TW201209406A - Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample - Google Patents

Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample Download PDF

Info

Publication number
TW201209406A
TW201209406A TW100119246A TW100119246A TW201209406A TW 201209406 A TW201209406 A TW 201209406A TW 100119246 A TW100119246 A TW 100119246A TW 100119246 A TW100119246 A TW 100119246A TW 201209406 A TW201209406 A TW 201209406A
Authority
TW
Taiwan
Prior art keywords
channel
probe
nucleic acid
sample
hybrid
Prior art date
Application number
TW100119246A
Other languages
Chinese (zh)
Inventor
Mehdi Azimi
Kia Silverbrook
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201209406(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201209406A publication Critical patent/TW201209406A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A test module for concentrating pathogens in a biological sample, the test module having an outer casing with a receptacle for receiving the sample, a dialysis device in fluid communication with the receptacle and configured to separate the pathogens from other constituents in the sample, and, a lab-on-a-chip (LOC) device being in fluid communication with the dialysis device and configured to analyze the pathogens.

Description

201209406 六、發明說明: 【發明所屬之技術領域】 本發明係關於採用微系統技術(MST )之診斷裝置。 更詳細地,本發明係關於用於分子診斷學之微流體的及生 化的處理及分析。 【先前技術】201209406 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a diagnostic apparatus using Microsystem Technology (MST). In more detail, the present invention relates to the processing and analysis of microfluidics and biosynthesis for molecular diagnostics. [Prior Art]

分子診斷學已然興起成爲一種保證能在疾病症狀顯現 前即有效地早期偵測疾病之領域。分子診斷性測試可用來 偵測: •遺傳性疾病 •後天罹患之疾病 •感染性疾病 •易感染健康相關疾病之遺傳素質 由於分子診斷性測試具有高度精確性及快速週轉期, 故而有潛力可減少無效健康照護服務之發生、增進醫療成 效、改善疾病管理及提供個體化之患者照護。分子診斷學 之許多技術係基於對從生物樣本(例如血液或唾液)萃取 及擴增之特定核酸(包括去氧核糖核酸(DNA)及核糖核 酸(RNA )兩者)進行偵測及鑑定。核酸鹼基之互補特性 允許合成之DNA短序列(寡核苷酸)結合(雜合)到用於 核酸測試之特殊核酸序列上。若發生雜合,則互補序列會 出現在試樣中。如此一來,會令例如預測某人在未來可能 會發生的疾病、確定感染性病原體之身份及致病性、或者 -5- 201209406 確定某人對一藥物將有之反應等成爲可能。 以核酸爲基礎之分子診斷性測試 以核酸爲基礎之測試具有四個明確步驟: 1. 試樣製備 2. 核酸萃取 3 ·(任意地)核酸擴增 4.偵測Molecular diagnostics has emerged as an area that guarantees effective early detection of disease before the onset of disease symptoms. Molecular diagnostic tests can be used to detect: • Hereditary diseases • Acquired diseases • Infectious diseases • Genetic quality of susceptible diseases that are highly susceptible to health and high turnover due to the high degree of accuracy and rapid turnover of molecular diagnostic tests Invalid health care services, improve medical outcomes, improve disease management and provide individualized patient care. Many techniques in molecular diagnostics are based on the detection and identification of specific nucleic acids (both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleic acid base allows the synthetic DNA short sequence (oligonucleotide) to bind (hybrid) to a particular nucleic acid sequence for use in nucleic acid testing. If a hybrid occurs, the complementary sequence will appear in the sample. This will, for example, make it possible to predict a person's possible future illness, determine the identity and pathogenicity of an infectious pathogen, or -5 - 201209406 to determine that someone will respond to a drug. Nucleic Acid-Based Molecular Diagnostic Testing Nucleic acid-based testing has four distinct steps: 1. Sample preparation 2. Nucleic acid extraction 3 (optional) nucleic acid amplification 4. Detection

許多試樣類型可用於基因分析,例如血液、尿液、痰 及組織試樣。由於並非所有試樣皆可代表疾病進程,所以 該診斷測試可決定所需之試樣類型。此等試樣具有多種不 同組成,不過通常僅有一種組成受到關注。舉例來說,血 液中紅血球濃度高會抑制對病原性有機體之偵測。因此, 在核酸測試開始時通常會需要進行純化及/或濃縮步驟》Many sample types are available for genetic analysis, such as blood, urine, sputum, and tissue samples. Since not all samples represent disease progression, this diagnostic test determines the type of sample required. These samples have a variety of different compositions, but usually only one composition is of interest. For example, high red blood cell concentrations in blood can inhibit the detection of pathogenic organisms. Therefore, purification and/or concentration steps are usually required at the beginning of the nucleic acid test.

血液爲一種較常採用之試樣類型。它具有三個主要的 成分:白血球(白細胞)、紅血球(紅細胞)及凝血細胞 (血小板)。凝血細胞可促進凝血且在細胞外仍有活性》 爲了抑制血液凝集,試樣在進行純化及濃縮之前會先混入 化學劑如乙二胺四乙酸(EDTA )。通常會把紅血球從試 樣中除去以濃縮目標細胞。於人類,紅血球約占血液細胞 物質之約99%,不過由於其不具細胞核所以不帶DNA »再 者,紅血球含有某些成分例如血紅素會干擾下游核酸擴增 過程(下文將予以說明)。除去紅血球一事可藉由以胞溶 溶液有區別地胞溶紅血球而保留其它細胞物質完整,然後 -6- 201209406 利用離心把完整之細胞物質從試樣中分離出來而達成。如 此可提供目標細胞之濃縮液且從該等濃縮液中萃取出核酸Blood is a type of sample that is more commonly used. It has three main components: white blood cells (white blood cells), red blood cells (red blood cells), and blood clotting cells (platelets). Blood coagulation cells promote coagulation and remain active outside the cell. In order to inhibit blood agglutination, the sample is mixed with a chemical such as ethylenediaminetetraacetic acid (EDTA) before purification and concentration. Red blood cells are usually removed from the sample to concentrate the target cells. In humans, red blood cells account for about 99% of blood cell material, but because they do not have a nucleus, they do not carry DNA. Furthermore, red blood cells contain certain components such as heme that interfere with the downstream nucleic acid amplification process (described below). Removal of red blood cells can be achieved by distinguishing cytolytic red blood cells in a cytolytic solution to retain other cellular material integrity, and then -6-201209406 using centrifugation to separate intact cellular material from the sample. Thus, a concentrate of the target cells can be provided and nucleic acids can be extracted from the concentrates

用來萃取核酸之明確操作流程將視該試樣及欲進行之 診斷檢定而定。舉例來說,用來萃取病毒RN A所用之操作 流程就與用來萃取基因組DN A之操作流程顯著不同。然而 ,從目標細胞萃取核酸通常涉及了先進行細胞胞溶步驟, 接著再核酸純化。該細胞胞溶步驟會瓦解細胞及細胞膜, 釋出遺傳物質。此舉通常會使用胞溶清潔劑例如十二烷基 硫酸鈉來完成,其亦可令細胞內存在之大量蛋白質變性。 而後該核酸可用醇類(通常爲冰·冷卻乙醇或異丙醇 )沉澱步驟或者透過固相純化步驟來純化,該固相純化步 驟典型地係於氧化矽基質於管柱、樹脂或順磁性珠粒於存 在高濃度離液鹽下進行,接著清洗,而後以低離子強度緩 衝液來溶離。在核酸沉澱前之一任意步驟爲可添加蛋白酶 ,其可消化蛋白質以進一步純化試樣。 其它胞溶方法還包括透過超音波振盪之機械性胞溶及 把試樣加熱到94°C來瓦解細胞膜之熱胞溶。 已萃取的材料中可還含有極少量之目標DN A或RN A, 尤其是當該目標物係來自致病來源時更常如此。核酸擴增 法提供把低濃度之特定目標物選擇性地擴增(即複製)到 可偵測程度之濃度的能力。 最常使用之核酸擴增技術爲聚合酶連鎖反應(PCR) 。PCR已爲此領域所習知且此類型反應之詳細說明可見於 201209406 E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008。 PCR爲一種效力強大的技術,其可於複雜的DNA背景 中擴增一目標DNA序列。如果想要(藉著PCR )擴增RNA ,則必需先用被稱爲反轉錄酶之酵素來把RNA轉錄成 cDNA (互補DNA)。然後,所製成的cDNA再用PCR來擴 增。 PCR爲一種指數過程,只要支持該反應之條件允許, 該過程就會持續進行下去。該反應之成分有:The precise procedure for extracting nucleic acids will depend on the sample and the diagnostic test to be performed. For example, the procedure used to extract the viral RN A is significantly different from the protocol used to extract the genomic DNA DN A. However, the extraction of nucleic acids from a target cell typically involves a cell lysis step followed by nucleic acid purification. The cytolysis step of the cell disrupts the cells and cell membranes and releases the genetic material. This is usually done with a cytosolic detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cell. The nucleic acid can then be purified by an alcohol (usually ice-cold ethanol or isopropanol) precipitation step or by a solid phase purification step, typically based on a ruthenium oxide substrate on a column, resin or paramagnetic beads. The granules are carried out in the presence of a high concentration of chaotropic salts, followed by washing, followed by dissolution with a low ionic strength buffer. Any step prior to precipitation of the nucleic acid is the addition of a protease that digests the protein to further purify the sample. Other methods of cytolysis also include mechanical cytolysis by ultrasonic oscillations and heating of the sample to 94 °C to disrupt the thermal cytolysis of the cell membrane. The extracted material may also contain a very small amount of target DN A or RN A, especially when the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target at a low concentration to a detectable level. The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). PCR has been known in the art and a detailed description of this type of reaction can be found in 201209406 E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008. PCR is a powerful technique for amplifying a target DNA sequence in a complex DNA background. If you want to amplify RNA (by PCR), you must first use an enzyme called reverse transcriptase to transcribe RNA into cDNA (complementary DNA). Then, the prepared cDNA was further amplified by PCR. PCR is an exponential process that continues as long as the conditions supporting the reaction permit. The ingredients of this reaction are:

1. 引子對:其爲與目標序列之側翼區互補且長約10-30個核苷酸之單股短DNA 2. DNA聚合酶:一種能合成DNA之耐熱酶 3. 去氧核糖核苷三磷酸(dNTPs):提供倂入新合成 之DNA股之核苷酸 4-緩衝液:提供DNA合成之最佳化學環境 PCR典型地涉及把此等反應物加到含有萃取出之核酸 的小管(〜10_50微升)中。把該小管放到熱循環器(一種 裝置,其能讓反應在一系列不同溫度下反應不同長短的時 間)內。各個熱循環的標準操作流程涉及了變性期、結合 期及延伸期。延伸期有時被稱爲引子延伸期。除了這種三 步驟流程以外,也可採用兩步驟之熱流程,於此類流程中 是把結合期及延展期合倂。變性期典型地涉及把反應溫度 升高到90-95 t以令DNA股變性;於結合期,溫度會被降 到約50-60 °C好讓引子結合;然後於延伸期,溫度會被升 201209406 高到最適合DNA聚合酶活動之60-72 °C以供引子延伸。此 過程會反覆循環約20-40次,最終的結果爲製造出數百萬 個兩引子之間的目標序列拷貝。 還有許多相對於該PCR標準流程之變化流程,其中有 例如多重PCR、連接子-帶頭(linker-primed) PCR、直接 PCR、串聯PCR、即時PCR及逆轉錄酶PCR等,其現已發展 出來用於分子診斷上。1. Primer pair: a single strand of short DNA complementary to the flanking region of the target sequence and about 10-30 nucleotides long. 2. DNA polymerase: a thermostable enzyme capable of synthesizing DNA 3. Deoxyribonucleoside III Phosphoric acid (dNTPs): Nucleotide-buffered to provide newly synthesized DNA strands: The best chemical environment for DNA synthesis PCR typically involves the addition of such reactants to the vials containing the extracted nucleic acids (~ 10_50 microliters). Place the tube in a thermal cycler (a device that allows the reaction to react at different temperatures for varying lengths of time). The standard operating procedures for each thermal cycle involve the denaturation phase, the binding phase, and the extension phase. The extension period is sometimes referred to as the primer extension period. In addition to this three-step process, a two-step thermal process can be used, in which the combination period and extension period are combined. The denaturation phase typically involves raising the reaction temperature to 90-95 t to denature the DNA strand; during the binding phase, the temperature is lowered to about 50-60 °C to allow the primer to bind; then during the extension, the temperature is raised. 201209406 Up to 60-72 °C for DNA polymerase activity for primer extension. This process is repeated approximately 20-40 times, with the end result of producing a copy of the target sequence between millions of two primers. There are also a number of changes to the standard flow of the PCR, including, for example, multiplex PCR, linker-primed PCR, direct PCR, tandem PCR, real-time PCR, and reverse transcriptase PCR, which have been developed. For molecular diagnosis.

多重PCR係在單一PCR混合物中使用多個引子組以製 造對不同DNA序列特異之不同長短之擴增子。藉著同時瞄 準多個基因,可於單一測試-操作時得到更多的資訊,否 則會需要進行數個實驗才行。不過多重PCR的最適化更爲 困難且需要選取具有相似結合溫度之引子、具有類似長度 及鹼基組成之擴增子以確保各擴增子之擴增效能係相等的 連接子-帶頭PCR (亦以接合連接子PCR爲人習知)爲 一種無需目標-特異性引子就能使複雜的DNA混合物中基 本上所有的DN A序列皆可進行核酸擴增之方法。該方法涉 及了首先先用適當的限制性內切酶(酵素)來消化目標 DN A族群。然後把具有適當懸垂端之雙股寡核苷酸連接子 (亦稱爲連接子)用接合酶酵素接合到目標DN A片段之末 端上。接著使用對該連接子序列特異之寡核苷酸引子來進 行核酸擴增。藉著此種方式,由連接子寡核苷酸包夾之所 有DNA源片段皆可被擴增。 直接PCR描述一種未進行任何核酸萃取或僅有些微核 201209406Multiplex PCR uses multiple primer sets in a single PCR mix to create amplicons of different lengths that are specific for different DNA sequences. By targeting multiple genes at the same time, more information can be obtained in a single test-operation, otherwise several experiments will be required. However, the optimization of multiplex PCR is more difficult and it is necessary to select primers with similar binding temperatures, and amplicon of similar length and base composition to ensure the amplification efficiency of each amplicon is equal to the leader-to-head PCR (also It is known to use conjugative linker PCR as a method for nucleic acid amplification of substantially all DN A sequences in a complex DNA mixture without the need for a target-specific primer. This method involves first digesting the target DN A population with an appropriate restriction enzyme (enzyme). A double-stranded oligonucleotide linker (also referred to as a linker) having a suitable overhanging end is then ligated to the end of the target DN A fragment with a ligase enzyme. Nucleic acid amplification is then carried out using oligonucleotide primers specific for the linker sequence. In this way, all DNA source fragments that are sandwiched by the linker oligonucleotide can be amplified. Direct PCR describes one that has not been subjected to any nucleic acid extraction or only some micronuclei 201209406

酸萃取就直接在試樣上進行PCR之系統。人們早已同意未 純化之生物試樣內有多種成分(例如血液內的血紅素成分 )會抑制P C R反應。傳統地,P C R在製備反應混合物前需 要先把目標核酸徹底純化。然而,藉著適當的改變化學性 質及試樣濃度,可在僅有極少DNA純化下進行PCR或直接 作PCR。直接PCR對PCR化學性質之調整包括增加緩衝液 強度、使用具有高活性及連續效能之聚合酶以及加入能螯 合可能的聚合酶抑制劑之添加劑。Acid extraction is performed on the sample directly on the PCR system. It has long been agreed that various components (e.g., heme components in blood) in unpurified biological samples inhibit the P C R reaction. Traditionally, P C R requires thorough purification of the target nucleic acid prior to preparation of the reaction mixture. However, by appropriately changing the chemical properties and sample concentration, PCR or direct PCR can be performed with minimal DNA purification. Direct PCR modulating PCR chemistry includes increasing buffer strength, using polymerases with high activity and continuous potency, and adding additives that chelate possible polymerase inhibitors.

串聯PCR係採用兩個獨立場次之核酸擴增反應以增加 對的擴增子被擴增的可能性。串聯PCR的一種形式爲巢床 (nested) PCR,其係使用兩對PCR引子於各別的核酸擴增 場次中擴增單一基因座。第一對引子會雜合到位於該目標 核酸序列外之區域之核酸序列上。第二輪擴增所用之第二 對引子(巢床引子)會結合到該第一 PCR產物內且製造出 含有該目標核酸之第二PCR產物,它會比第一PCR產物更 短。此策略背後的邏輯爲:如果在第一輪核酸擴增反應中 有不正確的基因座錯誤地被擴增,那麼該基因座被第二對 引子再次擴增的可能性會極低,如此一來即可確保其特異 性。 即時PCR或者定量PCR係用來測量pcr產物的即時量 。藉著使用含有螢光團之探針或螢光染料以及一組反應標 準物,可以定量試樣中核酸的初始量。此舉對於分子診斷 特別有用,因爲於分子診斷中治療方案將因試樣內之病原 體載量(pathogen load)而異。 -10- 201209406 逆轉錄酶PCR(RT-PCR)係用來從RNA擴增DNA。逆 轉錄酶爲一種能把RNA逆轉錄成互補DNA(cDNA)之酵素 ,該cDNA而後藉著PCR擴增。RT-PCR廣泛地用於基因表 現特徵描繪,用來決定基因表現或鑑定RNA轉錄物之序列 ,包括轉錄起始及終止位點。其亦可用來擴增RNA病毒像 是人體免疫缺損病毒或C型肝炎病毒。Tandem PCR uses two independent fields of nucleic acid amplification reactions to increase the likelihood that the pair of amplicons will be amplified. One form of tandem PCR is nested PCR, which uses two pairs of PCR primers to amplify a single locus in each nucleic acid amplification field. The first pair of primers will hybridize to the nucleic acid sequence located in the region outside the target nucleic acid sequence. A second pair of primers (nested bed primers) for use in the second round of amplification will bind to the first PCR product and produce a second PCR product containing the target nucleic acid which will be shorter than the first PCR product. The logic behind this strategy is that if an incorrect locus is incorrectly amplified in the first round of nucleic acid amplification reactions, the probability that the locus will be amplified again by the second pair of primers will be extremely low. Come to ensure its specificity. Real-time PCR or quantitative PCR is used to measure the instantaneous amount of PCR product. The initial amount of nucleic acid in the sample can be quantified by using a probe containing a fluorophore or a fluorescent dye and a set of reaction standards. This is particularly useful for molecular diagnostics because the therapeutic regimen in molecular diagnostics will vary depending on the pathogen load within the sample. -10- 201209406 Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. Reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), which is then amplified by PCR. RT-PCR is widely used for gene expression characterization to determine gene expression or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It can also be used to amplify RNA viruses such as human immunodeficiency virus or hepatitis C virus.

等溫擴增是另一種核酸擴增形式,其擴增反應不靠目 標DN A之熱變性,所以不需要複雜的機械裝置。故而等溫 核酸擴增法可在原位進行或者於實驗室外的環境中輕易地 操作。已有多種等溫核酸擴增方法被描述,包括股置換擴 增法、轉錄媒介擴增法、核酸序列爲主擴增法、重組酶聚 合酶擴增法、滾環式擴增法、網狀分枝擴增法、解旋酶-依賴等溫DN A擴增法及環媒介等溫擴增法。 等溫核酸擴增方法不靠著對模板DN A持續加熱變性來 製造當作進一步擴增之模板之單股分子,而是於恆定溫度 下靠著其它方法例如利用特異限制性內切酶以酵素於DN A 分子上切出缺口,或使用酶來使DN A股分離。 股置換擴增法(SDA )係靠著特定的限制性內切酶於 半-修飾DNA中未修飾的那股切出缺口之能力以及5’-3’外 切酶-缺損聚合酶其延展及置換下游股鏈之能力。指數性 核酸擴增係藉著結合有意義反應及反意義反應來達成,其 中有意義反應股置換(得到之序列)會被當作反意義反應 之模板。此反應係採用切口酶(其不以傳統的方式切斷 DNA,而是在雙股DNA其中的一股切出缺口),例如N. -11 - 201209406Isothermal amplification is another form of nucleic acid amplification whose amplification does not depend on the thermal denaturation of the target DN A, so no complicated mechanical means are required. Therefore, the isothermal nucleic acid amplification method can be carried out in situ or easily in an environment outside the laboratory. A variety of isothermal nucleic acid amplification methods have been described, including strand displacement amplification, transcription vector amplification, nucleic acid sequence amplification, recombinase polymerase amplification, rolling circle amplification, mesh Branch amplification, helicase-dependent isothermal DN A amplification and circular medium isothermal amplification. The isothermal nucleic acid amplification method does not rely on the continuous heat denaturation of the template DN A to produce a single molecule as a template for further amplification, but at a constant temperature by other methods such as using a specific restriction enzyme to the enzyme. Cut a gap in the DN A molecule or use an enzyme to separate the DN A strand. The strand displacement amplification method (SDA) relies on the ability of a specific restriction enzyme to cleave the unmodified gap in the semi-modified DNA and the extension of the 5'-3' exonuclease-deficient polymerase. The ability to replace the downstream strands. Exponential nucleic acid amplification is achieved by combining meaningful and antisense reactions, in which a meaningful reaction strand substitution (the resulting sequence) is used as a template for an antisense reaction. This reaction uses a nicking enzyme (which does not cut the DNA in a conventional manner, but instead cuts out a gap in the double-stranded DNA), such as N. -11 - 201209406

Alwl、N. BstNBl及Mlyl。SDA已藉著使用一熱穩定限制 性內切酶(Jval)及熱穩定外切酶缺損-聚合酶聚合 酶)之組合來改良。此組合顯示出能使擴增1 〇8倍之反應 的擴增效能增加到擴增1 〇1(1倍,故而可使用此一技術來擴 增獨特的單拷貝分子。Alwl, N. BstNBl and Mlyl. SDA has been improved by the use of a combination of a thermostable restriction endonuclease (Jval) and a thermostable exonuclease-polymerase polymerase. This combination shows an amplification efficiency that increases the amplification of 1 〇 8 fold response to amplification 1 〇 1 (1 fold, so this technique can be used to amplify unique single copy molecules.

轉錄媒介擴增法(TMA)及核酸序列爲主之擴增法( NASBA )係使用RNA聚合酶來複製RNA序歹IJ而非對應的基 因組DNA。此技術會使用兩個引子及兩或三種酶:RNA聚 合酶,逆轉錄酶及任意地RNase H(若該逆轉錄酶不具有 RNase活性)。一引子含有RNA聚合酶之啓動子序列。於 核酸擴增之第一步驟中,此引子會雜合到該目標核糖體 RN A ( rRNA )之一既定位點。逆轉錄酶可藉著從該啓動子 引子之3'端延伸來製造出目標rRNA之DNA拷貝。於產生之 RNA : DNA雙股體中該RNA會被逆轉錄酶擁有的RNase活 性或者添加的RNase Η分解掉。接著,讓第二引子結合到 該DN Α拷貝上。一股新的DNA股藉著逆轉錄酶從該引子之 末端合成,而形成雙股DNA分子。RNA聚合酶可辨識出 DN A模板內的啓動子序列且引發轉錄。每一個新合成的 RNA擴增子會再—進入此過程且作爲新一輪複製的模板。 於重組酶聚合酶擴增法(RPA )中,特異DNA片段之 等溫擴增係藉著讓相反的寡核苷酸引子結合到模板DN A上 且藉著DN A聚合酶之延長作用而達成。不需使用熱來令該 雙股DNA ( dsDNA )模板變性。替代地,RPA係採用重組 酶-引子複合體來掃描dsDN A且促進同源位點之股交換。生 -12- at . - 201209406 . • - ·. V.· 成的結構會藉著單股DNA結合蛋白與被置換之模板股間的 交互作用穩定下來,如此可防止引子因分支遷移而被逐出 。分解酶的拆解作用留下了親股置換性DNA聚合酶之寡核 苷酸(例如枯草芽孢桿菌·δα£^·//Μ·ϊ Pol I ( Bsu)之 大片段)的3’端,接下來引子會延伸。指數性核酸擴增可 藉著循環地重覆此過程來完成。The transcription vector amplification method (TMA) and the nucleic acid sequence-based amplification method (NASBA) use RNA polymerase to replicate the RNA sequence 歹IJ instead of the corresponding genomic DNA. This technique uses two primers and two or three enzymes: RNA polymerase, reverse transcriptase and optionally RNase H (if the reverse transcriptase does not have RNase activity). A primer contains a promoter sequence of RNA polymerase. In the first step of nucleic acid amplification, the primer is hybridized to one of the target ribosomes RN A ( rRNA ). The reverse transcriptase can produce a DNA copy of the target rRNA by extending from the 3' end of the promoter. In the resulting RNA: DNA, the RNA is decomposed by the RNase activity possessed by the reverse transcriptase or the added RNase. Next, let the second primer be bound to the DN Α copy. A new DNA strand is synthesized from the end of the primer by reverse transcriptase to form a double stranded DNA molecule. RNA polymerase recognizes the promoter sequence within the DN A template and initiates transcription. Each newly synthesized RNA amplicon will re-enter this process and serve as a template for a new round of replication. In recombinant enzyme polymerase amplification (RPA), isothermal amplification of specific DNA fragments is achieved by binding the opposite oligonucleotide primer to template DN A and by extension of DN A polymerase. . There is no need to use heat to denature the double strand DNA (dsDNA) template. Alternatively, RPA uses a recombinase-introduction complex to scan dsDN A and promote share exchange of homologous sites.生-12- at . - 201209406 . • - · · V.· The structure is stabilized by the interaction between the single-stranded DNA-binding protein and the replaced template strand, thus preventing the primer from being evicted due to branch migration. . The dissociation of the degrading enzyme leaves the 3' end of the oligonucleotide of the parental replacement DNA polymerase (for example, a large fragment of Bacillus subtilis δα£^·//Μ·ϊ Pol I (Bsu)). Next the primer will extend. Exponential nucleic acid amplification can be accomplished by cyclically repeating this process.

解旋酶-依賴擴增法(HDA )係模擬活體系統,使用 DN A解旋酶來生成供引子雜合之單股模板且接著用DN A聚 合酶令引子延伸。於HAD反應之第一步驟中,該解旋酶會 沿著該目標DN A移動,瓦解連接兩股的氫鍵,爾後分離的 兩股會與單股結合蛋白結合。經解旋酶暴露出來之單股目 標區域允許引子結合。而後該DN A聚合酶會使用游離的去 氧核糖核苷三磷酸(dNTPs)從各引子之3’端延伸而形成 兩個DN A複製體。這兩個複製的dsDN A股會各別地進入下 一個HAD循環,造成該目標序列之指數性核酸擴增。The helicase-dependent amplification method (HDA) mimics the living system, using DN A helicase to generate a single-strand template for hybridization of the primer and then extending the primer with DN A polymerase. In the first step of the HAD reaction, the helicase moves along the target DN A, disintegrating the two hydrogen bonds, and the two separated molecules will bind to the single-stranded binding protein. The single-stranded target area exposed by the helicase allows primer binding. The DN A polymerase then extends from the 3' end of each primer using free deoxyribonucleoside triphosphates (dNTPs) to form two DN A replicators. These two replicated dsDN A shares will each enter the next HAD cycle, causing exponential nucleic acid amplification of the target sequence.

其它以DN A爲基礎之等溫技術包括滾環式擴增法( RCA ) ’其中該DNA聚合酶可讓引子沿著環狀的DNA模板 不斷地延伸,而產生含有許多個環狀模板之重複拷貝之長 條DN A產物。在反應結束時,該聚合酶可生成數千個環狀 模板的拷貝,且此拷貝鏈會與原本的目標DNA繫在一起。 此舉可供該目標物作空間解析以及信號之快速核酸擴增。 在1小時內可產生高達101 2個模板拷貝。網狀分支擴增爲— 種RC A的變化’其採用閉鎖的環狀探針(C_探針)或鎖式 探針及具有高連續效能之DNA聚合酶於等溫條件下指數性 -13- 201209406 地擴增該C-探針。Other DN A-based isothermal techniques include rolling circle amplification (RCA), where the DNA polymerase allows the primer to extend continuously along the circular DNA template, resulting in a repeat containing many circular templates. Copy the strip of DN A product. At the end of the reaction, the polymerase produces a copy of thousands of circular templates that are ligated to the original target DNA. This allows for spatial resolution of the target and rapid nucleic acid amplification of the signal. Up to 101 2 template copies can be produced in one hour. The reticular branch is amplified as a change in RC A. It uses a locked circular probe (C_probe) or a padlock probe and a DNA polymerase with high continuous efficiency under isothermal conditions. - 201209406 Amplify the C-probe.

