TW201211534A - Microfluidic device with PCR section and diffusion mixer - Google Patents

Microfluidic device with PCR section and diffusion mixer Download PDF

Info

Publication number
TW201211534A
TW201211534A TW100119249A TW100119249A TW201211534A TW 201211534 A TW201211534 A TW 201211534A TW 100119249 A TW100119249 A TW 100119249A TW 100119249 A TW100119249 A TW 100119249A TW 201211534 A TW201211534 A TW 201211534A
Authority
TW
Taiwan
Prior art keywords
valve
sample
meniscus
microfluidic device
nucleic acid
Prior art date
Application number
TW100119249A
Other languages
Chinese (zh)
Inventor
Geoffrey Richard Facer
Kia Silverbrook
Mehdi Azimi
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201211534(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201211534A publication Critical patent/TW201211534A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A microfluidic device having a sample inlet for receiving a sample of biological material having nucleic acid sequences, a polymerase chain reaction (PCR) section for amplifying the nucleic acid sequences, a reagent reservoir containing a reagent, and, a diffusion mixing section for mixing the nucleic acid sequences with the reagent, the diffusion mixing section having a microchannel defining a tortuous flow-path having a length sufficient for diffusive mixing of the reagent and the sample, wherein during use, the sample flows from the sample inlet to the PCR section via the diffusion mixing section.

Description

201211534 六、發明說明: 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特別 是’本發明關於用於分子診斷之微流體及生化處理以及分 析。 【先前技術】 0 分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康照護的發生、增進病患預後(patient outcome)、 φ 改進疾病管理及個體化患者照護。分子診斷的許多技術係 基於自生物樣本(諸如血液或唾液)萃取及擴增之特定核酸 (去氧核糖核酸(DNA)以及核糖核酸(RNA)兩者)的檢測及 辨識。核酸鹼基的互補特徵使得經合成DN Α(寡核苷酸)短 序列結合(雜交)至用於核酸試驗之特定核酸序列。若發生 雜交,則互補序列存在於樣本中。此使得例如預測個人未 來會得到的疾病、判定感染性病原體的種類及病原體,或 判定個人對藥物的反應成爲可能。 以核酸爲基之分子診斷試驗 201211534 以核酸爲基之試驗具有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3·核酸擴增(任意的) 4.檢測 許多樣本類型,諸如血液、尿液、痰和組織樣本,係 用於基因分析。診斷試驗判定所需的樣本類型,因並非所 有樣本代表疾病進程。這些樣本具有各種組分,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的檢測。因此,於開始時經常需要純化 及/或濃縮步驟。 血液爲較常請求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促進 凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃縮 之前令試樣與諸如乙二胺四乙酸(EDTA)之試劑混合。通 常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅血球 佔細胞物質之約99%但其不帶有DNA,因彼不具細胞核。 此外,紅血球含有諸如血紅素之可能干擾下游核酸擴增程 序(描述於下)的成分。可藉由示差(differentially)溶胞於 溶胞液中之紅血球來移除紅血球,而留下剩餘的完整細胞 物質,可接著使用離心而自樣本將其分離。此提供自彼萃 取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程取決於樣本及待實施之診斷 分析。例如,用於萃取病毒RN A之規程與用於萃取基因組 201211534 DNA之'規程相當不同。然而,自標靶細胞萃取核酸通常包 含細胞溶胞步驟及接續的核酸純化。細胞溶胞步驟使細胞 及細胞核膜破裂,而釋放出遺傳物質。此經常使用溶胞清 潔劑來完成,溶胞清潔劑係諸如十二烷基硫酸鈉,其亦使 存在於細胞中之蛋白質大量變性》 接著以酒精(通常爲冰乙醇或異丙醇)沉澱步驟純化核 酸,或是經由固相純化步驟,於清洗之前在高濃度的離液 $ 鹽(chaotropic salt)存在下,通常於分餾塔中的氧化矽基 質、樹脂或順磁性珠上,接著以低離子強度緩衝液進行洗 提。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之蛋白 酶,以進一步純化樣本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 將樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質中, 尤其是若標靶來自病原體來源。核酸擴增提供選擇性擴增 φ (即,複製)特定標靶(就可檢測程度而言爲低濃度者)的能 力。 最常使用之核酸擴增技術爲聚合酶鏈反應(PCR)。 PCR係業界已知悉,以及於E. van Pelt-Verkuil等人之 Principles and Technical Aspects of PCR Amplification, Springer,2008中提供此類反應之綜合理解性描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標靶 DNA序列。若欲(藉由PCR)擴增RNA,則首先必須使用名 爲反轉錄酶之酵素將之轉錄爲cDNA(互補DNA)。隨後, 201211534 藉由PCR擴增得到的cDNA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 則其可繼續進行。反應之成分爲:201211534 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to microfluidic and biochemical treatments and analysis for molecular diagnostics. [Prior Art] 0 Molecular diagnosis has been used to provide an area for early detection of disease before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the occurrence and improvement of ineffective health care Patient outcome, φ improved disease management and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobases allows for the binding (hybridization) of the synthetic DN(oligonucleotide) short sequences to the particular nucleic acid sequence used for the nucleic acid assay. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that the individual will get in the future, to determine the type of the infectious pathogen and the pathogen, or to determine the individual's response to the drug. Nucleic Acid-Based Molecular Diagnostic Test 201211534 The nucleic acid-based assay has four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection of many sample types, such as blood, urine , sputum and tissue samples are used for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the outset. Blood is one of the more frequently requested sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of the cellular material but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by differentially lysing the red blood cells in the lysate, leaving the remaining intact cellular material, which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact procedure used to extract nucleic acids depends on the sample and the diagnostic analysis to be performed. For example, the protocol used to extract viral RN A is quite different from the protocol used to extract the genome 201211534 DNA. However, self-targeting cell extraction of nucleic acids typically involves a cell lysis step and subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often done using a lysing detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cells. The precipitation step followed by alcohol (usually ice ethanol or isopropanol) Purification of the nucleic acid, either via a solid phase purification step, prior to washing in the presence of a high concentration of chaotropic salt, usually on a cerium oxide matrix, resin or paramagnetic beads in a fractionation column, followed by low ions The strength buffer is eluted. Any step prior to precipitation of the nucleic acid is the addition of a protein-cutting enzyme to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. The target DNA or RNA can be present in the extracted material in very small amounts, especially if the target is from a pathogen source. Nucleic acid amplification provides the ability to selectively amplify φ (i.e., replicate) a particular target (in the case of a low concentration in terms of detectability). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR is known in the art and provides a comprehensive and comprehensible description of such reactions in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008. PCR is a useful technique for amplifying target DNA sequences relative to complex DNA backgrounds. If RNA is to be amplified (by PCR), it must first be transcribed into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Subsequently, 201211534 was used to amplify the obtained cDNA by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1. 引子對-具有約10-30個與毗鄰(flanking)標靶序列 區互補之核苷酸的短單股DN A 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP)-提供整合至新合成之 DNA股之核苷酸 4. 緩衝液-提供DNA合成之最佳化學環境 PCR普通包含將這些反應物置於含有經萃取之核酸的 小管(~1〇·50微升)。將管放置於熱循環反應器(thermal cycler)中;一種令反應經受一連串不等量時間之不同溫度 的儀器。各熱循環的標準規程(protocol)包括變性相、黏 著相及延伸相。延伸相有時代表引子延伸相。除了此三-步驟規程外,可採用二-步驟熱規程,於其中黏著及延伸 相合併。變性相普通包含將反應溫度升溫至90-95 °C以使 DNA股變性;於黏著相中,將溫度降低至〜50-60°C以供引 子黏著;接著於延伸相中,將溫度升溫至最佳DN A聚合酶 活性溫度60-72°C,以供引子延伸。此方法重複循環約20-4 0次,最終結果爲產生數百萬拷貝之引子間的標靶序列。 已發展出用於分子診斷之許多標準PC R規程之變體, 其中包括諸如多引子組PCR、聯結子引發(linker-primed)PCR、直接PCR、串接重複序列(tandem)PCR、即 時PCR以及反轉錄酶PCI^ 201211534 多引子組PCR使用單一PCR混合物中之多重引子組以 產生對不同DNA序列具特異性之不同大小之擴增子。藉由 —次標靶多個基因,由單一試驗可得到額外的資訊(以其 他方式則需要數次試驗)。最佳化多引子組PCR更爲困難 ,因其需要選取具近似黏著溫度之引子及具近似長度與鹼 基組成之擴增子以確保各擴增子之擴增效率相等。 聯結子引發(linker-primed)PCR,又稱爲接合接合子 (ligation adaptor)PCR,爲用於致能複雜DNA混合物中實 質上所有DNA序列之核酸擴增的方法,而不需要標靶-特 異性引子。此方法首先以合適的限制性內核酸酶(enzyme) 來剪切(digest)標靶DNA群體。使用接合酶酵素,具有合 適的懸伸(overhanging)端之雙股寡核苷酸聯結子(亦稱爲 接合子)接著與標靶DN A片段之端子接合。接下來使用對 聯結子序列具有特異性之寡核苷酸引子實施核酸擴增。藉 此,可擴增毗鄰聯結子寡核苷酸之DN A來源的所有片段。 直接PCR描述一種直接於樣本上實施PCR而不需要任 何核酸萃取(或最少核酸萃取)之系統。長久以來認爲, PCR反應受到存在於未純化的生物樣本中之許多成分的抑 制,諸如血液中的原血紅素成分。傳統上,於製備反應混 合物之前,PCR需要加強純化標靶核酸。然而,利用化學 性質的適當變化及樣本濃縮,可以最少化DNA純化而進行 PCR或進行直接PCR。用於直接PCR之PCR化學性質的調整 包括加強緩衝液強度、使用商活性及進行性(p r 〇 c e s s i v i t y) 之聚合酶及與潛在聚合酶抑制劑螯合之添加物。 -9- 201211534 串接重複序列PCR利用兩次獨立的核酸擴增以增進擴 增正確擴增子的機率。串接重複序列PCR中的一類型爲巢 式PCR,其中使用兩對PCR弓|子,以於分別的核酸擴增進 行單一基因座擴增。第一對引子與標靶核酸序列外部區域 的核酸序列雜交。第二次擴增中所使用的第二對引子(巢 式引子)結合於第一 PCR產物中並且產生含有標靶核酸的 第二PCR產物(較第一PCR產物爲短)。此策略所運用的論 理爲:若於第一次核酸擴增期間因失誤而擴增錯誤的基因 座,由第二對引子再次擴增錯誤的基因座的機率非常低, 因此確保了特異性。 使用即時PCR或定量PCR以即時量測PCR產物之量。 藉使用含有探針或螢光染料之螢光團以及反應中的參考標 準,可測定樣本中之核酸的最初含量。此特別有用於分子 診斷,其中治療選擇可能取決於樣本中所載病原體而有所 不同。 反轉錄酶PCR(RT-PCR)係用於自RNA來擴增DNA »反 轉錄酶爲將RNA反轉錄成互補DNA(cDNA)之酵素,接著藉 由PCR擴增cDNA。RT-PCR廣泛地用於表現型態 (expression profiling)以判定基因的表現或辨識RNA轉錄 本(包括轉錄起始及終止位址)之序列。其亦用於擴增RNA 病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。 恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 應期間之標靶DN A的熱變性,因此不需要複雜的機械。恆 溫核酸擴增方法可因此於原始位置進行或於實驗室環境外 -10- 201211534 易於被操作。包括股取代擴增(Strand Displacement Amplification)、轉錄介導擴增(Transcription Mediated Amplification)、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增 (Recombinase Polymerase Amplification)、滾動循環擴增 (Rolling Circle Amplification)、分枝型擴增(Ramification Amplification)、解旋® 溫 DNA 擴增(Helicase-Dependent Isothermal DNA Amplification)及環形怪溫擴增(Loop-Mediated Isothermal Amplification) 之 一些恒溫核酸擴增 方法已被敘述。 恆溫核酸擴增法不依賴模板DN A之持續加熱變性來產 生作爲進一步擴增之模板的單股分子,而是依賴諸如於常 溫下藉由特異性限制內核酸酶之DNA分子的酵素性切割, 或是利用酵素分開DNA股之其他方法。 股取代擴增(SDA)依賴特定限制性酵素的能力以切割 ^ 半修飾(hemi-modified)DNA之未經修飾股,及依賴5’-3’外 核酸酶-缺乏之聚合酶的能力以延伸並取代下游股。然後 藉由偶合義(sense)與反義(anti sense)反應而達成指數性核 酸擴增,其中來自義反應之股取代作爲反義反應之模板。 使用不以普通方式切割DN A而是於DN A之一股上產生切口 之切口酶(諸如N. Alwl, N· BstNBl及Mlyl)係有用於此反 應。藉使用熱穩定限制性酵素ΜναΙ)及熱穩定性外-聚合 酶(5W聚合酶)之組合已改進SDA。此組合顯現出使反應的 擴增效率由108倍擴增增加至101Q倍擴增,以致可使用此 -11 - 201211534 技術來擴增獨特的單拷貝分子。 轉錄介導擴增(TMA)及依賴核酸序列擴增(NASBA)使 用RNA聚合酶以複製RNA序列而非對應之基因組DNA。 此技術使用兩種引子及兩或三種酵素、RNA聚合酶、反轉 錄酶及任意的RNase Η(若反轉錄酶不具有RNase活性)。一 種引子含有供RNA聚合酶之啓動子序列。在核酸擴增的第 一步驟中,此引子於限定的位置與標靶核糖體RNA(rRNA) 雜交。藉由自啓動子引子的3’端開始延伸,反轉錄酶產生 標靶rRNA之DNA拷貝。若存在另外的RNase Η,則所得的 RNA : DNA雙股中的RNA經由反轉錄酶之RNase活性而被 分解。接著,第二引子結合至DN A拷貝。藉反轉錄酶自此 引子的末端合成新的DNA股而產生雙股DNA分子。RNA聚 合酶辨識DN A模板中的啓動子,並開始轉錄。各個新合成 的RN A擴增子再進入過程中並作爲新的複製之模板。 於重組酵素聚合酶擴增(RPA)中,藉結合相對的寡核 苷酸子至模板DN A並且由DN A聚合酶將之延伸而達成特定 DNA片段之恆溫擴增。使雙股DNA(dsDNA)模板變性不需 要熱。反之,RPA利用重組酵素-引子錯合體來掃描dsDNA 及促進同源(cognate)位置處的股交換。藉由單股DNA結合 蛋白與經取代模板股的交互作用來穩定所得到的結構,因 此防止引子因分支遷移而放出。重組酵素分解離開可接近 股取代 DNA聚合酶(諸如 Sacί·//«5· Pol I (551/)的大 片段)之寡核苷酸的3'端,且引子接著開始延伸。藉循環 重複此步驟而達到指數性核酸擴增。 -12- 201211534 解旋酶擴增(HD A)模擬活體內系統,於活體內系統中 使用DNA解旋酶來產生用於引子雜交之單股模板並接著以 DN A聚合酶延伸引子。於HD A反應的第一步驟中,解旋酶 穿過標靶DNA,破壞聯結兩股的氫鍵,此二股隨後由單股 結合蛋白所結合。由解旋酶所暴露之單股標靶區域使引子 得以黏著。DN A聚合酶使用自由的去氧核糖核苷三磷酸 (dNTP)以接著延伸各引子的3’端,以產生兩個DNA複製 | (replicate)。兩個複製的dsDNA股獨立地進入下一個HDA 循環,造成標靶序列之指數性核酸擴增。 其他的基於DNA之恆溫技術包括滾動循環擴增(RCA) ,.於其中DNA聚合酶繞環狀DNA模板持續地延伸引子而產 生由許多環狀重複拷貝所組成之長的DNA產物。藉由終止 反應,聚合酶產生數千拷貝之環狀模板,其具有栓繫至原 始標靶DN A的拷貝鏈。此致使標靶之空間解析度及信號之 快速核酸擴增。於1小時內至多可產生1〇12拷貝之模板。 φ 分枝型擴增爲RCA之變體,並利用封閉的環狀探針(C-探 針)或扣鎖探針及具高進行性之DNA聚合酶,以於常溫情 況下指數地擴增C-探針。 環形恆溫擴增(LAMP)提供高選擇性且利用DNA聚合 酶及含有四個特別設計的引子之引子組,引子組辨識標靶 DN A上總共六個不同的序列。含有標靶DN A之義股及反義 股序列的內引子起始LAMP。由外引子引發之後續股取代 DNA合成釋出單股DNA。此作爲由第二內及外引子所引發 之DNA合成的模板,第二內及外引子與標靶之另一端雜交 -13- 201211534 ,產生莖-環(stem-loop)DNA結構。於接續的LAMP循環中 ’內引子與產物上的環形雜交並起始取代DNA合成,產生 原始莖-環DNA及具有兩倍莖長度之新莖-環DNA。於一小 時內持續循環反應而聚積109拷貝之標靶。最終產物爲, 具有數個反相重複標靶之莖-環DNA以及具有多個環形(交 替黏著相同股中之反相重複標靶所形成)之花椰菜狀結構 〇 於完成核酸擴增之後,必須分析擴增的產物以判定是 否產生預期的擴增子(標靶核酸之擴增量分析產物的方 法有透過膠體電泳簡單測定擴增子的大小、使用DN A雜交 以識別擴增子之核苷酸組成。 膠體電泳爲檢査核酸擴增步驟使否產生預期之擴增子 之最簡單方式之一。膠體電泳利用施加至膠體基質之電場 來分離DNA片段。帶負電的DNA片段將以不同速率(主要 取決於其大小)移動通過基質。於電泳完成之後,可染色 膠體中的片段使其成爲可見。於UV光下發螢光之溴化乙 菲錠爲最常用的染劑。 藉由與DNA大小標記(DNA標準片段(DNA ladder))相 比較來判定片段的大小,DN A大小標記含有已知大小的 DNA片段,其與擴增子一同跑膠。因寡核苷酸引子結合至 毗鄰標靶DNA之特定位置,經擴增之產物的大小可被預測 且利用膠體上已知大小的帶(band)來檢測。爲確認擴增子 爲何或若產生數種擴增子時’常利用DN A探針與擴增子雜 交。 -14- 201211534 DN A雜交意指藉由互補鹼基配對而形成雙股DNA。用 於特定擴增產物之正面識別的DN A雜交需使用長度爲約20 個核苷酸的DN A探針。若探針具有與擴增子(標靶)DN A序 列互補的序列,則雜交將於有利的溫度、pH及離子濃度 條件下發生。若發生雜交,則表示關注的基因或DN A序列 出現於原始樣本中。 光學檢測爲最常見之檢測雜交的方法》標記擴增子或 φ 是探針以經由發螢光或電致化學發光而發光。這些方法之 引發產光部分之激發態的方式不同,但兩者同樣致能核苷 酸股之共價標記。於電致化學發光(ECL),當以電流剌激 時,由發光團分子或錯合體產生光。於發螢光時,以造成 發射之激發光來發光》 使用發光源以檢測螢光,發光源提供波長爲螢光分子 吸收之激發光以及檢測單元。檢測單元包含光感測器(諸 如光電倍增管或電荷耦合裝置(CCD)陣列)以檢測發射的信 φ 號,以及防止激發光被包含於光感測器輸出之機制(諸如 波長-選擇濾波器)。回應激發光,營光分子發射史托克斯 轉換光(Stokes-shifted light),以及此發射的光由檢測單 元收集。史托克斯轉換爲發射的光與吸收的激發光之間之 頻率差或波長差。 使用光感測器來檢測ECL發射,光感測器對於所採用 之ECL種類之發射波長爲敏感。例如,過渡金屬配位錯合 體發射可見波長的光,因而採用傳統光二極體及C CD作爲 光感測器。ECL之優勢爲,若排除周圍光線,ECL發射可 -15- 201211534 爲檢測系統中唯一存在的光,因而增進靈敏度。 微陣列使數十萬的DN A雜交試驗得以同時進行。微陣 列爲有用的分子診斷工具,其可篩檢數千種遺傳疾病或於 單一試驗冲檢測是否存在數種感染性病原體。微陣列由許 多不同的固定於基板上且呈點狀之DN A探針所組成。首先 以螢光或發光分子標記標靶DNA(擴增子)(於核酸擴增期 間或之後),然後將其施加至探針陣列。於經控制的溫度 下、潮濕的環境中培養微陣列數小時或數天,此時探針及 擴增子之間發生雜交。於培養後,必須以一連串緩衝液清 洗微陣列以移除未經結合股。一旦清洗後,以氣流(通常 爲氮)乾燥微陣列表面。雜交及清洗的嚴格度很重要。不 夠嚴格可能導致高度非特異性結合。過度嚴格可能導致無 法適當進行結合而造成減低的靈敏度。藉由檢測來自經標 記之與互補探針形成雜交的擴增子之光發射而辨識雜交。 使用微陣列掃描器檢測來自微陣列的螢光,微陣列掃 描器通常爲經電腦控制的反相掃描式螢光共軛焦顯微鏡, 其一般使用激發螢光染料的雷射及光感測器(諸如光電倍 增管或CCD)以檢測發射的信號。螢光分子發射經史托克 斯轉換的光(如上述),而光被檢測單元收集。 發射的螢光必須被收集、與未經吸收的激發波長分離 ,並被傳送至檢測器。於微陣列掃描器中常使用共軛焦配 置以藉由位於影像平面的共軛焦針孔來刪除失焦資訊。此 使得僅檢測光的聚焦部分。防止於物之焦點平面之上方或 下方的光進入檢測器,藉此增加信號對雜訊比。檢測器將 -16- 201211534 經檢測的螢光光子轉換成電能,電能並接著被轉換成數位 信號。此數位信號轉變成代表來自給定像素之螢光強度的 數字。陣列的各特徵係由一或多個此像素所構成。掃描的 最終結果爲陣列表面影像。由於已知微陣列上每一個探針 的確切序列及位置,因此可同時識別及分析雜交的標靶序 列。 可於下列找到更多有關螢光探針之資訊: I http : //www.premierbiosoft.com/tech_notes/FRET_probe.html以及 http : //www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-1. Primer pair - a short single strand of DN A having approximately 10-30 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis DNA thermostable enzyme 3. Deoxyribose nucleus Glycoside triphosphate (dNTP) - provides nucleotides integrated into newly synthesized DNA strands. 4. Buffer - the best chemical environment for DNA synthesis. PCR typically involves placing these reagents in small tubes containing extracted nucleic acids (~1 〇·50 microliters). The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. The standard protocols for each thermal cycle include the denaturing phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension phases are combined. The denatured phase generally comprises heating the reaction temperature to 90-95 ° C to denature the DNA strand; in the adhesive phase, the temperature is lowered to ~50-60 ° C for adhesion of the primer; then in the extended phase, the temperature is raised to The optimal DN A polymerase activity temperature is 60-72 ° C for extension of the primer. This method repeats the cycle approximately 20-4 times, with the end result being a target sequence between the millions of copies of the primer. Variants of many standard PC R protocols for molecular diagnostics have been developed, including, for example, multiple primer set PCR, linker-primed PCR, direct PCR, tandem PCR, real-time PCR, and Reverse transcriptase PCI^ 201211534 Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. Additional information can be obtained from a single experiment by sub-targeting multiple genes (in other ways, several trials are required). It is more difficult to optimize multi-primer PCR because it requires the selection of primers with approximate adhesion temperature and amplicon with approximate length and base composition to ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of virtually all DNA sequences in complex DNA mixtures without the need for target-specific Sexual introduction. This method first digests the target DNA population with a suitable restriction endonuclease. Using a zymase enzyme, a double-stranded oligonucleotide linker (also known as a zygote) having a suitable overhanging end is then ligated to the terminal of the target DN A fragment. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. By this, all fragments of the DN A source adjacent to the linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that PCR reactions are inhibited by many components present in unpurified biological samples, such as the protohemoglobin component in the blood. Traditionally, PCR requires enhanced purification of target nucleic acids prior to preparation of the reaction mixture. However, with appropriate changes in chemical properties and sample concentration, PCR can be performed or direct PCR can be performed with minimal DNA purification. Modification of PCR chemistries for direct PCR includes polymerases that potentiate buffer strength, quotient activity and progression (p r 〇 c e s s i v i t y), and additives that chelate with potential polymerase inhibitors. -9- 201211534 Tandem repeat PCR utilizes two independent nucleic acid amplifications to increase the probability of amplifying the correct amplicon. One type of tandem repeat PCR is nested PCR in which two pairs of PCR bows are used to perform single locus amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product (short in the first PCR product) containing the target nucleic acid. The rationale used in this strategy is that if the wrong locus is amplified due to a mistake during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very low, thus ensuring specificity. Instant PCR or quantitative PCR was used to measure the amount of PCR product in real time. The initial amount of nucleic acid in a sample can be determined by using a fluorophore containing a probe or fluorescent dye and a reference standard in the reaction. This is especially useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. » Reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), followed by PCR amplification of cDNA. RT-PCR is widely used in expression profiling to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus. Thermostatic amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DN A during the amplification reaction, thus eliminating the need for complex machinery. The constant temperature nucleic acid amplification method can be performed at the original position or outside the laboratory environment. -10- 201211534 is easy to operate. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase Polymerase Amplification, Rolling Cycle Expansion Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification, and Loop-Mediated Isothermal Amplification The method of addition has been described. The thermostatic nucleic acid amplification method does not rely on the continuous heat denaturation of the template DN A to produce a single-stranded molecule as a template for further amplification, but relies on an enzymatic cleavage such as a DNA molecule that specifically limits an endonuclease at a normal temperature, Or other methods of using enzymes to separate DNA strands. The ability of strand-substituted amplification (SDA) to rely on specific restriction enzymes to cleave unmodified strands of hemi-modified DNA, and the ability to rely on 5'-3' exonuclease-deficient polymerases to extend And replace the downstream stocks. An exponential nucleic acid amplification is then achieved by a coupling sense and an anti-sense reaction, wherein the strands from the sense reaction are substituted as a template for the antisense reaction. A nicking enzyme (such as N. Alwl, N. BstNBl and Mlyl) which produces a nick on one of the DN A strands without cutting DN A in a usual manner is useful for this reaction. SDA has been improved by the use of a combination of a thermostable restriction enzyme ΜναΙ and a thermostable exo-polymerase (5W polymerase). This combination appears to increase the amplification efficiency of the reaction from 108-fold amplification to 101-fold amplification, such that this -11 - 201211534 technique can be used to amplify unique single-copy molecules. Transcription-mediated amplification (TMA) and nucleic acid-dependent sequence amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than corresponding genomic DNA. This technique uses two primers and two or three enzymes, RNA polymerase, reverse transcription enzyme, and any RNase Η (if the reverse transcriptase does not have RNase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to a target ribosomal RNA (rRNA) at a defined position. The reverse transcriptase produces a DNA copy of the target rRNA by extension from the 3' end of the promoter primer. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the RNase activity of the reverse transcriptase. Next, the second primer is bound to the DN A copy. A double-stranded DNA molecule is produced by synthesizing a new DNA strand from the end of the primer by a reverse transcriptase. The RNA polymerase recognizes the promoter in the DN A template and initiates transcription. Each newly synthesized RN A amplicon is re-entered and used as a template for new replication. In recombinant enzyme polymerase amplification (RPA), constant temperature amplification of a specific DNA fragment is achieved by binding the opposite oligonucleotide to template DN A and extending it by DN A polymerase. Denaturation of double-stranded DNA (dsDNA) templates does not require heat. In contrast, RPA utilizes recombinant enzyme-primer mismatches to scan dsDNA and promote share exchange at cognate locations. The resulting structure is stabilized by the interaction of a single strand of DNA-binding protein with a substituted template strand, thereby preventing the primer from being released due to branch migration. The recombinant enzyme decomposes off the 3' end of the oligonucleotide that is accessible to the DNA polymerase (such as a large fragment of Sacί·//«5· Pol I (551/)), and the primer then begins to extend. This step is repeated by loop to achieve exponential nucleic acid amplification. -12- 201211534 Helicase amplification (HD A) mimics the in vivo system, using DNA helicase in an in vivo system to generate a single strand template for primer hybridization followed by extension of the primer with DN A polymerase. In the first step of the HD A reaction, the helicase traverses the target DNA, destroying the hydrogen bonds that bind the two strands, which are then bound by a single binding protein. The single-strand target area exposed by the helicase allows the primer to adhere. DN A polymerase uses free deoxyribonucleoside triphosphate (dNTP) to subsequently extend the 3' end of each primer to produce two DNA copies. The two replicated dsDNA strands independently enter the next HDA cycle, resulting in exponential nucleic acid amplification of the target sequence. Other DNA-based thermostating techniques include rolling cycle amplification (RCA), in which a DNA polymerase continuously extends a primer around a circular DNA template to produce a long DNA product consisting of a number of circular repeat copies. By terminating the reaction, the polymerase produces thousands of copies of the circular template with a copy strand tethered to the original target DN A . This results in a spatial resolution of the target and rapid nucleic acid amplification of the signal. A template of up to 1 copy can be produced in one hour. φ Branched amplification is a variant of RCA and utilizes a closed circular probe (C-probe) or a latching probe and a highly progressive DNA polymerase for exponential amplification at ambient temperature C-probe. Circular thermostat amplification (LAMP) provides high selectivity and utilizes a DNA polymerase and a primer set containing four specially designed primers that identify a total of six different sequences on the target DN A. The intron starting LAMP containing the sense strand of the target DN A and the antisense strand sequence. The subsequent strand-initiated DNA synthesis triggered by the exogenous primer releases a single strand of DNA. This serves as a template for DNA synthesis initiated by the second internal and external primers, and the second inner and outer primers hybridize to the other end of the target -13-201211534 to produce a stem-loop DNA structure. In the subsequent LAMP cycle, the 'inner primer hybridizes to the loop on the product and initiates the replacement DNA synthesis, producing the original stem-loop DNA and the new stem-loop DNA with twice the stem length. The reaction was continued for one hour and accumulated to 109 copies of the target. The final product is a stem-loop DNA having several inverted repeat targets and a cauliflower-like structure having a plurality of loops (formed by alternately opposing reverse repeat targets in the same strand), after completion of nucleic acid amplification, The amplified product is analyzed to determine whether the expected amplicon is produced (the method for analyzing the product of the amplification amount of the target nucleic acid is to simply measure the size of the amplicon by colloidal electrophoresis, and to identify the amplicon nucleoside using DN A hybridization. Acid composition. Colloidal electrophoresis is one of the simplest ways to check whether a nucleic acid amplification step produces the expected amplicon. Colloidal electrophoresis uses an electric field applied to a colloidal matrix to separate DNA fragments. Negatively charged DNA fragments will be at different rates ( Depending on its size, it moves through the matrix. After the electrophoresis is completed, the fragments in the colloid can be stained to make it visible. The fluorinated phenanthrene ingots which are fluorescent under UV light are the most commonly used dyes. Size markers (DNA ladders) are compared to determine the size of the fragment, and the DN A size marker contains a DNA fragment of known size that is run along with the amplicon. The oligonucleotide primer binds to a specific position adjacent to the target DNA, and the size of the amplified product can be predicted and detected using a band of a known size on the colloid. To confirm whether or not the amplicon is produced When an amplicon is used, it is often hybridized with an amplicon using a DN A probe. -14- 201211534 DN A hybridization means the formation of double-stranded DNA by complementary base pairing. The DN for positive recognition of a specific amplification product A hybridization requires the use of a DN A probe of approximately 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DN A sequence, hybridization will result in favorable temperature, pH and ion concentration conditions. If the hybridization occurs, it indicates that the gene of interest or the DN A sequence appears in the original sample. Optical detection is the most common method for detecting hybridization. The labeled amplicon or φ is a probe to emit fluorescence or electrophoresis. Chemiluminescence and luminescence. These methods induce different states of the excited state of the light-generating portion, but both of them also enable covalent labeling of nucleotide strands. In electrochemiluminescence (ECL), when excited by current, Produced by luminophore molecules or mismatches Light. When fluorescing, illuminating with the excitation light that causes the emission. The illuminating source is used to detect the fluorescent light, and the illuminating source provides the excitation light having the wavelength absorbed by the fluorescent molecules and the detecting unit. The detecting unit includes a photo sensor (such as A photomultiplier tube or a charge coupled device (CCD) array) to detect the transmitted signal φ number and to prevent excitation light from being included in the photosensor output mechanism (such as a wavelength-select filter). Responding to the excitation light, the camping light molecule The Stokes-shifted light is emitted, and the emitted light is collected by the detecting unit. The Stokes converts the frequency difference or the wavelength difference between the emitted light and the absorbed excitation light. The detector detects ECL emissions, and the light sensor is sensitive to the emission wavelength of the ECL type used. For example, a transition metal coordination complex emits light of a visible wavelength, and thus a conventional photodiode and C CD are used as photosensors. The advantage of ECL is that if the ambient light is excluded, the ECL emission can be -15-201211534 to detect the only light present in the system, thus increasing sensitivity. The microarray enables hundreds of thousands of DN A hybridization experiments to be performed simultaneously. Microarrays are useful molecular diagnostic tools for screening thousands of genetic diseases or for detecting the presence of several infectious pathogens in a single test. The microarray consists of a number of different DN A probes that are attached to the substrate and are spotted. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (during or after nucleic acid amplification) and then applied to the probe array. The microarray is cultured for several hours or days at a controlled temperature in a humid environment where hybridization occurs between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. Once cleaned, the surface of the microarray is dried with a stream of air (usually nitrogen). The stringency of hybridization and cleaning is important. Not being strict enough may result in highly non-specific binding. Excessive rigor may result in inability to properly combine to cause reduced sensitivity. Hybridization is identified by detecting light emission from the labeled amplicon that hybridizes to the complementary probe. Fluorescence from the microarray is detected using a microarray scanner, typically a computer-controlled, inverting scanning fluorescent conjugated focus microscope that typically uses a laser and photosensor that excites the fluorescent dye ( Such as a photomultiplier tube or CCD) to detect the emitted signal. The fluorescent molecules emit light converted by Stokes (as described above), and the light is collected by the detecting unit. The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. A conjugate focal configuration is often used in microarray scanners to remove out-of-focus information by conjugated focal pinholes located in the image plane. This makes it possible to detect only the focused portion of the light. Light that is prevented above or below the focal plane of the object enters the detector, thereby increasing the signal-to-noise ratio. The detector converts the detected fluorescent photons of -16-201211534 into electrical energy, which is then converted into a digital signal. This digital signal is converted to a number representing the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the hybrid target sequence can be identified and analyzed simultaneously. More information on fluorescent probes can be found below: I http : //www.premierbiosoft.com/tech_notes/FRET_probe.html and http: //www.invitrogen.com/site/us/en/home/References /Molecular-Probes-The-

Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-

Energy-Transfer-FRET.html 就地醫護分子診斷 儘管分子診斷試驗提供了優勢,臨床檢驗中此類型試 驗的成長不如預期且仍僅占檢驗醫學之實施的小部分。此 φ 主要歸因於,與基於非關核酸方法之試驗相比,核酸試驗 相關之複雜度與成本。分子診斷試驗之於臨床處理的廣泛 適用性係與可顯著降低成本、自始(樣本處理)至終(產生 結果)之快速及自動化分析,以及不需大量人爲操作之儀 器發展息息相關。 用於醫師診所、鄰近的或基於使用者的醫院、家中之 就地醫護技術提供以下優點: •快速得到結果而致能快速促進治療及改進照護品質 -17- 201211534 •經由試驗極少量樣本而得到檢驗値的能力。 •減少臨床工作量。 •減少實驗室工作量並因減少管理工作而增進工作效 率。 •因減少住院時間、門診病人於首次就診得知結果, 及簡化樣本的處理、儲存及運送而改善每個病人所需成本 〇 •促進臨床管理決策,諸如接種控制及抗生素使用。 以晶片上實驗室(LOC )爲基之分子診斷 基於爲流體技術之分子診斷系統提供自動化及加速分 子診斷分析的方法。較短的檢測時間主要歸因於微流體裝 置中之診斷方法步驟使用極少用量、自動化及內建低開銷 串級。奈升與微升級用量亦降低試劑消耗及成本。晶片上 實驗室(LOC)裝置爲微流體裝置之常見形式。晶片上實驗 室裝置於MST層中具有MST結構以將流體處理整合至單一 支撐基板(通常爲矽)。使用半導體產業之VLSI (超大型積 體電路)技術之製造,使各LOC裝置的單元成本非常低》 然而,控制流體流經LOC裝置、添加試劑、控制反應條件 等需要大體積的外部管路及電子裝置。將LOC裝置連接至 這些外部裝置實際上將用於分子診斷之LOC裝置之用途限 制爲檢驗處理》外部設備的成本及其操作上的複雜度排除 了利用以LOC爲基的分子診斷作爲就地醫護處理的實用選 擇。 -18- 201211534 鑒於上述,需要一種用於就地醫護之基於LOC裝置之 分子診斷系統。 【發明內容】 於以下的標號段落將描述本發明的各種面向。 GVA001.1 本發明之此面向提供一種微流體裝置 ,其包含: φ 通道,其具有入口、出口及介於入口及出口之間的彎 液面固定器,使得自入口朝向出口流動之液體停止於液體 形成彎液面之彎液面固定器;以及, 致動器閥,其具有用於接觸液體之可移動構件以及熱 膨脹致動器,熱膨脹致動器係用於使可移動構件位移以於 液體中產生脈動(pulse)而移動(dislodge)彎液面,使得恢 復流向出口之液體流動。 GVA001.2 較佳地,通道係經配置以藉由毛細作 φ 用而自入口吸引液體至出口。 GVA001.3 較佳地,可移動構件係經配置以用於 靜態位置與致動位置(自靜態位置移動)之間的移動,以及 彎液面固定器係配置成藉由固定彎液面於孔口而停止液體 流動之孔口。 GVA001.4 較佳地,可移動構件至少部分地界定 孔口。 GVA001.5 較佳地,熱致動器具有用於引起示差 熱膨脹之阻抗元件以移動可移動構件。 -19- 201211534 GVA001.6 較佳地,致動器閥使可移動構件往返 運動於靜態與移動的位置之間,直到緊鄰孔口下游的通道 被塡充足以使毛細作用重新建立流動方向的液體流動爲止 〇 GVA001.7 較佳地,申請專利範圍第6項之微流體 裝置進一步包含支撐基板,其係用於通道及位於通道與支 撐基板間之供操作性控制致動器閥之CMOS電路;以及, 至少一個回應於液體流動之感測器,其中至少一個感 測器反饋控制CMOS電路以用於致動器閥之操作性控制; 其中, 至少一個感測器爲液體感測器,用於感測通道中之一 處的液體存在或不存在。 GVA001.8 較佳地,孔口爲可移動構件中的噴嘴 〇 GVA001.9 較佳地,可移動構件爲懸臂式結構, 其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 〇 可大量製造.且便宜的微流體裝置接收用於處理及/或 分析的液體(經由毛細作用提供必需的液體推進,及經由 可靠、易於製造之熱彎曲致動的壓力脈衝閥提供必需的閥 功能)。熱彎曲致動的壓力脈衝閥顯示微流體裝置技術之 固有優良品質且免除此等技術之問題面向。 GVA002.1 本發明之此面向提供一種微流體裝匱 ,其包含: -20- 201211534 通道,其具有入口、出口及介於入口及出口之間的彎 液面固定器,使得自入口朝向出口流動之液體停止於液體 形成彎液面之彎液面固定器;以及, 致動器閥,其具有用於接觸液體之可移動構件,以及 用於使可移動構件自靜態位置位移至致動位置的致動器, 於致動位置彎液面係延伸以與彎液面固定器下游之表面接 觸,使得恢復流向出口之液體流動。 GVA002.2 較佳地,通道係經配置以藉由毛細作 用而自入口吸引液體至出口。 GVA002.3 較佳地,可移動構件係經配置以用於 靜態位置與致動位置(自靜態位置移動)之間的移動,以及 彎液面固定器係配置成藉由固定彎液面於孔口而停止液體 流動之孔口。 GVA002.4 較佳地,可移動構件至少部分地界定 孔口。 GVA002.5 較佳地,熱致動器具有用於引起示差 熱膨脹之阻抗元件以移動可移動構件。 GVA002.6 較佳地,通道之相對側壁收斂成緊鄰 可移動構件下游的窄部,使得當可移動構件移動至致動位 置時,彎液面接觸窄部。 GVA002.7 較佳地,申請專利範圍第6項之微流體 裝置進一步包含支撐基板,其係用於通道及位於通道與支 撐基板間之供操作性控制致動器閥之CMOS電路。 GVA002.8 較佳地,至少一個回應於液體流動之 -21 - 201211534 感測器,其中至少一個感測器反饋控制CMOS電路以用於 致動器閥之操作性控制。 GVA002.9 較佳地,至少一個感測器爲液體感測 器,用於感測通道中之一處的液體存在或不存在。 GVA002.1 0 較佳地,孔口爲可移動構件中的噴嘴 〇 GVA002.il 較佳地,可移動構件爲懸臂式結構, 其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 〇 可大量製造且便宜的微流體裝置接收用於處理及/或 分析的液體(經由毛細作用提供必需的液體推進,及經由 可靠、易於製造之熱彎曲致動的表面張力閥提供必需的閥 功能熱彎曲致動的表面張力閥顯示微流體裝置技術之 固有優良品質且免除此等技術之問題面向。 GVA004.1 本發明之此面向提供一種微流體裝置 ,其包含: 入口,用於接收流經微流體裝置之液體: 入口下游之出口;以及, 錯誤耐受多重閥組件,其具有自入口延伸至出口的複 數個流路以及分別沿著各流路設置的複數個閥。 GVA004.2 較佳地,各流路係經配置以用於流向 出口之液體的毛細作用驅動流,以及各閥係經配置以停止 流向出口之流直至打開爲止。 GVA004.3 較佳地,微流體裝置亦具有分別位於 201211534 各流路中之感測器,感測器相應於與液體的接觸。 GVA004.4 較佳地,閥係彎曲致動閥,每一者具 有可移動構件,可移動構件係經配置以用於靜態位置與致 動位置(自靜態位置移動)之間的移動;以及至少部分地由 可移動構件所界定的孔口’孔口係配置成藉由固定彎液面 於孔口而停止毛細作用驅動流,其中於使用時,可移動構 件移動至致動位置而自孔口釋放彎液面,使得恢復流向出 φ 口之毛細作用驅動流。 GVA004.5 較佳地,彎曲致動器具有用於引起示 差熱膨脹之阻抗元件以移動可移動構件。 GVA004.6 較佳地,可移動構件爲懸臂式結構, 其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 〇 GVA004.7 較佳地,閥爲熱致動閥,其每一者具 有孔口,其用於固定彎液面以停止毛細作用驅動流之孔口 φ ,以及閥加熱器,其用於加熱彎液面使得彎液面自孔口釋 放而恢復朝向出口之毛細作用驅動流。 GVA004.8 較佳地,閥加熱器繞孔口周邊延伸。 GVA004.9 較佳地,各流路具有上游閥及下游閥 ,感測器係位於上游閥與下游閥之間》 GVA004.1 0 較佳地,微流體裝置亦具有流路中之 二者。 GVA004.il 較佳地,微流體裝置亦具有CMOS電路 ,其連接至感測器以操作性控制閥及檢測包括了任一上游 -23- 201211534 閥失效之錯誤以停止液體流。 GVA004.12 較佳地,微流體裝置亦具有聚合酶鏈 反應(PCR)部以藉由熱循環核酸序列與PCR之混合試劑歷 經變性溫度、黏合溫度及引子延伸溫度來擴增核酸序列: 其中, 錯誤耐受多重閥組件,於熱循環期間,保持核酸序列 及PCR之混合試劑於PCR部中。 GVA004.1 3 較佳地,微流體裝置亦具有探針陣列 以與標靶核酸序列雜交而形成探針-標靶雜交; 探針陣列位於錯誤耐受多重閥組件下游,使得誤耐受 多重閥組件之開啓允許來自PCR部之擴增子接觸探針。 GVA004.1 4 較佳地,PCR部係配置以產生用於與超 過1000個探針於10分鐘內之熱循環的充分擴增子。 GVA004.1 5 較佳地,PCR部的熱循環時間介於0.45 秒與1 . 5秒之間。 GVA004.1 6 較佳地,微流體裝置亦具有溫度感測 器,及其中PCR部具有至少一個加熱器以熱循環核酸序列 及PCR混合,溫度感測器及至少一個加熱器係連接至 CMOS電路以反饋控制至少一個力□熱器。 GVA004.1 7 較佳地,於預定次數之熱循環之後, CMOS電路開啓錯誤耐受閥組件。 GVA004.1 8 較佳地,PCR部具有複數個伸長的PCR 室,其具有遠大於橫向尺寸之縱向延伸,以及複數個加熱 器,各加熱器係伸長的且平行於PCR室之縱向延伸。Energy-Transfer-FRET.html In-situ Care Molecular Diagnostics Despite the advantages of molecular diagnostic tests, this type of test in clinical tests has grown less than expected and still only accounts for a small portion of the implementation of laboratory medicine. This φ is mainly attributed to the complexity and cost associated with nucleic acid testing compared to experiments based on non-amino acid methods. The broad applicability of molecular diagnostic tests to clinical treatment is closely related to the rapid and automated analysis that can significantly reduce costs, from the beginning (sample processing) to the end (resulting in results), and the development of instruments that do not require extensive human intervention. For physicians' clinics, proximity or user-based hospitals, home-based in-home healthcare technologies offer the following benefits: • Rapid results to enable rapid treatment and improved care quality -17- 201211534 • Achieved by testing very small samples The ability to test defects. • Reduce clinical workload. • Reduce laboratory workload and increase work efficiency by reducing management efforts. • Improve the cost per patient by reducing hospital stays, getting results from first visits, and simplifying the handling, storage, and delivery of samples 〇 • Promoting clinical management decisions such as vaccination control and antibiotic use. Molecular Diagnostics Based on On-Wafer Laboratory (LOC) Based on methods for providing automated and accelerated molecular diagnostic analysis for molecular diagnostic systems for fluid technology. The shorter detection time is mainly due to the use of very small amounts of automation, built-in and low overhead cascades in the diagnostic method steps in the microfluidic device. The use of nanoliters and micro-upgrades also reduces reagent consumption and cost. On-wafer laboratory (LOC) devices are a common form of microfluidic devices. The on-wafer laboratory device has an MST structure in the MST layer to integrate fluid processing into a single support substrate (typically germanium). The use of the VLSI (Ultra Large Integrated Circuit) technology in the semiconductor industry makes the unit cost of each LOC device very low. However, controlling the flow of fluid through the LOC device, adding reagents, controlling reaction conditions, etc. requires a large volume of external piping and Electronic device. Connecting LOC devices to these external devices actually limits the use of LOC devices for molecular diagnostics to inspection processing. The cost of external devices and their operational complexity preclude the use of LOC-based molecular diagnostics as a local care Practical options for processing. -18- 201211534 In view of the above, there is a need for a molecular diagnostic system based on LOC devices for in situ care. SUMMARY OF THE INVENTION Various aspects of the present invention will be described in the following paragraphs. GVA001.1 This aspect of the invention provides a microfluidic device comprising: a φ channel having an inlet, an outlet, and a meniscus holder between the inlet and the outlet such that the liquid flowing from the inlet toward the outlet stops a meniscus holder for forming a liquid meniscus; and an actuator valve having a movable member for contacting the liquid and a thermal expansion actuator for displacing the movable member for the liquid A pulse is generated to dislodge the meniscus, so that the flow of liquid to the outlet is resumed. GVA001.2 Preferably, the channel is configured to draw liquid from the inlet to the outlet by capillary action φ. GVA001.3 Preferably, the movable member is configured for movement between a static position and an actuated position (moving from a static position), and the meniscus holder is configured to secure the meniscus to the hole Stop the mouth of the liquid flow. GVA001.4 Preferably, the movable member at least partially defines the aperture. GVA001.5 Preferably, the thermal actuator has an impedance element for causing differential thermal expansion to move the movable member. -19- 201211534 GVA001.6 Preferably, the actuator valve reciprocates the movable member between the static and moving positions until the passage immediately downstream of the orifice is sufficiently squeezed to cause the capillary to reestablish the liquid in the flow direction Preferably, the microfluidic device of claim 6 further comprises a support substrate for the channel and the CMOS circuit between the channel and the support substrate for the operative control actuator valve; And at least one sensor responsive to liquid flow, wherein at least one of the sensors feedback controls the CMOS circuit for operative control of the actuator valve; wherein the at least one sensor is a liquid sensor for The presence or absence of liquid at one of the sensing channels. GVA001.8 Preferably, the orifice is a nozzle in the movable member 〇GVA001.9. Preferably, the movable member is a cantilever structure having a nozzle at the free end and an impedance element between the nozzle and the fixed end. It can be manufactured in large quantities. The inexpensive microfluidic device receives the liquid for processing and/or analysis (providing the necessary liquid propulsion via capillary action and providing the necessary valve function via a reliable, easy-to-manufacture thermal-bend-actuated pressure pulse valve) ). The hot bend actuated pressure pulse valve exhibits inherently superior quality of the microfluidic device technology and eliminates the problems of such techniques. GVA002.1 This aspect of the invention provides a microfluidic device comprising: -20-201211534 channel having an inlet, an outlet and a meniscus holder between the inlet and the outlet such that the inlet flows toward the outlet The liquid stops at the meniscus holder of the liquid forming the meniscus; and the actuator valve has a movable member for contacting the liquid, and for displacing the movable member from the static position to the actuated position The actuator, in the actuating position, the meniscus extends to contact the surface downstream of the meniscus holder such that fluid flow to the outlet is resumed. GVA002.2 Preferably, the channel is configured to draw liquid from the inlet to the outlet by capillary action. GVA002.3 Preferably, the movable member is configured for movement between a static position and an actuated position (moving from a static position), and the meniscus holder is configured to secure the meniscus to the hole Stop the mouth of the liquid flow. GVA002.4 Preferably, the moveable member at least partially defines the aperture. GVA002.5 Preferably, the thermal actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA002.6 Preferably, the opposing side walls of the channel converge to a narrow portion immediately downstream of the movable member such that when the movable member is moved to the actuated position, the meniscus contacts the narrow portion. GVA002.7 Preferably, the microfluidic device of claim 6 further comprises a support substrate for the channel and the CMOS circuit between the channel and the support substrate for the operative control actuator valve. GVA002.8 Preferably, at least one sensor is responsive to liquid flow - 21 - 201211534, wherein at least one of the sensors feedback controls the CMOS circuit for operative control of the actuator valve. GVA002.9 Preferably, the at least one sensor is a liquid sensor for sensing the presence or absence of liquid at one of the channels. GVA002.1 0 Preferably, the orifice is a nozzle in the movable member 〇GVA002.il Preferably, the movable member is a cantilever structure having a nozzle at the free end and having a resistive element between the nozzle and the fixed end大量 A mass-manufactured and inexpensive microfluidic device receives liquid for processing and/or analysis (providing the necessary liquid propulsion via capillary action and providing the necessary valve function via a reliable, easy-to-manufacture thermal bending actuated surface tension valve) The hot bend actuated surface tension valve exhibits inherently superior quality of the microfluidic device technology and eliminates the problems of such techniques. GVA004.1 This aspect of the invention provides a microfluidic device comprising: an inlet for receiving flow through Liquid of the microfluidic device: an outlet downstream of the inlet; and an error-tolerant multiple valve assembly having a plurality of flow paths extending from the inlet to the outlet and a plurality of valves respectively disposed along each flow path. GVA004.2 is preferred Ground, each flow path is configured for a capillary action drive flow of liquid to the outlet, and each valve train is configured to stop flow to the outlet GVA004.3 Preferably, the microfluidic device also has sensors in the respective flow paths of 201211534, the sensors corresponding to the contact with the liquid. GVA004.4 Preferably, the valve system is bent and actuated Valves each having a moveable member configured to move between a static position and an actuated position (moving from a static position); and an orifice at least partially defined by the moveable member' The orifice is configured to stop the capillary action drive flow by fixing the meniscus to the orifice, wherein in use, the movable member moves to the actuating position to release the meniscus from the orifice, thereby restoring flow to the orifice Capillary action drive flow. GVA004.5 Preferably, the bending actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA004.6 Preferably, the movable member is a cantilever structure having a free end The nozzle has an impedance element between the nozzle and the fixed end 〇GVA004.7. Preferably, the valve is a thermally actuated valve, each of which has an orifice for securing the meniscus to stop capillary action a flow orifice φ and a valve heater for heating the meniscus such that the meniscus is released from the orifice to restore the capillary action drive flow toward the outlet. GVA004.8 Preferably, the valve heater is wound around the orifice GVA004.9 Preferably, each flow path has an upstream valve and a downstream valve, and the sensor is located between the upstream valve and the downstream valve" GVA004.1 0 Preferably, the microfluidic device also has a flow path Preferably, the microfluidic device also has a CMOS circuit that is coupled to the sensor to operatively control the valve and detect an error including any upstream -23-201211534 valve failure to stop the flow of liquid. .12 Preferably, the microfluidic device also has a polymerase chain reaction (PCR) portion for amplifying the nucleic acid sequence by a denaturation temperature, a binding temperature and a primer extension temperature of the mixed reagent of the thermocycling nucleic acid sequence and the PCR: wherein, the error The multi-valve assembly is tolerated, and during the thermal cycle, the nucleic acid sequence and the mixed reagent of the PCR are maintained in the PCR section. GVA004.1 3 Preferably, the microfluidic device also has a probe array to hybridize with the target nucleic acid sequence to form a probe-target hybrid; the probe array is located downstream of the error-tolerant multiple valve assembly, such that the multiple valves are mis-tolerant The opening of the assembly allows the amplicon from the PCR section to contact the probe. GVA004.1 4 Preferably, the PCR section is configured to generate sufficient amplicons for thermal cycling with more than 1000 probes over 10 minutes. GVA004.1 5 Preferably, the thermal cycle time of the PCR section is between 0.45 seconds and 1.5 seconds. GVA004.1 6 Preferably, the microfluidic device also has a temperature sensor, wherein the PCR portion has at least one heater for thermally cycling the nucleic acid sequence and PCR mixing, and the temperature sensor and the at least one heater are connected to the CMOS circuit Control at least one force heater with feedback. GVA004.1 7 Preferably, the CMOS circuit turns on the fault tolerance valve assembly after a predetermined number of thermal cycles. GVA004.1 8 Preferably, the PCR section has a plurality of elongated PCR chambers having a longitudinal extent that is much larger than the transverse dimension, and a plurality of heaters each extending longitudinally and parallel to the longitudinal extension of the PCR chamber.

