載子至Mshunt閘極384之平均路徑 長度。然而,繞光二極體184周圍而延伸Mshunt閘極3 84造 成光二極體主動區185大幅縮減。於圖103中之配置782將 Mshunt閘極3 84定位於主動區185中。此提供了至Mshunt閘極 3 84的最短平均路徑及因此得到最短過渡時間。然而,對 於主動區185之衝擊最大。其亦造成較寬的洩漏路徑。 2. 致能方法 a. 觸發器光二極體以固定的延遲來驅動並聯電晶體。 b. 觸發器光二極體以可程控的延遲來驅動並聯電晶體。 c. 由LED驅動脈衝以固定的延遲來驅動並聯電晶體。 d . 如2 c般但以可程控的延遲來驅動並聯電晶體。 圖68爲透過雜交室180顯示埋入於CMOS電路86中之光 二極體184及觸發器光二極體187之槪略視圖。以觸發器光 二極體187取代光二極體184之角落中的小面積。因相較於 螢光發射時激發光的強度爲高,具小面積之觸發器光二極 體187係充分的。觸發器光二極體187係對激發光2 44爲敏 感。觸發器光二極體】87顯示激發光2 44已熄滅並於短暫延 遲At 3 00之後啓動光二極體184(見圖2)。此延遲使得螢 光光二極體184得以於沒有激發光時檢測來自FRET探 針1 86之螢光發射。此致能檢測及增進信號對雜訊比。 於各雜交室180下’光二極體184及觸發器光二極體 -74- 201211240 187兩者均位於CMOS電路86中。光二極體陣列與適當電子 組件合倂以形成光感測器44 (見圖64 )。光二極體184爲 CMOS結構製造期間所製成的pn接面而不需另外的遮罩或 步驟。於MST製造期間,光二極體184之上的介電層(未 顯示)係利用標準MST光蝕刻技術而任意地薄化以使更多 螢光照射光二極體184的主動區185。光二極體184具有視 場,使得來自雜交室180內之探針-標靶雜交的螢光信號入 射至感測器表面上。轉換螢光成爲接著可使用CMOS電路 8 6而被測量的光電流。 替代性地,一或多個雜交室180可僅專用於觸發器光 二極體187。可使用這些選擇於此等與上述之2 a及2b的組 合中。 螢光之延遲檢測 下述推導說明係針對上述之LED/螢光團組合使用長壽 命螢光團的螢光延遲檢測。在由圖60顯示之時間^和(2之 間的固定強度Ie之理想脈衝激發之後,螢光強度係推導爲 時間的函數。 令〔〕 ( ί )於時間t等於激發態的強度,然後在激 發期間及之後,每單位體積每單位時間的激發態數量由下 面微分方程式描述: 迴(〇 +腿=么…⑴ dt rF hve 其中C爲螢光團的莫耳濃度,ε爲莫耳淬熄係數,Ve爲激發 -75- 201211240 頻率,且h = 6.62606896 ( 10) ·34 Js爲普朗克常數。 此微分方程式具有一般式= ^- + p(x)y = q(x) αχ 其有解法:Figures 101, 102 and 103 show possible configurations 778, 780, 782 for Mshunt transistor 394. Mshunt transistor 3 94 has a very high turn-off ratio when the maximum 値 |k| = 5 V is enabled during excitation. As shown in FIG. 101, the Mshunt gate 3 84 is configured to be located on the edge of the photodiode 184. Optionally, as shown in FIG. 102, the Mshunt gate 3 84 can be configured to surround the photodiode 184. A third option is to group the Mshunt gate 384 within the photodiode 184, as shown in FIG. According to the third option, the photodiode active region 185 is less. These three configurations 778, 7S0, and 782 reduce the average path length from all locations in the photodiode 184 to the Mshunt gate 384. In FIG. 101, an Mshunt gate 3 84 is attached to one side of the photodiode 184. This is the simplest configuration to make and the smallest impact on the active region of the photodiode 185. However, any carrier that is stuck to the far end of the photodiode 1 84 takes a long time to diffuse through the Mshunt gate 3 84. -73- 201211240 In Figure 102, the Mshunt gate 3 84 surrounds the photodiode 184. This further reduces the average path length of the carriers in the photodiode 184 to the Mshunt gate 384. However, extending the Mshunt gate 3 84 around the photodiode 184 causes the photodiode active region 185 to be substantially reduced. Configuration 782 in FIG. 103 positions Mshunt gate 3 84 in active region 185. This provides the shortest average path to the Mshunt gate 3 84 and thus the shortest transition time. However, the impact on the active zone 185 is greatest. It also creates a wide leak path. 2. Enabling method a. The flip-flop photodiode drives the shunt transistor with a fixed delay. b. The flip-flop photodiode drives the shunt transistor with a programmable delay. c. The parallel drive transistor is driven by the LED drive pulse with a fixed delay. d. Drive the parallel transistor as a 2 c but with a programmable delay. Fig. 68 is a schematic view showing the photodiode 184 and the flip-flop photodiode 187 buried in the CMOS circuit 86 through the hybridization chamber 180. The small area in the corner of the photodiode 184 is replaced by the flip-flop light diode 187. The trigger photodiode 187 having a small area is sufficient because the intensity of the excitation light is higher than that of the fluorescent emission. The flip-flop photodiode 187 is sensitive to the excitation light 2 44 . The flip-flop photodiode 87 shows that the excitation light 2 44 is extinguished and the photodiode 184 is activated after a brief delay of At 3 00 (see Fig. 2). This delay allows the fluorescent photodiode 184 to detect the fluorescent emission from the FRET probe 1 86 when there is no excitation light. This enables detection and enhancement of signal to noise ratio. Both the photodiode 184 and the flip-flop photodiode -74-201211240 187 are located in the CMOS circuit 86 under each hybrid cell 180. The photodiode array is combined with appropriate electronic components to form a photosensor 44 (see Figure 64). The photodiode 184 is a pn junction made during the fabrication of the CMOS structure without the need for additional masking or steps. During MST fabrication, the dielectric layer (not shown) over the photodiode 184 is arbitrarily thinned using standard MST photolithography techniques to cause more of the phosphor to illuminate the active region 185 of the photodiode 184. The photodiode 184 has a field of view such that a fluorescent signal from the probe-target hybridization within the hybridization chamber 180 is incident on the surface of the sensor. The converted fluorescent light becomes a photocurrent that can be measured using the CMOS circuit 86. Alternatively, one or more of the hybridization chambers 180 may be dedicated only to the trigger photodiode 187. These choices can be used in combination with 2a and 2b above. Fluorescence Delay Detection The following derivation is based on the fluorescence delay detection of long-life fluorophores for the combination of the above LED/fluorescent clusters. After excitation by the ideal pulse of the fixed intensity Ie between the time shown in Fig. 60 and (2), the fluorescence intensity is derived as a function of time. Let [] ( ί ) be equal to the intensity of the excited state at time t, then During and after excitation, the number of excited states per unit volume per unit time is described by the following differential equation: Back (〇+腿=么...(1) dt rF hve where C is the molar concentration of the fluorophore and ε is the molar quenching The coefficient, Ve is the excitation -75-201211240 frequency, and h = 6.62606896 (10) · 34 Js is the Planck constant. This differential equation has the general formula = ^- + p(x)y = q(x) αχ solution:

| p(x)dx q^dx + k eJpW<& 現在使用此來解答式(1), ... ( 3) hve 然後於時間h, 〔 SI〕 ( h ) = 〇,且自(3 ) (4) (3 ) =一…... hve 將(4 )代入 [51](〇 人 £Cry hve hve 於時間ί 2,: I £CT r I SQX f _it * \iτ , [51](i2) = -~f----~Le(h ύ ! ... ( 5) hve hve 於/ 2 G,激發態以指數衰減且以式(6 )描述: [51](〇 = [51](i2)e'(,',2)/r/ ... ( 6 ) 將(5 )代入(6 ): -76- 201211240 [51](〇 = l-e^-f [1 - ]e-(,-^)/r/ ... (7) 該螢光強度由下列等式得到:|p(x)dx q^dx + k eJpW<& Now use this to solve equations (1), ... (3) hve then at time h, [SI] (h) = 〇, and from (3 (4) (3) = one... hve Substituting (4) into [51] (〇人Cry hve hve at time ί 2,: I £CT r I SQX f _it * \iτ , [51] (i2) = -~f----~Le(h ύ ! ... ( 5) hve hve at / 2 G, the excited state is exponentially decayed and described by equation (6): [51] (〇 = [ 51](i2)e'(,',2)/r/ ... (6) Substituting (5) into (6): -76- 201211240 [51](〇= le^-f [1 - ]e -(,-^)/r/ ... (7) The intensity of the fluorescence is obtained by the following equation:

If{t) = -^^-hvfnl ... ( 8 ) 其中v7爲該蛋光頻率’ η爲量子產率,且i爲光學路徑長度 〇 於是自(7 ): c-(h-h)lu-y£<t-h)lu ( 9 ) dt hve 將(9 )代入(8 ):If{t) = -^^-hvfnl ... ( 8 ) where v7 is the optical frequency of the egg ' η is the quantum yield, and i is the optical path length 〇 then from (7 ): c-(hh)lu- y£<th)lu ( 9 ) dt hve Substituting (9) into (8):

If {t) = Ιε€ϋΙη^[1 -e~{,1-ll)/^]e{,"lVtf ... ( 1 0 ) ^ e 因爲 ^~-->〇〇, I At) -> I εοΙη—β~(ι~,ι)ΙΤ/If {t) = Ιε€ϋΙη^[1 -e~{,1-ll)/^]e{,"lVtf ... ( 1 0 ) ^ e because ^~-->〇〇, I At ) -> I εοΙη—β~(ι~,ι)ΙΤ/