環媒介等溫擴增法(LAMP )具有高選擇性且採用 DNA聚合酶及一組經過特別設計、可辨識該目標DNA上總 共六個獨特序列之四個引子。一個含有該目標DN A之有意 義股及反意義股序列之內引子能引發LAMP。後續由一外 引子帶頭之股置換DNA合成作用則釋放了單股DNA。此等 單股DN A可當作第二內引子及外引子(其雜合到該目標序 列的另一端)帶頭之DN A合成之模板,其可形成莖環狀 DNA結構。在接下來的LAMP循環中,一內引子會雜合到 該產物的環上且引發置換DN A合成反應,產生原本的莖環 狀DNA及新的莖環狀DNA (其莖長爲原本之兩倍)。該循 環反應持續著且不到一個小時即可累積1〇9個目標物拷貝 。終產物爲具有數個目標物倒置複本及具有多環類花椰菜 結構(其係由目標物同一股內交錯倒置之複本相互結合所 形成)之莖環狀DNA。The circular medium isothermal amplification method (LAMP) is highly selective and employs DNA polymerase and a set of four primers that are specifically designed to recognize a total of six unique sequences on the target DNA. An intrinsic strand containing the target DN A and an intron within the antisense strand sequence can trigger LAMP. Subsequent replacement of DNA synthesis by a foreign-inducing strand releases a single strand of DNA. These single-stranded DN A can be used as a template for the synthesis of DN A, which is the lead of the second and second primers, which are heterozygous to the other end of the target sequence, which can form a stem-loop DNA structure. In the next LAMP cycle, an internal primer will hybridize to the loop of the product and initiate a replacement DN A synthesis reaction, producing the original stem-loop DNA and the new stem-loop DNA (the stem length is twice the original ). This cycle of reaction continues and less than an hour can accumulate 1 〇 9 copies of the target. The final product is a stem-loop DNA having a plurality of inverted copies of the target and a polycyclic broccoli structure formed by the incorporation of a replica of the target in the same strand.

在核酸擴增完成後,擴增產物必需加以分析以確定是 否已產生所需的擴增子(目標核酸之擴增量)。分析產物 的方法從簡單地透過凝膠電泳測定擴增子大小到使用DNA 雜合鑑定該擴增子之核苷酸組成。 凝膠電泳爲一種檢查核酸擴增反應是否產生所需擴增 子之最簡單的方法。凝膠電泳會對凝膠基質施加電場來讓 DNA片段分離開來。帶有負電荷之DNA片段會以不同速度 (主要是由其大小來決定)於該基質上移動。當電泳結束 後,可將凝膠內的片段染色令其肉眼可見。溴化乙錠爲一 -14- 201209406 種常用染料,其於UV光線下會發出螢光。After completion of the nucleic acid amplification, the amplification product must be analyzed to determine if the desired amplicon (amplification amount of the target nucleic acid) has been produced. The method of analyzing the product ranges from simply measuring the size of the amplicon by gel electrophoresis to identifying the nucleotide composition of the amplicon using DNA hybridization. Gel electrophoresis is the easiest way to check if a nucleic acid amplification reaction produces the desired amplicon. Gel electrophoresis applies an electric field to the gel matrix to separate the DNA fragments. Negatively charged DNA fragments move at different speeds (mainly by their size) on the substrate. When the electrophoresis is over, the fragments in the gel can be stained to make them visible to the naked eye. Ethidium bromide is a commonly used dye of -14-201209406, which emits fluorescence under UV light.

該等片段之大小係與DNA尺寸標準參照物(DNA階梯 ,其含有已知大小之DNA片段)比對來決定,,該等參照物 會置於擴增子旁與其同時跑膠。因爲該寡核苷酸引子係結 合到包夾該目標DNA之特異位點上,所以該擴增產物的大 小可藉著凝膠上已知尺寸大小的譜帶來預估及偵測。爲了 可靠地鑑定該擴增子,或者是如果同時產生多個擴增子, 那麼通常會用DNA探針雜合該擴增子。 DNA雜合係指藉著互補鹼基的配對反應來形成雙股 DNA。用來正面鑑定一特異擴增產物所用之DNA雜合反應 需要使用長度約20個核苷酸長之DNA探針。如果該探針的 序列係與該擴增子(目標)DN A序列互補,那麼雜合反應 會在溫度、pH及離子強度之有利條件下發生。如果雜合發 生了,表示受到關注的基因或DN A序列已出現在原始試樣 中0 光學偵測爲偵測雜合最常用的方法。擴增子或探針皆 可透過螢光或電化學發光來標記而放射出光線。此等方法 對於怎樣製造發光基團激發狀態之方式有所不同,不過兩 者都能共價標記核苷酸股鏈。於電化學發光(ECL ),光 線係在發光團分子或錯合物受到電流刺激後產生》於螢光 ,係使用能導致放射反應之激發光來照射。 螢光係使用一照明源(其能提供可被螢光分子吸收之 波長的激發光)及一偵測單元來偵測。該偵測單元包括一 能偵測放射信號之光感測器(例如光電倍增管或電荷耦合 -15- 201209406 裝置(CCD )陣列),以及防止激發光被含納於光感測器 輸出之機制(例如波長-選擇濾波器)。該螢光分子會對 激發光反應而放射出斯托克斯頻移光線,此放射光線會被 偵測單元匯集。斯托克斯頻移爲放射光線與被吸收之激發 光間的頻率差異或波長差異。The size of the fragments is determined by alignment with a DNA size standard reference (DNA ladder containing DNA fragments of known size) which are placed next to the amplicon and run at the same time. Since the oligonucleotide primer binds to a specific site that encloses the target DNA, the size of the amplification product can be estimated and detected by a known size spectrum on the gel. In order to reliably identify the amplicon, or if multiple amplicons are simultaneously produced, the amplicon is usually hybridized with a DNA probe. DNA hybridization refers to the formation of double-stranded DNA by a pairing reaction of complementary bases. The DNA hybridization reaction used to positively identify a specific amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the sequence of the probe is complementary to the amplicon (target) DN A sequence, the heterozygous reaction will occur under conditions of temperature, pH and ionic strength. If heterozygous occurs, the gene or DN A sequence indicating interest has appeared in the original sample. 0 Optical detection is the most common method for detecting heterozygosity. Amplicon or probe can be labeled by fluorescence or electrochemiluminescence to emit light. These methods differ in how the luminescent group is excited to form, but both can covalently label the nucleotide strand. In electrochemiluminescence (ECL), the light is generated after the luminescent group molecules or complexes are stimulated by a current, and is irradiated with excitation light that causes a radiation reaction. The fluorescent system uses an illumination source (which provides excitation light of a wavelength that can be absorbed by the fluorescent molecules) and a detection unit to detect. The detecting unit includes a photo sensor capable of detecting a radiation signal (for example, a photomultiplier tube or a charge coupled -15-201209406 device (CCD) array), and a mechanism for preventing excitation light from being included in the output of the photo sensor. (eg wavelength-select filter). The fluorescent molecules react with the excitation light to emit Stokes-shifted light, which is collected by the detecting unit. Stokes shifts the frequency difference or wavelength difference between the emitted light and the absorbed excitation light.

ECL發光係使用對所採用之ECL物種之放射波長敏感 之光感測器來偵測。舉例來說,過渡金屬-配體錯合物會 放射出可見光波長之光線,因此可採用傳統的光二極體及 CCD當作光感測器。ECL的一項優點爲:若排除掉周圍光 線,那麼ECL發光會是偵測系統中唯一存在的光線,其可 增進偵測敏感度。The ECL illumination is detected using a light sensor that is sensitive to the radiation wavelength of the ECL species being used. For example, a transition metal-ligand complex will emit light at visible wavelengths, so conventional photodiodes and CCDs can be used as photosensors. An advantage of ECL is that if the ambient light is excluded, the ECL illumination is the only light present in the detection system that enhances detection sensitivity.

微陣列允許同時進行數百或數千個DN A個雜合實驗。 微陣列爲分子診斷學中有力的工具,其可於單一測試中篩 選數千種疾病或偵測多種感染性病原體之存在。微陣列係 由許多固定在基材上、呈斑點狀之不同DN A探針所組成。 該目標DN A (擴增子)首先會先用一螢光或發光分子(可 於核酸擴增期間或之後)標記,然後施加到探針陣列中。 將該微陣列培育於控制溫度、潮溼的環境下數小時或數天 ,於這段期間探針與擴增子間會發生雜合。培育之後,必 需用一系列緩衝液來沖洗該微陣列以除去未結合之股鏈。 一旦清洗完畢,就用空氣注(通常爲氮氣注)來把微陣列 表面吹乾。雜合及清洗的嚴格性爲嚴苛程度。嚴格性不夠 會造成高度的非特異性結合。過度嚴格會導致無法適當地 結合,使得敏感度降低。雜合係透過已標記擴增子(其已 -16- 201209406 與互補探針形成雜合體)之光線放射來偵測。 微陣列發出之螢光會使用一微陣列掃描器來偵測,該 微陣列掃描器通常爲電腦控制之倒立式掃描性螢光共軛焦 顯微鏡,其典型地會使用雷射來激發螢光染料及使用光感 測器(例如光電倍增管或CCD )來偵測發射信號。該螢光 分子會放射出斯托克斯頻移光線(如上所述),其會由偵 測單元予以匯集。Microarrays allow hundreds or thousands of DN A heterozygous experiments to be performed simultaneously. Microarrays are powerful tools in molecular diagnostics that can screen thousands of diseases or detect the presence of multiple infectious pathogens in a single test. The microarray consists of a number of different DN A probes that are fixed to the substrate and are spotted. The target DN A (amplicon) is first labeled with a fluorescent or luminescent molecule (either during or after nucleic acid amplification) and then applied to the probe array. The microarray is incubated in a controlled temperature, humid environment for hours or days, during which time the probe and the amplicon will hybridize. After incubation, the microarray must be rinsed with a series of buffers to remove unbound strands. Once the cleaning is complete, the surface of the microarray is blown dry with an air injection (usually a nitrogen injection). The stringency of hybridization and cleaning is severe. Insufficient stringency can result in a high degree of non-specific binding. Excessive rigor can result in inability to properly combine, resulting in reduced sensitivity. The heterozygous line is detected by the light emission of the labeled amplicons, which have formed a hybrid with the complementary probes of -16-201209406. The fluorescence emitted by the microarray is detected using a microarray scanner, typically a computer controlled inverted scanning fluorescent conjugated focus microscope, which typically uses a laser to excite the fluorescent dye. And using a light sensor (such as a photomultiplier tube or CCD) to detect the transmitted signal. The fluorescent molecules emit Stokes-shifted light (as described above), which are collected by the detection unit.

放射出的螢光必需予以匯集、將其與未吸收之激發光 波長分離開來且傳輸到偵測器。於微陣列掃描器中經常採 用共軛焦設計,藉著位於影像平面上的共軛焦針孔來除去 離焦資訊。此舉只容許對焦部份的光線被偵測。避免來自 物件焦距平面上方及下方之光線進入偵測器,藉此提高信 號對雜訊之比率。偵測到的螢光光子會被偵測器轉化成電 能,接著再轉化成一數位訊號。此數位訊號會譯成代表一 既定像素之螢光強度的數字。該陣列之每一特性皆由一或 多個此等像素所組成。掃描的最終結果爲陣列表面的影像 。微陣列上之各個探針的確切序列及位置乃爲已知,因此 可同時鑑定及分析該等雜合之目標序列。 更多關於螢光探針之資訊可見於: http : "www.premierbiosoft.com/tech_notes/FRET_ probe, html以及 http : "www.invitrogen.com/site/us/en/home/The emitted fluorescence must be collected, separated from the wavelength of the unabsorbed excitation light, and transmitted to the detector. Conjugate focal designs are often used in microarray scanners to remove defocus information by conjugated pinholes located on the image plane. This will only allow the light in the focus portion to be detected. Avoid light from above and below the object's focal plane into the detector, thereby increasing the ratio of signal to noise. The detected fluorescent photons are converted into electrical energy by the detector and then converted into a digital signal. This digital signal is translated into a number representing the intensity of the fluorescence of a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. The exact sequence and position of each probe on the microarray is known, so that the hybrid target sequences can be identified and analyzed simultaneously. More information on fluorescent probes can be found at: http : "www.premierbiosoft.com/tech_notes/FRET_probe, html and http : "www.invitrogen.com/site/us/en/home/

References/Molecular-Probes-The-Handbook/Technical-References/Molecular-Probes-The-Handbook/Technical-

Notes-and-Product-Highlights/Fluorescence- Resonance- 201209406Notes-and-Product-Highlights/Fluorescence- Resonance- 201209406

Energy-Transfer-FRET. html 定點照護之分子診斷學Energy-Transfer-FRET. html Molecular Diagnostics for Point-of-care

雖然分子診斷測試能提供這些好處,不過臨床實驗室 內此類型測試之增長卻比預期要慢且實驗室醫藥實務中此 等測試只佔極少部份。此主要是由於使用核酸之測試相較 於不涉及核酸之其它測試方法要更複雜且更昂貴》在臨床 環境中欲廣泛地採用分子診斷測試則與裝備儀器的開發密 切相關,該等裝備儀器必需能顯著地降低費用、提供從頭 (試樣加工)到尾(產生結果)快速且自動化的檢定,且 其無需大量人力干涉操作。 用以服務醫生診所、醫院臨床或甚至於用戶爲主的居 家場所之定點照護技術具有許多好處,包括: •可快速獲得結果,致使得以立即治療及改善照護品 質》Although molecular diagnostic tests can provide these benefits, the growth of this type of test in clinical laboratories is slower than expected and only a small fraction of these tests are performed in laboratory medicine practice. This is mainly because the test using nucleic acid is more complicated and more expensive than other test methods that do not involve nucleic acid. In the clinical environment, the extensive use of molecular diagnostic tests is closely related to the development of equipped instruments. Significantly reduces costs, provides fast and automated verification from scratch (sample processing) to tail (results), and it does not require extensive human intervention. There are many benefits to using a point-and-care approach to a doctor's office, a hospital's clinical or even a user-focused home, including: • Quick results, immediate treatment and improved care quality.

•只需測試極少試樣即可獲得實驗室品質之測試結果 之能力。 •減輕臨床工作量。 •減少實驗室負荷及藉著減少行政工作增進辦公效能 •透過縮短滯院時間、首次就醫門診諮詢獲至結論所 需時間以及減少樣本處理、儲存及運輸時間來改善每名患 者之治療成本。 •加快達到臨床治理結論例如感染控制及抗生素使用 -18- 201209406 以晶片上實驗室(LOC)爲基礎之分子,診斷學• Ability to obtain laboratory-quality test results by testing very few samples. • Reduce clinical effort. • Reduce laboratory load and improve office performance by reducing administrative work. • Improve the cost of treatment for each patient by reducing the time spent on hospitalization, the time required to reach a conclusion for first-time medical outpatient consultation, and reducing the time spent on sample handling, storage, and transportation. • Accelerate clinical governance conclusions such as infection control and antibiotic use -18- 201209406 On-wafer laboratory (LOC)-based molecules, diagnostics

以微流體技術爲基礎之分子診斷系統提供了能自動操 作且加速分子診斷檢定之裝置。更快速的偵測時間主要是 基於涉及之體積極小、採自動化操作及該微流體裝置之診 斷流程步驟爲低開銷內建級聯。體積爲奈升及微升規模亦 減少了試劑耗損及成本。晶片上實驗室(L 0 C )裝置爲一 種常見的微流體裝置之形式。LOC裝置具有整合於單一支 撐基材(通常爲矽)上之MST層內之MST結構(用來進行 流體處理)。使用半導體工業之VLSI (極大規模積體化) 蝕刻技術來製造可使LOC裝置之單位成本很低。然而,欲 控制流體流經該LOC裝置之流動、添加試劑、調控反應條 件等等則需要龐大的外接管路及電子器件。事實上把LOC 裝置連接到此等外部裝置限制了分子診斷用之LOC裝置在 實驗室環境的應用。此等外部設備之成本及其操作的複雜 性使得以LOC-爲基礎之分子診斷無法成爲定點照護設備之 實用方案。 基於以上觀點,人們需要一種能用於定點照護之LOC 裝置爲主之分子診斷系統。 【發明內容】 發明槪述 本發明之不同態樣描述於以下編號的段落中。 -19- 201209406 GBS005.1本發明之此態樣係提供一種用於試樣流體 之診斷分析之微流體裝置,該微流體裝置包含: 複數個晶片上實驗室(LOC )裝置,各裝置皆具有一 支撐基材及一用來處理該試樣流體之微系統技術(MST ) 層;及Molecular diagnostic systems based on microfluidics provide devices that automate and accelerate molecular diagnostic assays. The faster detection time is mainly based on the active small size of the body involved, the automated operation and the diagnostic process steps of the microfluidic device as a low overhead built-in cascade. The volume of nanoliters and microliters also reduces reagent wear and cost. The on-wafer laboratory (L 0 C) device is in the form of a common microfluidic device. The LOC unit has an MST structure (for fluid processing) integrated into the MST layer on a single struts (usually ruthenium). The use of the VLSI (very large scale integrated) etching technology of the semiconductor industry to manufacture can make the unit cost of the LOC device very low. However, large amounts of external piping and electronics are required to control the flow of fluid through the LOC device, to add reagents, to regulate reaction conditions, and the like. In fact, the connection of LOC devices to such external devices limits the use of LOC devices for molecular diagnostics in laboratory environments. The cost of such external devices and the complexity of their operation make LOC-based molecular diagnostics a practical solution for point-of-care devices. Based on the above points, there is a need for a molecular diagnostic system based on a LOC device that can be used for fixed-point care. SUMMARY OF THE INVENTION Various aspects of the invention are described in the following numbered paragraphs. -19- 201209406 GBS005.1 This aspect of the invention provides a microfluidic device for diagnostic analysis of a sample fluid, the microfluidic device comprising: a plurality of on-wafer laboratory (LOC) devices, each device having a support substrate and a microsystem technology (MST) layer for treating the sample fluid;

一與該複數個LOC裝置互連之頂蓋,該頂蓋具有一用 來與至少兩個LOC裝置上之MST層間建立流體連通之頂蓋 通道。 GBS005.2 較佳地,各LOC裝置中之MST層界定有至 少一用來處理該試樣流體之微通道,且該頂蓋被配置成能 在一LOC裝置之一微通道與至少另一 LOC裝置之一微通道 間建立流體連接。 GBS005.3較佳地,該頂蓋被配置成能藉著毛細作用 於諸LOC裝置間拉引液流。A top cover interconnecting the plurality of LOC devices, the top cover having a top cover channel for establishing fluid communication with the MST layers on the at least two LOC devices. GBS005.2 Preferably, the MST layer in each LOC device defines at least one microchannel for processing the sample fluid, and the cap is configured to be capable of one microchannel in one LOC device and at least another LOC A fluid connection is established between the microchannels of one of the devices. Preferably, the top cover is configured to draw fluid flow between the LOC devices by capillary action.

GBS005.4較佳地,該頂蓋具有一與該頂蓋通道流體 連通之貯存器,該貯存器被配置成能藉著試劑彎液面之表 面張力來留住試劑。 GBS005.5 較佳地,該複數個LOC裝置乃爲第一 LOC 裝置及第二LOC裝置,該第一 LOC裝置具有一透析區,其 能接受試樣且把大於閾値尺寸之成分與小於閩値尺寸之成 分分離開來。 GBS005.6較佳地,該透析區具有相當於該閾値尺寸 之小孔且大於該閾値之成分包括白血球及小於該閾値之成 分包括病原體。 -20- 201209406 GBS005.7較佳地,該第二LOC裝置具有一含有探針 核酸序列之雜合區’該探針核酸序列能與試樣中之目標核 酸序列雜合而形成探針-目標物雜合體,該雜合區被配置 成能偵測該探針-目標物雜合體。 GBS005.8較佳地,該頂蓋具有一層狀結構且頂蓋通 道於其中一層內形成而貯存器則於另—相鄰層中形成。Preferably, the top cover has a reservoir in fluid communication with the top cover channel, the reservoir being configured to retain reagent by surface tension of the meniscus of the reagent. GBS005.5 Preferably, the plurality of LOC devices are a first LOC device and a second LOC device, the first LOC device having a dialysis zone capable of accepting a sample and having a composition greater than a threshold size and less than 闽値The components of the size are separated. Preferably, the dialysis zone has apertures corresponding to the threshold 値 size and components greater than the threshold 包括 include white blood cells and components less than the threshold 包括 include pathogens. -20- 201209406 GBS005.7 Preferably, the second LOC device has a hybrid region containing a probe nucleic acid sequence which can hybridize with a target nucleic acid sequence in the sample to form a probe-target A heterozygous region configured to detect the probe-target hybrid. GBS005.8 Preferably, the top cover has a layered structure and the top cover channels are formed in one of the layers and the reservoir is formed in the other adjacent layer.

GBS005.9較佳地,該層狀結構包括一用來於該頂蓋 通道及諸LOC裝置間建立流體連通之界面層。 GBS005.10較佳地,該第二LOC上之MST層具有一阻 滯試樣從MST通道往頂蓋通道流動之活性閥,直到該活性 閥被啓動才允許試樣重新流動。 GBS 005.il較佳地,該試樣爲血液且貯存器內之試 劑爲抗凝血劑且頂蓋被配置成能在血液進入該透析區前先 讓該抗凝血劑與血液相混合。 GBS 00 5. 12較佳地,該微流體裝置還具有一胞溶區 ,其與含有胞溶試劑之胞溶試劑貯存器流體連通,該胞溶 區被配置成能胞溶細胞及釋出其內之基因物質。 GBS 005.1 3較佳地,該微流體裝置還具有一用來擴 增流體內核酸序列之核酸擴增區。 GBS 005.14較佳地,該核酸擴增區爲聚合酶連鎖反 應(PCR)區且該頂蓋具有一含有dNTPs及引子之pCR試劑 貯存器以在擴增該核酸序列之前先把該等PCR試劑與試樣 混合在一起。 GBS00 5.1 5較佳地,該頂蓋具有一含有聚合酶之聚 -21 - 201209406 合酶貯存器以在擴增該核酸序列之前先把該酶與流體混合 0 GBS005.1 6較佳地’該微流體裝置還有CMOS電路, 其位於該支撐基材與M S T層之間以操作性地控制該p c r區GBS005.9 Preferably, the layered structure includes an interfacial layer for establishing fluid communication between the cap passage and the LOC devices. Preferably, the MST layer on the second LOC has an active valve that blocks the flow of the sample from the MST channel to the cap channel until the active valve is activated to allow the sample to reflow. GBS 005.il Preferably, the sample is blood and the reagent in the reservoir is an anticoagulant and the cap is configured to allow the anticoagulant to mix with the blood prior to entering the dialysis zone. GBS 00 5.12 Preferably, the microfluidic device further has a cytolytic zone in fluid communication with a lysing reagent reservoir containing a cytolytic reagent, the cytolysis zone being configured to lysate cells and release the same The genetic material inside. GBS 005.1 3 Preferably, the microfluidic device further has a nucleic acid amplification region for amplifying the nucleic acid sequence within the fluid. GBS 005.14 Preferably, the nucleic acid amplification region is a polymerase chain reaction (PCR) region and the cap has a pCR reagent reservoir containing dNTPs and primers to bind the PCR reagents before amplifying the nucleic acid sequence. The samples are mixed together. GBS00 5.1 5 Preferably, the cap has a poly-21 - 201209406 synthase reservoir containing a polymerase to mix the enzyme with the fluid prior to amplifying the nucleic acid sequence. Preferably, the The microfluidic device also has a CMOS circuit between the support substrate and the MST layer to operatively control the pcr region

GBS005.1 7較佳地,該微流體裝置還有—具有雜合 室之雜合區,該等雜合室內含有能結合到該流體內之目標 核酸序列上之探針核酸序列。 GBS005.18較佳地,該探針核酸序列包含電化學發 光共振能量轉移(ERET)探針。 GBS005.1 9較佳地,各雜合室具有一能偵測ERET探 針發光之光二極體,該發光係ERET探針與目標核酸序列 結合時產生之反應。 GBS005.20較佳地,該微流體裝置還有複數個用來 控制試樣溫度之加熱器。Preferably, the microfluidic device further has a heterozygous region having a hybrid chamber containing a probe nucleic acid sequence capable of binding to a target nucleic acid sequence within the fluid. GBS005.18 Preferably, the probe nucleic acid sequence comprises an Electrochemical Luminescence Resonance Energy Transfer (ERET) probe. Preferably, each of the hybrid chambers has a photodiode capable of detecting the luminescence of the ERET probe, which reacts with the target nucleic acid sequence. GBS005.20 Preferably, the microfluidic device also has a plurality of heaters for controlling the temperature of the sample.

多重表面-微機電晶片(Multiple surface-micromachined chips)被流體地整合以提供更充份及更進 步之功能性。該微流體多晶片組件可提供更高模組性。該 組件內之表面微機電晶片比起能提供該組件所有功能之單 體晶片要小得多且不成比例地便宜許多。採用功能最佳的 較便宜製程以製造該微流體多晶片組件之各個表面-微機 電晶片之構成部份,例如唯-bioMST透析晶片可省略所有 CMOS製程步驟及可採用廉價的玻璃晶圓。 GB S006.1本發明之此態樣提供一種測試模組,其包 -22- 201209406 含: 一可供手持攜帶之外殼; 一用以收納試樣流體之貯槽;及 一與置入口流體連通之微流體裝置,該微流體裝置具 有複數個晶片上實驗室(LOC )裝置以及一與各LOC裝置 關係密切之頂蓋;其中 該頂蓋被配置成能於至少兩個LOC裝置間建立流體連Multiple surface-micromachined chips are fluidly integrated to provide more adequate and progressive functionality. The microfluidic multi-wafer assembly provides greater modularity. The surface MEMS wafer within the assembly is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. The use of a less expensive process with the best function to fabricate the various surface-micro-electrode wafer components of the microfluidic multi-chip assembly, such as a only-bioMST dialysis wafer, can omit all CMOS process steps and can employ inexpensive glass wafers. GB S006.1 provides a test module according to this aspect of the invention, the package -22-201209406 includes: a housing for carrying by hand; a storage tank for accommodating the sample fluid; and a fluid connection with the inlet a microfluidic device having a plurality of on-wafer laboratory (LOC) devices and a top cover associated with each LOC device; wherein the cap is configured to establish a fluid connection between at least two LOC devices

通。 GBS006.2較佳地,各LOC裝置皆具有一支撐基材及 —位於該支撐基材上之微系統技術(MST )層及一覆蓋在 該MST層上之頂蓋,該MST層倂有諸MST通道及複數個與 該頂蓋流體連通之流體連接件(fluidic connections)且該 頂蓋具有與各LOC裝置之流體連接件流體連通之頂蓋通道 GBS006.3較佳地,該試樣流體爲生物試樣且各MST 通道皆有1平方微米到400平方微米大小之橫切面積以生化 處理該生物試樣內之諸成分,各頂蓋通道皆有大於400平 方微米之橫切面積以接受生物試樣及把生物試樣內之細胞 運送到MST通道內之既定部位。 GBS006.4較佳地,該外殼具有一刺血針以刺扎病患 手指以取得加到該.試樣置入口之血液試樣。 GBS 006.5較佳地,該刺血針可在壓縮及伸展位置間 切換,該外殼具有一偏動機構可使該刺血針偏移到伸展位 置,以及一使用者啓動掣(user actuated catch )用來把刺 -23- 201209406 血針收回壓縮位置直到使用者再度啓動爲止。 GBS006.6較佳地,該頂蓋被配置成能藉著毛細作用 驅使液流流經諸頂蓋通道。 GBS006.7較佳地,該頂蓋具有一與頂蓋通道流體連 通之貯存器,該貯存器被配置成能透過試劑彎液面之表面 張力來留住試劑。through. GBS006.2 Preferably, each LOC device has a support substrate and a microsystem technology (MST) layer on the support substrate and a top cover overlying the MST layer. An MST channel and a plurality of fluidic connections in fluid communication with the cap and having a cap channel GBS006.3 in fluid communication with a fluid connection of each LOC device, preferably the sample fluid is The biological sample and each MST channel has a cross-sectional area of 1 square micrometer to 400 square micrometer to biochemically process the components in the biological sample, and each of the cap channels has a cross-sectional area larger than 400 square micrometers to receive the biological The sample and the cells in the biological sample are transported to a predetermined location within the MST channel. Preferably, the housing has a lancet for puncturing the patient's finger to obtain a blood sample that is applied to the sample inlet. GBS 006.5 Preferably, the lancet is switchable between a compressed and extended position, the housing having a biasing mechanism to bias the lancet to the extended position, and a user actuated catch To retract the lance-23-201209406 blood needle to the compression position until the user starts again. GBS006.6 Preferably, the cap is configured to drive fluid flow through the cap channels by capillary action. Preferably, the top cover has a reservoir in fluid communication with the top cover channel, the reservoir being configured to retain the reagent by the surface tension of the meniscus of the reagent.