201211534 GVA004.1 9 較佳地,複數個伸長的加 立操作。 GVA004.20 較佳地,微流體裝置亦具 陣列以檢測探針陣列內之探針雜交。 可大量製造且便宜的微流體裝置接收用;f 分析的液體(經由毛細作用提供必需的液體推 可靠、易於製造之錯誤耐受多重閥組件提供必 錯誤耐受多重閥組件經由個別的閥錯誤耐 計、製作及操作而提供必須的可靠度;且展現 技術之固有優良品質且免除此等技術之問題面 GVA013.1 本發明之此面向提供一種 析之測試模組,其包含: 供手持攜帶之外殼; 入口,用於接收含有核酸序列之液體; 入口下游之出口;以及, 錯誤耐受多重閥組件,其具有自入口延伸 數個流路以及分別沿著各流路設置的複數個閥 GVA013.2 較佳地,各流路係經配置 出口之液體的毛細作用驅動流,以及各閥係經 流向出口之流直至打開爲止。 GVA013.3 較佳地,測試模組亦具有 流路中之感測器,感測器相應於與液體的接觸 GVA013.4 較佳地,閥係彎曲致動閥 熱器係經獨 有光二極體 冷處理及/或 進,及經由 需的閥功能 受及閥之設 微流體裝置 向。 用於基因分 至出口的複 〇 以用於流向 配置以停止 分別位於各 〇 ,每一者具 -25- 201211534 有可移動構件,可移動構件係經配置以用於靜態位置與致 動位置(自靜態位置移動)之間的移動;以及至少部分地由 可移動構件所界定的孔口,孔口係配置成藉由固定彎液面 於孔口而停止毛細作用驅動流,其中於使用時,可移動構 件移動至致動位置而自孔口釋放彎液面,使得恢復流向出 口之毛細作用驅動流。 GVA013.5 較佳地,彎曲致動閥具有用於引起示 差熱膨脹之阻抗元件以移動可移動構件。 GVA013.6 較佳地,可移動構件爲懸臂式結構, •其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 〇 GVA013.7 較佳地,閥爲熱致動閥,其每一者具 有孔口,孔口用於固定彎液面以停止毛細作用驅動流,以 及閥加熱器,其用於加熱彎液面使得彎液面自孔口釋放而 恢復朝向出口之毛細作用驅動流》 GVA013.8 較佳地,閥加熱器繞孔口周邊延伸。 GVA013.9 較佳地,各流路具有上游閥及下游閥 ,感測器係位於上游閥與下游閥之間。 GVA013.10 較佳地,測試模組亦具有流路中之二 者。 GVA013.il 較佳地,測試模組亦具有CMOS電路, 其電連接至感測器以操作性控制閥及檢測包括了任一上游 閥失效之錯誤以停止液體流。 GVA013.12 較佳地,測試模組亦具有聚合酶鏈反 -26- 201211534 應(PCR)部以藉由熱循環核酸序列與PCR之混合試劑歷經 變性溫度、黏合溫度及引子延伸溫度來擴增核酸序列;其 中, 錯誤耐受多重閥組件,於熱循環期間,保持核酸序列 及PCR之混合試劑於PCR部中。 GVA013.13 較佳地,測試模組亦具有探針陣列以 與標靶核酸序列雜交而形成探針-標靶雜交; φ 探針陣列位於錯誤耐受多重閥組件下游,使得誤耐受 多重閥組件之開啓允許來自PCR部之擴增子接觸探針。 GVA013.14 較佳地,PCR部係配置以產生用於與超 過1 000個探針於10分鐘內之熱循環的充分擴增子。 GVA013.15 較佳地,PCR部的熱循環時間介於0.45 秒與1.5秒之間。 GVA013.16 較佳地,測試模組亦具有溫度感測器 ,及其中PCR部具有至少一個加熱器以熱循環核酸序列及 φ PCR混合,溫度感測器及至少一個加熱器係連接至CMOS 電路以反饋控制至少一個加熱器。 GVA013.17 較佳地,於預定次數之熱循環之後, CMOS電路開啓錯誤耐受閥組件。 GVA013.18 較佳地,PCR部具有複數個伸長的PCR 室,其各具有遠大於橫向尺寸之縱向延伸,以及複數個加 熱器,各加熱器係伸長的且平行於PCR室之縱向延伸。 GVA013.19 較佳地,複數個伸長的加熱器係經獨 立操作。 -27- 201211534 二極體陣 生物樣本 耐受多重 件經由個 必須的可 質且免除 於微流體 用於流向 液面固定 ϋ定器(停 其用於自 液體流。 之多重閥 測器相應 GVA013.20 較佳地,測試模組亦具有光 列以檢測探針陣列內之探針雜交。 可大量製造且便宜的基因分析測試模組接收 以分析其核酸內容(經由可靠、易於製造之錯誤 閥組件提供必需的閥功能)。錯誤耐受多重閥組 別的閥錯誤耐受及閥之設計、製作及操作而提供 靠度;且操作展現微流體裝置技術之固有優良品 此等技術之問題面向。 GVA017.1 本發明之此面向提供一種用 裝置之錯誤耐受多重閥組件,多重閥組件包含: 入口,用於接收流經微流體裝置之液體: 入口下游之出口; 自入口延伸至出口的複數個流路;以及, 分別沿著各流路設置的複數個閥》 GVA0 17.2 較佳地,各流路係經配置以 出口之液體的毛細作用驅動流,以及各閥具有彎 器,彎液面固定器係經配置以使液體於彎液面E 止朝向出口之液體流)處形成彎液面。 GVA017.3 較佳地,各閥具有致動器’ 彎液面固定器移動彎液面,使得恢復朝向出口之 GVA017.4 較佳地,申請專利範圍第3項 組件進一步包含分別位於各流路中之感測器,感 於與液體的接觸。 GV AO 1 7.5 較佳地,各流路中之感測器位於各流 201211534 路中之複數個閥之兩者之間,且來自任何感測器之液體接 觸之指示係用於表示感測器上游之所有閥中的彎液面固定 器已失效。 GVA017.6 較佳地,流路爲經過微流體裝置之通 道,各通道係經配置以藉由毛細作用而自入口吸引液體至 出口。 GVA017.7 較佳地,各閥具有可移動構件以接觸 φ 液體,以及致動器爲熱膨脹致動器以使可移動構件位移而 於液體中產生脈動而自彎液面固定器移動彎液面,使得恢 復流向出口之液體流。 GVA017.8 較佳地,可移動構件係經配置以用於 靜態位置與致動位置(自靜態位置移動)之間的移動,以及 彎液面固定器係配置成藉由固定彎液面於孔口而停止液體 流動之孔口。 GVA017.9 較佳地,可移動構件至少部分地界定 • 孔口。 GVA017.10 較佳地,熱致動器具有用於引起示差 熱膨脹之阻抗元件以移動可移動構件。 GVA017.il 較佳地,孔口爲噴嘴,以及可移動構 件爲懸臂式結構,其於自由端具有噴嘴且於噴嘴與固定端 之間具有阻抗元件。 GVA017.12 較佳地,各閥具有可移動構件以接觸 液體,以及致動器爲熱膨脹致動器以自靜態位置位移可移 動構件至致動位置,使得彎液面係延伸而使彎液面固定器 -29- 201211534 下游之表面接觸而恢復朝向出口之液體流。 G V AO 1 7 · 1 3 較佳地,通道之相對側壁收斂成緊鄰 可移動構件下游的窄部,使得當可移動構件移動至致動位 置時,彎液面接觸窄部。 GVA017.14 較佳地,可移動構件至少部分地界定 孔口。 GVA017.15 較佳地,熱膨脹致動器具有用於引起 示差熱膨脹之阻抗元件以移動可移動構件。 GVA017.16 較佳地,孔口爲噴嘴,以及可移動構 件爲懸臂式結構,其於自由端具有噴嘴且於噴嘴與固定端 之間具有阻抗元件。 GVA017.17 較佳地,各閥具閥加熱器以加熱彎液 面使得彎液面自彎液面固定器釋放而恢復朝向出口之液體 流。 GVA017.18 較佳地,彎液面固定器爲孔口,以及 閥加熱器繞孔口週邊延伸》 GVA017.19 較佳地,閥加熱器係經配置以使液體 於彎液面固定器處沸騰而自彎液面固定器釋放彎液面。 GVA017.20 較佳地,微流體裝置亦具有CMOS電路 以操作性控制各閥及檢測包括了上游閥失效之錯誤以停止 液體流,其中閥被支撐於CMOS電路上且各具有直接延伸 至CMOS電路內之金屬層的電接觸。 錯誤耐受多重閥組件經由個別的閥錯誤耐受及閥之設 計、製作及操作而提供微流體閥作用必須的可靠度;且操 -30- 201211534 作展現微流體裝置技術之固有優良品質且免除此等技 問題面向。 GVA018.1 本發明之此面向提供一種用於微流體 裝置之錯誤耐受多重閥組件,多重閥組件包含: 入口,用於接收流經微流體裝置之液體; 入口下游之出口; 自入口延伸至出口的複數個流路; ^ 分別沿著各流路設置的複數個閥;以及, 分別位於各流路中之感測器,感測器相應於與液體的 接觸。 GVA018.2 較佳地,各流路係經配置以用於流向 出口之液體的毛細作用驅動流,以及各閥具有彎液面固定 器,彎液面固定器係經配置以使液體於彎液面固定器(停 止朝向出口之液體流)處形成彎液面。 GVA018.3 較佳地,各閥具有致動器,其用於自 φ 彎液面固定器移動彎液面,使得恢復朝向出口之液體流。 GVA018.4 較佳地,各流路中之感測器位於各流 路中之複數個閥之兩者之間,且來自任何感測器之液體接 觸之指示係用於表示感測器上游之所有閥中的彎液面固定 器已失效。 GVA018.5 較佳地,閥具有可移動構件以接觸液 體,以及熱膨脹致動器用以位移可移動構件而於液體中產 生脈動而移動彎液面,使得恢復流向出口之液體流。 GVA018.6 較佳地,通道係經配置以藉由毛細作 -31 - 201211534 用而自入口吸引液體至出口。 GVA018.7 較佳地,可移動構件係經配置以用於 靜態位置與致動位置(自靜態位置移動)之間的移動,以及 彎液面固定器係配置成藉由固定彎液面於孔口而停止液體 流動之孔口》 GVA018.8 較佳地,可移動構件至少部分地界定 孔口。 GVA018.9 較佳地,熱致動器具有用於引起示差 熱膨脹之阻抗元件以移動可移動構件。 GVA018.10 較佳地,致動器閥使可移動構件往返 運動於靜態與移動的位置之間,直到緊鄰孔口下游的通道 被塡充足以使毛細作用重新建立流動方向的液體流動爲止 〇 GVA018.il 較佳地,可移動構件爲懸臂式結構, 其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 〇 GVA018.12 較佳地,各閥具有可移動構件以接觸 液體,以及致動器用於自靜態位置位移可移動構件至致動 位置’於致動位置’使得彎液面於致動位置延伸而與彎液 面固定器下游之表面接觸以恢復朝向出口之液體流, GVA0 1 8. 1 3 較佳地,通道之相對側壁收斂成緊鄰 可移動構件下游的窄部,使得當可移動構件移動至致動位 置時,彎液面接觸窄部。 GVA018.14 較佳地,彎液面固定器爲孔口,以及 201211534 閥加熱器繞孔口週邊延伸。 GVA018.15 較佳地,閥加熱器係經配置以使液體 於彎液面固定器處沸騰而自彎液面固定器釋放彎液面。 GVA018.16 較佳地,各流路具有上游閥及下游閥 ,感測器係位於上游閥與下游閥之間。 GVA018.17 較佳地,多重閥組件亦具有流路中之 二者。 GVA01 8.1 8 較佳地,微流體裝置亦具有CMOS電路 以操作性控制各閥及檢測包括了上游閥失效之錯誤以停止 液體流,其中閥被支撐於CMOS電路上且各具有直接延伸 至CMOS電路內之金屬層的電接觸。 錯誤耐.受多重閥組件經由個別的閥錯誤耐受、經由液 體檢測器感測器反饋之最優化控制,及閥之設計、製作及 操作而提供微流體閥作用必須的可靠度;且操作展現微流 體裝置技術之固有優良品質且免除此等技術之問題面向。 GVA019.1 本發明之此面向提供一種用於微流體 裝置之錯誤耐受多重閥組件,多重閥組件包含: 入口,用於接收流經微流體裝置之液體; 入口下游之出口; 自入口延伸至出口的複數個流路;以及, 分別沿著各流路設置的複數個閥;其中, 各閥具有可移動構件以接觸液體,以及熱膨脹致動器 以使可移動構件位移而於液體中產生脈動而移動彎液面, 使得恢復流向出口之液體流。 -33- 201211534 GVA0 19.2 較佳地,各流路係經配匱以用於流向 出口之液體的毛細作用驅動流,以及各閥具有彎液面固定 器,彎液面固定器係經配置以使液體於彎液面固定器(停 止朝向出口之液體流)處形成彎液面》 GVA019.3 較佳地,流路爲經過微流體裝置之通 道,各通道係經配置以藉由毛細作用而自入口吸引液體至 出口。 GVA0 19.4 較佳地,可移動構件係經配置以用於 靜態位置與致動位置(自靜態位置移動)之間的移動,以及 彎液面固定器係配置成藉由固定彎液面於孔口而停止液體 流動之孔口。 GVA019.5 較佳地,可移動構件至少部分地界定 孔口。 GVA019.6 較佳地,熱致動器具有用於引起示差 熱膨脹之阻抗元件以移動可移動構件。 GVA019.7 較佳地,致動器閥使可移動構件往返 運動於靜態與移動的位置之間,直到緊鄰孔口下游的通道 被塡充足以使毛細作用重新建立流動方向的液體流動爲止 〇 GVA0I9.8 較佳地,可移動構件爲懸臂式結構, 其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 〇 GVA0 1 9.9 較佳地,多重閥組件亦具有分別位於 各流路中之感測器,感測器相應於與液體的接觸。 -34- 201211534 GVA019.10 較佳地,各流路中之感測器位於各流 路中之複數個閥之兩者之間,且來自任何感測器之液體接 觸之指示係用於表示感測器上游之所有閥中的彎液面固定 器已失效。 GVA019.il 較佳地,各流路具有上游閥及下游閥 ,感測器係位於上游閥與下游閥之間。 GVA019.12 較佳地,多重閥組件亦具有流路中之 • 二者。 GVA019.13 較佳地,微流體裝置亦具有CMOS電路 以操作性控制各閥及檢測包括了上游閥失效之錯誤以停止 液體流,其中閥被支撐於CMOS電路上且各具有直接延伸 至CMOS電路內之金屬層的電接觸。 錯誤耐受多重熱彎曲致動壓力脈衝閥組件經由個別的 閥錯誤耐受及閥之設計、製作及操作而提供微流體閥作用 必須的可靠度;且操作展現微流體裝置技術之固有優良品 φ 質且免除此等技術之問題面向。 GVA020.1 本發明之此面向提供一種用於微流體 裝置之錯誤耐受多重閥組件,多重閥組件包含: 入口,用於接收流經微流體裝置之液體; 入口下游之出口; 自入口延伸至出口的複數個流路;以及, 分別沿著各流路設置的複數個閥;其中, 各閥具有彎液面固定器及彎液面重定位機制,彎液面 固定器係經配置以形成用於停止朝向出口之液體流的彎液 -35- 201211534 面,以及彎液面重定位機制係經配置以於彎液面固定處使 彎液面變形使得彎液面接觸彎液面固定器下游的表面且恢 復朝向出口之液體流。 GVA020.2 較佳地,彎液面固定器下游的表面係 經配置以停止朝向出口之毛細作用驅動流,以及彎液面重 定位機制具有可移動構件以自彎液面固定器延伸彎液面至 表面。 GVA020.3 較佳地,彎液面重定位機制具有熱膨 脹致動器以位移可移動構件。 GVA020.4 較佳地,流路爲經過微流體裝置之通 道,各通道係經配置以藉由毛細作用而自入口吸引液體至 出口。 GVA020.5 較佳地,可移動構件係經配置以用於 靜態位置與致動位置(自靜態位置移動)之間的移動,以及 彎液面固定器係配置成藉由固定彎液面於孔口而停止液體 流動之孔口。 GVA020.6 較佳地,可移動構件至少部分地界定 孔口。 GVA020.7 較佳地,熱致動器具有用於引起示差 熱膨脹之阻抗元件以移動可移動構件。 GVA020.8 較佳地,可移動構件爲懸臂式結構, 其於自由端具有噴嘴且於噴嘴與固定端之間具有阻抗元件 GVA020.9 較佳地,通道之相對側壁收斂成緊鄰 201211534 可移動構件下游的窄部,使得當可移動構件移動至致動位 置時,彎液面接觸窄部。 GVA020.1 0 較佳地,多重閥組件亦具有分別位於 各流路中之感測器,感測器相應於與液體的接觸。 GVA020.il 較佳地,各流路中之感測器位於各流 路中之複數個閥之兩者之間,且來自任何感測器之液體接 觸之指示係用於表示感測器上游之所有閥中的彎液面固定 φ '器已失效。 GVA020.1 2 較佳地,各流路具有上游閥及下游閥 ,感測器係位於上游閥與下游閥之間。 GVA020.1 3 較佳地,多重閥組件亦具有流路中之 二者。 GVA020.1 4 較佳地,微流體裝置亦具有CMOS電路 以操作性控制各閥及檢測包括了上游閥失效之錯誤以停止 液體流,其中閥被支撐於CMOS電路上且各具有直接延伸 φ 至CMOS電路內之金屬層的電接觸。 錯誤耐受多重熱彎曲致動表面張力閥組件經由個別的 閥錯誤耐受及閥之設計、製作及操作而提供微流體閥作用 必須的可靠度;且操作展現微流體裝置技術之固有優良品 質且免除此等技術之問題面向。 GVA02 1.1 本發明之此面向提供一種用於微流體 裝置之錯誤耐受多重閥組件,多重閥組件包含: 入口’用於接收流經微流體裝置之液體; 入口下游之出口; -37- 201211534 自入口延伸至出口的複數個流路;以及, 分別沿著各流路設置的複數個閥;其中各閥具有, 用於固定彎液面以停止液體流之彎液面固定器,以及 用於加熱彎液面之閥加熱器,使得彎液面自彎液面固定器 釋放以恢復朝向出口之液體流。 GVA021.2 較佳地,彎液面固定器爲孔口及閥加 熱器繞孔口周邊延伸。 GVA021.3 較佳地,閥加熱器係經配置以使液體 於彎液面固定器處沸騰而自彎液面固定器釋放彎液面。 GVA021.4 較佳地,流路爲經過微流體裝置之通 道,各通道係經配置以藉由毛細作用而自入口吸引液體至 出口。 GVA02 1.5 較佳地,多重閥組件亦具有分別位於 各流路中之感測器,感測器相應於與液體的接觸》 GVA021.6 較佳地,各流路中之感測器位於各流 路中之複數個閥之兩者之間,且來自任何感測器之液體接 觸之指示係用於表示感測器上游之所有閥中的彎液面固定 器已失效。 GVA021.7 較佳地,各流路具有上游閥及下游閥 ,感測器係位於上游閥與下游閥之間。 GVA02 1.8 較佳地,多重閥組件亦具有流路中之 二者。 OVA021.9 較佳地,微流體裝置亦具有CMOS電路 以操作性控制各閥及檢測包括了上游閥失效之錯誤以停止 -38- 201211534 液體流’其中閥被支撐於CMOS電路上且各具有直接延伸 至CMOS電路內之金屬層的電接觸。 錯誤耐受多重沸騰引動閥組件經由個別的閥錯誤耐受 及閥之設計、製作及操作而提供微流體閥作用必須的可靠 度;且操作展現微流體裝置技術之固有優良品質且免除此 等技術之問題面向。 GMI00 1.1本發明之此面向提供一種微流體裝置,其 φ 包含: 樣本入口,用於接收具有核酸序列之生物材料的樣本 » 聚合酶鏈反應(PCR)部,用於擴增核酸序列; 含有試劑之試劑貯槽;以及, 混合部,用於混合核酸序列與試劑:其中於使用時, 樣本經由混合部而自樣本入口流至PCR部。 GMI00 1.2較佳地,試劑貯槽具有具孔口之表面張力 φ 閥,表面張力閥係配置以固定試劑之彎液面,使得試劑保 持於試劑貯槽中直至與樣本流接觸而移除彎液面使得試劑 自試劑貯槽流出。 GMI001.3較佳地,微流體裝置亦具有混合部下游之 培養部,培養部係經配置以使樣本與限制酵素之混合物維 持於供核酸序列之限制剪切的培養溫度。 GMI001.4較佳地,混合部爲界定繚繞流路之微通道 ,繚繞流路具有供擴散混合限制酵素與樣本之充分長度。 GMI0 0 1.5較佳地,微通道具有蜿蜒結構》 -39- 201211534 GMI001.6較佳地,橫越流路的截面積係介於20,000平 方微米與8平方微米之間。 GMI001.7較佳地,微流體裝置亦具有混合部上游之 溶胞部,溶胞部係經配置以溶胞樣本內之細胞以釋出其中 之遺傳物質。 GMI0 0 1.8較佳地,培養部具有培養加熱器,培養加 熱器係經配置以加熱核酸序列及限制酵素至培養溫度。 GMI001.9較佳地,微流體裝置亦具有支撐基板及其 中形成有溶胞部、培養部及PC R部之微系統技術(MST)層 〇 GMI001.10 較佳地,微流體裝置亦具有CMOS電路 及至少一個溫度感測器,CMOS電路位於支撐基板與MST 層之間,以及溫度感測器係配置成用於反饋控制培養加熱 器。 GMI001.il 較佳地,溶胞部於下游端具有主動閥 以保持液體一段預定的時間。 GMI001.12 較佳地,出口閥爲具有用於使液體保 持於溶胞部中之彎液面固定器之沸騰引動閥,沸騰引動閥 具有用於使液體沸騰之閥加熱器,使得彎液面自彎液面固 定器釋放且恢復流出溶胞部之毛細作用驅動流。 GMI001.13 較佳地,彎液面固定器爲孔口以及閥 加熱器係鄰接孔口周邊。 GMI001.14 較佳地,微流體裝置亦具有覆蓋MST層 之蓋’其中蓋具有限制酵素貯槽,複數個PCR試劑貯槽及 201211534 形成於其中之混合部。 GMI001.1 5 較佳地,微流體裝置亦具有透析部, 其中生物材料包括不同尺寸的細胞,透析部係配置成劃分 大於預定臨界値之細胞成爲部分樣本,其係與僅含有小於 預定臨界値之細胞的樣本之剩餘物分別地進行處理。 GMI001.16 較佳地,核酸序列來自小於預定臨界 値之細胞。 φ GMI001.17 較佳地,PCR部具有複數個各由PCR微 通道之分別的部所形成之伸長的PCR室,微通道具有由一 連串寬曲折所形成之蜿蜒結構,各寬曲折係形成伸長的 PCR室之一者之通道部。 GMI001.18 較佳地,各通道部具有複數個加熱器 〇 GMI001.19 較佳地,微流體裝置亦具有雜交部, 雜交部具有用於與樣本中之標靶核酸序列雜交之探針陣列 φ ;以及, 光感測器,用於檢測探針陣列內之探針雜交。 GMI00 1.20 較佳地,PCR部的熱循環時間小於30秒 〇 易於使用、可大量製造且便宜的微流體裝置接收含有 流體的樣本、接著使用微流體混合器、添加並混合必須試 劑至流體中或至得自流體之混合物中。 微流體合器爲可靠且易於製造的混合器且係整合於裝 置中,其提供了可靠、易於組裝且便宜的少組件量之微流 -41 - 201211534 體系統。 GMI002.1本發明之此面向提供一種微流體裝置,其 包含: 樣本入口,用於接收具有核酸序列之生物材料的樣本 » 聚合酶鏈反應(PCR)部,用於擴增核酸序列; 含有試劑之試劑貯槽;以及, 擴散混合部,用於混合核酸序列與試劑,擴散混合部 具有界定繚繞(tortuous)流路之微通道,繚繞流路具有供 擴散混合試劑與樣本之充分長度;其中於使用時, 樣本經由擴散混合部而自樣本入口流至PCR部。 GMI002.2較佳地,試劑貯槽具有具孔口之表面張力 閥,表面張力閥係配置以固定試劑之彎液面,使得試劑保 持於試劑貯槽中直至與樣本流接觸而移除彎液面使得試劑 自試劑貯槽流出。 GMI002.3較佳地,微流體裝置亦具有混合部下游之 培養部,培養部係經配置以使樣本與限制酵素之混合物維 持於供核酸序列之限制剪切的培養溫度。 GMI002.4較佳地,微通道具有蜿蜒結構。 GMI002.5較佳地,橫越流路的截面積係介於8平方微 米與20,000平方微米之間。 GMI002.6較佳地,微流體裝置亦具有混合部上游之 溶胞部,溶胞部係經配置以溶胞樣本內之細胞以釋出其中 之遺傳物質。 -42- 201211534 GMI002.7較佳地,微流體裝置亦具有溶胞部上游之 抗凝劑貯槽,其中樣本爲全血以及抗凝劑貯槽具有具孔口 之表面張力閥,表面張力閥係配置以固定抗凝劑之彎液 面,而保持抗凝劑直至與血液接觸而移除彎液面以添加抗 凝劑至血液。 GMI002.8較佳地,培養部具有培養加熱器,培養加 熱器係經配置以加熱核酸序列及限制酵素至培養溫度 φ GMI002.9較佳地,微流體裝置亦具有支撐基板及其 中形成有溶胞部、培養部及PCR部之微系統技術(MST)層 〇 GMI002.1 0 較佳地,微流體裝置亦具有CMOS電路 及至少一個溫度感測器,CMOS電路位於支撐基板與MST 層之間,以及溫度感測器係配置成用於反饋控制培養加熱 器。 GMI002.il 較佳地,溶胞部於下游端具有主動閥 φ 以保持液體一段預定的時間。 GMI002.1 2 較佳地,出口閥爲具有用於使液體保 持於溶胞部中之彎液面固定器之沸騰引動閥,沸騰引動閥 具有用於使液體沸騰之閥加熱器,使得彎液面自彎液面固 定器釋放且恢復流出溶胞部之毛細作用驅動流。 GMI002.1 3 較佳地,彎液面固定器爲孔口以及閥 加熱器係鄰接孔口周邊。 GMI002.14 較佳地,微流體裝置亦具有覆蓋MST層 之蓋,其中蓋具有限制酵素貯槽,複數個PCR試劑貯槽及 -43- 201211534 形成於其中之混合部。 GMI002.1 5 較佳地,微流體裝置亦具有透析部, 其中生物材料包括不同尺寸的細胞,透析部係配置成劃分 大於預定臨界値之細胞成爲部分樣本,其係與僅含有小於 預定臨界値之細胞的樣本之剩餘物分別地進行處理。 GMI002.1 6 較佳地,核酸序列來自小於預定臨界 値之細胞。 GMI002.1 7 較佳地,PCR部具有複數個各由PCR微 通道之分別的部所形成之伸長的PCR室,微通道具有由一 連串寬曲折所形成之蜿蜒結構,各寬曲折係形成伸長的 PCR室之一者之通道部。 GMI002.1 8 較佳地,各通道部具有複數個加熱器 GMI002.1 9 較佳地,微流體裝置亦具有雜交部, 雜交部具有用於與樣本中之標靶核酸序列雜交之探針陣列 ;以及, 光感測器,用於檢測探針陣列內之探針雜交。 GMI002.20 較佳地,PCR部的熱循環時間小於30秒 〇 易於使用、可大量製造且便宜的微流體裝置接收含有 核酸的樣本、接著使用擴散混合器、添加並混合必須試劑 至樣本中或至得自樣本之混合物中’然後利用裝置之PCR 室來擴增樣本·中之核酸標靶。 擴散混合器爲可靠且易於製造的混合器且係整合於裝 -44- 201211534 置中,其提供了可靠、易於組裝且便宜的少組件量之微流 體系統。 微流體 PCR室爲易於製造的PCR循環器且係整合於 裝置中,因而提供了易於組裝且便宜的少組件量之微流體 系統。^ 【實施方式】 ^ 總論 此總論指明包含本發明之具體實施例之分子診斷系統 之主要組件。於以下說明書中討論系統結構及操作之綜合 細節。 參照圖1、2、3、128及129,系統具有下列最重要的 組件: 試驗模組10及11爲普通USB隨身碟的大小且可便宜製 造。試驗模組1 〇及11各含有微流體裝置,其普通呈晶片上 φ 實驗室(LOC)裝置30形式並預載有試劑,且普通具有1000 個以上之用於分子診斷分析之探針(見圖1及128)。圖1中 所槪示的試驗模組1 〇使用基於螢光之檢測技術以辨識標靶 分子,而圖128中之試驗模組11使用基於電致化學發光之 檢測技術。LOC裝置30具有用於螢光或電致化學發光檢測 之整合的光感測器44(於以下詳細描述)。試驗模組1()及η 均使用了用於電力、數據及控制之標準微型-USB接頭14 、均具有印刷電路板(PCB)5 7,及均具有外部供電之電容 器32及感應器15。試驗模組10及11均爲僅供大量製造之單 -45- 201211534 一用途且以可供使用之無菌包裝分銷。 外殼13具有用於接收生物樣本之大容器24及可移除之 無菌密封帶22,其較佳具低黏性黏著劑,以於使用前覆蓋 大容器。具有膜防護件410之膜密封件408形成部份外殻13 以減少試驗模組中之抗濕性,而由小氣壓變動提供釋壓作 用》膜防護件410保護膜密封件408免於損傷。 經由微型-USB埠16,試驗模組閱讀器12供電給試驗 模組1 〇或1 1。試驗模組閱讀器1 2可爲許多不同形式,及其 選擇係描述於後。圖1、3及128中所示之閱讀器12版本爲 智慧型電話之具體實施例。閱讀器12之方塊圖係示於圖3 中。處理器42執行來自程式儲存器43的應用軟體。處理器 42亦與顯示螢幕18及使用者界面(UI)觸控螢幕17及按鈕19 、蜂巢式無線電21、無線網路連接23,以及衛星導航系統 25界接。蜂巢式無線電21及無線網路連接23係用於通訊。 衛星導航系統2 5係用於以位置資料更新流行病學資料庫。 替代性地,能夠以觸控螢幕17或按鈕19人爲輸入位置資料 。資料儲存器27保有遺傳及診斷資訊、試驗結果、患者資 訊、用於識別各探針之分析及探針數據及其陣列位置。資 料儲存器27及程式儲存器43可共享於共同記憶體設備。試 驗模組閱讀器12中安裝的應用軟體提供結果分析與另外的 試驗及診斷資訊。 爲執行診斷試驗,將試驗模組1〇(或試驗模組1 1)插入 至試驗模組閱讀器12上的微型-USB埠16。將無菌密封帶 22翻起並將生物樣本(呈液體形式)載入至樣本大容器24中 -46- 201211534 。按下開始按鈕20以藉由應用軟體來起始試驗。樣本流進 LOC裝置30且在裝置中分析萃取、培養、擴增及以預合成 的雜交-反應性寡核苷酸探針與樣本核酸(標靶)雜交。於 試驗模組1 〇的情況中(其使用基於螢光的檢測),探針係經 螢光標記且置於殼13中的LED 26提供必要激發光以誘發 自經雜交探針的螢光發射(見圖1及2)。於試驗模組1 1中( 其使用基於電致化學發光(ECL)的檢測),LOC裝置30載有 φ ECL探針(如上述)且LED 26對於產生光致發射螢並非必要 。反之,電極860及870提供激發電流(見圖129)。使用與 各LOC裝置上之CMOS電路整合的光感測器44來檢測發射( 螢光或光致發光)。擴增所檢測的信號並將其轉換成藉由 試驗模組閱讀器1 2分析之數位輸出》閱讀器接著顯示結果 〇 可本地儲存數據及/或將數據上傳至含有患者記錄之 網路伺服器。自試驗模組閱讀器1 2移除試驗模組1 〇或1 1並 φ 將彼等適當處理。 圖1、3及128顯示配置成行動電話/智慧型電話28之試 驗模組閱讀器丨2。於其他形式中,試驗模組閱讀器爲醫院 、私人診所或實驗室中使用之膝上型電腦/筆記型電腦1〇1 、專用閱讀器103、電子書閱讀器107、平板電腦109或桌 上型電腦1〇5(見圖130)。閱讀器可與一些額外的應用程式 界接,諸如病患記錄、帳務、線上資料庫及多使用者環境 。其亦可與一些本地或遠端周邊設備界接,諸如印表機及 病患智慧卡。 -47 - 201211534 參照圖131 ’透過閱讀器12及網路125,由試驗模組10 產生之資料可用來更新用於流行病學資料ill之主機系統 所保有之流行病學資料庫、用於遺傳資料113之主機系統 所保有之遺傳資料庫、用於電子化健康記錄(EHR)l 1 5之主 機系統所保有之電子化健康記錄、用於電子化醫療記錄 (EMR)121之主機系統所保有之電子化醫療記錄,以及用 於個人健康記錄(PHR) 123之主機系統所保有之個人健康記 錄。相反地,經由網路1 2 5及閱讀器1 2,用於流行病學資 料111之主機系統所保有之流行病學資料、用於遺傳資料 113之主機系統所保有之遺傳資料、用於電子化健康記錄 (EHR)l 15之主機系統所保有之電子化健康記錄、用於電子 化醫療記錄(EMR)121之主機系統所保有之電子化醫療記 錄,以及用於個人健康記錄(PHR)l 23之主機系統所保有之 個人健康記錄可用以更新試驗模組10之LOC 30中之數位 記憶體。 再次參照圖1、2、128及129,於行動電話配置中,閱 讀器12使用電池電力。行動電話閱讀器含有所有預載的試 驗及診斷資訊。經由一些網路或接觸界面亦可載入或上傳 資料以致能與週邊裝置、電腦或線上伺服器連通。設置微 型-USB埠16以連接電腦或主要電力供應以再充電電池。 圖7 9顯示試驗模組10之具體實施例’其係用於僅需要 得知特定標靶存在與否之試驗,諸如試驗個人是否受到例 如A型流行性感冒病毒Η 1 N 1感染。僅作爲內建之僅供U S B 電力/指示器之模組47爲適當的。不需要其他閱讀器或應 -48 - 201211534 用軟體。僅供USB電力/指示器之模組47上之指示器45示 出正或負結果。此配置非常適於大量篩檢。 供應給系統的額外物件可包括含有供預處理特定樣本 之試劑的試驗管,及包含供樣本收集之壓舌扳及刺血針。 爲便利之故,圖79顯示之具體實施例的試驗模組包括有簧 壓式可伸縮刺血針3 90及刺血針釋出按鈕3 92。可於遠端地 區使用衛星電話。 試驗模組電子裝置 圖2和129分別爲試驗模組10和1 1中之電子組件的方塊 圖。整合於LOC裝置30之CMOS電路具有USB裝置驅動器 36、控制器34、USB相容LED驅動器29、時鐘33、電源調 節器31、RAM 3 8和程式及資料快閃記憶體40。此等提供 用於包括光感測器44、溫度感測器170、液體感測器174和 各種加熱器152、154、182、234之試驗模組10或1 1整體以 φ 及關聯的驅動器3 7和3 9以及暫存器3 5和4 1的控制和記憶體 。僅LED 26(在試驗模組10的情況中)、外部電源電容器32 和微型-USB接頭14在LOC裝置30的外部。LOC裝置30包括 用於連接至這些外部組件的黏合墊。RAM 3 8及程式和資 料快閃記憶體40具有用於超過1 000個探針之應用軟體和診 斷與試驗資訊(快閃/保全儲存,例如經由加密)。在針對 ECL檢測所配置之試驗模組11的情況中,無LED 26(見圖 128和129)。資料由LOC裝置30加密以供保全儲存及與外 部裝置之安全通訊。LOC裝置30以電化學發光探針及雜交 -49- 201211534 室加載,其各具有ECL激發電極對860和870。 以一些試驗形式製造許多類型的試驗模組1〇’其爲準 備好可現成使用者。試驗形式之不同在於機載分析(on board assay)之試劑和探針。 快速以此系統識別的感染性疾病的一些實例包括: •流行性感冒·流行性感冒病毒A、B、C、傳染性鮭 魚貧血病毒、托高土病毒 •肺炎-呼吸道融合病毒(RSV) '腺病毒、間質肺炎病 φ 毒、肺炎雙球菌、金黃色葡萄球菌 •結核病-結核分枝桿菌、牛型分枝桿菌、非洲分枝 桿菌、卡氏分枝桿菌和田鼠分枝桿菌 •惡性瘧原蟲、弓漿蟲和其他寄生性原生蟲病 •傷寒-傷寒桿菌 •依波拉病毒 •人類免疫不全病毒(HIV) •登革熱-黃熱病毒 · •肝炎(A到E) •醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸球 菌以及抗藥性金黃色葡萄球菌 •單純泡疹病毒(HSV) •巨大細胞病毒(CMV) •愛彼斯坦-巴爾病毒(EBV) •腦炎-日本腦炎病毒、章地埔拉病毒 •百日咳-百日咳菌 -50- 201211534 •麻疹-副黏液病毒 •腦膜炎-肺炎鏈球菌和腦膜炎雙 •炭疽病-炭疽桿菌 以此系統識別的遺傳性疾病的〜&amp;實例包_括: •囊性纖維變性 •血友病 •鐮狀細胞貧血病 •黑矇性白癡病 •血色素沉著症 •腦動脈病 •克隆氏病 •多囊性腎臟病 •先天性心臟病 •蕾特氏症 由診斷系統識別之癌症的少數選擇包括: •卵巢癌 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 •透克氏症(Turcot syndrome) 上述清單並非窮舉的,且診斷系統可經配置以使用核 酸和蛋白質體分析來檢測許多不同疾病以及症狀。 系統組件的詳細結構 -51 - 201211534 LOC裝置 LOC裝置30爲診斷系統之中心。其使用微流體平台快 速實施以核酸爲基之分子診斷分析的四個主要步驟,即樣 本準備、核酸萃取、核酸擴增和檢測。LOC裝置亦具有替 代的用途,並將詳述於下。如上述討論,試驗模組10及11 可採取許多不同配置以檢測不同的標靶。同樣地,LOC裝 置3 0具有很多針對關注的標靶打造之不同實施例。LOC裝 置3 0之一種形式爲用於全血樣本之病原體中的標靶核酸序 列之螢光檢測之LOC裝置301。爲了闡述的目的,LOC裝 置301的結構和操作係參考圖4至26及27至57而詳細描述。 圖4爲LOC裝置301結構之圖式槪要。爲了便利性,顯 示於圖4的處理階段係以相應於實施處理階段之LOC裝置 301的功能部之元件符號表示。與各個以核酸爲基的分子 診斷分析的主要步驟有關的處理階段亦表示:樣本輸入及 製備2 8 8、萃取290、培養291、擴增292以及檢測294 » L0C裝置301之各種貯槽、室、閥以及其他組件將於以下 更仔細的描述。 圖5爲L0C裝置301之透視圖。其使用高容積CMOS和 MST(微系統技術)製造技術而製造。LOC裝置301之層狀構 造以圖12之槪要部分剖面圖(非按比例)闡述。LOC裝置301 具有支持COMS + MST晶片48之矽基板84,包含CMOS電路 86和MST層87,以.蓋46覆蓋MST層87。爲了本專利說明書 目的,術語“MST層”關於以不同試劑處理樣本之結構和層 之集合。因此,這些結構和組件經配置以定義具有特性尺 -52- 201211534 寸的流動路徑,其支持具處理期間之物理性質與樣本之物 理性質相似之毛細作用驅動之液體流。據此,MS T層和組 件通常使用面型微加工技術和/或體型微加工技術製造。 然而,其他製造方法亦可製造針對毛細作用驅動之液體流 及加工非常小容積而尺寸化的結構和組件。描述於本說明 書之特定實施例顯示MST層爲支持在CMOS電路86上之結 構和主動組件,但排除蓋46之特徵。然而,熟此技藝者將 φ 理解MST層不需要下方的CMOS或甚至不需要上覆的蓋來 使其處理該樣本。 顯示於下列圖式的LOC裝置之整體尺寸爲1 760微米 χ58 24微米。當然,爲了不同應用而製造的LOC裝置可具 有不同的尺寸。 圖6顯示與蓋特徵疊置之MST層87的特徵。顯示於圖6 中之插入物AA至AD、AG和AH個別放大於圖13、14、35 ' 56、5 5和63中,且對LOC裝置301內之各個結構的充分 φ 了解詳細描述於下。當圖1 1獨立顯示CMOS + MST裝置48結 構時,圖7至10獨立顯示蓋46的特徵。 層狀結構 圖12和22爲圖形性顯示CMOS + MST裝置48、蓋46以及 彼等之間的流體交互作用之層狀構造之略圖。圖式因闡述 目的而未依比例繪製。圖12爲通過樣本入口 68之槪要剖面 圖且圖22爲通過貯槽54之槪要剖面圖。如最佳顯示於圖12 ,CMOS + MST裝置48具有矽基板84,其支持著操作上述 -53- 201211534 MST層87內之主動元件之CMOS電路86»鈍化層88密封且 保護CMOS層86免於流體流過MST層87。 流體分別流過於蓋層46及MST通道層100中之蓋通道 94及MST通道90兩者(例如見圖7及16) »當在較小的MST通 道90實施生化處理時,細胞輸送發生在於蓋46中製造之較 大的通道94中。細胞輸送通道係按尺寸製作以便能輸送樣 本中之細胞至MST通道90中之預定位置。輸送尺寸大於20 微米的細胞(例如,某些白血球)需要通道尺寸大於20微米 ,且因此橫越流的截面積大於400平方微米。特別在不需 要輸送細胞的LOC中的位置之MST通道可以顯著地較小《 將理解的是蓋通道94和MST通道90爲普通參考且特別 的MST通道90亦可因其特定的功能而爲(例如)經加熱的微 通道或透析MST通道。MST通道90藉由蝕刻通過在鈍化層 88上沉積且以光阻劑圖案化之MST通道層100而形成。 MST通道90由頂部層66環繞,頂部層形成CMOS + MST裝置 48之頂部(相對於顯示於圖中之方位)。 儘管有時作爲獨立的層顯示,蓋通道層80和貯槽層78 係由單一材料片所形成。當然,材料片亦可爲非單一性。 自兩邊蝕刻材料片以形成蓋通道層80與貯槽層78,在蓋通 道層80中蝕刻蓋通道94,在貯槽層78中蝕刻貯槽54、56、 58 ' 60和62。替代性地,貯槽和蓋通道由微成形法形成。 蝕刻和微成形技術兩者皆用以製造具有橫越流體的至大爲 20,〇〇〇平方微米且至小爲8平方微米之的通道。 於LOC裝置中不同位置有針對橫越流體之通道的截面 201211534 積之適當的選擇。其中大量的樣本或具有大組分的樣本係 容納於通道中,至多20,000平方微米之截面積(例如,在 100微米厚之層中的200微米寬的通道)是適合的。其中少 量的液體或無大細胞存在的混合物係容納於通道中,較佳 者係橫越流體之非常小的截面積。 下密封64環繞蓋通道94且上密封層82環繞貯槽54、56 、5 8、6 0 和 6 2 ° 五個貯槽54、56、58、60和62係預載特定分析之試劑 。於此描述的實施例中,貯槽預載有下列試劑,但可簡易 的以其他試劑取代: •貯槽54:抗凝血劑,其選擇性包括紅血球溶胞緩衝 液 •貯槽5 6 :溶胞試劑 •貯槽58 :限制性酵素、接合酶和聯結子(用於聯結 子引發 PCR(見圖 78,節錄自 T. Stachan et al.,Human Molecular Genetics 2,Garland Science, NY and London, 1 999)) •貯槽60:擴增混合物(去氧核糖核苷三磷酸 (dNTP)、弓|子、緩衝液),以及 •貯槽62 : DNA聚合酶。 蓋46和CMOS + MST層48經由在下密封64和頂部層66中 之相應的開口而呈流體連通。依據流體是否自MS T通道90 流至蓋通道94或反向而代表開口爲上管道96及下管道92。 -55- 201211534 LOC裝置操作 LOC裝置301的操作係參考在血液樣本中之分析病原 體(pathogenic)DNA而逐步描述於下。當然,其他生物或 非生物流體的種類亦使用適當的套組或試劑、試驗規程、 L Ο C變體和檢測系統之組合來分析。參考圖4,分析生物 樣本涉及五個主要步驟,包含:樣本輸入和製備288、核 酸萃取290、核酸培養291、核酸擴增292和檢測及分析294 〇 樣本輸入和製備步驟2 8 8係混合血液與抗凝血劑1 1 6且 接著利用病原體透析部7〇使病原體與白血球及紅血球分開 。如最佳顯示於圖7和12中者,血液樣本經由樣本入口 68 進入裝置。毛細作用吸引血液樣本沿著蓋通道94而到達貯 槽54。當樣本血液流開啓其表面張力閥118時,抗凝血劑 自貯槽54釋出(見圖15和22)。抗凝血劑防止形成會阻塞流 動的血凝塊。 如最佳顯示於圖22中者,抗凝血劑1 16藉由毛細作用 自貯槽5 4被抽出且經由下管道92進入M ST通道90。下管道 92具有毛細作用起始特徵(CIF)102以形成彎液面幾何,使 其不固定在下管道92的邊緣。當抗凝血劑116自貯槽54被 抽出時,在上密封82中之通氣孔122允許空氣取代抗凝血 劑 1 1 6。 顯示於圖22之MST通道90爲表面張力閥118的一部分 。抗凝血劑116塡充表面張力閥118且固定至上管道96之彎 液面120於彎液面固定器98。在使用前,彎液面120保持固 201211534 定於上管道96,使得抗凝血劑不會流入蓋通道94。當血液 流經蓋通道94至上管道96時,移除彎液面120且將抗凝血 劑吸入流體中。 圖15至21顯示插入物AE,其爲顯示於圖13之插入物 AA之一部分。如顯示於圖15、16和17中者,表面張力閥 118具有三個分開的MST通道90延伸於個別的下管道92及 上管道96之間。在表面張力閥中之這些MST通道90可變化 φ 以改變進入樣本混合物之試劑的流速。當樣本混合物以及 試劑藉由擴散而混合時,離開貯槽之流速決定在樣本流中 之試劑的濃度。因此,各貯槽的表面張力閥係配置以符合 所需之試劑濃度。 血液通入病原體透析部7〇(見圖4和15),其中使用根 據預定閥値制定大小之孔口 1 64的陣列自樣本濃縮標靶細 胞。小於閥値的細胞通過孔口,而大細胞不能通過孔口。 在標靶細胞持續作爲分析的一部分之同時,非所欲之細胞 φ 重新被導入廢料單元76。非所欲之細胞爲經由孔口 164陣 列阻擋之大細胞或爲通過孔口之小細胞。 在描述於此之病原體透析部70中,來自全血樣本之病 原體被濃縮以供微生物DN A分析。孔口之陣列藉由流體性 連通蓋通道94中之輸入流至標靶通道74的多個3微米直徑 的孔口 164所形成。3微米直徑的孔口 164和用於標靶通道 74之透析吸入孔168係由一系列的透析MST通道204連接( 最佳顯示於圖1 5和2 1)。病原體小到足以經由透析MST通 道204通過3微米直徑孔口 164且塡充標靶通道74。諸如紅 -57- 201211534 血球和白血球之大於3微米的細胞留在蓋46之廢料通道72 中,蓋通向廢料儲器76(見圖7)。 其他孔口形狀、大小和長寬比可用以分離特定病原體 或其他標靶細胞,諸如用於人DNA分析的白血球。後面提 供透析部和透析變體之更詳細的詳情。 再次參照圖6和7,流體被吸入通過標靶通道74而到達 溶胞試劑貯槽56中之表面張力閥128。表面張力閥128具有 七個MST通道90延伸於溶胞試劑貯槽56和標靶通道74之間 。當彎液面由樣本流脫除時,所有的七個MST通道90之流 速將大於抗凝血劑貯槽54之流速,其中表面張力閥118具 有三個MS T通道90(假設流體的物理特性爲大致相等的)。 因此在樣本混合物中之溶胞試劑的比例係大於抗凝血劑之 比例。 溶胞試劑和標靶細胞在化學溶胞部130內之標靶通道 74中藉由擴散而混合。沸騰引動閥126使流動停止直到擴 散和溶胞進行了足夠的時間,自標靶細胞釋放遺傳物質( 見圖6和7)。參考圖31和32,於下詳細描述沸騰引動閥之 結構和操作。其他主動閥類型(與被動閥相反,諸如表面 張力閥1 18)亦已由申請人開發,其可用於此以替代沸騰引 動閥。這些替代閥設計亦描述於下。 當開啓沸騰引動閥1 26時’經溶胞之細胞流入混合部 131以預擴增限制酶剪切(restriction digestion)以及聯結子 接合(linker ligation)。 參考圖13,當流體移除在混合部131起始處之表面張 -58- 201211534 力閥132上的彎液面時,限制酵素、聯結子和接合酶自貯 槽58釋放。爲了擴散混合,混合物流過混合部131的長度 。在混合部131的末端爲通到培養部114之培養器入口通道 133的下管道134 (見圖13)。培養器入口通道133將混合物 饋入經加熱之微通道210的蜿蜒結構,其提供在限制酶剪 切以及聯結子接合期間用來保留樣本之培養室(見圖13及 14)° φ 圖23、24、25、26、27、28及29顯示在圖6之插入物 AB內的LOC裝置301之層。各圖顯示連續疊加(addition)形 成CMOS + MST層48和蓋46結構之層。插入物AB顯示培養 部114的末端和擴增部112的起始。如最佳顯示於圖14及23 中者,流體塡充培養部1 14之微通道210直到抵達沸騰引動 閥106,其中流體在擴散發生時停止。如上所討論,沸騰 引動閥106上游之微通道210成爲含有樣本、限制酵素、接 合酶和聯結子的培養室。加熱器154接著啓動且維持於穩 φ 定溫度以使限制酶剪切和聯結子接合發生一段特定時間。 熟此技藝者將理解此培養步驟291 (見圖4)爲任意的且 僅爲一些核酸擴增分析類型所需要。再者,在一些例子中 ,可能需要在培養期間結束時具有加熱步驟以將溫度增高 到超過培養溫度。在進入擴增部112前,溫度增高使限制 酵素和接合酶失活。當使用等溫合酸擴增時,限制酵素和 接合酶的失活具有特定影響。 培養之後,沸騰引動閥1〇6啓動(打開)且流體再進入 擴增部112。參考圖31及32,混合物塡充經加入微通道ι58 -59- 201211534 之蜿蜒結構直到到達沸騰引動閥108,微通道形成一或更 多擴增室。如最佳顯示於圖30之剖面示意圖,擴增混合物 (dNTP、引子、緩衝液)自貯槽60釋放且聚合酶接著自貯槽 62釋放而進入連接培養部和擴增部(分別爲114及112)之中 間M S T通道2 1 2。 圖35至51顯示在圖6之插入物AC中的LOC裝置301之層 。各圖顯示連續疊加形成CMOS + MST裝置48和蓋46結構之 層。插入物AC顯示擴增部1 12的末端和雜交及檢測部52的 起始。經培養的樣本、擴增混合物和聚合酶流經微通道 15 8而至沸騰引動閥108。在擴散混合經足夠時間後,啓動 在微通道158中之加熱器154以供熱循環或等溫擴增。擴增 混合物經歷預定數目的熱循環或預設之擴增時間以擴增充 分的標靶DN Α。在核酸擴增程序之後,沸騰引動閥108開 啓且流體再進入雜交及檢測部52。沸騰引動閥之操作更詳 細描述於下。 如顯示於圖52,雜交及檢測部52具有雜交室之陣列 1 10。圖52、53、54及56詳細顯示雜交室陣列1 10和個別雜 交室180。雜交室180的入口爲擴散屏障175,其在雜交期 間防止標靶核酸、探針股和雜交探針於雜交室180之間擴 散,以防止錯誤的雜交檢測結果。擴散屏障175之流動路 徑長度足夠長以在探針和核酸雜交以及檢測信號的時間內 ,防止標靶序列和探針擴散出一個室且污染另一室,因此 避免錯誤的結果。 另一防止錯誤讀取的機制是在一些雜交室中具有相同 -60- 201211534 的探針。CMOS電路86自對應於包含相同的探針之雜交室 180之光二極體184導出單一結果。導出的單一結果中之異 常的結果可被忽略或給予不同權重。 用於雜交所需的熱能係由CMOS控制的加熱器182所提 供(更詳細描述於下)。在啓動加熱器後,雜交發生於互補 標靶探針序列之間。CMOS電路86中之LED驅動器29傳送 訊息使位於試驗模組10中之LED 26發光。這些探針僅於 φ 當雜交發生時發螢光,從而免除移除未結合的股時經常需 要之清洗和乾燥步驟。雜交強制FRET探針186之莖與環結 構打開,其允許螢光團發射螢光能量以回應LED激發光, 詳述於下。螢光由位於各雜交室180下之CMOS電路86中之 光二極體184所檢測(見以下之雜交室的敘述)。用於所有 雜交室之光二極體184以及相關的電子裝置共同形成光感 測器44 (見圖73)。在其他實施例,光感測器可爲電荷耦合 裝置陣列(CCD陣列)。自光二極體184所檢測之信號被放 φ 大且轉換成可以由試驗模組閱讀器12分析的數位輸出。檢 測方法進一步的細節係描述於下。 LOC裝置之其他詳細說明 模組化設計 LOC裝置301具有許多功能部,包括試劑貯槽54、56 、58、60及62、透析部70、溶胞部130、培養部114及擴增 部112、閥類型、增濕器及濕度感測器。於其他具體實施 例之LOC裝置中,可省略此等功能部,然可附加另外的功 -61 - 201211534 能部或與上述裝置之用途不同的功能部。 例如,可使用培養部1 1 4作爲串接重複序列擴增分析 系統之第一擴增部11 2,且使用溶胞試劑貯槽5 6來加入引 子、dNTP及緩衝液的第一擴增混合,並且使用試劑貯槽 58來添加反轉錄酶及/或聚合酶。若樣本需進行化學溶胞 ,亦可添加化學溶胞試劑(連同擴增混合)至貯槽56,或替 代性地,可藉由加熱樣本一段預定的時間以在培養部中發 生熱溶胞。在一些具體實施例中,若需要化學溶胞並使化 學溶胞試劑與此混合分離,可在用於引子、dNTP及緩衝 液的混合之貯槽5 8之毗連上游合倂另外的貯槽。 於一些情況中,欲省略諸如培養步驟2 9 1之步驟。於 此情況中,可特別地製造LOC裝置以免去試劑貯槽58及培 養部11 4或是貯槽可僅載有試劑,或存在主動閥時,其不 被啓動來分配試劑至樣本流中,及培養部單純成爲將樣本 自溶胞部130傳送至擴增部112之通道。加熱器係獨立地操 作,因此當反應仰賴熱時,諸如熱溶胞,令加熱器不於此 步驟期間啓動,確保熱溶胞不會發生在不需熱溶胞之LOC 裝置中。透析部70可位於微流體裝置內之流體系統的開端 ,如圖4中所示者,或可位於微流體裝置內之任何其他位 置。於一些情況中,例如,於擴增階段292之後,雜交及 檢測步驟294之前,進行透析以移除細胞碎片係有利者。 替代性地,可於LOC裝置上任何位置合倂二或多個透析部 。同樣地,可合倂另外的擴增部Π 2以致能在雜交室陣列 110中利用特定核酸探針進行檢測之前之多標靶的同時或 -62- 201211534 連續擴增。爲分析例如其中不需要進行透析之全血液的樣 本,簡單地於LOC設計之樣本輸入及製備部28 8省略透析 部70。於一些情況中,即便分析不需要進行透析,不必要 於LOC裝置省略透析部70。若透析部的存在不會造成幾何 性阻礙,仍可使用於樣本輸入及製備部具有透析部70之 LOC而不會損失所需之功能。 此外,檢測部294可包括蛋白質體室陣列,其係與雜 交室陣列相同但載有設計成與存在於非擴增之樣本中之蛋 白質共軛或雜交之探針,而不是設計用來與標靶核酸序列 雜交之核酸探針。 將了解的是,爲用於此診斷系統而製造之LOC裝置係 不同於根據特別LOC應用而選擇的功能部之組合。絕大部 分之功能部對於許多LOC裝置而言爲普通,而針對新應用 之額外的LOC裝置之設計,有關於自現存LOC裝置中所使 用之大幅功能部選項中組構適當組合之功能部。 本說明中僅顯示少數LOC裝置,並顯示一些其他者以 闡述爲此系統所製造之LOC裝置的設計彈性。熟此技藝者 將可輕易地明白本文所示之LOC裝置並非窮舉,且許多另 外的LOC設計係關於組構適當功能部之組合》 樣本類型 LOC變體可接受及分析各種呈液體形式之樣本類型之 核酸或蛋白質內容,液體形式包括,但不限於,血液及血 液產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶血 -63- 201211534 、母乳、汗液、肋膜積液、淚液、心囊液、腹腔液、環境 水樣本及飮料樣本。亦可使用LOC裝置分析得自巨觀核酸 擴增之擴增子;於此情況中,所有試劑貯槽將爲空的或是 係配置成不釋出其內容物,並僅使用透析、溶胞、培養及 擴增部來將樣本從樣本入口 68傳送至供核酸檢測之雜交室 1 8 0,如上所述。 針對一些樣本類型,需要預處理步驟,例如於輸入至 LOC裝置中之前,可能需要使精液液化及可能需以酵素預 處理黏液以減低黏性。 樣本輸入 參照圖1及12’添加樣本至試驗模組10之大容器24。 大容器24爲截錐’其係藉毛細作用而饋入LOC裝置301之 入口 68。於此’其流至64μιη寬χ60μηι深之蓋通道94中並亦 藉由毛細作用而被吸引至抗凝劑貯槽54。 試劑貯槽 使用微流體裝置’諸如LOC裝置3 0 1,之分析系統所 需之小量試劑使得試劑貯槽含有生化處理之所有必須試劑 ,且各試劑貯槽爲小體積。此體積確實小於〗,〇〇〇,〇〇〇,〇〇〇 立方微米’於絕大多數的情況中係小於300,〇〇〇,〇〇〇立方 微米’普通小於70,000,000立方微米,及於圖式中顯示的 LOC裝置301的情況中係小於2〇,〇〇〇,〇〇〇立方微米。 201211534 透析部 參照圖15至21、33及34,病原體透析部70係經設計以 濃縮來自樣本之病原體標靶細胞。如前述者,頂部層66中 呈直徑爲3微米之孔口 164之複數個孔口,過濾來自大量樣 本之標靶細胞。當樣本流經直徑爲3微米之孔口 164,微生 物病原體通過孔而進入一系列透析MST通道204並經由 16μπι透析汲取孔168回流至標靶通道74中(見圖33及34)。 φ 剩餘的樣本(紅血球等)滯留於蓋通道94中。於病原體透析 部70之下游,蓋通道94成爲通往廢料儲器76之廢料通道72 。針對產生相當廢物量之生物樣本類型,試驗模組10之外 殻13內之泡沫體(foam)插入物或其他多孔元件49係配置成 與廢料儲器76呈流體連通(見圖1)。 病原體透析部70係皆以流體樣本之毛細作用運作。位 於病原體透析部70上游端之直徑爲3微米之孔口 164具有毛 細作用起始特徵(CIF)166(見圖33),以致流體被向下拉至 φ 下方的透析MST通道204之中。用於標靶通道74之第一汲 取孔198亦具有CIF 202(見圖15)以防止流體輕易地固定彎 液面於透析汲取孔168之上。 於圖99中槪要顯示之小組分透析部682可具有類似於 病原體透析部70之結構。藉由尺寸化(且成形,若必要)適 於允許小標靶細胞或分子通向標靶通道並繼續進一步分析 之孔口,小組分透析部分離來自樣本之任何小標靶細胞或 分子。大尺寸的細胞或分子被移除至廢料儲器766。因此 ,LOC裝置30(見圖1及128)並不受限於分離尺寸小於3 μπι -65- 201211534 之病原體,而可用於分離任何所欲尺寸之細胞或分子。 溶胞部 再次參照圖7、11及13,藉化學溶胞處理’樣本中之 遺傳物質自細胞釋出。如上述者,來自溶胞貯槽56之溶胞 試劑與用於溶胞貯槽56之表面張力閥128下游之標靶通道 74中流動的樣本混合》然而,一些診斷分析較佳使用熱溶 胞處理,或甚至是標靶細胞之化學及熱溶胞的組合。LOC 裝置301容納此及培養部114之加熱的微通道210。樣本流 塡充培養部114並停止於沸騰引動閥106。培養微通道210 將樣本加熱至細胞膜破裂之溫度。 於一些熱溶胞應用中,化學溶胞部130中不需要酵素 反應,且熱溶胞全然取代化學溶胞部130中之酵素反應。 沸騰引動閥 如以上討論者,LOC裝置301具有三個沸騰引動閥126 、106及108。於圖6中顯示這些閥的位置。圖31爲擴增部 112之加熱的微通道158側之獨立的沸騰引動閥108之放大 的平面圖。 藉由毛細作用,樣本流1 19沿加熱的微通道15 8被吸引 直至到達沸騰引動閥108爲止。樣本流之前沿的彎液面120 固定於閥入口 146之彎液面固定器98。彎液面固定器98幾 何使彎液面停止前進而阻止毛細作用流。如圖3 1及3 2中所 示者,彎液面固定器98係藉由自MST通道90至蓋通道94之 -66- 201211534 上管道開口而設置之孔口上管道。彎液面120之表面張力 使閥保持閉合。環形加熱器152位於閥入口 146的周圍。環 形加熱器152經由沸騰引動閥加熱器接點I”而受cM〇S控 制。 爲打開閥,CMOS電路86發送電脈衝至閥加熱器接點 1 53。環形加熱器1 52電阻式地進行加熱直到液體樣本n 9 沸騰爲止。沸騰使彎液面120自閥入口 146脫除並開始濕潤 ^ 蓋通道9 4。一但開始濕潤蓋通道9 4,毛細作用恢復。流體 樣本119塡充蓋通道94且流經閥下管道15〇而至閥出口 ι48 ,其中毛細作用驅動之液體流沿擴增部出口通道1 60前進 至雜交及檢測部52之中。液體感測器174置於用於診斷的 閥之前及之後。 將能了解的是,一但沸騰引動閥被打開,則不可能再 關上。然而,因LOC裝置301及試驗模組10爲單一用途裝 置,不需要再關閉閥。 培養部及核酸擴增部 圖6、 7、 13、 14、 23、 24、 25、 35至45、 50及51顯示 培養部114及擴增部112。培養部114具有單一的、加熱的 培養微通道2 1 0,其係經蝕刻而成爲自下管道開口 1 3 4至沸 騰引動閥106之MST通道層100中的蜿蜒圖案(見圖13及14) 。控制培養部1 1 4的溫度致能更有效的酵素性反應。同樣 地,擴增部Π2具有從沸騰引動閥1〇6通向沸騰引動閥108 之呈蜿蜒結構之加熱的擴增微通道158(見圖6及14)°於混 -67- 201211534 合、培養及核酸擴增發生時,此等閥中止流動以將標靶細 胞保留於加熱的培養或擴增微通道210或158中。微通道之 蜿蜒圖案亦促進(在某種程度上)標靶細胞與試劑混合。 於培養部1 1 4及擴增部1 1 2中,樣本細胞及試劑經由使 用脈衝寬度調變(PWM)之CMOS電路86所控制的加熱器154 而被加熱。加熱的培養微通道210及擴增微通道158之蜿蜒 結構之每一個曲折具有三個獨立地可操作加熱器15 4(延伸 於彼之個別加熱器接點156之間(見圖14)),其提供輸入熱 通量密度之二維控制。如最佳顯示於圖51中者,加熱器 154係支撐於頂部層66上並埋入下密封64中。加熱器材料 爲TiAl,但許多其他的傳導性金屬也適用。伸長的加熱器 154平行於形成蜿蜒狀的寬曲流之各通道部的縱向長度。 於擴增部1 1 2中,經由個別加熱器控制,可操作各寬曲流 以作爲獨立的PCR室。 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小體積的擴增子允許於擴增部1 1 2中擴增使用小體積 的擴增混合物。此體積大槪小於400奈升,於絕大多數情 況中小於170奈升,普通小於70奈升,及於LOC裝置301的 情況中,此體積係介於2奈升與3 0奈升之間。 加熱速率增加及較佳擴散混合 各通道部的小截面積增加擴增流體混合物的加熱速率 。所有流體與加熱器1 54保持相當短的距離。減少通道截 面積(即擴增微通道158截面)至小於1 00,000平方微米,而 201211534 較“大規模”設備具有顯著較高之加熱速率。微影製造技術 使得擴增微通道158具有橫越小於16,000平方微米之實質 上提供較高的加熱速率之截面。以微影製造技術輕易地獲 致1微米級尺寸特徵。若僅需要非常小量的擴增子(如L〇C 裝置301中的情況),可使截面縮小至小於2,500平方微米 。針對以LOC裝置上之1,000至2,000個探針進行且於1分鐘 內之“樣本入,答案出”所需之診斷分析,橫越流體之適當 φ 的截面積爲400平方微米及1平方微米之間。 擴增微通道1 5 8中之加熱器元件以每秒大於80絕對溫 度(K)之速率加熱核酸序列,於大多數的情況中爲每秒大 於100 K之速率。普通地,加熱器元件以每秒大於1,〇〇〇 K 之速率加熱核酸序列,以及於許多情況中,加熱器元件以 每秒大於1〇,〇〇〇 K之速率加熱核酸序列。通常,基於分析 系統的需求,加熱器元件以每秒大於1 00,000 κ、每秒大 於1,000,000 K、每秒大於10,000,000 K、每秒大於 φ 20,000,000 K、每秒大於 40,000,000 K、每秒大於 80,000,000 K及每秒大於1 60,000,0〇〇 K之速率加熱核酸序 列。 小截面積通道亦有益於任何試劑與樣本流體之擴散性 混合。於擴散性混合完成之前,靠近兩液體間之界面處, 一種液體擴散至另一液體之擴散現象最顯著。現象發生密 度隨遠離界面距離而減少。使用具相當小截面積之橫越流 體方向之微通道,而保持兩流體靠界面流動以快速擴散混 合。縮小通道截面至小於1 00,000平方微米,獲致較“大規 -69- 201211534 模”設備具有顯著較高之擴散速率。微影製造技術使得微 通道具有橫越小於1 6,000平方微米之實質上提供較高的混 合速率之截面。若僅需要非常小量的擴增子(如LOC裝置 3〇1中的情況),可使截面縮小至小於2,500平方微米。針 對以LOC裝置上之1,000至2,000個探針進行且於1分鐘內之 “樣本入,答案出”所需之診斷分析,橫越流體之適當的截 面積爲400平方微米及1平方微米之間。 短的熱循環時間 使樣本混合物保持接近加熱器且使用極小流體量,致 使核酸擴增法期間之快速熱循環。針對至高150鹼基對 (bp)長之標靶序列,於30秒內完成各個熱循環(β卩,變性 、黏著及引子延伸)。在絕大多數之診斷分析中,個別熱 循環時間小於1 1秒,且大部分小於4秒。針對至高1 50鹼基 對(bp)長之標靶序列,用於一些最常見診斷分析之LOC裝 置30的熱循環時間爲0.45秒至1.5秒之間。此速度之熱循 環使得試驗模組能在遠少於1 0分鐘之內完成核酸擴增程序 ;經常爲220秒之內。針對大多數分析,擴增部於80秒之 內由進入樣本入口的樣本流體產生充足的擴增子。針對大 部分的分析,於30秒內產生充足的擴增子。 於完成預定數目擴增循環時,經由沸騰引動閥108將 擴增子饋入雜交及檢測部52。 雜交室 -70- 201211534 圖52、53、54、56及57顯示雜交室陣列110中的雜交 室180。雜交及檢測部52具有雜交室180之24 X 45陣列1 10 ,其各具有雜交-反應性FRET探針186、加熱器元件182及 整合的光二極體1 84。併入光二極體1 84以檢測得自標靶核 酸序列或蛋白質與FRET探針186雜交之螢光。藉由CMOS 電路86獨立地控制各光二極體184。對發射的光而言, FRET探針186及光二極體184之間的任何物質必須爲透明 φ 。因此,探針186及光二極體184之間的壁部97亦必須對發 射的光呈光學透明。於LOC裝置301中,壁部97爲二氧化 矽之薄層(約0.5微米)。 於各雜交室180之下直接地倂入光二極體184允許使用 極小體積之探針-標靶雜交,卻仍產生可檢測的螢光信號( 見圖54)。因爲小量而能使用小體積的雜交室。於雜交之 前,可檢測的探針-標靶雜交量所需之探針量大槪小於270 微微克(picogram)(對應至900,000立方微米),於大多數的 φ 情況中小於60微微克(對應至200,000立方微米),普通小於 12微微克(對應至40,000立方微米),並且於附圖中所示之 LOC裝置301的情況中爲小於2.7微微克(對應至體積爲 9,0 00立方微米之室)。當然,縮小雜交室的尺寸容許較高 的室密度及因此更多的LOC裝置上的探針》於LOC裝置 301中,於1,500微米乘1,500微米的面積內,雜交部具有 超過1,000個室(即,每個室小於2,250平方微米)。較小的 體積亦減少反應時間,使得雜交及檢測更快速。各個室需 求之小量探針的另一優點爲,於LOC裝置製造期間,僅需 -71 - 201211534 要配置極小量的探針溶液至各個室中。根據本發明之LOC 裝置之具體實施例可配置有1奈毫升或更少之探針溶液》 於核酸擴增之後,沸騰引動閥108被啓動且擴增子沿 流路176流動並流進各雜交室180(見圖52及56)。端點液 體感測器178指示雜交室180塡充有擴增子及可啓動加熱器 182之時點。 於充分雜交時間後,啓動LED 26 (見圖2)。各雜交室 180中之開口設有光學窗136以將FRET探針186暴露於激發 輻射(見圖52、54及56)。LED 26發光持續充分長的時間以 誘發自探針之高強度的螢光信號。於激發期間,光二極體 184短路(shorted)。經預編程延遲300(見圖2)之後,於無 激發光下,致.能光二極體184及檢測螢光發射。將光二極 體184之主動區185上之入射光(見圖54)轉換成可使用 CMOS電路8 6測量之光電流。 各雜交室1 80載有用於檢測單一標靶核酸序列之探針 。若希望,則各雜交室180可載有檢測超過1,000種不同標 靶的探針。替代性地,許多或全部雜交室可載有重複地檢 測相同標靶核酸之相同探針。於雜交室陣列1 1 0中以此方 式複製探針使得所得結果之可信度增加,以及若希望,可 藉由相鄰雜交室之光二極體來合倂所有結果以得到單一結 果。熟此技藝者將了解,依據分析明細,於雜交室陣列 110上可具有1至超過1,00 0種不同的探針。 增濕器及濕度感測器 -72- 201211534 圖6的插入物AG指示增濕器196的位置。增濕器免於 LOC裝置301操作期間之試劑及探針的蒸發。如最佳顯示 於圖55之放大圖中者,水貯槽188係流體地連接至三個蒸 發器190。水貯槽188塡充有分子生物等級用水且於製造期 間爲密封的。如最佳顯示於圖55及76中者,藉由毛細作用 ,水被抽拉至三個下管道194且沿著個別水供應通道192而 到達蒸發器190之三個上管道193組。彎液面固定於各個上 φ 管道193以保持水。蒸發器具有環形加熱器191,其環繞上 管道193。藉由導熱柱376,環形加熱器191係連接至CMOS 電路86而至頂金屬層195(見圖3 7)。於啓動時,環形加熱 器1 9 1加熱水而致使水蒸發並濕潤周圍的裝置。 於圖6中亦顯示濕度感測器232的位置。然而,最佳如 顯示於圖63中之插入物AH的放大圖者,濕度感測器具有 電容式梳狀結構。經微影地蝕刻之第一電極2 96及與經微 影地蝕刻之第二電極298彼此相對,使得彼等之齒交插。 φ 相對的電極形成電容器,其具有可藉由CMOS電路86來監 測之電容。隨濕度增加,電極間之空氣隙的介電常數增加 ,致使電容亦增加。濕度感測器232鄰接雜交室陣列1 10( 最主要之濕度測量位置),以減緩含有暴露的探針之溶液 蒸發。 反饋感測器 溫度及液體感測器係倂入LOC裝置3 0 1整體以於裝置 操作期間提供反饋及診斷。參照圖3 5,將九個溫度感測器 -73- 201211534 170分配至擴增部112之全部。同樣地,培養部114亦具有 九個溫度感測器170。這些感測器各使用2x2陣列之雙極接 面電晶體(BJT)以監測流體溫度及提供反饋至CMOS電路86 。CMOS電路86利用此以準確地控制核酸擴增期間的熱循 環以及熱溶胞及培養期間之任何加熱。 於雜交室180中,CMOS電路86使用雜交加熱器182作 爲溫度感測器(見圖56)。雜交加熱器182之電阻係溫度相 依,且CMOS電路86利用此以驅動各雜交室180之溫度讀取 〇 LOC裝置301亦具有一些MST通道液體感測器174及蓋 通道液體感測器208 »圖35顯示於經加熱的微通道158中之 每間隔曲折之一端的MST通道液體感測器174之線。最佳 如顯示於圖37中者,MST通道液體感測器174爲藉由CMOS 結構86中之頂金屬層195之暴露的區域所形成之一對電極 。液體封閉電極間的電流以指示其存在於感測器的位置。 圖25顯示蓋通道液體感測器208之放大透視圖。相對 的TiAl電極對218及220係沉積於頂部層66上。電極218及 220之間爲間隙222,以於缺少液體的情況中保持電路爲開 路。液體存在時使電路閉合及CMOS電路86利用此反饋以 監測流動。 重力自主(GRAVITATIONAL INDEPENDENCE) 試驗模組10爲方向自主。其不需被緊固至平穩表面而 操作》因毛細作用驅動之流體流以及缺少至輔助設備之外 部管路,使得模組確實爲可攜式並可簡易地插入至類似的 -74- 201211534 可攜式手持閱讀器,諸如行動電話。重力自主操作代表試 驗模組亦加速度性地獨立於所有實用範圍。其耐衝擊及振 動並能於移動的載具上或是於攜帶的行動電話上操作。 閥之選擇 熱彎曲致動閥變體1 圖64及65顯示熱彎曲致動閥的第一變體302,其係熱 φ 彎曲致動之壓力脈衝閥。圖65爲圖64中所示之沿線70-70 的截面示意圖。第一變體熱彎曲致動閥3 02具有由TiAl、 TiN或類似的電阻加熱器材料構成之呈CMOS啓動之熱彎 曲致動器3 04的形式之可移動構件。樣本流進入MST通道 90中之閥入口 146,然而於彎液面120固定於孔口 306時停 止。圖64及65中所示之實施例顯示可移動構件外部的孔口 ,但其亦可由可移動構件至少部分地界定。於此狀態下, 閥關閉。CMOS電路86傳送一連串電脈衝至熱彎曲致動器 φ 304以打開閥。CMOS啓動之熱彎曲致動器3 04係接合至頂 層66(於入口端爲固定及於孔口端呈自由)之懸臂部162。 示差熱膨脹彎曲了懸臂部1 62使得其朝鈍化層8 8快速移動 。流體牽引防止液體樣本119回流,而液體1 19係經由孔口 3 06而射出至蓋通道94中。使懸臂部162往返移動於靜態及 位移的位置持續一段時間,確保彎液面120自孔口 306釋放 。樣本119聚積於蓋通道94中,直至其表面被濕潤且毛細 作用驅動流恢復爲止。樣本塡充蓋通道94,然後經過閥下 管道150而流至閥出口 148。 -75- 201211534 熱彎曲致動閥變體2 圖66及67顯示熱彎曲致動閥308的第二變體,其係熱 彎曲致動之表面張力閥。圖67爲圖66中所示之沿線72-72 的截面示意圖。第二變體熱彎曲致動閥308具有由TiAl、 TiN或類似的電阻加熱器材料構成之CMOS啓動之熱彎曲 致動器304 »樣本沿MST通道90流動且流進閥上管道151之 閥入口 146。液體樣本119塡充蓋通道94,但停止於彎液面 120固定於孔口 306之時。於此狀態下,閥關閉。爲打開閥 ,CMOS電路86傳送一連串電脈衝至熱彎曲致動器3 04。 CMOS啓動之熱彎曲致動器3 04係接合至頂層66(於入口端 爲固定及於孔口端呈自由)之懸臂部162。示差熱膨脹彎曲 了懸臂部162使得孔口 3 0 6朝鈍化層88移動。孔口 306自蓋 通道94吸引彎液面120進入MST通道90以重新建立毛細作 用流。爲重新建立毛細作用流,通道之相對側壁收斂成緊 鄰可移動構件下游的窄部,使得當可移動構件移動至致動 位置時,彎液面接觸窄部。液體感測器1 74係置於偵錯閥 之前或之後。 熱彎曲致動閥變體3 圖68及69顯示熱彎曲致動閥312的第三變體’其係熱 彎曲致動之表面張力閥,及用於液體樣本被保持於蓋通道 94中之時。圖69爲圖68中所示之沿線74-74的截面示意圖 。熱簿曲致動閥312的第三變體類似第二變體熱彎曲致動 201211534 閥3 08,除了閥入口 146係位於蓋通道94中以外。樣本沿著 蓋通道94流動且流進緊鄰CMOS啓動之熱彎曲致動器304上 游之閥入口 146。液體樣本119塡充蓋通道94,但停止於彎 液面120固定於孔口 306之時。於此狀態下,閥關閉。爲打 開閥,CMOS電路8 6傳送一連串電脈衝至熱彎曲致動器304 。熱彎曲致動器304係接合至頂層66(於入口端爲固定及於 孔口端呈自由)之懸臂部162。示差熱膨脹彎曲了懸臂部 162使得孔口 306朝鈍化層88移動。孔口 306自蓋通道94吸 引彎液面120進入MST通道90以沿著閥出口 148重新建立毛 細作用流。液體感測器1 74係置於偵錯閥之後。 錯誤耐受多重閥陣列 圖7 0顯示錯誤耐受多重閥陣列314,其可被使用以代 替前述閥變體108、302、308及312之任一者。圖71爲沿圖 70之線76-76所截取之錯誤耐受多重閥陣列314之截面圖。 於前述閥變體中,樣本有無法固定於孔口 306(或於沸 騰引動閥的情況中爲閥入口 146)之風險而毛細作用流輕易 地續行至閥出口 14 8。實際上,閥無法關閉。相反地,閥 無法打開(即,當閥致動時彎液面不被釋放)。針對此,錯 誤耐受多重閥陣列314具有錯誤耐受性而容許一或更多個 閥錯誤。 錯誤耐受多重閥陣列314具有四個個別的閥;第一閥 316、第二閥318、第三閥320及第四閥3 22。所有的閥皆爲 前述之熱彎曲致動閥的第二變體308類型(熱彎曲致動之表 201211534 面張力閥)。第一流路324及第二流路326延伸於閥入口 146 與閥出口 148之間。第一及第二閥(316及318)係沿著第一 流路324而設置’以及第三及第四閥(3 20及3 22)係位於第 二流路3 2 6上。 液體感測器174係爲於閥入口 146及閥出口 148,及介 於各流路中的兩個閥之間。感測器指出第一、第二、第三 或第四閥是否失效。若第一或第三閥(316及320)無法固定 彎液面,第二及第四閥(318及322)使樣本119停止。同樣 地’若於第一及第三閥致動期間無法釋放彎液面,則可用 替代的流路。錯誤耐受多重閥陣列3 14僅於第一或第二流 路(324或326)中的兩個閥均失效時(幾乎不可能)被視爲失 效。爲提供更大的錯誤耐受性,可任意地增加錯誤耐受多 重閥陣列31 4之流體流路數目或各流路之閥數目。 沸騰引動閥陣列 圖80及81顯示錯誤耐受多重閥陣列448之另一變體, 其中四個個別的閥皆爲沸騰引動閥。關於機械性錯誤耐受 多重閥陣列314,其具有單一閥陣列入46及閥出口 148 。閥入口 146及閥出口 148係形成於MST通道層100中,且 各具有分別的液體感測器174以提供反饋予CMOS電路86。 於閥入口 146 ’流分枝成爲第一流路324及第二流路326, 兩者均延伸於閥入口 146與閥出口 148之間。第一及第二沸 騰引動閥(4 12及416)係沿第一流路324而設置,及第三及 第四沸騰引動閥(4 14及4 18)係於第二流路3 26上。 -78 - 201211534 液體感測器174亦置於各流路中之兩個沸騰引動閥之 間。感測器指出第一、第二、第三或第四閥是否失效。若 第一或第三沸騰引動閥(4 12及4 14)失效,樣本流極有可能 受到第二及第四沸騰引動閥(4 16及4 18)之限制。錯誤耐受 多重閥陣列448僅於第一或第二流路(324或326)中的兩個 沸騰引動閥均失效時(幾乎不可能)被視爲失效。爲提供更 大的錯誤耐受性,可任意地增加錯誤耐受多重閥陣列448 φ 之流體流路數目或各流路之閥數目。 若閥操作時無任何沸騰引動閥失效,則來自閥入口 146之流分別於第一沸騰引動閥412及第三沸騰引動閥414 中之閥上管道42 8及43 0中固定彎液面。爲打開沸騰引動閥 4 12及4 14,CMOS電路86傳送啓動脈衝至兩個閥中之沸騰 引動閥加熱器接點153。兩個沸騰引動閥412及414中之加 熱器152加熱彎液面之液體至高於沸騰的溫度。因沸騰而 釋放了兩個閥上管道42 8及430之彎液面,使得毛細作用驅 φ 動流分別塡充蓋通道420及422 » 閥下管道432及43 4係配置以不固定彎液面並使毛細作 用驅動流停止。進入蓋通道420及422之流分別經由閥下管 道432及434而續行進入第一流路MST通道424及第二流路 MST通道 426 ° 毛細作用驅動流續行至第二及第四沸騰引動閥41 6及 418。同樣地,流分別固定彎液面於各沸騰引動閥之閥上 管道436及438。各MST通道424及426中之液體感測器174 提供反饋至CMOS電路86,CMOS電路86因而計算用於閥 -79- 201211534 加熱器1 52之啓動脈衝時間。如同第一與第三沸騰引動閥 412及414,啓動第二與第四沸騰引動閥416及418中之加熱 器152使彎液面處之液體沸騰而自上管道436及438釋放彎 液面。進入蓋通道440及442中之毛細作用驅動流接著成爲 分別流經下管道444及44 6之毛細作用驅動流。沿著第一流 路3 24之流與沿著第二流路326之流與閥出口 148處重合, 於閥出口 148處液體感測器174指示CMOS電路86錯誤耐受 閥陣列448已打開》 電爆閥 圖122爲電爆閥71之平面圖。樣本沿著MST通道90流 動且流入由閥上管道151所形成的閥入口 146。液體樣本 119塡充蓋閥界面腔73,而當彎液面120固定於孔口 306時 則停止於頂層膜7 5之一側。於此狀態下,閥關閉。當 CMOS電路86迫使電流經過電阻77時,沿著最高電流密度 79之各電阻點爆炸以破壞連接至膜75而固定周邊之頂層剛 性聯結8 1。因膜75不受支撐且位移,閥打開以及液體樣本 119自閥入口 146流至閥出口 148 » 熱彎曲致動之彎曲及制動閥 圖123顯示熱彎曲致動之彎曲及制動閥83的平面圖。 樣本沿著MST通道90流動且流入由閥上管道151所形成的 閥入口 146。液體樣本119塡充蓋閥界面腔73,而當彎液面 120固定於各孔口 3 06時則停止於頂層懸臂部162之一側並 -80- 201211534 連接膜75。於此狀態下,閥關閉。來自CMOS電路86並前 進至熱彎曲致動器3 04之一連串電脈衝,以示差熱膨脹而 迫使頂層懸臂部162 (與熱彎曲致動器304接合)偏向鈍化層 88,破壞連接膜75與其周邊之弱的頂層剛性聯結81。因膜 75不受支撐且位移,閥打開以及液體樣本1 19自閥入口 146 流至閥出口 148。 φ 雙熱彎曲致動之彎曲及制動閥 圖124顯示雙熱彎曲致動之彎曲及制動閥85的平面圖 。樣本沿著MST通道90流動且流入由閥上管道151所形成 的閥入口 146。液體樣本119塡充蓋閥界面腔73,而當彎液 面120固定於各孔口 306時則停止於兩個頂層懸臂部162之 一側並連接膜75。於此狀態下,閥關閉。於接收來自 CMOS電路86之電脈衝時,兩個熱彎曲致動器304因示差熱 膨脹而接合至頂層懸臂部162且偏向鈍化層88,而破壞連 φ 接膜75與其周邊之剛性聯結81。因膜75不受支撐且位移, 閥打開以及液體樣本119自閥入口 14 6流至閥出口 148。 黏滯閥 圖125顯示黏滯閥89的平面圖。樣本沿著MST通道90 流動且流入由閥上管道151所形成的閥入口 146。液體樣本 119塡充蓋閥界面腔73,而當彎液面120固定於各孔口 306 時則停止於頂層懸臂部162之一側並連接膜75。於此狀態 下,閥關閉。來自CMOS電路86並前進至熱彎曲致動器3 04 -81 - 201211534 之一連串電脈衝,以示差熱膨脹而迫使頂層懸臂部162 ( 與熱彎曲致動器304接合)偏向鈍化層88,迫使膜75與鈍化 層88接觸。因膜75與鈍化層88間黏滯而抵銷回復力以及撓 性聯結9 1之變形容許懸臂部1 62之回復性位移,閥靜態地 維持開啓以使液體樣本119自閥入口 146流至閥出口 148。 黏滯閥變體 圖126顯示黏滯閥變體93之平面圖。樣本沿著MST通 道90流動且流入由閥上管道151所形成的閥入口 146。液體 樣本119塡充蓋閥界面腔73,而當彎液面120固定於各孔口 3 06時則停止於頂層懸臂部162之一側。於此狀態下,閥關 閉。來自CMOS電路86並前進至熱彎曲致動器304之一連串 電脈衝,以示差熱膨脹而迫使頂層懸臂部162 (與熱彎曲 致動器304接合)偏向並接觸鈍化層88。因懸臂部162與鈍 化層8 8間黏滯而抵銷回復力以及懸臂部1 62足夠長而使其 機械撓性容許熱彎曲致動器3 0 4之回復性位移閥靜態地維 持開啓以使液體樣本119自閥入口 146流至閥出口 148。 除泡閥(BUBBLE BREAK VALVE) 圖127中顯示除泡閥95之平面圖。樣本沿著MST通道 9 0流動且流入由閥上管道15丨所形成之閥入口 146。液體樣 本119塡充蓋閥界面腔73,而當彎液面120固定於孔口 306 時則停止於頂層膜75之一側。於此狀態下’閥關閉。環形 加熱器152藉由來自CMOS電路86之電脈衝而電阻式地被加 -82- 201211534 熱,直至於液體樣本中產生蒸氣氣泡而迫使膜75轉動且破 壞頂層剛性聯結81爲止。因膜75不受支撐且位移,閥打開 以及液體樣本119自閥入口 146流至閥出口 148。 其他閥變體 可使用上述之任何閥變體以形成閥陣列。此外,閥陣 列可包括不同種類的閥。 透析變體 白血球標靶 上述之LOC裝置301中的透析設計以病原體爲標靶。 圖72爲供人類DNA分析之用以從血液樣本濃縮白血球而設 計之透析部328的截面示意圖。除了以7_5微米直徑之孔 165形式的孔口來限制白血球以免其自蓋通道94通至透析 MST通道204之外,將理解其結構基本上和上述之病原體 φ 標靶透析部70之結構相同。於待分析之樣本爲血液樣本且 存在來自紅血球之血紅素而干擾後續的反應步驟之情況下 ,添加紅血球溶胞緩衝液和抗凝劑於貯槽54中(見圖22)將 確保大多數經溶胞之紅血球(及血紅素)將在透析步驟期間 自樣本移除。一般使用之紅血球溶胞緩衝液爲0.15M NH4CL、10mM KHC03' O.lmM EDTA,pH 7.2-7.4,但熟 習此技藝人士將了解可使用有效溶胞紅血球之任何緩衝液 〇 白血球透析部328、蓋通道94之下游成爲標靶通道74 -83- 201211534 ,使得白血球接續成爲分析的一部分。再者,在這種情況 下,透析吸入孔168通向廢料通道72,以使樣本中之所有 較小細胞和組成被移除。應注意的是,此透析變體僅減少 標靶通道74中之非所欲之試樣的濃度。 圖100槪略地顯示大組分透析部686,其亦將任何大標 靶組分和樣本分開。爲進一步分析,以大小和形狀經修改 成可阻擋在標靶通道中所關注之大標靶成分的方式製造此 透析部中的孔口。及上述之白血球透析部,大部分(但非 全部)之較小尺寸的細胞、有機體或分子流入廢料貯槽768 。因此,LOC裝置之其他具體實施例不受限於分離尺寸大 於7.5微米之白血球,但可用以分離任何所欲尺寸之細胞 、有機體或分子。201211534 GVA004. Preferably, a plurality of elongated addition operations are performed. GVA004. Preferably, the microfluidic device also has an array for detecting probe hybridization within the probe array. A large-volume and inexpensive microfluidic device can be used for receiving; f-analyzed liquids (providing the necessary liquids via capillary action, reliable, easy-to-manufacture, error-tolerant multiple valve assemblies provide the necessary error tolerance for multiple valve assemblies via individual valve error tolerance Provides the necessary reliability for metering, fabrication and operation; and demonstrates the inherently good quality of the technology and eliminates the problems of these technologies. 1 The present invention is directed to a test module for analyzing, comprising: a housing for carrying a hand; an inlet for receiving a liquid containing a nucleic acid sequence; an outlet downstream of the inlet; and a fault tolerance multiple valve assembly having A plurality of flow paths extending from the inlet and a plurality of valves GVA013 respectively disposed along each flow path. Preferably, each flow path drives the flow through the capillary action of the liquid at the outlet, and the flow of each valve through the outlet until it is opened. GVA013. 3 Preferably, the test module also has a sensor in the flow path, and the sensor corresponds to the contact with the liquid GVA013. 4 Preferably, the valve-bend actuated valve heat exchanger is cooled and/or advanced by a unique optical diode, and the microfluidic device is provided by the desired valve function. The retanning for the gene to the outlet for the flow direction configuration to stop at each of the rafts, each having a movable member -25-201211534, the movable member being configured for the static position and the actuated position ( Movement between the movements from the static position; and an aperture defined at least in part by the movable member, the aperture being configured to stop the capillary action drive flow by fixing the meniscus to the aperture, wherein, in use, The moveable member moves to the actuated position to release the meniscus from the orifice such that the capillary action drive flow to the outlet is resumed. GVA013. Preferably, the bend actuated valve has an impedance element for causing differential thermal expansion to move the movable member. GVA013. 6 Preferably, the movable member is a cantilever structure, • has a nozzle at the free end and has an impedance element between the nozzle and the fixed end 〇 GVA013. Preferably, the valves are thermally actuated valves, each having an orifice, the orifice for holding the meniscus to stop the capillary action drive flow, and the valve heater for heating the meniscus to make the meniscus The surface is released from the orifice and resumes the capillary action driving flow toward the outlet" GVA013. 8 Preferably, the valve heater extends around the periphery of the orifice. GVA013. Preferably, each flow path has an upstream valve and a downstream valve, and the sensor is located between the upstream valve and the downstream valve. GVA013. 10 Preferably, the test module also has two of the flow paths. GVA013. Il. Preferably, the test module also has a CMOS circuit electrically coupled to the sensor to operatively control the valve and detect an error including any upstream valve failure to stop the flow of liquid. GVA013. 12 Preferably, the test module also has a polymerase chain reverse -26-201211534 (PCR) part to amplify the nucleic acid sequence by the denaturation temperature, the bonding temperature and the primer extension temperature of the mixed reagent of the thermal cycle nucleic acid sequence and the PCR. Wherein, the error tolerance multiple valve assembly maintains the nucleic acid sequence and the mixed reagent of the PCR in the PCR portion during thermal cycling. GVA013. Preferably, the test module also has a probe array to hybridize with the target nucleic acid sequence to form a probe-target hybrid; the φ probe array is located downstream of the error-tolerant multiple valve assembly, such that the multiple valve components are mis-tolerant Turning on allows the amplicon from the PCR section to contact the probe. GVA013. Preferably, the PCR moiety is configured to generate a sufficient amplicon for thermal cycling over 10 minutes with more than 1000 probes. GVA013. 15 Preferably, the thermal cycle time of the PCR section is between 0. 45 seconds and 1. Between 5 seconds. GVA013. Preferably, the test module also has a temperature sensor, wherein the PCR portion has at least one heater mixed with a thermal cycle nucleic acid sequence and φ PCR, and the temperature sensor and at least one heater are connected to the CMOS circuit for feedback. Control at least one heater. GVA013. Preferably, the CMOS circuit turns on the fault tolerant valve assembly after a predetermined number of thermal cycles. GVA013. Preferably, the PCR portion has a plurality of elongated PCR chambers each having a longitudinal extension that is much larger than the transverse dimension, and a plurality of heaters each extending longitudinally and parallel to the longitudinal direction of the PCR chamber. GVA013. Preferably, the plurality of elongated heaters are operated independently. -27- 201211534 Diode array biological samples withstand multiple pieces through a necessary temperament and are exempted from microfluids for flow to the liquid level fixed calibrator (stopped for use in liquid flow. The corresponding multi-valve detector corresponding to GVA013 . Preferably, the test module also has an optical train to detect probe hybridization within the probe array. A mass-manufactured and inexpensive genetic analysis test module is received to analyze its nucleic acid content (providing the necessary valve function via a reliable, easy-to-manufacture error valve assembly). The error tolerance multi-valve valve mismatch and valve design, fabrication and operation provide reliability; and the operation shows the inherent advantages of microfluidic device technology. GVA017. 1 This aspect of the invention provides a fault tolerant multiple valve assembly for a device comprising: an inlet for receiving a liquid flowing through the microfluidic device: an outlet downstream of the inlet; a plurality of streams extending from the inlet to the outlet Road; and, a plurality of valves respectively arranged along each flow path" GVA0 17. 2 Preferably, each flow path is driven by a capillary action of the liquid configured to exit, and each valve has a bender, the meniscus holder being configured to cause liquid to flow toward the meniscus E toward the outlet ) forms a meniscus. GVA017. Preferably, each valve has an actuator' meniscus holder moving the meniscus such that the GVA017 is restored toward the outlet. 4 Preferably, the third component of the scope of the patent application further comprises sensors respectively located in the respective flow paths, which are in contact with the liquid. GV AO 1 7. 5 Preferably, the sensors in each flow path are located between a plurality of valves in each of the flows 201211534, and the indication of liquid contact from any of the sensors is used to indicate all upstream of the sensor The meniscus holder in the valve has failed. GVA017. Preferably, the flow path is a passage through the microfluidic device, each channel being configured to draw liquid from the inlet to the outlet by capillary action. GVA017. Preferably, each valve has a movable member to contact the φ liquid, and the actuator is a thermal expansion actuator to displace the movable member to cause pulsation in the liquid to move the meniscus from the meniscus holder, such that Restore the flow of liquid to the outlet. GVA017. Preferably, the movable member is configured for movement between the static position and the actuated position (moving from the static position), and the meniscus holder is configured to secure the meniscus to the orifice Stop the orifice of the liquid flow. GVA017. Preferably, the movable member at least partially defines an orifice. GVA017. Preferably, the thermal actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA017. Preferably, the orifice is a nozzle and the movable member is a cantilevered structure having a nozzle at the free end and an impedance element between the nozzle and the fixed end. GVA017. 12 Preferably, each valve has a movable member to contact the liquid, and the actuator is a thermal expansion actuator to displace the movable member from the static position to the actuated position such that the meniscus extends to the meniscus holder -29- 201211534 Surface contact downstream to restore liquid flow towards the outlet. G V AO 1 7 · 1 3 Preferably, the opposite side walls of the passage converge to a narrow portion immediately downstream of the movable member such that when the movable member is moved to the actuating position, the meniscus contacts the narrow portion. GVA017. Preferably, the moveable member at least partially defines the aperture. GVA017. Preferably, the thermal expansion actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA017. Preferably, the orifice is a nozzle and the movable member is a cantilevered structure having a nozzle at the free end and an impedance element between the nozzle and the fixed end. GVA017. Preferably, each valve valve heater heats the meniscus such that the meniscus is released from the meniscus retainer to restore fluid flow toward the outlet. GVA017. 18 Preferably, the meniscus holder is an orifice, and the valve heater extends around the periphery of the orifice" GVA017. Preferably, the valve heater is configured to cause the liquid to boil at the meniscus retainer and release the meniscus from the meniscus retainer. GVA017. Preferably, the microfluidic device also has a CMOS circuit for operatively controlling the valves and detecting an error including a failure of the upstream valve to stop the flow of the liquid, wherein the valves are supported on the CMOS circuit and each has a direct extension into the CMOS circuit. Electrical contact of the metal layer. The error-tolerant multiple valve assembly provides the reliability necessary for microfluidic valve operation through individual valve error tolerance and valve design, fabrication, and operation; and -30-201211534 demonstrates the inherently superior quality of microfluidic device technology and is exempt These technical issues are oriented. GVA018. 1 This aspect of the invention provides a fault tolerant multiple valve assembly for a microfluidic device, the multiple valve assembly comprising: an inlet for receiving a liquid flowing through the microfluidic device; an outlet downstream of the inlet; extending from the inlet to the outlet a plurality of flow paths; ^ a plurality of valves respectively disposed along each flow path; and a sensor respectively located in each flow path, the sensor corresponding to contact with the liquid. GVA018. 2 Preferably, each flow path is configured for a capillary action drive flow of liquid to the outlet, and each valve has a meniscus holder configured to secure the liquid to the meniscus A meniscus is formed at the device (stopping the flow of liquid toward the outlet). GVA018. Preferably, each valve has an actuator for moving the meniscus from the φ meniscus holder such that the flow of liquid toward the outlet is restored. GVA018. 4 Preferably, the sensors in each flow path are located between a plurality of valves in each flow path, and the indication of liquid contact from any of the sensors is used to represent all valves upstream of the sensor The meniscus holder in the middle has failed. GVA018. Preferably, the valve has a movable member to contact the liquid, and the thermal expansion actuator is adapted to displace the movable member to cause pulsation in the liquid to move the meniscus such that the flow of liquid to the outlet is resumed. GVA018. Preferably, the channel is configured to draw liquid from the inlet to the outlet by capillary action -31 - 201211534. GVA018. Preferably, the movable member is configured for movement between the static position and the actuated position (moving from the static position), and the meniscus holder is configured to secure the meniscus to the orifice Stop the flow of liquids" GVA018. Preferably, the movable member at least partially defines the aperture. GVA018. Preferably, the thermal actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA018. Preferably, the actuator valve reciprocates the movable member between the static and moving positions until the passage adjacent the orifice is sufficiently squeezed to cause the capillary action to reestablish the flow of liquid in the flow direction 〇 GVA018. Il preferably, the movable member is a cantilever structure having a nozzle at the free end and an impedance element between the nozzle and the fixed end 〇 GVA018. Preferably, each valve has a movable member to contact the liquid, and the actuator is adapted to displace the movable member from the static position to the actuating position 'in the actuated position' such that the meniscus extends in the actuated position with the meniscus Surface contact downstream of the face holder to restore liquid flow towards the outlet, GVA0 1 8.  Preferably, the opposite side walls of the channel converge to a narrow portion immediately downstream of the movable member such that when the movable member is moved to the actuated position, the meniscus contacts the narrow portion. GVA018. Preferably, the meniscus holder is an orifice and the 201211534 valve heater extends around the orifice. GVA018. Preferably, the valve heater is configured to cause the liquid to boil at the meniscus retainer and release the meniscus from the meniscus retainer. GVA018. Preferably, each flow path has an upstream valve and a downstream valve, and the sensor is located between the upstream valve and the downstream valve. GVA018. Preferably, the multiple valve assembly also has both of the flow paths. GVA01 8. Preferably, the microfluidic device also has a CMOS circuit for operatively controlling the valves and detecting an error including a failure of the upstream valve to stop the flow of the liquid, wherein the valves are supported on the CMOS circuit and each has a direct extension into the CMOS circuit. Electrical contact of the metal layer. Wrong resistance. Reliability required for microfluidic valves to be provided by multiple valve assemblies via individual valve error tolerance, optimal control via liquid detector sensor feedback, and valve design, fabrication, and operation; and operation exhibits microfluidic devices The inherent quality of technology and the elimination of the problems of these technologies. GVA019. 1 This aspect of the invention provides a fault tolerant multiple valve assembly for a microfluidic device, the multiple valve assembly comprising: an inlet for receiving a liquid flowing through the microfluidic device; an outlet downstream of the inlet; extending from the inlet to the outlet a plurality of flow paths; and a plurality of valves respectively disposed along each of the flow paths; wherein each valve has a movable member to contact the liquid, and the thermal expansion actuator moves to move the movable member to cause pulsation in the liquid The meniscus, which restores the flow of liquid to the outlet. -33- 201211534 GVA0 19. 2 Preferably, each flow path is configured to drive a wicking drive flow of liquid to the outlet, and each valve has a meniscus holder configured to cause the liquid to be in the meniscus The retainer (stops the flow of liquid towards the outlet) forms a meniscus" GVA019. Preferably, the flow path is a passage through the microfluidic device, each channel being configured to draw liquid from the inlet to the outlet by capillary action. GVA0 19. 4 Preferably, the movable member is configured for movement between the static position and the actuated position (moving from the static position), and the meniscus holder is configured to secure the meniscus to the orifice Stop the orifice of the liquid flow. GVA019. Preferably, the movable member at least partially defines the aperture. GVA019. Preferably, the thermal actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA019. Preferably, the actuator valve reciprocates the movable member between the static and moving positions until the passage immediately downstream of the orifice is sufficiently squeezed to cause the capillary action to reestablish the flow of liquid in the flow direction 〇 GVA0I9. Preferably, the movable member is a cantilever structure having a nozzle at the free end and an impedance element between the nozzle and the fixed end 〇 GVA0 1 9. Preferably, the multiple valve assembly also has sensors located in each of the flow paths, the sensors corresponding to contact with the liquid. -34- 201211534 GVA019. Preferably, the sensors in each flow path are located between a plurality of valves in each flow path, and the indication of liquid contact from any of the sensors is used to indicate all valves upstream of the sensor The meniscus holder in the middle has failed. GVA019. Il Preferably, each flow path has an upstream valve and a downstream valve, and the sensor is located between the upstream valve and the downstream valve. GVA019. Preferably, the multiple valve assembly also has both of the flow paths. GVA019. Preferably, the microfluidic device also has a CMOS circuit for operatively controlling the valves and detecting an error including a failure of the upstream valve to stop the flow of the liquid, wherein the valves are supported on the CMOS circuit and each has a direct extension into the CMOS circuit. Electrical contact of the metal layer. Error Tolerance Multiple Thermal Bend Actuated Pressure Pulse Valve Assembly provides the reliability necessary for microfluidic valve operation through individual valve error tolerance and valve design, fabrication, and operation; and operation exhibits inherent superiority of microfluidic device technology φ Quality and exempt from the problems of these technologies. GVA020. 1 This aspect of the invention provides a fault tolerant multiple valve assembly for a microfluidic device, the multiple valve assembly comprising: an inlet for receiving a liquid flowing through the microfluidic device; an outlet downstream of the inlet; extending from the inlet to the outlet a plurality of flow paths; and a plurality of valves respectively disposed along each flow path; wherein each valve has a meniscus holder and a meniscus repositioning mechanism, and the meniscus holder is configured to form a stop The meniscus-35-201211534 face of the liquid flow toward the outlet, and the meniscus repositioning mechanism are configured to deform the meniscus at the meniscus fixation such that the meniscus contacts the surface downstream of the meniscus fixture and Restore the liquid flow towards the outlet. GVA020. 2 Preferably, the surface downstream of the meniscus holder is configured to stop the capillary action drive flow toward the outlet, and the meniscus repositioning mechanism has a movable member to extend the meniscus from the meniscus holder to the surface . GVA020. Preferably, the meniscus repositioning mechanism has a thermal expansion actuator to displace the movable member. GVA020. Preferably, the flow path is a passage through the microfluidic device, each channel being configured to draw liquid from the inlet to the outlet by capillary action. GVA020. 5 Preferably, the movable member is configured for movement between the static position and the actuated position (moving from the static position), and the meniscus holder is configured to secure the meniscus to the orifice Stop the orifice of the liquid flow. GVA020. Preferably, the movable member at least partially defines the aperture. GVA020. Preferably, the thermal actuator has an impedance element for causing differential thermal expansion to move the movable member. GVA020. Preferably, the movable member is a cantilever structure having a nozzle at the free end and an impedance element GVA020 between the nozzle and the fixed end. Preferably, the opposing side walls of the channel converge to a narrow portion downstream of the 201211534 movable member such that when the movable member is moved to the actuated position, the meniscus contacts the narrow portion. GVA020. Preferably, the multiple valve assembly also has sensors respectively located in each flow path, the sensors corresponding to contact with the liquid. GVA020. Il preferably, the sensors in each flow path are located between a plurality of valves in each flow path, and the indication of liquid contact from any of the sensors is used to represent all valves upstream of the sensor The meniscus in the fixed φ ' has failed. GVA020. Preferably, each flow path has an upstream valve and a downstream valve, and the sensor is located between the upstream valve and the downstream valve. GVA020. Preferably, the multiple valve assembly also has both of the flow paths. GVA020. Preferably, the microfluidic device also has a CMOS circuit for operatively controlling the valves and detecting an error including a failure of the upstream valve to stop the flow of the liquid, wherein the valves are supported on the CMOS circuit and each have a direct extension φ to the CMOS circuit Electrical contact of the metal layer inside. Error Tolerance Multiple Thermal Bend Actuated Surface Tension Valve Assembly provides the reliability necessary for microfluidic valve operation through individual valve error tolerance and valve design, fabrication, and operation; and operation exhibits inherently superior quality of microfluidic device technology and The problem of exempting these technologies is facing. GVA02 1. 1 This aspect of the invention provides a fault tolerant multiple valve assembly for a microfluidic device, the multiple valve assembly comprising: an inlet 'for receiving liquid flowing through the microfluidic device; an outlet downstream of the inlet; -37- 201211534 from the inlet a plurality of flow paths extending to the outlet; and a plurality of valves respectively disposed along each flow path; wherein each of the valves has a meniscus holder for fixing the meniscus to stop the liquid flow, and for heating the bend The liquid level valve heater causes the meniscus to be released from the meniscus holder to restore fluid flow toward the outlet. GVA021. 2 Preferably, the meniscus holder is an orifice and a valve heater extending around the periphery of the orifice. GVA021. Preferably, the valve heater is configured to cause the liquid to boil at the meniscus holder and release the meniscus from the meniscus holder. GVA021. Preferably, the flow path is a passage through the microfluidic device, each channel being configured to draw liquid from the inlet to the outlet by capillary action. GVA02 1. 5 Preferably, the multiple valve assembly also has sensors respectively located in each flow path, and the sensor corresponds to contact with the liquid" GVA021. Preferably, the sensors in each flow path are located between a plurality of valves in each flow path, and the indication of liquid contact from any of the sensors is used to indicate all valves upstream of the sensor The meniscus holder in the middle has failed. GVA021. 7 Preferably, each flow path has an upstream valve and a downstream valve, and the sensor is located between the upstream valve and the downstream valve. GVA02 1. Preferably, the multiple valve assembly also has both of the flow paths. OVA021. Preferably, the microfluidic device also has a CMOS circuit for operatively controlling the valves and detecting an error including an upstream valve failure to stop -38-201211534 liquid flow 'where the valves are supported on the CMOS circuit and each has a direct extension to Electrical contact of the metal layer within the CMOS circuit. The error-tolerant multiple boiling pilot valve assembly provides the reliability necessary for microfluidic valve operation through individual valve error tolerance and valve design, fabrication, and operation; and operation exhibits inherently superior quality of microfluidic device technology and eliminates such techniques The problem is oriented. GMI00 1. 1 This invention provides a microfluidic device, the φ comprising: a sample inlet for receiving a sample of a biological material having a nucleic acid sequence » a polymerase chain reaction (PCR) portion for amplifying a nucleic acid sequence; a reagent storage tank; and a mixing portion for mixing the nucleic acid sequence and the reagent: wherein, in use, the sample flows from the sample inlet to the PCR portion via the mixing portion. GMI00 1. 2 Preferably, the reagent storage tank has a surface tension φ valve with an orifice, and the surface tension valve is configured to fix the meniscus of the reagent, so that the reagent is held in the reagent storage tank until contact with the sample flow to remove the meniscus so that the reagent Flowing out of the reagent storage tank. GMI001. Preferably, the microfluidic device also has a culture portion downstream of the mixing portion, the culture portion being configured to maintain a mixture of the sample and the restriction enzyme in a culture temperature for limiting shear of the nucleic acid sequence. GMI001. Preferably, the mixing portion is a microchannel defining a winding flow path, and the winding flow path has a sufficient length for diffusion mixing to limit the enzyme to the sample. GMI0 0 1. 5 Preferably, the microchannel has a 蜿蜒 structure - 39 - 201211534 GMI001. Preferably, the cross-sectional area across the flow path is between 20,000 square microns and 8 square microns. GMI001. Preferably, the microfluidic device also has a lysis portion upstream of the mixing portion, the lysis portion being configured to lyse cells within the sample to release the genetic material therein. GMI0 0 1. Preferably, the culture portion has a culture heater configured to heat the nucleic acid sequence and to limit the enzyme to the culture temperature. GMI001. Preferably, the microfluidic device also has a support substrate and a microsystem technology (MST) layer 〇 GMI001 in which a lysis portion, a culture portion, and a PC R portion are formed. Preferably, the microfluidic device also has a CMOS circuit and at least one temperature sensor, the CMOS circuit is located between the support substrate and the MST layer, and the temperature sensor is configured to feedback control the culture heater. GMI001. Il Preferably, the lysis section has an active valve at the downstream end to hold the liquid for a predetermined period of time. GMI001. Preferably, the outlet valve is a boiling pilot valve having a meniscus holder for holding the liquid in the lysis section, the boiling pilot valve having a valve heater for boiling the liquid so that the meniscus is bent The level holder releases and resumes the capillary action drive flow out of the lysis section. GMI001. Preferably, the meniscus holder is an orifice and the valve heater is adjacent to the periphery of the orifice. GMI001. Preferably, the microfluidic device also has a cover covering the MST layer, wherein the cover has a restriction enzyme storage tank, a plurality of PCR reagent storage tanks, and a mixing portion in which 201211534 is formed. GMI001. Preferably, the microfluidic device also has a dialysis unit, wherein the biological material comprises cells of different sizes, and the dialysis portion is configured to divide cells larger than a predetermined threshold into a partial sample, and the cells are only cells having less than a predetermined threshold The remainder of the sample is processed separately. GMI001. Preferably, the nucleic acid sequence is derived from a cell that is less than a predetermined threshold. φ GMI001. Preferably, the PCR portion has a plurality of elongated PCR chambers each formed by a respective portion of the PCR microchannel, and the microchannel has a crucible structure formed by a series of wide tortuous lines, and each of the wide tortuous lines forms an elongated PCR chamber. One of the channel departments. GMI001. 18 Preferably, each channel portion has a plurality of heaters 〇 GMI001. Preferably, the microfluidic device also has a hybridization section having a probe array φ for hybridization with a target nucleic acid sequence in the sample; and a photosensor for detecting the probe in the probe array Hybrid. GMI00 1. Preferably, the PCR portion has a thermal cycle time of less than 30 seconds. The easy-to-use, mass-produced and inexpensive microfluidic device receives the fluid-containing sample, then uses the microfluidic mixer, adds and mixes the necessary reagents into the fluid or From the mixture of fluids. The microfluidic coupler is a reliable and easy to manufacture mixer that is integrated into the device, providing a low volume, microfluidic, reliable, easy to assemble and inexpensive system. GMI002. 1 This invention provides a microfluidic device comprising: a sample inlet for receiving a sample of a biological material having a nucleic acid sequence » a polymerase chain reaction (PCR) portion for amplifying a nucleic acid sequence; a reagent containing a reagent a storage tank; and, a diffusion mixing portion for mixing the nucleic acid sequence and the reagent, the diffusion mixing portion having a microchannel defining a tortuous flow path, the winding flow path having a sufficient length for diffusing the mixed reagent and the sample; wherein, when in use, The sample flows from the sample inlet to the PCR portion via the diffusion mixing portion. GMI002. 2 Preferably, the reagent storage tank has a surface tension valve with an orifice, and the surface tension valve is configured to fix the meniscus of the reagent, so that the reagent is held in the reagent storage tank until contact with the sample flow to remove the meniscus so that the reagent is self-reagent The reagent storage tank flows out. GMI002. Preferably, the microfluidic device also has a culture portion downstream of the mixing portion, the culture portion being configured to maintain a mixture of the sample and the restriction enzyme in a culture temperature for limiting shear of the nucleic acid sequence. GMI002. 4 Preferably, the microchannel has a 蜿蜒 structure. GMI002. Preferably, the cross-sectional area across the flow path is between 8 square microns and 20,000 square microns. GMI002. Preferably, the microfluidic device also has a lysis portion upstream of the mixing portion, the lysis portion being configured to lyse cells within the sample to release the genetic material therein. -42- 201211534 GMI002. Preferably, the microfluidic device also has an anticoagulant storage tank upstream of the lysis unit, wherein the sample is whole blood and the anticoagulant storage tank has a surface tension valve with an orifice, and the surface tension valve is configured to fix the anticoagulant. The meniscus is held while the anticoagulant is held until it contacts the blood to remove the meniscus to add anticoagulant to the blood. GMI002. Preferably, the culture portion has a culture heater, and the culture heater is configured to heat the nucleic acid sequence and limit the enzyme to the culture temperature φ GMI002. Preferably, the microfluidic device also has a support substrate and a microsystem technology (MST) layer 〇 GMI002 in which a lysis portion, a culture portion, and a PCR portion are formed. Preferably, the microfluidic device also has a CMOS circuit and at least one temperature sensor, the CMOS circuit is located between the support substrate and the MST layer, and the temperature sensor is configured to feedback control the culture heater. GMI002. Il Preferably, the lysis section has an active valve φ at the downstream end to hold the liquid for a predetermined period of time. GMI002. 1 2 Preferably, the outlet valve is a boiling pilot valve having a meniscus holder for holding the liquid in the lysis section, the boiling pilot valve having a valve heater for boiling the liquid so that the meniscus is self-contained The meniscus retainer releases and resumes the capillary action drive flow out of the lysis section. GMI002. Preferably, the meniscus holder is an orifice and the valve heater is adjacent to the periphery of the orifice. GMI002. Preferably, the microfluidic device also has a cover covering the MST layer, wherein the cover has a restriction enzyme storage tank, a plurality of PCR reagent storage tanks, and a mixing portion in which -43-201211534 is formed. GMI002. Preferably, the microfluidic device also has a dialysis unit, wherein the biological material comprises cells of different sizes, and the dialysis portion is configured to divide cells larger than a predetermined threshold into a partial sample, and the cells are only cells having less than a predetermined threshold The remainder of the sample is processed separately. GMI002. Preferably, the nucleic acid sequence is derived from a cell that is less than a predetermined threshold. GMI002. Preferably, the PCR portion has a plurality of elongated PCR chambers each formed by a respective portion of the PCR microchannel, the microchannel having a 蜿蜒 structure formed by a series of wide tortuous lines, each of the broad tortuous lines forming an elongated PCR The passage of one of the rooms. GMI002. 1 8 Preferably, each channel portion has a plurality of heaters GMI002. Preferably, the microfluidic device also has a hybridization portion having a probe array for hybridizing to a target nucleic acid sequence in the sample; and a photosensor for detecting the probe in the probe array Hybrid. GMI002. 20 Preferably, the thermal cycle time of the PCR section is less than 30 seconds. The easy-to-use, mass-produced and inexpensive microfluidic device receives the sample containing the nucleic acid, then uses the diffusion mixer, adds and mixes the necessary reagents into the sample, or From the mixture of samples 'then use the PCR chamber of the device to amplify the nucleic acid target in the sample. The diffusion mixer is a reliable and easy to manufacture mixer and is integrated into the package -44-201211534, which provides a low-component microfluidic system that is reliable, easy to assemble and inexpensive. The microfluidic PCR chamber is an easy-to-manufacture PCR circulator and is integrated into the device, thus providing a low-component microfluidic system that is easy to assemble and inexpensive. ^ [Embodiment] ^ General This general specification indicates the main components of the molecular diagnostic system including the specific embodiment of the present invention. The details of the system structure and operation are discussed in the following description. Referring to Figures 1, 2, 3, 128 and 129, the system has the following most important components: The test modules 10 and 11 are of the size of a conventional USB flash drive and can be manufactured inexpensively. Test modules 1 and 11 each contain a microfluidic device, which is typically in the form of a φ laboratory (LOC) device 30 on the wafer and preloaded with reagents, and typically has more than 1000 probes for molecular diagnostic analysis (see Figures 1 and 128). The test module 1 shown in Figure 1 uses fluorescence-based detection techniques to identify target molecules, while the test module 11 in Figure 128 uses electrochemiluminescence-based detection techniques. The LOC device 30 has an integrated photosensor 44 (described in detail below) for fluorescence or electrochemiluminescence detection. Test modules 1() and η both use standard micro-USB connectors 14 for power, data, and control, each having a printed circuit board (PCB) 5, 7 and an externally powered capacitor 32 and inductor 15. Test modules 10 and 11 are for the purpose of mass production only -45-201211534 and are distributed in aseptic packaging for use. The outer casing 13 has a large container 24 for receiving biological samples and a removable sterile sealing strip 22 which preferably has a low viscosity adhesive to cover the large container prior to use. The membrane seal 408 having the membrane shield 410 forms part of the outer casing 13 to reduce the moisture resistance in the test module, while the pressure relief is provided by the small pressure fluctuation. The membrane shield 410 protects the membrane seal 408 from damage. The test module reader 12 supplies power to the test module 1 or 11 via the micro-USB port 16. The test module reader 12 can be in many different forms, and its selection system is described later. The version of the reader 12 shown in Figures 1, 3 and 128 is a specific embodiment of a smart phone. A block diagram of the reader 12 is shown in FIG. The processor 42 executes application software from the program storage 43. The processor 42 is also interfaced with a display screen 18 and a user interface (UI) touch screen 17 and button 19, a cellular radio 21, a wireless network connection 23, and a satellite navigation system 25. The cellular radio 21 and the wireless network connection 23 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location data. Alternatively, the position data can be input by the touch screen 17 or the button 19 person. The data store 27 holds genetic and diagnostic information, test results, patient information, analysis and probe data for identifying each probe, and its array position. The data storage 27 and the program storage 43 can be shared by a common memory device. The application software installed in the test module reader 12 provides results analysis and additional test and diagnostic information. To perform a diagnostic test, the test module 1 (or test module 1 1) is inserted into the micro-USB port 16 on the test module reader 12. The sterile sealing strip 22 is turned up and the biological sample (in liquid form) is loaded into the large sample container 24 -46-201211534. The start button 20 is pressed to initiate the test by applying the software. The sample flows into the LOC device 30 and is analyzed for extraction, culture, amplification, and hybridization with the sample nucleic acid (target) with a pre-synthesized hybrid-reactive oligonucleotide probe. In the case of the test module 1 ( (which uses fluorescence-based detection), the probe is fluorescently labeled and the LED 26 placed in the housing 13 provides the necessary excitation light to induce fluorescence emission from the hybridized probe. (See Figures 1 and 2). In test module 1 1 (which uses electrochemiluminescence (ECL) based detection), LOC device 30 carries a φ ECL probe (as described above) and LED 26 is not necessary to generate photoluminescent fluorescing. Conversely, electrodes 860 and 870 provide an excitation current (see Figure 129). The light sensor 44 integrated with the CMOS circuitry on each LOC device is used to detect the emission (fluorescence or photoluminescence). Amplify the detected signal and convert it into a digital output analyzed by the test module reader 12. The reader then displays the result, can store the data locally and/or upload the data to a web server containing the patient record. . The test module reader 1 2 removes the test module 1 〇 or 1 1 and φ treats them appropriately. 