Tf Ve 因此’我們可以寫出下列的近似式,此式描述在充分 長的激發脈衝(i2-il>>Tf)後之營光強度衰減:對於 t>t2 ΙΜ) = ΙεεοΙη^-βΗί~,2),Τί ...(11) 在上一節,我們針對h-il >>Tf作的情況做總結, 而對於t t h 丨⑺:/户。 ^ e 從上述的等式,我們可以導出下列式子: nf{t) = ηεεοΙηβ~{,'(ι)'τ, ... ( 12) 其中 -77- 201211240 \(0=_^7爲每單位面積每單位時間之螢光光子數且 & 爲每單位面積每單位時間之激發光子數。 rlVe 因此, 00 rif{t) = \nf{t)dt ... ( 13 ) 其中&爲每單位面積之螢光光子數且 ί3爲光二極 體開啓的時間點。將(1 2 )代入(1 3 ): 〇〇 hf = jyie8cl”e…dt ... ( 14) h 目前,每單位面積每單位時間到達光二極體之螢光光 子數,& (0,係由下式獲得: ns(t) = nf(t)<f>0 ... ( 15) 其中么爲光學系統之光收集效率。 將(1 2 )代入(.1 5 )我們發現 ris(t) = φ^ηβεοΙηβΛι~,ι)ΙΤί ... ( 16) 同樣地,每單位螢光面積Α到達光二極體之螢光光子 數將如下述: 圮=P;(o必且代入(16)並積分: h ns =φ(;η,εαΙητίβ(,ι'Η)ΙΤ/ 因此, ns =φ^ήΐεοΙ·ητfe~^IXf ... ( 17) ί3的理想値係於當因螢光光子該光二極體184內之產生 -78- 201211240 的電子率等於由激發光子於光二極體184內之產生的電子 率時,因爲激發光子通量衰減比螢光光子通量衰減快更多 由於螢光之每單位螢光面積的感測器輸出電子率爲: ·έ>(,) =娜) 其中七爲在螢光波長之感測器的量子效率。 代入(1 7 )我們得到: έ}(ί) = φ/φ0ηΙ!α:Ιηβ~ΙΙ~,2)ΙΤ/ ... ( 18) 同樣地,由於激發光子之每單位螢光面積的輸出電子 率爲: €(0 W...(19) 其中么爲在激發波長之感測器的量子效率,且τβ爲 相對於激發LED之『切斷』特性的時間常數。在時間t2之 後,LED之衰減光子通量增加螢光訊號的強度且延長其衰 減時間,但我們假設此對I f ( t )爲可忽略的影響,因此我 們採取保守(conservative)的方法。 目前,如先前所提及,ί3的理想値爲當: ef(t3) = ee(t3) 因此,由(18 )和(19 )我們得到·· Φ/Φ〇η€εοΙηβ'{,ι~,ι)ΙΤί = 並且重整之後我們得到: \η{εοΙη Φ/Φο,IT. ...(20)Tf Ve therefore 'we can write the following approximation, which describes the attenuation of the camping light intensity after a sufficiently long excitation pulse (i2-il>>Tf): for t>t2 ΙΜ) = ΙεεοΙη^-βΗί~ , 2), Τί ... (11) In the previous section, we summarized the situation for h-il >>Tf, and for tth 丨(7):/household. ^ e From the above equation, we can derive the following formula: nf{t) = ηεεοΙηβ~{,'(ι)'τ, ... ( 12) where -77- 201211240 \(0=_^7 is The number of photons per unit area per unit time and & is the number of excitation photons per unit area per unit time. rlVe Therefore, 00 rif{t) = \nf{t)dt ... ( 13 ) where & The number of fluorescent photons per unit area and ί3 is the time point at which the photodiode is turned on. Substituting (1 2 ) into (1 3 ): 〇〇hf = jyie8cl”e...dt ... ( 14) h Currently, the number of fluorescent photons per unit area per unit time reaches the photodiode, & (0, It is obtained by: ns(t) = nf(t)<f>0 (15) where is the light collection efficiency of the optical system. Substituting (1 2 ) into (.1 5 ) we find ris (t) = φ^ηβεοΙηβΛι~, ι)ΙΤί ... (16) Similarly, the number of fluorescent photons reaching the photodiode per unit of fluorescent area 将 will be as follows: 圮=P; (o must be substituted ( 16) and integral: h ns = φ (; η, εα Ι η τ ί β (, ι 'Η) ΙΤ / Therefore, ns = φ ^ ήΐ εοΙ · ητfe ~ ^ IXf ... ( 17) ί3 ideal 値 is due to fluorescent The photon generated in the photodiode 184 has an electron ratio equal to that produced by the excitation photon in the photodiode 184 because the excitation photon flux decays more rapidly than the fluorescence photon flux. The output electron rate of the fluorescence per unit of fluorescence area is: ·έ>(,) = Na) where seven is the quantum efficiency of the sensor at the fluorescent wavelength. Substitute (1 7) we get: έ }(ί) = φ/φ0ηΙ!α:Ιηβ~ΙΙ~,2)ΙΤ/ ... (18) Similarly, the output electron ratio per unit of fluorescence area of the excited photons is: €(0 W...(19) What is the quantum efficiency of the sensor at the excitation wavelength, and τβ is the time constant relative to the "cut" characteristic of the excited LED. After time t2, the attenuated photon flux of the LED increases the intensity of the fluorescent signal and extends it. Decay time, but we assume that this pair of I f ( t ) is negligible, so we take a conservative approach. Currently, as mentioned earlier, the ideal ί of ί3 is: ef(t3) = ee (t3) Therefore, from (18) and (19) we get ··Φ/Φ〇η€εοΙηβ'{,ι~,ι)ΙΤί = and after reforming we get: \η{εοΙη Φ/Φο,IT ..(20)

Te -79- 201211240 由上面兩段,我們得到下列兩個運算式: ns ~Φ^ιΐΡτfe ^,Xi …(21) ln(V 丛、 Δ/ = —^__tlA ( 22 ) r/ re 其中F = £c//7且Δ/ = ί3-ί2,我們亦了解,實際上,ί2-ί, »、。 用於螢光檢測的理想時間及使用?11丨1丨?3 1^尺2-?1114-1100 LED和Pulsar 650染料所檢測的螢光光子數決定如下。 理想檢測時間係使用式(22 )決定: 回想擴增子的濃度,且假設所有擴增子雜交,則發螢 光的螢光團濃度爲:c = 2.89(10) '6mol/L。 室的高度爲光學路徑長度l = 8(l〇V6m。 , 已將螢光區域視爲等同於光二極體區域,然而實際的 螢光區域實質上大於光二極體區域:因此可大槪假設 么=0.5爲光學系統之光採集效率。光二極體的特性,^ = 10 Φβ 爲在螢光波長之該光二極體量子效率對在激發波長之光二 極體的量子效率之比的極保守値。 以典型的LED衰減壽命0.5奈秒和使用Pulsar 650規 格,可決定〜: F = [1.48(10)6 ][2.89(10)·6 ][8(10广6 ](1) =3.42 ( 10 ) '5 A. ln([3.42(10)-5](10)(0.5)) 心 1 1 1(10)·6 ~ 0.5(10)-9 = 4.34(10) -80- 201211240 偵測到的光子數目係使用等式(2 1 )決定。首先,每 單位時間發射的激發光子數目係由檢驗照明幾何而決定Te -79- 201211240 From the above two paragraphs, we get the following two expressions: ns ~Φ^ιΐΡτfe ^,Xi ...(21) ln(V plex, Δ/ = —^__tlA ( 22 ) r/ re where F = £c//7 and Δ/ = ί3-ί2, we also know, in fact, ί2-ί, »,. Ideal time for fluorescent detection and use? 11丨1丨?3 1^尺2-? The number of fluorescent photons detected by the 1114-1100 LED and the Pulsar 650 dye is determined as follows. The ideal detection time is determined using the formula (22): recalling the concentration of the amplicon, and assuming that all the amplicons are hybridized, the fluorescent light is emitted. The concentration of the light group is: c = 2.89(10) '6mol/L. The height of the chamber is the optical path length l = 8 (l〇V6m. ) The fluorescent area has been regarded as equivalent to the photodiode area, but the actual firefly The light region is substantially larger than the light diode region: therefore, it can be assumed that the light collection efficiency of the optical system is greater than 0.5. The characteristics of the photodiode, ^ = 10 Φβ is the quantum efficiency of the photodiode at the fluorescence wavelength. The ratio of the quantum efficiency of the excitation wavelength of the photodiode is extremely conservative. With a typical LED attenuation lifetime of 0.5 nanoseconds and using the Pulsar 650 specification Can be determined ~: F = [1.48(10)6 ][2.89(10)·6 ][8(10广6 ](1) =3.42 ( 10 ) '5 A. ln([3.42(10)-5] (10)(0.5)) Heart 1 1 1(10)·6 ~ 0.5(10)-9 = 4.34(10) -80- 201211240 The number of detected photons is determined using equation (2 1 ). First, The number of excitation photons emitted per unit time is determined by examining the illumination geometry

Philips LXK2-PR14-R00 LED 具有 Lambertian發射圖形 ,因此: n, = nl0 cos(9) ... ( 23 ) 其中%爲與LED的順向軸線方向之角度爲Θ之每單位立體角 每單位時間發射的光子數目,且心爲%在順向軸線方向之 値。 由該LED每單位時間所發射的光子之總數爲: ή, = |η)ί/Ω Ω =f ril0 cos(0)d〇. π ... ( 24) 現在, △Ω = 2;r[l - cos(0 + A0)] _ 2;r[l — cos(0)] + 4;rcos(0)sin2 ΔΩ = 2^-[cos(0) - cos(^ + ΑΘ)] a rm ίΔ^Ί · (Α0λ =4^sin(^)coslsm|^ ί/Ω = 2nsm{9)d9 代入(24): π Ί ή, = 12mil0 cos{e)sin(9)d6 o =砵0 重新排列,我們得到:The Philips LXK2-PR14-R00 LED has a Lambertian emission pattern, so: n, = nl0 cos(9) ... ( 23 ) where % is the angle from the direction of the axis of the LED to 每 per unit solid angle per unit time The number of photons emitted, and the heart is % in the direction of the forward axis. The total number of photons emitted by the LED per unit time is: ή, = |η) ί/Ω Ω =f ril0 cos(0)d〇. π ... ( 24) Now, △Ω = 2;r[ l - cos(0 + A0)] _ 2;r[l — cos(0)] + 4;rcos(0)sin2 ΔΩ = 2^-[cos(0) - cos(^ + ΑΘ)] a rm ίΔ ^Ί · (Α0λ =4^sin(^)coslsm|^ ί/Ω = 2nsm{9)d9 Substituting (24): π Ί ή, = 12mil0 cos{e)sin(9)d6 o =砵0 Rearrange ,we got:

...(26) -81 - 201211240 LED的輸出功率爲0.515瓦且 ve = 6·52 ( 10) 14赫兹 ,因此: ή,: fl- ...(27) __0.515_ ~ [6.63(1 0)-34][6.52(10)u] =1 · 19 ( 10 ) 18 光子 /秒 將此値帶入(26 )我們得到: ... 1.19(10)18 =3.79 ( 10) 17光子/秒/球面度 參照圖61,光學中心252和LED 26之透鏡254係槪略顯 示。光二極體爲16微米xl6微米,且對於在陣列中間的光 二極體,自LED 26發射至光二極體184的光錐的立體角( Ω)係大約: Ω =感測器面積/r2 [16 (10)^16(10)4] 2.825(10)-3]2 =3.21(10广5球面度 將理解光二極體陣列44之中央光二極體184爲用於這 些計算之用途。位於陣列邊緣的感測器在雜交事件時僅接 收低2%之光子用於Lambertian激發源強度分佈。 每單位時間發射的激發光子數: he = η,Ω. ... ( 28 ) =[3.79(10)17][3.21(1〇Γ5] = 1.22(10) 13 光子 / 秒 現在參考等式(29): -82- 201211240 / « J-7 —Δ/1X f ns =(j>^neFTfe ! ns =(0.5)^.22(10)^1^.42(10)-^^(10)-6^-43400^^00^ =208光子/感測器 因此,使用 Philips LXK2-PR1 4-R00 LED和 Pulsar 650 螢光團,我們可以輕易地檢測任何造成此等數目之光子被 激發的雜交事件。 SET LED照明幾何係顯示於圖62中。ID = 20毫安培時 ,LED具有最小光學功率輸出Pl = 24〇微瓦,波長中心於λβ =34〇奈米(铽螯合物之吸收波長)。驅動LED於ID = 200 毫安培,線性增加輸出功率至Pi = 2.4毫瓦。藉由將LED的 光學中心252置於離雜交室陣列1 10距離17.5毫米處,我們 大約將輸出通量集中於具有最大直徑爲2毫米的圓點大小 在雜交陣列平面之2毫米直徑點中的光子通量由等式 27得到。 1 hve 2.4(10)-3 ~[6.63(10)-34][8.82(10)14] =4.10 ( 10 ) 15 光子 /秒 使用等式2 8,我們得到: ne - w'/Ω 4.10(10)15 [16(10)6]2 41(10)-3]2 3.34(10)11 光子/秒 現在,回到等式22及使用先前列舉的Tb螯合物特性 -83- 201211240 A. 1η[(6.94(10)—5)(10)(0.5)] = 11 1(10)·3 ~ 0.5(10)-9 =3.98 ( 10)「9 秒 現在自等式2 1 : ns = (0.5)[3.34(10)π][6.94(10)-5][1(10)-3]β'398(10)'9/,(,〇Γ5 =1 1,600光子/感測器 由雜交事件使用SET LED和铽螯合物系統發射之光子 理論數値係可簡單的檢測且遠超過3 0個光子數之低限値, 其爲以用於由上述所指示之光感測器之可信賴的檢測所需 探針與光二極體間之最大間隔 雜交之晶片上檢測避免以共軛焦顯微鏡(見先前技術 )檢測之需要。此背離傳統檢測技術在與系統有關的時間 和成本節省中爲重要的因素。傳統檢測需要必須使用透鏡 和彎曲鏡面之成像光學。藉由採用非成像光學,診斷系統 避免複雜及笨重的光學元件串之需求。將光二極體放置於 非常靠近探針具有極高收集效率的優點。當在探針和光二 極體間的材料厚度爲1微米級時,發射光之收集角係高達 173°。此角度藉由考慮自最靠近光二極體之雜交室表面中 心的探針發射的光來計算’該光二極體具有平行於室表面 的平面主動表面區。於光可以於其內由光二極體吸收之發 射角錐係定義爲:在其頂點和在其平面之周圍上的感測器 角落具有發射探針。對於16微米XI 6微米的感測器,此錐 體的頂角爲170° :在光二極體經擴展使得其面積符合該29 -84- 201211240 微米X 1 9.7 5微米之雜交室面積的限制例中,該頂角爲1 7 3。 。在室表面和光二極體主動表面之間的分隔爲1微米或更 小是容易達成的。 應用非成像光學方法需要光二極體184非常靠近雜交 室以收集螢光發射之充分的光子。光二極體和探針之間的 最大間隔係參照如下圖54所決定。 利用铽螯合物螢光團和SET UVTOP3 3 5T039BL LED, 我們計算自個別雜交室180到達16微米xl6微米之光二極體 184的116 00個光子。在實施此計算時,我們假設雜交室 180之光收集區域具有與光二極體主動區185相同的底面積 ,且雜交光子之總數的一半到達光二極體184。即光學系 統之光收集效率爲么=0.5。 更精確,我們可以寫出九=〔(雜交室之光收集區域 的底面積)/(光二極體面積)〕〔Ω/4π〕,其中Ω=立體 角其對向於在雜交室之基底上之代表點之光二極體。對於 正確的(right)正方錐幾何: Q = 4arcsin(a2/(4d〇2 + a2)),其中 d〇 =在室與光二極體之 間的距離,且爲光二極體尺寸。 各雜交室釋放23200個光子,經選擇的光二極體之檢 測低限値爲1 7個光子,因此,所需的最小光學效率爲: 焱=1 7/23 200 = 7.3 3 X 1 0_4 雜交室180之光收集區域的底面積爲29微米xl9.75微 米。 解出,將得到在雜交室及光二極體〗84之間的最大 -85- 201211240 限制距離爲dQ = 249微米。在此限制中,如上所定義之收 集錐角僅爲〇. 8 °。應注意的是此分析忽略了折射之可忽略 的影響。 LOC變體 以上詳細描述及說明之LOC裝置3 0 1僅爲許多可行之 LOC裝置設計中之一者。現將以槪略流程圖(自樣本輸入 至檢測)說明及/或顯示使用上述的各種功能部之不同組 合之LOC裝置變體而闡述一些可行的組合。將流程圖適當 的分成樣本輸入及製備階段2 8 8、萃取階段290、培養階段 291、擴增階段292、預-雜交階段293以及檢測階段294。 爲清楚及簡明表示之故,僅簡單說明或槪要顯示所有的 LOC變體而未顯示細節配置。亦爲清楚表示之故,未顯示 較小的功能單元,諸如液體感測器及溫度感測器,但應理 解的是此等功能單元已被倂入以下LOC裝置設計之各者的 適當位置。...(26) -81 - 201211240 The output power of the LED is 0.515 watts and ve = 6·52 (10) 14 Hz, therefore: ή,: fl- ...(27) __0.515_ ~ [6.63(1 0)-34][6.52(10)u] =1 · 19 ( 10 ) 18 photons/sec brings this 入 into (26) we get: ... 1.19(10)18 =3.79 ( 10) 17 photons / Second/Sphericality Referring to Figure 61, the optical center 252 and the lens 254 of the LED 26 are shown schematically. The photodiode is 16 micrometers x 16 micrometers, and for the photodiode in the middle of the array, the solid angle (Ω) of the light cone emitted from the LED 26 to the photodiode 184 is approximately: Ω = sensor area / r2 [16 (10)^16(10)4] 2.825(10)-3]2 = 3.21 (10 Width 5 Sphere) It will be understood that the central photodiode 184 of the photodiode array 44 is used for these calculations. The sensor receives only 2% lower photons for the Lambertian excitation source intensity distribution during the hybridization event. The number of excitation photons emitted per unit time: he = η, Ω. ... ( 28 ) = [3.79(10) 17][3.21(1〇Γ5] = 1.22(10) 13 Photons/sec Now refer to equation (29): -82- 201211240 / « J-7 —Δ/1X f ns =(j>^neFTfe ! ns = (0.5)^.22(10)^1^.42(10)-^^(10)-6^-43400^^00^ =208 Photon/Sensor Therefore, use Philips LXK2-PR1 4-R00 LED With the Pulsar 650 fluorophore, we can easily detect any hybridization events that cause these numbers of photons to be excited. The SET LED illumination geometry is shown in Figure 62. The LED has a minimum optical power output when ID = 20 mA. = 24 〇 microwatt, wavelength center at λβ = 3 4 〇 nanometer (absorption wavelength of ruthenium chelate). Drive LED at ID = 200 mA, linearly increase output power to Pi = 2.4 mW. By placing the optical center 252 of the LED away from the hybrid chamber array 1 10 At a distance of 17.5 mm, we approximate the output flux to a photon flux with a maximum diameter of 2 mm and a photon flux in the 2 mm diameter point of the hybrid array plane. Equation 1 is obtained from Equation 27. 1 hve 2.4(10)- 3 ~[6.63(10)-34][8.82(10)14] =4.10 ( 10 ) 15 Photons/sec Using Equation 2 8, we get: ne - w'/Ω 4.10(10)15 [16(10 ) 6] 2 41(10)-3] 2 3.34(10)11 Photons/sec Now, return to Equation 22 and use the previously listed Tb chelate characteristics -83- 201211240 A. 1η[(6.94(10) —5)(10)(0.5)] = 11 1(10)·3 ~ 0.5(10)-9 =3.98 ( 10) "9 seconds now self-equal 2 1 : ns = (0.5) [3.34(10) π][6.94(10)-5][1(10)-3]β'398(10)'9/,(,〇Γ5 =1 1,600 photon/sensor chelating with SET LED and 铽 by hybridization event The photon theory number emitted by the object system can be easily detected and far exceeds the lower limit of 30 photons, which is used for the photosensor indicated by the above. Detecting the maximum separation on the wafer to avoid hybridization between the detection probe and the desired light diode to true confocal microscopy (see prior art) it is necessary to detect. This departure from traditional detection techniques is an important factor in the time and cost savings associated with the system. Traditional inspection requires the use of imaging optics that use lenses and curved mirrors. By using non-imaging optics, the diagnostic system avoids the need for complex and cumbersome strings of optical components. Placing the photodiode in close proximity to the probe has the advantage of extremely high collection efficiency. When the material thickness between the probe and the photodiode is 1 micron, the collection angle of the emitted light is as high as 173°. This angle is calculated by considering the light emitted from the probe closest to the center of the surface of the hybridization chamber of the photodiode. The photodiode has a planar active surface region parallel to the surface of the chamber. The cone of the cone in which the light can be absorbed by the photodiode is defined as having a firing probe at its apex and at the sensor corners around its plane. For a 16 micron XI 6 micron sensor, the apex angle of the cone is 170°: a limitation in the area of the hybrid chamber where the photodiode is expanded such that its area conforms to the 29-84-201211240 micron X 1 9.7 5 micron The apex angle is 173. . A separation of 1 micron or less between the surface of the chamber and the active surface of the photodiode is easily achieved. The application of a non-imaging optical method requires that the photodiode 184 be in close proximity to the hybridization chamber to collect sufficient photons of the fluorescent emission. The maximum spacing between the photodiode and the probe is determined as shown in Figure 54 below. Using the ruthenium chelate fluorophore and the SET UVTOP3 3 5T039BL LED, we calculated 16,000 photons from individual hybridization chambers 180 to 16 micron x 16 micron photodiodes 184. In carrying out this calculation, we assume that the light collection region of the hybridization chamber 180 has the same bottom area as the photodiode active region 185, and that half of the total number of hybrid photons reaches the photodiode 184. That is, the light collection efficiency of the optical system is ???=0.5. More precisely, we can write nine = [(the bottom area of the light collection area of the hybridization chamber) / (photodiode area)] [Ω / 4π], where Ω = solid angle is opposite to the substrate of the hybridization chamber The light diode of the representative point. For the right square pyramid geometry: Q = 4arcsin(a2/(4d〇2 + a2)), where d〇 = the distance between the chamber and the photodiode, and the size of the photodiode. Each hybrid cell releases 23,200 photons, and the selected photodiode has a lower detection limit of 17 photons. Therefore, the minimum optical efficiency required is: 焱=1 7/23 200 = 7.3 3 X 1 0_4 Hybridization chamber The bottom area of the light collection region of 180 is 29 microns x 19.75 microns. Solving, the maximum distance between the hybridization chamber and the photodiode 84 is -85- 201211240 and the limit distance is dQ = 249 microns. In this limitation, the collecting cone angle as defined above is only 〇. 8 °. It should be noted that this analysis ignores the negligible effect of refraction. LOC Variants The LOC device 301 described and illustrated above is only one of many possible LOC device designs. Some possible combinations will now be described in the context of a flow chart (from sample input to detection) and/or display of LOC device variants using different combinations of the various functionalities described above. The flow chart is appropriately divided into a sample input and preparation stage 2 8 8 , an extraction stage 290, a culture stage 291, an amplification stage 292, a pre-hybridization stage 293, and a detection stage 294. For the sake of clarity and conciseness, only a brief description or summary of all LOC variants is shown and no detail configuration is shown. Also for clarity, smaller functional units, such as liquid sensors and temperature sensors, are not shown, but it should be understood that such functional units have been incorporated into the proper location of each of the following LOC device designs.