GBS006.8較佳地,該複數個LOC裝置乃爲第一 LOC 裝置及第二LOC裝置,該第一 LOC裝置具有一透析區,其 能接受試樣且把大於閾値尺寸之成分與小於閾値之成分分 離開來。 GBS0 06.9較佳地,該透析區具有相當於該閩値尺寸 之小孔且大於該閩値之成分包括白血球及小於該閩値之成 分包括病原體。GBS006.8 Preferably, the plurality of LOC devices are a first LOC device and a second LOC device, the first LOC device having a dialysis zone capable of accepting a sample and having a composition greater than a threshold size and a threshold less than The ingredients are separated. Preferably, the dialysis zone has apertures corresponding to the size of the crucible and components greater than the crucible include white blood cells and components smaller than the crucible include pathogens.

GBS006.1 0較佳地,該第二LOC裝置具有一含有探針 核酸序列之雜合區,該探針核酸序列能與試樣中之目標核 酸序列雜合以形成探針-目標物雜合體,該雜合區被配置 成能偵測該探針-目標物雜合體。 GBS 00 6.1 1較佳地,該頂蓋具有一層狀結構且頂蓋 通道於其中一層內形成而貯存器則於另一相鄰層中形成。 GBS006.12 較佳地,該層狀結構包括一用來於該頂 蓋通道及諸LOC裝置間建立流體連通之界面層。 GBS006.1 3較佳地,該第二LOC上之MST層具有一阻 滯試樣從MST通道往頂蓋通道流動之活性閥,直到該活性 閥被啓動才允許試樣重新流動。 -24- 201209406 GBS006.14較佳地’該試樣爲血液且貯存器內之試 劑爲抗凝血劑且頂蓋被配置成在血液進入該透析區前先把 該抗凝血劑與血液混合在一起。 GBS006.15較佳地,該微流體裝置還有一胞溶區, 其與含有胞溶試劑之胞溶試劑貯存器流體連通,該胞溶區 被配置成能胞溶細胞及釋出其內之基因物質。GBS006.1 0 Preferably, the second LOC device has a hybrid region comprising a probe nucleic acid sequence capable of hybridizing with a target nucleic acid sequence in the sample to form a probe-target hybrid The hybrid region is configured to detect the probe-target hybrid. GBS 00 6.1 1 Preferably, the top cover has a layered structure and the top cover passage is formed in one of the layers and the reservoir is formed in the other adjacent layer. GBS006.12 Preferably, the layered structure includes an interfacial layer for establishing fluid communication between the canopy channel and the LOC devices. Preferably, the MST layer on the second LOC has an active valve that blocks the flow of the sample from the MST channel to the cap channel until the active valve is activated to allow the sample to reflow. -24- 201209406 GBS006.14 preferably 'the sample is blood and the reagent in the reservoir is an anticoagulant and the cap is configured to mix the anticoagulant with blood before the blood enters the dialysis zone Together. Preferably, the microfluidic device further has a cytolytic zone in fluid communication with a cytolytic reagent reservoir containing a lysing reagent, the cytolysis zone being configured to lysate the cells and release the genes therein. substance.

GBS006.16較佳地,該微流體裝置還有一用來擴增 流體內核酸序列之核酸擴增區。 GBS006.1 7較佳地,該核酸擴增區爲聚合酶連鎖反 應(PCR)區且該頂蓋具有一含有dNTPs及引子之PCR試劑 貯存器以於擴增該核酸序列之前先把該等PCR試劑與試樣 混合。 GBS006.1 8較佳地,該頂蓋具有一含有聚合酶之聚 合酶貯存器以於擴增核酸序列之前先把該酶與流體混合。 GBS006.19較佳地,該微流體裝置還有CMOS電路, 其位於該支撐基材與MS T層之間以操作性地控制該PCR區 GBS006.20較佳地,該微流體裝置還有一具有雜合 室之雜合區,該等雜合室內含有能結合到該流體內之目標 核酸序列上之探針核酸序列。 多重表面-微機電晶片被流體地整合以提供更充份及 更進步之功能性。該微流體多晶片組件可提供更高模組性 。該組件內之表面微機電晶片比起能提供該組件所有功能 之單體晶片要小得多且不成比例地便宜許多。採用功能最 -25- 201209406 佳的較便宜製程以製造該微流體多晶片組件之各個表面-微機電晶片之構成部份,例如唯-bioMST透析晶片可省略 所有CMOS製程步驟及可採用廉價的玻璃基材。 GDI0 15.1本發明之此態樣提供一種用來處理含有目 標分子之試樣流體之微流體裝置,該微流體裝置包含: 一用來接受試樣及濃縮部份試樣內之目標分子之透析 裝置:GBS006.16 Preferably, the microfluidic device further has a nucleic acid amplification region for amplifying a nucleic acid sequence in the fluid. GBS006.1 7 Preferably, the nucleic acid amplification region is a polymerase chain reaction (PCR) region and the cap has a PCR reagent reservoir containing dNTPs and primers for amplifying the nucleic acid sequence before amplifying the nucleic acid sequence. The reagent is mixed with the sample. Preferably, the cap has a polymerase-containing polymerase reservoir to mix the enzyme with the fluid prior to amplifying the nucleic acid sequence. GBS006.19 Preferably, the microfluidic device further has a CMOS circuit between the support substrate and the MS T layer to operatively control the PCR zone GBS006.20. Preferably, the microfluidic device further has A hybrid region of a hybrid chamber containing a probe nucleic acid sequence capable of binding to a target nucleic acid sequence within the fluid. Multiple surface-microelectromechanical wafers are fluidly integrated to provide more adequate and progressive functionality. The microfluidic multi-wafer assembly provides greater modularity. The surface MEMS wafer within the assembly is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Using the most inexpensive process with the best function - 25, 201209406 to manufacture the various surface of the microfluidic multi-chip module - the components of the MEMS wafer, for example, the only -bioMST dialysis wafer can omit all CMOS process steps and can use inexpensive glass Substrate. GDI0 15.1 This aspect of the invention provides a microfluidic device for treating a sample fluid containing a target molecule, the microfluidic device comprising: a dialysis device for receiving a sample and concentrating a target molecule in a portion of the sample :

—用來分析該等目標分子之晶片上實驗室(L0C ); 及 一覆蓋在該LOC及透析裝置上以於該LOC及透析裝置 間建立流體連通之頂蓋。 GDI0 15.2較佳地,該流體試樣爲含有不同大小細胞 之生物材料之試樣,該透析區有至少兩條通道及複數個小 孔且該等小孔以流體連接該等通道,複數個小孔之尺寸相 當於流體試樣內細胞既定閾値之大小。- a wafer-on-lab (L0C) for analyzing the target molecules; and a cap covering the LOC and the dialysis device to establish fluid communication between the LOC and the dialysis device. GDI0 15.2 Preferably, the fluid sample is a sample of biological material containing cells of different sizes, the dialysis zone has at least two channels and a plurality of small holes and the small holes are fluidly connected to the channels, a plurality of small The size of the pores corresponds to the size of the cells within the fluid sample.

GD10 1 5.3較佳地,該至少兩條通道及複數個小孔被 配置成能藉著毛細作用讓試樣流過該等通道及小孔。 GD 1015.4較佳地,該至少兩條通道包含一目標物通 道及一廢棄物通道,該目標物通道被連接到頂蓋以藉毛細 驅動流動流往該L0C。 GD 10 1 5.5較佳地,該等目標分子爲試樣流體中之細 胞內之目標核酸序列,且該LOC具有一用來擴增該目標核 酸序列之核酸擴增區。 GDI015.6較佳地,該目標核酸序列係在比既定閩値 -26- 201209406 小之細胞內。 GDI015.7較佳地,該LOC有一具有雜合探針陣列之 雜合區’該探針可與目標核酸序列雜合而形成探針一目標 物雜合體。 GDI015.8較佳地,該探針被設計成能與目標核酸序 列形成探針-目標物雜合體,該探針-目標物雜合體被設 計成能對激發電流產生反應而發射出光線之光子。GD10 1 5.3 Preferably, the at least two channels and the plurality of apertures are configured to allow the sample to flow through the channels and apertures by capillary action. Preferably, the GD 1015.4 includes at least two channels including a target channel and a waste channel, the target channel being coupled to the top cover for driving the flow to the LOC by capillary. GD 10 1 5.5 Preferably, the target molecules are target nucleic acid sequences within the cells of the sample fluid, and the LOC has a nucleic acid amplification region for amplifying the target nucleic acid sequence. Preferably, the target nucleic acid sequence is in a cell smaller than the established 闽値-26-201209406. Preferably, the LOC has a hybrid region with a hybrid probe array. The probe can hybridize to the target nucleic acid sequence to form a probe-target hybrid. GDI015.8 Preferably, the probe is designed to form a probe-target hybrid with the target nucleic acid sequence, the probe-target hybrid being designed to emit photons of light in response to an excitation current. .

GDI015.9較佳地,其中該LOC裝置具有CMOS電路以 操作性控制該PCR區,該CMOS電路具有一光感測器用來 感測該探針-目標物雜合體發射之光子。 GDI0 15. 10較佳地,該雜合區有一雜合室陣列,該等 雜合室含有能與目標核酸序列雜合之探針。 GDI0 1 5 · 1 1較佳地,該光感測器爲一光二極體陣列, 而該等光二極體則分別與各雜合室緊鄰。 GDI015.12較佳地,該CMOS電路具有一用來儲存流 體處理相關資料之數位記憶體,該等資料包括探針詳細說 明及各個探針於雜合室陣列之位置。 GDI015.13較佳地,該CMOS電路具有至少一溫度感 測器以感測雜合室陣列之溫度。 GDI015.14較佳地,該L0C裝置有一加熱器受CMOS 電路控制,該CMOS電路會利用來自溫度感測器之反饋來 把探針及目標核酸序列維持在雜合溫度之下。 GDI015.15較佳地,該光二極體離對應之雜合室不到 1600微米。 -27- 201209406 GDI015.16較佳地,該探針具有於激發狀態 光子之電化學發光(ECL)發光團。 GDI015.17較佳地,該等雜合室具有電極以 發該ECL發光團。 GDI015.18較佳地,各ECL探針皆有一發光 近該發光團用以淬熄該發光團發射之光子之淬熄 探針與一目標核酸序列雜合時會移動該淬熄物遠 而使得光子不再被淬熄。 GD1015.19 較佳地,該CMOS電路具有接合, pads)以電子連接一外部裝置,且被配置成能把 極體之輸出轉變成指示該ECL探針已與目標核酸 之指示信號,且把該信號提供給該等接合墊以傳 裝置。 GDI015.20較佳地,該頂蓋具有至少—通道 裝置及LOC間流體連通,以及複數個容納加入試 試劑之貯存器。 該易於使用、可大量生產且廉價之微流體多 能接受生物試樣’使用透析晶片將不同大小的細 且分別處理以尺寸大小區分之細胞的核酸內容物 晶片能功能性地提取更多來自試樣之資訊並增加 統之靈敏度、信號對雜訊比及動態範圍。 該微流體多晶片組件可提供更高模組性。該 面微機電晶片比起能提供該組件所有功能之單體 得多且不成比例地便宜許多。另一選擇地,一大 會發射出 用電流激 團及一貼 物,當該 離發光團 (bond- 來自光二 序列雜合 輸到外部 與該透析 樣之液體Preferably, the LOC device has a CMOS circuit for operatively controlling the PCR zone, the CMOS circuit having a photosensor for sensing photons emitted by the probe-target hybrid. GDI0 15.10 Preferably, the hybrid region has an array of hybrid chambers containing probes that are capable of hybridizing to the target nucleic acid sequence. GDI0 1 5 · 1 1 Preferably, the photo sensor is an array of photodiodes, and the photodiodes are respectively adjacent to the hybrid chambers. Preferably, the CMOS circuit has a digital memory for storing data associated with the fluid processing, the data including the probe details and the position of each probe in the array of hybrid chambers. GDI015.13 Preferably, the CMOS circuit has at least one temperature sensor to sense the temperature of the hybrid chamber array. Preferably, the L0C device has a heater controlled by a CMOS circuit that utilizes feedback from a temperature sensor to maintain the probe and target nucleic acid sequence below the hybrid temperature. Preferably, the photodiode is less than 1600 microns from the corresponding hybrid chamber. -27- 201209406 GDI015.16 Preferably, the probe has an electrochemiluminescence (ECL) luminophore of photons in an excited state. Preferably, the hybrid chambers have electrodes for emitting the ECL luminophores. Preferably, each of the ECL probes has a quenching probe that emits a photon emitted by the illuminating group to quench the photon emitted by the illuminating group, and when the hybridization of a target nucleic acid sequence is mixed, the quenching material is moved far away. Photons are no longer quenched. GD1015.19 Preferably, the CMOS circuit has an interface, electrically connected to an external device, and configured to convert the output of the polar body into an indication signal indicating that the ECL probe has been associated with the target nucleic acid, and Signals are provided to the bond pads to transfer the device. Preferably, the top cover has at least - fluid communication between the passage means and the LOC, and a plurality of reservoirs for containing the test reagent. The easy-to-use, mass-produced and inexpensive microfluidic multi-energy accepting biological sample 'using dialysis wafers to functionally extract nucleic acid content wafers of different sizes and separately process the size-differentiated cells can be more extracted from the test Information and increase the sensitivity, signal-to-noise ratio and dynamic range. The microfluidic multi-wafer assembly provides greater modularity. The microelectromechanical wafer is much cheaper and disproportionately much smaller than a single unit that provides all of the functionality of the assembly. Alternatively, a large group emits a current stimulator and a sticker when the luminescent group (bond-mixed from the photodiode sequence to the outside and the dialysis sample)

晶片組件 胞分離, 。該透析 該檢定系 組件之表 晶片要小 型但具有 -28- 201209406 成本效益之透析晶片則能提供高級透析容量以進一步提高 該檢定系統之靈敏度、信號對雜訊比及動態範圍。 採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。 GDI0 16.1本發明之此態樣提供一種用來透析含有不 同大小成分之流體的透析裝置,該透析裝置包含:Wafer component cell separation, . The dialysis system has a small wafer size but a 280-201209406 cost-effective dialysis wafer provides advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. Each of the surface-microelectromechanical wafer components of the microfluidic multi-chip assembly is fabricated using a less expensive process that is optimal in function, i.e., the only-bioMST dialysis wafer can omit all CMOS process steps and can employ inexpensive glass wafers. GDI 0 16.1 This aspect of the invention provides a dialysis device for dialysis of fluids containing different sized components, the dialysis device comprising:

一界定有第一通道及第二通道之第一材料層,該第一 通道被配置成能接受含有不同大小成分之流體; 一具有複數個小孔及至少一流體連接件之第二層,該 複數個小孔對第一通道開放及該流體連接件則從該等小孔 接到第二通道以於該第一通道及第二通道間建立流體連通 :其中 該等小孔之大小係根據既定閩値尺寸來定,使得流往 第二通道之成分爲小於該既定閩値尺寸之較小成分,而留 在第一通道之成分則包含大於該既定閩値尺寸之較大成分 GDI0 16.2較佳地,該第二層爲具有一頂壁層之層狀 結構,該至少一流體連接件爲一系列以該頂壁層封閉之毗 連通道,該等小孔係在頂壁層內於該第一通道及該等毗連 通道間之形成。 GDI0 16.3較佳地,該第一及第二通道以及一系列毗 連通道被配置成能藉由毛細作用以試樣予以充滿。 GDI016.4較佳地,其中該透析裝置還有一介於該第 -29 - 201209406a first material layer defining a first channel and a second channel, the first channel being configured to accept a fluid having components of different sizes; a second layer having a plurality of apertures and at least one fluid connector, a plurality of small holes are open to the first passage and the fluid connection member is connected to the second passage from the small holes to establish fluid communication between the first passage and the second passage: wherein the small holes are sized according to the predetermined The size of the crucible is such that the component flowing to the second channel is a smaller component smaller than the predetermined crucible size, and the component remaining in the first channel comprises a larger component GDI0 16.2 larger than the predetermined crucible size. The second layer is a layered structure having a top wall layer, and the at least one fluid connecting member is a series of adjacent passages closed by the top wall layer, the small holes being in the first wall layer at the first The formation of a channel and the adjacent channels. GDI0 16.3 Preferably, the first and second passages and the series of contiguous passages are configured to be filled with the sample by capillary action. GDI016.4 preferably, wherein the dialysis device has a further between the -29th and the 201209406

一通道及第二通道間之旁路通道’其中各毗連通道被配置 成能固定一流體彎液面以阻滯該第一通道與第二通道間之 毛細流動;及該介於該第一通道及第二通道間之旁路通道 ,該旁路通道匯入該系列毗連通道上游之第二通道且被配 置成能提供不受阻擋的毛細驅動液流從第一通道流往第二 通道;使得於諸彎液面於各毗連通道形成之後’來自旁路 通道之液流在抵達固定於各毗連通道之彎液面時會依序地 除去各個彎液面,且該試樣液流經由該等毗連通道及旁路 通道從第一通道流往第二通道。 GDI016.5較佳地,該試樣爲含有不同大小成分之生 物試樣,該等毗連通道及旁路通道具有相當於既定閾値尺 寸之小孔,使得流入第二通道之成分爲小於該既定閩値尺 寸之較小成分,而留在第一通道之成分則包含大於該既定 閩値尺寸之較大成分。a bypass passage between a passage and a second passage, wherein each of the adjacent passages is configured to fix a fluid meniscus to block capillary flow between the first passage and the second passage; and the first passage And a bypass passage between the second passages, the bypass passages merging into the second passage upstream of the series of adjacent passages and configured to provide an unimpeded capillary drive flow from the first passage to the second passage; After the meniscus is formed in each of the adjoining passages, the liquid flow from the bypass passage sequentially removes each meniscus when it reaches the meniscus fixed to each of the adjoining passages, and the sample liquid flows through the same The adjoining channel and the bypass channel flow from the first channel to the second channel. GDI016.5 Preferably, the sample is a biological sample containing components of different sizes, and the adjacent channels and the bypass channels have small holes corresponding to a predetermined threshold size, such that the component flowing into the second channel is smaller than the predetermined size. The smaller component of the 値 size, while the component remaining in the first channel contains a larger component than the predetermined 闽値 size.

GDI0 16.6較佳地,該生物試樣爲血液且較大成分包 括白血球及較小成分包括紅血球。 GDI0 16.7較佳地,該毗連通道爲一系列平行的相鄰 通道且通常會延伸到該第一通道及第二通道。 GDI0 16.8較佳地,該透析裝置還有一用來收納下游 處理或分析不需之成分之廢棄物貯存器。 GDI016.9較佳地,該小孔爲直徑小於8微米的孔洞。 GDI016.10較佳地,該較小成分包括目標物,因此較 小成分之處理包括對目標物之偵測。 GDI01 6.1 1較佳地,該透析裝置還有一連接到目標物 -30- 201209406 通道之胞溶區以胞溶該等目標細胞而釋出其內之目標核酸 序列。 GDI01 6.12較佳地,該透析裝置還有一用以擴增該等 目標核酸序列之核酸擴增區。 GDI 0 16.13較佳地,該透析裝置還有一具雜合探針陣 列之雜合區,該探針能與核酸擴增區擴增之目標核酸序列 雜合。GDI 0 16.6 Preferably, the biological sample is blood and the larger component comprises white blood cells and the smaller components include red blood cells. GDI0 16.7 Preferably, the contiguous channel is a series of parallel adjacent channels and typically extends to the first channel and the second channel. GDI0 16.8 Preferably, the dialysis device further has a waste reservoir for containing downstream processing or for analyzing unwanted components. GDI 016.9 Preferably, the aperture is a hole having a diameter of less than 8 microns. Preferably, the smaller component includes the target, and therefore the processing of the smaller component includes detection of the target. GDI01 6.1 1 Preferably, the dialysis device further has a cytolysis zone attached to the target -30-201209406 channel to lyse the target cells to release the target nucleic acid sequence therein. GDI01 6.12 Preferably, the dialysis device further has a nucleic acid amplification region for amplifying the target nucleic acid sequences. GDI 0 16.13 Preferably, the dialysis device further has a heterozygous region of a hybrid probe array that is hybridized to the target nucleic acid sequence amplified by the nucleic acid amplification region.

GDI016.14較佳地,該探針被設計成能與該目標核酸 序列形成探針-目標物雜合體,該探針-目標物雜合體能 對電流脈衝反應而產生電化學發光。 GDI016.15較佳地,該透析裝置還具有CMOS電路以 操作性控制該核酸擴增區及雜合區,該CMOS電路還有一 光感測器以感測探針-目標物雜合體之電化學發光放射。 GDI016.16較佳地,該雜合區有一雜合室陣列,該等 雜合室含有能與該等目標核酸序列雜合之探針。 GDI016.17較佳地,該光感測器爲一光二極體陣列, 而該等光二極體則分別與各雜合室緊鄰。 GDI016.18較佳地,該CMOS電路具有一用來儲存流 體處理相關資料之數位記憶體,該等資料包括探針詳細說 明及各個探針於雜合室陣列之位置。 GDI016.19較佳地,該CMOS電路具有接合墊以電子 連接一外部裝置,且被配置成能把來自光二極體之輸出轉 變成指示該探針已與目標核酸序列雜合之指示信號,且把 該信號提供給該等接合墊以傳輸到外部裝置。 -31 - 201209406 GDI016.20較佳地,該透析裝置還有複數個用來容納 加入試樣之液體試劑之貯存器。 該易於使用、可大量生產且廉價之微流體多晶片組件 能接受生物試樣,使用透析晶片將不同大小的細胞分離, 且分別處理以尺寸大小區分之細胞的核酸內容物。該透析 晶片能功能性地提取更多來自試樣之資訊並增加該檢定系 統之靈敏度、信號對雜訊比及動態範圍。Preferably, the probe is designed to form a probe-target hybrid with the target nucleic acid sequence, the probe-target hybrid capable of reacting with a current pulse to produce electrochemiluminescence. GDI016.15 preferably, the dialysis device further has a CMOS circuit for operatively controlling the nucleic acid amplification region and the hybrid region, the CMOS circuit further having a photo sensor to sense the electrochemical of the probe-target hybrid Luminous radiation. Preferably, the hybrid region has an array of hybrid chambers containing probes that are capable of hybridizing to the target nucleic acid sequences. GDI016.17 Preferably, the photo sensor is an array of photodiodes, and the photodiodes are respectively adjacent to the hybrid chambers. Preferably, the CMOS circuit has a digital memory for storing fluid processing related data, including detailed description of the probes and the position of each probe in the array of hybrid chambers. GDI016.19 preferably, the CMOS circuit has a bond pad for electronically connecting an external device, and is configured to convert an output from the photodiode into an indication signal indicating that the probe has been hybridized with the target nucleic acid sequence, and This signal is provided to the bond pads for transmission to an external device. Preferably, the dialysis device has a plurality of reservoirs for containing the liquid reagents added to the sample. The easy-to-use, mass-produced, and inexpensive microfluidic multi-wafer assembly is capable of accepting biological samples, separating the cells of different sizes using dialysis wafers, and separately processing the nucleic acid contents of the cells differentiated by size. The dialysis wafer functionally extracts more information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the assay system.

該微流體多晶片組件可提供更高模組性。該組件之表 面微機電晶片比起能提供該組件所有功能之單體晶片要小 得多且不成比例地便宜許多。另一選擇地,一大型但具有 成本效益之透析晶片則能提供高級透析容量以進一步提高 該檢定系統之靈敏度、信號對雜訊比及動態範圍。 採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。The microfluidic multi-wafer assembly provides greater modularity. The surface MEMS of this component is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Alternatively, a large but cost-effective dialysis wafer can provide advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. Each of the surface-microelectromechanical wafer components of the microfluidic multi-chip assembly is fabricated using a less expensive process that is optimal in function, i.e., the only-bioMST dialysis wafer can omit all CMOS process steps and can employ inexpensive glass wafers.

GDI0 17.1本發明之此態樣提供一種具有毛細驅動、 流動·通道結構以透析含有不同大小成分之流體之透析裝 置,該透析裝置包含: 一配置成藉由毛細作用以流體充塡之第一通道: 一配置成藉由毛細作用以流體充塡之第二通道; 複數個連接第一通道及第二通道之流體連接件,各連 接件被配置成能固定一流體彎液面以阻滯該第一通道及第 二通道間之毛細流動; 一第一通道及第二通道間之通道,該旁路通道匯入該 -32- 201209406 複數個流體連接件上游之第二通道且被配匱成能提供不受 阻擋之毛細驅動流動從第一通道流往第二通道;其中使用 期間, 在彎液面於各流體連接件形成後,來自旁路通道之液 流在抵達固定於各流體連接件之彎液面時會依序地除去各 個彎液面,該試樣液流經由該等複數個流體連接件及旁路 通道從第一通道流往第二通道。GDI0 17.1 This aspect of the invention provides a dialysis device having a capillary drive, flow channel structure for dialysis of fluids having different sized components, the dialysis device comprising: a first passage configured to be fluidly filled by capillary action a second passage configured to be fluidly filled by capillary action; a plurality of fluid connections connecting the first passage and the second passage, each connector being configured to fix a fluid meniscus to block the first Capillary flow between a channel and a second channel; a channel between the first channel and the second channel, the bypass channel is merged into the second channel upstream of the -32-201209406 plurality of fluid connectors and configured to be capable of Providing an unimpeded capillary drive flow from the first passage to the second passage; wherein during use, after the meniscus is formed in each of the fluid connections, the flow from the bypass passage is fixed to each of the fluid connections Each meniscus is sequentially removed during the meniscus, and the sample stream flows from the first channel to the second channel via the plurality of fluid connections and bypass channels.

GDI0 17.2較佳地,該流體爲含有不同大小成分之生 物試樣,該複數個流體連接件及旁路通道具有相當於既定 閾値尺寸之小孔,使得流往第二通道之成分爲小於該既定 閾値尺寸之較小成分,而留在第一通道之成分則包含大於 該既定閾値尺寸之較大成分。 GD 1017.3 較佳地,該生物試樣爲血液且較大成分包 括白血球及較小成分包括紅血球。 GDI017.4較佳地,該透析裝置還有: 一界定有第一通道及第二通道之第一層;及 一界定有複數個流體連接件及旁路通道之第二層。 GDI0 17.5較佳地,該第二層爲具有一頂壁層之層狀 結構,該複數個流體連接件爲一系列以該頂壁層封閉之毗 連通道,該等小孔係在頂壁層內於該第一通道及該等毗連 通道間形成。 GDI01 7.6較佳地,該毗連通道爲一系列平行的相鄰 通道且通常延伸到該第一通道及第二通道。 GDI0 17.7較佳地,該透析裝置還有一廢棄物貯存器 -33- 201209406 用來收納下游處理或分析不需的成分。 GDI0 17.8較佳地,該小孔爲直徑小於8微米的孔洞。 GDI0 17.9較佳地,該較小成分包括目標物,因此較 小成分之處理包括對目標物之偵測。 GDI01 7.10較佳地,該透析裝置還有一連接到目標物 通道之胞溶區以胞溶該目標細胞而釋出其內之目標核酸序 列。GDI0 17.2 Preferably, the fluid is a biological sample containing components of different sizes, and the plurality of fluid connecting members and the bypass passage have small holes corresponding to a predetermined threshold size, such that the component flowing to the second channel is smaller than the predetermined The smaller component of the threshold 値 size, while the component remaining in the first channel contains a larger component greater than the predetermined threshold 値 size. GD 1017.3 Preferably, the biological sample is blood and the larger component comprises white blood cells and the smaller components include red blood cells. GDI 017.4 Preferably, the dialysis device further comprises: a first layer defining a first channel and a second channel; and a second layer defining a plurality of fluid connections and bypass channels. GDI0 17.5 Preferably, the second layer is a layered structure having a top wall layer, the plurality of fluid connecting members being a series of adjacent channels closed by the top wall layer, the small holes being in the top wall layer Formed between the first channel and the adjacent channels. GDI01 7.6 Preferably, the contiguous channel is a series of parallel adjacent channels and extends generally to the first channel and the second channel. GDI0 17.7 Preferably, the dialysis device also has a waste reservoir -33-201209406 for containing components that are not needed for downstream processing or analysis. GDI0 17.8 Preferably, the aperture is a hole having a diameter of less than 8 microns. GDI0 17.9 Preferably, the smaller component comprises a target, so processing of the smaller component includes detection of the target. GDI01 7.10 Preferably, the dialysis device further has a cytolysis zone attached to the target channel to lyse the target cell to release the target nucleic acid sequence therein.