1, 3 and 128 show a test module reader 配置 2 configured as a mobile phone/smart phone 28. In other forms, the test module reader is a laptop/notebook computer 1, a dedicated reader 103, an e-book reader 107, a tablet 109 or a table used in a hospital, private clinic or laboratory. The computer is 1〇5 (see Figure 130). The reader can interface with additional applications such as patient records, accounting, online databases and multi-user environments. It can also interface with some local or remote peripherals, such as printers and patient smart cards. -47 - 201211534 Referring to Figure 131, through the reader 12 and the network 125, the data generated by the test module 10 can be used to update the epidemiological database maintained by the host system for epidemiological data ill for genetics. The genetic database maintained by the host system of the data 113, the electronic health record maintained by the host system for the electronic health record (EHR), and the host system for the electronic medical record (EMR) 121 are retained. Electronic medical records, as well as personal health records maintained by the host system for personal health records (PHR) 123. Conversely, epidemiological data held by the host system for epidemiological data 111, genetic data held by the host system for genetic data 113, and electronic use are maintained via the network 1 25 and the reader 12. An electronic health record maintained by the host system of the Health Record (EHR) 15 , an electronic medical record held by the host system for the Electronic Medical Record (EMR) 121, and a personal health record (PHR) The personal health record maintained by the host system of 23 can be used to update the digital memory in the LOC 30 of the test module 10. Referring again to Figures 1, 2, 128 and 129, in the mobile telephone configuration, the reader 12 uses battery power. The mobile phone reader contains all pre-loaded test and diagnostic information. Data can also be loaded or uploaded via some network or contact interface to enable communication with peripheral devices, computers or online servers. Set the Micro-USB port 16 to connect the computer or main power supply to recharge the battery. Figure 79 shows a specific embodiment of the test module 10 which is used for tests that only require the presence or absence of a particular target, such as whether the test individual is infected with, for example, influenza A virus Η 1 N 1 . It is only suitable as a built-in module 47 for U S B power/indicators. No other readers are required or should be used -48 - 201211534 with software. The indicator 45 on the module 47 of the USB power/indicator only shows a positive or negative result. This configuration is ideal for a large number of screenings. Additional items supplied to the system may include test tubes containing reagents for pre-treating a particular sample, and a tongue and lancet containing sample collection. For convenience, the test module of the embodiment shown in Fig. 79 includes a spring-loaded retractable lancet 3 90 and a lancet release button 3 92. Satellite phones can be used in remote areas. Test Module Electronics Figures 2 and 129 are block diagrams of the electronic components of test modules 10 and 11. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36, a controller 34, a USB compatible LED driver 29, a clock 33, a power conditioner 31, a RAM 38, and a program and data flash memory 40. These are provided for test module 10 or 1 1 including photosensor 44, temperature sensor 170, liquid sensor 174 and various heaters 152, 154, 182, 234 as a whole with φ and associated driver 3 7 and 3 9 and the control and memory of the registers 3 5 and 4 1 . Only LED 26 (in the case of test module 10), external power supply capacitor 32 and micro-USB connector 14 are external to LOC device 30. The LOC device 30 includes an adhesive pad for attachment to these external components. RAM 3 8 and program and data flash memory 40 have application software and diagnostic and experimental information for more than 1 000 probes (flash/safe storage, such as via encryption). In the case of the test module 11 configured for ECL detection, there is no LED 26 (see Figures 128 and 129). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 is loaded with an electrochemiluminescent probe and hybridization -49-201211534 chamber, each having an ECL excitation electrode pair 860 and 870. Many types of test modules have been manufactured in some experimental forms, which are ready for ready-to-use users. The test format differs in the reagents and probes of the on board assay. Some examples of infectious diseases that are rapidly identified by this system include: • Influenza and influenza viruses A, B, C, infectious salmon anemia virus, tocovirus • pneumonia-respiratory fusion virus (RSV) 'gland Virus, interstitial pneumonia φ poison, pneumococci, Staphylococcus aureus • tuberculosis - Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium, Mycobacterium vaccae and Mycobacterium vaccae • Plasmodium falciparum Insects, toxoplasma and other parasitic protozoa • Typhoid- typhoid bacillus • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever - yellow fever virus • Hepatitis (A to E) • Iatrogenic infections - For example, Clostridium pneumoniae, vancomycin-resistant enterococci, and drug-resistant Staphylococcus aureus • Herpes simplex virus (HSV) • Giant cell virus (CMV) • Epstein-Barr virus (EBV) • Encephalitis - Japan Encephalitis virus, Zhangdipula virus • Pertussis-pertussis-50- 201211534 • Measles-paramyxovirus • Meningitis - Streptococcus pneumoniae and meningitis • Anthracnose - Anthrax </ br> <br><br><br><br>: • Cystic fibrosis • Hemophilia • Sickle cell anemia • Black Mongolian idiots • Hemochromatosis • Cerebral arterial disease • Crohn's disease • Polycystic kidney disease Diseases • Congenital Heart Disease • A few options for cancer identified by the diagnostic system include: • Ovarian cancer • Colon cancer • Multiple endocrine neoplasms • Retinoblastoma • Turcot syndrome The above list is not Exhaustive, and diagnostic systems can be configured to detect many different diseases and conditions using nucleic acid and proteomic analysis. Detailed Structure of System Components -51 - 201211534 LOC Device The LOC device 30 is the center of the diagnostic system. It uses a microfluidic platform to rapidly perform the four main steps of nucleic acid-based molecular diagnostic analysis, namely sample preparation, nucleic acid extraction, nucleic acid amplification and detection. The LOC device also has an alternative use and will be described in more detail below. As discussed above, test modules 10 and 11 can take many different configurations to detect different targets. Similarly, the LOC device 30 has many different embodiments for targeting the target of interest. One form of LOC device 30 is a LOC device 301 for fluorescence detection of a target nucleic acid sequence in a pathogen of a whole blood sample. For purposes of explanation, the structure and operation of the LOC device 301 are described in detail with reference to Figures 4 through 26 and 27 through 57. 4 is a schematic diagram showing the structure of the LOC device 301. For the sake of convenience, the processing stages shown in Fig. 4 are represented by the component symbols corresponding to the functional portions of the LOC device 301 that implements the processing stage. The processing stages associated with the major steps of each nucleic acid-based molecular diagnostic assay also represent: sample input and preparation 288, extraction 290, culture 291, amplification 292, and detection of various reservoirs, chambers, 294, L0C devices 301, Valves and other components will be described more closely below. FIG. 5 is a perspective view of the LOC device 301. It is manufactured using high volume CMOS and MST (microsystem technology) manufacturing techniques. The layered construction of the LOC device 301 is illustrated in a partial cross-sectional view (not to scale) of Figure 12. The LOC device 301 has a germanium substrate 84 supporting a COMS + MST wafer 48, including a CMOS circuit 86 and an MST layer 87. Cover 46 covers MST layer 87. For the purposes of this patent specification, the term "MST layer" relates to a collection of structures and layers of a sample treated with different reagents. Accordingly, these structures and components are configured to define a flow path having a characteristic rule of -52 - 201211534 inches that supports a capillary action driven liquid flow having physical properties similar to the physical properties of the sample during processing. Accordingly, MS T layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also produce structures and assemblies that are sized for capillary action and that are processed to very small volumes. The particular embodiment described in this specification shows that the MST layer is a structure and active component supported on CMOS circuitry 86, but excludes the features of cover 46. However, those skilled in the art will understand that the MST layer does not require the underlying CMOS or even the overlying cover to handle the sample. The overall dimensions of the LOC device shown in the following figures are 1 760 microns χ 58 24 microns. Of course, LOC devices made for different applications can have different sizes. Figure 6 shows the features of the MST layer 87 overlaid with the cover features. The inserts AA to AD, AG and AH shown in Fig. 6 are individually enlarged in Figs. 13, 14, 35 '56, 5 5 and 63, and the full φ of each structure in the LOC device 301 is described in detail below. . When Figure 11 shows the CMOS + MST device 48 structure independently, Figures 7 through 10 show the features of the cover 46 independently. Layered Structure Figures 12 and 22 are schematic views of the layered configuration of the CMOS + MST device 48, the cover 46, and the fluid interaction therebetween. The drawings are not drawn to scale for the purpose of illustration. Figure 12 is a cross-sectional view through the sample inlet 68 and Figure 22 is a cross-sectional view through the sump 54. As best shown in FIG. 12, CMOS + MST device 48 has a germanium substrate 84 that supports CMOS circuitry 86»passivation layer 88 that operates the active components in the -53-201211534 MST layer 87 described above to seal and protect CMOS layer 86 from Fluid flows through the MST layer 87. The fluid flows through both the cap layer 46 and the MST channel layer 100 and the MST channel 90 (see, for example, Figures 7 and 16). When biochemical treatment is performed on the smaller MST channel 90, cell transport occurs in the cover. The larger passage 94 made in 46. The cell delivery channel is sized to deliver the cells in the sample to a predetermined location in the MST channel 90. Cells that deliver a size greater than 20 microns (e.g., certain white blood cells) require channel sizes greater than 20 microns, and thus cross-sectional areas across the flow are greater than 400 square microns. The MST channel, particularly at locations in the LOC that do not require delivery of cells, can be significantly smaller. It will be understood that the cover channel 94 and the MST channel 90 are common references and that the particular MST channel 90 can also be due to its specific function ( For example) heated microchannels or dialyzed MST channels. The MST channel 90 is formed by etching through the MST channel layer 100 deposited on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is surrounded by a top layer 66 that forms the top of the CMOS + MST device 48 (relative to the orientation shown in the figure). Although sometimes shown as a separate layer, the cover channel layer 80 and the sump layer 78 are formed from a single piece of material. Of course, the sheet of material can also be non-unitary. The sheets of material are etched from both sides to form a cover channel layer 80 and a sump layer 78, and a cover channel 94 is etched in the cover channel layer 80, and sumpes 54, 56, 58' 60 and 62 are etched in the sump layer 78. Alternatively, the sump and cover channel are formed by micro-forming. Both etching and microforming techniques are used to fabricate channels having a cross-flow of up to 20, 〇〇〇 square microns and as small as 8 square microns. Appropriate choices for the section of the passage through the passage of the fluid are available at different locations in the LOC unit. A large number of samples or samples having a large component are accommodated in the channel, and a cross-sectional area of up to 20,000 square micrometers (e.g., a 200 micrometer wide channel in a layer of 100 micrometers thick) is suitable. A small amount of liquid or a mixture free of large cells is contained in the channel, preferably a very small cross-sectional area across the fluid. The lower seal 64 surrounds the lid passage 94 and the upper seal layer 82 surrounds the sump 54, 56, 580, 60 and 6 2 °. The five sump 54, 56, 58, 60 and 62 are preloaded with reagents for specific analysis. In the embodiments described herein, the reservoir is preloaded with the following reagents, but can be easily replaced with other reagents: • Storage tank 54: anticoagulant, the selectivity of which includes red blood cell lysis buffer • storage tank 5 6 : lysis reagent • Slot 58: Restriction enzymes, ligases, and junctions (for junction initiation PCR) (see Figure 78, excerpt from T.  Stachan et al. , Human Molecular Genetics 2, Garland Science, NY and London, 1 999)) • Slot 60: Amplification mixture (deoxyribonucleoside triphosphate (dNTP), bow |, buffer), and • Storage tank 62: DNA Polymerase. Cover 46 and CMOS + MST layer 48 are in fluid communication via respective openings in lower seal 64 and top layer 66. The upper conduit 96 and the lower conduit 92 are representative of whether the fluid flows from the MS T passage 90 to the cover passage 94 or vice versa. -55- 201211534 LOC Device Operation The operation of LOC device 301 is described step by step with reference to the analysis of pathogenic DNA in a blood sample. Of course, other types of biological or non-biological fluids are also analyzed using a suitable kit or reagent, test protocol, L Ο C variant, and a combination of detection systems. Referring to Figure 4, analyzing a biological sample involves five major steps, including: sample input and preparation 288, nucleic acid extraction 290, nucleic acid culture 291, nucleic acid amplification 292, and detection and analysis. 294 〇 sample input and preparation steps 2 8 8 mixed blood The pathogen is separated from the white blood cells and red blood cells by the anticoagulant 1 16 and then by the pathogen dialysis section 7 . As best shown in Figures 7 and 12, blood samples enter the device via sample inlet 68. Capillary action draws the blood sample along the lid channel 94 to the sump 54. When the sample blood stream opens its surface tension valve 118, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). The anticoagulant prevents the formation of blood clots that can block flow. As best shown in Figure 22, the anticoagulant 1 16 is withdrawn from the reservoir 54 by capillary action and enters the M ST channel 90 via the lower conduit 92. The lower duct 92 has a capillary action initiation feature (CIF) 102 to form a meniscus geometry such that it is not fixed to the edge of the lower duct 92. When the anticoagulant 116 is withdrawn from the sump 54, the vent 122 in the upper seal 82 allows air to replace the anticoagulant 1 16 . The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 is filled with a surface tension valve 118 and secured to the meniscus 120 of the upper conduit 96 to the meniscus holder 98. Prior to use, the meniscus 120 remains solid at 201211534 and is positioned in the upper conduit 96 such that the anticoagulant does not flow into the lid passage 94. As the blood flows through the lid channel 94 to the upper tube 96, the meniscus 120 is removed and the anticoagulant is drawn into the fluid. Figures 15 through 21 show the insert AE which is part of the insert AA shown in Figure 13. As shown in Figures 15, 16 and 17, surface tension valve 118 has three separate MST passages 90 extending between the individual lower conduits 92 and the upper conduits 96. These MST channels 90 in the surface tension valve can vary φ to change the flow rate of the reagent entering the sample mixture. When the sample mixture and reagents are mixed by diffusion, the flow rate away from the sump determines the concentration of the reagent in the sample stream. Therefore, the surface tension valve of each sump is configured to meet the desired reagent concentration. The blood is passed through the pathogen dialysis section 7 (see Figures 4 and 15), wherein the target cells are concentrated from the sample using an array of orifices 1 64 of a predetermined size. Cells smaller than the valve stomata pass through the orifice, while large cells cannot pass through the orifice. While the target cells continue to be part of the analysis, the undesired cells φ are reintroduced into the waste unit 76. Undesired cells are large cells blocked by an array of orifices 164 or small cells that pass through the orifice. In the pathogen dialysis section 70 described herein, the pathogen from the whole blood sample is concentrated for microbial DN A analysis. The array of orifices is formed by fluidly communicating the input in the lid channel 94 to a plurality of 3 micron diameter orifices 164 of the target channel 74. The 3 micron diameter orifice 164 and the dialysis suction orifice 168 for the target passage 74 are connected by a series of dialysis MST channels 204 (best shown in Figures 15 and 21). The pathogen is small enough to pass through the dialysis MST channel 204 through the 3 micron diameter orifice 164 and to fill the target channel 74. Cells larger than 3 microns, such as red-57-201211534 blood cells and white blood cells, remain in the waste channel 72 of the lid 46, which leads to the waste reservoir 76 (see Figure 7). Other orifice shapes, sizes, and aspect ratios can be used to isolate specific pathogens or other target cells, such as white blood cells for human DNA analysis. More detailed details of the dialysis section and dialysis variants are provided later. Referring again to Figures 6 and 7, fluid is drawn through target channel 74 to surface tension valve 128 in lysis reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysis reagent reservoir 56 and the target channel 74. When the meniscus is removed from the sample stream, the flow rate of all seven MST channels 90 will be greater than the flow rate of the anticoagulant reservoir 54, wherein the surface tension valve 118 has three MS T channels 90 (assuming the physical properties of the fluid are Roughly equal). Thus the proportion of lysing reagent in the sample mixture is greater than the ratio of anticoagulant. The lysis reagent and the target cells are mixed by diffusion in the target channel 74 in the chemical lysis unit 130. Boiling the pilot valve 126 stops the flow until diffusion and lysis are performed for a sufficient time to release the genetic material from the target cells (see Figures 6 and 7). Referring to Figures 31 and 32, the construction and operation of the boiling pilot valve will be described in detail below. Other active valve types (as opposed to passive valves, such as surface tension valve 18) have also been developed by the applicant, which can be used in place of the boiling pilot valve. These alternative valve designs are also described below. When the boiling pilot valve 1 26 is turned on, the lysed cells flow into the mixing portion 131 to pre-amplify restriction digestion and linker ligation. Referring to Fig. 13, when the fluid is removed from the meniscus on the surface of the surface portion of the mixing portion 131, the restriction enzyme, the linker and the ligase are released from the reservoir 58. For diffusion mixing, the mixture flows through the length of the mixing portion 131. At the end of the mixing portion 131 is a lower duct 134 leading to the incubator inlet passage 133 of the culture portion 114 (see Fig. 13). The incubator inlet channel 133 feeds the mixture into the crucible structure of the heated microchannel 210, which provides a culture chamber for retaining the sample during restriction enzyme cleavage and junctional conjugation (see Figures 13 and 14). Figure 23 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in the insert AB of FIG. The figures show successive additions to form layers of the CMOS + MST layer 48 and cover 46 structures. The insert AB shows the end of the culture portion 114 and the start of the amplification portion 112. As best shown in Figures 14 and 23, the fluid fills the microchannel 210 of the culture portion 14 until it reaches the boiling priming valve 106 where the fluid stops when diffusion occurs. As discussed above, the microchannel 210 upstream of the boiling pilot valve 106 becomes a culture chamber containing samples, restriction enzymes, binding enzymes, and linkers. The heater 154 is then activated and maintained at a steady temperature to allow the restriction enzyme to shear and the junction to engage for a specific period of time. Those skilled in the art will appreciate that this incubation step 291 (see Figure 4) is arbitrary and is only required for some types of nucleic acid amplification assays. Further, in some instances, it may be desirable to have a heating step at the end of the incubation period to increase the temperature above the culture temperature. Before entering the amplification section 112, the temperature is increased to inactivate the restriction enzyme and the ligase. Limiting the inactivation of enzymes and ligases has a specific effect when amplified with isothermal acid. After the incubation, the boiling pilot valve 1〇6 is activated (opened) and the fluid re-enters the amplifying portion 112. Referring to Figures 31 and 32, the mixture is filled with the structure of the microchannels ι58-59-201211534 until it reaches the boiling pilot valve 108, which forms one or more amplification chambers. As best shown in the cross-sectional view of Fig. 30, the amplification mixture (dNTP, primer, buffer) is released from the storage tank 60 and the polymerase is then released from the storage tank 62 into the junction culture section and the amplification section (114 and 112, respectively). The middle MST channel 2 1 2 . Figures 35 through 51 show the layers of the LOC device 301 in the insert AC of Figure 6. The figures show successive layers of layers forming the CMOS + MST device 48 and cover 46 structures. The insert AC shows the end of the amplification section 1 12 and the initiation of the hybridization and detection section 52. The cultured sample, amplification mixture, and polymerase flow through the microchannel 15 8 to the boiling pilot valve 108. After diffusion mixing for a sufficient time, the heater 154 in the microchannel 158 is activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify a sufficient target DN Α. After the nucleic acid amplification procedure, the boiling pilot valve 108 is opened and the fluid re-enters the hybridization and detection portion 52. The operation of the boiling pilot valve is described in more detail below. As shown in Fig. 52, the hybridization and detection section 52 has an array 1 10 of hybridization chambers. Figures 52, 53, 54, and 56 show the hybridization chamber array 110 and the individual hybrid chambers 180 in detail. The entrance to hybridization chamber 180 is a diffusion barrier 175 that prevents the target nucleic acid, probe strands, and hybridization probes from diffusing between hybridization chambers 180 during hybridization to prevent erroneous hybridization assay results. The flow path of the diffusion barrier 175 is long enough to prevent the target sequence and probe from diffusing out of one chamber and contaminating the other during the time the probe and nucleic acid hybridize and detect the signal, thus avoiding erroneous results. Another mechanism to prevent erroneous reading is to have the same probe of -60-201211534 in some hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 corresponding to the hybridization chamber 180 containing the same probe. The results of the exceptions in the derived single results can be ignored or given different weights. The thermal energy required for hybridization is provided by a CMOS controlled heater 182 (described in more detail below). Hybridization occurs between the complementary target probe sequences after the heater is activated. The LED driver 29 in the CMOS circuit 86 transmits a message to cause the LEDs 26 located in the test module 10 to illuminate. These probes only fluoresce when φ occurs, thus eliminating the cleaning and drying steps that are often required to remove unbound strands. The stem and loop structure of the hybrid forced FRET probe 186 is opened, which allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as detailed below. Fluorescence is detected by photodiode 184 located in CMOS circuit 86 under each hybridization chamber 180 (see the description of the hybridization chamber below). The photodiode 184 and associated electronics for all of the hybridization chambers together form a photosensor 44 (see Figure 73). In other embodiments, the photosensor can be a charge coupled device array (CCD array). The signal detected by the photodiode 184 is φ large and converted into a digital output that can be analyzed by the test module reader 12. Further details of the detection method are described below. Other Detailed Description of LOC Device The modular design LOC device 301 has a number of functional components including reagent reservoirs 54, 56, 58, 60 and 62, dialysis section 70, lysis section 130, culture section 114 and amplification section 112, and valves. Type, humidifier and humidity sensor. In the LOC device of other specific embodiments, these functional portions may be omitted, but additional functional components or functional components different from those of the above-described devices may be added. For example, the culture portion 1 14 can be used as the first amplification portion 11 2 of the tandem repeat amplification analysis system, and the lysis reagent storage tank 56 can be used to add the first amplification mixture of the primer, the dNTP, and the buffer. A reagent reservoir 58 is used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, a chemical lysis reagent (along with amplification mix) may be added to the sump 56, or alternatively, the sample may be heated for a predetermined period of time to cause thermal lysis in the culture. In some embodiments, if chemical lysis is desired and the chemical lysis reagent is mixed therewith, additional reservoirs can be combined upstream of the sump for mixing the primers, dNTPs, and buffers. In some cases, the steps such as the culturing step 291 are omitted. In this case, the LOC device can be specially manufactured to avoid the reagent storage tank 58 and the culture portion 11 4 or the storage tank can carry only the reagent, or when the active valve is present, it is not activated to dispense the reagent into the sample stream, and the culture is carried out. The portion is simply a channel for transferring the sample from the lysis unit 130 to the amplification unit 112. The heaters operate independently, so when the reaction relies on heat, such as hot lysis, the heater is not activated during this step, ensuring that hot lysis does not occur in LOC devices that do not require hot lysis. The dialysis section 70 can be located at the beginning of the fluid system within the microfluidic device, as shown in Figure 4, or can be located at any other location within the microfluidic device. In some cases, for example, after the amplification phase 292, prior to the hybridization and detection step 294, dialysis is performed to remove cell debris. Alternatively, two or more dialysis sections can be combined at any location on the LOC device. Similarly, additional amplification moieties can be combined to enable simultaneous amplification of multiple targets prior to detection or -62-201211534 in a hybrid chamber array 110 using a particular nucleic acid probe. To analyze, for example, a sample of whole blood in which dialysis is not required, the dialysis portion 70 is simply omitted from the sample input and preparation portion 28 of the LOC design. In some cases, even if the analysis does not require dialysis, it is not necessary for the LOC device to omit the dialysis section 70. If the presence of the dialysis section does not cause geometrical obstruction, the sample input and preparation section can still have the LOC of the dialysis section 70 without losing the desired function. In addition, the detection portion 294 can include a protein body array array that is identical to the hybrid chamber array but carries a probe that is designed to conjugate or hybridize to a protein present in the non-amplified sample, rather than being designed to A nucleic acid probe that hybridizes to a target nucleic acid sequence. It will be appreciated that the LOC devices manufactured for use with this diagnostic system are different from the combinations of functional components selected for the particular LOC application. The vast majority of functional units are common to many LOC devices, and the design of additional LOC devices for new applications has functional components that are appropriately combined in the configuration of the large functional options used in existing LOC devices. Only a few LOC devices are shown in this description, and some others are shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown herein are not exhaustive, and that many additional LOC designs are related to the combination of appropriate functional components. Sample Type LOC Variants can accept and analyze various samples in liquid form. Types of nucleic acid or protein content, including but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, cord blood-63-201211534, breast milk, sweat, pleural effusion, tears , pericardial fluid, peritoneal fluid, environmental water samples and dip samples. Amplicon derived from meganucleic acid amplification can also be analyzed using a LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, and only use dialysis, lysis, The culture and amplification section delivers the sample from the sample inlet 68 to the hybridization chamber for nucleic acid detection 180, as described above. For some sample types, a pre-treatment step is required, for example, prior to input into the LOC device, it may be necessary to liquefy the semen and possibly pre-treat the mucus with enzyme to reduce stickiness. Sample Input A sample is added to the large container 24 of the test module 10 with reference to Figures 1 and 12'. The large container 24 is a truncated cone 'which is fed into the inlet 68 of the LOC unit 301 by capillary action. Here, it flows into the 64 μm wide 60 μηι deep cover channel 94 and is also attracted to the anticoagulant reservoir 54 by capillary action. Reagent Tank The small amount of reagent required for the analysis system using a microfluidic device such as the LOC device 310 allows the reagent reservoir to contain all of the necessary reagents for biochemical treatment, and each reagent reservoir is in a small volume. This volume is indeed less than 〗 〖〇〇〇, 〇〇〇, 〇〇〇 cubic micron' in most cases is less than 300, 〇〇〇, 〇〇〇 cubic micron 'normal less than 70,000,000 cubic microns, and In the case of the LOC device 301 shown in the formula, it is less than 2 Å, 〇〇〇, 〇〇〇 cubic micrometers. 201211534 Dialysis Department Referring to Figures 15 to 21, 33 and 34, the pathogen dialysis section 70 is designed to concentrate pathogen target cells from the sample. As previously described, the top layer 66 has a plurality of orifices 316 of a diameter of 3 microns that filter the target cells from a large number of samples. As the sample flows through a 3 micron diameter orifice 164, the microbial pathogen passes through the well into a series of dialysis MST channels 204 and is returned to the target channel 74 via a 16 [mu]π dialyzed extraction well 168 (see Figures 33 and 34). The remaining sample (red blood cells, etc.) of φ is retained in the cover channel 94. Downstream of the pathogen dialysis section 70, the cover channel 94 becomes a waste channel 72 to the waste reservoir 76. Foam inserts or other porous elements 49 in the outer casing 13 of the test module 10 are configured to be in fluid communication with the waste reservoir 76 (see Figure 1) for a biological sample type that produces a substantial amount of waste. The pathogen dialysis unit 70 operates with the capillary action of the fluid sample. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis section 70 has a capillary action initiation feature (CIF) 166 (see Figure 33) such that fluid is drawn down into the dialysis MST channel 204 below φ. The first extraction aperture 198 for the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid from easily securing the meniscus over the dialysis extraction aperture 168. The small component dialysis section 682, which is schematically shown in Fig. 99, may have a structure similar to the pathogen dialysis section 70. The small component dialysis section separates any small target cells or molecules from the sample by sizing (and shaping, if necessary) to allow the small target cells or molecules to pass to the target channel and continue the analysis of the orifice. Large size cells or molecules are removed to the waste reservoir 766. Thus, LOC device 30 (see Figures 1 and 128) is not limited to isolation of pathogens having sizes less than 3 μπι -65 - 201211534, but can be used to isolate cells or molecules of any desired size. Lysis section Referring again to Figures 7, 11, and 13, the genetic material in the sample by chemical lysis is released from the cell. As described above, the lysis reagent from the lysis tank 56 is mixed with the sample flowing in the target channel 74 downstream of the surface tension valve 128 of the lysis tank 56. However, some diagnostic assays preferably use hot lysis treatment, Or even a combination of chemical and thermal lysis of target cells. The LOC device 301 houses the heated microchannels 210 of the culture portion 114. The sample stream is flooded with the culture portion 114 and stopped at the boiling pilot valve 106. The culture microchannel 210 heats the sample to a temperature at which the cell membrane ruptures. In some hot lysis applications, the enzyme reaction is not required in the chemical lysis unit 130, and the hot lysis completely replaces the enzyme reaction in the chemical lysis unit 130. Boiling Pilot Valve As discussed above, the LOC device 301 has three boiling pilot valves 126, 106 and 108. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independent boiling pilot valve 108 on the heated microchannel 158 side of the amplifying portion 112. By capillary action, the sample stream 1 19 is attracted along the heated microchannel 15 8 until it reaches the boiling pilot valve 108. The meniscus 120 at the leading edge of the sample stream is secured to the meniscus holder 98 of the valve inlet 146. The meniscus holder 98 causes the meniscus to stop moving forward to prevent capillary flow. As shown in Figures 31 and 3, the meniscus holder 98 is a conduit on the orifice provided by the opening of the pipe from the MST passage 90 to the -66-201211534 of the cover passage 94. The surface tension of the meniscus 120 keeps the valve closed. A ring heater 152 is located around the valve inlet 146. The ring heater 152 is controlled by cM〇S via boiling of the valve heater contact I. To open the valve, the CMOS circuit 86 sends an electrical pulse to the valve heater contact 153. The ring heater 1 52 is electrically resistively heated. Until the liquid sample n9 boils, the boiling causes the meniscus 120 to be removed from the valve inlet 146 and begin to wet the lid channel 94. Once the lid passage 94 is wetted, the capillary action is restored. The fluid sample 119 is filled with the passage 94. And flowing through the lower valve line 15 to the valve outlet ι48, wherein the capillary-driven liquid flow advances along the amplification outlet channel 160 into the hybridization and detection portion 52. The liquid sensor 174 is placed for diagnostic purposes. Before and after the valve, it will be understood that once the boiling pilot valve is opened, it is impossible to close it again. However, since the LOC device 301 and the test module 10 are single-purpose devices, it is not necessary to close the valve. Nucleic Acid Amplification Section Figures 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51 show the culture section 114 and the amplification section 112. The culture section 114 has a single, heated culture microchannel 2 1 0, which is etched and becomes The conduit opening 134 to the 蜿蜒 pattern in the MST channel layer 100 of the boiling pilot valve 106 (see Figures 13 and 14). Controlling the temperature of the culture portion 141 enables a more efficient enzyme reaction. Similarly, amplification The portion 2 has a heated microchannel 158 (see FIGS. 6 and 14) heated from the boiling pilot valve 1〇6 to the boiling pilot valve 108 (see FIGS. 6 and 14), mixed, cultured, and nucleic acid amplified. Upon occurrence, the valves stop flow to retain the target cells in the heated culture or amplification microchannels 210 or 158. The microchannel channel pattern also promotes (to some extent) the target cells to mix with the reagents. In the culture unit 1 14 and the amplification unit 1 1 2, the sample cells and reagents are heated via a heater 154 controlled by a pulse width modulation (PWM) CMOS circuit 86. The heated culture microchannel 210 and the expansion Each of the turns of the microchannel 158 has three independently operable heaters 15 (extending between the individual heater contacts 156 (see Figure 14)) which provide input heat flux density Two-dimensional control. As best shown in Figure 51, the heater 154 is supported by The top layer 66 is embedded in the lower seal 64. The heater material is TiAl, but many other conductive metals are also suitable. The elongated heater 154 is parallel to the longitudinal length of each channel portion forming a wide meandering meandering flow. In the amplification section 112, each wide stream of music can be manipulated as an independent PCR chamber via individual heater control. Using a microfluidic device, such as the LOC device 301, the small volume of amplification required by the analysis system The subsequence allows amplification of the small volume of the amplification mixture in the amplification section 1 1 2 . This volume is less than 400 nanoliters, in most cases less than 170 nanoliters, typically less than 70 nanoliters, and in the case of LOC device 301, this volume is between 2 nanoliters and 30 nanoliters. . Increased heating rate and better diffusion mixing The small cross-sectional area of each channel portion increases the heating rate of the amplification fluid mixture. All fluids are kept at a relatively short distance from the heater 1 54. The channel cross-sectional area (i.e., the cross section of the augmented microchannel 158) is reduced to less than 100,000 square microns, while the 201211534 has a significantly higher heating rate than the "large scale" device. The lithography manufacturing technique allows the amplifying microchannel 158 to have a cross-section that provides a higher heating rate substantially less than 16,000 square microns. The 1 micron size feature is easily achieved with lithography manufacturing techniques. If only a very small amount of amplicons are required (as is the case in the L〇C device 301), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1,000 to 2,000 probes on a LOC device and "sample entry, answer out" within 1 minute, the cross-sectional area of the appropriate φ across the fluid is 400 square microns and 1 square. Between microns. The heater element in the amplification microchannel 158 heats the nucleic acid sequence at a rate of greater than 80 absolute temperatures (K) per second, in most cases at a rate of greater than 100 K per second. Typically, the heater element heats the nucleic acid sequence at a rate greater than one, 〇〇〇 K per second, and in many cases, the heater element heats the nucleic acid sequence at a rate greater than 1 每秒, 〇〇〇 K per second. Typically, based on the requirements of the analytical system, the heater elements are greater than 100,000 κ per second, greater than 1,000,000 K per second, greater than 10,000,000 K per second, greater than φ 20,000,000 K per second, greater than 40,000,000 K per second, per second. The nucleic acid sequence is heated at a rate greater than 80,000,000 K and greater than 1 60,000, 0 〇〇 K per second. A small cross-sectional area channel is also beneficial for the diffusive mixing of any reagent with the sample fluid. The diffusion of one liquid to another is most pronounced near the interface between the two liquids before the diffusion mixing is completed. The density of the phenomenon decreases with distance from the interface. A microchannel with a relatively small cross-sectional area across the direction of the fluid is used while maintaining the flow of the two fluids at the interface for rapid diffusion mixing. Reducing the channel cross-section to less than 100,000 square microns results in a significantly higher diffusion rate than the "large gauge -69-201211534 mode" device. The lithography manufacturing technique allows the microchannels to have cross sections that traverse less than 1 6,000 square microns and substantially provide a higher mixing rate. If only a very small amount of amplicons are required (as is the case in LOC unit 3〇1), the cross section can be reduced to less than 2,500 square microns. For the diagnostic analysis required for "sample entry, answer out" in 1 minute on a LOC device, the appropriate cross-sectional area across the fluid is 400 square microns and 1 square micron. between. The short thermal cycle time keeps the sample mixture close to the heater and uses a very small amount of fluid, resulting in rapid thermal cycling during the nucleic acid amplification process. Each thermal cycle (β卩, denaturing, adhesion, and primer extension) was completed in 30 seconds for a target sequence of up to 150 base pairs (bp) long. In most diagnostic analyses, individual thermal cycle times are less than 11 seconds and most are less than 4 seconds. For a target sequence of up to 1 50 base pairs (bp) long, the thermal cycle time of the LOC device 30 for some of the most common diagnostic analyses is zero. 45 seconds to 1. Between 5 seconds. This rate of thermal cycling allows the test module to perform nucleic acid amplification procedures in far less than 10 minutes; often within 220 seconds. For most analyses, the amplification section produces sufficient amplicons from the sample fluid entering the sample inlet within 80 seconds. For most of the analysis, sufficient amplicons were generated within 30 seconds. Upon completion of the predetermined number of amplification cycles, the amplicon is fed to the hybridization and detection section 52 via the boiling pilot valve 108. Hybridization Chamber - 70 - 201211534 Figures 52, 53, 54, 56 and 57 show hybridization chamber 180 in hybridization chamber array 110. The hybridization and detection unit 52 has a 24 X 45 array 1 10 of hybridization chambers 180 each having a hybrid-reactive FRET probe 186, a heater element 182, and an integrated photodiode 184. Photodiode 184 is incorporated to detect fluorescence from a target nucleic acid sequence or protein that hybridizes to FRET probe 186. Each of the photodiodes 184 is independently controlled by the CMOS circuit 86. For the emitted light, any material between the FRET probe 186 and the photodiode 184 must be transparent φ. Therefore, the wall portion 97 between the probe 186 and the photodiode 184 must also be optically transparent to the emitted light. In the LOC device 301, the wall portion 97 is a thin layer of ruthenium dioxide (about 0. 5 microns). Direct intrusion of photodiode 184 beneath each hybridization chamber 180 allows the use of a very small volume of probe-target hybridization while still producing a detectable fluorescent signal (see Figure 54). A small volume of hybridization chamber can be used because of the small amount. Prior to hybridization, the amount of probe required for detectable probe-target hybridization is greater than 270 picograms (corresponding to 900,000 cubic micrometers), and in most φ cases less than 60 picograms (corresponding to Up to 200,000 cubic microns, typically less than 12 picograms (corresponding to 40,000 cubic micrometers), and less than 2. in the case of the LOC device 301 shown in the figures. 7 picograms (corresponding to a chamber with a volume of 9,0 cubic micrometers). Of course, reducing the size of the hybridization chamber allows for higher chamber densities and therefore more probes on the LOC device. In the LOC device 301, the hybridization portion has more than 1,000 in an area of 1,500 micrometers by 1,500 micrometers. Individual chambers (ie, each chamber is less than 2,250 square microns). The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the small number of probes required by each chamber is that during the manufacture of the LOC device, only -71 - 201211534 is required to configure a very small amount of probe solution into each chamber. A specific embodiment of the LOC device according to the present invention may be configured with a probe solution of 1 nanoliter or less. After nucleic acid amplification, the boiling priming valve 108 is activated and the amplicon flows along the flow path 176 and flows into each hybrid. Room 180 (see Figures 52 and 56). The endpoint liquid sensor 178 indicates when the hybridization chamber 180 is flooded with the amplicon and the heater 182 can be activated. After sufficient hybridization time, LED 26 is activated (see Figure 2). The opening in each hybrid chamber 180 is provided with an optical window 136 to expose the FRET probe 186 to the excitation radiation (see Figures 52, 54 and 56). The LED 26 emits light for a sufficiently long period of time to induce a high intensity fluorescent signal from the probe. The photodiode 184 is shorted during excitation. After a preprogrammed delay of 300 (see Figure 2), under no excitation light, The light diode 184 and the detection of fluorescent emission. The incident light on the active region 185 of the photodiode 184 (see Figure 54) is converted to a photocurrent that can be measured using a CMOS circuit 86. Each hybridization chamber 180 carries a probe for detecting a single target nucleic acid sequence. If desired, each hybridization chamber 180 can carry probes that detect more than 1,000 different targets. Alternatively, many or all of the hybridization chambers may carry the same probe that repeatedly detects the same target nucleic acid. Copying the probes in this manner in the hybridization chamber array 110 increases the confidence of the results obtained, and if desired, all results can be combined by photodiodes of adjacent hybridization chambers to obtain a single result. Those skilled in the art will appreciate that there may be from 1 to over 10,000 different probes on the hybrid chamber array 110, depending on the analytical details. Humidifier and Humidity Sensor -72- 201211534 The insert AG of Figure 6 indicates the position of the humidifier 196. The humidifier is free of evaporation of reagents and probes during operation of the LOC device 301. As best shown in the enlarged view of Fig. 55, the water sump 188 is fluidly coupled to the three evaporators 190. The water storage tank 188 is filled with molecular biological grade water and is sealed during manufacture. As best shown in Figures 55 and 76, by capillary action, water is drawn to the three lower conduits 194 and along the individual water supply passages 192 to the three upper conduits 193 of the evaporator 190. The meniscus is fixed to each of the upper φ pipes 193 to retain water. The evaporator has a ring heater 191 which surrounds the upper pipe 193. With a thermally conductive column 376, a ring heater 191 is coupled to the CMOS circuit 86 to the top metal layer 195 (see Figure 37). At startup, the annular heater 191 heats the water causing the water to evaporate and wet the surrounding equipment. The position of the humidity sensor 232 is also shown in FIG. However, preferably, as shown in the enlarged view of the insert AH shown in Fig. 63, the humidity sensor has a capacitive comb structure. The lithographically etched first electrode 2 96 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The φ opposing electrode forms a capacitor having a capacitance that can be monitored by the CMOS circuit 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, causing the capacitance to increase. Humidity sensor 232 abuts hybridization array 1 10 (the most important humidity measurement location) to slow the evaporation of the solution containing the exposed probe. Feedback Sensor The temperature and liquid sensor system is integrated into the LOC unit 3 0 1 to provide feedback and diagnostics during device operation. Referring to Fig. 35, nine temperature sensors - 73 - 201211534 170 are assigned to all of the amplification section 112. Similarly, the culture unit 114 also has nine temperature sensors 170. These sensors each use a 2x2 array of bipolar junction transistors (BJT) to monitor fluid temperature and provide feedback to CMOS circuitry 86. The CMOS circuit 86 utilizes this to accurately control the thermal cycling during nucleic acid amplification as well as any lysis during hot lysis and culture. In hybridization chamber 180, CMOS circuit 86 uses hybridization heater 182 as a temperature sensor (see Figure 56). The resistance of the hybrid heater 182 is temperature dependent, and the CMOS circuit 86 uses this to drive the temperature of each hybrid chamber 180. The LOC device 301 also has some MST channel liquid sensors 174 and a lid channel liquid sensor 208 » 35 is shown on the line of the MST channel liquid sensor 174 at one of the ends of each of the heated microchannels 158. Preferably, as shown in FIG. 37, the MST channel liquid sensor 174 is a pair of electrodes formed by the exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid closes the current between the electrodes to indicate their presence at the sensor. Figure 25 shows an enlarged perspective view of the lid channel liquid sensor 208. Opposite TiAl electrode pairs 218 and 220 are deposited on top layer 66. A gap 222 is provided between the electrodes 218 and 220 to keep the circuit open in the absence of liquid. The circuit is closed when the liquid is present and the CMOS circuit 86 utilizes this feedback to monitor the flow. The GRAVITATIONAL INDEPENDENCE test module 10 is self-directed. It does not need to be fastened to a smooth surface to operate the fluid flow driven by capillary action and the lack of external piping to the auxiliary equipment, making the module truly portable and easy to insert into a similar -74- 201211534 Portable handheld readers, such as mobile phones. The gravity autonomous operation represents that the test module is also acceleration independent of all practical ranges. It is shock and vibration resistant and can be operated on a moving carrier or on a mobile phone that is carried. Valve Selection Thermal Bend Actuated Valve Variant 1 Figures 64 and 65 show a first variant 302 of a hot bend actuated valve that is a heat φ bend actuated pressure pulse valve. Figure 65 is a schematic cross-sectional view taken along line 70-70 of Figure 64. The first variant hot bend actuated valve 312 has a movable member in the form of a CMOS activated thermal bend actuator 404 constructed of TiAl, TiN or a similar electrical resistance heater material. The sample stream enters the valve inlet 146 in the MST channel 90, but stops when the meniscus 120 is secured to the orifice 306. The embodiment shown in Figures 64 and 65 shows an aperture outside the movable member, but it can also be at least partially defined by the movable member. In this state, the valve is closed. CMOS circuit 86 transmits a series of electrical pulses to thermal bending actuator φ 304 to open the valve. The CMOS activated thermal bending actuator 306 is coupled to the cantilever portion 162 of the top layer 66 (which is fixed at the inlet end and free at the orifice end). The differential thermal expansion bends the cantilever portion 1 62 such that it moves rapidly toward the passivation layer 88. The fluid draw prevents the liquid sample 119 from flowing back, while the liquid 1 19 is ejected into the cover channel 94 via the orifice 306. The cantilever portion 162 is moved back and forth to the static and displaced position for a period of time to ensure that the meniscus 120 is released from the aperture 306. The sample 119 is accumulated in the lid passage 94 until its surface is wetted and the capillary action drives the flow back. The sample cartridge fills the passage 94 and then flows through the under-valve conduit 150 to the valve outlet 148. -75- 201211534 Hot Bend Actuated Valve Variant 2 Figures 66 and 67 show a second variation of the hot bend actuated valve 308 which is a thermally flex actuated surface tension valve. Figure 67 is a schematic cross-sectional view along line 72-72 shown in Figure 66. The second variant hot bend actuated valve 308 has a CMOS activated thermal bending actuator 304 comprised of TiAl, TiN or similar resistive heater material. The sample flows along the MST passage 90 and flows into the valve inlet of the valve upper conduit 151. 146. The liquid sample 119 is filled with the passage 94 but stops when the meniscus 120 is fixed to the orifice 306. In this state, the valve is closed. To open the valve, CMOS circuit 86 transmits a series of electrical pulses to thermal bending actuator 304. The CMOS activated thermal bending actuator 308 is coupled to the cantilever portion 162 of the top layer 66 (which is fixed at the inlet end and free at the orifice end). The differential thermal expansion bends the cantilever portion 162 such that the aperture 306 moves toward the passivation layer 88. The orifice 306 draws the meniscus 120 from the lid channel 94 into the MST channel 90 to reestablish the capillary flow. To reestablish the capillary flow, the opposing sidewalls of the channel converge to a narrow portion downstream of the movable member such that when the movable member is moved to the actuated position, the meniscus contacts the narrow portion. The liquid sensor 1 74 is placed before or after the debug valve. Thermal Bend Actuated Valve Variant 3 Figures 68 and 69 show a third variant of the hot bend actuated valve 312, which is a thermal bending actuated surface tension valve, and for the liquid sample to be retained in the cover channel 94. . Figure 69 is a schematic cross-sectional view along line 74-74 shown in Figure 68. The third variant of the hot book actuating valve 312 is similar to the second variant hot bend actuating 201211534 valve 3 08 except that the valve inlet 146 is located in the cover channel 94. The sample flows along the cover channel 94 and flows into the valve inlet 146 that is immediately upstream of the CMOS activated thermal bending actuator 304. The liquid sample 119 is filled with the passage 94 but stops when the meniscus 120 is fixed to the orifice 306. In this state, the valve is closed. To open the valve, CMOS circuit 816 transmits a series of electrical pulses to thermal bending actuator 304. The thermal bending actuator 304 is coupled to the cantilever portion 162 of the top layer 66 (which is fixed at the inlet end and free at the orifice end). The differential thermal expansion bends the cantilever portion 162 such that the aperture 306 moves toward the passivation layer 88. The orifice 306 draws the meniscus 120 from the lid passage 94 into the MST passage 90 to reestablish the capillary flow along the valve outlet 148. The liquid sensor 1 74 is placed behind the debug valve. Error Tolerant Multiple Valve Array Figure 70 shows an error tolerant multiple valve array 314 that can be used in place of any of the aforementioned valve variants 108, 302, 308, and 312. Figure 71 is a cross-sectional view of the error-tolerant multiple valve array 314 taken along line 76-76 of Figure 70. In the valve variant described above, the sample has the risk of not being able to be secured to the orifice 306 (or the valve inlet 146 in the case of a boiling pilot valve) and the capillary flow is easily continued to the valve outlet 14 8 . In fact, the valve cannot be closed. Conversely, the valve cannot be opened (ie, the meniscus is not released when the valve is actuated). In response to this, the error tolerance multiple valve array 314 is error tolerant and allows one or more valve errors. The fault tolerant multiple valve array 314 has four individual valves; a first valve 316, a second valve 318, a third valve 320, and a fourth valve 322. All of the valves are of the second variant 308 of the aforementioned thermal bending actuated valve (Hot Bend Actuator Table 201211534 Face Tension Valve). The first flow path 324 and the second flow path 326 extend between the valve inlet 146 and the valve outlet 148. The first and second valves (316 and 318) are disposed along the first flow path 324 and the third and fourth valves (3 20 and 3 22) are located on the second flow path 326. Liquid sensor 174 is between valve inlet 146 and valve outlet 148, and between two valves in each flow path. The sensor indicates whether the first, second, third or fourth valve has failed. If the first or third valves (316 and 320) are unable to secure the meniscus, the second and fourth valves (318 and 322) stop the sample 119. Similarly, if the meniscus cannot be released during the actuation of the first and third valves, an alternative flow path can be used. The fault tolerant multiple valve array 3 14 is considered to be ineffective only when both of the first or second flow paths (324 or 326) fail (almost impossible). In order to provide greater error tolerance, the number of fluid flow paths of the error-tolerant multi-valve array 31 4 or the number of valves of each flow path can be arbitrarily increased. Boiling Pilot Valve Array Figures 80 and 81 show another variation of the error-tolerant multiple valve array 448, with four individual valves all being boiling pilot valves. Regarding the mechanical error tolerance multiple valve array 314, it has a single valve array inlet 46 and a valve outlet 148. Valve inlet 146 and valve outlet 148 are formed in MST channel layer 100 and each have a respective liquid sensor 174 to provide feedback to CMOS circuit 86. The flow at the valve inlet 146' branches into a first flow path 324 and a second flow path 326, both extending between the valve inlet 146 and the valve outlet 148. The first and second boiling pilot valves (4 12 and 416) are disposed along the first flow path 324, and the third and fourth boiling pilot valves (4 14 and 4 18) are attached to the second flow path 3 26 . -78 - 201211534 The liquid sensor 174 is also placed between the two boiling pilot valves in each flow path. The sensor indicates whether the first, second, third or fourth valve has failed. If the first or third boiling pilot valves (4 12 and 4 14) fail, the sample flow is likely to be limited by the second and fourth boiling pilot valves (4 16 and 4 18). Error Tolerance The multiple valve array 448 is considered to be inactive only when both of the first or second flow paths (324 or 326) fail (almost impossible). To provide greater error tolerance, the number of fluid flow paths for the error-tolerant multiple valve array 448 φ or the number of valves for each flow path can be arbitrarily increased. If no boiling pilot valve fails during valve operation, the flow from valve inlet 146 fixes the meniscus in valve upper conduits 42 8 and 43 0 of first boiling pilot valve 412 and third boiling pilot valve 414, respectively. To turn on the boiling pilot valves 4 12 and 4 14, the CMOS circuit 86 delivers a start pulse to the boiling of the two valves to activate the valve heater contact 153. The heaters 152 of the two boiling pilot valves 412 and 414 heat the liquid of the meniscus to a temperature above boiling. The meniscus of the two valve upper pipes 42 8 and 430 is released due to boiling, so that the capillary action φ turbulent flow respectively covers the cover channels 420 and 422 » the under-valve pipes 432 and 43 4 are configured to not fix the meniscus And the capillary action drive flow is stopped. The flow entering the cover channels 420 and 422 continues into the first flow path MST channel 424 and the second flow path MST channel 426 through the under-valve pipes 432 and 434, respectively. The capillary action drive flow continues to the second and fourth boiling pilot valves. 41 6 and 418. Similarly, the flow fixes the meniscus to the valves 436 and 438 of each of the boiling pilot valves, respectively. The liquid sensor 174 in each of the MST channels 424 and 426 provides feedback to the CMOS circuit 86 which thus calculates the start pulse time for the valve -79 - 201211534 heater 152. As with the first and third boiling pilot valves 412 and 414, the heaters 152 in the second and fourth boiling pilot valves 416 and 418 are actuated to cause the liquid at the meniscus to boil and release the meniscus from the upper conduits 436 and 438. The capillary action drive flow into the cover channels 440 and 442 is followed by a capillary action drive flow through the lower conduits 444 and 44, respectively. The flow along the first flow path 3 24 coincides with the flow along the second flow path 326 coincides with the valve outlet 148 at which the liquid sensor 174 indicates that the CMOS circuit 86 is incorrectly resistant to the valve array 448 being opened. The pop-up valve diagram 122 is a plan view of the electric blast valve 71. The sample flows along the MST passage 90 and into the valve inlet 146 formed by the valve upper conduit 151. The liquid sample 119 is filled with the valve interface chamber 73, and when the meniscus 120 is fixed to the orifice 306, it stops at one side of the top film 75. In this state, the valve is closed. As the CMOS circuit 86 forces current through the resistor 77, it blasts along the respective resistance points of the highest current density 79 to break the top rigid junction 81 connected to the film 75 to fix the perimeter. Since the membrane 75 is unsupported and displaced, the valve opens and the liquid sample 119 flows from the valve inlet 146 to the valve outlet 148 » Hot Bending Actuated Bending and Brake Valves Figure 123 shows the bending of the hot bend actuation and the plan view of the brake valve 83. The sample flows along the MST passage 90 and into the valve inlet 146 formed by the valve upper conduit 151. The liquid sample 119 is filled with the valve interface chamber 73, and when the meniscus 120 is fixed to each of the orifices 306, it stops at one side of the top cantilever portion 162 and connects the film 75 to -80-201211534. In this state, the valve is closed. From the CMOS circuit 86 and advancing to a series of electrical pulses of the thermal bending actuator 404, the differential thermal expansion forces the top cantilever portion 162 (engaged with the thermal bending actuator 304) to bias the passivation layer 88, damaging the connecting film 75 and its periphery. Weak top layer rigid joint 81. As the membrane 75 is unsupported and displaced, the valve opens and the liquid sample 1 19 flows from the valve inlet 146 to the valve outlet 148. φ Double hot bending actuated bending and brake valve Fig. 124 shows the bending of the double thermal bending actuation and the plan view of the brake valve 85. The sample flows along the MST passage 90 and into the valve inlet 146 formed by the valve upper conduit 151. The liquid sample 119 is filled with the valve interface chamber 73, and when the meniscus 120 is fixed to each of the orifices 306, it stops at one side of the two top cantilever portions 162 and connects the film 75. In this state, the valve is closed. Upon receipt of the electrical pulse from CMOS circuit 86, the two thermal bending actuators 304 are joined to the top cantilever portion 162 due to differential thermal expansion and are biased toward the passivation layer 88, thereby breaking the rigid junction 81 of the φ film 75 with its periphery. As the membrane 75 is unsupported and displaced, the valve opens and the liquid sample 119 flows from the valve inlet 14 6 to the valve outlet 148. Viscous Valve Figure 125 shows a plan view of the viscous valve 89. The sample flows along the MST passage 90 and into the valve inlet 146 formed by the valve upper conduit 151. The liquid sample 119 is filled with the valve interface chamber 73, and when the meniscus 120 is fixed to each of the orifices 306, it stops at one side of the top cantilever portion 162 and connects the membrane 75. In this state, the valve is closed. From the CMOS circuit 86 and advancing to the thermal bending actuators 3 04 -81 - 201211534, a series of electrical pulses, with differential thermal expansion, forces the top cantilever portion 162 (engaged with the thermal bending actuator 304) to bias the passivation layer 88, forcing the film 75 Contact with the passivation layer 88. Due to the viscous bond between the membrane 75 and the passivation layer 88, the return force is restored and the deformation of the flexible coupling 91 allows for a restorative displacement of the cantilever portion 162, the valve is statically maintained open to allow the liquid sample 119 to flow from the valve inlet 146 to the valve. Exit 148. Viscous Valve Variant Figure 126 shows a plan view of the viscous valve variant 93. The sample flows along the MST passage 90 and into the valve inlet 146 formed by the valve upper conduit 151. The liquid sample 119 is filled with the valve interface chamber 73, and when the meniscus 120 is fixed to each of the orifices 306, it stops at one side of the top cantilever portion 162. In this state, the valve is closed. A series of electrical pulses from CMOS circuit 86 and advanced to thermal bending actuator 304 are used to force differential thermal expansion to force top cantilever portion 162 (engaged with thermal bending actuator 304) to bias and contact passivation layer 88. Due to the viscous relationship between the cantilever portion 162 and the passivation layer 88, the restoring force is offset and the cantilever portion 162 is sufficiently long to make its mechanical flexibility allow the restorative displacement valve of the thermal bending actuator 300 to be statically maintained open. Liquid sample 119 flows from valve inlet 146 to valve outlet 148. BUBBLE BREAK VALVE A plan view of the defoaming valve 95 is shown in FIG. The sample flows along the MST channel 90 and flows into the valve inlet 146 formed by the valve upper conduit 15丨. The liquid sample 119 is filled with the valve interface chamber 73, and when the meniscus 120 is fixed to the orifice 306, it stops at one side of the top film 75. In this state, the valve is closed. The ring heater 152 is resistively energized by electrical pulses from the CMOS circuit 86 until a vapor bubble is created in the liquid sample to force the film 75 to rotate and break the top rigid joint 81. As the membrane 75 is unsupported and displaced, the valve opens and the liquid sample 119 flows from the valve inlet 146 to the valve outlet 148. Other Valve Variants Any of the valve variants described above can be used to form a valve array. In addition, the valve array can include different types of valves. Dialysis variants White blood cell targets The dialysis design in the LOC device 301 described above targets the pathogen. Figure 72 is a schematic cross-sectional view of a dialysis section 328 designed for human DNA analysis to concentrate white blood cells from a blood sample. In addition to restricting the white blood cells from the apertures of the 7-5 micron diameter apertures 165 from the cover channel 94 to the dialysis MST channel 204, it will be understood that the structure is substantially identical to that of the pathogen φ target dialysis section 70 described above. In the case where the sample to be analyzed is a blood sample and there is hemoglobin from the red blood cells to interfere with the subsequent reaction steps, the addition of red blood cell lysis buffer and anticoagulant to the storage tank 54 (see Figure 22) will ensure that most of the dissolution is ensured. The red blood cells (and hemoglobin) of the cells will be removed from the sample during the dialysis step. The commonly used red blood cell lysis buffer is 0. 15M NH4CL, 10mM KHC03' O. lmM EDTA, pH 7. 2-7. 4. However, those skilled in the art will appreciate that any buffer that can use effective lysed red blood cells 〇 leukocyte dialysis unit 328, downstream of the cover channel 94, becomes the target channel 74-83-201211534, making leukocyte splicing a part of the analysis. Again, in this case, the dialysis suction port 168 leads to the waste channel 72 to remove all of the smaller cells and components in the sample. It should be noted that this dialysis variant only reduces the concentration of undesired samples in the target channel 74. Figure 100 shows schematically a large component dialysis section 686 which also separates any large target components from the sample. For further analysis, the orifices in the dialysis section are fabricated in a manner that is sized and shaped to block large target components of interest in the target channel. And in the above-described leukocyte dialysis section, most (but not all) of smaller sized cells, organisms or molecules flow into the waste storage tank 768. Therefore, other embodiments of the LOC device are not limited to separation sizes greater than 7. 5 micron white blood cells, but can be used to isolate cells, organisms or molecules of any desired size.