LOC變體XII 圖93至100顯示LOC變體XII 758。此LOC裝置萃取290 、培養291、擴增292及檢測294病原體DNA,且使用預-雜 交純化步驟293以提高雜交效率。將樣本(諸如,全血液 )添加至樣本入口 68(見圖95),及毛細作用吸引樣本至 表面張力閥Π8 (係將來自貯槽54之抗凝劑添加至表面張 力閥Π8)。樣本繼續行進於蓋通道94中而至病原體透析 -86- 201211240 部70。透析部70具有旁路通道600以免除捕集的氣泡(見 圖 9 5 ) 〇 於病原體透析部70進行透析之後,將紅血球及白血球 流導向廢料儲器76,而繼續存於樣本中的病原體流至表面 張力閥128 (係將來自貯槽56之溶胞試劑添加至表面張力 閥128)。樣本塡充化學溶胞室130,由沸騰引動閥206保 持化學溶胞室130直至溶胞試劑經擴散通過樣本以釋出大 多數(但非全部)的病原體DNA。當沸騰引動閥206打開 時,樣本流動至表面張力閥1 3 2 (係將來自貯槽5 8之限制 性酵素、接合酶及聯結子引子添加至表面張力閥1 3 2 )。 樣本塡充培養部1 1 4,以及於發生病原體DN A之限制性酵 素剪切及聯結子接合時,樣本經加熱(見圖95 )。 限制性酵素剪切及聯結子接合之後,沸騰引動閥207 打開以使樣本流動至擴增部1 1 2中。當樣本流動至擴增部 1 12中時,經由表面張力閥1 38添加來自貯槽60之擴增混合 以及來自貯槽62之聚合酶通過表面張力閥140。於沸騰引 動閥1 08打開以使擴增子流動至已移除大成分之小組分透 析部682之前,藉由熱循環擴增病原體DNA。(見圖95 ) 〇 如最佳顯示於圖98及99中者,小組分透析部6 82具有 介於形成於底通道層1〇〇中的兩個小組分通道762之間的大 組分通道760 (見圖94 )。藉由呈一系列倒錐形開口 764 ( 於大組分通道端處爲較小)之小孔而將大組分通道760連 接至小組分通道762。於大多數的實際應用中,小孔爲1至 -87- 201211240 8微米寬及1至8微米高。當擴增子流動至大組分通道760中 時,小組分(小於倒錐形開口 764 )開始擴散至小組分通 道762中。隨著流動前進至小組分透析部682之下游端’大 組分通道760中之小組分的濃度降低。微製造之小孔之另 外的優勢爲,沿著通道之每單元長度的小孔數非常高’而 得以更有效地進行分離。爲依關注的尺寸進行組分之有效 分離,相鄰小孔之間的間距介於1微米及1 〇微米之間:於 圖9 9所示之具體實施例,相鄰小孔之間的間距爲8微米。 圖100顯示小組分透析部68 2之下游端。大組分通道 760分道成爲於作爲廢料儲器之盲終端766之寬曲折終點。 兩個小組分通道762前進至雜交室陣列1 1 0之相對側,二者 均通過陣列之蜿蜒路徑而到達分別的肓終端768。於雜交 加熱器及接續的探針-標靶雜交檢測(如前述者)之定時 啓動之前,小組分擴增子塡充所有獨立的雜交室180。 小組分透析部682移除可能仍存留於經細胞溶胞後之 樣本流中的細胞碎片。細胞碎片可能影響雜交效率。LOC Variant XII Figures 93 through 100 show LOC variant XII 758. The LOC device extracts 290, cultures 291, expands 292, and detects 294 pathogen DNA, and uses a pre-hybrid purification step 293 to increase hybridization efficiency. A sample, such as whole blood, is added to the sample inlet 68 (see Figure 95), and capillary action is applied to the surface tension valve Π8 (the anticoagulant from the sump 54 is added to the surface tension valve Π8). The sample continues to travel in the lid channel 94 to the pathogen dialysis -86 - 201211240 section 70. The dialysis section 70 has a bypass passage 600 to eliminate trapped air bubbles (see FIG. 9.5). After the dialysis section 70 performs dialysis, the red blood cells and white blood cells are directed to the waste reservoir 76 to continue the pathogen flow in the sample. To surface tension valve 128 (the lysis reagent from sump 56 is added to surface tension valve 128). The sample fills the chemical lysis chamber 130, and the chemical lysis chamber 130 is held by the boiling pilot valve 206 until the lysis reagent diffuses through the sample to release most, but not all, of the pathogen DNA. When the boiling pilot valve 206 is opened, the sample flows to the surface tension valve 132 (the restriction enzyme, ligase, and linker primer from the reservoir 58 are added to the surface tension valve 132). The sample is incubated with the culture section 1 1 4, and the sample is heated when the pathogen DN A is restricted by restriction enzyme cleavage and junction bonding (see Figure 95). After restriction enzyme shearing and junction bonding, the boiling pilot valve 207 opens to allow the sample to flow into the amplification section 112. When the sample flows into the amplification section 1 12, the amplification mix from the sump 60 and the polymerase from the sump 62 are passed through the surface tension valve 140 via the surface tension valve 138. The pathogen DNA is amplified by thermal cycling before the boiling pilot valve 108 is opened to allow the amplicon to flow to the small component dialysis section 682 where the large component has been removed. (See Fig. 95) As best shown in Figures 98 and 99, the small component dialysis section 6 82 has a large component channel between the two small component channels 762 formed in the bottom channel layer 1〇〇. 760 (see Figure 94). The large component channel 760 is coupled to the small component channel 762 by a small aperture in a series of inverted tapered openings 764 (which are smaller at the ends of the large component channels). In most practical applications, the small holes are 1 to -87 - 201211240 8 microns wide and 1 to 8 microns high. When the amplicon flows into the large component channel 760, the small component (less than the inverted tapered opening 764) begins to diffuse into the small component channel 762. As the flow proceeds to the downstream end of the small component dialysis section 682, the concentration of the small component in the large component channel 760 decreases. An additional advantage of microfabricated apertures is that the number of apertures per unit length along the channel is very high' for more efficient separation. For effective separation of components according to the size of interest, the spacing between adjacent apertures is between 1 micrometer and 1 micrometer: in the specific embodiment shown in Figure 99, the spacing between adjacent apertures It is 8 microns. Figure 100 shows the downstream end of the small component dialysis section 68 2 . The large component channel 760 lane becomes the wide tortuous end point of the blind terminal 766 as a waste reservoir. The two small component channels 762 are advanced to the opposite side of the hybridization chamber array 110, both of which pass through the tantalum path of the array to the respective turns terminal 768. The small component amplicon is flooded with all of the individual hybridization chambers 180 prior to initiation of hybridization heaters and subsequent probe-target hybridization assays (e.g., as described above). The small component dialysis section 682 removes cellular debris that may still remain in the sample stream after cell lysis. Cell debris may affect the efficiency of hybridization.