GDI0 17.il較佳地,該透析裝置還有一用以擴增該目 標核酸序列之核酸擴增區。 GDI01 7.12較佳地,該透析裝置還有一含有雜合探針 陣列之雜合區,該探針能與核酸擴增區擴增之目標核酸序 列雜合。 GDI0 17.13較佳地,該探針被設計成能與目標核酸序 列形成探針-目標物雜合體,該探針-目標物雜合體能對 電流脈衝反應而產生電化學發光。GDI0 17.il Preferably, the dialysis device further has a nucleic acid amplification region for amplifying the target nucleic acid sequence. GDI01 7.12 Preferably, the dialysis device further has a hybrid region comprising a hybrid probe array that is hybridizable to the target nucleic acid sequence amplified by the nucleic acid amplification region. GDI0 17.13 Preferably, the probe is designed to form a probe-target hybrid with a target nucleic acid sequence that is capable of reacting to a current pulse to produce electrochemiluminescence.

GDI017.14較佳地,該透析裝置還具有CMOS電路以 操作性控制該核酸擴增區及雜合區,該CMOS電路還有一 光感測器以感測來自探針-目標物雜合體之電化學發光放 射。 GDI017.15 較佳地,該CMOS電路被配置成能對諸電 極提供電脈衝。 GDI017.16較佳地,該雜合區有一雜合室陣列,該等 雜合室含有能與目標核酸序列雜合之探針。 GDI0 17.17較佳地,該光感測器爲一光二極體陣列, -34- 201209406 而該等光二極體則分別與各雜合室緊鄰》 GDI017.18較佳地,該CMOS電路具有一用來儲存流 體處理相關資料之數位記憶體,該等資料包括探針詳細說 明及各個探針於雜合室陣列之位置。GDI017.14 Preferably, the dialysis device further has a CMOS circuit for operatively controlling the nucleic acid amplification region and the hybrid region, the CMOS circuit further having a photo sensor for sensing the electrochemistry from the probe-target hybrid Learn to emit radiation. GDI 017.15 Preferably, the CMOS circuit is configured to provide electrical pulses to the electrodes. Preferably, the hybrid region has an array of hybrid chambers containing probes that hybridize to the target nucleic acid sequence. GDI0 17.17 Preferably, the photo sensor is a photodiode array, -34-201209406 and the photodiodes are respectively adjacent to the hybrid chambers respectively. GDI017.18 preferably, the CMOS circuit has a use The digital memory for storing fluid processing related data, including detailed description of the probe and the position of each probe in the array of hybrid chambers.

GDI017.19較佳地,該CMOS電路具有接合墊以電子 連接一外部裝置,且被配置成能把來自光二極體之輸出轉 變成指示該探針已與目標核酸序列雜合之指示信號,且把 該信號提供給該等接合墊以傳輸到外部裝置。 GDI017.20較佳地,該透析裝置還有複數個用來容納 加入試樣之液體試劑之貯存器。 該易於使用、可大量生產且廉價之微流體多晶片組件 能接受生物試樣,使用透析晶片將不同大小的細胞分離, 且分別處理以尺寸大小區分之細胞的核酸內容物》該透析 晶片能功能性地提取更多來自試樣之資訊並增加該檢定系 統之靈敏度、信號對雜訊比及動態範圍。 該微流體多晶片組件可提供更高模組性。該組件之表 面微機電晶片比起能提供該組件所有功能之單體晶片要小 得多且不成比例地便宜許多。另一選擇地,一大型但具有 成本效益之透析晶片則能提供高級透析容量以進一步提高 該檢定系統之靈敏度、信號對雜訊比及動態範圍。 採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。 該特殊的流動通道結構可引發該透析晶片之毛細-驅 -35- 201209406 動作用且不會截留氣泡。 GDI0 1 9.1本發明之此態樣提供一種從生物試樣中分 離出病原體之透析裝置,該透析裝置包含: 一用以接受生物試樣之第一通道; —第二通道:及 複數個小孔;其中GDI017.19 preferably, the CMOS circuit has a bond pad for electronically connecting an external device, and is configured to convert an output from the photodiode into an indication signal indicating that the probe has been hybridized to the target nucleic acid sequence, and This signal is provided to the bond pads for transmission to an external device. Preferably, the dialysis device has a plurality of reservoirs for containing the liquid reagents added to the sample. The easy-to-use, mass-produced and inexpensive microfluidic multi-wafer assembly is capable of accepting biological samples, separating different sized cells using dialysis wafers, and separately processing nucleic acid contents of cells differentiated by size. More information from the sample is extracted and the sensitivity, signal-to-noise ratio and dynamic range of the assay system are increased. The microfluidic multi-wafer assembly provides greater modularity. The surface MEMS of this component is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Alternatively, a large but cost-effective dialysis wafer can provide advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. Each of the surface-microelectromechanical wafer components of the microfluidic multi-chip assembly is fabricated using a less expensive process that is optimal in function, i.e., the only-bioMST dialysis wafer can omit all CMOS process steps and can employ inexpensive glass wafers. This special flow channel structure initiates capillary motion of the dialysis wafer without trapping air bubbles. GDI0 1 9.1 This aspect of the invention provides a dialysis device for separating a pathogen from a biological sample, the dialysis device comprising: a first channel for receiving a biological sample; - a second channel: and a plurality of small holes ;among them

該第二通道經由該等小孔與該第一通道流體連接’使 得病原體能從該第一通道流到該第二通道而生物試樣內之 較大成分則留在該第一通道內。 GDI0 19.2較佳地,該透析裝置還有一系列毗連通道 於該第一通道及第二通道間延伸,其中該等小孔係位在該 等毗連通道之上游端,各毗連通道被配置成能固定一試樣 彎液面以阻滯該第一通道與第二通道間之毛細流動:及The second passage is fluidly coupled to the first passage via the apertures to enable pathogens to flow from the first passage to the second passage while a larger component of the biological sample remains in the first passage. GDI0 19.2 Preferably, the dialysis device further has a series of adjoining passages extending between the first passage and the second passage, wherein the small holes are located at the upstream end of the adjacent passages, and the adjacent passages are configured to be fixed a sample meniscus to block capillary flow between the first passage and the second passage: and

—介於該第一通道及第二通道間之旁路通道,該旁路 通道匯入該等毗連通道上游之第二通道且被配置成能提供 不受阻擋的毛細驅動流動從第一通道流往第二通道;其中 於使用期間- 在彎液面於各毗連通道內形成後,來自旁路通道之液 流在抵達固定於各毗連通道之彎液面時該液流會依序地除 去各個彎液面,該試樣液流經由該等毗連通道及旁路通道 從第一通道流往第二通道。 GDI019.3較佳地,該透析裝置還有: —頂蓋層,該第一通道及第二通道於其內形成;及 一支撐層,該等毗連通道於其內形成,該頂蓋層覆蓋 -36- 201209406 在該支撐層上。 GD 1019.4較佳地,該支撐層爲包含一頂壁層之層狀 結構,該頂壁層界定有該等小孔。 GDI019.5較佳地,該等毗連通道係平行的且通常會 延伸到該第一通道及第二通道。 GDI019.6較佳地,該生物試樣爲血液且該頂蓋具有 一內含加入血液之抗凝血劑之試劑貯存器。a bypass passage between the first passage and the second passage, the bypass passage sinking into the second passage upstream of the adjacent passages and configured to provide unimpeded capillary drive flow from the first passage To the second passage; wherein during use - after the meniscus is formed in each of the adjacent passages, the flow from the bypass passage sequentially removes each of the liquid flows when they reach the meniscus fixed to each of the adjacent passages In the meniscus, the sample stream flows from the first channel to the second channel via the adjacent channels and bypass channels. GDI019.3 Preferably, the dialysis device further comprises: a top cover layer, the first passage and the second passage are formed therein; and a support layer, the adjacent passages are formed therein, and the cover layer covers -36- 201209406 On the support layer. GD 1019.4 Preferably, the support layer is a layered structure comprising a top wall layer, the top wall layer defining the apertures. GDI 019.5 Preferably, the contiguous channels are parallel and generally extend to the first and second channels. GDI 019.6 Preferably, the biological sample is blood and the cap has a reagent reservoir containing an anticoagulant added to the blood.

GDI019.7較佳地,該試劑貯存器有一表面張力閥, 其具有一彎液面錨(meniscus anchor)以固定彎液面來把 該試劑留在貯存器內,因此當試樣流從彎液面錨上除去該 彎液面時會把抗凝血劑載入到試樣流中。 該易於使用、可大量生產且廉價之微流體多晶片組件 能接受生物試樣,使用透析晶片分離出試樣中之病原體, 且分別處理該等試樣中分離之病原體之核酸內容物。該透 析晶片能功能性地提取更多來自試樣之資訊並增加該檢定 系統之靈敏度、信號對雜訊比及動態範圍。 該多晶片實驗室可提供更高模組性。該組件之表面微 機電晶片比起能提供該組件所有功能之單體晶片要小得多 且不成比例地便宜許多。另一選擇地,一大型但具有成本 效益之透析晶片則能提供高級透析容量以進一步提高該檢 定系統之靈敏度、信號對雜訊比及動態範圍》 採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。 -37- 201209406 GD 102 3.1本發明之此態樣提供一種將生物試樣中之 有核細胞與較小成分分離之透析裝置,該透析裝置包含: 一用以接受生物試樣之第一通道; 一第二通道;及 複數個小孔;其中GDI019.7 Preferably, the reagent reservoir has a surface tension valve having a meniscus anchor to fix the meniscus to leave the reagent in the reservoir, thus when the sample flow is from the meniscus The anticoagulant is loaded into the sample stream when the meniscus is removed from the face anchor. The easy-to-use, mass-produced, and inexpensive microfluidic multi-wafer assembly can accept biological samples, separate the pathogens in the sample using dialysis wafers, and separately process the nucleic acid contents of the isolated pathogens in the samples. The dialysis wafer functionally extracts more information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. The multi-chip lab provides higher modularity. The surface MEMS of the assembly is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Alternatively, a large but cost-effective dialysis wafer can provide advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. The best-functioning, inexpensive process is used to fabricate the microfluid. The various surface of the multi-chip assembly - the component of the MEMS wafer, the only-bioMST dialysis wafer, omits all CMOS process steps and can be used with inexpensive glass wafers. -37- 201209406 GD 102 3.1 This aspect of the invention provides a dialysis device for separating nucleated cells from a smaller component in a biological sample, the dialysis device comprising: a first channel for receiving a biological sample; a second channel; and a plurality of small holes; wherein

該第二通道經由該等小孔與該第一通道流體連接’該 等小孔比有核細胞更小,使得較小成分會從該第一通道流 到該第二通道且生物試樣內之有核細胞會留在該第一通道 內。 GDI023.2較佳地,該透析裝置還有一系列於該第一通 道及第二通道間延伸之毗連通道,其中該等小孔係位在該 等毗連通道之上游端,各毗連通道被配置成能固定一試樣 彎液面以阻滯該第一通道與第二通道間之毛細流動;及The second channel is fluidly connected to the first channel via the apertures. The apertures are smaller than the nucleated cells such that smaller components flow from the first channel to the second channel and within the biological sample Nucleated cells will remain in the first channel. Preferably, the dialysis device further has a series of adjacent passages extending between the first passage and the second passage, wherein the small holes are located at the upstream end of the adjacent passages, and the adjacent passages are configured to Capturing a sample meniscus to block capillary flow between the first passage and the second passage; and

一介於該第一通道及第二通道間之旁路通道,該旁路 通道匯入毗連通道上游之第二通道且被配置成能提供不受 阻擋之毛細驅動流動從第一通道流往第二通道;其中於使 用期間一 在彎液面於各毗連通道內形成後,來自旁路通道之液 流在抵達固定於各毗連通道之彎液面時該液流會依序地除 去各個彎液面,該試樣液流經由該等毗連通道及旁路通道 從第一通道流往第二通道。 GDI023.3較佳地,該透析裝置還有: 一頂蓋層,該第一通道及第二通道於其內形成;及 一支撐層,該等毗連通道於其內形成;該頂蓋層覆蓋 -38- 201209406 在該支撐層上。 GDI023.4較佳地,該支撐層爲包含一頂壁層之層狀 結構,該頂壁層界定有該等小孔。 GDI023.5較佳地,該等毗連通道係平行的且通常會 延伸到該第一通道及第二通道。 GDI023.6較佳地,該生物試樣爲血液且該頂蓋具有 一內含加入血液之抗凝血劑之試劑貯存器。a bypass passage between the first passage and the second passage, the bypass passage sinking into the second passage upstream of the adjoining passage and configured to provide an unimpeded capillary drive flow from the first passage to the second passage a channel; wherein, during use, after the meniscus is formed in each of the adjoining passages, the flow from the bypass passage sequentially removes each meniscus when reaching the meniscus fixed to each of the adjoining passages The sample flow flows from the first passage to the second passage via the adjacent passages and the bypass passage. GDI023.3 Preferably, the dialysis device further comprises: a cap layer, the first channel and the second channel are formed therein; and a support layer, wherein the adjoining channels are formed therein; the cap layer covers -38- 201209406 On the support layer. GDI 023.4 Preferably, the support layer is a layered structure comprising a top wall layer, the top wall layer defining the apertures. Preferably, the GDI 023.5 is parallel and generally extends to the first and second channels. Preferably, the biological sample is blood and the cap has a reagent reservoir containing an anticoagulant added to the blood.

GDI023.7較佳地,該試劑貯存器有一表面張力閥, 其具有一彎液面錨以固定彎液面來把該試劑留在貯存器內 ,因此當試樣流從彎液面錨上除去該彎液面時會把抗凝血 劑載入到試樣流中。 GD 1023.8較佳地,該有核細胞爲白血球。 此多晶片實驗室設計具有從內含目標物之試樣中直接 選取該試樣成分之優點。此多晶片實驗室設計具有提高有 效目標物濃度(該目標物爲該試樣之一部份且會被多晶片 實驗室作進一步處理)之優點。此多晶片實驗室設計具有 能除去可能會抑制後續分析步驟之試樣成分之優點。此多 晶片實驗室設計具有能除去加工混合物中可能會干擾稍後 之目標物偵測之不良成分之優點。此多晶片實驗室設計具 有能除去可能會阻塞多晶片實驗室之反應室或連接件及降 低操作品質之混合物成分之優點。 該多晶片實驗室可提供更高模組性。該組件之表面微 機電晶片比起能提供該組件所有功能之單體晶片要小得多 且不成比例地便宜許多。另一選擇地,一大型但具有成本 -39- 201209406 效益之透析晶片則能提供高級透析容量以進一步提高該檢 定系統之靈敏度、信號對雜訊比及動態範圍。 採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。 GDI028.1本發明之此態樣提供一種用來分析含有目 標分子之試樣流體之測試模組,該測試模組包含:GDI023.7 Preferably, the reagent reservoir has a surface tension valve having a meniscus anchor to secure the meniscus to retain the reagent in the reservoir, thus removing the sample stream from the meniscus anchor The meniscus will load the anticoagulant into the sample stream. GD 1023.8 Preferably, the nucleated cells are white blood cells. This multi-wafer laboratory design has the advantage of directly selecting the sample component from the sample containing the target. This multi-wafer laboratory design has the advantage of increasing the concentration of the target (the target is part of the sample and will be further processed by the multi-wafer laboratory). This multi-wafer laboratory design has the advantage of removing sample components that may inhibit subsequent analysis steps. This multi-wafer laboratory design has the advantage of removing undesirable components of the processing mixture that may interfere with later detection of the target. This multi-wafer laboratory design has the advantage of removing components of the reaction chamber or connections that may block the multi-wafer laboratory and reducing the quality of the operation. The multi-chip lab provides higher modularity. The surface MEMS of the assembly is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Alternatively, a large dialysis wafer with a cost of -39-201209406 can provide advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. Each of the surface-microelectromechanical wafer components of the microfluidic multi-chip assembly is fabricated using a less expensive process that is optimal in function, i.e., the only-bioMST dialysis wafer can omit all CMOS process steps and can employ inexpensive glass wafers. GDI 028.1 This aspect of the invention provides a test module for analyzing a sample fluid containing a target molecule, the test module comprising:

一具有收納該試樣流體之貯槽之外殻;及 一微流體裝置,其具有: 一透析裝置,其與該貯槽流體連通且被配置成能把目 標分子與試樣之其它成分分離; 一用來分析該目標分子之晶片上實驗室(LOC)裝置 :及 —覆蓋在該L0C裝置及該分析裝置上之頂蓋以於該 L0C裝置及分析裝置間建立流體連通。An outer casing having a sump for containing the sample fluid; and a microfluidic device having: a dialysis device in fluid communication with the sump and configured to separate target molecules from other components of the sample; A lab-on-lab (LOC) device for analyzing the target molecule: and a cap covering the L0C device and the analyzing device to establish fluid communication between the L0C device and the analyzing device.

GDI028.2較佳地,該流體試樣爲含有不同大小細胞 之生物材料之試樣,該透析區有至少兩條通道以複數個小 孔流體連接該等通道,該複數個小孔之尺寸相當於流體試 樣細胞之既定閾値大小。 GDI028.3較佳地,該至少兩條通道及複數個小孔被 配置成能藉著毛細作用讓試樣流過該等通道及小孔。 GDI0 28.4較佳地,該至少兩條通道包含一目標物通 道及一廢棄物通道,該目標物通道被連接到頂蓋以藉毛細 驅動液流流往該L0C裝置。 -40 - 201209406 GDI0 28.5 較佳地,該等目標分子爲試樣流體中該等 細胞內之目標核酸序列,且該LOC裝置具有一用來擴增該 目標核酸序列之核酸擴增區。 GDI02 8.6較佳地,該目標核酸序列係在比既定閾値 小之細胞內。GDI028.2 Preferably, the fluid sample is a sample of biological material containing cells of different sizes, and the dialysis zone has at least two channels connected to the channels by a plurality of small holes, the plurality of small holes being of comparable size The predetermined threshold size of the fluid sample cells. GDI 028.3 Preferably, the at least two channels and the plurality of apertures are configured to allow the sample to flow through the channels and apertures by capillary action. GDI0 28.4 Preferably, the at least two channels comprise a target channel and a waste channel, the target channel being connected to the top cover for flowing the capillary flow to the LOC device. -40 - 201209406 GDI0 28.5 Preferably, the target molecules are target nucleic acid sequences within the cells in the sample fluid, and the LOC device has a nucleic acid amplification region for amplifying the target nucleic acid sequence. GDI02 8.6 Preferably, the target nucleic acid sequence is within a cell that is less than a predetermined threshold.

GDI028.7較佳地,該LOC裝置有一內含雜合探針陣 列之雜合區,該探針可與目標核酸序列雜合而形成探針-目標物雜合體。 GDI 02 8.8較佳地,該探針被設計成能與目標核酸序 列形成探針-目標物雜合體,該探針-目標物雜合體被設 計成能對激發電流產生反應而發射出光線之光子。 GDI028.9 較佳地,其中該LOC裝置具有CMOS電路以 操作性控制該PCR區,該CMOS電路具有一光感測器用來 感測該探針-目標物雜合體發射之光子。 GDI02 8.1 0較佳地,該雜合區有一雜合室陣列,該等 雜合室含有能與目標核酸序列雜合之探針》 GDI02 8.il較佳地,該光感測器爲一光二極體陣列, 而該等光二極體則分別與各雜合室緊鄰。.. GDI02 8.1 2較佳地,該CMOS電路具有一用來儲存流 體處理相關資料之數位記憶體,該等資料包括探針詳細說 明及各個探針於雜合室陣列之位置。 GDI02 8.1 3較佳地,該CMOS電路具有至少一溫度感 測器以感測雜合室陣列之溫度。GDI 028.7 Preferably, the LOC device has a heterozygous region containing a hybrid probe array that can hybridize to the target nucleic acid sequence to form a probe-target hybrid. GDI 02 8.8 Preferably, the probe is designed to form a probe-target hybrid with the target nucleic acid sequence, the probe-target hybrid being designed to emit photons of light in response to an excitation current. . GDI 028.9 Preferably, wherein the LOC device has a CMOS circuit for operative control of the PCR region, the CMOS circuit having a photosensor for sensing photons emitted by the probe-target hybrid. GDI02 8.1 0 Preferably, the hybrid region has an array of hybrid chambers containing probes capable of hybridizing with the target nucleic acid sequence. GDI02 8.il preferably, the photosensor is a light two A polar body array, and the photodiodes are adjacent to the respective hybrid chambers. GDI02 8.1 2 Preferably, the CMOS circuit has a digital memory for storing fluid processing related data, including detailed description of the probe and the position of each probe in the array of hybrid chambers. GDI 02 8.1 3 Preferably, the CMOS circuit has at least one temperature sensor to sense the temperature of the hybrid chamber array.

GDI028.1 4較佳地,該LOC裝置有一加熱器受CMOS 201209406 電路控制’該CMOS電路會利用來自溫度感測器之反饋來 把探針及目標核酸序列維持在雜合溫度之下。 GD 102 8.1 5較佳地’該光二極體離對應之雜合室不到 1 60 0微米。 GD 1028.1 6較佳地,該探針具有於激發狀態會發射出 光子之電化學發光(ECL)發光團。 GDI02 8.1 7較佳地’該等雜合室具有電極以用電流激 發該ECL發光團。 GDI02 8.1 8較佳地,各ECL探針皆有一發光團及一貼 近該發光團用以淬熄該發光團發射之光子之淬熄物,當該 探針與一目標核酸序列雜合時會移動該淬熄物遠離發光團 而使得光子不再被淬熄。 GDI028.1 9較佳地,該CMOS電路具有接合墊以電子 連接一外部裝置,且被配置成能把來自光二極體之輸出轉 變成指示ECL探針已與目標核酸序列雜合之指示信號,且 把該信號提供給該等接合墊以傳輸到外部裝置。 GDI02 8.20較佳地,該頂蓋具有至少一通道讓該透析 裝置與LOC裝置間流體連通,以及複數個容納加入試樣之 液體試劑之貯存器。 該易於使用、可大量生產且廉價之微流體多晶片組件 能接受生物試樣,使用透析晶片將不同大小的細胞分離, 且分別處理以尺寸大小區分之細胞的核酸內容物。該透析 晶片能功能性地提取更多來自試樣之資訊並增加該檢定系 統之靈敏度、信號對雜訊比及動態範圍。 -42- 201209406 該微流體多晶片組件可提供更高模組性。該組件之表 面微機電晶片比起能提供該組件所有功能之單體晶片要小 得多且不成比例地便宜許多。另一選擇地,一大型但具有 成本效益之透析晶片則能提供高級透析容量以進一步提高 該檢定系統之靈敏度、信號對雜訊比及動態範圍。Preferably, the LOC device has a heater controlled by a CMOS 201209406 circuit. The CMOS circuit utilizes feedback from the temperature sensor to maintain the probe and target nucleic acid sequence below the hybrid temperature. GD 102 8.1 5 preferably 'the photodiode is less than 160 microns from the corresponding hybrid chamber. GD 1028.1 6 Preferably, the probe has an electrochemiluminescent (ECL) luminophore that emits photons in an excited state. GDI 02 8.1 7 preferably 'the hybrid chambers have electrodes to excite the ECL luminophores with current. Preferably, each of the ECL probes has a luminophore and a quenching material adjacent to the luminophore for quenching the photons emitted by the luminophore, and the probe moves when it is hybridized with a target nucleic acid sequence. The quencher is remote from the luminophore so that the photons are no longer quenched. GDI028.1 9 preferably, the CMOS circuit has a bond pad for electronically connecting an external device, and is configured to convert an output from the photodiode into an indication signal indicating that the ECL probe has been hybridized with the target nucleic acid sequence, And the signal is provided to the bond pads for transmission to an external device. GDI02 8.20 Preferably, the cap has at least one passage for fluid communication between the dialysis device and the LOC device, and a plurality of reservoirs for holding the liquid reagent to be added to the sample. The easy-to-use, mass-produced, and inexpensive microfluidic multi-wafer assembly is capable of accepting biological samples, separating the cells of different sizes using dialysis wafers, and separately processing the nucleic acid contents of the cells differentiated by size. The dialysis wafer functionally extracts more information from the sample and increases the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. -42- 201209406 The microfluidic multi-chip assembly provides higher modularity. The surface MEMS of this component is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Alternatively, a large but cost-effective dialysis wafer can provide advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system.

採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。 GDI0 3 0.1本發明之此態樣提供一種用來濃縮生物試 樣內之病原體之測試模組,該測試模組包含: 一具有收納該試樣流體之貯槽之外殼;及 一透析裝置,其與該貯槽流體連通且被配置成能把病 原體與試樣內之其它成分分離開來:及 一與該透析裝置流體連通且被配置成能分析病原體之 晶片上寰驗室(LOC)裝置。 GDI030.2較佳地,該透析裝置具有一用來接受該生 物試樣之第一通道、一第二通道及複數個小孔,該第二通 道經由該等小孔與該第一通道以流體相連,使得病原體能 從該第一通道流到該第二通道而生物試樣中之較大成分則 留在該第一通道內。 GDI0 30.3較佳地,該透析裝置還有一系列於該第一 通道及第二通道間延伸之毗連通道,其中該等小孔係位在 該等毗連通道之上游端,各毗連通道被配置成能固定一試 樣彎液面以阻滯該第一通道與第二通道間之毛細流動;及 -43- 201209406 一介於該第一通道及第二通道間之旁路通道,該旁路通道 匯入毗連通道上游之第二通道且被配置成能提供不受阻擋 之毛細驅動液流從第一通道流往第二通道;其中於使用期 間,在彎液面於各毗連通道形成之後,來自旁路通道之液 流在抵達固定於各毗連通道之彎液面時該液流會依序地除 去各個彎液面,該試樣液流經由該等毗連通道及旁路通道 從第一通道流往第二通道。Each of the surface-microelectromechanical wafer components of the microfluidic multi-chip assembly is fabricated using a less expensive process that is optimal in function, i.e., the only-bioMST dialysis wafer can omit all CMOS process steps and can employ inexpensive glass wafers. GDI0 3 0.1 This aspect of the invention provides a test module for concentrating a pathogen in a biological sample, the test module comprising: a housing having a reservoir for housing the sample fluid; and a dialysis device, The sump is in fluid communication and is configured to separate the pathogen from other components within the sample: and a on-wafer laboratory (LOC) device in fluid communication with the dialysis device and configured to analyze the pathogen. GDI030.2 preferably, the dialysis device has a first passage for receiving the biological sample, a second passage and a plurality of small holes, and the second passage is fluid with the first passage via the small holes Connected to allow pathogens to flow from the first channel to the second channel and the larger component of the biological sample remains in the first channel. GDI0 30.3 Preferably, the dialysis device further has a series of adjacent passages extending between the first passage and the second passage, wherein the small holes are located at the upstream end of the adjacent passages, and the adjacent passages are configured to be capable of Fixing a sample meniscus to block capillary flow between the first channel and the second channel; and -43- 201209406 a bypass channel between the first channel and the second channel, the bypass channel is imported a second passage upstream of the adjacent passageway and configured to provide an unimpeded capillary drive flow from the first passage to the second passage; wherein during use, after the meniscus is formed in each adjacent passage, from the bypass When the liquid flow of the passage reaches the meniscus fixed to each adjacent passage, the liquid flow sequentially removes each meniscus, and the sample liquid flows from the first passage to the first passage through the adjacent passage and the bypass passage. Two channels.

GDI03 0.4較佳地,該第二通道可供作目標物通道且 該第一通道可供作廢棄物通道,該目標物通道被配置成能 以毛細驅動流動流到該LOC裝置。 GDI 0 3 0.5較佳地,該病原體含有目標核酸序列且該 LOC裝置含有一用來擴增該目標核酸序列之核酸擴增區。 GDI030.6較佳地,該LOC裝置具有一胞溶區以胞溶 該病原體來釋出其內之目標核酸序列。GDI03 0.4 Preferably, the second passage is available as a target passage and the first passage is available as a waste passage, the target passage being configured to drive the flow of fluid to the LOC unit. GDI 0 3 0.5 Preferably, the pathogen contains a target nucleic acid sequence and the LOC device contains a nucleic acid amplification region for amplifying the target nucleic acid sequence. GDI030.6 Preferably, the LOC device has a cytosolic region to lyse the pathogen to release the target nucleic acid sequence therein.