核酸擴增變體 直接PCR 傳統上,於製備反應混合物之前,PCR需要大量純化 標靶DNA。然而,適當地改變化學及樣本濃度,可利用最 少量的DNA純化實施核酸擴增,或進行直接擴增。當以 PCR進行核酸擴增時,此方法便稱做直接PCR。於LOC裝 置中經控制的於常溫下實施核酸擴增時,此方法爲直接恆 溫擴增。當用於LOC裝置時,尤其是關於所需流體設計的 簡化時,直接核酸擴增技術具相當多的優勢。直接PCR_ 是直接恆溫擴增之擴增化學調整包括增加緩衝液強度、使 用高活性及高進行性之聚合酶及與潛在聚合酶抑制劑蜜合 -84- 201211534 之添加物。稀釋樣本中之抑制劑亦爲重要的。 爲利用直接核酸擴增技術,LOC裝置設計倂入兩個額 外的特徵。第一特徵爲試劑貯槽(例如,圖8中的貯槽5 8) ,其經適當地尺寸化以供應充分量之擴增反應混合或稀釋 劑,使得可能影響擴增化學之樣本成分的最終濃度足夠低 以成功地進行核酸擴增。非細胞樣本成分的所欲稀釋度爲 5倍至20倍。當適度確認標靶核酸序列的濃度被維持於足 φ 夠高以用於擴增及檢測時,使用不同的LOC結構,例如圖 4中的病原體透析部70。於此具體實施例中(進一步於圖6 中說明),於樣本萃取部290之上游使用有效地濃縮足夠小 而得以進入擴增部2 92之病原體的濃度並將較大細胞排出 至廢料容器76之透析部。於另外的具體實施例中,使用透 析部以選擇性地去除血漿中之蛋白質及鹽而保留關注的細 胞。 支持直接核酸擴增之第二LOC結構性特徵爲設計通道 φ 的深寬比以調整樣本及擴增混合成分之間的混合比。例如 ,爲確保經由單一混合步驟之相關於樣本之抑制劑的稀釋 爲較佳的5倍-20倍範圍中,設計樣本及試劑通道之長度與 截面,以使混合起始位置之上游的樣本通道構成之流組抗 較試劑混合物流動之通道的流組抗高出4倍-1 9倍。經由控 制設計幾合而容易地控制微通道中之流組抗。針對恆定截 面積,微通道之流組抗隨通道長度而線性地增加。對於混 合設計而言爲重要的是,微通道中之流組抗較多取決於最 小截面積尺寸。例如,當深寬比極爲不均一時,方形截面 -85- 201211534 之微通道的流組抗與最小垂直尺寸之立方成反比。 反轉錄酶PCR (RT-PCR) 當分析或萃取之樣本核酸種類爲RNA時,諸如來自 RNA病毒或信使RNA,於PCR擴增之前必須先將RNA反轉 錄爲互補DNA(cDNA)。可於與PCR相同之室中實施反轉錄 反應(一步驟RT-PCR),或是其可爲分別的起始反應(二步 驟RT-PCR)。於此所述之LOC變體中,可藉由添加反轉錄 酶及聚合酶至試劑貯槽62以及程式化加熱器154以先循環 反轉錄步驟並接續進行核酸擴增步驟,而簡單地實施一步 驟RT-PCR。藉由利用試劑貯槽58來儲存及分配緩衝液、 引子、dNTP及反轉錄酶,以及利用培養部1 14以用於反轉 錄步驟,接著於擴增部112中以普通方式進行擴增,亦可 簡單地完成二步驟RT-PCR。 恆溫核酸擴增 針對一些應用,較佳之核酸擴增方法爲恆溫核酸擴增 ,因此不需於各種溫度循環重複地循環反應成分,而是將 擴增部維持於常溫下,普通爲約37°C至41°C。已描述一些 恆溫核酸擴增方法,包括股取代擴增(SDA)、轉錄介導擴 增(TMA)、依賴核酸序列擴增(NASBA)、重組酵素聚合酶 擴增(RPA)、解旋恆溫DNA擴增(HDA)、滾動循環擴增 (RCA)、分枝型擴增(RAM)及環形恆溫擴增(LAMP),以及 此等之任何或其他恆溫擴增方法可特別用於本文之LOC裝 201211534 置之具體實施例中。 爲實施恆溫核酸擴增,鄰接擴增部之試劑貯槽60及62 將載有用於特定恆溫方法之適當的試劑而不是載有PCR擴 增混合及聚合酶。例如,針對SDA,試劑貯槽60含有擴增 緩衝液、引子及dNTP,以及試劑貯槽62含有適當的核酸 內切酶及外切-DNA聚合酶。針對RPA,試劑貯槽60含有 擴增緩衝液、引子、dNTP及重組酶蛋白,及試劑貯槽62 φ 含有股取代DNA聚合酶,諸如。同樣地,針對HDA, 試劑貯槽60含有擴增緩衝液、引子及dNTP,以及貯槽62 含有適當的DNA聚合酶及解旋酶(而非使用熱)以解開雙股 DNA。熟此技藝者將了解以任何適用於核酸擴增法之方式 ,可將必要試劑分配於兩個試劑貯槽。 針對自RNA病毒,諸如HIV或C型肝炎病毒之病毒核 酸的擴增,NASBA或TMA係適當的因其不需先將RNA轉錄 成cDN A。於此實例中,試劑貯槽60塡充有擴增緩衝液、 φ 引子及dNTP,以及試劑貯槽62塡充有RNA聚合酶 '反轉 錄酶及任意的RNase Η。 針對一些恆溫核酸擴增類型,於維持恆溫核酸擴增之 溫度以利反應續行之前,必須採用初始變性循環以分開雙 股DN Α模板。因可藉擴增微通道158中之加熱器154嚴密地 控制擴增部112中之混合的溫度,於本文中描述之LOC裝 置之所有具體實施例中均可輕易完成此變性循環(見圖14) 〇 恆溫核酸擴增對於樣本中潛在的抑制劑之耐受性較高 -87- 201211534 ,因而通常適用於自所欲樣本之直接核酸擴增。因此,恆 溫核酸擴增尤其有用於分別顯示於圖101、102及103中之 LOC 變體 XLIII 673、LOC 變體 XLIV 6 7 4 及 L Ο C 變體 X L V 11 677。直接恆溫擴增亦可與如圖101及103中所示之一或多 個預擴增透析步驟70、686或682及/或如圖1〇2中所示之 預-雜交透析步驟682組合,以分別於核酸擴增之前有助於 樣本中之標靶細胞的部份濃縮或是於樣本進入雜交室陣列 110前移除不想要的細胞碎片。熟此技藝者將了解可使用 預-擴增透析及預-雜交透析之任何組合。 亦可以平行的擴增部,諸如,圖96、97及98中所槪述 者,實施恆溫核酸擴增。多工及一些恆溫核酸擴增方法, 諸如LAMP,係與初始反轉錄步驟相容以擴增rna。 螢光檢測系統之另外的細節 圖58及59顯示雜交-反應性FRET探針2 3 6。.此等經常 被稱爲分子信標及係爲由單股核酸產生之莖·及-環探針, 並於與互補核酸雜交時發螢光。圖58顯示於與標靶核酸序 列23 8雜交之前之單一FRET探針23 6。探針具有環240、莖 242、於51端之螢光團246及於:T端之淬熄劑248。環240包 含與標靶核酸序列23 8互補之序列。探針序列兩側的互補 序列黏著在一起以形成莖242。 於缺少互補標靶序列時,如圖5 8中所示者,探針維持 閉合。莖242保持螢光團-淬熄劑對彼此相當接近,使得大 量的共振能量可於彼此間傳輸,而當以激發光244照射時 201211534 實質地消除螢光團發螢光團的能力。 圖59顯示呈開放或經雜交配置的FRET探針23 6。於與 互補標靶核酸序列23 8雜交時,莖-及-環結構被破壞,螢 光團及淬熄劑於空間上分離,因此恢復螢光團246發螢光 的能力。光學檢測地螢光發射250以作爲探針已雜交的指 標。 探針以極高專一性與互補標靶雜交,因探針之莖螺旋 φ 係設計成較具單一不互補核苷酸之探針-標靶螺旋穩定。 因雙股DNA相對堅固,立體上探針-標靶螺旋與莖螺旋不 可能共存》 引子-聯結的探針 引子-聯結的莖-及-環探針及引子-聯結的線性探針, 亦稱作蠍子型探針,爲分子信標之替代物且可用於LOC裝 置之即時及定量核酸擴增。及時擴增可直接實施於LOC裝 # 置之雜交室中。使用引子-聯結的探針之優點爲探針元件 實體地聯結至引子,因此於核酸擴增其間僅需單次雜交而 不需要分別的引子雜交及探針雜交。此確保即時有效地反 應並產生更強的信號 '更短的反應時間,且當使用分別的 引子及探針時具有更佳的識別度。於製造期間,探針(與 聚合酶及擴增混合)將沉積於雜交室180中且不需LOC裝置 上之獨立的擴增部。替代性地,擴增部未被使用或用於其 他反應。 -89- 201211534 引子-聯結的線性探針 圖104及105分別顯示首輪核酸擴增期間之引子-聯結 的線性探針692及於後續核酸擴增期間之雜交的配置。參 照圖104,引子-聯結的探針692具有雙股莖區段242。其中 —股結合引子聯結的探針序列696,其係與標靶核酸696上 的區域同源且以螢光團246標記其5’端,以及經由擴增阻 斷物694聯結其31端至寡核苷酸引子700。以淬熄劑部分 248標記莖242之另外一股的3’端。於完成首輪核酸擴增之 後,利用目前爲互補的序列698,探針可環繞且雜交至延 伸的股。於首輪核酸擴增期間,寡核苷酸引子700黏著至 標靶DN A 238(圖104)並接著延伸而形成含有探針序列及擴 增產物兩者之DNA股。擴增阻斷物694防止聚合酶之讀取 通過及拷貝探針區域696.。於接續的變性時,雜交之延伸 的寡核苷酸引子700/模板及引子-聯結的線性探針之雙股 莖242分離,因此釋出淬熄劑248。一但用於黏著及延伸步 驟的溫度降低,引子-聯結的線性探針之引子聯結的探針 序列696捲曲並與延伸的股上之擴增的互補序列698雜交, 以及檢測出的螢光指出標靶DNA存在。未延伸的引子-聯 結的線性探針保留其雙股莖且螢光保持淬熄。此檢測方法 特別適於快速檢測系統,因其依賴單一分子製程。 引子-聯結的莖-及-環探針 圖106A至106F顯示引子-聯結的莖-及-環探針704之操 作。參照圖106A,引子·聯結的莖-及-環探針7 04具有互補 201211534 雙股DNA之莖242及合倂探針序列的環240。以螢光團246 標記其中一個莖股708之5'端。以3'·端淬熄劑248標記另一 股710,且另一股710帶有擴增阻斷物6 94及寡核苷酸引子 700兩者。於初始變性相(見圖106B),標靶核酸238之股及 引子-聯結的莖242分開莖-及-環探針704。當溫度冷卻以 用於黏著相時(見圖106C),引子-聯結的莖-及-環探針704 上之寡核苷酸引子700與標靶核酸序列23 8雜交。於延伸期 φ 間(見圖106D),合成標靶核酸序列23 8之互補706以形成含 有探針序列704及擴增的產物兩者之DN A股》擴增阻斷物 694防止聚合酶之讀取通過及拷貝探針區域704。變性之後 ,當接著黏著探針時,引子-聯結的莖-及-環探針之環區 段240之探針序列(見圖106F)黏著至延伸的股上之互補序 列706。此配置使得螢光團246與淬熄劑24 8相距甚遠,造 成螢光發射的顯著增強。 φ 控制探針 雜交室陣列1 1 0包括具有用於分析品質控制之正及陰 性對照探針之一些雜交室180。圖118及119槪要說明無螢 光團796之陰性對照探針,以及圖120及121描述無淬熄劑 798之陽性對照探針。正及陰性對照探針具有如前述FRET 探針之莖-及·環結構。然而,不論探針雜交成爲開放配置 或保持封閉,將永遠自陽性對照探針79 8發射螢光信號250 且陰性對照探針796從不發射螢光信號250。 參照圖118及119,陰性對照探針796不具螢光團(及可 -91 - 201211534 具有或不具有淬熄劑248) »因此,不論標靶核酸序列238 與探針雜交(見圖11 9)或是探針保持其莖-及-環配置(見圖 1 1 8),可忽略對激發光244之回應。替代性地,可設計陰 性對照探針796使得其永遠保持淬熄。例如,藉由合成環 240而得到將不會與所硏究的樣本中之任何核酸序列雜交 之探針序列,探針分子之莖242將與其自身重新雜交,及 螢光團及淬熄劑將保持緊密相鄰且將不會發射可見的螢光 。此負控制信號對應於來自雜交室180的低階發射,於雜 交室1 80中探針未經雜交但是淬熄劑未淬熄來自報導劑的 所有發射。 相反地,建構無淬熄劑之陽性對照探針798,如圖1 20 及121中所示者。回應激發光244,不論陽性對照探針798 是否與標靶核酸序列23 8雜交,無物質使來自螢光團246之 螢光發射25 0淬熄。 圖5 2顯示雜交室陣列1 10中的正及陰性對照探針(分別 爲3 78及3 80)之可行分佈。控制探針3 78及3 80係置於雜交 室1 8 0中並定位成橫越雜交室陣列1 1 0之線。然而,陣列內 之控制探針的配置係任意的(如同雜交室陣列1 1 0之配置) 螢光團設計 需要具長螢光壽命之螢光團以允許激發光具足夠時間 以衰變至較致能光感測器44時之螢光發射的強度爲低之強 度,藉此提高充分的信號對雜訊比。而且,較長的螢光壽 -92- 201211534 命代表較大之整合的螢光子計數。 螢光團246(見圖59)之螢光壽命大於100奈秒、經常大 於200奈秒、更常見爲大於300奈秒,以及於大多數的情況 中爲大於400奈秒。 以過渡金屬或鑭系金屬爲底的金屬-配位子錯合物具 長壽命(自數百奈秒至毫秒)、適當的量子產率,以及高熱 '化學及光化學穩定性,此等特性均爲相關於螢光檢測系 φ 統需求之有利特性。 以過渡金屬離子釕(Ru (II))爲底之經特別地徹底硏究 之金屬-配位子錯合物爲參(2,2'-聯吡啶)釕(II) ([Ru(bpy)3]2 + ),彼之壽命爲約1μ5。此錯合物可購自 Biosearch Technologies,其商品名爲 Pulsar 650。 表1 : Pulsar 65 0 (釕螯合物)之光物理性質Nucleic Acid Amplification Variants Direct PCR Traditionally, PCR requires extensive purification of target DNA prior to preparation of the reaction mixture. However, by appropriately changing the chemical and sample concentrations, nucleic acid amplification can be performed using a minimum amount of DNA purification, or direct amplification can be performed. When nucleic acid amplification is performed by PCR, this method is called direct PCR. When nucleic acid amplification is carried out at a normal temperature controlled in a LOC apparatus, this method is direct constant temperature amplification. Direct nucleic acid amplification techniques have considerable advantages when used in LOC devices, especially with regard to the simplification of the desired fluid design. Direct PCR_ is an amplification technique for direct isothermal amplification that includes increasing buffer strength, using highly active and highly progressive polymerases, and adding to potential polymerase inhibitors -84-201211534. It is also important to dilute the inhibitor in the sample. To exploit direct nucleic acid amplification techniques, LOC devices are designed to incorporate two additional features. The first feature is a reagent reservoir (eg, sump 58 in Figure 8) that is appropriately sized to supply a sufficient amount of amplification reaction mix or diluent such that the final concentration of sample components that may affect the amplification chemistry is sufficient Low to successfully perform nucleic acid amplification. The desired dilution of the non-cellular sample component is 5 to 20 times. When the concentration of the target nucleic acid sequence is moderately confirmed to be sufficiently high for amplification and detection, a different LOC structure, such as the pathogen dialysis section 70 of Fig. 4, is used. In this particular embodiment (further illustrated in Figure 6), the concentration of the pathogen sufficient to enter the amplification portion 2 92 is effectively concentrated upstream of the sample extraction portion 290 and the larger cells are discharged to the waste container 76. Dialysis department. In another embodiment, a dialysis section is used to selectively remove proteins and salts in plasma while retaining cells of interest. A second LOC structural feature that supports direct nucleic acid amplification is to design the aspect ratio of channel φ to adjust the mixing ratio between the sample and the amplified mixture. For example, to ensure that the dilution of the inhibitor associated with the sample via a single mixing step is in the range of preferably 5 to 20 times, the length and cross section of the sample and reagent channels are designed such that the sample channel upstream of the mixing start position The composition of the flow group is 4 to 1 times higher than that of the channel through which the reagent mixture flows. The flow group resistance in the microchannel is easily controlled by controlling the design. For a constant cross-sectional area, the flow resistance of the microchannel increases linearly with the length of the channel. It is important for the hybrid design that the flow group resistance in the microchannel depends more on the minimum cross-sectional area size. For example, when the aspect ratio is extremely non-uniform, the flow resistance of the microchannel of the square section -85-201211534 is inversely proportional to the cube of the smallest vertical dimension. Reverse Transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted is RNA, such as from RNA virus or messenger RNA, RNA must be reversed as complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction (one-step RT-PCR) can be carried out in the same chamber as the PCR, or it can be a separate initial reaction (two-step RT-PCR). In the LOC variant described herein, a reverse transcription step can be performed by adding a reverse transcriptase and a polymerase to the reagent storage tank 62 and the stylized heater 154 to successively perform the nucleic acid amplification step, and simply perform a step. RT-PCR. The buffer, the primer, the dNTP, and the reverse transcriptase are stored and distributed by the reagent storage tank 58, and the culture unit 14 is used for the reverse transcription step, and then amplified in an ordinary manner in the amplification unit 112. The two-step RT-PCR is simply done. Constant temperature nucleic acid amplification For some applications, the preferred nucleic acid amplification method is constant temperature nucleic acid amplification, so that it is not necessary to repeatedly circulate the reaction components at various temperature cycles, but the amplification portion is maintained at normal temperature, usually about 37 ° C. To 41 ° C. Some methods for thermostatic nucleic acid amplification have been described, including strand-substituted amplification (SDA), transcription-mediated amplification (TMA), nucleic acid sequence-dependent amplification (NASBA), recombinant enzyme polymerase amplification (RPA), uncoupling thermostated DNA Amplification (HDA), rolling cycle amplification (RCA), branched amplification (RAM), and circular thermostat amplification (LAMP), and any or other isothermal amplification methods of this type can be used specifically for LOC loading 201211534 is set forth in the specific embodiment. To perform a constant temperature nucleic acid amplification, reagent reservoirs 60 and 62 adjacent to the amplification section will carry appropriate reagents for a particular constant temperature method rather than carrying PCR amplification and polymerase. For example, for SDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reagent reservoir 62 contains appropriate endonucleases and exo-DNA polymerases. For RPA, reagent reservoir 60 contains amplification buffer, primers, dNTPs, and recombinase proteins, and reagent reservoir 62 φ contains strand-substituted DNA polymerase, such as. Similarly, for HDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reservoir 62 contains the appropriate DNA polymerase and helicase (rather than using heat) to unwind the double stranded DNA. Those skilled in the art will appreciate that the necessary reagents can be dispensed into two reagent reservoirs in any manner suitable for nucleic acid amplification. For amplification of viral nucleic acids, such as HIV or hepatitis C virus, NASBA or TMA is appropriate because it does not require transcription of the RNA to cDN A first. In this example, the reagent reservoir 60 is filled with amplification buffer, φ primer and dNTP, and the reagent reservoir 62 is filled with RNA polymerase 'reverse enzyme and any RNase Η. For some thermostatic nucleic acid amplification types, an initial denaturation cycle must be employed to separate the two-strand DN Α template before maintaining the temperature of the thermostated nucleic acid amplification for the reaction to continue. Since the temperature of the mixing in the amplification section 112 can be tightly controlled by the heater 154 in the amplification microchannel 158, this denaturation cycle can be easily accomplished in all of the specific embodiments of the LOC device described herein (see Figure 14). 〇 Constant temperature nucleic acid amplification is more tolerant to potential inhibitors in the sample -87-201211534 and is therefore generally suitable for direct nucleic acid amplification of the desired sample. Thus, constant temperature nucleic acid amplification is particularly useful for LOC variant XLIII 673, LOC variant XLIV 6 7 4 and L Ο C variant X L V 11 677, respectively, shown in Figures 101, 102 and 103. Direct thermostatic amplification can also be combined with one or more preamplification dialysis steps 70, 686 or 682 as shown in Figures 101 and 103 and/or a pre-hybridization dialysis step 682 as shown in Figure 1-2. Partial concentration of the target cells in the sample is facilitated prior to nucleic acid amplification, respectively, or unwanted cell debris is removed before the sample enters the hybridization chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used. Thermostatic nucleic acid amplification can also be performed in parallel amplification sections, such as those described in Figures 96, 97, and 98. Multiplex and some thermostatic nucleic acid amplification methods, such as LAMP, are compatible with the initial reverse transcription step to amplify rna. Additional Details of the Fluorescence Detection System Figures 58 and 59 show hybridization-reactive FRET probes 236. These are often referred to as molecular beacons and are stem and/or loop probes produced by single-stranded nucleic acids and fluoresce when hybridized to complementary nucleic acids. Figure 58 shows a single FRET probe 23 6 prior to hybridization to the target nucleic acid sequence 238. The probe has a ring 240, a stem 242, a fluorophore 246 at the 51 end, and a quencher 248 at the T end. Loop 240 comprises a sequence that is complementary to the target nucleic acid sequence 238. The complementary sequences flanking the probe sequence are bonded together to form stem 242. In the absence of a complementary target sequence, as shown in Figure 58, the probe remains closed. The stems 242 maintain the fluorophore-quenching agents relatively close to each other such that a large amount of resonant energy can be transmitted between each other, while 201211534 substantially eliminates the ability of the fluorophore to emit fluorophores when illuminated with excitation light 244. Figure 59 shows a FRET probe 23 6 in an open or hybridized configuration. Upon hybridization with the complementary target nucleic acid sequence 23 8 , the stem-and-loop structure is disrupted, and the fluorophore and quencher are spatially separated, thereby restoring the ability of the fluorophore 246 to fluoresce. The fluorescent emission 250 is optically detected as an indicator that the probe has hybridized. The probe hybridizes to the complementary target with extremely high specificity, since the stem φ system of the probe is designed to be stable to the probe-target helix with a single non-complementary nucleotide. Due to the relatively strong double-stranded DNA, the probe-target helix and the stem helix cannot coexist on the stereo" primer-joined probe-coupled stem-and-loop probe and primer-linked linear probe, also known as As a scorpion-type probe, it is a substitute for molecular beacons and can be used for both real-time and quantitative nucleic acid amplification of LOC devices. Timely amplification can be directly implemented in the hybrid chamber of the LOC. The advantage of using a primer-ligated probe is that the probe element is physically linked to the primer, so that only a single hybridization is required during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures an immediate and efficient response and produces a stronger signal 'shorter response time and better recognition when using separate primers and probes. During manufacture, the probe (mixed with the polymerase and amplification) will be deposited in the hybridization chamber 180 without the need for a separate amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions. -89- 201211534 Primer-Linked Linear Probes Figures 104 and 105 show the primer-linked linear probe 692 during the first round of nucleic acid amplification and the hybridization configuration during subsequent nucleic acid amplification, respectively. Referring to Figure 104, the primer-coupled probe 692 has a double stem section 242. Wherein the strand-binding primer-coupled probe sequence 696 is homologous to the region on the target nucleic acid 696 and is labeled 5' to its fluorophore 246, and its 31-terminal to oligo via the amplification blocker 694 Nucleotide primer 700. The other 3' end of the stem 242 is labeled with a quencher portion 248. After completion of the first round of nucleic acid amplification, using the currently complementary sequence 698, the probe can surround and hybridize to the extended strand. During the first round of nucleic acid amplification, oligonucleotide primer 700 is attached to target DN A 238 (Fig. 104) and then extended to form a DNA strand containing both the probe sequence and the amplification product. Amplification blocker 694 prevents the reading of the polymerase by passing and copying the probe region 696. Upon subsequent denaturation, the hybridized extended oligonucleotide primer 700/template and the double stranded stem 242 of the primer-linked linear probe are separated, thereby releasing the quencher 248. Once the temperature for the adhesion and extension steps is reduced, the primer-linked probe sequence 696 of the primer-linked linear probe is crimped and hybridized to the amplified complementary sequence 698 on the extended strand, and the detected fluorescent indicator Target DNA is present. The unextended primer-linked linear probe retains its double stem and the fluorescence remains quenched. This test method is particularly suitable for rapid detection systems because it relies on a single molecular process. Primer-Linked Stem-and-Ring Probes Figures 106A through 106F show the operation of the primer-coupled stem-and-loop probe 704. Referring to Figure 106A, the primer-linked stem-and-loop probe 76 has a loop 240 complementary to the 201211534 double stranded DNA and a loop 240 of the combined probe sequence. The 5' end of one of the stem strands 708 is labeled with a fluorophore 246. The other strand 710 is labeled with a 3' end quencher 248 and the other strand 710 carries both an amplification blocker 6 94 and an oligonucleotide primer 700. In the initial denaturing phase (see Figure 106B), the strands of the target nucleic acid 238 and the primer-ligated stem 242 separate the stem-and-loop probe 704. When the temperature is cooled for the adhesive phase (see Figure 106C), the oligonucleotide primer 700 on the primer-linked stem-and-loop probe 704 hybridizes to the target nucleic acid sequence 23 8 . Between the extension period φ (see Figure 106D), the complementary 706 of the target nucleic acid sequence 23 is synthesized to form a DN A-share amplification blocker 694 containing both the probe sequence 704 and the amplified product to prevent polymerase The pass and copy probe area 704 is read. After denaturation, the probe sequence of the primer-coupled stem-and-loop probe loop segment 240 (see Figure 106F) is adhered to the complementary sequence 706 on the extended strand when the probe is subsequently attached. This configuration allows the fluorophore 246 to be at a great distance from the quencher 24 8 resulting in a significant increase in fluorescence emission. φ Control Probes The hybridization chamber array 110 includes a number of hybridization chambers 180 with positive and negative control probes for analytical quality control. Figures 118 and 119 illustrate a negative control probe without fluorophore 796, and Figures 120 and 121 depict a positive control probe without quencher 798. The positive and negative control probes have a stem-and-loop structure as described above for the FRET probe. However, whether the probe hybridizes to an open configuration or remains closed, the fluorescent signal 250 will always be emitted from the positive control probe 79 8 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 118 and 119, the negative control probe 796 does not have a fluorophore (and can be -91 - 201211534 with or without quencher 248) » thus, regardless of the target nucleic acid sequence 238 hybridizes to the probe (see Figure 11) Alternatively, the probe maintains its stem-and-loop configuration (see Figure 1 18), and the response to excitation light 244 can be ignored. Alternatively, the negative control probe 796 can be designed such that it remains quenched forever. For example, by synthesizing loop 240, a probe sequence will be obtained that will not hybridize to any of the nucleic acid sequences in the sample of interest, the stem 242 of the probe molecule will rehybridize with itself, and the fluorophore and quencher will Stay in close proximity and will not emit visible fluorescence. This negative control signal corresponds to a low order emission from the hybridization chamber 180 where the probe is not hybridized but the quencher does not quench all of the emission from the reporter. Conversely, a positive control probe 798 without quenching agent was constructed, as shown in Figures 20 and 121. Back stress luminescence 244, regardless of whether the positive control probe 798 hybridizes to the target nucleic acid sequence 23 8 , no material quenches the fluorescent emission 25 from the fluorophore 246. Figure 5 2 shows the possible distribution of positive and negative control probes (3 78 and 380, respectively) in the hybrid chamber array 1 10 . Control probes 3 78 and 380 are placed in hybridization chamber 180 and positioned across the line of hybridization chamber array 1 1 0. However, the configuration of the control probes within the array is arbitrary (as in the hybrid chamber array 110 configuration). The fluorophore design requires a fluorophore with a long fluorescence lifetime to allow the excitation light to have sufficient time to decay to a higher level. The intensity of the fluorescent emission at the time of the photosensor 44 is low, thereby increasing the sufficient signal-to-noise ratio. Moreover, the longer fluorescent lifetime -92 - 201211534 represents a larger integrated fluorescence count. The fluorescence lifetime of the fluorophore 246 (see Figure 59) is greater than 100 nanoseconds, often greater than 200 nanoseconds, more typically greater than 300 nanoseconds, and in most cases greater than 400 nanoseconds. Metal-coordination complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal 'chemical and photochemical stability, these characteristics Both are advantageous characteristics related to the requirements of the fluorescence detection system. The particularly complex metal-coordination complex based on the transition metal ion ruthenium (Ru(II)) is ginseng (2,2'-bipyridyl) ruthenium (II) ([Ru(bpy) 3] 2 + ), the lifetime of which is about 1μ5. This complex is available from Biosearch Technologies under the trade name Pulsar 650. Table 1: Photophysical properties of Pulsar 65 0 (钌 chelate)