LOC變體XIX 顯示於圖78中的LOC變體XIX 646,於核酸擴增(擴 增部112)前,具有樣本的病原體透析部70及熱溶胞部638 ’但於擴增292及檢測相294之間增加預-雜交純化步驟293 。預-雜交、小組分透析部682移除樣本流中之細胞碎片而 使細胞溶胞。大多數的核酸擴增規程係充分地耐受樣本中 的細胞碎片。然而,雜交可能受到細胞碎片影響,因而使 -88- 201211240 用經小組分透析部6 8 2之預-雜交透析,以於塡充雜交室陣 列110之前實質地降低擴增子中的碎片濃度。 結論 本文所述之裝置、系統及方法促進以低成本與高速度 及就地醫護之分子診斷試驗。 上述之系統及其成分僅爲說明用途,且在不背離本發 明的精神及廣義發明槪念的範圍下,此領域中之熟知技藝 者將輕易地了解許多變化及修飾。 【圖式簡單說明】 藉由僅參照隨附圖式之實施例將說明本發明之較佳具 體實施例,其中: 圖1顯示經配置而用於螢光檢測之試驗模組以及試驗 模組閱讀器; 圖2爲經配置而用於螢光檢測之試驗模組中之電子組 件之圖式槪要; 圖3爲試驗模組閱讀器中之電子組件之圖式槪要; 圖4爲表示LOC裝置之結構之圖式槪要; 圖5爲LOC裝置之透視圖; 圖6爲具有彼此疊置之所有層結構及特徵之LOC裝置 之平面圖, 圖7爲具有獨立顯示之蓋結構之LOC裝置之平面圖; 圖8爲具有以虛線顯示之內通道及貯槽之頂面透視圖 -89 - 201211240 圖9爲具有以虛線顯示之內通道及貯槽之分解頂面透 視圖; 圖10爲顯示上方通道配置之蓋之底面透視圖; 圖11爲獨立顯示CMOS+ MST裝置結構之LOC裝置之平 面圖; 圖12爲LOC裝置之樣本入口處之槪要圖; 圖13爲圖6中所示之插入物AA之放大圖; 圖14爲圖6中所示之插入物AB之放大圖; 圖15爲圖13中所示之插入物AE之放大圖; 圖16爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖17爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖18爲閩述插入物AE中之LOC裝置之層合結構之部份 透視圖, 圖19爲閫述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖20爲閲述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖21爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖22爲圖2 1中所示之溶胞試劑貯槽之圖式槪要; 圖23爲闡述插入物AB中之LOC裝置之層合結構之部份 -90- 201211240 透視圖; 圖24爲闡述插入物AB中之LOC裝置之層合結構之部份 透視圖, 圖25爲闡述插入物AI中之LOC裝置之層合結構之部份 透視圖: 圖26爲闡述插入物AB中之LOC裝置之層合結構之部份 透視圖; 圖27爲闡述插入物AB中之LOC裝置之層合結構之部份 透視圖; 圖28爲闡述插入物AB中之LOC裝置之層合結構之部份 透視圖; 圖29爲闡述插入物AB中之LOC裝置之層合結構之部份 透視圖; 圖3 0爲擴增混合貯槽及聚合酶貯槽之圖式槪要; 圖31顯示獨立之沸騰引動閥的特徵; 圖32爲圖31中所示之沿線33 -3 3所取得之沸騰引動閥 之圖式槪要; 圖3 3爲圖1 5中所示之插入物AF之放大圖; 圖3 4爲圖3 3中所示之沿線3 5 - 3 5所取得之透析部上游 端之圖式槪要; 圖35爲圖6中所示之插入物AC之放大圖; 圖36爲插入物AC中顯示擴增部之進一步放大圖; 圖37爲插入物AC中顯示擴增部之進一步放大圖; 圖3 8爲插入物AC中顯示擴增部之進一步放大圖; 91 - 201211240 圖39爲圖38中所示之插入物AK內之進一步放大圖; 圖40爲插入物AC中顯示擴增室之進一步放大圖; 圖41爲插入物AC中顯示擴增部之進一步放大圖; 圖42爲插入物AC中顯示擴增室之進一步放大圖; 圖43爲圖42中所示之插入物AL內之進一步放大圖; 圖44爲插入物AC中顯示擴增部之進一步放大圖; 圖45爲圖44中所示之插入物AM內之進一步放大圖; 圖46爲插入物AC中顯示擴增室之進一步放大圖; 圖47爲圖46中所示之插入物AN內之進一步放大圖; 圖48爲插入物AC中顯示擴增室之進一步放大圖; 圖49爲插入物AC中顯示擴增室之進一步放大圖; 圖5 0爲插入物AC中顯示擴增部之進一步放大圖: 圖5 1爲擴增部之圖式槪要; 圖5 2爲雜交部之放大的平面圖; 圖53爲兩個獨立雜交室之進一步放大圖; 圖54爲單一雜交室之圖式槪要; 圖5 5爲圖6中所示之插入物AG中闡述之增濕器之放大 圖56爲圖52中所示之插入物AD之放大圖; 圖57爲插入物AD內之LOC裝置之分解透視圖; 圖58爲呈封閉配置之FRET探針之圖; 圖59爲呈開放及雜交配置之FRET探針之圖; 圖60爲激發光對時間之作圖; 圖61爲雜交室陣列之激發光照幾何(excitation -92 - 201211240 illumination geometry)之圖; 圖6 2爲感測器電子技術LE D光照幾何之圖; 圖63爲圖6之插入物AH中所示之濕度感測器之放大的 平面圖; 圖64爲顯示部分光感測器之光二極體陣列之槪要圖; 圖65爲單一光二極體之電路圖; 圖66爲光二極體控制信號之時間圖; 圖67爲圖55之插入物AP中所示之蒸發器之放大的平面 I c»,| · 圖, 圖68爲通過雜交室及檢測光二極體和觸發器光二極體 之圖式槪要; 圖69爲聯結子-引發之PCR之圖; 圖7 0爲表示具剌血針之試驗模組之槪要圖; 圖71爲LOC變體VII之結構之圖形表示; 圖72爲具有彼此疊置之所有層結構及特徵之LOC變體 VIII之平面圖; 圖73爲圖72中所示之插入物CA之放大圖; 圖74爲闡述圖72中所示之插入物CA內之LOC變體VIII 之層狀結構之部分透視圖: 圖75爲圖73中所示之插入物CA之放大圖; 圖76爲LOC變體VIII之結構之圖形表示; 圖77爲LOC變體XIV之結構之槪要說明; 圖78爲LOC變體XIX之結構之槪要說明; 圖79爲LOC變體XLI之結構之槪要說明; 93 201211240 圖80爲LOC變體XLIII之結構之槪要說明; 圖81爲LOC變體XLIV之結構之槪要說明; 圖82爲LOC變體XLVII之結構之槪要說明; 圖8 3爲初次擴增期間之引子-聯結的線性螢光探針之 圖, 圖84爲後續擴增循環期間之引子·聯結的線性螢光探 針之圖; 圖85A至85F圖形性地說明引子-聯結的螢光莖-及-環 探針之熱循環: 圖86爲相關於雜交室陣列及光之二極體激發LED之槪 要說明; 圖87爲用於將光導至LOC裝置之雜交室陣列上之激發 LED以及光學透鏡之槪要說明; 圖88爲用於將光導至LOC裝置之雜交室陣列上之激發 LED、光學透鏡以及光稜鏡之槪要說明; 圖89爲用於將光導至LOC裝置之雜交室陣列上之激發 LED '光學透鏡以及鏡配置之槪要說明; 圖9 0爲顯示具有彼此疊置之所有特徵以及顯示插入物 DA至DK之位置之平面圖; 圖91爲圖9〇中所示之插入物DG之放大圖; 圖92爲圖9〇中所示之插入物DH之放大圖; 圖93爲LOC變體XII之結構之圖形表示; 圖94爲LOC變體XII之透視圖; 圖95爲顯示具有彼此疊置之所有特徵以及顯示插入物 -94- 201211240 FA至FC之位置之LOC變體XII之平面圖; 圖96爲僅獨立顯示之蓋的特徵之LOC變體XII之平面圖 » 圖97爲獨立顯示CMOS + MST裝置之結構之LOC變體XII 之平面圖; 圖98爲圖95中所示之插入物FA之放大圖; 圖99爲圖95中所示之插入物FB之放大圖; 圖100爲圖95中所示之插入物FC之放大圖; 圖101顯示供光二極體之並聯電晶體之具體實施例; 圖1 02顯示供光二極體之並聯電晶體之具體實施例; 圖1 03顯示供光二極體之並聯電晶體之具體實施例; 圖104爲示差影像器之電路圖; 圖105槪要地說明呈莖-及-環配置之負控制螢光探針; 圖106槪要地說明呈開放配置之圖105之負控制螢光探 針; 圖107槪要地說明呈莖-及-環配置之正控制螢光探針; 圖108槪要地說明呈開放配置之圖107之正控制螢光探 針; 圖109顯示經配置以與ECL檢測倂用之試驗模組以及試 驗模組閱讀器; 圖1 1 〇爲與ECL檢測一起使用之試驗模組中之電子組件 之圖式槪要; 圖1 Η顯示試驗模組以及替代性試驗模組閱讀器;以 及 95- 201211240 圖1 1 2顯示試驗模組以及替代性試驗模組閱讀器與儲 存各種資料庫的主機系統。 【主要元件符號說明】 1 〇 :試驗模組 1 1 :試驗模組 1 2 :試驗模組閱讀器 1 3 :外殼 14 :微型-USB接頭 15 :感應器 1 6 :微型-USB埠 17 :觸控螢幕 1 8 :顯示螢幕 19 :按鈕 20 :開始按鈕 2 1 :蜂巢式無線電 2 2 :無菌密封帶 2 3 :無線網路連接 24 :大容器 2 5 :衛星導航系統 26 :發光二極體 2 7 :資料儲存器 2 8 :電話 29: LED驅動器 -96- 201211240 30 : LOC裝置 3 1 :電源調節器 32 :電容器 33 :時鐘 3 4 :控制器 35 :暫存器 36: USB裝置驅動器 3 7 :驅動器 3 8 :隨機存取記憶體 3 9 :驅動器 40 :快閃記憶體 41 :暫存器 42 :處理器 43 :程式儲存器 44 :光感測器 4 5 :指示器 46 :蓋 47 :模組 48 : CMOS + MST裝置 49 :多孔元件 52 :檢測部 54 :貯槽 56、56.1、56.2、56.3:貯槽 5 7 :印刷電路板 -97 201211240 5 8、5 8 · 1、5 8 · 2 :貯槽 60、60.1-60.12、60.X:貯槽 62、 62.1、 62.2 ' 62.3、 62.4 ' 62.X :貯槽 64 :下密封 6 6 :頂部層 6 8 :樣本入口 70 :透析部 72 :廢料通道 74 :標靶通道 76 :廢料儲器 78 :貯槽層 80 :蓋通道層 8 2 :上密封層 8 4 :矽基板 86 : CMOS 電路 87 : MST層 8 8 :鈍化層 90 : MST通道 92 :下管道 94 :蓋通道 96 :上管道 9 7 :壁部 9 8 :彎液面固定器 1 00 : MST通道層 -98- 201211240 101 :膝上型電腦/筆記型電腦 102 :毛細作用起始特徵 103 :專用閱讀器 105.:桌上型電腦 106 :沸騰引動閥 107 :電子書閱讀器 108 :沸騰引動閥 109 :平板電腦 110、110.1-110.12、110.X:雜交室陣列 111 :流行病學資料 112、112.1-112.12、112.X:擴增部 1 1 3 :遺傳資料 1 1 4 :培養部 1 1 5 :電子化健康記錄 1 1 6 :抗凝血劑 118:表面張力閥 1 1 9 :液體樣本 1 2 0 :彎液面 1 2 1 :電子化醫療記錄 1 2 2 :通氣孔 123 :個人健康記錄 1 2 5 :網路 126 :沸騰引動閥 128 、 128.2 、 128.3 :表面張力閥 -99 - 201211240 130. > 1 3 i〇. 1 - 130.3 : 13 1: :混 合 部 132, • 132. 1 ' 1 32.3 13 3: :培 養 器 入 口通 134: :下 管 道 13 6: 光 學 窗 13 8' 1 3 8. 1 ' 1 3 8.2 140、 140. 1 ' 1 40.2 146 : 閥 入 □ 148 ·· 閥 出 □ 150: 閥 下 管 道 152: 環 形 加 熱 器 153: 閥 加 熱 器 接點 154: 加 熱 器 156: 加 熱 器 接 點 15 8: 微 通 道 160: 出 □ 通 道 164 : 孔 □ 166 : 毛 細 作 用 起始 168 : 透 析 汲 取 孔 170: 溫 度 感 測 器 174: 液 體 感 測 器 175: 擴 散 屏 障 176: 流 路 特徵 溶胞部 :表面張力閥 道 、138.X :表面張力閥 、140.X:表面張力閥 -100- 201211240 178 :液體感測器 1 80 :雜交室 1 8 2 :加熱器 1 84 :光二極體 1 85 :主動區 1 8 6 :探針 187 :光二極體 1 8 8 :水貯槽 190 :蒸發器 1 9 1 :環形加熱器 192 :水供應通道 1 93 :上管道 194 :下管道 1 9 5 :頂金屬層 196 :增濕器 1 9 8 :汲取孔 202 :毛細作用起始特徵 204 : MST通道 206 :沸騰引動閥 207 :沸騰引動閥 208 :液體感測器 210 :微通道 2 1 2 : MST通道 2 1 8 :電極 -101 - 201211240 220 :電極 2 2 2 :間隙 2 3 2 :濕度感測器 2 3 4 :加熱器 23 6 : FRET探針 2 3 8 :標靶核酸序列 240 :環 242 :莖 244 :激發光 246 :螢光團 2 4 8 :淬熄劑 2 5 0 :螢光信號 2 5 2 :光學中心 2 5 4 :透鏡 2 8 8 :樣本輸入及製備 2 9 0 :萃取階段 291 :培養階段 292 :擴增階段 293 :預-雜交過濾純化階段 294 :檢測階段 296 :第一電極 2 9 8 :第—電極 3 00 :延遲 301 : LOC裝置 -102 201211240 3 2 8 :白血球透析部 3 76 :導熱柱 378 :陽性對照探針 3 80 :陰性對照探針 3 82 :校準室 3 8 4 :閘極 3 8 6 :閘極 3 8 8 :閘極 3 90 :可伸縮刺血針 3 9 2 :刺血針釋出按鈕 3 9 3 :聞極 394: MOS電晶體 3 9 6 : Μ Ο S電晶體 3 98 : MOS電晶體 400: MOS電晶體 4 0 2 : Μ Ο S電晶體 404 : MOS電晶體 4 0 6 :節點 408 :膜密封件 4 1 〇 :膜防護件 5 1 8 : LOC變體 594 :界面層 600 :旁路通道 602 :界面標靶通道 201211240 604 :廢料通道 6 3 8 :熱溶胞部 646 : LOC 變體 673 : LOC 變體 674 : LOC 變體 677 : LOC 變體 6 8 2 :透析部 6 8 6 :透析步驟 692 :引子-聯結的線性探針 694 :擴增阻斷物 6 9 6 :探針區域 6 9 8 :互補序列 7〇〇 :寡核苷酸引子 704 :莖-及-環探針 706 :互補序列 708 :莖股 7 1 0 :股 ' 7 1 2 :第一光稜鏡 7 1 4 :第二光稜鏡 7 1 6 :第一鏡 7 1 8 :第二鏡 75 8 : LOC 變體 760 :大組分通道 762 :小組分通道 -104 201211240 764 :開口 766 :盲終端 768 :盲終端 778 :配置 780 :配置 782 :配置 78 8 :示差成像器電路 790 :像素 792 :虛擬像素 794 :讀取_列 795 :讀取_列 796 :陰性對照探針 7 9 7 :(電晶體) 798 :陽性對照探針 801 :(電晶體) 803 :像素電容器 805 :虛擬像素電容器 8 〇 7 :開關 8 0 9 :開關 8 1 1 :開關 8 1 3 :開關 8 1 5 :電容器放大器 8 1 7 :示差訊號 8 60 : ECL激發電極 201211240 8 70 : EC L激發電極LOC Variant XIX The LOC variant XIX shown in Fig. 78 has a sample pathogen dialysis unit 70 and a hot lysate portion 638' before the nucleic acid amplification (amplification unit 112), but in the amplification 292 and the detection phase A pre-hybridization purification step 293 is added between 294. The pre-hybridization, small component dialysis section 682 removes cellular debris from the sample stream to lyse the cells. Most nucleic acid amplification protocols are sufficiently resistant to cellular debris in the sample. However, hybridization may be affected by cell debris, thus allowing -88-201211240 to be dialyzed with a pre-hybridization via a small component dialysis section 682 to substantially reduce the fragment concentration in the amplicons prior to filling the hybridization chamber array 110. Conclusion The devices, systems, and methods described herein facilitate molecular diagnostic testing at low cost and high speed and in situ care. The above-described system and its components are merely illustrative, and many variations and modifications will be readily apparent to those skilled in the art without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will be described with reference to the accompanying drawings, wherein: FIG. 1 shows a test module configured for fluorescence detection and a test module read. Figure 2 is a schematic view of the electronic components in the test module configured for fluorescence detection; Figure 3 is a schematic view of the electronic components in the test module reader; Figure 4 is a diagram showing LOC BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a perspective view of a LOC device; FIG. 6 is a plan view of a LOC device having all layer structures and features stacked on each other, and FIG. 7 is a LOC device having a cover structure independently shown. Figure 8 is a perspective view of the top surface of the inner channel and the sump shown in phantom -89 - 201211240 Figure 9 is an exploded top plan view of the inner channel and the sump shown in phantom; Figure 10 shows the upper channel configuration Figure 11 is a plan view showing the LOC device of the CMOS+ MST device structure; Figure 12 is a schematic view of the sample inlet of the LOC device; Figure 13 is an enlarged view of the insert AA shown in Figure 6. Figure 14 is the picture in Figure 6. Figure 15 is an enlarged view of the insert AE shown in Figure 13; Figure 16 is a partial perspective view of the laminated structure of the LOC device in the insert AE; Figure 17 is an illustration A partial perspective view of the laminated structure of the LOC device in the insert AE; FIG. 18 is a partial perspective view of the laminated structure of the LOC device in the insert AE, and FIG. 19 is a LOC in the insert AE. Partial perspective view of the laminated structure of the device; Figure 20 is a partial perspective view of the laminated structure of the LOC device in the insert AE; Figure 21 is a view showing the laminated structure of the LOC device in the insert AE Figure 22 is a schematic view of the lysing reagent sump shown in Figure 21; Figure 23 is a perspective view of a portion of the laminated structure of the LOC device in the insert AB - 90-201211240; 24 is a partial perspective view illustrating the laminated structure of the LOC device in the insert AB, and FIG. 25 is a partial perspective view illustrating the laminated structure of the LOC device in the insert AI: FIG. 26 is a view illustrating the insert AB Partial perspective view of the laminated structure of the LOC device; Figure 27 is a laminate structure illustrating the LOC device in the insert AB Figure 28 is a partial perspective view showing the laminated structure of the LOC device in the insert AB; Figure 29 is a partial perspective view showing the laminated structure of the LOC device in the insert AB; 0 is a schematic diagram of the amplification mixing tank and the polymerase storage tank; FIG. 31 shows the characteristics of the independent boiling pilot valve; FIG. 32 is a diagram of the boiling pilot valve taken along line 33-3 of FIG. Figure 3 3 is an enlarged view of the insert AF shown in Figure 15; Figure 3 is a schematic view of the upstream end of the dialysis section taken along line 3 5 - 3 5 shown in Figure 3 Figure 35 is an enlarged view of the insert AC shown in Figure 6; Figure 36 is a further enlarged view showing the amplification portion in the insert AC; Figure 37 is a further enlarged view showing the amplification portion in the insert AC; 3 8 is a further enlarged view showing the amplification portion in the insert AC; 91 - 201211240 FIG. 39 is a further enlarged view of the insert AK shown in FIG. 38; FIG. 40 is a further showing the amplification chamber in the insert AC. Figure 41 is a further enlarged view showing the amplification portion in the insert AC; Figure 42 is an amplification chamber showing the insert AC 4 