GDI030.7較佳地,該LOC裝置還有一具有雜合探針 陣列之雜合區,該探針能與該目標核酸序列雜合而形成探 針-目標物雜合體。 GDI0 30.8較佳地,該探針被設計成能與該目標核酸 序列形成探針-目標物雜合體,該探針-目標物雜合體被 設計成能對激發電流產生反應而發射出光線之光子。 GDI030.9較佳地,該LOC裝置具有CMOS電路以操作 性控制該PCR區,該CMOS電路具有一光感測器來感測該 探針一目標物雜合體發射之光子。 GDI030.1 0較佳地,該雜合區有一雜合室陣列,該等 -44- 201209406 雜合室含有能與目標核酸序列雜合之探針。 GDI03 0. 1 1較佳地,該光感測器爲一光二極體陣列, 而該等光二極體則分別與各雜合室緊鄰。 GDI03 0.1 2較佳地’該CMOS電路具有一用來儲存流 體處理相關資料之數位記憶體,該等資料包括探針詳細說 明及各個探針於雜合室陣列之位置。GDI030.7 Preferably, the LOC device also has a hybrid region having a hybrid probe array that hybridizes to the target nucleic acid sequence to form a probe-target hybrid. GDI0 30.8 Preferably, the probe is designed to form a probe-target hybrid with the target nucleic acid sequence, the probe-target hybrid being designed to emit photons of light in response to an excitation current. . GDI030.9 Preferably, the LOC device has a CMOS circuit for operatively controlling the PCR zone, the CMOS circuit having a photosensor to sense photons emitted by the probe-target hybrid. GDI030.1 0 Preferably, the hybrid region has an array of hybrid chambers, and the -44-201209406 hybrid chamber contains a probe that is hybridizable to the target nucleic acid sequence. GDI03 0.11 Preferably, the photo sensor is an array of photodiodes, and the photodiodes are respectively adjacent to the hybrid chambers. GDI03 0.1 2 preferably 'The CMOS circuit has a digital memory for storing fluid processing related data, including detailed description of the probes and the position of each probe in the array of hybrid chambers.

GDI03 0.1 3較佳地,該CMOS電路具有至少一溫度感 測器以感測雜合室陣列之溫度。 GDI030.14較佳地,該LOC裝置有一加熱器受CMOS 電路控制,該CMO S電路會利用來自溫度感測器之反饋來 把探針及目標核酸序列維持在雜合溫度之下。 GDI03 0.1 5較佳地,該光二極體離對應之雜合室不到 1 600微米。 GDI03 0.1 6較佳地,該探針具有於激發狀態會發射出 光子之電化學發光(ECL)發光團。 GDI03 0.1 7較佳地,該等雜合室具有電極以用電流激 發該ECL發光團。 GDI03 0.1 8較佳地,各ECL探針皆有一發光團及一貼 近該發光團用以淬熄該發光團發射之光子之淬熄物,當該 探針與一目標核酸序列雜合時會移動該淬熄物遠離發光團 而使得光子不再被淬熄。 GDI030.1 9較佳地,該CMOS電路具有接合墊以電子 連接一外部裝置,且被配置成能把來自光二極體之輸出轉 變成指示ECL探針已與目標核酸序列雜合之指示信號,且 -45- 201209406 把該信號提供給該等接合墊以傳輸到外部裝置。 GDI030.20較佳地,該LOC裝置及透析裝置可透過一 頂蓋以流體連接,該頂蓋具有至少一通道能讓該透析區與 該LOC間流體連通,以及複數個能容納加入試樣之液體試 劑之貯存器。GDI03 0.1 3 Preferably, the CMOS circuit has at least one temperature sensor to sense the temperature of the hybrid chamber array. Preferably, the LOC device has a heater controlled by a CMOS circuit that utilizes feedback from the temperature sensor to maintain the probe and target nucleic acid sequence below the hybrid temperature. GDI03 0.1 5 Preferably, the photodiode is less than 1 600 microns from the corresponding hybrid chamber. GDI03 0.1 6 Preferably, the probe has an electrochemiluminescent (ECL) luminophore that emits photons in an excited state. GDI03 0.17 Preferably, the hybrid chambers have electrodes to excite the ECL luminophores with electrical current. Preferably, each ECL probe has a luminophore and a quenching substance adjacent to the luminophore for quenching photons emitted by the luminophore, and the probe moves when it is hybridized with a target nucleic acid sequence. The quencher is remote from the luminophore so that the photons are no longer quenched. GDI030.1 9 preferably, the CMOS circuit has a bond pad for electronically connecting an external device, and is configured to convert an output from the photodiode into an indication signal indicating that the ECL probe has been hybridized with the target nucleic acid sequence, And -45-201209406 provides the signal to the bond pads for transmission to an external device. Preferably, the LOC device and the dialysis device are fluidly connected through a top cover having at least one passageway for fluid communication between the dialysis zone and the LOC, and a plurality of dialysis zones for accommodating the sample. A reservoir of liquid reagents.

該易於使用、可大量生產、廉價且可攜帶之診斷測試 模組能接受生物試樣,使用透析晶片分離出試樣中之病原 體,且分別處理從該等試樣中分離之病原體之核酸內容物 。該透析晶片能功能性地提取更多來自試樣之資訊並增加 該檢定系統之靈敏度、信號對雜訊比及動態範圍。 該微流體多晶片組件可提供更高模組性。該組件之表 面微機電晶片比起能提供該組件所有功能之單體晶片要小 得多且不成比例地便宜許多。另一選擇地,一大型但具有 成本效益之透析晶片則能提供高級透析容量以進一步提高 該檢定系統之靈敏度、信號對雜訊比及動態範圍。The easy-to-use, mass-produced, inexpensive, and portable diagnostic test module is capable of accepting biological samples, separating the pathogens in the sample using the dialysis wafer, and separately processing the nucleic acid contents of the pathogens isolated from the samples. . The dialysis wafer can functionally extract more information from the sample and increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system. The microfluidic multi-wafer assembly provides greater modularity. The surface MEMS of this component is much smaller and disproportionately much cheaper than a single wafer that provides all of the functionality of the assembly. Alternatively, a large but cost-effective dialysis wafer can provide advanced dialysis capacity to further increase the sensitivity, signal-to-noise ratio, and dynamic range of the assay system.

採用功能最佳的便宜製程以製造該微流體多晶片組件 之各個表面-微機電晶片之構成部份,即唯-bioMST透析晶 片可省略所有CMOS製程步驟及可採用廉價的玻璃晶圓。 【實施方式】 較佳具體例之詳細說明 槪述 此槪述係界定一體現本發明諸多具體例之分子診斷系 統之主要構件。該系統整體結構及操作之全面詳細說明稍 -46 - 201209406 後示於本專利說明書中。 參考第1、2、3、85及86圖,該系統具有以下頂層構 件:Each of the surface-microelectromechanical wafer components of the microfluidic multi-chip assembly is fabricated using a less expensive process that is optimal in function, i.e., the only-bioMST dialysis wafer can omit all CMOS process steps and can employ inexpensive glass wafers. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT This description defines a main component of a molecular diagnostic system embodying many specific examples of the present invention. A full detailed description of the overall structure and operation of the system is shown in this patent specification. Referring to Figures 1, 2, 3, 85 and 86, the system has the following top-level components:

測試模組1 〇及1 1具有典型U S B存儲器 (memory key ) 之大小且製造十分便宜。測試模組1 0及1 1各含有一微流體 裝置’其典型地爲已預先裝有分子診斷檢定用之試劑及通 常超過1 000個探針之晶片上實驗室(LOC)裝置30之形式 (參見第1圖及第8 5圖)》測試模組1 〇如第1圖示意顯示地 係採用螢光爲基礎之偵測技術來鑑定目標分子,而第85圖 之測試模組1 1則爲採用電化學發光爲基礎之偵測技術。該 LOC裝置30具有用來感測螢光或電化學發光之積體化光感 測器44 (以下將詳加描述)。測試模組1 〇及1 1兩者皆採用 標準式微型(Micro) -USB插頭14以傳輸電能、資料及進 行控制,兩者皆有印刷電路板(PCB ) 57,且兩者皆有外 部電源供應電容器3 2及電感器1 5。該測試模組1 0及1 1僅供 單次使用,皆可大量生產且以無菌包裝配送即拆即用。 外殼13具有收納生物試樣之大貯槽(macroreceptacle )24以及可拆除之無菌密封膠帶22,其較佳地具有低黏性 黏著劑,以於使用前覆蓋住該大貯槽。具有護膜罩410之 膜封條40 8構成外殼1 3的一部份以減少測試模組內之脫濕 現象同時提供釋壓作用以預防氣壓小輻波動。該護膜罩 4 10可保護膜封條40 8免於損壞。 測試模組讀取器12係透過微型-USB埠16來供應測試模 組10或11電力。該測試模組讀取器12可採用多種不同形式 -47- 201209406Test modules 1 and 1 have the size of a typical U S B memory (memory key) and are very inexpensive to manufacture. Test modules 10 and 1 each contain a microfluidic device 'typically in the form of a wafer-on-lab (LOC) device 30 that has been pre-loaded with reagents for molecular diagnostic assays and typically more than 1 000 probes ( See Figure 1 and Figure 8) Test Module 1 As shown in Figure 1, the ground-based detection technique is used to identify the target molecules, while the test module 1 in Figure 85 For the detection technology based on electrochemiluminescence. The LOC device 30 has an integrated light sensor 44 (described in more detail below) for sensing fluorescence or electrochemiluminescence. Both test modules 1 and 1 1 use a standard Micro-USB plug 14 to transfer power, data, and control, both of which have a printed circuit board (PCB) 57, and both have external power supplies. Capacitor 3 2 and inductor 15 are supplied. The test modules 10 and 1 1 are intended for single use and can be mass produced and delivered in sterile packaging. The outer casing 13 has a macroreceptacle 24 for receiving a biological sample and a detachable sterile sealing tape 22, preferably having a low viscosity adhesive to cover the large sump prior to use. A film seal 40 8 having a film cover 410 forms part of the outer casing 13 to reduce dewetting in the test module while providing a pressure relief to prevent small fluctuations in air pressure. The film cover 4 10 protects the film seal 40 8 from damage. The test module reader 12 supplies the test module 10 or 11 power through the micro-USB port 16. The test module reader 12 can take many different forms -47- 201209406

且稍後將詳述此等選擇。第1、3及85圖所示之讀取器12版 本爲智慧型手機之例。該讀取器12之方塊圖示於第3圖》 處理器42可執行來自程式儲存器43之應用軟體。該處理器 42還界接顯示螢幕18及用戶界面(UI)觸控螢幕17及按鍵 19'蜂巢式無線電台21、無線網路連線23及衛星導航系統 25»該蜂巢式無線電台21及無線網路連線23係用於通訊。 衛星導航系統2 5可用位置資料更新流行病學資料庫。另一 選擇地’該位置資料可透過觸控螢幕17或按鍵19人爲地輸 入。資料儲存器27含有基因及診斷資訊、測試結果、患者 資訊、檢定及用以確認各探針及其陣列位置之探針資料。 資料儲存器27及程式儲存器43可共享同一記憶裝置。安裝 在該測試模組讀取器1 2內之應用軟體可提供結果分析,以 及其它測試及診斷資訊。These options will be detailed later. The reader 12 version shown in Figures 1, 3 and 85 is an example of a smart phone. The block diagram of the reader 12 is shown in FIG. 3. The processor 42 can execute the application software from the program storage 43. The processor 42 also interfaces the display screen 18 and the user interface (UI) touch screen 17 and the button 19' cellular radio station 21, the wireless network connection 23 and the satellite navigation system 25» the cellular radio station 21 and the wireless Network connection 23 is used for communication. The satellite navigation system 25 can update the epidemiological database with location information. Alternatively, the location data can be manually entered via the touch screen 17 or button 19. The data store 27 contains genetic and diagnostic information, test results, patient information, assays, and probe data for confirming the position of each probe and its array. The data storage 27 and the program storage 43 can share the same memory device. The application software installed in the test module reader 1 2 provides results analysis and other test and diagnostic information.

爲了進行診斷測試,把該測試模組1 0 (或測試模組1 1 )插到該測試模組讀取器12之微型-USB埠16。把無菌密封 膠帶22撕開來且將生物試樣(呈液體形式)裝載到試樣大 貯槽24中。按下開始鈕20,透過應用軟體啓動測試。試樣 會流入該LOC裝置30且該板上檢定開始萃取、培育、擴增 以及用預合成之雜合-反應性寡核苷酸探針來與試樣核酸 (目標物)雜合。於測試模組1 0 (其使用螢光爲基礎偵測 )之例中,探針係以螢光標記且安裝於外殻13內之LED 26 可提供引發已雜合探針放射螢光所需之激發光線(見第1 及2圖)。於測試模組1 1 (其係使用電化學發光(ECL )偵 測),該LOC裝置30中裝有ECL探針(如以上討論般), -48- 201209406 且不需要LED 26以產生發光放射。替代性地,係由電極 860及870提供激發電流(見第86圖)。放射作用(螢光性 或發光性)係使用整合於各LOC裝置上之CMOS電路內之 光感測器44來偵測。偵測訊號會被放大及轉變成數位輸出 ’其可用測試模組讀取器1 2來分析。然後該讀取器會顯示 出結果。For diagnostic testing, the test module 10 (or test module 1 1 ) is inserted into the micro-USB port 16 of the test module reader 12. The sterile sealing tape 22 is torn open and a biological sample (in liquid form) is loaded into the sample sump 24. Press the start button 20 to start the test through the application software. The sample will flow into the LOC device 30 and the plate assay will begin to extract, incubate, amplify, and hybridize with the sample nucleic acid (target) using a pre-synthesized hybrid-reactive oligonucleotide probe. In the example of test module 10 (which uses fluorescence-based detection), the probe is fluorescently labeled and LED 26 mounted in housing 13 provides the desired illumination for the hybrid probe. Excitation light (see Figures 1 and 2). In test module 1 1 (which uses electrochemiluminescence (ECL) detection), the LOC device 30 is equipped with an ECL probe (as discussed above), -48-201209406 and does not require LED 26 to produce luminescent radiation . Alternatively, the excitation current is provided by electrodes 860 and 870 (see Figure 86). Radiation (fluorescence or luminescence) is detected using a photosensor 44 integrated in a CMOS circuit on each LOC device. The detection signal will be amplified and converted into a digital output' which can be analyzed by the test module reader 12. The reader will then display the result.

此等資料可局部儲存及/或上傳至含有患者記錄之網 路伺服器。將測試模組10或1 1從該測試模組讀取器12上卸 除且妥善地丟棄。 第1、3及85圖顯示作成行動電話/智慧型手機28之測 試模組讀取器1 2。於其它形式中,該測試模組讀取器可爲 醫院、私人診所或實驗室使用之膝上型/筆記型電腦101、 專屬讀取器103、電子書讀取器107、平板電腦109或桌上 型電腦105 (見第87圖)。該讀取器可與廣泛的其它應用 像是患者記錄、帳單、線上資料庫及多用戶環境等界接。 其亦可與多種地區性的或遠端的周邊設備例如印表機或患 者1C智慧卡界接。 現在參考第88圖,測試模組10產生的資料可透過讀取 器12及網路125來更新流行病學資料主機系統111內的流行 病學資料庫,基因資料主機系統113內之基因資料庫、電 子健康記錄(EHR )主機系統1 1 5內之電子健康記錄、電 子病歷(EMR)主機系統121內之電子病歷以及個人健康 記錄(PHR )主機系統123內之個人健康記錄。反過來地 ,流行病學資料主機系統1 1 1內的流行病學資料庫,基因 -49- 201209406 資料主機系統113內之基因資料庫、電子健康記錄(Ehr )主機系統115內之電子健康記錄、電子病歷(EMR)主 機系統121內之電子病歷以及個人健康記錄(PHR )主機 系統123內之個人健康記錄亦可透過該網路125及讀取器12 來更新測試模組10之LOC裝置30內的數位記憶體。This information can be stored locally and/or uploaded to a web server containing patient records. The test module 10 or 11 is removed from the test module reader 12 and properly discarded. Figures 1, 3 and 85 show a test module reader 12 for making a mobile phone/smartphone 28. In other forms, the test module reader can be a laptop/notebook 101, a dedicated reader 103, an e-book reader 107, a tablet 109 or a table for use in a hospital, private clinic or laboratory. The upper computer 105 (see Figure 87). The reader can interface with a wide range of other applications such as patient records, billing, online databases and multi-user environments. It can also interface with a variety of regional or remote peripheral devices such as printers or patient 1C smart cards. Referring now to FIG. 88, the data generated by the test module 10 can be updated by the reader 12 and the network 125 to update the epidemiological database in the epidemiological data host system 111, and the gene database in the genetic data host system 113. An electronic health record in the electronic health record (EHR) host system, an electronic medical record in the electronic medical record (EMR) host system 121, and a personal health record in the personal health record (PHR) host system 123. Conversely, the epidemiological database within the epidemiological data host system 1 1 1 , the gene database in the gene-49-201209406 data host system 113, and the electronic health record in the electronic health record (Ehr) host system 115 The electronic medical record in the electronic medical record (EMR) host system 121 and the personal health record in the personal health record (PHR) host system 123 can also update the LOC device 30 of the test module 10 through the network 125 and the reader 12. Digital memory inside.

現在回去參考第1、2、85及86圖,該讀取器12在行動 電話組態中係使用電池電力。該行動電話讀取器含有預先 載入之所有測試及診斷資訊。資料亦可透過多種無線或接 觸界面來載入或更新以與周邊裝置、電腦或線上伺服器交 流。提供微型-USB埠16以與電腦連通或者在電池充電時維 持電源供應。Referring now back to Figures 1, 2, 85 and 86, the reader 12 uses battery power in the mobile phone configuration. The mobile phone reader contains all pre-loaded test and diagnostic information. Data can also be loaded or updated via a variety of wireless or touch interfaces to communicate with peripherals, computers or online servers. A micro-USB port 16 is provided to communicate with the computer or to maintain power supply while the battery is charging.

第62圖顯示之測試模組10具體例其測試僅需顯示對一 特定目標爲正反應或負反應的結果而已,像是測試某人是 否感染例如H1N1 A型流感病毒。爲特定目的建造之唯USB 電源/指示器模組47即很適合。無需其它讀取器或應用軟 體。於唯USB電源/指示器模組4 7上之指示器45會顯示正反 應或負反應結果之訊號。此組態相當適合大量篩選。 此系統提供之其它項目還包含含有特定試樣預處理試 劑之測試管,以及試樣採集用之壓舌板及刺血針。第62圖 顯示之測試模組具體例方便地含有用彈簧頂住之可縮式刺 血針3 90及刺血針釋放鈕3 92。在偏遠地區可使用衛星電話 測試模組電子設備 -50- 201209406Figure 62 shows a specific example of the test module 10 whose test only needs to show a positive or negative reaction to a particular target, such as testing whether a person is infected with, for example, the H1N1 influenza A virus. A USB-only power/indicator module 47 built for a specific purpose is well suited. No other readers or application software is required. The indicator 45 on the USB power/indicator module 47 will display a positive or negative reaction result. This configuration is quite suitable for a large number of screenings. Other items provided by this system include test tubes containing specific sample pretreatment reagents, as well as tongue depressors and lancets for sample collection. The specific example of the test module shown in Fig. 62 conveniently contains a collapsible lancet 3 90 and a lancet release button 3 92 which are held by a spring. Satellite phone test module electronics can be used in remote areas -50- 201209406

第2及86圖分別爲測試模組1 0及1 1之電子組件之方塊 圖。整合於LOC裝置30內之CMOS電路具有一USB裝置驅動 器36 ' —控制器34、一 USB-相容LED驅動器29、時鐘33、 電源調節器31、RAM 3 8以及程式和資料快閃記憶體40。 此等設備提供整個測試模組1 〇或11之控制及記憶,其包括 光感測器44、溫度感測器1 70、液體感測器1 74 '及不同的 加熱器152、154、182、234,以及伴隨之驅動器37及39及 暫存器35及41。只有該LED 26 (於測試模組10之例中)、 外部電源供應電容器32及該微型-USB插頭14係在該LOC裝 置30之外部。該LOC裝置30包括了與此等外部構件連接之 接合墊(bond-pads ) 。RAM 38及程式及資料快閃記憶體 40具有應用軟體及超過1〇〇〇個探針之診斷及測試資訊(快 閃/安全儲存,例如透過加密)。於採用ECL偵測之測試模 組1 1之例,該模組並無LED 26 (見第85及86圖)。資料被 LOC裝置3 0加密以供安全儲存及與外部裝置安全通訊。該 LOC裝置30裝有電化學發光探針以及都有一對ECL激發電 極860及870之雜合室。 許多測試模組1 〇類型係採用不同測試形式製造,很容 易現成使用。此等測試形式間的差異係在於使用諸試劑及 探針之板上檢定。 能以此系統快速地鑑定出來之感染性疾病的一些實例 包括: •流行性感冒:流感病毒A ' B ' C型,傳染性鮭魚貧 -51 - 201209406 血病毒(Isavirus),托高 土病毒(Thogotovirus) •肺炎:呼吸道融合病毒(RSV )、腺病毒、間質性 肺炎病毒、肺炎雙球菌(Streptococcus pneumoniae)、金 黃色葡萄球菌(Staphylococcus aureus ) • 肺結核:結核分枝桿菌 ( iMftercM/oi/·?)、牛型結核菌(Μ. 、非洲分枝桿菌Figures 2 and 86 are block diagrams of the electronic components of test modules 10 and 11. The CMOS circuit integrated in the LOC device 30 has a USB device driver 36' - a controller 34, a USB-compatible LED driver 29, a clock 33, a power conditioner 31, a RAM 38, and a program and data flash memory 40. . These devices provide control and memory for the entire test module 1 or 11 and include a light sensor 44, a temperature sensor 170, a liquid sensor 1 74', and different heaters 152, 154, 182, 234, and accompanying drivers 37 and 39 and registers 35 and 41. Only the LED 26 (in the example of the test module 10), the external power supply capacitor 32, and the micro-USB plug 14 are external to the LOC device 30. The LOC device 30 includes bond-pads that are coupled to such external components. RAM 38 and program and data flash memory 40 have diagnostic software and test information for more than one probe (flash/secure storage, such as encryption). For the example of test module 1 using ECL detection, the module does not have LED 26 (see Figures 85 and 86). The data is encrypted by the LOC device 30 for secure storage and secure communication with external devices. The LOC device 30 houses an electrochemiluminescent probe and a hybrid chamber having a pair of ECL excitation electrodes 860 and 870. Many test module types are manufactured in different test formats and are easy to use. The difference between these test formats is based on plate assays using reagents and probes. Some examples of infectious diseases that can be quickly identified by this system include: • Influenza: Influenza A 'B 'C type, infectious salmon poor -51 - 201209406 Blood virus (Isavirus), Tokavirus ( Thogotovirus) • Pneumonia: respiratory syncytial virus (RSV), adenovirus, interstitial pneumonia virus, Streptococcus pneumoniae, Staphylococcus aureus • tuberculosis: Mycobacterium tuberculosis (iMftercM/oi/· ?), bovine tuberculosis (Μ., M. africanum

(M. a_/Wci/«MW )、卡氏分枝桿菌(M. caneiiz·)及田鼠分 枝桿菌(Λ/, w i c r ο ί / ) •惡性瘡原蟲/"a/cz'/jarM/w)、剛地弓形 蟲(Γοχορ/ύ^»ΐίϊ )及其它原蟲寄生蟲 •傷寒:傷寒沙門氏菌(*5a/TW〇«e//a ·?βλ·〇να/* typhi ) •埃勃拉病毒(Ebola virus) • 人類免疫缺陷病毒 (Human immunodeficiency virus ( HIV ))(M. a_/Wci/«MW), M. caneiiz and M. voles (Λ/, wicr ο ί / ) • Malignant sore/"a/cz'/jarM /w), Toxoplasma gondii (Γοχορ/ύ^»ΐίϊ) and other protozoan parasites • Typhoid: Salmonella typhimurium (*5a/TW〇«e//a ·?βλ·〇να/* typhi ) • Ebola virus • Human immunodeficiency virus (HIV)

•登革熱:黃病毒(Flavivirus) •肝炎(A到E型) • 醫院獲得性感染:例如艱難梭狀芽孢桿菌( Clostridium difficile、、耐萬古黴素之腸球菌 ( 五《ierococcw)及耐二甲氧苯青黴素之金黃色葡萄球菌 •單純疱疹病毒(HSV ) •巨細胞病毒(Cytomegalovirus ( CMV)) •伊斯坦巴病毒(Epstein-Barrvirus(EBV)) •腦炎:日本腦炎病毒、章地埔拉病毒(chandiPura -52- 201209406 virus ) •百曰咳·百日咳嗜血桿菌心 •麻疹:副黏液病毒 •腦膜炎:肺炎雙球菌及腦膜炎雙球菌(iVeiwerM meningitidis) •灰痕病:炭痕芽孢桿菌• Dengue fever: Flavivirus • Hepatitis (types A to E) • Hospital-acquired infections: for example, Clostridium difficile, vancomycin-resistant enterococci (five "ierococcw") and dimethylation resistant Benzomycin S. aureus • Herpes simplex virus (HSV) • Cytomegalovirus (CMV) • Epstein-Barrvirus (EBV) • Encephalitis: Japanese encephalitis virus, Zhang Dipu La Virus (chandiPura -52- 201209406 virus ) • Hundreds of coughs · Haemophilus pertussis heart • Measles: Paramyxovirus • Meningitis: pneumococcal and meningococcal (iVeiwerM meningitidis) • Gray mark: Bacillus charredi

能以此系統鑑定出來之遺傳性疾病之一些實例包括: •囊性纖維變性 •血友病 *鐮刀細胞型貧血 •黑矇性白癡 •血色素沉著症 «大腦動脈病 •克羅恩氏病 •多囊性腎病 •先天性心臓病 •瑞特氏症候群 一小群可用此診斷系統鑑定出來之癌症包括: •卵巢癌 •結腸癌 •多發性內分泌腫瘤 •視網膜母細胞瘤 -53- 201209406 •透克氏症候群 以上表列並不詳盡且該診斷系統可被配置成能使用核 酸及蛋白質組分析來偵測極多不同種類的疾病和病況。 系統組件之詳細構造 LOC裝置Some examples of hereditary diseases that can be identified by this system include: • Cystic fibrosis • Hemophilia • Sickle cell anemia • Black idiots • Hemochromatosis « Cerebral arterial disease • Crohn's disease • Multiple Cystic nephropathy • Congenital heart disease • Reuters syndrome A small group of cancers identified by this diagnostic system include: • Ovarian cancer • Colon cancer • Multiple endocrine tumors • Retinoblastoma -53- 201209406 • The above list of syndromes is not exhaustive and the diagnostic system can be configured to detect a wide variety of diseases and conditions using nucleic acid and proteomic analysis. Detailed structure of system components LOC device

該LOC裝置30爲此診斷系統之中心。藉著使用微流體 平台,其能快速地進行以核酸爲基礎之分子診斷檢定之四 個主要步驟,亦即試樣製備、核酸萃取、核酸擴增及偵測 。該LOC裝置還有其它用途,此等用途稍後會詳加說明。 如以上討論地,測試模組1 0及1 1可採用許多不同組態以偵 測不同目標物。類似地,該LOC裝置30也有許多針對硏究 目標設計之不同具體例。一種LOC裝置30之形式爲採用螢 光偵測全血試樣中病原體之目標核酸序列的LOC裝置301 。爲了說明,該LOC裝置301之結構及操作現在參考第4至 26圖及第27至57圖來詳加描述。 第4圖爲該LOC裝置301整體結構之示意代表圖。爲求 方便,第4圖顯示之流程階段係以進行該流程階段之LOC 裝置301之功能性區域的參考編號來表示。與核酸爲基礎 之分子診斷檢定之各個主要步驟相關之流程階段亦已標示 :試樣置入及製備(sample input and preparation) 288, 萃取2 90、培育291、擴增292及偵測294。該LOC裝置301 之不同貯存器、室、閥及其它構件將於稍後詳加描述。 第5圖爲該L0C裝置301之透視圖。其係採用高容積 -54- 201209406The LOC device 30 is the center of this diagnostic system. By using a microfluidic platform, it is capable of rapidly performing four major steps in nucleic acid-based molecular diagnostic assays, namely sample preparation, nucleic acid extraction, nucleic acid amplification and detection. There are other uses for this LOC device, which will be described later in detail. As discussed above, test modules 10 and 1 1 can take many different configurations to detect different targets. Similarly, the LOC device 30 also has a number of specific examples for the design of the target. One form of LOC device 30 is a LOC device 301 that uses fluorescence to detect a target nucleic acid sequence of a pathogen in a whole blood sample. For purposes of illustration, the structure and operation of the LOC device 301 will now be described in detail with reference to Figures 4 through 26 and Figures 27 through 57. Fig. 4 is a schematic representation of the overall structure of the LOC device 301. For convenience, the process stage shown in Figure 4 is represented by the reference number of the functional area of the LOC device 301 performing the process stage. The process stages associated with each of the major steps of the nucleic acid-based molecular diagnostic assay have also been labeled: sample input and preparation 288, extraction 2 90, incubation 291, amplification 292, and detection 294. The different reservoirs, chambers, valves and other components of the LOC device 301 will be described in detail later. Fig. 5 is a perspective view of the LOC device 301. Its high volume -54- 201209406