參數 符號 値 單位 吸收波長 λ a b s 460 nm 發射波長 λ e m 650 nm 吸光係數 E 1 4800 螢光壽命 Tf 1.0 μδ 量子產率 H 1 (去氧的) N/A 鑭系金屬-配位子錯合物,铽螯合物,已成功地顯示 作爲FRET探針系統中的螢光報導劑,且具有1 600μ3之長 壽命。 -93- 201211534 表2 : 铽螯合物之光物理性質Parameter symbol 値 unit absorption wavelength λ abs 460 nm emission wavelength λ em 650 nm absorption coefficient E 1 4800 fluorescence lifetime Tf 1.0 μδ quantum yield H 1 (deoxygenated) N/A lanthanide metal-coordination complex , ruthenium chelate, has been successfully shown as a fluorescent reporter in the FRET probe system and has a long lifetime of 1 600 μ3. -93- 201211534 Table 2: Photophysical properties of ruthenium chelate

參數 符號 値 單位 吸收波長 λ a b s 330-350 nm 發射波長 λ e m 548 n m 吸光係數 E 1 3 8 00 Uabs,及配位子相依,可高 至30000 @ λβ = 340 nm) M-'cm'1 營光壽命 Xf 1600 (雜交的探針) Ms 量子產率 H 1 (配位子相依) N/A LOC裝置301所使用的螢光檢測系統不利用過濾來移 除不想要的背景螢光。若淬熄劑24 8無天然發射以增加信 號-對-雜訊比,則因此具有優勢。無天然發射,則淬熄劑 24 8不貢獻至背景螢光。高淬熄效率亦爲重要者,此使得 雜交發生前沒有螢光。購自加州Novato市之Biosearch Technologies,Inc.的黑洞萍熄劑(BHQ)不具有天然發射及 具有高淬熄效率,以及係用於系統之合適的淬熄劑。 BHQ-1之最大吸收値發生於534 nm及淬熄範圍爲480-580 nm,使得其爲用於Tb-螯合螢光團之合適的淬熄劑。BHQ-2之最大吸收値發生於5 79 nm及淬熄範圍爲560-670 nm使 得其爲用於Pulsar 65 0之合適的淬熄劑。 購自愛荷華州 Coralville 市之 Integrated DNA Technologies 的愛荷華黑淬熄劑(Iowa Black FQ及RQ)爲適合的具有少 許或無背景發射之替代性淬熄劑。Iowa Black FQ之淬熄 範圍爲420-620 nm,於531 nm具有最大吸收値,並因此爲 -94- 201211534 用於Tb-螯合螢光團之合適的淬熄劑。Iowa Black RQ於 656 nm具有最大吸收値及淬熄範圍爲500-700 nm,使得其 爲用於Pulsar 650之理想淬熄劑。 於本文所述之具體實施例中,淬熄劑248爲初始時即 附著於探針之功能部分,但於其他具體實施例中,淬熄劑 可爲游離於溶液中之分離的分子。 激發源 在本文描述之螢光檢測爲基礎的具體實施例中,因爲 低功率消耗、低成本和小尺寸而選擇LED替代雷射二極體 、高功率燈或雷射的激發源。參照圖107,LED 26係直接 安置於LOC裝置301之外部表面上之雜交室陣列110上。在 雜交室陣列1 1 〇之對側爲光感測器44,其由自各室之用於 檢測螢光信號之光二極體184的陣列所組成(見圖53、54及 φ 73)。 圖108、109及110槪略說明用於將探針暴露於激發光 之其他具體實施例。在顯示於圖108之LOC裝置30中,由 激發LED 26所產生之激發光244係由透鏡254導向雜交室 陣列1 10之上。脈衝激發LED 26且由光感測器44檢測螢光 發射。 在圖109所顯示之LOC裝置30中,由激發LED 26所產 生之激發光244係由透鏡254、第一光稜鏡712和第二光稜 鏡714導向雜交室陣列110之上。脈衝激發LED 26且由光 -95- 201211534 感測器44檢測螢光發射。 同樣地,顯示於圖110中之LOC裝置30,由激發LED 26所產生之激發光244係由透鏡254、第一鏡716和第二鏡 718導向雜交室陣列110之上》再次脈衝激發LED 26且由 光感測器44檢測螢光發射。 LED 26的激發波長係取決於螢光染料的選擇。 Philips LXK2-PR1 4-R00爲針對Pulsar 650染料之合適的激 發源。SET UVT0P3 3 5T039BL LED係針對铽螯合物標記 之合適的激發源。 表 3 : Philips LXK2-PR1 4-R00 LED規格Parameter symbol 値 unit absorption wavelength λ abs 330-350 nm emission wavelength λ em 548 nm absorption coefficient E 1 3 8 00 Uabs, and ligand dependent, up to 30000 @ λβ = 340 nm) M-'cm'1 camp Light lifetime Xf 1600 (hybridized probe) Ms Quantum yield H 1 (coordination dependent) The fluorescence detection system used by the N/A LOC device 301 does not utilize filtering to remove unwanted background fluorescence. It is therefore advantageous if the quencher 248 has no natural emission to increase the signal-to-noise ratio. Without natural emission, the quencher 24 8 does not contribute to background fluorescence. High quenching efficiency is also important, which results in no fluorescence before hybridization occurs. Black Hole Cleaner (BHQ), available from Biosearch Technologies, Inc. of Novato, Calif., does not have natural emissions and has high quenching efficiency, as well as suitable quenchers for use in systems. The maximum absorption enthalpy of BHQ-1 occurs at 534 nm and the quenching range is 480-580 nm, making it a suitable quencher for Tb-chelating fluorophores. The maximum absorption enthalpy of BHQ-2 occurs at 5 79 nm and the quenching range is 560-670 nm, making it a suitable quencher for Pulsar 65 0 . Iowa Black FQ and RQ from Integrated DNA Technologies, Coralville, Iowa, are suitable alternative quenchers with little or no background emission. The Iowa Black FQ has a quenching range of 420-620 nm with a maximum absorption enthalpy at 531 nm and is therefore a suitable quencher for the Tb-chelating fluorophore at -94-201211534. Iowa Black RQ has a maximum absorption enthalpy at 656 nm and a quenching range of 500-700 nm, making it an ideal quencher for Pulsar 650. In the specific embodiments described herein, quenching agent 248 is a functional portion that is initially attached to the probe, but in other embodiments, the quenching agent can be a separate molecule that is free of solution. Excitation Source In the specific embodiment based on the fluorescence detection described herein, the LED is selected to replace the excitation source of the laser diode, high power lamp or laser because of low power consumption, low cost, and small size. Referring to Figure 107, LEDs 26 are disposed directly on hybrid array 110 on the exterior surface of LOC device 301. Opposite to the array of hybridization chambers 1 1 is a photosensor 44 consisting of an array of photodiodes 184 from each chamber for detecting fluorescent signals (see Figures 53, 54 and φ 73). Figures 108, 109 and 110 illustrate other specific embodiments for exposing the probe to excitation light. In the LOC device 30 shown in FIG. 108, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254 onto the hybridization cell array 110. The LED 26 is pulsed and the fluorescent emission is detected by the photo sensor 44. In the LOC device 30 shown in FIG. 109, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first aperture 712, and the second optical prism 714 onto the hybridization chamber array 110. The LED 26 is pulsed and the fluorescent emission is detected by the light -95-201211534 sensor 44. Similarly, the LOC device 30 shown in FIG. 110, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 onto the hybridization chamber array 110. The fluorescent emission is detected by the photo sensor 44. The excitation wavelength of LED 26 is dependent on the choice of fluorescent dye. Philips LXK2-PR1 4-R00 is a suitable source of excitation for Pulsar 650 dyes. SET UVT0P3 3 5T039BL LED is a suitable excitation source for the ruthenium chelate label. Table 3: Philips LXK2-PR1 4-R00 LED Specifications