is a further enlarged view of the insert AL shown in FIG. 42; FIG. 44 is a further enlarged view showing the amplification portion in the insert AC; FIG. 45 is an insert shown in FIG. Further enlarged view of the AM; Fig. 46 is a further enlarged view showing the amplification chamber in the insert AC; Fig. 47 is a further enlarged view of the insert AN shown in Fig. 46; Fig. 48 is an enlarged view of the insert AC Further enlarged view of the expansion chamber; Fig. 49 is a further enlarged view showing the amplification chamber in the insert AC; Fig. 50 is a further enlarged view showing the amplification portion in the insert AC: Fig. 5 is a diagram of the amplification portion Figure 5 is an enlarged plan view of the hybridization section; Figure 53 is a further enlarged view of two independent hybridization chambers; Figure 54 is a schematic view of a single hybridization chamber; Figure 5 is an insertion shown in Figure 6. An enlarged view of the humidifier illustrated in the article AG is an enlarged view of the insert AD shown in Fig. 52; Fig. 57 is an exploded perspective view of the LOC device in the insert AD; Fig. 58 is a FRET probe in a closed configuration. Figure of the needle; Figure 59 is a diagram of the FRET probe in an open and hybrid configuration; Figure 60 is an excitation light pair Figure 61 is a diagram of the excitation illumination geometry of the hybrid chamber array (excitation -92 - 201211240 illumination geometry); Figure 6 is a diagram of the sensor electronic technology LE D illumination geometry; Figure 63 is the insertion of Figure 6 An enlarged plan view of the humidity sensor shown in the object AH; Fig. 64 is a schematic diagram showing an array of photodiodes of a portion of the photosensor; Fig. 65 is a circuit diagram of a single photodiode; Fig. 66 is a photodiode Time chart of the control signal; Fig. 67 is an enlarged plane I c»,| · Fig. of the evaporator shown in the insert AP of Fig. 55, Fig. 68 is a photodiode and a photodiode through the hybridization chamber and the detection photodiode Figure 69 is a diagram of the junction-primed PCR; Figure 70 is a schematic diagram showing a test module with a blood needle; Figure 71 is a graphical representation of the structure of the LOC variant VII; 72 is a plan view of the LOC variant VIII having all of the layer structures and features superposed on each other; Fig. 73 is an enlarged view of the insert CA shown in Fig. 72; Fig. 74 is a view showing the insert CA shown in Fig. 72. Partial perspective view of the layered structure of LOC variant VIII: Figure 75 is shown in Figure 73 Figure 76 is a schematic representation of the structure of the LOC variant XIV; Figure 77 is a schematic representation of the structure of the LOC variant XIX; Figure 78 is a schematic illustration of the structure of the LOC variant XIX; The structure of the LOC variant XLI is described; 93 201211240 Figure 80 is a schematic diagram of the structure of the LOC variant XLIII; Figure 81 is a schematic diagram of the structure of the LOC variant XLIV; Figure 82 is the LOC variant XLVII The structure is illustrated; Figure 8 is a diagram of the primer-linked linear fluorescent probe during the initial amplification, and Figure 84 is a diagram of the primer-linked linear fluorescent probe during the subsequent amplification cycle; Figure 85A Graphical description of the thermal cycling of the primer-linked fluorescent stem-and-loop probe to 85F: Figure 86 is a schematic diagram of the LEDs associated with the hybrid chamber array and the light diode excitation; Figure 87 is for A brief description of the excitation LEDs and optical lenses on the array of hybridization chambers of the LOC device; Figure 88 is a schematic illustration of the excitation LEDs, optical lenses, and apertures used to direct light to the array of hybridization chambers of the LOC device; Figure 89 is an excitation LED for conducting light onto an array of hybrid chambers of a LOC device. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 90 is a plan view showing all the features overlapping each other and showing the positions of the inserts DA to DK; FIG. 91 is an enlarged view of the insert DG shown in FIG. Figure 92 is an enlarged view of the insert DH shown in Figure 9A; Figure 93 is a graphical representation of the structure of the LOC variant XII; Figure 94 is a perspective view of the LOC variant XII; Figure 95 is a display with overlays on each other All features and a plan view of the LOC variant XII showing the position of the insert -94-201211240 FA to FC; Figure 96 is a plan view of the LOC variant XII featuring only the features of the cover shown separately » Figure 97 shows the CMOS + MST standalone display A plan view of the LOC variant XII of the structure of the apparatus; Fig. 98 is an enlarged view of the insert FA shown in Fig. 95; Fig. 99 is an enlarged view of the insert FB shown in Fig. 95; Fig. 100 is a view of Fig. 95. FIG. 101 shows a specific embodiment of a parallel transistor for a light supply diode; FIG. 1 02 shows a specific embodiment of a parallel transistor for a light supply diode; FIG. 1 03 shows a light supply diode A specific embodiment of a parallel transistor; FIG. 104 is a differential imager Circuit diagram; Figure 105 schematically illustrates the negative control fluorescent probe in the stem-and-loop configuration; Figure 106 schematically illustrates the negative control fluorescent probe of Figure 105 in an open configuration; Figure 107 is a schematic representation of the present invention. The stem-and-loop configuration is positively controlling the fluorescent probe; Figure 108 is a schematic illustration of the positive control fluorescent probe of Figure 107 in an open configuration; Figure 109 shows the test module configured for use with ECL detection and Test module reader; Figure 1 1 shows the schematic diagram of the electronic components in the test module used with ECL detection; Figure 1 shows the test module and the alternative test module reader; and 95-201211240 Figure 1 1 2 shows the test module and the alternative test module reader and the host system that stores the various databases. [Main component symbol description] 1 〇: Test module 1 1 : Test module 1 2 : Test module reader 1 3 : Case 14 : Micro-USB connector 15 : Sensor 1 6 : Micro-USB 埠 17 : Touch Control screen 1 8 : Display screen 19 : Button 20 : Start button 2 1 : Honeycomb radio 2 2 : Aseptic sealing tape 2 3 : Wireless network connection 24 : Large container 2 5 : Satellite navigation system 26 : Light-emitting diode 2 7 : Data storage 2 8 : Telephone 29 : LED driver - 96 - 201211240 30 : LOC device 3 1 : Power conditioner 32 : Capacitor 33 : Clock 3 4 : Controller 35 : Register 36 : USB device driver 3 7 : drive 3 8 : random access memory 3 9 : drive 40 : flash memory 41 : register 42 : processor 43 : program memory 44 : light sensor 4 5 : indicator 46 : cover 47 : Module 48: CMOS + MST device 49: porous element 52: detection portion 54: sump 56, 56.1, 56.2, 56.3: sump 5 7: printed circuit board - 97 201211240 5 8, 5 8 · 1, 5 8 · 2 : Storage tank 60, 60.1-60.12, 60.X: storage tank 62, 62.1, 62.2 '62.3, 62.4' 62.X: storage tank 64: lower seal 6 6: top layer 6 8 : sample into 70: dialysis section 72: waste channel 74: target channel 76: waste reservoir 78: sump layer 80: cover channel layer 8 2: upper sealing layer 8 4: 矽 substrate 86: CMOS circuit 87: MST layer 8 8 : passivation Layer 90: MST channel 92: Lower pipe 94: Cover channel 96: Upper pipe 9 7: Wall 9 8: Meniscus holder 1 00 : MST channel layer - 98- 201211240 101 : Laptop/notebook 102: Capillary action initiation feature 103: Dedicated reader 105.: Desktop computer 106: Boiling pilot valve 107: E-book reader 108: Boiling pilot valve 109: Tablet computer 110, 110.1-110.12, 110.X: Hybridization Room array 111: Epidemiological data 112, 112.1-112.12, 112.X: Amplification part 1 1 3 : Genetic data 1 1 4 : Culture part 1 1 5 : Electronic health record 1 1 6 : Anticoagulant 118 : Surface tension valve 1 1 9 : Liquid sample 1 2 0 : Meniscus 1 2 1 : Electronic medical record 1 2 2 : Vent 123 : Personal health record 1 2 5 : Network 126 : Boiling valve 128, 128.2 , 128.3: Surface tension valve -99 - 201211240 130. > 1 3 i〇. 1 - 130.3 : 13 1: : Mixing unit 132, • 132. 1 ' 1 32.3 13 3 : incubator inlet 134: : lower pipe 13 6: optical window 13 8' 1 3 8. 1 ' 1 3 8.2 140, 140. 1 ' 1 40.2 146 : valve inlet □ 148 · · valve outlet □ 150: under the valve Pipe 152: Ring heater 153: Valve heater contact 154: Heater 156: Heater contact 15 8: Microchannel 160: Out □ Channel 164: Hole □ 166: Capillary action Start 168: Dialysis tapping hole 170: Temperature sensor 174: Liquid sensor 175: Diffusion barrier 176: Flow path feature lysis: Surface tension valve, 138.X: Surface tension valve, 140.X: Surface tension valve - 100 - 201211240 178: Liquid Sensor 1 80: hybridization chamber 1 8 2 : heater 1 84 : photodiode 1 85 : active region 1 8 6 : probe 187 : photodiode 1 8 8 : water storage tank 190 : evaporator 1 9 1 : Ring heater 192: water supply channel 1 93: upper pipe 194: lower pipe 1 9 5: top metal layer 196: humidifier 1 9 8 : extraction hole 202: capillary action starting feature 204: MST channel 206: boiling priming Valve 207: boiling lead Valve 208: liquid sensor 210: microchannel 2 1 2 : MST channel 2 1 8 : electrode - 101 - 201211240 220 : electrode 2 2 2 : gap 2 3 2 : humidity sensor 2 3 4 : heater 23 6 : FRET probe 2 3 8 : Target nucleic acid sequence 240 : Ring 242 : Stem 244 : Excitation light 246 : Fluorescent group 2 4 8 : Quencher 2 5 0 : Fluorescence signal 2 5 2 : Optical center 2 5 4 : lens 2 8 8 : sample input and preparation 2 90 : extraction stage 291 : culture stage 292 : amplification stage 293 : pre-hybridization filtration purification stage 294 : detection stage 296 : first electrode 2 9 8 : first electrode 3 00: Delay 301: LOC device-102 201211240 3 2 8: White blood cell dialysis unit 3 76: Thermal column 378: Positive control probe 3 80: Negative control probe 3 82: Calibration chamber 3 8 4: Gate 3 8 6 : Gate 3 8 8 : Gate 3 90 : Retractable lancet 3 9 2 : Lancet release button 3 9 3 : Mast 394: MOS transistor 3 9 6 : Μ Ο S transistor 3 98 : MOS Transistor 400: MOS transistor 4 0 2 : Μ Ο S transistor 404: MOS transistor 4 0 6 : node 408: film seal 4 1 〇: film guard 5 1 8 : LOC variant 594 : interface layer 600 : Bypass Channel 602: Boundary Target channel 201211240 604: waste channel 6 3 8 : hot lysate 646 : LOC variant 673 : LOC variant 674 : LOC variant 677 : LOC variant 6 8 2 : dialysis section 6 8 6 : dialysis step 692 : Primer-ligated linear probe 694: amplification blocker 6 9 6 : probe region 6 9 8 : complementary sequence 7〇〇: oligonucleotide primer 704: stem-and-loop probe 706: complementary sequence 708 : stem 7 1 0 : strand ' 7 1 2 : first aperture 7 1 4 : second aperture 7 1 6 : first mirror 7 1 8 : second mirror 75 8 : LOC variant 760 : large Component Channel 762: Small Component Channel - 104 201211240 764: Opening 766: Blind Terminal 768: Blind Terminal 778: Configuration 780: Configuration 782: Configuration 78 8: Differential Imager Circuit 790: Pixel 792: Virtual Pixel 794: Read_ Column 795: Read_Column 796: Negative Control Probe 7 9 7 : (Crystal) 798: Positive Control Probe 801: (Crystal) 803: Pixel Capacitor 805: Virtual Pixel Capacitor 8 〇 7: Switch 8 0 9 : Switch 8 1 1 : Switch 8 1 3 : Switch 8 1 5 : Capacitor amplifier 8 1 7 : Differential signal 8 60 : ECL excitation electrode 201211240 8 70 : EC L excitation electrode