CMOS及MST (微系統技術)製造技術製造。該LOC裝置 301之層狀結構示於第12圖之示意性(不按比例的)部份 剖面圖。該LOC裝置301具有一支撐著CMOS + MST晶片48 之矽基材84,含有CMOS電路86及MST層87,以及一覆蓋 在該MST層87上之頂蓋(cap ) 46。基於本專利說明書之 目的,術語“MST層”係指一群結構及膜層之集合,該等結 構及膜層會以不同試劑來處理試樣。據此,此等結構及構 件被配置成能界定具有特徵尺寸之流路,該特徵尺寸可於 試樣處理期間支持與該試樣具有相同物理特性之液體的毛 細驅動流動。關於此點,該等MST層及諸構件典型地係使 用表面微細加工技術及/或體微細加工(bulk micromachining)技術來製造。不過,其它製造技術亦可 生產此等結構及構件,其具有可產生毛細驅動流動之大小 並能處理極微小的體積。此專利說明書中描述之明確具體 例會顯示MST層且以MST層當作支撐在該CMOS電路86上 之結構及主動構件,卻排除掉該頂蓋46之特徵構件。不過 ,熟悉此技術之讀者應瞭解該MST層無需襯底之CMOS或 實際上的上覆頂蓋即可處理試樣。 於以下圖式中顯示之LOC裝置的整體大小爲 1 760μιηχ5824μηι。當然,不同應用之LOC裝置可具有不同 尺寸大小。 第6圖顯示被頂蓋之特徵構件疊加其上之MST層87之 特徵構件。第6圖顯示之插圖ΑΑ至AD、AG及ΑΗ分別於第 13、14、35、56、55及58中放大,且於下文中詳加描述以 -55- 201209406 讓人徹底瞭解該LOC裝置301內的各個結構。第7至10圖則 獨立顯示該頂蓋46之特徵構件而第11圖則獨立顯示 CMOS + MST裝置48之結構。 層狀結構Manufactured by CMOS and MST (Microsystem Technology) manufacturing technology. The layered structure of the LOC device 301 is shown in a schematic (not to scale) partial cross-sectional view of Fig. 12. The LOC device 301 has a germanium substrate 84 supporting a CMOS + MST wafer 48, a CMOS circuit 86 and an MST layer 87, and a cap 46 overlying the MST layer 87. For the purposes of this patent specification, the term "MST layer" refers to a collection of structures and layers of film that will be treated with different reagents. Accordingly, the structures and members are configured to define a flow path having a feature size that supports capillary drive flow of liquid having the same physical properties as the sample during sample processing. In this regard, the MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing techniques can also produce such structures and components that are capable of producing capillary drive flow and capable of handling extremely small volumes. The specific embodiment described in this patent specification will show the MST layer and use the MST layer as the structure and active components supported on the CMOS circuit 86, excluding the features of the top cover 46. However, readers familiar with this art should be aware that the MST layer can handle samples without the need for a substrate CMOS or a virtually overlying cap. The overall size of the LOC device shown in the following figures is 1 760 μm χ 5824 μηι. Of course, LOC devices for different applications can have different sizes. Figure 6 shows the features of the MST layer 87 superimposed thereon by the features of the top cover. Figure 6 shows the illustrations AD to AD, AG and ΑΗ magnified in Figures 13, 14, 35, 56, 55 and 58, respectively, and is described in detail below with -55-201209406 to give a thorough understanding of the LOC device 301. Various structures within. Figures 7 through 10 show the features of the top cover 46 independently and Figure 11 shows the structure of the CMOS + MST device 48 independently. Layered structure

第12及22圖乃爲草圖,其以圖顯示該CMOS + MST裝置 48、頂蓋46及這兩者間之流體互動的層狀結構。爲了說明 ,此等圖式並未按照實際比例大小顯示。第12圖爲通過試 樣置入口 68之示意剖面圖及第22圖爲通過貯存器54之示意 剖面圖。如第12圖最佳顯示地,該CMOS + MST裝置48具有 一矽基材84,其支撐著CMOS電路86而該電路能操控上方 MST層87內的主動元件。一鈍化層88密封及保護該CMOS 層8 6免於接觸到流經該MST層87之液流。Figures 12 and 22 are sketches showing the layered structure of the CMOS + MST device 48, the top cover 46, and the fluid interaction therebetween. For the sake of explanation, these drawings are not shown in the actual scale. Fig. 12 is a schematic sectional view through the sample inlet 68 and Fig. 22 is a schematic sectional view through the reservoir 54. As best shown in Fig. 12, the CMOS + MST device 48 has a germanium substrate 84 that supports the CMOS circuit 86 which is capable of manipulating the active components within the upper MST layer 87. A passivation layer 88 seals and protects the CMOS layer 8.6 from contact with the flow of liquid through the MST layer 87.

流體流經分別位於頂蓋層46之頂蓋通道94及位於MST 通道層100之MST通道90 (參見例如第7及16圖)。細胞運 輸發生在建於頂蓋46內之較大通道94’而生化處理則在較 小的MST通道90內進行。細胞運輸通道的大小係能夠把試 樣內的細胞運送到該MST通道90內的預定位置。尺寸大於 20微米之細胞(例如,特定的白血球)的運輸會需要管徑 大於20微米之通道,因而該通道與液流垂直之橫切面積會 大於400平方微米。MST通道,特別是位在LOC內無需運輸 細胞之位置時,管徑顯著地較小。 應瞭解該頂蓋通道94及MST通道90都是通用的稱呼’ 特別的M S T通道9 0可根據其特殊功能而被稱爲例如受熱微 -56- 201209406 通道或透析MST通道。MST通道90係藉著蝕刻沉積在鈍化 層88上方之MST通道層100且用光阻劑圖型化來形成。該 MST通道90係用頂壁層66圍住,該頂壁層構成該 CMOS + MST裝置48的頂端(相對於圖式顯示之方位來看)Fluid flows through the top cover channel 94 of the cap layer 46 and the MST channel 90 located at the MST channel layer 100 (see, for example, Figures 7 and 16). Cell transport occurs in the larger channel 94' built into the top cover 46 and biochemical treatment takes place in the smaller MST channel 90. The size of the cell transport channel is capable of transporting cells within the sample to a predetermined location within the MST channel 90. Transport of cells larger than 20 microns (e.g., specific white blood cells) would require channels with a diameter greater than 20 microns, and thus the cross-sectional area perpendicular to the flow would be greater than 400 square microns. The MST channel, especially in the LOC where there is no need to transport cells, is significantly smaller. It should be understood that the top cover channel 94 and the MST channel 90 are both generic terms. The special M S T channel 90 can be referred to as a heated micro-56-201209406 channel or a dialysis MST channel depending on its particular function. The MST channel 90 is formed by etching a MST channel layer 100 deposited over the passivation layer 88 and patterning with a photoresist. The MST channel 90 is surrounded by a top wall layer 66 which forms the top end of the CMOS + MST device 48 (relative to the orientation of the drawing)

雖然有時候會以個別的膜層表示,不過該頂蓋通道層 80及該貯存器層78係在一整片物料上形成。當然,這片物 料可以不是單一整體的。這片物料係從兩面蝕刻以形成蝕 刻有頂蓋通道94之頂蓋通道層80以及蝕刻有貯存器54、56 、58、60及62之貯存器層78。另一選擇地,該貯存器及頂 蓋通道可用微成型法來形成。蝕刻及微成型技術兩者皆可 用來製造通道,該通道與液流垂直之橫切面可以大到 20,000平方微米或者小到8平方微米。 在LOC裝置中,不同位置之通道其與液流垂直之橫切 面積大小可有廣泛的選擇。當通道中含有大量試樣時或者 所含試樣具大構造成分時,該通道之橫切面積可高達 2〇,〇〇〇平方微米(例如,於100微米厚之膜層中有200微米 寬的通道)。當通道中只含少量液體或者所含混合物沒有 大細胞存在時,該通道與液流垂直之橫切面積最好非常小 下封條64圍住頂蓋通道94且上密封層82圍住貯存器54 、56、58、60¾ 62 ° 五個貯存器54、56、58、60及62中已先裝有檢定-特 異性試劑。在此所述之具體例中,該等貯存器內已預先裝 -57- 201209406 入以下試劑,不過很容易用其它試劑來取代: •貯存器54:抗凝血劑,任意地可含有紅血球胞溶緩 衝液 •貯存器5 6 :胞溶試劑Although sometimes represented by individual layers, the top channel layer 80 and the reservoir layer 78 are formed on a single piece of material. Of course, this piece of material may not be a single whole. The sheet material is etched from both sides to form a cap channel layer 80 etched with a cap channel 94 and a reservoir layer 78 etched with reservoirs 54, 56, 58, 60 and 62. Alternatively, the reservoir and cap channel can be formed by microforming. Both etching and microforming techniques can be used to create channels that can be as large as 20,000 square microns or as small as 8 square microns perpendicular to the flow. In the LOC device, the channel at different locations has a wide selection of cross-sectional areas perpendicular to the flow. When the channel contains a large number of samples or when the sample contains a large structural component, the cross-sectional area of the channel can be as high as 2 〇, 〇〇〇 square micron (for example, 200 μm wide in a 100 μm thick film layer) Channel). When the channel contains only a small amount of liquid or the mixture contains no large cells, the cross-sectional area of the channel perpendicular to the flow is preferably very small. The lower seal 64 encloses the top cover channel 94 and the upper sealing layer 82 encloses the reservoir 54. , 56, 58, 603⁄4 62 ° Five reservoirs 54, 56, 58, 60 and 62 have been previously loaded with assay-specific reagents. In the specific examples described herein, the following reagents are pre-filled with -57-201209406, but are easily replaced with other reagents: • Reservoir 54: anticoagulant, optionally containing red blood cells Dissolving buffer•Storage 5 6 : lysing reagent

•貯存器5 8 :限制性內切酶、接合酶及連接子序列( 用於連接子-帶頭PCR (見第61圖’選自T. Stachan et al·, Human Molecular Genetics 2,Garland Science, NY and London, 1999)) •貯存器60:擴增混合物(dNTPs,引子,緩衝液) 及 •貯存器62 : DNA聚合酶。 該頂蓋46及CMOS + MST層48會透過下封條64及頂壁層 66內對應之開口以流體連通。此等開口將視流體係從該 MST通道90流到頂蓋通道94或反向流動而被稱爲上導管( uptakes) 96或下導管(downtakes) 92。• Reservoir 5 8: restriction enzymes, ligase and linker sequences (for linker-to-head PCR (see Figure 61 'selected from T. Stachan et al, Human Molecular Genetics 2, Garland Science, NY And London, 1999)) • Reservoir 60: amplification mixture (dNTPs, primers, buffer) and • reservoir 62: DNA polymerase. The top cover 46 and the CMOS + MST layer 48 are in fluid communication through the corresponding openings in the lower seal 64 and the top wall layer 66. These openings are referred to as uptakes 96 or downtakes 92 from the MST channel 90 to the cap channel 94 or to the reverse flow.

LOC裝置操作 該LOC裝置301之操作將參考分析血液試樣內之病原 性DNA之情況以逐步的方式說明如下。當然,其它類型之 生物性或非生物性流體亦可使用適當的一組試劑、測試流 程、L Ο C變化型及偵測系統,或其組合來分析。回去參考 第4圖’有五個主要步驟涉及生物性試樣之分析,其包含 試樣置入及製備288、核酸萃取290、核酸培育291、核酸 擴增292以及偵測和分析294。 -58- 201209406 試樣置入及製備步驟288涉及把血液與抗凝血劑116混 合,然後於病原體透析區70把病原體與白血球及紅血球分 離開來。如第7及1 2圖最佳顯示地,血液試樣經由試樣置 入口 68進入裝置。毛細作用會把血液試樣沿著頂蓋通道94 汲取到貯存器54內。當試樣血流打開表面張力閥118時抗 凝血劑會從貯存器54中釋出(見第15及22圖)。該抗凝血 劑可防止凝塊形成,凝塊會阻塞流動。LOC Device Operation The operation of the LOC device 301 will be described in a stepwise manner with reference to the analysis of pathogenic DNA in a blood sample. Of course, other types of biological or abiotic fluids can also be analyzed using a suitable set of reagents, test procedures, L Ο C variants and detection systems, or a combination thereof. Referring back to Figure 4, there are five main steps involved in the analysis of biological samples, including sample placement and preparation 288, nucleic acid extraction 290, nucleic acid incubation 291, nucleic acid amplification 292, and detection and analysis 294. -58- 201209406 Sample Placement and Preparation Step 288 involves mixing the blood with the anticoagulant 116 and then separating the pathogen from the white blood cells and red blood cells in the pathogen dialysis zone 70. As best shown in Figures 7 and 12, the blood sample enters the device via sample inlet 68. The capillary action draws the blood sample into the reservoir 54 along the top cover channel 94. The anticoagulant is released from the reservoir 54 when the sample blood flow opens the surface tension valve 118 (see Figures 15 and 22). The anticoagulant prevents clot formation and the clot blocks the flow.

如第22圖最佳顯示地,抗凝血劑1 1 6藉著毛細作用從 貯存器54中被拉引出來且經由下導管92進入MST通道90。 該下導管92具有一毛細管起動特徵構件(capillary initiation feature,C IF ) 1 02以塑造彎液面之幾何性,使 其不會固定在該下導管92之邊沿。上封條82上之排氣孔 122可在抗凝血劑1 16被拉引出貯存器54時用空氣取代該抗 凝血劑。 第22圖所示之MST通道90爲表面張力閥118之一部份 。抗凝血劑116會塡滿該表面張力閥118且把一彎液面120 固定在該上導管96之彎液面錨(meniscus anchor) 98上。 使用前,該彎液面120保持著固定在上導管96上’因此抗 凝血劑不會流到頂蓋通道94內。當血液流經頂蓋通道94到 達上導管96時,彎液面120會被除去且抗凝血劑被引入液 流中。 第15到21圖顯示插圖AE,其爲第13圖所示之插圖AA 的一部份。如第15、16及17圖所示’該表面張力閥118具 有三條分離的MST通道90於各別的下導管92及上導管96之 -59- 201209406 間延伸。表面張力閥內的MST通道90之數目可有所不同以 改變試劑流入試樣混合物之流動速度。當試樣混合物及試 劑藉著擴散混合在一起時,試劑流出貯存器之流動速度會 決定該試劑於試樣流內的濃度。因此,各貯存器之表面張 力閥會被配置成能符合所需之試劑濃度。As best shown in Fig. 22, the anticoagulant 116 is drawn from the reservoir 54 by capillary action and enters the MST channel 90 via the downcomer 92. The downcomer 92 has a capillary initiation feature (C IF ) 102 to shape the geometry of the meniscus so that it does not rest at the edge of the downcomer 92. The venting opening 122 in the upper seal 82 can replace the anticoagulant with air as the anticoagulant 166 is drawn out of the reservoir 54. The MST channel 90 shown in Fig. 22 is part of the surface tension valve 118. The anticoagulant 116 will fill the surface tension valve 118 and secure a meniscus 120 to the meniscus anchor 98 of the upper conduit 96. Prior to use, the meniscus 120 remains attached to the upper catheter 96 so that the anticoagulant does not flow into the canopy channel 94. As blood flows through the canopy passage 94 to the upper conduit 96, the meniscus 120 is removed and the anticoagulant is introduced into the flow. Figures 15 through 21 show an illustration AE, which is part of the illustration AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three separate MST channels 90 extending between the respective downcomers 92 and the upper conduits 96 between -59 and 201209406. The number of MST channels 90 within the surface tension valve can vary to vary the flow rate of reagent flow into the sample mixture. When the sample mixture and the reagent are mixed together by diffusion, the flow rate of the reagent out of the reservoir determines the concentration of the reagent in the sample stream. Therefore, the surface tension valve of each reservoir will be configured to meet the desired reagent concentration.

然後血液流入病原體透析區70 (見第4及15圖),於 該處目標細胞透過採用具既定閩値大小之孔徑之小孔1 64 陣列來從試樣中濃縮。小於該閩値之細胞會通過小孔而較 大細胞則無法通過該等小孔。無用的細胞,其可爲卡在小 孔1 64陣列內之細胞或是通過小孔之細胞,會被重新導向 廢棄物單元76而該等目標細胞則繼續留在檢定之中成爲檢 定的一部份。The blood then flows into the pathogen dialysis zone 70 (see Figures 4 and 15) where the target cells are concentrated from the sample by using an array of small wells 1 64 having a pore size of a given size. Cells smaller than the sputum pass through the small holes and larger cells cannot pass through the small holes. Useless cells, which can be cells stuck in the array of small holes 1 64 or cells that pass through the small holes, are redirected to the waste unit 76 and the target cells remain in the assay as part of the assay. Share.

在此所述之病原體透析區70中,來自全血試樣之病原 體會被濃縮以供微生物DN A分析。小孔陣列係由許多直徑 3微米之孔洞164所形成且能把頂蓋通道94內的輸入液流以 流體連結到目標物通道74。直徑3微米之小孔164以及通往 目標物通道74之透析上導孔168則由一系列透析MST通道 2 〇4來連接(以第15及21圖最佳地表示)。病原體會小得 足以通過直徑3微米之小孔164且透過透析MST通道2 04充 滿目標物通道74。大於3微米之細胞例如紅血球及白血球 則留在頂蓋46內之廢棄通道72,該通道會通往廢棄貯存器 76 (見第7圖)。 可採用其它小孔形狀、尺寸及寬高比(aspect ratio ) 來分離特殊的病原體或其它目標細胞例如白血球以供人類 -60- 201209406 DNA分析。稍後會提供此透析區及透析變化型之更多細節In the pathogen dialysis zone 70 described herein, pathogens from whole blood samples are concentrated for microbial DN A analysis. The aperture array is formed by a plurality of 3 micron diameter holes 164 and is capable of fluidly coupling the input stream within the header channel 94 to the target channel 74. The 3 micron diameter aperture 164 and the dialysis upper pilot aperture 168 leading to the target channel 74 are connected by a series of dialysis MST channels 2 〇 4 (best shown in Figures 15 and 21). The pathogen will be small enough to pass through the aperture 164 of diameter 3 microns and fill the target channel 74 through the dialysis MST channel 206. Cells larger than 3 microns, such as red blood cells and white blood cells, remain in the waste channel 72 in the top cover 46, which leads to the waste reservoir 76 (see Figure 7). Other pore shapes, sizes, and aspect ratios can be used to isolate specific pathogens or other target cells, such as white blood cells, for human-60-201209406 DNA analysis. More details of this dialysis zone and dialysis variants will be provided later.

再次參考第6及7圖,液流被拉引流經目標物通道74到 達胞溶試劑貯存器56之表面張力閥128。該表面張力閥128 有7條MST通道90在該胞溶試劑貯存器56及目標物通道74 之間延伸。當彎液面被試樣流瓦解時,該胞溶試劑貯存器 56之流動速度(來自總共7條MST通道90)會比凝血劑貯 存器54(其表面張力閥118具有3條MST通道90)之流動速 度更快(假設該等液流之物理特性大致相同)。因此’試 樣混合物中該胞溶試劑之比例會高於抗凝血劑之比例。 該胞溶試劑及目標細胞會在化學胞溶區130內之目標 物通道74中藉著擴散作用來混合。沸騰-起動閥(boiling-initiated valve) 126 能使液 流停止 一 段足夠 的時間 以進行 擴散及胞溶,使得遺傳性物質從該等目標細胞中釋放出來 (見第6及7圖)。以下將參考第31及32圖更詳細地說明該 沸騰-起動閥之結構及運作。本案申請者亦已開發出其它 的主動閥類型(相對於被動閥例如表面張力閥118),其 可用來代替該沸騰-起動閥。此等另外的閥設計稍後也會 加以說明。 當沸騰-起動閥126打開時,已胞溶之細胞會流入混合 區1 3 1以供擴增前限制性內切酶消化及連接子接合。 現在參考第1 3圖,當液流瓦解混合區1 3 1起始處之表 面張力閥132的彎液面時,限制性內切酶、連接子及接合 酶會從貯存器5 8中釋出。混合物沿著混合區1 3 1全長流過 -61 - 201209406 以進行擴散混合。混合區131之末端爲下導管134,其通往 培育區114之培育器入口通道133 (見第13圖)。該培育器 入口通道1 3 3把混合物饋送到蜿蜒組態之受熱微通道2 1 0, 其提供一用以容納試樣之培育室以進行限制性消化及連接 子接合(見第1 3及14圖)。Referring again to Figures 6 and 7, the flow is drawn through target passage 74 to surface tension valve 128 of lytic reagent reservoir 56. The surface tension valve 128 has seven MST channels 90 extending between the lysate reservoir 56 and the target channel 74. When the meniscus is collapsed by the sample stream, the flow rate of the lysing reagent reservoir 56 (from a total of seven MST channels 90) will be greater than the clotting reservoir 54 (the surface tension valve 118 has three MST channels 90) The flow rate is faster (assuming the physical properties of the streams are approximately the same). Therefore, the proportion of the lysing reagent in the sample mixture is higher than the ratio of the anticoagulant. The cytolytic reagent and target cells are mixed by diffusion in the target channel 74 in the chemical cytolytic zone 130. A boiling-initiated valve 126 can stop the flow for a sufficient period of time for diffusion and cytolysis to release hereditary material from the target cells (see Figures 6 and 7). The structure and operation of the boiling-starting valve will be described in more detail below with reference to Figures 31 and 32. The applicant has also developed other active valve types (as opposed to passive valves such as surface tension valve 118) that can be used in place of the boiling-start valve. These additional valve designs are also described later. When the boiling-start valve 126 is opened, the lysed cells will flow into the mixing zone 133 for pre-amplification restriction endonuclease digestion and linker ligation. Referring now to Figure 13, when the liquid phase collapses the meniscus of the surface tension valve 132 at the beginning of the mixing zone 133, the restriction enzymes, linkers and ligase are released from the reservoir 58. . The mixture flows through the length of the mixing zone 133 over -61 - 201209406 for diffusion mixing. The end of the mixing zone 131 is a downcomer 134 that leads to the incubator inlet channel 133 of the incubation zone 114 (see Figure 13). The incubator inlet channel 133 feeds the mixture to the heated microchannel 210 of the crucible configuration, which provides a chamber for holding the sample for restriction digestion and linker ligation (see paragraph 13 and 14 picture).

第23、24、25、26、27、28及29圖顯示第6圖之插圖 AB內的LOC裝置301之膜層。各圖係在顯示諸膜層之依序 增添過程來形成CMOS + MST層48及頂蓋46之結構。插圖AB 爲培育區114的終點及擴增區112的起點。如第14及23圖最 佳顯示地,液流會一直流進培育區1 1 4之微通道2 1 0直到抵 達沸騰-起動閥106爲止,於該處液流會停下來且進行擴散 。如以上所討論地,該沸騰-起動閥106上游之微通道210 會變成含有試樣、限制性內切酶、接合酶及連接子的培育 室。而後加熱器154會被啓動且於一段特定時間內維持著 恆定的溫度以進行限制性消化及連接子接合。Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 in the inset AB of Figure 6. Each of the figures shows the structure of the CMOS + MST layer 48 and the top cover 46 in a sequential process of displaying the layers. The illustration AB is the end point of the incubation zone 114 and the starting point of the amplification zone 112. As best shown in Figures 14 and 23, the flow will continue to flow into the microchannel 2 1 0 of the incubation zone until it reaches the boiling-start valve 106 where it will stop and diffuse. As discussed above, the microchannel 210 upstream of the boiling-start valve 106 becomes a chamber containing a sample, restriction enzyme, ligase, and linker. The heater 154 is then activated and maintains a constant temperature for a limited period of time for limiting digestion and linker bonding.

熟悉此技術之工作者應瞭解此培育步驟291 (見第4圖 )爲可隨意選擇的且只有某些核酸擴增檢定類型才會需要 。再者,於某些例子中,在培育期結束時可能會需要一加 熱步驟以將溫度促升到高於培育溫度。溫度促升使得限制 性內切酶及接合酶在進入擴增區112前失活化。當採用等 溫核酸擴增法時該限制性內切酶及接合酶之失活化特別重 要。 培育之後,沸騰-起動閥106會被啓動(打開)且液流 重新進入擴增區112。參考第31及32圖,混合物會不斷地 -62- 201209406 流入蜿蜒組態之受熱微管道158 (其會構成一或多個擴增 室)直到液流抵達該沸騰-起動閥1〇8爲止。如第30圖之示 意剖面圖最佳顯示地,擴增混合物(dNTPs、引子、緩衝 液)會從貯存器60中釋出且接著聚合酶從貯存器62釋出而 進入連接培育區及擴增區(分別爲11 4及112)之中間MST 通道212。Workers familiar with this technique should be aware that this incubation step 291 (see Figure 4) is optional and will only be required for certain nucleic acid amplification assay types. Again, in some instances, a heating step may be required at the end of the incubation period to raise the temperature above the incubation temperature. The temperature increase causes the restriction endonuclease and ligase to be deactivated before entering the amplification zone 112. The inactivation of the restriction enzymes and ligases is particularly important when isothermal nucleic acid amplification is employed. After incubation, the boiling-start valve 106 is activated (opened) and the flow re-enters the expansion zone 112. Referring to Figures 31 and 32, the mixture will continuously flow from -62 to 201209406 into the heated microchannel 158 of the crucible configuration (which will constitute one or more amplification chambers) until the liquid stream reaches the boiling-start valve 1〇8. . As best shown in the schematic cross-sectional view of Figure 30, amplification mixtures (dNTPs, primers, buffers) are released from reservoir 60 and then polymerase is released from reservoir 62 into the junction incubation zone and expanded. The intermediate MST channel 212 of the zones (114 and 112, respectively).

第35至51圖顯示第6圖之插圖AC內的LOC裝置301之膜 層。各圖係在顯示諸膜層之依序增添過程來形成 CMOS + MST裝置48及頂蓋46之結構。插圖AC爲擴增區112 的終點及雜合及偵測區52的起點。經過培育之試樣、擴增 混合物及聚合酶會流過微通道158抵達沸騰-起動閥108。 在擴散混合一段充裕時間後,微通道158內之加熱器154被 啓動以開始熱循環或等溫擴增。擴增混合物經過一既定次 數之熱循環或既有擴增時間以擴增足夠的目標DNA。在核 酸擴增流程之後,沸騰-起動閥108會打開且液流重新流入 該雜合及偵測區52。該沸騰-起動閥之運作將在梢後作更 詳細的說明。 如第52圖顯示地,該雜合及偵測區52具有雜合室陣列 110»第52、53、54及56圖係顯示雜合室陣列110及詳細地 個別的雜合室180。該雜合室180之入口處爲擴散屏障175 ,其可防止目標核酸、探針股鏈及雜合探針在雜合期間於 雜合室180間擴散,以避免錯誤的雜合偵測結果。該擴散 屏障175與流路等長,其長得足以在探針及核酸雜合及信 號偵測期間防止目標序列及探針從一室擴散出來而污染到 -63- 201209406 另一室,如此一來即可避免錯誤的結果·> 另一種預防錯誤讀取之機制爲於數個雜合室中使用同 樣的探針。CMOS電路86會從對應含有同樣探針之雜合室 180之光二極體184得到單一結果。於單一結果推導時,將 不合理的結果淘汰或作不同的加權。Figures 35 through 51 show the layers of the LOC device 301 in the inset AC of Figure 6. Each of the figures shows a sequential addition process of the layers to form the structure of the CMOS + MST device 48 and the top cover 46. The illustration AC is the endpoint of the amplification zone 112 and the beginning of the hybrid and detection zone 52. The incubated sample, amplification mixture, and polymerase will flow through the microchannel 158 to the boiling-start valve 108. After diffusion mixing for a sufficient period of time, the heater 154 within the microchannel 158 is activated to initiate thermal cycling or isothermal amplification. The amplification mixture is subjected to a predetermined number of thermal cycles or an existing amplification time to amplify sufficient target DNA. After the nucleic acid amplification process, the boiling-start valve 108 opens and the flow re-flows into the hybrid and detection zone 52. The operation of the boiling-starting valve will be described in more detail after the tip. As shown in Fig. 52, the hybrid and detection zone 52 has a hybrid chamber array 110»52, 53, 54, and 56 showing the hybrid chamber array 110 and the detailed individual hybrid chambers 180. At the entrance of the hybrid chamber 180 is a diffusion barrier 175 which prevents target nucleic acid, probe strands and hybrid probes from diffusing between the hybrid chambers 180 during hybridization to avoid erroneous hybrid detection results. The diffusion barrier 175 is as long as the flow path, and is long enough to prevent the target sequence and the probe from diffusing out of the chamber during the probe and nucleic acid hybridization and signal detection, and contaminating the other chamber -63-201209406, such a To avoid erroneous results·> Another mechanism for preventing erroneous reading is to use the same probe in several hybrid chambers. The CMOS circuit 86 will obtain a single result from the photodiode 184 corresponding to the hybrid chamber 180 containing the same probe. When a single result is derived, the unreasonable results are eliminated or weighted differently.