參 數 符號 値 單位 波 長 λ e X 460 n m 發 射 頻 率 V e m 6.52(10)14 Hz 輸 出 功 率 Pi 0.515 (min) (¾ 1A W 發 射 圖 形 Lambertian數據圖 N/A 表 4: SETUVT0P334T039BLLED 規格Parameter Symbol 单位 Unit Wave Length λ e X 460 n m Transmit Frequency V e m 6.52(10)14 Hz Output Power Pi 0.515 (min) (3⁄4 1A W Transmitting Graph Lambertian Data Graph N/A Table 4: SETUVT0P334T039BLLED Specifications

參數 符號 値 單位 波長 λ e 340 n m 發射頻率 Ve 8.82(10)14 Hz 功率 Ρι 0.000240 (min) @ 20mA W 脈衝順向 電流 I 200 m A 發射圖形 Lambertian N/AParameter Symbol 单位 Unit Wavelength λ e 340 n m Transmitting frequency Ve 8.82(10)14 Hz Power Ρι 0.000240 (min) @ 20mA W Pulse forward current I 200 m A Emission pattern Lambertian N/A

紫外激發光 矽在UV光譜中吸收少量光。因此,使用UV激發光是 -96- 201211534 有利的。可使用UV LED激發源,但LED 26之寬光譜降低 此方法之效果。針對於此,可使用經過濾的UV LED。隨 意地,UV雷射可爲激發源,除非因雷射相當高的花費而 對於特定的測試模組市場不實用。 L E D驅動器 LED驅動器29針對所需的持續時間在固定電流下驅動 φ 該LED 26。低功率USB2.0認證裝置可在至多1單位負載 (1〇〇毫安培)以最小操作電壓4.4伏特得到。標準電力調節 電路係用於此目的。 光二極體 圖54顯示光二極體184,其合倂於LOC裝置301之 CMOS電路86。光二極體184係在沒有額外遮罩或步驟下製 成CMOS電路86之部分。這是CMOS光二極體優於CCD之一 φ 項顯著的優點,CCD爲另一種感測技術,其可使用非標準 式加工步驟整合到同一晶片上或者製於相鄰晶片上。晶片 上檢測係花費低廉且縮小陣列系統的尺寸。較短光學路徑 長度降低來自週遭環境的雜訊以有效收集螢光信號,以及 減少對於透鏡及濾鏡之傳統光學總成之需求。 光二極體184之量子效率爲光子衝撞其活性區域185之 分率’光子係有效轉換成光電子。對於標準矽處理,可見 光之量子效率根據處理參數(諸如覆蓋層之數量及吸收特 性)係在0.3至0.5的範圍中。 -97- 201211534 光二極體1 84之檢測閥値決定可被檢測之螢光信號的 最小強度。檢測閥値亦決定光二極體1 84的尺寸大小以及 在雜交及檢測部52中之雜交室180的數目(見圖52)。室的 尺寸大小和數量爲技術參數,係由LOC裝置的尺寸(LOC裝 置301的實例中,其尺寸爲1 760微米 X 5824微米)所限 制,且受合倂其他功能性模組(諸如病原體透析部70及擴 增部1 12)之後可用之不動物件的尺寸所限制。 對於標準矽處理,光二極體184檢測最低5個光子。然 而,爲了確認可信賴的檢測,最小値可設爲1 0個光子。因 此量子效率範圍在0.3至0.5 (如上所討論),自探針之螢光 發射爲最小17個光子,而30個光子包含針對可靠檢測的誤 差的合適餘裕。 校準室 光二極體184的不均勻電學特性、自動螢光和尙未完 全衰減之剩餘激發光子通量將背景雜訊引入並偏移至輸出 信號。使用一或多種校準信號將背景自各輸出信號移除。 藉由將在陣列中之一或多種校準光二極體184暴露於各自 的校準源而產生校準信號。低校準源用來判斷標靶尙未與 探針反應之負結果。高校準源代表自探針-標靶複合物的 正結果。在本文所描述的具體實施例中,低校準光源由在 雜交室陣列1 10中之校準室3 82所提供,其: 不含任何探針; 包含不具有螢光報導劑的探針:或 -98- 201211534 包含具有報導劑的探針和配置成永遠預期發生淬熄的 淬熄劑。 自此種校準室382之輸出信號非常接近來自LOC裝置 中之所有雜交室的輸出信號中的雜訊和偏差。自其他雜交 室所產生的輸出信號減去校準信號’實質上移除了背景和 留下由螢光發射產生的信號(若有產生任何信號的話)。自 室陣列之區域中的環境光線產生的信號亦被去除。 φ 可理解的是參考圖118至121之上述負控制組探針可用 於校準室。然而,如圖Π2及113所示,其爲顯示於圖111 之LOC變體X 728的插入物DG和DH之放大圖,另一選項爲 將校準室382與擴增子流體性隔離。當雜交由流體隔離阻 止時,背景雜訊和偏差可由將流體性隔離之室淨空或藉由 包含缺少報導劑的探針或確實具有報導劑與淬熄劑兩者的 任何“標準”探針來判斷》 校準室382可提供高校準源以產生高信號於對應的光 φ 二極體。高信號對應在已雜交之室中的所有探針。以報導 劑且無淬熄劑或僅以報導劑點樣探針,將一致地提供近似 雜交室中大量探針已於雜交室內雜交之信號。亦可理解校 準室3 82可用以代替控制探針或加至控制探針上。 整個雜交室陣列的校準室3 82的數量和安排是隨意的 。然而,若光二極體184由相對近的校準室382校準,校準 較準確。參考圖56,雜交室陣列1 1〇針對每八個雜交室180 具有一個校準室382。也就是說,校準室382係安置於每個 三乘三之正方形雜交室180的中間。在此配置中,雜交室 -99- 201211534 180係由緊鄰的校準室3 82所校準。 由於從周圍雜交室180之自螢光信號的激發光,圖117 顯示用以自對應校準室382之光二極體184減除信號的示差 成像器電路788。示差成像器電路788自像素790和“虛擬 ”像素792取樣信號。在一個具體實施例中,“虛擬”像 素7 92係被遮住以防光照射,所以其輸出信號提供暗參考 。或者,“虛擬”像素792可和陣列的其餘部分暴露於激 發光。在“虛擬”像素792是可以接受光的具體實施例中 ,自室陣列之區域中的環境光線產生的信號亦被減除。來 自像素790的信號是微弱的(例如,接近暗信號),且因沒 有參考暗信號位準而很難分辨背景値與非常微弱的信號》 在使用期間,啓動“讀取—列” 794和“讀取_列_(1” 795 且開啓M4 797和 MD4 80 1電晶體。關閉開關8 07和809 使得來自像素790及&quot;虛擬”像素792的輸出分別地儲存在 像素電容器803及虛擬像素電容器8 05上。在像素信號被儲 存後,停用開關8 07和8 09。然後關閉該“讀取_行”開關81 1 和虛擬“讀取_行”開關813,且在輸出之經切換的電容器放 大器815放大示差信號817。 光二極體之抑制及致能 於LED 26激發期間必須抑制光二極體184及於螢光期 間必須致能光二極體184 »圖74爲單一光二極體184之電路 圖及圖75爲光二極體控制信號之時序圖。電路具有光二極 體 184 及六個 MOS 電晶體,Mshunt 394、Mtx 3 96、Mreset 3 98、Msf 400、Mread 402及 Mbias 404。於激發循環開始時 -100- 201211534 ,藉由拖曳(pulling) Mshunt閘極384及重設閘極3 8 8爲高而 開啓tl、電晶體Mshunt 394及Mreset 398。於此期間,激發 光子於光二極體184中產生載子。當產生的載子量可充分 使光二極體184飽和時,此等載子必須被移除。於此循環 期間,因電晶體的洩漏或因基板中之激發-產生的載子擴 散,Mshunt 394直接地移除光二極體184中所產生的載子, 而Mreset 398重設累積於節點‘NS’ 406之任何載子。於激發 φ 之後,於t4開始俘獲循環。於此循環中,來自螢光團之發 射的回應被俘獲並整合入節點‘NS’ 4 06上的電路。此藉由 拖曳tx閘極386爲高而達成,此開啓電晶體Mtx 396及轉移 光二極體184上任何累積的載體至節點‘NS’ 406 »俘獲循 環期間可如螢光發射般長。來自雜交室陣列1 1 0中之所有 光二極體184的輸出同時被俘獲。 於結束俘獲循環t5與開始讀取循環t6之間具有延遲。 此延遲肇因於,在俘獲循環之後,分別讀取雜交室陣列 φ 11〇中之各光二極體184的需求(見圖52)。待讀取的第一光 二極體184於讀取循環之前將具有最短的延遲,而最後光 二極體184於讀取循環之前將具有最長的延遲。於讀取循 環期間,藉由拖曳閘極3 93爲高而開啓電晶體 Mread 402 。使用源極-隨耦器電晶體Msf 400來緩衝及讀出‘NS’節點 406之電壓。 以下討論另外之任意的致能或抑制光二極體之方法: 1 · 抑制方法 -101 - 201211534 圖114、115及116顯示用於Mshunt電晶體394之可行的 配置778、780、782。於激發期間被致能之最大値|FCS|= 5 V時,Mshunt電晶體3 94具有非常高的關閉比。如圖1 14中 所示者,Mshunt閘極3 84係配置成位於光二極體184之緣上 。任意地,如圖115中所示者,Mshunt閘極3 84係可配置成 環繞光二極體184。第三個選擇爲將Mshunt閘極3 84組構於 光二極體184之內,如圖116中所示者。依此第三選擇,光 二極體主動區185較少。 這三種配置778、780及782降低自光二極體184中所有 位置至Mshunt閘極3 84之平均路徑長度。於圖1 14中,Mshunt 閘極384係於光二極體184之一側上。此爲用以製造之最簡 單且對於光二極體主動區185衝擊最小的配置。然而,滯 留於光二極體184遠端之任何載子需要較長時間以擴散通 過 Mshunt 鬧極 3 84 » 於圖115中,Mshunt閘極3 84環繞光二極體184。此進一 步降低光二極體184中之載子至Mshunt閘極384之平均路徑 長度。然而,繞光二極體184周圍而延伸Mshunt閘極384造 成光二極體主動區185大幅縮減。於圖116中之配置782將 Mshunt閘極3 84定位於主動區185中。此提供了至Mshunt閘極 3 84的最短平均路徑及因此得到最短過渡時間。然而,對 於主動區185之衝擊最大。其亦造成較寬的洩漏路徑。 2. 致能方法 a. 觸發器光二極體以固定的延遲來驅動並聯電晶體 -102- 201211534 b. 觸發器光二極體以可程控的延遲來驅動並聯電晶 體。 c. 由LED驅動脈衝以固定的延遲來驅動並聯電晶體 〇 d. 如2 c般但以可程控的延遲來驅動並聯電晶體。 φ 圖77爲透過雜交室180顯示埋入於CMOS電路86中之光 二極體184及觸發器光二極體187之槪略視圖》以觸發器光 二極體187取代光二極體184之角落中的小面積。因相較於 螢光發射時激發光的強度爲高,具小面積之觸發器光二極 體187係充分的。觸發器光二極體187係對激發光244爲敏 感。觸發器光二極體187顯示激發光244已熄滅並於短暫延 遲At 3 00之後啓動光二極體184(見圖2)。此延遲使得螢光 光二極體184得以於沒有激發光244時檢測來自FRET探針 φ 1 86之螢光發射。此致能檢測及增進信號對雜訊比。 於各雜交室180下,光二極體184及觸發器光二極體 187兩者均位於CMOS電路86中。光二極體陣列與適當電子 組件合倂以形成光感測器44(見圖73)。光二極體184爲 CMOS結構製造期間所製成的pn接面而不需另外的遮罩或 步驟。於MST製造期間,光二極體184之上的介電層(未顯 示)係利用標準MST光蝕刻技術而任意地薄化以使更多螢 光照射光二極體184的主動區185。光二極體184具有視場 ,使得來自雜交室180內之探針·標靶雜交的螢光信號入射 -103- 201211534 至感測器表面上。轉換螢光成爲接著可使用CMOS電路86 而被測量的光電流。 替代性地,一或多個雜交室180可僅專用於觸發器光 二極體187。可使用這些選擇於此等與上述之2a及2b的組 合中。 螢光之延遲檢測 下述推導說明係針對上述之LED/螢光團組合使用長 壽命螢光團的螢光延遲檢測。在由圖60顯示之時間h和ί2 之間的固定強度Ie之理想脈衝激發之後,營光強度係推導 爲時間的函數。 令[S1](0於時間t等於激發態的強度,然後在激發期 間及之後,每單位體積每單位時間的激發態數量由下面微 分方程式描述: 迴⑺+腿上…⑴ dt tf hve 其中c爲螢光團的莫耳濃度,ε爲莫耳淬熄係數,▽6爲 激發頻率,且h = 6· 62 606896(1 0广34 Js爲普朗克常數。 此微分方程式具有一般式: ^- + p(x)y = q(x) αχ 其有解法: -104- ...(2)201211534 y(x) q{x)dx + k 現在使用此來解答式(1) = +ke-'lrf (3) hve 且自(3): 然後於時間η, [51](i〇 = 0, kUltraviolet excitation 矽 absorbs a small amount of light in the UV spectrum. Therefore, the use of UV excitation light is advantageous from -96 to 201211534. A UV LED excitation source can be used, but the broad spectrum of LED 26 reduces the effectiveness of this method. For this, a filtered UV LED can be used. Incidentally, the UV laser can be an excitation source unless it is not practical for a particular test module market due to the relatively high cost of the laser. The L E D driver LED driver 29 drives the φ LED 26 at a fixed current for a desired duration. The low power USB 2.0 certified device is available with a minimum operating voltage of 4.4 volts at up to 1 unit load (1 mA). Standard power conditioning circuits are used for this purpose. Photodiode Figure 54 shows photodiode 184 that is integrated into CMOS circuit 86 of LOC device 301. Light diode 184 is part of CMOS circuit 86 without additional masking or steps. This is a significant advantage of CMOS photodiodes over one of the CCDs. CCD is another sensing technique that can be integrated onto the same wafer or fabricated on adjacent wafers using non-standard processing steps. On-wafer inspection is inexpensive and reduces the size of the array system. The shorter optical path length reduces noise from the surrounding environment to efficiently collect fluorescent signals and reduces the need for conventional optical assemblies for lenses and filters. The quantum efficiency of the photodiode 184 is the fraction of photons colliding with its active region 185. The photonic system is efficiently converted into photoelectrons. For standard enthalpy treatment, the quantum efficiency of visible light is in the range of 0.3 to 0.5 depending on processing parameters such as the number of cover layers and absorption characteristics. -97- 201211534 Photodiode 1 84 The detection valve determines the minimum intensity of the fluorescent signal that can be detected. The detection valve 値 also determines the size of the photodiode 184 and the number of hybrid chambers 180 in the hybridization and detection section 52 (see Figure 52). The size and number of chambers are technical parameters, limited by the size of the LOC device (1 760 μm x 5824 μm in the example of LOC device 301), and are subject to other functional modules (such as pathogen dialysis). The size of the portion 70 that can be used after the portion 70 and the amplifying portion 1 12) is limited. For standard 矽 processing, photodiode 184 detects a minimum of 5 photons. However, in order to confirm reliable detection, the minimum 値 can be set to 10 photons. Therefore, the quantum efficiency range is from 0.3 to 0.5 (as discussed above), the fluorescence emission from the probe is a minimum of 17 photons, and the 30 photons contain a suitable margin for errors in reliable detection. The non-uniform electrical characteristics of the photodiode 184, autofluorescence, and residual excitation photon flux that are not fully attenuated introduce and shift background noise to the output signal. The background is removed from each output signal using one or more calibration signals. A calibration signal is generated by exposing one or more of the calibration photodiodes 184 in the array to respective calibration sources. A low calibration source is used to determine the negative result of the target 尙 not reacting with the probe. A high calibration source represents a positive result from the probe-target complex. In the specific embodiment described herein, the low calibration source is provided by a calibration chamber 382 in the hybrid chamber array 110, which: does not contain any probes; includes probes that do not have a fluorescent reporter: or - 98-201211534 Contains a probe with a reporter and a quencher configured to expect quenching to occur forever. The output signal from such a calibration chamber 382 is very close to the noise and bias in the output signal from all of the hybrid chambers in the LOC device. The output signal produced by the other hybrid chamber minus the calibration signal 'substantially removes the background and leaves the signal produced by the fluorescent emission (if any signal is produced). Signals generated by ambient light in the area of the array are also removed. φ It is understood that the above negative control group probes with reference to Figs. 118 to 121 can be used in the calibration chamber. However, as shown in Figures 2 and 113, which are enlarged views of the inserts DG and DH of the LOC variant X 728 shown in Figure 111, another option is to fluidly isolate the calibration chamber 382 from the amplicons. When hybridization is prevented by fluid isolation, background noise and bias can be cleared by chambers that are fluidly isolated or by any probe that contains a lack of reporter or any "standard" probe that does have both a reporter and a quencher. Judgment The calibration chamber 382 can provide a high calibration source to generate a high signal to the corresponding light φ diode. The high signal corresponds to all probes in the chamber that has been hybridized. Reporting with no quenching agent or only with a reporter spotting probe will consistently provide a signal that a large number of probes in the hybridization chamber have hybridized within the hybridization chamber. It is also understood that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and arrangement of calibration chambers 382 for the entire array of hybrid chambers is arbitrary. However, if the photodiode 184 is calibrated by a relatively close calibration chamber 382, the calibration is more accurate. Referring to Figure 56, the hybridization chamber array 1 1 has one calibration chamber 382 for every eight hybridization chambers 180. That is, the calibration chamber 382 is disposed in the middle of each of the three by three square hybrid chambers 180. In this configuration, the hybridization chamber -99-201211534 180 is calibrated by the immediately adjacent calibration chamber 382. Due to the excitation light from the fluorescent signal from the surrounding hybridization chamber 180, Figure 117 shows a differential imager circuit 788 for subtracting the signal from the photodiode 184 of the corresponding calibration chamber 382. The differential imager circuit 788 samples signals from the pixels 790 and the "virtual" pixels 792. In one embodiment, the "virtual" pixel 7 92 is shielded from light illumination, so its output signal provides a dark reference. Alternatively, the "virtual" pixel 792 can be exposed to the laser with the remainder of the array. In a particular embodiment where the "virtual" pixel 792 is light compliant, the signal produced by ambient light in the region of the array is also subtracted. The signal from pixel 790 is weak (eg, close to a dark signal), and it is difficult to distinguish between background and very weak signals without reference to dark signal levels. During use, "read-column" 794 and "start" Read_column_(1" 795 and turn on M4 797 and MD4 80 1 transistors. Turn off switches 8 07 and 809 so that the outputs from pixel 790 and &quot;virtual&quot; pixel 792 are stored in pixel capacitor 803 and virtual pixel capacitor, respectively. On page 05. After the pixel signal is stored, switches 8 07 and 08. 0 are disabled. The "read_row" switch 81 1 and the virtual "read_row" switch 813 are then turned off and switched at the output. The capacitor amplifier 815 amplifies the differential signal 817. The suppression and enabling of the photodiode must suppress the photodiode 184 during the excitation of the LED 26 and the photodiode 184 must be enabled during the fluorescent period. FIG. 74 is a circuit diagram of the single photodiode 184. Figure 75 is a timing diagram of the photodiode control signal. The circuit has a photodiode 184 and six MOS transistors, Mshunt 394, Mtx 3 96, Mreset 3 98, Msf 400, Mread 402, and Mbias 404. -100- 201211534, tl, transistor Mshunt 394 and Mreset 398 are turned on by pulling Mshunt gate 384 and resetting gate 38 8 high. During this period, the excitation photons are generated in photodiode 184. The carrier must be removed when the amount of carrier produced is sufficient to saturate the photodiode 184. During this cycle, due to leakage of the transistor or diffusion of the carrier due to excitation in the substrate Mshunt 394 directly removes the carriers generated in photodiode 184, while Mreset 398 resets any carriers accumulated at node 'NS' 406. After excitation φ, the capture cycle begins at t4. The response from the emission of the fluorophore is captured and integrated into the circuit on node 'NS' 060. This is achieved by dragging the tx gate 386 high, which turns on the transistor Mtx 396 and the transfer photodiode 184 Any accumulated carrier-to-node 'NS' 406 » capture cycle may be as long as a fluorescent emission. The output from all photodiodes 184 in the hybrid cell array 110 is simultaneously captured. End capture cycle t5 and start reading Take the loop between t6 This delay is due to the need to read the respective photodiodes 184 in the hybridization chamber array φ 11 分别 after the capture cycle (see Figure 52). The first photodiode 184 to be read is read. The cycle will have the shortest delay before the last photodiode 184 will have the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by dragging the gate 3 93 high. The source-slaffer transistor Msf 400 is used to buffer and read the voltage of the 'NS' node 406. Additional methods for enabling or suppressing photodiodes are discussed below: 1 - Suppression Method - 101 - 201211534 Figures 114, 115 and 116 show possible configurations 778, 780, 782 for Mshunt transistor 394. Mshunt transistor 3 94 has a very high turn-off ratio when the maximum 値 |FCS| = 5 V is enabled during excitation. As shown in FIG. 14, the Mshunt gate 3 84 is configured to be located on the edge of the photodiode 184. Optionally, as shown in FIG. 115, the Mshunt gate 3 84 can be configured to surround the photodiode 184. A third option is to fabricate the Mshunt gate 3 84 within the photodiode 184, as shown in FIG. According to the third option, the photodiode active area 185 is less. These three configurations 778, 780, and 782 reduce the average path length from all locations in the photodiode 184 to the Mshunt gate 3 84. In FIG. 14, the Mshunt gate 384 is attached to one side of the photodiode 184. This is the simplest configuration to make and the smallest impact on the active region of the photodiode 185. However, any carrier remaining at the far end of the photodiode 184 takes a long time to diffuse through the Mshunt 3 8 » In Figure 115, the Mshunt gate 3 84 surrounds the photodiode 184. This further reduces the average path length of the carriers in the photodiode 184 to the Mshunt gate 384. However, extending the Mshunt gate 384 around the photodiode 184 causes the photodiode active region 185 to be substantially reduced. Configuration 782 in FIG. 116 positions Mshunt gate 3 84 in active region 185. This provides the shortest average path to the Mshunt gate 3 84 and thus the shortest transition time. However, the impact on the active zone 185 is greatest. It also creates a wide leak path. 2. Enabling method a. Trigger photodiode drives shunt transistor with a fixed delay -102- 201211534 b. The flip-flop photodiode drives the parallel transistor with a programmable delay. c. The parallel drive transistor is driven by the LED drive pulse with a fixed delay 〇 d. The parallel transistor is driven with a programmable delay as in 2 c. φ Fig. 77 shows a schematic view of the photodiode 184 and the flip-flop photodiode 187 embedded in the CMOS circuit 86 through the hybridization chamber 180. The small portion of the corner of the photodiode 184 is replaced by the flip-flop photodiode 187. area. The trigger photodiode 187 having a small area is sufficient because the intensity of the excitation light is higher than that of the fluorescent emission. The flip-flop photodiode 187 is sensitive to the excitation light 244. The flip-flop photodiode 187 shows that the excitation light 244 has extinguished and activates the photodiode 184 (see Fig. 2) after a brief delay of At3 00. This delay allows the fluorescent diode 184 to detect the fluorescent emission from the FRET probe φ 1 86 without the excitation light 244. This enables detection and enhancement of signal to noise ratio. Under each hybrid cell 180, both photodiode 184 and flip-flop photodiode 187 are located in CMOS circuit 86. The photodiode array is combined with appropriate electronic components to form a photosensor 44 (see Figure 73). The photodiode 184 is a pn junction made during the fabrication of the CMOS structure without the need for additional masking or steps. During MST fabrication, the dielectric layer (not shown) over the photodiode 184 is arbitrarily thinned using standard MST photolithography techniques to cause more of the phosphor to illuminate the active region 185 of the photodiode 184. The photodiode 184 has a field of view such that a fluorescent signal from the probe/target hybridization within the hybridization chamber 180 is incident on -103 - 201211534 onto the surface of the sensor. The converted fluorescence becomes a photocurrent that can then be measured using the CMOS circuit 86. Alternatively, one or more of the hybridization chambers 180 may be dedicated only to the trigger photodiode 187. These choices can be used in combination with 2a and 2b above. Fluorescence Delay Detection The following derivation is a fluorescence delay detection using a long-life fluorophore for the combination of the above LED/fluorescent clusters. After the ideal pulse excitation of the fixed intensity Ie between times h and ί2 shown in Figure 60, the camping intensity is derived as a function of time. Let [S1] (0 at time t equal to the intensity of the excited state, then during and after excitation, the number of excited states per unit volume per unit time is described by the following differential equation: back (7) + on the leg... (1) dt tf hve where c For the molar concentration of the fluorophore, ε is the molar quenching coefficient, ▽6 is the excitation frequency, and h = 6· 62 606896 (1 0 broad and 34 Js is the Planck constant. This differential equation has the general formula: ^ - + p(x)y = q(x) αχ There is a solution: -104- ...(2)201211534 y(x) q{x)dx + k Now use this to solve the equation (1) = +ke -'lrf (3) hve and from (3): then at time η, [51](i〇= 0, k