Claims (1)

201211240 七、申請專利範圍: 1 一種用於檢測生物樣本中之病原體之晶片上實驗室 (LOC)裝置,LOC裝置包含: 接收樣本的入口; 支撐基板; 使樣本中之病原體與較大組分分離之第一透析部; 位於透析部下游之溶胞部,用於溶胞病原體以釋出其 中之遺傳物質,溶胞部具有溶胞室及加熱器,以於樣本在 溶胞室中時溶胞病原體; 位於溶胞部下游之核酸擴增部,用於擴增遺傳物質中 之核酸序列;以及, 位於核酸擴增部下游之第二透析部,用於預雜交過濾 由核酸擴增部所產生之擴增子,第二透析部係經配置以移 除來自擴增子之細胞碎片;其中, 第一透析部、溶胞部、核酸擴增部以及第二透析部係 均被支撐於支撐基板上。 2如申請專利範圍第1項之LOC裝置,其中溶胞部具 有用於熱溶胞病原體之加熱器。 3如申請專利範圍第2項之LOC裝置,其進一步包含 位於第二透析部下游之雜交部,其具有用於與樣本中之標 靶核酸序列雜交之探針陣列;以及光感測器,其係用於檢 測陣列之中任何探針之雜交。 4如申請專利範圍第3項之LOC裝置,其中第一透析 部具有與入口呈流體連通之第一通道、與溶胞部呈流體連 -107- 201211240 通之第二通道以及複數個第一孔口,第一孔口係大 體且小於較大的組分,第二通道經由第一孔口與第 呈流體連通使得病原體流入第二通道,而較大的組 留於第一通道中。 5如申請專利範圍第4項之LOC裝置,其中第 與第二通道係經配置以藉由毛細作用而塡充樣本。 6如申請專利範圍第1項之LOC裝置,其中第 部具有大組分通道、小組分通道,以及流體性連結 通道至小組分通道之複數個第二孔口,第二孔口經 以允許核酸序列自大組分通道流至小組分通道而將 二孔口之細胞碎片保留於大組分通道中,小組分通 雜交部呈流體連通。 7如申請專利範圍第1項之LOC裝置,其中核 部爲恆溫核酸擴增部。 8如申請專利範圍第7項之LOC裝置,其進一 供保持用於恆溫核酸擴增的試劑之試劑貯槽;以及 表面張力閥,其具有經配置成固定試劑的彎液 口 ’使得彎液面將試劑保留於試劑貯槽中直至與液 接觸而移除彎液面並且試劑流出試劑貯槽。 9如申請專利範圍第1項之LOC裝置,其中核 部爲聚合酶鏈反應(PCR)擴增部。 10如申請專利範圍第9項之LOC裝置,其進一 CMOS電路、溫度感測器以及合併PCR部之微系統 MST)層’其中CMOS電路位於支撐基板與MST層 於病原 一通道 分係保 一通道 二透析 大組分 尺寸化 大於第 道係與 酸擴增 步包含 , 面之孔 體樣本 酸擴增 步包含 技術( 之間, -108- 201211240 以及CMOS電路係經配置以使用溫度感測器輸出來反饋控 制PC R部。 11如申請專利範圍第10項之LOC裝置,其中PCR部具 有供熱循環樣本以擴增核酸序列之PCR微通道,PCR微通 道界定部分樣本流路且具有小於100,000平方微米之橫越 流路之截面積。 12如申請專利範圍第11項之LOC裝置,其中PCR部進 一步包含至少一個用於加熱伸長的PCR微通道之中的核酸 序列之伸長的加熱器元件,伸長的加熱器元件平行PCR微 通道而延伸。 13如申請專利範圍第12項之LOC裝置,其中PCR微通 道的至少一個部形成伸長的PCR室。 14如申請專利範圍第13項之LOC裝置,其中PCR部具 有複數個各由PCR微通道之分別的部所形成之伸長的PCR 室’ PCR微通道具有由一連串寬曲折所形成之蜿蜒結構, 各寬曲折爲形成一個伸長的PCR室之通道部。 15如申請專利範圍第14項之LOC裝置,其進一步包 含供保持PCR所使用之試劑的試劑貯槽;以及, 表面張力閥,其具有經配置成固定試劑的彎液面之孔 口,使得彎液面將試劑保留於試劑貯槽中直至與液體樣本 接觸而移除彎液面並且試劑流出試劑貯槽。 16如申請專利範圍第15項之LOC裝置,其進一歩包 含含有探針之雜交室陣列,使得各雜交室中之探針係經配 置以與標靶核酸序列之一者雜交。 -109- 201211240 1 7如申請專利範圍第1 6項之L O C裝置,其中光感測 器爲與雜交室配準(registration)定位之光二極體陣列。 18如申請專利範圍第16項之LOC裝置,其中CM0S電 路具有用於儲存來自光感測器輸出之雜交資料之數位記憶 體以及用於將雜交資料傳輸至外部裝置之資料界面。 19如申請專利範圍第1 6項之LOC裝置,其中PCR部具 有於熱循環期間用於保留液體於PCR部及回應來自CMOS 電路之啓動訊號而允許液體流至雜交室之主動閥(active valve)0 20如申請專利範圍第19項之LOC裝置,其中主動閥 爲沸騰引動閥,其具有彎液面固定器及加熱器’彎液面13 定器經配置以固定彎液面而中止毛細作用驅動之 '液體流’ 加熱器係使液體沸騰而自彎液面固定器釋放彎液 毛細作用驅動流。 -110-201211240 VII. Patent Application Range: 1 A wafer-on-lab (LOC) device for detecting pathogens in a biological sample. The LOC device comprises: an inlet for receiving a sample; a support substrate; separating the pathogen in the sample from the larger component a first dialysis portion; a lysis portion located downstream of the dialysis portion for lysing the pathogen to release the genetic material therein, the lysis unit having a lysis chamber and a heater to dissolve the sample in the lysis chamber a nucleic acid amplification unit located downstream of the lysis unit for amplifying the nucleic acid sequence in the genetic material; and a second dialysis unit located downstream of the nucleic acid amplification unit for pre-hybridization filtration generated by the nucleic acid amplification unit The second dialysis portion is configured to remove cell debris from the amplicon; wherein the first dialysis portion, the lysis portion, the nucleic acid amplification portion, and the second dialysis portion are supported on the support substrate on. 2. The LOC device of claim 1, wherein the lysis unit has a heater for the hot lytic pathogen. 3. The LOC device of claim 2, further comprising a hybridization portion downstream of the second dialysis section, having a probe array for hybridizing to a target nucleic acid sequence in the sample; and a photosensor Used to detect hybridization of any probe in the array. 4. The LOC device of claim 3, wherein the first dialysis portion has a first passage in fluid communication with the inlet, a fluid connection with the lysis portion, a second passage through which the 107-201211240 is connected, and a plurality of first holes The first orifice is generally smaller and smaller than the larger component, and the second passage is in fluid communication with the first passage through the first orifice such that the pathogen flows into the second passage and the larger one remains in the first passage. 5. The LOC device of claim 4, wherein the first and second channels are configured to impersonate the sample by capillary action. [6] The LOC device of claim 1, wherein the first portion has a large component channel, a small component channel, and a plurality of second ports of the fluid coupling channel to the small component channel, the second port is permeable to allow nucleic acid The sequence flows from the large component channel to the small component channel leaving the cell fragments of the two orifices in the large component channel, and the small component is in fluid communication with the hybridization portion. 7 The LOC device of claim 1, wherein the core portion is a thermostatic nucleic acid amplification unit. 8 a LOC device according to claim 7 of the patent scope, further comprising a reagent storage tank for holding a reagent for thermostatic nucleic acid amplification; and a surface tension valve having a meniscus configured to fix the reagent such that the meniscus will The reagent remains in the reagent reservoir until it contacts the liquid to remove the meniscus and the reagent flows out of the reagent reservoir. 9 The LOC device of claim 1, wherein the core is a polymerase chain reaction (PCR) amplification unit. 10, as claimed in claim 9 of the LOC device, which enters a CMOS circuit, a temperature sensor, and a micro-system MST) layer of the combined PCR portion, wherein the CMOS circuit is located on the support substrate and the MST layer in the pathogen of the pathogen. The second dialysis large component is larger than the first system and the acid amplification step contains, the surface of the pore sample acid amplification step contains the technology (between -108-201211240 and the CMOS circuit is configured to use the temperature sensor output) The feedback control PC R. 11 The LOC device of claim 10, wherein the PCR portion has a heating microcirculation sample to amplify a PCR microchannel of the nucleic acid sequence, and the PCR microchannel defines a partial sample flow path and has less than 100,000 square The cross-sectional area of the micrometer across the flow path. The LOC device of claim 11, wherein the PCR portion further comprises at least one elongated heater element for heating the nucleic acid sequence in the elongated PCR microchannel, elongated The heater element extends parallel to the PCR microchannel. The LOC device of claim 12, wherein at least one portion of the PCR microchannel forms an elongation A PCR chamber. The LOC device of claim 13, wherein the PCR portion has a plurality of elongated PCR chambers each formed by a respective portion of the PCR microchannel. The PCR microchannel has a series of wide tortuous turns. a 蜒 structure, each of which is curved to form a channel portion of an elongated PCR chamber. 15 The LOC device of claim 14 further comprising a reagent sump for holding a reagent used for PCR; and a surface tension valve An orifice having a meniscus configured to immobilize the reagent such that the meniscus retains the reagent in the reagent reservoir until the liquid sample is contacted to remove the meniscus and the reagent flows out of the reagent reservoir. 16 as claimed in claim 15 The LOC device further comprises an array of hybridization chambers containing probes such that the probes in each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. -109- 201211240 1 7 Patent Application No. 1 The LOC device of the 6th item, wherein the photo sensor is an array of photodiodes aligned with the registration of the hybridization chamber. 18, as in the LOC device of claim 16, wherein C The MOS circuit has a digital memory for storing the hybridization data from the photosensor output and a data interface for transmitting the hybridization data to the external device. 19 The LOC device of claim 16 of the patent application, wherein the PCR portion has An active valve for retaining liquid in the PCR section and in response to an activation signal from the CMOS circuit to allow liquid to flow to the hybridization chamber during thermal cycling, as in the LOC device of claim 19, wherein the active valve is Boiling priming valve with meniscus holder and heater 'menis surface 13 aligner configured to fix the meniscus and stop the capillary action to drive the 'liquid flow' heater to boil the liquid and fix it from the meniscus The device releases the meniscus to drive the flow. -110-
TW100119226A 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering TW201211240A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201211240A true TW201211240A (en) 2012-03-16