雜合所需之熱能係由CMOS-控制之加熱器182 (以下 將詳細說明)來提供。在加熱器被啓動後,互補的目標-探針序列間會發生雜合。於CMOS電路86中的LED驅動器 29會對位於測試模組10內之LED 26發出信號使其發光。此 等探針在雜合發生時會發出螢光,如此一來可免除移去未 結合股鏈典型需要的清洗及乾燥步驟。如同稍後將更詳細 說明地,雜合迫使該FRET探針186之莖環結構打開,打開 的結構允許該螢光團對LED激發光線發出反應而放出螢光 能量。螢光可藉著襯於各雜合室180底部之CMOS電路86內 的光二極體184來偵測(見以下雜合室之說明)。所有雜 合室之光二極體184及相關的電子零件集合地構成光感測 器44(見第59圖)。於其它具體例中,該光感測器可爲一 電荷耦合裝置陣列(CCD陣列)。來自光二極體184之偵 測信號可被放大且轉變成數位輸出,其可用測試模組讀取 器1 2來分析。稍後將說明該偵測方法更多細節。 LOC裝置之更多細節 設計之模組化 該LOC裝置301具有許多功能區,包括試劑貯存器54 -64- 201209406 、56、58、60及62,透析區70、胞溶區130、培育區114及 擴增區1 1 2、多種閥類型、濕化器及濕度感測器。於該 LOC裝置之其它具體例中,此等功能區可被省略,可添加 其它功能區或該等功能區可被用於以上所述之其它目的。The thermal energy required for hybridization is provided by a CMOS-controlled heater 182 (described in more detail below). Hybridization occurs between complementary target-probe sequences after the heater is activated. The LED driver 29 in the CMOS circuit 86 signals the LED 26 located within the test module 10 to illuminate. These probes fluoresce when heterozygous occurs, thus eliminating the need for cleaning and drying steps typically required to remove unbound strands. As will be explained in more detail later, hybridization forces the stem-loop structure of the FRET probe 186 to open, and the open structure allows the fluorophore to react to the LED excitation light to emit fluorescent energy. Fluorescence can be detected by photodiode 184 lining the CMOS circuit 86 at the bottom of each of the hybrid chambers 180 (see the description of the hybrid chamber below). The photodiode 184 of all hybrid chambers and associated electronic components collectively form a photosensor 44 (see Figure 59). In other embodiments, the photosensor can be an array of charge coupled devices (CCD arrays). The detection signal from photodiode 184 can be amplified and converted to a digital output, which can be analyzed by test module reader 12. More details of this detection method will be explained later. More detailed design of the LOC device is modularized. The LOC device 301 has a number of functional areas including reagent reservoirs 54-64-201209406, 56, 58, 60 and 62, dialysis zone 70, cytolysis zone 130, incubation zone 114. And the amplification zone 1 1 2, a variety of valve types, humidifiers and humidity sensors. In other specific examples of the LOC device, such functional areas may be omitted, other functional areas may be added or other functional areas may be used for other purposes as described above.

舉例來說,該培育區Π4可被用來當作串聯擴增檢定 系統之第一擴增區112,且化學胞溶試劑貯存器56可用來 添加引子、dNTPs及緩衝液之第一擴增混合物,試劑貯存 器58可用來添加逆轉錄酶及/或聚合酶。如果要將試樣作 化學性胞溶,可把化學胞溶試劑與擴增混合物一起加到貯 存器56中;另一選擇地,可藉著把試樣加熱一段既定時間 而於培育區中進行熱胞溶。於某些具體例中,如果需要進 行化學胞溶並讓該引子、dNTPs及緩衝液之混合物與化學 胞溶試劑分開,那麼可在緊接著該引子、dNTPs及緩衝液 混合物之貯存器58上游處加入更多貯存器。 在某些情況下可能會需要省略某一步驟,例如培育步 驟291。於此例中,可以特別地製造一LOC裝置以省略該 試劑貯存器58及培育區114;或者簡單地不在貯存器中裝 入試劑;或者若有主動閥,可不啓動主動閥來把試劑配送 到試樣流內,從而該培育區簡單地變成把試樣從胞溶區 13 0輸送到擴增區1 12之通道。加熱器係獨立運作的,當反 應依賴熱時(例如熱胞溶)可啓動加熱器;但是在不需熱 胞溶之LOC裝置中,可用程式控制該加熱器,以確保此步 驟期間加熱器不會被啓動且熱胞溶不會發生。該透析區70 可位於微流體裝置內微流體系統之起點如第4圖所顯示, -65- 201209406For example, the incubation zone 4 can be used as the first amplification zone 112 of the tandem amplification assay system, and the chemical lysate reagent reservoir 56 can be used to add primers, dNTPs, and a first amplification mixture of buffer. Reagent reservoir 58 can be used to add reverse transcriptase and/or polymerase. If the sample is to be chemically lysed, the chemical lysing reagent can be added to the reservoir 56 along with the amplification mixture; alternatively, the sample can be heated in the incubation zone by heating the sample for a predetermined period of time. Hot cell solution. In some embodiments, if chemical cytolysis is required and the mixture of primers, dNTPs, and buffer is separated from the chemical lysing reagent, it can be upstream of the reservoir 58 of the primer, dNTPs, and buffer mixture. Add more storage. In some cases it may be necessary to omit a step, such as incubation step 291. In this case, a LOC device may be specially fabricated to omit the reagent reservoir 58 and the incubation zone 114; or simply do not load the reagent in the reservoir; or if there is an active valve, the active valve may not be activated to dispense the reagent to The sample is flowed so that the incubation zone simply becomes a passage for transporting the sample from the cytolytic zone 130 to the amplification zone 112. The heater operates independently, and the heater can be activated when the reaction is dependent on heat (eg, hot cytolysis); however, in a LOC device that does not require thermolysis, the heater can be programmed to ensure that the heater is not during this step. Will be activated and thermolysis will not occur. The dialysis zone 70 can be located at the beginning of the microfluidic system within the microfluidic device as shown in Figure 4, -65-201209406

或者可位於該微流體裝置內之任何其它地方。舉例來說, 在某些例子裡透析係在擴增期292之後進行,以於雜合及 偵測步驟294之前先行除去細胞殘渣,這樣會比較有利。 另一選擇地,可在整個LOC裝置之任何地方合倂兩或多個 透析區。類似地,也可以合倂更多擴增區1 1 2,如此一來 可讓多個目標物在以特異性核酸探針作雜合室檢定110進 行偵測之前,先於該等擴增區內同時地或連續地擴增。爲 了分析無需透析之試樣例如全血試樣,可以簡單地從LOC 設計之試樣置入及製備區28 8中省略掉透析區70。於某些 實例中,即使在分析時不需要透析,也不用從LOC裝置中 刪除透析區70。如果透析區的存在不會造成幾何性阻礙, 即使試樣置入及製備區中含有透析區70之LOC仍可使用而 不會損失所需的功能性。Or it can be located anywhere else within the microfluidic device. For example, in some instances the dialysis system is performed after the amplification period 292 to remove the cell debris prior to the hybridization and detection step 294, which may be advantageous. Alternatively, two or more dialysis zones can be combined anywhere in the entire LOC device. Similarly, more amplification regions 1 1 2 can also be combined, such that multiple targets can be detected prior to detection with a specific nucleic acid probe for hybrid chamber assay 110. Amplify simultaneously or continuously. In order to analyze a sample that does not require dialysis, such as a whole blood sample, the dialysis zone 70 can be simply omitted from the sample placement and preparation zone 28 of the LOC design. In some instances, the dialysis zone 70 is not removed from the LOC device, even if dialysis is not required for analysis. If the presence of the dialysis zone does not cause geometrical obstruction, even the LOC containing the dialysis zone 70 in the sample placement and preparation zone can be used without loss of the desired functionality.

進一步地,該偵測區294可含有蛋白質組室檢定,其 與雜合室檢定相同不過係裝入設計來與未擴增試樣內之試 樣目標蛋白質接合或雜合之探針,而非設計來與目標核酸 序列雜合之核酸探針》 應瞭解地用於此診斷系統之L 0 C裝置乃是依據特定 LOC應用而選擇之功能區之不同組合》對於許多LOC裝置 而言絕大部份的功能區很常見,具有新穎應用之另外的 LOC裝置設計只不過是從既存LOC裝置內所用之功能區作 徹底的選汰並編輯適當的功能區組合。 於此說明中只展示少數的LOC裝置,有更多裝置係示 意地顯示此系統所用之LOC裝置之設計彈性。熟悉此技術 -66 - 201209406 之人士可輕易地了解此等說明顯示之L0C裝置並沒有完全 列舉出來且許多另外的L 0 C設計則有關如何編輯適當的功 能區組合。 試樣類型Further, the detection zone 294 may contain a proteomic chamber assay that is identical to the hybrid chamber assay but is loaded into a probe designed to engage or hybridize with the target protein of the sample in the unamplified sample, rather than Nucleic acid probes designed to hybridize to a target nucleic acid sequence. The L 0 C device that is known to be used in this diagnostic system is a different combination of functional regions selected for a particular LOC application. For most LOC devices, the vast majority The functional area is very common, and the additional LOC device design with novel applications is simply to completely eliminate the functional areas used in the existing LOC device and edit the appropriate combination of functional areas. Only a few LOC devices are shown in this description, and more devices are shown to show the design flexibility of the LOC device used in this system. Those skilled in the art -66 - 201209406 can easily understand that the L0C devices shown in these descriptions are not fully enumerated and many other L 0 C designs are related to how to edit the appropriate combination of functional regions. Sample type

LOC變化型可接受及分析多種液體形式之試樣類型的 核酸或蛋白質內容物,此等液體試樣包括但不限於血液及 血液製品、唾液、腦脊髓液、尿液 '精液、羊水、臍帶血 、乳汁、汗、胸腔積液、淚水、心包液、腹水、環境水試 樣及飲料試樣等。從宏觀核酸擴增法得到之擴增子可使用 該LOC裝置來分析;於此例中,所有的試劑貯存器將是空 的或被配置成不會釋出其內容物,該透析、胞溶、培育及 擴增區僅用來把試樣從試樣置入口 68運送到雜合室180以 作核酸偵測,如以上所述。 某些試樣類型會需要預處理步驟,例如在把精液及黏 液放進LOC裝置以前,該精液可能會需要先行液化而黏液 可能需要先用酶預處理以降低黏性。 試樣置入 參考第1及1 2圖,試樣被加到測試模組1 〇之大貯槽24 中。該大貯槽24爲一截頭圓錐,試樣可經由毛細作用流到 該LOC裝置301之置入口 68。在此,試樣會流入該64 μηι寬 χ60 μηι深之頂蓋通道94中,於該處試樣同樣透過毛細作用 被拉向抗凝血劑貯存器54。 -67- 201209406 試劑貯存器The LOC variant accepts and analyzes nucleic acid or protein contents of a variety of liquid form sample types including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine 'semen, amniotic fluid, cord blood , milk, sweat, pleural effusion, tears, pericardial, ascites, environmental water samples and beverage samples. Amplicon obtained from macronucleic acid amplification can be analyzed using the LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, the dialysis, lysis The incubation and expansion zones are only used to transport the sample from the sample inlet 68 to the hybrid chamber 180 for nucleic acid detection, as described above. Some sample types may require a pretreatment step. For example, the semen may need to be liquefied prior to placing the semen and mucus into the LOC device. The mucus may need to be pretreated with an enzyme to reduce viscosity. Sample Placement Referring to Figures 1 and 12, the sample is applied to a large sump 24 of the test module 1 。. The large sump 24 is a truncated cone and the sample can flow to the inlet 68 of the LOC unit 301 via capillary action. Here, the sample will flow into the top cover channel 94 of the 64 μηι 宽 60 μηι deep, where the sample is also pulled toward the anticoagulant reservoir 54 by capillary action. -67- 201209406 Reagent storage

使用微流體裝置之檢定系統(例如LOC裝置301 )所 需試劑的體積很小,使得該試劑貯存器即使只有很小體積 也能含納生化處理所需之所有試劑。此體積可輕易地少於 1,000,000,000立方微米,於大部份的例子來說少於 300,000,000立方微米,典型地少於70,000,000立方微米且 於圖式中顯示之LOC裝置301則少於20,000,000立方微米。 透析區The volume of reagent required to use a microfluidic device assay system (e.g., LOC device 301) is such that the reagent reservoir contains all of the reagents required for biochemical processing, even if only a small volume. This volume can easily be less than 1,000,000,000 cubic microns, in most cases less than 300,000,000 cubic microns, typically less than 70,000,000 cubic microns and the LOC device 301 shown in the figures is less than 20,000,000 cubic microns. . Dialysis area

參考第15至21、33及34圖,病原體透析區70被設計成 能從試樣中濃縮出病原性目標細胞。如先前所描述地,複 數個位於頂壁層66內呈直徑3微米孔洞164形式之小孔可從 試樣主體中過濾出目標細胞。當試樣流過直徑3微米小孔 164時,微生物性病原體會通過該等孔洞進入一系列透析 MST通道204且經由16μιη透析上導孔168流回該目標物通道 74 (參見第33及34圖)。試樣的剩餘部份(紅血球等等) 會留在頂蓋通道94中。在病原體透析區70的下游,頂蓋通 道94變成把廢棄物導到廢棄物貯存器76之廢棄物通道72。 對於會產生實質份量廢棄物之生物試樣類型,可把測試模 組10外殻13內之發泡體插圖或其它有孔元件49配置成能與 該廢棄物貯存器76流體連通(見第1圖)。 該病原體透析區70完全靠流體試樣之毛細作用來發揮 功能。該病原體透析區70上游端之直徑3微米小孔164具有 -68- 201209406 毛細管起動特徵構造(CIFs )1 66 (見第33圖),因此可 把流體拉引到下方的透析MST通道204。目標物通道74之 第一上導孔198也具有CIF 202 (見第15圖)以避免液流簡 易地把彎液面固定在整個透析上導孔168之孔口上。Referring to Figures 15 through 21, 33 and 34, the pathogen dialysis zone 70 is designed to concentrate pathogenic target cells from the sample. As previously described, a plurality of apertures in the form of a 3 micron diameter hole 164 in the top wall layer 66 filter the target cells from the sample body. As the sample flows through the 3 micron diameter orifice 164, microbial pathogens pass through the pores into a series of dialysis MST channels 204 and flow back to the target channel 74 via the 16 μιη dialysis vias 168 (see Figures 33 and 34). ). The remainder of the sample (red blood cells, etc.) will remain in the top cover channel 94. Downstream of the pathogen dialysis zone 70, the canopy channel 94 becomes a waste channel 72 that directs waste to the waste reservoir 76. Foam illustrations or other apertured elements 49 in the outer casing 13 of the test module 10 can be configured to be in fluid communication with the waste reservoir 76 for a type of biological sample that will produce substantial amounts of waste (see paragraph 1). Figure). The pathogen dialysis zone 70 functions entirely by the capillary action of the fluid sample. The 3 micron diameter orifice 164 at the upstream end of the pathogen dialysis zone 70 has a -68-201209406 capillary activation feature (CIFs) 1 66 (see Figure 33) so that fluid can be drawn to the underlying dialysis MST channel 204. The first upper pilot hole 198 of the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid flow from easily securing the meniscus across the orifice of the dialysis upper pilot hole 168.

於第70圖示意地顯示之小型成分透析區682可具有類 似於該病原體透析區70之構造。該小型成分透析區可藉由 不同大小(若有需要,藉由不同形狀)之小孔來把所有小 型目標細胞或分子從試樣中分離出來,以允許小型目標細 胞或分子通過且進入目標物通道及繼續作進一步分析。較 大細胞或分子會被移到廢棄物貯存器766。因此,該LOC 裝置30 (見第1及85圖)並不限於只能分離出尺寸小於3微 米之病原體,也可用來分離任何所需大小之細胞或分子。 胞溶區 回去參考第7、11及13圖,試樣中之遺傳性物質可藉 由化學性胞溶法從細胞中釋出。如同以上討論地,來自胞 溶貯存器56之胞溶試劑會在該胞溶貯存器56之表面張力閥 128下游之目標物通道74內與試樣流混合在一起。然而, 某些診斷檢定更適合採用熱胞溶法,甚至於把目標細胞結 合化學胞溶及熱胞溶來處理。該LOC裝置301可藉著培育 區Π4之受熱微通道210來因應此一問題。試樣流流入該培 育區114且於沸騰-起動閥106處停下來。培育微通道210可 把試樣加熱到細胞膜瓦解之溫度。 於某些熱胞溶之應用中,化學胞溶區130內無需酵素 -69- 201209406 反應且熱胞溶完全取代了化學胞溶區130內之酵素反應。 沸騰起動閥 如以上討論地,該LOC裝置3 0 1具有3個沸騰起動閥 126、106及108。此等閥之位置係示於第6圖。第31圖單獨 顯示位於擴增區112之受熱微通道158末端之沸騰起動閥 108的放大平面視圖。The small component dialysis zone 682, shown schematically at Figure 70, can have a configuration similar to the pathogen dialysis zone 70. The small component dialysis zone can separate all small target cells or molecules from the sample by means of small pores of different sizes (if desired, by different shapes) to allow small target cells or molecules to pass through and into the target. Channel and continue for further analysis. Larger cells or molecules are moved to waste reservoir 766. Thus, the LOC device 30 (see Figures 1 and 85) is not limited to isolation of pathogens having a size of less than 3 microns, and can be used to isolate cells or molecules of any desired size. Cytolysis zone Referring back to Figures 7, 11, and 13, the genetic material in the sample can be released from the cell by chemical cytolysis. As discussed above, the lysing reagent from the lysis reservoir 56 will mix with the sample stream within the target channel 74 downstream of the surface tension valve 128 of the lysis reservoir 56. However, some diagnostic tests are more suitable for thermocytolysis, even for chemically cytolysis and thermocytolysis of target cells. The LOC device 301 can accommodate this problem by the heated microchannel 210 of the incubation zone Π4. The sample stream flows into the culture zone 114 and stops at the boiling-start valve 106. Incubating the microchannel 210 heats the sample to the temperature at which the cell membrane collapses. In some thermocytolysis applications, the enzyme cytolysis zone 130 does not require the enzyme -69-201209406 reaction and the thermocytosine completely replaces the enzyme reaction in the chemical cytolysis zone 130. Boiling Start Valve As discussed above, the LOC unit 310 has three boiling start valves 126, 106 and 108. The location of these valves is shown in Figure 6. Figure 31 shows an enlarged plan view of the boiling starter valve 108 at the end of the heated microchannel 158 of the amplification zone 112.

試樣流1 19藉由毛細作用沿著受熱微通道158被拉引到 沸騰起動閥108。該試樣之前導流彎液面120固定在閥入口 146之彎液面錨98上。該彎液面錨98之幾何性會令前進之 彎液面停止下來以而制止毛細流動。如第3 1及3 2圖顯示地 ,該彎液面錨98爲一從MST通道90通往頂蓋通道94之上導 管開口的小孔。彎液面1 2 0之表面張力令該閥關閉。一環 狀加熱器152圍在閥入口 146的四周,該環狀加熱器152係 透過沸騰起動閥加熱器接點153來由CMOS-控制。The sample stream 1 19 is drawn to the boiling start valve 108 along the heated microchannel 158 by capillary action. The flow guiding meniscus 120 is fixed to the meniscus anchor 98 of the valve inlet 146 before the sample. The geometry of the meniscus anchor 98 stops the advancing meniscus to stop capillary flow. As shown in Figures 31 and 3, the meniscus anchor 98 is a small aperture from the MST channel 90 to the opening of the conduit above the canopy channel 94. The surface tension of the meniscus 1 120 causes the valve to close. A ring heater 152 surrounds the valve inlet 146, which is CMOS-controlled through the boiling start valve heater contact 153.

爲了打開閥,該CMOS電路86把一電流脈衝送到該閥 加熱器接點1 53。該環狀加熱器1 52持續地加熱直到液態試 樣119沸騰爲止。沸騰瓦解了閥入口 146之彎液面120且引 發頂蓋通道94濕化。一旦頂蓋通道94開始濕化,毛細流動 重新開始。流體試樣1 1 9充滿頂蓋通道94,流經閥下導管 150到達閥出口 148,於該處毛細驅動液流繼續沿著擴增區 出口通道160進入雜合及偵測區52。液體感測器174則放置 在該閥之前或之後以供診斷。 應瞭解一旦沸騰起動閥被打開,就無法再關上。不過 -70- 201209406 ,由於該LOC裝置301及測試模組10爲用過即丟裝置,所 以也無需再關閉此等閥》 培育區及核酸擴增區To open the valve, the CMOS circuit 86 sends a current pulse to the valve heater contact 153. The annular heater 1 52 is continuously heated until the liquid sample 119 is boiled. Boiling disintegrates the meniscus 120 of the valve inlet 146 and causes the cap passage 94 to wet. Once the top cover passage 94 begins to wet, the capillary flow resumes. The fluid sample 119 fills the cap passage 94 and flows through the valve downcomer 150 to the valve outlet 148 where the capillary drive flow continues along the expansion zone outlet passage 160 into the hybrid and detection zone 52. The liquid sensor 174 is placed before or after the valve for diagnosis. It should be understood that once the boiling start valve is opened, it cannot be closed. However, -70-201209406, since the LOC device 301 and the test module 10 are used and lost, it is not necessary to close the valves.

第6、 7、 13、 14、 23、 24、 25、 35至 45、 50及51圖係 顯示培育區114及擴增區112。培育區114,於從下導管開 口 134連到沸騰起動閥106之MST通道層1〇〇中,具有一條 蝕刻成蜿蜒圖型之單一受熱培育微通道210 (參見第13及 14圖)。對培育區114之溫度控制令酵素反應以更佳效能 來進行。類似地,該擴增區11 2有一條從沸騰起動閥106連 到沸騰起動閥1 0 8且呈蜿蜒組態之受熱擴增微通道1 5 8 (見 第6及1 4圖)。此等閥能制止流動,使得目標細胞留在受 熱培育或擴增微通道210或158以進行混合、培育及核酸擴 增。該微通道之蜿蜒圖案亦加快(某些程度地)目標細胞 與試劑之混合。 於培育區1 14及擴增區1 12中,試樣細胞及試劑係採用 脈波寬度調變(PWM)之CMOS電路86調控之加熱器154加 熱。受熱培育微通道210及擴增微通道158之蜿蜒組態的各 個曲徑皆有三個可各別操作之加熱器154於個別的加熱器 接點156間延伸(見第14圖),該等接點可對輸入熱通量 密度作二維調控。如第51圖最佳顯示地,加熱器154係由 頂壁層66來支撐且埋置於下封條64中。加熱器材料爲TiAl 不過也可採用其它導電金屬。該等細長形加熱器154與各 通道區的縱向部份(其構成該蜿蜒形狀之寬曲徑)平行。 -71 - 201209406 於擴增區112中,各個寬曲徑可透過個別的加熱器調控當 作各別的PCR室操作。 採用微流體裝置之檢定系統例如LOC裝置301所需之 擴增子體積很微小,使得擴增區1 1 2進行擴增之擴增混合 物之體積也很小。此體積輕易地可低於400奈升,於絕大 部份的例子中係低於1 70奈升,典型地低於70奈升,於 L Ο C裝置3 0 1之例中則在2奈升到3 0奈升之間。Figures 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50 and 51 show the incubation zone 114 and the amplification zone 112. The incubation zone 114 is coupled from the downcomer opening 134 to the MST channel layer 1 of the boiling starter valve 106 and has a single heated incubation microchannel 210 etched into a 蜿蜒 pattern (see Figures 13 and 14). Temperature control of the incubation zone 114 allows the enzyme reaction to proceed with better performance. Similarly, the amplification zone 11 2 has a heated amplifying microchannel 158 that is connected from the boiling start valve 106 to the boiling start valve 108 and in a 蜿蜒 configuration (see Figures 6 and 14). These valves are capable of stopping flow, leaving the target cells in heat-increasing or amplifying microchannels 210 or 158 for mixing, incubation, and nucleic acid amplification. The ruthenium pattern of the microchannel also accelerates (to some extent) the mixing of target cells with reagents. In the incubation zone 1 14 and the amplification zone 1 12, the sample cells and reagents are heated by a heater 154 controlled by a pulse width modulation (PWM) CMOS circuit 86. Each of the chirp configurations of the heated incubation microchannel 210 and the amplification microchannel 158 has three independently operable heaters 154 extending between the individual heater contacts 156 (see Figure 14). The contacts provide two-dimensional regulation of the input heat flux density. As best shown in Fig. 51, the heater 154 is supported by the top wall layer 66 and embedded in the lower seal 64. The heater material is TiAl, but other conductive metals can also be used. The elongated heaters 154 are parallel to the longitudinal portions of the channel regions which form the wide labyrinth of the dome shape. -71 - 201209406 In the amplification zone 112, each of the wide labyrinths can be manipulated as a separate PCR chamber operation by individual heaters. The size of the amplicon required for an assay system employing a microfluidic device, such as LOC device 301, is so small that the volume of the amplified mixture that amplifies the amplified region 112 is also small. This volume can easily be less than 400 nanoliters, and in most cases it is less than 1 70 nanoliters, typically less than 70 nanoliters, and in the case of L Ο C device 3 0 1 in 2 Rise to between 30 nanoliters.

較高加熱速率及更佳的擴散混合Higher heating rate and better diffusion mixing

各通道區之橫切面小可增加擴增流體混合物之加熱速 度。所有流體與加熱器154間保持著相對較短的距離。把 通道切面(此爲擴增微通道1 5 8之切面)縮小到小於 100,000平方微米比採用更“大尺寸”之設備者有更高的加熱 速率。蝕刻製造技術可令擴增微通道158與液流垂直之橫 切面積小於1 6,000平方微米,其提供實質上更高的加熱速 率。藉著蝕刻技術可輕易地提供大小1微米左右之特徵構 件。如桌需要極小擴增子(如於L O C裝置3 0 1之例),那 麼橫切面積可被縮小到低於2,5 00平方微米。對於位於LOC 裝置上含有1, 〇 〇 〇至2,0 0 0個探針且從“試樣置入’,到“結果輸 出”必需短於1分鐘之診斷檢定而言,較佳地其與液流垂直 之橫切面積大小宜介於400平方微米到1平方微米之間。 擴增微通道158內之加熱元件可用每秒超過8〇開( Kelvin (K))之速度,於大部份的情況下用每秒超過1〇〇 開之速度加熱該核酸序列。典型地該加熱元件可用每秒超 -72- 201209406 過1,000 K之速度加熱該核酸序列,於許多例子中用每秒 超過1 0,000 Κ之速度加熱該核酸序列。常見地,基於檢定 系統之需求,該加熱器可用每秒超過100,000 Κ、每秒超 過1,000,000 Κ、每秒超過10,000,000 Κ、每秒超過 20.000. 000 Κ、每秒超過40,000,000 Κ、每秒超過 80.000. 000 Κ及每秒超過160,000,000 Κ之速度來加熱核酸 序列。The small cross-section of each channel zone increases the heating rate of the augmentation fluid mixture. All fluids maintain a relatively short distance from the heater 154. Shrinking the channel section (this is the section of the augmented microchannel 158) to less than 100,000 square microns has a higher heating rate than a more "large size" device. The etch fabrication technique allows the ablation microchannels 158 to have a cross-sectional area perpendicular to the flow that is less than 1 6,000 square microns, which provides a substantially higher heating rate. Characteristic components of about 1 micron in size can be easily provided by etching techniques. If the table requires a very small amplicon (as in the case of the L O C device 310), then the cross-sectional area can be reduced to less than 2,500 square microns. For a diagnostic test that contains 1, 〇〇〇 to 2,0 0 probes on the LOC device and from "sample placement" to "result output" must be less than 1 minute, preferably The vertical cross-sectional area of the liquid flow should be between 400 square microns and 1 square micrometer. The heating elements in the amplifying microchannel 158 can be used at a speed of more than 8 每秒 per second (Kelvin (K)). The nucleic acid sequence is heated at a rate of more than 1 sec per second. Typically, the heating element can heat the nucleic acid sequence at a rate of from -72 to 201209406 per 1,000 K per second, in many cases per second. The nucleic acid sequence is heated at a rate of more than 10,000 Torr. Typically, the heater can exceed 100,000 sec per second, more than 1,000,000 sec per second, more than 10,000,000 sec per second, more than 20.000 per second, based on the requirements of the assay system.核酸, more than 40,000,000 每秒 per second, more than 80.000. 000 sec per second and more than 160,000,000 每秒 per second to heat the nucleic acid sequence.