hve 將(4)代入(3): ...(4) [51](〇 /ggC7~y /ggCr,,丨)&quot;厂 hve hve 於時間 h,: [51](r2) = ^^-^^e-(^ ...(5) nve hve 於i 2 O,激發態以指數衰減_ [51](〇 = [51](i2&gt;-(,-,j)/^ ...(6) 將(5)代入(6): [5Ί](〇 = ί^-[\ - e-{,^')lTf y^,Tr . hve 該螢光強度由下列等式得到: 以式(6)描述: •⑺Hve substitutes (4) into (3): ...(4) [51](〇/ggC7~y /ggCr,,丨)&quot;factory hve hve at time h,: [51](r2) = ^^ -^^e-(^ ...(5) nve hve in i 2 O, the excited state is exponentially attenuated _ [51](〇= [51](i2&gt;-(,-,j)/^ ... (6) Substituting (5) into (6): [5Ί](〇= ί^-[\ - e-{,^')lTf y^,Tr . hve The intensity of the fluorescence is obtained by the following equation: (6) Description: • (7)

If{t) = -^^-hvfVl …(8) -105 201211534 其中V/爲該螢光頻率,η爲量子產率,且丨爲光學路徑 長度。 於是自 (7): …(9) 啦收)=-[1 _ e-«2-hVr, -C-h)/Tf dt hve 將(9)代入(8):If{t) = -^^-hvfVl (8) -105 201211534 where V/ is the fluorescence frequency, η is the quantum yield, and 丨 is the optical path length. Then from (7): ...(9) Receive) =-[1 _ e-«2-hVr, -C-h)/Tf dt hve Substituting (9) into (8):

If (/) = ΙεεοΙη^~[1 - e~(,^lrf Λβ-^'τί 因爲 』------&gt; 〇〇, I. (/) —&gt; Iesclη — Γ/ Κ 因此’我們可以寫出下列的近似式,此式描述在充分 長的激發脈衝(i2-h &gt;&gt;Tf)後之螢光強度衰減:對於 I 八 tXeclT^e”” &quot;.(11) 在上一節,我們針對/2山&gt;&gt;Tf作的情況做總結, 而對於 t t h = e'(,&quot;,2)/r/ 〇 從上述的等式,我們可以導出下列式子: rif{t) = rieec^e~{,'hVtf ... (12) 其中 ~(〇 = :^爲每單位面積每單位時間之螢光光子數且 运爲每單位面積每單位時間之激發光子數。 因此, -106- 201211534If (/) = ΙεεοΙη^~[1 - e~(,^lrf Λβ-^'τί because 』------&gt; 〇〇, I. (/) —&gt; Iesclη — Γ/ Κ Therefore' We can write the following approximation, which describes the attenuation of the fluorescence intensity after a sufficiently long excitation pulse (i2-h &gt;&gt;Tf): for I 八tXeclT^e"" &quot;.(11) In the previous section, we summarize the situation for /2 hills>gt;Tf, and for tth = e'(,&quot;,2)/r/ 〇 From the above equation, we can derive the following formula: rif {t) = rieec^e~{,'hVtf ... (12) where ~(〇= :^ is the number of fluorescent photons per unit area per unit time and is the number of excitation photons per unit area per unit time Therefore, -106- 201211534

CO nfit)=\nf{t)dt ...(13) h 其中 七爲每單位面積之螢光光子數且 ί3爲光二 極體開啓的時間點。將(12)代入(13): co nf = dt …(1 4) h 目前,每單位面積每單位時間到達光二極體之螢光光 子數,,係由下式獲得: «;(〇 = «&gt; ...(15) 其中九爲光學系統之光收集效率。 將(12)代入 (15)我們發現 ηί(ί) = φ0ηΐεοΙηβ'(,~,ι)'Τί ...(16) 同樣地,每單位螢光面積义到達光二極體之螢光光子 數將如下述: 〇〇 纪= 且代入(16)並積分: h fis ^φ^εο\ητ{βΛΗ~1ινχι 因此, ns =φ0ή£εοΙητ/β'&amp;/,Τ^ …(17) 的理想値係於當因螢光光子該光二極體184內之產 生的電子率等於由激發光子於光二極體184內之產生的電 子率時,因爲激發光子通量衰減比螢光光子通量衰減快更 多0 由於螢光之每單位螢光面積的感測器輸出電子率爲: -107- 201211534 έ&gt;(0 = ^Λ(0 其中φ/ 爲在螢光波長之感測器的量子效率。 代入(17)我們得到: = …(18) 同樣地,由於激發光子之每單位螢光面積的輸出電子 率爲: έ;(0 = ^&gt;-(,-,ι)/Γ* …(19) 其中 么爲在激發波長之感測器的量子效率,且Te 爲相對於激發LED之『切斷』特性的時間常數。在時間t2 之後,LED之衰減光子通量增加螢光信號的強度且延長其 衰減時間,但我們假設此對If(t)爲可忽略的影響,因此我 們採取保守(conservative)的方法。 目前,如先前所提及,ί3的理想値爲當: 因此,由(18)和(19)我們得到: φ/φ0ήεβ:Ιηβ'{ι,'&quot;ι),Τ/ = φβηβε~{ίι',2)ι^ 並且重整之後我們得到: Ιη(εα!ηί^-) —i~~-(20)CO nfit)=\nf{t)dt (13) h where seven is the number of fluorescent photons per unit area and ί3 is the time point at which the photodiode is turned on. Substituting (12) into (13): co nf = dt ... (1 4) h At present, the number of fluorescent photons reaching the photodiode per unit area per unit time is obtained by: «;(〇=« &gt; ...(15) where nine is the light collection efficiency of the optical system. Substituting (12) into (15) we find that ηί(ί) = φ0ηΐεοΙηβ'(,~,ι)'Τί ...(16) Ground, the number of fluorescent photons reaching the photodiode per unit of fluorescent area will be as follows: 〇〇 = = = and substituting (16) and integrating: h fis ^φ^εο\ητ{βΛΗ~1ινχι Therefore, ns =φ0ή The ideal enthalpy of £εοΙητ/β'&amp;/, Τ^ (17) is that when the photodiode 184 is generated by the fluorescent photon, the electron rate is equal to that generated by the excitation photon in the photodiode 184. Rate, because the excitation photon flux decays more quickly than the fluorescence photon flux decays. 0 The sensor output electron rate per unit of fluorescence area of the fluorescence is: -107- 201211534 έ&gt;(0 = ^Λ( 0 where φ/ is the quantum efficiency of the sensor at the wavelength of the fluorescence. Substituting (17) we get: = (18) Similarly, due to the per unit of excited photons The output electron ratio of the light area is: έ; (0 = ^&gt;-(,-, ι)/Γ* (19) where is the quantum efficiency of the sensor at the excitation wavelength, and Te is relative to the excitation The time constant of the "off" characteristic of the LED. After time t2, the attenuated photon flux of the LED increases the intensity of the fluorescent signal and extends its decay time, but we assume that this pair has a negligible effect on If(t), so We adopt a conservative approach. Currently, as mentioned earlier, the ideal of ί3 is 当: Therefore, we get from (18) and (19): φ/φ0ήεβ:Ιηβ'{ι,'&quot;ι ), Τ / = φβηβε~{ίι', 2) ι^ and after reforming we get: Ιη(εα!ηί^-) —i~~-(20)

Tf Te 由上面兩段’我們得到下列兩個運算式: ns =φ〇ήίΡτ/ε~&amp;,&gt;Τ/ …(2 1) -108- 201211534Tf Te from the above two paragraphs 'we get the following two expressions: ns = φ 〇ή Ρ Ρ / ... , , ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

Ai=_LAi …(22)Ai=_LAi ...(22)

Tf re 其中 Ρ = εεΙη 且 Δί = ί3-ί2,我們亦了解,實際上, 》27。 用於螢光檢測的理想時間及使用Philips LXK2-PR14-R00 LED和Pulsar 650染料所檢測的螢光光子數決定如下 理想檢測時間係使用式(22)決定: 回想擴增子的濃度,且假設所有擴增子雜交,則發螢 光的螢光團濃度爲:c = 2.8 9(10)_6 mol/L。 室的高度爲光學路徑長度1 = 8(10厂6 m。 已將螢光區域視爲等同於光二極體區域,然而實際的 螢光區域實質上大於光二極體區域;因此可大槪假設 八=0.5爲光學系統之光採集效率。光二極體的特性,# = 10 Φβ 爲在螢光波長之該光二極體量子效率對在激發波長之光二 極體的量子效率之比的極保守値。 以典型的LED衰減壽命&amp;= 0.5奈秒和使用Pulsar650規 格,可決定Δί : F = [1.48(10)6][2.89(10)^][8(10)-6](1) =3.42(10)-5 ,ln([3.42(10)-5](10)(0.5)) 1 1- 1(10)-7 ~ 0.5(1 〇r9 =4.34(10)-9 s -109- 201211534 偵測到的光子數目係使用等式(21)決定。首先,每單 位時間發射的激發光子數目乂係由檢驗照明幾何而決定。Tf re where Ρ = εεΙη and Δί = ί3-ί2, we also know, in fact, 》27. The ideal time for fluorescence detection and the number of fluorescent photons detected using Philips LXK2-PR14-R00 LED and Pulsar 650 dyes determine the ideal detection time as determined by equation (22): recall the concentration of the amplicon, and assume For all amplicon hybridizations, the fluorescing fluorophore concentration was: c = 2.8 9(10)_6 mol/L. The height of the chamber is the optical path length 1 = 8 (10 plants 6 m. The fluorescent region has been regarded as equivalent to the photodiode region, but the actual fluorescent region is substantially larger than the photodiode region; therefore, it can be assumed that eight =0.5 is the light collection efficiency of the optical system. The characteristics of the photodiode, # = 10 Φβ is the extremely conservative ratio of the quantum efficiency of the photodiode at the fluorescence wavelength to the quantum efficiency of the photodiode at the excitation wavelength. With a typical LED attenuation lifetime &amp;= 0.5 nanoseconds and using the Pulsar650 specification, it is possible to determine Δί : F = [1.48(10)6][2.89(10)^][8(10)-6](1) =3.42 (10)-5, ln([3.42(10)-5](10)(0.5)) 1 1- 1(10)-7 ~ 0.5(1 〇r9 =4.34(10)-9 s -109- 201211534 The number of photons detected is determined using equation (21). First, the number of excitation photons emitted per unit time is determined by examining the illumination geometry.

Philips LXK2-PR14-R00 LED 具有 Lambertian 發射模式 ,因此: fi! =YilQcos(0) ...(23)The Philips LXK2-PR14-R00 LED has a Lambertian emission mode, so: fi! =YilQcos(0) ...(23)

其中巧爲與LED的順向軸線方向之角度爲Θ之每單 位立體角每單位時間發射的光子數目,且^。爲^在順向軸 線方向之値。 由該LED每單位時間所發射的光子之總數爲:The angle between the direction of the axis of the LED and the direction of the axis of the LED is the number of photons emitted per unit time per unit solid angle, and ^. For ^ in the direction of the forward axis. The total number of photons emitted by the LED per unit time is:

ή, = fn,dQ Ω =J^cos 辦Ω Ω ...(24) 現在, ΑΩ = 2π[1 - cos(0 + Δ0)] - 2;r[l - cos(0)] ΔΩ = 2n[cos(9) - cos{9 + Δ^)] 4;rsin ⑹ cos l&quot;A0、 2 2 + 4^cos(^)sin2 Αθ''ή, = fn, dQ Ω = J^cos do Ω Ω ... (24) Now, ΑΩ = 2π[1 - cos(0 + Δ0)] - 2;r[l - cos(0)] ΔΩ = 2n [cos(9) - cos{9 + Δ^)] 4;rsin (6) cos l&quot;A0, 2 2 + 4^cos(^)sin2 Αθ''

c/Ω = 2;rsin(0)t/0 代入(24): π 2 ή, = j&quot;2;T^丨。cos(0)sin(0)洲 ο 重新排列,我們得到 «/0 =— …(2 6) π LED的輸出功率爲0.515瓦且 ve = 6.52(10)14赫茲, 因此: -110- -(27) -(27)201211534 Ρι hve __0.515_ ~ [6.63(10)-34][6.52(10)14] =1.19(10)18 光子 /秒 將此値帶入(26)我們得到: …_ 1.19(10)18 = 3.79(10)17光子/秒/球面度 參照圖61,光學中心2H和LED 26之透鏡254係槪略 顯示。光二極體爲16微米xl 6微米,且對於在陣列中間的 光二極體,自LED 26發射至光二極體184的光錐的立體角 (Ω)係大約= Ω =感測器面積/r2 [16 (ΙΟ)-6] [16(10)·6] 2.825(10)-3]2 =3.21(10)_5 球面度 將理解光二極體陣列44之中央光二極體184爲用於這 些計算之用途。位於陣列邊緣的感測器在雜交事件時僅接 收低2%之光子用於Lambertian激發源強度分佈。 每單位時間發射的激發光子數: he = η)Ω ... (28) =[3.79(10)17][3.21(1〇Γ5] =1.22(10)13 光子 /秒 現在參考等式(29): ns =$aneFTfe'^&quot;Tf ' =(0.5)122(10)113.42(10)-11(10)4^-434^^ -111 - 201211534 =208光子/感測器 因此,使用 Philips LXK2-PR14-R00 LED 和 Pulsar 650 螢光團,我們可以輕易地檢測任何造成此等數目之光子被 激發的雜交事件。 SET LED照明幾何係顯示於圖62中。Id = 20毫安培時 ,LED具有最小光學功率輸出Pl = 240微瓦,波長中心於 = 340奈米(鉞螯合物之吸收波長)。驅動LED於ID = 200 毫安培,線性增加輸出功率至Pi = 2.4毫瓦。藉由將LED的 光學中心252置於離雜交室陣列1 10距離17.5毫米處,我們 大約將輸出通量集中於具有最大直徑爲2毫米的圓點大小 在雜交陣列平面之2毫米直徑點中的光子通量由等式 27得到。 P, 2.4(10)~3 ~ [6.63(10)-34][8.82(10)'4] =4.10(10)15 光子 /秒 使用等式2 8,我們得到: 4.10(10)15 [16(10)-6]2 叩(1〇)3]2 =3.34(10)11 光子 /秒 現在,回到等式22及使用先前列舉的Tb螯合物特性,c/Ω = 2; rsin(0)t/0 is substituted into (24): π 2 ή, = j&quot;2;T^丨. Cos(0)sin(0)zhou ο rearranged, we get «/0 =- ... (2 6) π LED output power is 0.515 watts and ve = 6.52 (10) 14 Hz, therefore: -110- -( 27) -(27)201211534 Ρι hve __0.515_ ~ [6.63(10)-34][6.52(10)14] =1.19(10)18 photons/sec brings this 入 into (26) we get: ..._ 1.19 (10) 18 = 3.79 (10) 17 photons / sec / sphericity Referring to Figure 61, the optical center 2H and the lens 254 of the LED 26 are shown schematically. The photodiode is 16 micrometers x 16 micrometers, and for the photodiode in the middle of the array, the solid angle (Ω) of the light cone emitted from the LED 26 to the photodiode 184 is approximately = Ω = sensor area / r2 [ 16 (ΙΟ)-6] [16(10)·6] 2.825(10)-3]2 = 3.21(10)_5 Sphericality It will be understood that the central photodiode 184 of the photodiode array 44 is used for these calculations. use. Sensors located at the edge of the array receive only 2% lower photons for the Lambertian excitation source intensity distribution at the time of the hybridization event. Number of excitation photons emitted per unit time: he = η) Ω ... (28) = [3.79(10)17][3.21(1〇Γ5] =1.22(10)13 Photons/sec Reference equation (29 ): ns =$aneFTfe'^&quot;Tf ' =(0.5)122(10)113.42(10)-11(10)4^-434^^ -111 - 201211534 =208 Photon/Sensor So, use Philips With the LXK2-PR14-R00 LED and the Pulsar 650 fluorophore, we can easily detect any hybridization events that cause these numbers of photons to be excited. The SET LED illumination geometry is shown in Figure 62. Id = 20 mA, LED With minimum optical power output Pl = 240 microwatts, wavelength center at = 340 nm (absorption wavelength of ruthenium chelate). Drive LED at ID = 200 mA, linearly increase output power to Pi = 2.4 mW. Place the optical center 252 of the LED at 17.5 mm from the hybrid array 1 10 and we will focus the output flux on the photon pass in a 2 mm diameter dot with a maximum diameter of 2 mm at the dot of the hybrid array plane. The amount is obtained from Equation 27. P, 2.4(10)~3 ~ [6.63(10)-34][8.82(10)'4] =4.10(10)15 Photon/sec Using Equation 2 8, we get: 4.1 0(10)15 [16(10)-6]2 叩(1〇)3]2 =3.34(10)11 photons/sec Now, return to Equation 22 and use the previously listed Tb chelate properties,

Af_ln[(6.94(10)-5 )(10)(0.5)] 1(10)-3 0.5(10)'9 -112- 201211534 =3·98(10)_9 秒 現在自等式2 1 : ns = (0.5)[3.34(10)η][6.94(10)-5][1(10)-3]β-3·98α〇Γ,/Ι(1〇Γ3 =11,600光子/感測器 由雜交事件使用SET LED和铽螯合物系統發射之光子 理論數値係可簡單的檢測且遠超過3 0個光子數之低限値, 其爲以用於由上述所指示之光感測器之可信賴的檢測所需 探針與光二極體間之最大間隔 雜交之晶片上檢測避免以共軛焦顯微鏡(見先前技術) 檢測之需要。此背離傳統檢測技術在與系統有關的時間和 成本節省中爲重要的因素。傳統檢測需要必須使用透鏡和 彎曲鏡面之成像光學。藉由採用非成像光學,診斷系統避 免複雜及笨重的光學元件串之需求。將光二極體放置於非 φ 常靠近探針具有極高收集效率的優點。當在探針和光二極 體間的材料厚度爲1微米級時,發射光之收集角係高達 173°。此角度藉由考慮自最靠近光二極體之雜交室表面中 心的探針發射的光來計算,該光二極體具有平行於室表面 的平面主動表面區。於光可以於其內由光二極體吸收之發 射角錐係定義爲:在其頂點和在其平面之周圍上的感測器 角落具有發射探針。對於16微米X 16微米的感測器,此錐 體的頂角爲170° ;在光二極體經擴展使得其面積符合該29 微米X 19.75微米之雜交室面積的限制例中,該頂角爲173° -113- 201211534 。在室表面和光二極體主動表面之間的分隔爲1微米或更 小是容易達成的。 應用非成像光學方法需要光二極體184非常靠近雜交 室以收集螢光發射之充分的光子。光二極體和探針之間的 最大間隔係參照如下圖5 4所決定。 利用鉞螯合物螢光團和SET UVT0P3 3 5 T039BL LED ,我們計算自個別雜交室180到達16微米χ16微米之光二極 體184的1 1 600個光子。在實施此計算時,我們假設雜交室 180之光收集區域具有與光二極體主動區185相同的底面積 ,且雜交光子之總數的一半到達光二極體184。即光學系 統之光收集效率爲念=0.5。 更精確,我們可以寫出A =[(雜交室之光收集區域的 底面積)/(光二極體面積)][Ω/4π],其中Ω =立體角其對向 於在雜交室之基底上之代表點之光二極體。對於正確的 (right)正方錐幾何: Ω = 4arcsin(a2/(4d〇2 + a2)),其中 d。=在室與光二極 體之間的距離,且《爲光二極體尺寸。 各雜交室釋放23 200個光子,經選擇的光二極體之檢 測低限値爲1 7個光子,因此’所需的最小光學效率爲: φ0= 1 7/23200 = 7.3 3 X 1 0'4 雜交室180之光收集區域的底面積爲29微米χ19·75微 201211534 解出dQ,將得到在雜交室及光二極體1 84之間的最大 限制距離爲dG = 249微米。在此限制中,如上所定義之收 集錐角僅爲0.8 ° »應注意的是此分析忽略了折射之可忽略 的影響。 LOC變體 以上詳細描述及說明之LOC裝置301僅爲許多可行之 φ LOC裝置設計中之一者。現將以槪略流程圖(自樣本輸入 至檢測)說明及/或顯示使用上述的各種功能部之不同組合 之LOC裝置變體而闡述一些可行的組合。將流程圖適當的 分成樣本輸入及製備階段288、萃取階段290、培養階段 291、擴增階段292、預-雜交階段293以及檢測階段294。 爲清楚及簡明表示之故,僅簡單說明或槪要顯示所有的 LOC變體而未顯示細節配置。亦爲清楚表示之故,未顯示 較小的功能單元,諸如液體感測器及溫度感測器,但應理 φ 解的是此等功能單元已被倂入以下LOC裝置設計之各者的 適當位置。Af_ln[(6.94(10)-5 )(10)(0.5)] 1(10)-3 0.5(10)'9 -112- 201211534 =3·98(10)_9 seconds Now from the equation 2 1 : ns = (0.5)[3.34(10)η][6.94(10)-5][1(10)-3]β-3·98α〇Γ,/Ι(1〇Γ3 = 11,600 photon/sensor The photon theoretical number emitted by the SET LED and the ruthenium chelate system from the hybridization event can be easily detected and well exceeds the lower limit of 30 photons, which is used for the photosensor indicated by the above. The on-wafer detection of the reliable separation of the probes required to detect the maximum spacing between the photodiodes avoids the need for detection by a conjugated focal microscope (see prior art). This deviates from the time and cost associated with conventional detection techniques in relation to the system. Savings are an important factor. Traditional inspections require the use of lens and curved mirror imaging optics. By using non-imaging optics, the diagnostic system avoids the need for complex and cumbersome strings of optical components. Place the photodiode close to non-φ The probe has the advantage of extremely high collection efficiency. When the material thickness between the probe and the photodiode is 1 micron, the collection angle of the emitted light is as high as 173°. Calculated by considering the light emitted from the probe closest to the center of the surface of the hybridization chamber of the photodiode, the photodiode has a planar active surface region parallel to the surface of the chamber. The light can be absorbed by the photodiode therein. The emission cone is defined as having a transmitting probe at its apex and at the sensor corners around its plane. For a 16 micron X 16 micron sensor, the cone has an apex angle of 170°; The extension of the body is such that the area conforms to the 29 micron X 19.75 micron hybrid cell area, the apex angle is 173° -113 - 201211534. The separation between the chamber surface and the active surface of the photodiode is 1 micron or Smaller is easier to achieve. Applying a non-imaging optical method requires the photodiode 184 to be very close to the hybridization chamber to collect sufficient photons of the fluorescent emission. The maximum spacing between the photodiode and the probe is determined by reference to Figure 5 below. Using the ruthenium chelate fluorophore and the SET UVT0P3 3 5 T039BL LED, we calculated 1,1,600 photons from individual hybridization chambers 180 to 16 micron χ 16 micron photodiodes 184. In implementing this calculation, we It is assumed that the light collecting region of the hybridization chamber 180 has the same bottom area as the photodiode active region 185, and half of the total number of hybrid photons reaches the photodiode 184. That is, the light collection efficiency of the optical system is N = 0.5. More precisely, we It is possible to write A = [(the bottom area of the light collection area of the hybridization chamber) / (photodiode area)] [Ω / 4π], where Ω = solid angle which is opposite to the representative point on the substrate of the hybridization chamber Light diode. For the correct (square) square pyramid geometry: Ω = 4arcsin(a2/(4d〇2 + a2)), where d. = the distance between the chamber and the photodiode, and "the size of the light diode." Each hybrid cell releases 23 200 photons, and the selected photodiode has a lower detection limit of 17 photons, so the minimum optical efficiency required is: φ0 = 1 7/23200 = 7.3 3 X 1 0'4 The bottom area of the light collection region of the hybridization chamber 180 is 29 microns χ 19·75 micro 201211534. The dQ is obtained, and the maximum limit distance between the hybridization chamber and the photodiode 1 84 is dG = 249 μm. In this limitation, the collection cone angle as defined above is only 0.8 ° » It should be noted that this analysis ignores the negligible effect of refraction. LOC Variants The LOC device 301, described and illustrated in detail above, is only one of many possible φ LOC device designs. Some possible combinations will now be set forth in the context of a flow chart (from sample input to detection) and/or display of LOC device variants using different combinations of the various functional components described above. The flow chart is appropriately divided into a sample input and preparation stage 288, an extraction stage 290, a culture stage 291, an amplification stage 292, a pre-hybridization stage 293, and a detection stage 294. For the sake of clarity and conciseness, only a brief description or summary of all LOC variants is shown and no detail configuration is shown. Also for the sake of clarity, smaller functional units, such as liquid sensors and temperature sensors, are not shown, but it should be understood that these functional units have been incorporated into the following LOC device designs. position.