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction

Family Applications After (19)

Application Number Title Priority Date Filing Date
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Country Status (1)

Country Link
TW (22) TW201211534A (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055963A1 (en) * 2012-10-05 2014-04-10 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
WO2016004539A1 (en) * 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
JP6805166B2 (en) * 2015-04-22 2020-12-23 バークレー ライツ,インコーポレイテッド Culture station for microfluidic devices
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
EP3710790A4 (en) * 2017-11-17 2021-01-20 Siemens Healthcare Diagnostics, Inc. Sensor assembly and method of using same
EP3737502A4 (en) * 2018-01-11 2021-03-10 Nanocav, LLC Microfluidic cellular device and methods of use thereof
BR112020015595A2 (en) 2018-02-01 2021-01-05 Toray Industries, Inc DEVICE FOR EVALUATING PARTICLES IN LIQUID AND METHOD FOR OPERATING THE DEVICE FOR EVALUATING PARTICLES IN LIQUID
EP3560593B1 (en) 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
WO2021216627A1 (en) * 2020-04-21 2021-10-28 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833A (en) * 2021-06-18 2022-12-20 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same
TWI840226B (en) * 2023-05-17 2024-04-21 博錸生技股份有限公司 Automatic sample preparation system

Also Published As

Publication number Publication date
TW201211533A (en) 2012-03-16
TW201219115A (en) 2012-05-16
TW201209404A (en) 2012-03-01
TW201211532A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201211242A (en) 2012-03-16
TW201209406A (en) 2012-03-01
TW201209407A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201209158A (en) 2012-03-01
TW201211241A (en) 2012-03-16
TW201209405A (en) 2012-03-01
TW201211534A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201209403A (en) 2012-03-01
TW201219776A (en) 2012-05-16
TW201211539A (en) 2012-03-16
TW201211538A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201211243A (en) 2012-03-16
TW201219770A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TW201211240A (en) LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW201213798A (en) Microfluidic thermal bend actuated surface tension valve
JP5879667B2 (en) Integrated device for nucleic acid detection and identification
JP2023520936A (en) Hyplex guide pooling for nucleic acid detection