LOC變體VII 圖82至96顯示LOC變體VII 492。特色或結構係以對應 於先前圖式中之相同特色或結構之相同的元件符號表示。 如圖96中所示,此變體使用平行核酸擴增而萃取290, 、培養291、擴增2 92及檢測294人類DNA。有四個不同的 擴增部112.1至112.4以增加分析靈敏度並增進檢測之螢 -115- 201211534 光的信號對雜訊比。此設計亦使用前述之白血球透析部 3 2 8、溶胞試劑5 6 '化學溶胞部1 3 0、限制酵素、接合子及 聯結子58以及培養部1 14。然而,於化學溶胞部130、培養 部114以及擴增部112.1至112.4之出口,此LOC變體使用數 種錯誤耐受閥陣列309、313、462、464、466及468來取代 單一主動閥。閥陣列爲2x2陣列之第二型熱彎曲致動閥308 〇 將得自各擴增部112.1至112.4之不同擴增子饋入不同 的雜交部1 1 〇 . 1至1 1 〇 · 4,於其中藉由光感測器44來檢測螢 光。 圖82爲LOC變體VII 492之透視圖,顯示上密封層82中 之通孔122、樣本入口 68及蒸發器190。廢料貯槽76經去密 封使得過多的廢料可被轉移至測試模組內之多孔元件49 ( 見圖1)。一連串的結合墊104沿著一個邊緣延伸,且亦暴 露濕度感測器23 2以感測測試模組內之微環境的濕度。 圖83爲蓋46之獨立分解透視圖》移除上密封82而露出 通孔122下方之試劑貯槽(54、56、58、188、60.1 - 60.4 及62_1 - 62.4)。LOC變體VII 492具有四個擴增部112至 112.4,以及四個擴增混合貯槽60.1至60.4及四個聚合酶貯 槽 62.1至62.4,其提供試劑給個別的擴增部1 12.1至1 12.4 〇 圖84爲蓋46之底側視圖,顯示蓋通道94的結構及試劑 貯槽(60.1、60.2、... 62.1、62.2 ...等)之下方部分。圖 85 將蓋46之特徵疊加於CMOS + MST裝置48之特徵上。圖86 -116- 201211534 單獨顯示CMOS + MST裝置48之特徵。圖87單獨顯示蓋通 道94、貯槽及閥陣列組件。廢料通道72通向廢料貯槽76之 底側,而標靶通道74通向溶胞試劑貯槽5 6下游之化學溶胞 部130。圖88、89、90、91、92、93及94分別爲放大的插 入物BA至BG。 血液樣本經由樣本入口 68而進入。毛細作用吸引樣本 經由蓋通道94而至抗凝劑表面張力閥118(見圖88)。來自 φ 貯槽54之抗凝劑與血液樣本合併且續行至白血球透析部 328 (見圖87)。如最佳顯示於圖93,標靶通道74及廢料細 胞通道72係藉由經過MST層87之一系列透析MST通道204 而連接。經由個別之7.5微米孔165的陣列,標靶通道74連 接至透析MST通道204。透析MST通道204經由透析汲取孔 168而連接至廢料通道72。位於透析部上游端502之透析 MST通道204不具有下管道。毛細作用起使特徵166確保樣 本流不會固定於7.5微米孔口的陣列,而是流動通過165透 φ 析MST通道204。 再次參照圖85、87及88,已具有較高標靶細胞濃度之 樣本流流動至溶胞試劑表面張力閥1 2 8。來自貯槽5 6之溶 胞試劑與樣本流合倂且進入化學溶胞部1 3 0。流動停止於 第二型熱彎曲致動閥3 08之2x2錯誤耐受陣列309。以停頓 時間程控CMOS電路86而擴散混合溶胞試劑,使得足夠多 的標靶細胞被溶胞。於充分時間後(小於0.5秒),錯誤耐受 閥陣列309中的閥被啓動(即,打開),以及流動續行至混 合部1 3 1之下游部中》 -117- 201211534 當遺傳物質釋出時’經由表面張力閥132添加來自貯 槽5 8之限制酵素、接合子及聯結子。樣本流續行通過混合 部131之剩餘物而至下管道134且進入培養部114之經加熱 的微通道(見圖87)。樣本流塡充培養部114直至到達2x2錯 誤耐受閥陣列3 1 3爲止。於經過充分的培養時間後,錯誤 耐受閥陣列3 1 3啓動。 樣本流進入擴增部之共同供應通道504。共同供應通 道504饋入四個不同的擴增部112.1至112.4之入口 506、 508、510及512 (見圖89)。各擴增混合貯槽60.1至60.4具 有分別連接至擴增部入口 506、508、510及512之表面張力 閥138。同樣地,各聚合酶貯槽62.1至62.4具有分別連接 至擴增部入口 506、508、510及512之表面張力閥140(見圖 8 7)。藉由固定彎液面,表面張力閥138及140保持試劑於 彼等之個別貯槽中。當樣本向下流至各入口時,彎液面被 移除且試劑與樣本流合倂(首先爲引子、dNTP及緩衝液之 擴增混合,接著爲聚合酶)。 以樣本、擴增混合及聚合酶塡充四個不同的擴增部 112.1至112.4之每一者。流經各擴增部之個別的流停止於 個別的擴增出口錯誤耐受閥陣列462、464、466及468 (見 圖90)。CMOS控制的熱循環擴增遺傳物質》具體地參照圖 85、91及95,啓動擴增出口閥陣列462、464、466及468, 使得四種擴增子經由不同的入口 494、496、498、500而流 入不同的雜交室陣列110.1至11〇_4。各個不同的雜交室陣 列具有自己的端點液體感測器1 7 8。來自個別端點液體感 -118- 201211534 測器178之反饋觸發了雜交加熱器182,以及CMOS電路中 之LED驅動器29指示激發LED 2 6發光。藉由彼等室之下方 的光二極體184來檢測個別雜交室18〇之任一者中之與 FRET探針182的雜交(見圖54)。 結論 本文所述之裝置' 系統及方法促進以低成本與高速度 φ 及就地醫護之分子診斷試驗。 上述之系統及其成分僅爲說明用途,且在不背離本發 明的精神及廣義發明槪念的範圍下,此領域中之熟知技藝 者將輕易地了解許多變化及修飾。 【圖式簡單說明】 藉由僅參照隨附圖式之實施例將說明本發明之較佳具 體實施例,其中: φ 圖1顯示經配置而用於螢光檢測之試驗模組以及試驗 模組閱讀器; 圖2爲經配置而用於螢光檢測之試驗模組中之電子組 件之圖式槪要; 圖3爲試驗模組閱讀器中之電子組件之圖式槪要; 圖4爲表示LOC裝置之結構之圖式槪要: 圖5爲LOC裝置之透視圖; 圖6爲具有彼此疊置之所有層結構及特徵之LOC裝置 之平面圖; -119- 201211534 圖7爲具有獨立顯示之蓋結構之LOC裝置之平面圖; 圖8爲具有以虛線顯示之內通道及貯槽之頂面透視圖 y 圖9爲具有以虛線顯示之內通道及貯槽之分解頂面透 視圖, 圖10爲顯示上方通道配置之蓋之底面透視圖: 圖11爲獨立顯示CMOS + MST裝置結構之LOC裝置之平 面圖: 圖12爲LOC裝置之樣本入口處之槪要圖; 圖13爲圖6中所示之插入物AA之放大圖; 圖14爲圖6中所示之插入物AB之放大圖; 圖15爲圖13中所示之插入物AE之放大圖; 圖16爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖17爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖18爲闡述插入物AE中之L0C裝置之層合結構之部份 透視圖; 圖19爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖: 圖20爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; 圖21爲闡述插入物AE中之LOC裝置之層合結構之部份 透視圖; -120- 201211534 圖22爲圖21中所示之溶胞試劑貯槽之圖式槪要; 圖23爲闡述插入物AB中之LOC裝置之層合結構之部 份透視圖; 圖24爲闡述插入物AB中之LOC裝置之層合結構之部 份透視圖; 圖2 5‘爲闡述插入物AI中之L〇c裝置之層合結構之部份 透視圖: 圖26爲闡述插入物AB中之LOC裝置之層合結構之部 份透視圖; 圖27爲闡述插入物AB中之L〇c裝置之層合結構之部 份透視圖; 圖28爲闡述插入物AB中之LOC裝置之層合結構之部 份透視圖; 圖29爲闡述插入物AB中之LOC裝置之層合結構之部 份透視圖; 圖30爲擴增混合貯槽及聚合酶貯槽之圖式槪要; 圖31顯示獨立之沸騰引動閥的特徵; 圖32爲圖31中所示之沿線33_33所取得之°沸騰引動閥 之圖式槪要; 圖33爲圖15中所示之插入物AF之放大圖; 圖34爲圖33中所示之沿線35-35所取得之透析部上游 端之圖式槪要; 圖35爲圖6中所示之插入物AC之放大圖; 圖36爲插入物AC中顯示擴增部之進一步放大圖; -121 - 201211534 圖37爲插入物AC中顯示擴增部之進一步放大圖; 圖38爲插入物AC中顯示擴增部之進一步放大圖; 圖39爲圖38中所示之插入物AK內之進一步放大圖; 圖40爲插入物AC中顯示擴增部之進一步放大圖; 圖41爲插入物AC中顯示擴增部之進一步放大圖; 圖42爲插入物AC中顯示擴增部之進一步放大圖; 圖43爲圖42中所示之插入物AL內之進一步放大圖; 圖44爲插入物AC中顯示擴增部之進一步放大圖; 圖45爲圖44中所示之插入物AM內之進一步放大圖; 圖46爲插入物AC中顯示擴增部之進一步放大圖; 圖47爲圖46中所示之插入物AN內之進一步放大圖; 圖48爲插入物AC中顯示擴增部之進一步放大圖; 圖49爲插入物AC中顯示擴增部之進一步放大圖; 圖50爲插入物AC中顯示擴增部之進一步放大圖; 圖51爲擴增部之圖式槪要; 圖52爲雜交部之放大的平面圖: 圖53爲兩個獨立雜交室之進一步放大圖; 圖54爲單一雜交室之圖式槪要: 圖55爲圖6中所示之插入物AG中闡述之增濕器之放大 圖56爲圖52中所示之插入物AD之放大圖; 圖57爲插入物AD內之LOC裝置之分解透視圖: 圖58爲呈封閉配置之FRET探針之圖: 圖59爲呈開放及雜交配置之FRET探針之圖; -122- 201211534 圖60爲激發光對時間之作圖; 圖61爲雜交室陣列之激發光照幾何(excitation illumination geometry)之圖; 圖62爲感測器電子技術LED光照幾何之圖; 圖63爲圖6之插入物AH中所示之濕度感測器之放大的 平面圖; 圖64顯示熱彎曲致動閥之第一變體的特徵; φ 圖65爲沿圖64之線70-70之熱彎曲致動閥的第一變體 之示意圖; 圖66顯示熱彎曲致動閥之第二變體的特徵; 圖67爲沿圖66之線72-72之熱彎曲致動閥的第二變體 之不意圖; 圖68顯示熱彎曲致動閥之第三變體的特徵; 圖69爲沿圖68之線74-74之熱彎曲致動閥的第三變體 之示意圖; φ 圖7〇顯示錯誤耐受閥陣列之特徵; 圖71爲沿圖70之線76-76之錯誤耐受閥陣列之示意圖 » 圖72爲白血球標靶透析部之示意圖; 圖73爲顯示部分光感測器之部分光二極體陣列之示意 圖_ ; 圖74爲單一光二極體之電路圖; 圖75爲光二極體控制信號之時間圖; 圖76爲圖55之插入物AP中所示的蒸發器之放大圖; -123- 201211534 圖77爲雜交室與檢測光二極體及觸發器光二極體之示 意圖; 圖78爲聯結子-引發PCR之圖; 圖79爲具有刺血針之測試模組之示意表示; 圖8 0顯示沸騰引動閥陣列; 圖81爲沿圖80中所示之線97-97截取的沸騰引動閥之 透視圖; 圖82爲LOC變體VII之透視圖; 圖83爲LOC變體VII (具有以虛線表示之內部通道及貯 槽)之蓋之分解頂視圖; 圖84爲用於LOC變體VII之蓋的顯示蓋通道之底視圖 » 圖85爲LOC變體VII之所有層的特徵及結構彼此疊置 之平面圖; 圖86爲LOC變體VII之獨立顯示CMOS + MST的結構之 平面圖; 圖87爲具有獨立顯示之蓋結構的L0C變體VII之平面 圖, 圖88爲圖85中所示之插入物BA之放大圖; 圖89爲圖85中所示之插入物BB之放大圖; 圖90爲圖85中所示之插入物BC之放大圖; 圖91爲圖85中所示之插入物Bd之放大圖; 圖92爲圖88中所示之插入物BE之放大圖; 圖93爲圖92中所示之插入物bf之放大圖; 201211534 圖94爲圖85中所示之插入物BG之放大圖; 圖95爲LOC變體VII之雜交及檢測部之放大圖; 圖96爲LOC變體VII之結構之圖形表示; 圖97爲LOC變體VIII之結構之圖形表示; 圖98爲LOC變體XIV之結構之圖形表示; 圖99爲LOC變體XLI之結構之圖形表示; 圖100爲LOC變體XLII之結構之圖形表示; φ 圖101爲LOC變體XLIII之結構之圖形表示; 圖102爲LOC變體XLIV之結構之圖形表示; 圖103爲LOC變體XLVII之結構之圖形表示; 圖104爲初次擴增期間之引子-聯結的線性螢光探針之 圖; 圖1 05爲後續擴增循環期間之引子-聯結的線性螢光探 針之圖; 圖106A至106F圖形性地說明引子-聯結的螢光莖-及-φ 環探針之熱循環; 圖107爲相關於雜交室陣列及光之二極體激發LED之 槪要說明; 圖108爲用於將光導至LOC裝置之雜交室陣列上之激 發LED以及光學透鏡之槪要說明; 圖109爲用於將光導至LOC裝置之雜交室陣列上之激 發LED、光學透鏡以及光稜鏡之槪要說明; 圖110爲用於將光導至LOC裝置之雜交室陣列上之激 發LED、光學透鏡以及鏡配置之槪要說明; -125- 201211534 圖111爲顯示彼此疊置之所有特徵之平面圖,並顯示 插入物DA至DK之位置; 圖112爲圖111中所示之插入物DG的放大圖; 圖113爲圖111中所示之插入物DH的放大圖; 圖Π4顯示用於光二極體之並聯電晶體之實施例; 圖1 15顯示用於光二極體.之並聯電晶體之實施例; 圖116顯示用於光二極體之並聯電晶體之實施例; 圖11 7爲示差成像器之電路圖; φ 圖118槪略地描述呈莖-及-環結構之負控制螢光探針 » 圖Π 9槪略地描述呈開放結構之圖1 1 8之負控制螢光探 針; 圖120槪略地描述呈莖-及-環結構之正控制螢光探針 &gt; 圖121槪略地描述呈開放結構之圖120之正控制螢光探 針; # 圖122爲電爆閥之平面圖; 圖123爲熱彎曲致動的彎曲及制動閥之平面圖; 圖124爲雙熱彎曲致動的彎曲及制動閥之平面圖; 圖125爲黏滯閥之平面圖; 圖126爲黏滯閥變體之平面圖; 圖127爲除泡閥(bubble break valve)之平面圖; 圖128顯示經配置以與EC L檢測倂用之試驗模組以及 試驗模組閱讀器; -126- 201211534 圖1 2 9爲與ECL檢測一起使用之試驗模組中之電子組 件之圖式槪要; 圖1 3 0顯示試驗模組以及替代性試驗模組閱讀器;及 圖1 3 1顯示試驗模組以及替代性試驗模組閱讀器與儲 存各種資料庫的主機系統》 【主要元件符號說明】 I 〇 :試驗模組 II :試驗模組 1 2 :試驗模組閱讀器 13 :外殼 14:微型- USB接頭 15 :感應器 16 :微型-USB埠 17 :觸控螢幕 18 :顯示螢幕 19 :按鈕 2〇 :開始按鈕 2 1 :蜂巢式無線電 22 :無菌密封帶 23 :無線網路連接 24 :大容器 25 :衛星導航系統 26 :發光二極體 -127- 201211534 2 7 :資料儲存器 2 8 :電話 29 : LED驅動器 30 : LOC裝置 3 1 :電源調節器 32 :電容器 33 :時鐘 3 4 :控制器 φ 35 :暫存器 36 : USB裝置驅動器 37 :驅動器 3 8 :隨機存取記憶體 3 9 :驅動器 40 :快閃記憶體 41 :暫存器 42 :處理器 籲 43 :程式儲存器 44 :光感測器 45 :指示器 46 :蓋 4 7 :模組 48 : CMOS + MST裝置 49 :多孔元件 5 2 :檢測部 -128- 201211534 54 :貯槽 56、 56.1、 56.2、 56.3:貯槽 5 7 :印刷電路板 5 8、5 8 · 1、5 8.2 :•貯槽 60、 60.1-60.12、60.X:貯申 6 2 . X :貯槽 62,62.1、62.2 ' 62.3 ' 62.4 ' 6 4 :下密封 66 :頂部層 6 8 :樣本入口 70 :透析部 72 :廢料通道 73 :蓋閥界面通道 74 :標靶通道 75 :膜 76 :廢料儲器 77 :電阻 78 :貯槽層 80 :蓋通道層 8 1 :剛性鏈結 82 :上密封層 84 :矽基板 86 : CMOS電路 87 : MST層 8 8 :鈍化層 -129 201211534 90 : MST通道 9 1 :撓性聯結 92 :下管道 94 :蓋通道 96 :上管道 97 :壁部 98 :彎液面固定器 1 00 : MST通道層 101 :膝上型電腦/筆記型電腦 102 :毛細作用起始特徵 103 :專用閱讀器 105 :桌上型電腦 106 :沸騰引動閥 107 :電子書閱讀器 108 :沸騰引動閥 109 :平板電腦 110、110.1-110.12、110.X:雜交室陣列 1 1 1 :流行病學資料 112、112.1-112.12、112.X:擴增部 1 1 3 _·遺傳資料 1 1 4 · 1 -1 1 4 · 4 :培養部 1 1 5 :電子化健康記錄 1 1 6 :抗凝血劑 1 1 8 :表面張力閥 -130- 201211534 1 1 9 :液體樣本 1 2 0 :彎液面 1 2 1 :電子化醫療記錄 1 2 2 :通氣孔 1 2 3 :個人健康記錄 1 2 5 :網路 126 :沸騰引動閥 128、128.2、128.3 :表面張力閥 130、130.1-130.3:溶胞部 1 3 1 :混合部 132、1 32.1、1 32.3 :表面張力閥 1 3 3 :培養器入口通道 134 :下管道 1 3 6 :光學窗 138、138.1、138.2、138.X:表面張力閥 140、140.1、140.2、140.X:表面張力閥 1 4 6 :閥入口 148 :閥出口 150 :閥下管道 1 5 1 :閥上管道 1 5 2 :環形加熱器 1 5 3 :閥加熱器接點 1 5 4 :加熱器 1 5 6 :加熱器接點 -131 - 201211534 158 :微通道 160 :出口通道 162 :懸臂部 1 6 4 :孔口 1 6 5 :孔口 166 :毛細作用起始特徵 1 6 8 :透析汲取孔 170 :溫度感測器 φ 174 :液體感測器 175 :擴散屏障 176 :流路 178 :液體感測器 180 :雜交室 1 8 2 :加熱器 184 :光二極體 1 8 5 :主動區 _ 1 86 :探針 1 87 :光二極體 1 8 8 :水貯槽 190 :蒸發器 1 9 1 :環形加熱器 192 :水供應通道 1 93 :上管道 194 :下管道 -132- 201211534 1 9 5 :頂金屬層 1 9 6 :增濕器 1 9 8 :汲取孔 202 :毛細作用起始特徵 204 : MST通道 206 :沸騰引動閥LOC Variant VII Figures 82 to 96 show LOC variant VII 492. Features or structures are denoted by the same element symbols corresponding to the same features or structures in the previous figures. As shown in Figure 96, this variant extracted 290 using parallel nucleic acid amplification, cultured 291, amplified 2 92, and detected 294 human DNA. There are four different amplification sections 112.1 to 112.4 to increase the sensitivity of the analysis and to improve the signal-to-noise ratio of the detected fluorescent light -115-201211534 light. The design also uses the aforementioned white blood cell dialysis section 3 2 8 , lysis reagent 5 6 'chemical lysis section 1 30, restriction enzyme, zygote and linker 58, and culture section 1 14 . However, at the exit of chemical lysis section 130, culture section 114, and amplification sections 112.1 through 112.4, this LOC variant replaces a single active valve with several types of fault-tolerant valve arrays 309, 313, 462, 464, 466, and 468. . The second array of thermal bending actuated valves 308 having a 2x2 array of valve arrays feed different amplicon from each of the amplification sections 112.1 to 112.4 into different hybridization sections 1 1 〇. 1 to 1 1 〇·4, in which Fluorescence is detected by the photo sensor 44. Figure 82 is a perspective view of LOC Variant VII 492 showing via 122 in sample seal layer 82, sample inlet 68 and evaporator 190. The waste sump 76 is desealed so that excess waste can be transferred to the porous member 49 in the test module (see Figure 1). A series of bond pads 104 extend along one edge and the humidity sensor 23 is also exposed to sense the humidity of the microenvironment within the test module. Figure 83 is an exploded perspective view of the cover 46. The upper reservoir 82 is removed to expose the reagent reservoirs (54, 56, 58, 188, 60.1 - 60.4 and 62_1 - 62.4) below the through holes 122. The LOC variant VII 492 has four amplification sections 112 to 112.4, and four amplification mixing reservoirs 60.1 to 60.4 and four polymerase reservoirs 62.1 to 62.4, which provide reagents to individual amplification sections 1 12.1 to 1 12.4 〇 Figure 84 is a bottom side view of the cover 46 showing the structure of the cover channel 94 and the lower portion of the reagent reservoir (60.1, 60.2, ... 62.1, 62.2, etc.). Figure 85 superimposes the features of the cover 46 on the features of the CMOS + MST device 48. Figure 86 - 116 - 201211534 shows the features of the CMOS + MST device 48 separately. Figure 87 shows the cover channel 94, the sump and the valve array assembly separately. The waste channel 72 leads to the bottom side of the waste reservoir 76, while the target channel 74 leads to the chemical lysis unit 130 downstream of the lysis reagent reservoir 56. Figures 88, 89, 90, 91, 92, 93 and 94 are enlarged inserts BA to BG, respectively. Blood samples enter via sample inlet 68. Capillary action draws the sample through the lid channel 94 to the anticoagulant surface tension valve 118 (see Figure 88). The anticoagulant from the φ reservoir 54 is combined with the blood sample and continues to the leukocyte dialysis section 328 (see Figure 87). As best shown in Figure 93, the target channel 74 and the waste cell channel 72 are connected by a series of dialysis MST channels 204 through the MST layer 87. Target channel 74 is coupled to dialysis MST channel 204 via an array of individual 7.5 micron apertures 165. The dialysis MST channel 204 is connected to the waste channel 72 via a dialysis extraction port 168. The dialysis MST channel 204 at the upstream end 502 of the dialysis section does not have a lower conduit. The capillary action causes feature 166 to ensure that the sample stream is not fixed to the array of 7.5 micron orifices, but rather flows through 165 through the φ analysis MST channel 204. Referring again to Figures 85, 87 and 88, a sample stream having a higher target cell concentration flows to the lysis reagent surface tension valve 128. The lysing reagent from the reservoir 56 is combined with the sample and enters the chemical lysis unit 130. The flow stops at the 2x2 error tolerant array 309 of the second type of hot bending actuated valve 308. The mixed lysis reagent is diffused in a pause time programmed CMOS circuit 86 such that a sufficient number of target cells are lysed. After a sufficient time (less than 0.5 seconds), the valve in the fault-tolerant valve array 309 is activated (ie, opened), and the flow continues to the downstream portion of the mixing section 133" -117 - 201211534 when the genetic material is released When it is released, the restriction enzyme, the zygote and the linker from the storage tank 58 are added via the surface tension valve 132. The sample stream continues through the remainder of the mixing section 131 to the lower conduit 134 and into the heated microchannel of the culture section 114 (see Figure 87). The sample stream is flooded with the culture portion 114 until it reaches the 2x2 error-tolerant valve array 3 1 3 . After a sufficient incubation time, the fault tolerance valve array 3 1 3 is activated. The sample stream enters a common supply channel 504 of the amplification section. The common supply channel 504 feeds into the inlets 506, 508, 510, and 512 of the four different amplification sections 112.1 through 112.4 (see Figure 89). Each of the amplification mixing tanks 60.1 to 60.4 has surface tension valves 138 connected to the inlets 506, 508, 510 and 512 of the amplification section, respectively. Similarly, each of the polymerase reservoirs 62.1 through 62.4 has surface tension valves 140 (see Figure 87) that are coupled to the inlets 506, 508, 510, and 512, respectively. By fixing the meniscus, surface tension valves 138 and 140 hold the reagents in their individual reservoirs. As the sample flows down to each inlet, the meniscus is removed and the reagents are combined with the sample (first amplifying the primer, dNTP, and buffer, followed by the polymerase). Each of the four different amplification sections 112.1 to 112.4 is pooled with a sample, amplification mix, and polymerase. The individual flows through each of the amplification sections are stopped at the individual amplification exit error tolerance valve arrays 462, 464, 466, and 468 (see Figure 90). CMOS Controlled Thermal Cycle Amplification of Genetic Material" Referring specifically to Figures 85, 91 and 95, amplification of the outlet valve arrays 462, 464, 466 and 468 is initiated such that the four amplicons pass through different inlets 494, 496, 498, 500 flows into different hybridization chamber arrays 110.1 to 11〇_4. Each of the different hybrid chamber arrays has its own endpoint liquid sensor 178. Feedback from the individual endpoints - 118 - 201211534 The feedback from the detector 178 triggers the hybrid heater 182, and the LED driver 29 in the CMOS circuit indicates that the LED 26 is illuminated. Hybridization with the FRET probe 182 in any of the individual hybridization chambers 18'' is detected by photodiodes 184 underneath their chambers (see Figure 54). Conclusion The device 'system and method described herein promotes molecular diagnostic tests at low cost and high speed φ and in situ care. The above-described system and its components are merely illustrative, and many variations and modifications will be readily apparent to those skilled in the art without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will be described with reference to the accompanying drawings, wherein: FIG. 1 shows a test module and test module configured for fluorescence detection. Figure 2 is a schematic view of the electronic components in the test module configured for fluorescence detection; Figure 3 is a schematic view of the electronic components in the test module reader; Figure 4 is a representation BRIEF DESCRIPTION OF THE DRAWINGS FIG. 5 is a perspective view of a LOC device; FIG. 6 is a plan view of a LOC device having all layer structures and features superposed on each other; -119- 201211534 FIG. 7 is a cover with independent display Figure 8 is a top perspective view of the inner channel and the sump shown in phantom. Figure 9 is an exploded top plan view of the inner channel and the sump shown in phantom. Figure 10 shows the upper channel. A perspective view of the bottom of the configuration cover: Figure 11 is a plan view of the LOC device showing the structure of the CMOS + MST device independently: Figure 12 is a schematic view of the sample inlet of the LOC device; Figure 13 is the insert AA shown in Figure 6. Magnified view; Figure 14 is Figure 6 is an enlarged view of the insert AE shown in Figure 13; Figure 16 is a partial perspective view showing the laminated structure of the LOC device in the insert AE; 17 is a partial perspective view illustrating the laminated structure of the LOC device in the insert AE; FIG. 18 is a partial perspective view illustrating the laminated structure of the LOC device in the insert AE; FIG. 19 is a view illustrating the insert AE Partial perspective view of the laminated structure of the LOC device: Figure 20 is a partial perspective view showing the laminated structure of the LOC device in the insert AE; Figure 21 is a view showing the laminated structure of the LOC device in the insert AE Figure 12 is a schematic view of the lysing reagent sump shown in Figure 21; Figure 23 is a partial perspective view showing the laminated structure of the LOC device in the insert AB; Figure 24 A partial perspective view of the laminated structure of the LOC device in the insert AB; Figure 2 5' is a partial perspective view of the laminated structure of the L〇c device in the insert AI: Figure 26 is an illustration of the insert Partial perspective view of the laminated structure of the LOC device in AB; Figure 27 is an L〇c device illustrating the insert AB Partial perspective view of the laminated structure of the LOC device in the insert AB; Figure 29 is a partial perspective view of the laminated structure of the LOC device in the insert AB. Figure 30 is a schematic view of the amplification mixing tank and the polymerase storage tank; Figure 31 shows the characteristics of the independent boiling pilot valve; Figure 32 is a diagram of the boiling boiling pilot valve taken along line 33_33 shown in Figure 31. Figure 33 is an enlarged view of the insert AF shown in Figure 15; Figure 34 is a schematic view of the upstream end of the dialysis section taken along line 35-35 shown in Figure 33; Figure 35 is Figure 6. A magnified view of the insert AC shown in Fig. 36 is a further enlarged view showing the amplification portion in the insert AC; -121 - 201211534 Fig. 37 is a further enlarged view showing the amplification portion in the insert AC; A further enlarged view of the amplification portion is shown in the insert AC; Fig. 39 is a further enlarged view of the insert AK shown in Fig. 38; Fig. 40 is a further enlarged view showing the amplification portion in the insert AC; A further enlarged view of the amplification portion is shown in the insert AC; FIG. 42 shows the expansion in the insert AC. Figure 4 is a further enlarged view of the insert A shown in Figure 42; Figure 44 is a further enlarged view showing the amplification portion in the insert AC; Figure 45 is a view showing the enlarged portion of the insert AC; Further enlarged view of the insert AM; Fig. 46 is a further enlarged view showing the amplification portion in the insert AC; Fig. 47 is a further enlarged view of the insert AN shown in Fig. 46; Fig. 48 is the insert AC A further enlarged view showing the amplification section; FIG. 49 is a further enlarged view showing the amplification section in the insert AC; FIG. 50 is a further enlarged view showing the amplification section in the insert AC; Figure 52 is an enlarged plan view of the hybridization section: Figure 53 is a further enlarged view of two independent hybridization chambers; Figure 54 is a schematic diagram of a single hybridization chamber: Figure 55 is an insert AG shown in Figure 6. An enlarged view of the humidifier illustrated in Fig. 56 is an enlarged view of the insert AD shown in Fig. 52; Fig. 57 is an exploded perspective view of the LOC device in the insert AD: Fig. 58 is a FRET probe in a closed configuration Figure: Figure 59 is a diagram of a FRET probe in an open and hybrid configuration; -122- 201211534 60 is a plot of excitation light versus time; FIG. 61 is a diagram of excitation illumination geometry of the hybrid chamber array; FIG. 62 is a diagram of sensor illumination technology LED illumination geometry; FIG. 63 is an insert of FIG. An enlarged plan view of the humidity sensor shown in AH; Figure 64 shows the features of the first variant of the thermal bending actuated valve; φ Figure 65 is the thermal bending actuated valve of the line 70-70 of Figure 64 Figure 66 shows a feature of a second variant of the thermal bending actuated valve; Figure 67 is a schematic illustration of a second variant of the thermally bent actuated valve along line 72-72 of Figure 66; A feature of a third variation of the thermal bending actuated valve is shown; Figure 69 is a schematic illustration of a third variation of the thermal bending actuated valve along line 74-74 of Figure 68; φ Figure 7A shows the fault tolerant valve array Figure 71 is a schematic diagram of an error-tolerant valve array along line 76-76 of Figure 70. Figure 72 is a schematic view of a white blood cell target dialysis section; Figure 73 is a schematic view showing a portion of the photodiode array of a portion of the photosensor _ ; Figure 74 is a circuit diagram of a single photodiode; Figure 75 is the time of the photodiode control signal Figure 76 is an enlarged view of the evaporator shown in the insert AP of Figure 55; -123- 201211534 Figure 77 is a schematic diagram of the hybridization chamber and the detection photodiode and the flip-flop photodiode; Figure 78 is the junction-priming Figure 71 is a schematic representation of a test module with a lancet; Figure 80 shows a boiling pilot valve array; Figure 81 is a perspective view of the boiling pilot valve taken along line 97-97 shown in Figure 80; Figure 82 is a perspective view of the LOC variant VII; Figure 83 is an exploded top view of the cover of the LOC variant VII (with internal channels and sump indicated by dashed lines); Figure 84 is a display for the cover of the LOC variant VII. Bottom view of the cover channel » Fig. 85 is a plan view showing the features and structures of all layers of the LOC variant VII superimposed on each other; Fig. 86 is a plan view showing the structure of the CMOS + MST of the LOC variant VII independently; Fig. 87 is a stand-alone display A plan view of the L0C variant VII of the lid structure, Fig. 88 is an enlarged view of the insert BA shown in Fig. 85; Fig. 89 is an enlarged view of the insert BB shown in Fig. 85; Fig. 90 is a view of Fig. 85. An enlarged view of the insert BC is shown; Fig. 91 is an enlarged view of the insert Bd shown in Fig. 85; Figure 92 is an enlarged view of the insert BE shown in Figure 88; Figure 93 is an enlarged view of the insert bf shown in Figure 92; 201211534 Figure 94 is an enlarged view of the insert BG shown in Figure 85; 95 is an enlarged view of the hybridization and detection portion of LOC variant VII; Figure 96 is a graphical representation of the structure of LOC variant VII; Figure 97 is a graphical representation of the structure of LOC variant VIII; Figure 98 is the structure of LOC variant XIV Figure 99 is a graphical representation of the structure of the LOC variant XLI; Figure 100 is a graphical representation of the structure of the LOC variant XLII; φ Figure 101 is a graphical representation of the structure of the LOC variant XLIII; Figure 102 is a LOC variant Graphical representation of the structure of XLIV; Figure 103 is a graphical representation of the structure of the LOC variant XLVII; Figure 104 is a diagram of the primer-linked linear fluorescent probe during the initial amplification; Figure 05 is the period of the subsequent amplification cycle Diagram of the primer-linked linear fluorescent probe; Figures 106A to 106F graphically illustrate the thermal cycling of the primer-linked fluorescent stem-and-φ loop probe; Figure 107 is related to the hybrid chamber array and the second light The polar body is excited by the LED; Figure 108 is the hybrid array for guiding the light to the LOC device. A summary of the excitation LEDs and optical lenses on the column; Figure 109 is a schematic illustration of the excitation LEDs, optical lenses, and apertures used to direct light to the hybrid chamber array of the LOC device; Figure 110 is for a light guide Brief description of the excitation LED, optical lens, and mirror configuration on the array of hybrid chambers to the LOC device; -125- 201211534 Figure 111 is a plan view showing all features superimposed on each other and showing the position of the insert DA to DK; 112 is an enlarged view of the insert DG shown in FIG. 111; FIG. 113 is an enlarged view of the insert DH shown in FIG. 111; and FIG. 4 shows an embodiment of the parallel transistor for the photodiode; An embodiment showing a parallel transistor for an optical diode; Fig. 116 shows an embodiment of a parallel transistor for a photodiode; Fig. 11 is a circuit diagram of the differential imager; φ Fig. 118 schematically depicts a stem -and-negative control fluorescent probe of the ring structure» Fig. 9 schematically depicts the negative control fluorescent probe of Fig. 1 18 in an open structure; Fig. 120 schematically depicts the stem-and-ring structure Positive Control Fluorescent Probes> Figure 121 is a brief description of the open Figure 120 is a schematic view of the fluorescent probe; # Figure 122 is a plan view of the electric blast valve; Figure 123 is a plan view of the bending and brake valve for thermal bending actuation; Figure 124 is a double thermal bending actuated bending and brake valve Figure 125 is a plan view of a viscous valve; Figure 126 is a plan view of a viscous valve variant; Figure 127 is a plan view of a bubble break valve; Figure 128 shows a configuration for use with EC L detection Test module and test module reader; -126- 201211534 Figure 1 2 9 is a schematic diagram of the electronic components in the test module used with ECL detection; Figure 1 3 0 shows the test module and alternative test Module reader; and Figure 1 3 1 shows the test module and the alternative test module reader and the host system for storing various databases. [Key component symbol description] I 〇: Test module II: Test module 1 2 : Test Module Reader 13 : Case 14 : Micro - USB Connector 15 : Sensor 16 : Micro - USB 埠 17 : Touch Screen 18 : Display Screen 19 : Button 2 〇 : Start Button 2 1 : Honeycomb Radio 22 : Aseptic sealing tape 23: wireless internet connection 24: large Container 25: Satellite navigation system 26: Light-emitting diode-127-201211534 2 7: Data storage 2 8: Telephone 29: LED driver 30: LOC device 3 1 : Power conditioner 32: Capacitor 33: Clock 3 4: Control Φ 35 : register 36 : USB device driver 37 : driver 3 8 : random access memory 3 9 : driver 40 : flash memory 41 : register 42 : processor call 43 : program memory 44 : Light sensor 45: indicator 46: cover 4 7 : module 48 : CMOS + MST device 49 : porous element 5 2 : detecting portion -128 - 201211534 54 : sump 56, 56.1, 56.2, 56.3: sump 5 7 : Printed circuit board 5 8 , 5 8 · 1 , 5 8.2 : • Storage tank 60, 60.1-60.12, 60.X: Storage 6 2 . X : Storage tank 62, 62.1, 62.2 ' 62.3 ' 62.4 ' 6 4 : Lower seal 66 : Top layer 6 8 : sample inlet 70 : dialysis section 72 : waste channel 73 : cover valve interface channel 74 : target channel 75 : membrane 76 : waste reservoir 77 : resistor 78 : sump layer 80 : cover channel layer 8 1 : Rigid link 82: upper sealing layer 84: 矽 substrate 86: CMOS circuit 87: MST layer 8 8: passivation layer - 129 201211534 90 : MST channel 9 1 : flexible coupling 92: Pipe 94: Cover Channel 96: Upper Pipe 97: Wall 98: Meniscus Holder 1 00: MST Channel Layer 101: Laptop/Notebook 102: Capillary Action Start Feature 103: Dedicated Reader 105: Desktop computer 106: boiling start valve 107: e-book reader 108: boiling start valve 109: tablet computer 110, 110.1-110.12, 110.X: hybridization chamber array 1 1 1 : epidemiological data 112, 112.1-112.12 , 112.X: Amplification part 1 1 3 _·Genetic data 1 1 4 · 1 -1 1 4 · 4 : Culture part 1 1 5 : Electronic health record 1 1 6 : Anticoagulant 1 1 8 : Surface Tension valve-130- 201211534 1 1 9 : Liquid sample 1 2 0 : Meniscus 1 2 1 : Electronic medical record 1 2 2 : Ventilation hole 1 2 3 : Personal health record 1 2 5 : Network 126 : Boiling Valves 128, 128.2, 128.3: Surface tension valve 130, 130.1-130.3: Lysis part 1 3 1 : Mixing section 132, 1 32.1, 1 32.3: Surface tension valve 1 3 3 : Incubator inlet passage 134: Lower duct 1 3 6: optical window 138, 138.1, 138.2, 138.X: surface tension valve 140, 140.1, 140.2, 140.X: surface tension valve 1 4 6 : valve inlet 148: valve outlet 150: valve under the pipe 1 5 1 : Valve upper pipe 1 5 2 : Ring heater 1 5 3 : Valve heater contact 1 5 4 : Heater 1 5 6 : Heater contact -131 - 201211534 158 : Micro channel 160 : Outlet channel 162 : Cantilever Part 1 6 4 : orifice 1 6 5 : orifice 166 : capillary action initiation feature 1 6 8 : dialysis extraction orifice 170 : temperature sensor φ 174 : liquid sensor 175 : diffusion barrier 176 : flow path 178 : Liquid sensor 180: hybridization chamber 1 8 2 : heater 184 : photodiode 1 8 5 : active region _ 1 86 : probe 1 87 : photodiode 1 8 8 : water storage tank 190 : evaporator 1 9 1 : Ring heater 192 : Water supply channel 1 93 : Upper pipe 194 : Lower pipe - 132 - 201211534 1 9 5 : Top metal layer 1 9 6 : Humidifier 1 9 8 : Draw hole 202 : Capillary action starting feature 204 : MST Channel 206: Boiling Pilot Valve

207 :沸騰引動閥 20 8 :液體感測器 210 :微通道 2 1 2 : MST通道 2 1 8 :電極 220 :電極 222 :間隙 23 2 :濕度感測器 2 3 4 :加熱器 23 6 : FRET探針 23 8 :標靶核酸序列 240 :環 242 :莖 244 :激發光 246 :螢光團 248 :淬熄劑 250 :螢光信號 2 5 2 :光學中心 -133 201211534 2 5 4 :透鏡 2 8 8 :樣本輸入及製備 2 9 0 :萃取階段 291 :培養階段 292 :擴增階段 29 3 :預-雜交過濾純化階段 294 :檢測階段 296 :第一電極 2 9 8 :第二電極 3 0 0 :延遲 301 : LOC裝置 3 02 :變體 304 :致動器 306 :孔口 3 0 8 :閥 3 0 9 :陣列 3 12 :閥 3 1 3 :陣歹IJ 3 1 4 :陣列 3 1 6 :閥 3 1 8 :閥 3 20 :閥 3 22 :閥 324 :流路 201211534 326 :流路 328:白血球透析部 3 76 :導熱柱 3 78 :陽性對照探針 3 80 :陰性對照探針 3 82 :校準室 3 8 4 :鬧極207: boiling pilot valve 20 8 : liquid sensor 210 : microchannel 2 1 2 : MST channel 2 1 8 : electrode 220 : electrode 222 : gap 23 2 : humidity sensor 2 3 4 : heater 23 6 : FRET Probe 23 8 : Target nucleic acid sequence 240 : Ring 242 : Stem 244 : Excitation light 246 : Fluorescent group 248 : Quencher 250 : Fluorescence signal 2 5 2 : Optical center - 133 201211534 2 5 4 : Lens 2 8 8: sample input and preparation 2 90: extraction stage 291: culture stage 292: amplification stage 29 3 : pre-hybridization filtration purification stage 294: detection stage 296: first electrode 2 9 8 : second electrode 3 0 0 : Delay 301: LOC device 3 02 : variant 304 : actuator 306 : orifice 3 0 8 : valve 3 0 9 : array 3 12 : valve 3 1 3 : array IJ 3 1 4 : array 3 1 6 : valve 3 1 8 : Valve 3 20 : Valve 3 22 : Valve 324 : Flow path 201211534 326 : Flow path 328 : White blood cell dialysis section 3 76 : Thermal conductivity column 3 78 : Positive control probe 3 80 : Negative control probe 3 82 : Calibration Room 3 8 4 : Noisy

3 8 6 :閘極 3 8 8 :閘極 3 9 0 :可伸縮刺血針 392 :刺血針釋出按鈕 3 9 3 :闊極 394: MOS電晶體 396: MOS電晶體 398: MOS電晶體 400: MOS電晶體 402: MOS電晶體 4 0 4 : Μ Ο S電晶體 406 :節點 408 :膜密封件 4 1 0 :膜防護件 412 :閥 414 :閥 4 1 6 :閥 -135 201211534 4 1 8 :閥 420 :蓋通道 422 :蓋通道 42 8 :閥上管道 4 3 0 :閥上管道 43 2 :閥下管道 43 4 :閥下管道 43 6 :閥上管道 43 8 :閥上管道 440 :蓋通道 442 :蓋通道 4 4 8 :陣列 4 6 2 :陣列 4 6 4:陣歹丨J 4 6 6 :陣列 4 6 8 :陣列 492 : LOC 變體 494 :入口 496 :入口 498 :入口 500 :入口 506 :入口 508 :入口 5 1 0 :入口 -136- 201211534 5 1 2 :入口 5 1 8 : LOC 變體 5 94 :界面層 600 :旁路通道 602 :界面標靶通道 604 :廢料通道 63 8 :熱溶胞部 641 : LOC變體 673 : LOC 變體 674 : LOC變體 682 :透析部 686 :透析步驟 692 :引子-聯結的線性探針 694 :擴增阻斷物 6 9 6 :探針區域 698 :互補序列 700 :寡核苷酸引子 704 :莖-及-環探針 706 :互補序列 708 :莖股 710 :股 712 :第一光稜鏡 714 :第二光稜鏡 7 1 6 :第一鏡 -137 201211534 7 1 8 :第二鏡 740 :流速感測器 746 : LOC 變體 758: LOC變體 7 6 0 :大組分通道 7 6 2 :小組分通道 764 :開口 766 :盲終端 768 :盲終端 7 7 8 :配置 780 :配置 782 :配置 78 8 :示差成像器電路 790 :像素 792 :虛擬像素 7 94 :讀取_列 795 :讀取_列 796 :陰性對照探針 797 :(電晶體) 798 :陽性對照探針 80 1 :(電晶體) 803 :像素電容器 805 :虛擬像素電容器 807 :開關 201211534 8 0 9 :開關 8 1 1 :開關 8 1 3 :開關 815 :電容器放大器 8 1 7 :示差信號 860 : ECL激發電極 8 70 : ECL激發電極3 8 6 : Gate 3 8 8 : Gate 3 9 0 : Retractable lancet 392 : Lancet release button 3 9 3 : Wide pole 394: MOS transistor 396: MOS transistor 398: MOS transistor 400: MOS transistor 402: MOS transistor 4 0 4 : Μ Ο S transistor 406: node 408: film seal 4 1 0 : membrane guard 412: valve 414: valve 4 1 6 : valve - 135 201211534 4 1 8: Valve 420: Cover channel 422: Cover channel 42 8: Valve upper pipe 4 3 0: Valve upper pipe 43 2: Valve down pipe 43 4: Valve down pipe 43 6 : Valve upper pipe 43 8 : Valve upper pipe 440: Cover channel 442: cover channel 4 4 8 : array 4 6 2 : array 4 6 4: array J 4 6 6 : array 4 6 8 : array 492 : LOC variant 494 : inlet 496 : inlet 498 : inlet 500 : Inlet 506: Inlet 508: Inlet 5 1 0: Inlet - 136 - 201211534 5 1 2 : Inlet 5 1 8 : LOC Variant 5 94: Interfacial layer 600: Bypass channel 602: Interface target channel 604: Scrap channel 63 8 : hot lysate 641 : LOC variant 673 : LOC variant 674 : LOC variant 682 : dialysis section 686 : dialysis step 692 : primer - linked linear probe 694 : amplification blocker 6 9 6 : probe Region 698: Complementary Sequence 700: Oligonucleotide Glycoside primer 704: stem-and-loop probe 706: complementary sequence 708: stem 710: strand 712: first stop 714: second stop 1 7 1 6 : first mirror - 137 201211534 7 1 8 : second mirror 740 : flow rate sensor 746 : LOC variant 758 : LOC variant 7 6 0 : large component channel 7 6 2 : small component channel 764 : opening 766 : blind terminal 768 : blind terminal 7 7 8 : Configuration 780: Configuration 782: Configuration 78 8: Differential Imager Circuitry 790: Pixel 792: Virtual Pixel 7 94: Read_Column 795: Read_Column 796: Negative Control Probe 797: (Crystal) 798: Positive Control Probe 80 1 : (Crystal) 803 : Pixel capacitor 805 : Virtual pixel capacitor 807 : Switch 201211534 8 0 9 : Switch 8 1 1 : Switch 8 1 3 : Switch 815 : Capacitor amplifier 8 1 7 : Differential signal 860 : ECL Excitation electrode 8 70 : ECL excitation electrode

Claims (1)

201211534 七、申請專利範圍: 1. 一種微流體裝置,其包含: 樣本入口,用於接收具有核酸序列之生物材料的樣本 » 聚合酶鏈反應(PCR)部,用於擴增核酸序列; 含有試劑之試劑貯槽;以及, 擴散混合部,用於混合核酸序列與試劑,擴散混合部 具有界定繚繞(tortuous)流路之微通道,繚繞流路具有供 擴散混合試劑與樣本之充分長度;其中於使用時, 樣本經由擴散混合部而自樣本入口流至PCR部。 2. 如申請專利範圍第1項之微流體裝置,其中試劑貯 槽具有具孔口之表面張力閥,表面張力閥係配置以固定試 劑之彎液面,致使彎液面保持試劑於試劑貯槽中直至與樣 本流接觸而移除彎液面使得試劑自試劑貯槽流出。 3. 如申請專利範圍第2項之微流體裝置,其進一步包 含混合部下游之培養部,培養部係經配置以使樣本與限制 酵素之混合物維持於供核酸序列之限制剪切的培養溫度。 4. 如申請專利範圍第3項之微流體裝置’其中微通道 具有蜿蜒結構。 5. 如申請專利範圍第4項之微流體裝置’其中橫越流 路的截面積係介於8平方微米與20,000平方微米之間。 6. 如申請專利範圍第5項之微流體裝置’其進一步包 含混合部上游之溶胞部,溶胞部係經配置以溶胞樣本內之 細胞以釋出其中之遺傳物質。 -140- 201211534 7. 如申請專利範圍第6項之微流體裝置,其進一步包 含溶胞部上游之抗凝劑貯槽,其中樣本爲全血以及抗凝劑 貯槽具有具孔口之表面張力閥,表面張力閥係配置以固定 抗凝劑之彎液面,而保持抗凝劑直至與血液接觸而移除彎 液面以添加抗凝劑至血液。 8. 如申請專利範圍第4項之微流體裝置,其中培養部 具有培養加熱器,培養加熱器係經配置以加熱核酸序列及 φ 限制酵素至培養溫度。 9. 如申請專利範圍第8項之微流體裝置,其進一步包 含支撐基板及其中形成有溶胞部、培養部及PCR部之微系 統技術(MST)層。 10. 如申請專利範圍第9項之微流體裝置,其進一步包 含CMOS電路及至少一個溫度感測器,CMOS電路位於支 撐基板與MST層之間,以及溫度感測器係配置成用於反饋 控制培養加熱器。 φ 11.如申請專利範圍第10項之微流體裝置,其中溶胞 部於下游端具有主動閥以保持液體—段預定的時間。 12. 如申請專利範圍第11項之微流體裝置,其中出口 閥爲具有用於使液體保持於溶胞部中之彎液面固定器之沸 騰引動閥,沸騰引動閥具有用於使液體沸騰之閥加熱器’ 使得彎液面自彎液面固定器釋放且恢復流出溶胞部之毛細 作用驅動流。 13. 如申請專利範圍第12項之微流體裝置’其中彎液 面固定器爲孔口以及閥加熱器係鄰接孔口周邊。 -141 - 201211534 1 4 .如申請專利範圍第1 3項之微流體裝置,其進一步 包含覆蓋MST層之蓋,其中蓋具有限制酵素貯槽、複數個 PCR試劑貯槽及形成於其中之混合部。 15. 如申請專利範圍第1項之微流體裝置,其進一步包 含透析部,其中生物材料包括不同尺寸的細胞,透析部係 配置成劃分大於預定臨界値之細胞成爲部分樣本,其係與 僅含有小於預定臨界値之細胞的樣本之剩餘物分別地進行 處理。 16. 如申請專利範圍第15項之微流體裝置,其中核酸 序列來自小於預定臨界値之細胞。 17. 如申請專利範圍第7項之微流體裝置,其中PCR部 具有複數個各由PCR微通道.之分別的部所形成之伸長的 PCR室,微通道具有由一連串寬曲折所形成之蜿蜒結構, 各寬曲折係形成伸長的PCR室之一者之通道部。 1 8 .如申請專利範圍第8項之微流體裝置,其中各通道 部具有複數個加熱器。 1 9 .如申請專利範圍第1項之微流體裝置,其進一步包 含雜交部,雜交部具有用於與樣本中之標靶核酸序列雜交 之探針陣列;以及, 光感測器,用於檢測探針陣列內之探針雜交。 20.如申請專利範圍第1項之微流體裝置,其中PCR部 的熱循環時間小於30秒》 -142-201211534 VII. Patent Application Range: 1. A microfluidic device comprising: a sample inlet for receiving a sample of a biological material having a nucleic acid sequence » a polymerase chain reaction (PCR) portion for amplifying a nucleic acid sequence; a reagent storage tank; and a diffusion mixing portion for mixing the nucleic acid sequence and the reagent, the diffusion mixing portion having a microchannel defining a tortuous flow path, the winding flow path having a sufficient length for diffusing the mixed reagent and the sample; At the time, the sample flows from the sample inlet to the PCR portion via the diffusion mixing portion. 2. The microfluidic device of claim 1, wherein the reagent storage tank has a surface tension valve having an orifice, and the surface tension valve is configured to fix the meniscus of the reagent, so that the meniscus maintains the reagent in the reagent storage tank until Contact with the sample stream removes the meniscus such that the reagent flows out of the reagent reservoir. 3. The microfluidic device of claim 2, further comprising a culture portion downstream of the mixing portion, the culture portion being configured to maintain a mixture of the sample and the restriction enzyme at a culture temperature limited to shear of the nucleic acid sequence. 4. The microfluidic device of claim 3, wherein the microchannel has a ruthenium structure. 5. The microfluidic device of claim 4, wherein the cross-sectional area across the flow path is between 8 square microns and 20,000 square microns. 6. The microfluidic device of claim 5, further comprising a lysate upstream of the mixing portion, the lysis portion being configured to lyse cells within the sample to release the genetic material therein. -140- 201211534 7. The microfluidic device of claim 6, further comprising an anticoagulant reservoir upstream of the lysis unit, wherein the sample is whole blood and the anticoagulant storage tank has a surface tension valve having an orifice, The surface tension valve is configured to hold the meniscus of the anticoagulant while maintaining the anticoagulant until contact with the blood to remove the meniscus to add anticoagulant to the blood. 8. The microfluidic device of claim 4, wherein the culture portion has a culture heater configured to heat the nucleic acid sequence and φ to limit the enzyme to the culture temperature. 9. The microfluidic device of claim 8, further comprising a support substrate and a microsystem technology (MST) layer having a lysis portion, a culture portion, and a PCR portion formed therein. 10. The microfluidic device of claim 9, further comprising a CMOS circuit and at least one temperature sensor, the CMOS circuit being between the support substrate and the MST layer, and the temperature sensor configured for feedback control Train the heater. Φ 11. The microfluidic device of claim 10, wherein the lysate has an active valve at the downstream end to maintain the liquid for a predetermined period of time. 12. The microfluidic device of claim 11, wherein the outlet valve is a boiling pilot valve having a meniscus holder for holding the liquid in the lysis section, the boiling pilot valve having a boiling fluid for boiling The valve heater 'releases the meniscus from the meniscus holder and resumes the capillary action drive flow out of the lysis section. 13. The microfluidic device of claim 12, wherein the meniscus holder is an orifice and the valve heater is adjacent to the periphery of the orifice. The microfluidic device of claim 13 further comprising a cover covering the MST layer, wherein the cover has a restriction enzyme storage tank, a plurality of PCR reagent storage tanks, and a mixing portion formed therein. 15. The microfluidic device of claim 1, further comprising a dialysis section, wherein the biological material comprises cells of different sizes, and the dialysis section is configured to divide cells larger than a predetermined threshold into a partial sample, the system comprising only The remainder of the sample of cells smaller than the predetermined threshold is processed separately. 16. The microfluidic device of claim 15 wherein the nucleic acid sequence is from a cell that is less than a predetermined threshold. 17. The microfluidic device of claim 7, wherein the PCR portion has a plurality of elongated PCR chambers each formed by a respective portion of the PCR microchannel, the microchannel having a series of wide tortuous turns Structure, each wide tortuous line forms a channel portion of one of the elongated PCR chambers. 18. The microfluidic device of claim 8, wherein each channel portion has a plurality of heaters. The microfluidic device of claim 1, further comprising a hybridization portion having a probe array for hybridizing with a target nucleic acid sequence in the sample; and a photo sensor for detecting Probe hybridization within the probe array. 20. The microfluidic device of claim 1, wherein the thermal cycle time of the PCR portion is less than 30 seconds. -142-
TW100119249A 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer TW201211534A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201211534A true TW201211534A (en) 2012-03-16

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Family Applications After (21)

Application Number Title Priority Date Filing Date
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Country Status (1)

Country Link
TW (22) TW201211534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181465B2 (en) 2018-02-01 2021-11-23 Toray Industries, Inc. Device for evaluating particles in liquid and method for operating same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055963A1 (en) * 2012-10-05 2014-04-10 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
WO2016004539A1 (en) * 2014-07-11 2016-01-14 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
JP6805166B2 (en) * 2015-04-22 2020-12-23 バークレー ライツ,インコーポレイテッド Culture station for microfluidic devices
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
EP3710790A4 (en) * 2017-11-17 2021-01-20 Siemens Healthcare Diagnostics, Inc. Sensor assembly and method of using same
EP3737502A4 (en) * 2018-01-11 2021-03-10 Nanocav, LLC Microfluidic cellular device and methods of use thereof
EP3560593B1 (en) 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
WO2021216627A1 (en) * 2020-04-21 2021-10-28 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833A (en) * 2021-06-18 2022-12-20 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same
TWI840226B (en) * 2023-05-17 2024-04-21 博錸生技股份有限公司 Automatic sample preparation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181465B2 (en) 2018-02-01 2021-11-23 Toray Industries, Inc. Device for evaluating particles in liquid and method for operating same

Also Published As

Publication number Publication date
TW201211533A (en) 2012-03-16
TW201219115A (en) 2012-05-16
TW201209404A (en) 2012-03-01
TW201211532A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201211242A (en) 2012-03-16
TW201209406A (en) 2012-03-01
TW201209407A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201209158A (en) 2012-03-01
TW201211241A (en) 2012-03-16
TW201209405A (en) 2012-03-01
TW201211540A (en) 2012-03-16
TW201209403A (en) 2012-03-01
TW201219776A (en) 2012-05-16
TW201211539A (en) 2012-03-16
TW201211538A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201211243A (en) 2012-03-16
TW201219770A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TW201211534A (en) Microfluidic device with PCR section and diffusion mixer
TW201213798A (en) Microfluidic thermal bend actuated surface tension valve
US20110160090A1 (en) Nanocrystal-Based Lateral Flow Microarrays and Low-Voltage Signal Detection Systems
TW200406487A (en) Microfluidic system for analyzing nucleic acids