小橫切面面積之通道在把任一試劑與試樣流體擴散混 合時也更有利。在擴散混合完成以前,一液體擴散到另一 液體之擴散作用係在兩者交界處最快。濃度隨著與交界面 間的距離增加而降低。採用與流動方向垂直之橫切面較小 之微通道,可使兩種流體皆貼近交界面流動而能更快速地 擴散混合。把通道橫切面縮小到小於1 00,000平方微米比 採用更“大尺寸”之設備者有更佳的混合速率。蝕刻製造技 術可製得與流路垂直之橫切面積小於1 6,000平方微米之微 通道,其實質地提供更高的混合速率。如果需要微小的體 積(如於LOC裝置301之例),那麼橫切面積可被縮小到 低於2,500平方微米。對於位於1^0(:裝置上含有1,0()0至 2,000個探針且從“試樣-裝入”到“結果-讀出”必需少於1分 鐘之診斷檢定而言,該通道與液流垂直之橫切面積在400 平方微米到1平方微米之間爲適當的。 短暫的熱循環時間 保持試樣混合物貼近加熱器且使用極微小的流體體積 -73- 201209406The passage of the small cross-sectional area is also advantageous when diffusing and mixing any of the reagents with the sample fluid. Before the diffusion mixing is completed, the diffusion of one liquid to another is the fastest at the junction of the two. The concentration decreases as the distance from the interface increases. By using a microchannel with a smaller cross-section perpendicular to the direction of flow, both fluids can flow close to the interface and diffuse and mix more quickly. Shrinking the cross-section of the channel to less than 100,000 square microns has a better mixing rate than devices with more "large size". Etch fabrication techniques produce microchannels having a cross-sectional area perpendicular to the flow path of less than 16,000 square microns, which substantially provides a higher mixing rate. If a small volume is required (as in the case of LOC device 301), the cross-sectional area can be reduced to less than 2,500 square microns. For a diagnostic test located at 1^0 (the device contains 1,0() 0 to 2,000 probes and must be less than 1 minute from "sample-load" to "result-read" A cross-sectional area perpendicular to the flow is suitably between 400 and 1 square micron. The short thermal cycle keeps the sample mixture close to the heater and uses a very small fluid volume -73 - 201209406

可讓核酸擴增期間有快速的熱循環。對於最多150個鹼基 對(bp )長之目標序列而言,每一回熱循環(即變性、結 合及引子延長)係於少於30秒內完成。在大部份的診斷檢 定中,個別的熱循環時間少於1 1秒,大部份會少於4秒。 具有某些最常見之診斷檢定之LOC裝置30對於最長150 bp 之目標序列的熱循環時間爲0.4 5秒到1 . 5秒之間。此速度之 熱循環可令測試模組在遠少於1 0分鐘內,通常在少於2 2 0 秒內完成核酸擴增流程。對多數的檢定來說,該擴增區可 於少於80秒內從進入試樣置入口之試樣流體中產生足夠的 擴增子。對於極多檢定來說,可於30秒內產生足夠擴增子 在完成目前次數之擴增循環後,擴增子可透過沸騰起 動閥1 〇 8被饋送到雜合及偵測區5 2。 雜合室It allows for rapid thermal cycling during nucleic acid amplification. For a target sequence of up to 150 base pairs (bp) long, each regenerative cycle (i.e., denaturation, binding, and primer extension) is completed in less than 30 seconds. In most diagnostic tests, individual thermal cycling times are less than 11 seconds, and most will be less than 4 seconds. The LOC device 30 with some of the most common diagnostic tests has a thermal cycle time of between 0.45 seconds and 1.5 seconds for a target sequence of up to 150 bp. This rate of thermal cycling allows the test module to complete the nucleic acid amplification process in less than 10 minutes, usually in less than 260 seconds. For most assays, the amplification zone can generate sufficient amplicons from the sample fluid entering the sample inlet in less than 80 seconds. For a very large number of assays, sufficient amplicons can be generated in 30 seconds. After completing the current number of amplification cycles, the amplicon can be fed to the hybrid and detection zone 52 via the boiling start valve 1 〇 8. Hybrid room

第52、53、54、56及57圖顯示雜合室檢定110之雜合 室180。該雜合及偵測區52具有24x45個雜合室180之陣列 110,各雜合室皆具有雜合反應性FRET探針186、加熱器 元件182及整合之光二極體184。光二極體184被合倂以偵 測目標核酸序列或蛋白質與FRET探針186雜合產生之螢光 。各光二極體184經由CMOS電路86獨立地控制》介於該 FRET探針186及光二極體184之間的任何物質對該放射光 線來說必需是透明的。據此,該探針186及光二極體184間 的壁區97對該放射光線來說亦爲光學透明的。於LOC裝置 -74- 201209406 301中,壁區97爲一層二氧化矽薄層(約0.5微米)》Figures 52, 53, 54, 56 and 57 show the hybrid chamber 180 of the hybrid chamber assay 110. The hybrid and detection zone 52 has an array 110 of 24 x 45 hybrid chambers 180, each having a hybrid reactive FRET probe 186, a heater element 182, and an integrated photodiode 184. Photodiode 184 is conjugated to detect fluorescence of the target nucleic acid sequence or protein produced by hybridization with FRET probe 186. Each of the photodiodes 184 independently control the material between the FRET probe 186 and the photodiode 184 via the CMOS circuit 86 must be transparent to the radiation. Accordingly, the wall region 97 between the probe 186 and the photodiode 184 is also optically transparent to the emitted light. In the LOC device -74- 201209406 301, the wall region 97 is a thin layer of cerium oxide (about 0.5 micron).

直接在各雜合室180底下合併光二極體184可令探針-目標物雜合體之體積很小同時仍能產生可偵測之螢光信號 (見第54圖)。微小的份量允許雜合室有微小的體積。可 偵測量之探針一目標物雜合體需要在雜合前有一份量之探 針,其量輕易地少於270微微克(相當於900,000立方微米 ),於絕大部份的例子中爲少於60微微克(相當於 200,000立方微米),典型地少於12微微克(相當於40,000 立方微米)、且於後附圖式中之LOC裝置301則少於2.7微 微克(相當於9,0 00立方微米)。當然,縮減雜合室大小 允許雜合室密度較高且因而該LOC裝置上可有更多探針。 於LOC裝置301中,該雜合區在1500微米乘以1500微米之 區域內有超過1 000個室(亦即,每室面積少於2250平方微 米)。較小的體積也縮短反應時間,使得雜合及偵測更快 。各室所需之少量探針之另一優點爲製造LOC裝置期間只 需要把極少量探針溶液滴入各室即可。於本發明之LOC裝 置之具體例中可點加1微微升或更少體積之探針溶液。 於核酸擴增後,沸騰起動閥108被啓動且擴增子沿著 流路176流入各雜合室180中(見第52及56圖)。當雜合室 180充滿擴增子時,一端點液體感測器ι78會顯示此現象且 加熱器182被啓動。 經過一段充裕的雜合時間後,該LED 26(見第2圖) 會被啓動。各雜合室180之開口提供一視窗136好讓FRET 探針186暴露在激發輻射下(見第52' 54及56圖)》讓 -75- 201209406 LED 26照射一段夠長的時間以引發來自探針之高強度螢光 信號。激發期間,光二極體1 84被縮短。經過一段程式化 前延遲300(見第2圖),該光二極體184會被激活且在沒 有激發光時偵測螢光放射現象。光二極體184之活性區域 185 (見第54圖)之入射光會被轉變成光電流,其而後用 CMOS電路86來測量。Combining the photodiode 184 directly under each of the hybrid chambers 180 allows the probe-target hybrid to be small in size while still producing a detectable fluorescent signal (see Figure 54). The small amount allows the hybrid chamber to have a small volume. The detectable amount of probe-target hybrid requires a probe before the hybrid, and the amount is easily less than 270 pg (equivalent to 900,000 cubic microns), which is less in most cases. At 60 picograms (equivalent to 200,000 cubic micrometers), typically less than 12 picograms (equivalent to 40,000 cubic micrometers), and the LOC device 301 in the following figures is less than 2.7 picograms (equivalent to 9,0) 00 cubic micrometers). Of course, reducing the size of the hybrid chamber allows for a higher density of hybrid chambers and thus more probes on the LOC device. In the LOC unit 301, the hybrid region has more than 1 000 chambers in the region of 1500 microns by 1500 microns (i.e., less than 2250 square microns per chamber area). The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the small number of probes required for each chamber is that only a small amount of probe solution needs to be dropped into each chamber during manufacture of the LOC device. In the specific example of the LOC device of the present invention, a probe solution of 1 picolitre or less may be added. After nucleic acid amplification, the boiling start valve 108 is activated and the amplicon flows along the flow path 176 into each of the hybrid chambers 180 (see Figures 52 and 56). When the hybrid chamber 180 is full of amplicons, an endpoint liquid sensor ι 78 will display this phenomenon and the heater 182 will be activated. After ample mixing time, the LED 26 (see Figure 2) will be activated. The opening of each of the hybrid chambers 180 provides a window 136 for exposing the FRET probe 186 to excitation radiation (see Figures 52' 54 and 56). Let the -75-201209406 LED 26 be illuminated for a sufficient period of time to induce the probe. The high intensity fluorescent signal of the needle. During the excitation, the photodiode 1 84 is shortened. After a stylized pre-delay of 300 (see Figure 2), the photodiode 184 is activated and detects fluorescence emission when there is no excitation light. The incident light of the active region 185 of the photodiode 184 (see Fig. 54) is converted into a photocurrent, which is then measured by a CMOS circuit 86.

各雜合室1 80皆裝有用來偵測單一目標核酸序列之探 針。若有需要,各雜合室180可裝有能偵測超過1 000種不 同目標物之探針。另一選擇地,可於許多或所有的雜合室 中裝入同樣探針以重覆地偵測同一目標核酸。於整個雜合 室陣列1 1 0中以此方式重覆裝入此等探針可以增加所得結 果之可信度;若有需要,此結果可與鄰近此等雜合室之光 二極體結合以提供單一結果。熟悉此技術之人士將瞭解視 檢定之規格而定,雜合室陣列1 10上可有1個到超過1 000個 不同探針。Each of the hybrid chambers 180 is equipped with a probe for detecting a single target nucleic acid sequence. If desired, each of the hybrid chambers 180 can be equipped with probes capable of detecting more than 1,000 different targets. Alternatively, the same probe can be loaded into many or all of the hybrid chambers to repeatedly detect the same target nucleic acid. Reloading such probes in this manner throughout the array of hybrid chambers 110 can increase the confidence of the results obtained; if desired, the results can be combined with light diodes adjacent to such hybrid chambers. Provide a single result. Those skilled in the art will appreciate that there may be from 1 to over 1,000 different probes in the hybrid chamber array 1 10 depending on the specifications of the inspection.

以電化學發光偵測之雜合室 第78、90、115及116圖顯示於L0C裝置之ECL變化型-LOC變化型L 729-採用之雜合室180。於此L0C裝置之具體 例中,該雜合室180之24x45陣列110 (各室皆有雜合反應 性ECL探針23 7 )係搭配整合於CMOS內之對應的光二極體 1 84陣列來安置。以一種類似採用螢光偵測之LOC裝置之 型式,各個光二極體1 84被合倂以偵測目標核酸序列或蛋 白質與ECL探針237雜合產生之ECL。各個光二極體184係 -76- 201209406 獨立地由CMOS電路86控制。再次地,介於探針t 86及光二 極體184之間的透明壁區97對於放射光線而言是透明的。Hybrid Chambers for Electrochemiluminescence Detection Figures 78, 90, 115 and 116 show the hybrid chamber 180 used in the ECL variant of the LOC device - LOC variant L 729. In a specific example of the L0C device, the 24x45 array 110 of the hybrid chamber 180 (each of which has a hybrid reactive ECL probe 23 7 ) is disposed with an array of corresponding photodiodes 184 integrated in the CMOS. . In a manner similar to a LOC device employing fluorescence detection, each photodiode 1 84 is combined to detect the ECL produced by hybridization of the target nucleic acid sequence or protein to the ECL probe 237. Each of the photodiodes 184-76-201209406 is independently controlled by the CMOS circuit 86. Again, the transparent wall region 97 between the probe t86 and the photodiode 184 is transparent to the radiation.

與各個雜合室180緊鄰之光二極體184在即使探針—目 標物雜合體之量很小時仍能產生可偵測之ECL信號(見第 78圖)。微小的份量可讓雜合室有微小的體積。可偵測量 之探針-目標物雜合體需要在雜合前有一份量之探針,該 份量輕易地爲小於270微微克(相當於900,000立方微米之 室體積),於絕大部份的例子中爲少於60微微克(相當於 200,000立方微米),典型地少於12微微克(相當於40,000 立方微米),且於後附圖式顯示之LOC裝置中則爲少於2.7 微微克(相當於9,000立方微米之室體積)。當然,縮減 雜合室大小允許雜合室密度較高且因而該LOC裝置上可有 更多探針。於所示之L0C裝置中,該雜合區在1500微米乘 以1500微米之面積內可有超過1000個室(亦即,每室面積 少於22 5 0平方微米)。較小的體積也會縮短反應時間,使 得雜合及偵測更快。各室所需之探針量小之另一優點爲製 造LOC裝置期間只需要把極少量探針溶液點加到各室即可 。於圖式顯示之LOC裝置之例中,探針所需份量可用1微 微升或更少的溶液體積點加進來。 於核酸擴增後,沸騰起動閥1 08被啓動且擴增子沿著 流路176流入各雜合室180中(見第52及116圖)。當雜合 室180充滿擴增子時,終點液體感測器178會指示,而可將 加熱器182啓動。 經過一段充裕的雜合時間後,該光二極體184可被激 -77- 201209406 活並收集該ECL信號。該ECL激發驅動器39(見第86圖) 會活化ECL電極860及870化一段既定長短的時間。在ECL 激發電流停止之後,該光二極體184仍繼續活化一段短暫 的時間好讓信號-對·雜訊比値最大。舉例來說,如果光二 極體184保持活性的時間爲發光放射衰減壽命的五倍,那 麼該信號衰減量會低於初始値的1 %。光二極體1 84之入射 光會被轉變成光電流,其而後可用CMOS電路8 6來測量。The photodiode 184 adjacent to each of the hybrid chambers 180 produces a detectable ECL signal even when the probe-target hybrid is small (see Figure 78). The small amount of the mixture allows the hybrid chamber to have a small volume. The detectable amount of probe-target hybrid requires a probe before the hybrid, which is easily less than 270 pg (equivalent to a volume of 900,000 cubic microns), for the most part. Medium is less than 60 pg (equivalent to 200,000 cubic microns), typically less than 12 pg (equivalent to 40,000 cubic microns), and less than 2.7 pg in the LOC device shown in the following figure (equivalent At room volume of 9,000 cubic microns). Of course, reducing the size of the hybrid chamber allows for a higher density of hybrid chambers and thus more probes on the LOC device. In the L0C device shown, the hybrid region can have more than 1000 chambers in an area of 1500 microns by 1500 microns (i.e., less than 2250 square microns per chamber area). Smaller volumes also reduce reaction time, making hybridization and detection faster. Another advantage of the small amount of probe required for each chamber is that only a small amount of probe solution needs to be applied to each chamber during the manufacture of the LOC device. In the example of the LOC device shown in the figures, the desired amount of probe can be added in a solution volume of 1 picoliter or less. After nucleic acid amplification, the boiling start valve 108 is activated and the amplicon flows along the flow path 176 into each of the hybrid chambers 180 (see Figures 52 and 116). When the hybrid chamber 180 is full of amplicons, the endpoint liquid sensor 178 will indicate that the heater 182 can be activated. After a sufficient amount of hybrid time, the photodiode 184 can be activated by -77-201209406 and collect the ECL signal. The ECL excitation driver 39 (see Fig. 86) will activate the ECL electrodes 860 and 870 for a predetermined length of time. After the ECL excitation current is stopped, the photodiode 184 continues to be activated for a short period of time to maximize the signal-to-noise ratio. For example, if the photodiode 184 remains active for five times the lifetime of the luminescence decay, then the signal attenuation will be less than 1% of the initial enthalpy. The incident light of the photodiode 1 84 is converted into a photocurrent, which can then be measured by a CMOS circuit 86.

濕化器及濕度感測器Humidifier and humidity sensor

第6圖之插圖AG指出濕化器196之位置。該濕化器可 防止試劑及探針於LOC裝置301操作期間揮發。如第55圖 之放大圖最佳顯示地,一貯水器188會與三個蒸發器190以 流體相連。該貯水器188會在製造期間裝入分子生物學-級 水並密封。如第55及60圖最佳顯示地,水被拉入三條下導 管194且藉著毛細作用沿著個別的供水通道192流入蒸發器 190之3條上導管193組。彎液面固定於各個上導管193以保 留水。該蒸發器具有環形加熱器191,其圍住該上導管193 。該環狀加熱器1 9 1藉著連通到金屬頂層1 95之傳導管柱 376連接到CMOS電路86 (見第37圖)。當環狀加熱器191 被啓動時’該加熱器會加熱水而造成蒸發且濕化該裝置之 周圍部份》 濕度感測器2 3 2之位置亦示於第6圖。然而,如第5 8圖 插圖AH之放大圖最佳顯示地,該濕度感測器具有電容性 梳狀結構。一用蝕刻技術蝕刻之第一電極296及另一用蝕 -78- 201209406 刻技術蝕刻之第二電極29 8彼此面對面且其突指交錯間插 。相反的電極形成具有一電容量之電容器,其可用CMOS 電路86來監控。當濕度增加時,電極間空氣間隙的介電常 數會增加,因此電容量也會增加。該濕度感測器232與雜 合室陣列1 10相鄰,於該處濕度測量是最重要的以減緩含 有已暴露探針之溶液的蒸發現象。The illustration AG of Fig. 6 indicates the position of the humidifier 196. The humidifier prevents reagents and probes from volatilizing during operation of the LOC device 301. As best shown in the enlarged view of Fig. 55, a reservoir 188 is fluidly coupled to three evaporators 190. The reservoir 188 is loaded with molecular biology-grade water and sealed during manufacture. As best shown in Figures 55 and 60, water is drawn into the three lower conduits 194 and flows by capillary action along the individual water supply passages 192 into the three upper conduits 193 of the evaporator 190. The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has an annular heater 191 that encloses the upper conduit 193. The ring heater 191 is connected to the CMOS circuit 86 by a conductive string 376 connected to the metal top layer 195 (see Figure 37). When the ring heater 191 is activated, the heater heats the water to cause evaporation and humidifies the surrounding portion of the device. The position of the humidity sensor 2 3 2 is also shown in Fig. 6. However, as best shown in the enlarged view of the illustration AH of Fig. 5, the humidity sensor has a capacitive comb structure. A first electrode 296 etched by an etching technique and a second electrode 298 etched by an etch-78-201209406 technique face each other and are interdigitated. The opposite electrode forms a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric constant of the air gap between the electrodes increases, so the capacitance also increases. The humidity sensor 232 is adjacent to the hybrid chamber array 1 10 where humidity measurement is of the utmost importance to slow the evaporation of the solution containing the exposed probe.

反饋感測器 把溫度及液體感測器合倂到整個LOC裝置301中以於 裝置運作期間提供反饋及診斷。參考第35圖,有9個溫度 感測器170散佈在整個擴增區112。類似地,培育區114也 有9個溫度感測器1 70。這些感測器皆係使用雙極性接面電 晶體(BJTs)之2x2陣列來監測流體溫度及對CMOS電路86 提供反饋。該CMOS電路86使用此反饋以精確地控制核酸 擴增期間溫度的循環及熱胞溶及培育期間的加熱作用。 於雜合室180中,CMOS電路86係使用雜合加熱器182 作爲溫度感測器(見第56圖)。該雜合加熱器1 82之電阻 與溫度相關且CMOS電路86利用此特性來得到各個雜合室 180之溫度讀數。 該LOC裝置301也有數個MST通道液體感測器174及頂 蓋通道液體感測器208。第35圖顯示受熱微通道158內每條 間隔曲徑末端處之一排MST通道液體感測器174。如第37 圖最佳顯示地,該MST通道液體感測器174爲由CMOS結構 86之金屬頂層195之暴露區域形成之一對電極。液體會關 -79- 201209406 閉電極間的電路而指出在感測器的位置液體其存在。 第25圖顯示頂蓋通道液體感測器208之放大立體圖。 相反電性之TiAl電極對218及22 0被沉積在頂壁層66上。於 電極218及220之間爲無液體時可保持電路連通之間隙222 。液體之存在會關閉該電路且CMOS電路86採用此反饋來 監測液流。The feedback sensor combines the temperature and liquid sensors into the entire LOC device 301 to provide feedback and diagnostics during operation of the device. Referring to Fig. 35, there are nine temperature sensors 170 dispersed throughout the amplification zone 112. Similarly, the incubation zone 114 also has nine temperature sensors 170. These sensors use a 2x2 array of bipolar junction transistors (BJTs) to monitor fluid temperature and provide feedback to CMOS circuitry 86. The CMOS circuit 86 uses this feedback to precisely control the cycling of temperature during nucleic acid amplification and the thermal lysis and heating during incubation. In the hybrid chamber 180, the CMOS circuit 86 uses a hybrid heater 182 as a temperature sensor (see Fig. 56). The resistance of the hybrid heater 182 is temperature dependent and the CMOS circuit 86 utilizes this characteristic to obtain temperature readings for each of the hybrid chambers 180. The LOC device 301 also has a plurality of MST channel liquid sensors 174 and a cap channel liquid sensor 208. Figure 35 shows a row of MST channel liquid sensors 174 at the end of each of the spaced labyrinths in the heated microchannel 158. As best shown in FIG. 37, the MST channel liquid sensor 174 is formed as a counter electrode by the exposed regions of the metal top layer 195 of the CMOS structure 86. The liquid will turn off -79- 201209406 to close the circuit between the electrodes and point out the presence of liquid at the location of the sensor. Figure 25 shows an enlarged perspective view of the top cover channel liquid sensor 208. Opposite electrical TiAl electrode pairs 218 and 22 are deposited on top wall layer 66. Between the electrodes 218 and 220 is a gap 222 that maintains circuit communication when there is no liquid. The presence of liquid shuts down the circuit and CMOS circuit 86 uses this feedback to monitor the flow.

重力不相關性Gravity irrelevance

測試模組10係與方位不相關的(orientation independent )。它們無需固定在平穩表面上操作。以毛細 驅動液流流動且無外接管路連接輔助設備,使得該模組具 有真正的可攜帶性且可簡單地插入類似的可攜式手持讀取 器例如行動電話。具有與重力不相關之操作性意指該測試 模組在所有實用層級上亦與加速度不相關。它們能耐劇烈 震蕩及擺動且可於移動交通工具上或者於行動電話被帶著 到處走時仍可操作。 透析變化型 具流動通道之透析區以防止截留氣泡 以下說明爲被稱爲L0C變化型VIII 518之LOC裝置的 具體例且示於第64、65、66及67圖。該L0C裝置具有一透 析區,其內充滿流體試樣且沒有截留於通道內之氣泡° L0C變化型VIII 518還有額外一層被稱爲界面層5 94之材料 層。該界面層594係位於CMOS + MST裝置48之頂蓋通道層 -80- 201209406 80及MST通道層100之間。該界面層594可在不增加矽基材 8 4大小下允許試劑貯存器及M S T層8 7間有更複雜的流體互 連》The test module 10 is independent of orientation. They do not need to be fixed to operate on a smooth surface. The capillary drive flow is flowed and no external tubing is connected to the auxiliary device, making the module truly portable and simply plugged into a similar portable handheld reader such as a mobile phone. Operating operability that is not related to gravity means that the test module is also unrelated to acceleration at all utility levels. They are resistant to violent shocks and swings and can be operated on mobile vehicles or when the mobile phone is carried around. Dialysis Variations The dialysis zone with flow channels to prevent trapped air bubbles The following is a specific example of a LOC device known as L0C variant VIII 518 and is shown in Figures 64, 65, 66 and 67. The LOC device has a dialysis zone filled with a fluid sample and having no trapped bubbles in the channel. The L0C variant VIII 518 has an additional layer of material known as the interface layer 5 94. The interface layer 594 is located between the top channel layer -80 - 201209406 80 of the CMOS + MST device 48 and the MST channel layer 100. The interfacial layer 594 allows for more complex fluid interconnections between the reagent reservoir and the M S T layer 87 without increasing the size of the tantalum substrate.

參考第65圖,旁路通道600係設計來於流體試樣流從 界面廢棄物通道604流到界面目標物通道602時導入時間延 遲。此時間延遲使得該流體試樣流經透析MST通道204而 來到固定有一彎液面之透析上導管168。透過從旁路通道 600通往界面目標物通道6 02之上導管之毛細起動特徵構件 (CIF ) 202,試樣流體會從來自透析MST通道204之所有 透析上導管168之上游之一點開始充滿界面目標物通道6 02 沒有該旁路通道600時,該界面目標物通道602仍會從 上游端開始充塡,不過向前推進的彎液面最後仍會到達且 越過尙未裝滿之MS Τ通道之上導管,而將空氣截留於此點 。被截留的空氣會降低試樣流流經白血球透析區328之流Referring to Fig. 65, the bypass passage 600 is designed to introduce a time delay when the fluid sample stream flows from the interface waste passage 604 to the interface target passage 602. This time delay causes the fluid sample to flow through the dialysis MST channel 204 to the dialysis upper conduit 168 where a meniscus is secured. By passing from the bypass passage 600 to the capillary priming feature (CIF) 202 of the conduit above the interface target passage 206, the sample fluid will fill the interface from one point upstream of all dialysis upcomers 168 from the dialysis MST channel 204. When the target channel 6 02 does not have the bypass channel 600, the interface target channel 602 will still be charged from the upstream end, but the forward-moving meniscus will eventually reach and pass over the unfilled MS channel. The upper tube is trapped and the air is trapped at this point. The trapped air reduces the flow of sample through the white blood cell dialysis zone 328

核酸擴增變化型 平行PCR 數種LOC裝置之變化型具有多個平行運作之擴增區。 例如,第63圖顯示之LOC變化型VII 492具有112.1到112.4 之平行擴增區,其可允許多個核酸擴增檢定同時進行。 第74圖顯示之LOC變化型XI 746亦具有平行擴增區 112.1至112.4,不過另外還有平行培育區114.1至114.4, -81 - 201209406 因此試樣在擴增前可作不同的處理。其它LOC變化型像是 第69圖示意顯示的LOC XIV 641,則顯示出平行擴增區的 數目可爲“X”數,X僅受限於該LOC裝置之大小。可製造較 大的LOC裝置以容納較多數目的平行擴增區。 獨立的擴增區可被配置成對特定的目標物大小或特別 的擴增混合物成分以不同循環時間及/或溫度來處理。當 有數個擴增區平行地運行時,該LOC裝置可於各區執行多 重核酸擴增流程或單一(unipl ex )擴增流程。於多重核酸 擴增法中,係把一個以上之目標序列用一對以上之引子來 擴增。具有“m”個室之平行核酸擴增系統可執行相當於n-重擴增,其中 n = n(l) +n(2) +...+ n(i) +...+ n(m ),且η ( i )爲於室“i”中執行之多重擴增法所用之不同引 子對之數目,應牢記於平行擴增系統中該SNR (信號雜訊 比)係高於單一室系統執行之η-重擴增法。於n ( i )= 1之 特殊例中,室“i”之擴增法變成單一擴增法。Nucleic Acid Amplification Variants Parallel PCR Several variants of the LOC device have multiple amplification regions operating in parallel. For example, Figure 63 shows that LOC variant VII 492 has a parallel amplification region of 112.1 to 112.4 that allows multiple nucleic acid amplification assays to be performed simultaneously. The LOC variant XI 746 shown in Figure 74 also has parallel amplification zones 112.1 to 112.4, but there are also parallel incubation zones 114.1 to 114.4, -81 - 201209406 so the samples can be treated differently before amplification. Other LOC variants, such as LOC XIV 641, shown schematically in Figure 69, show that the number of parallel amplification zones can be an "X" number, and X is only limited by the size of the LOC device. Larger LOC devices can be fabricated to accommodate a greater number of parallel amplification zones. The separate amplification zones can be configured to be treated at different cycle times and/or temperatures for a particular target size or particular amplification mixture component. When several amplification zones are run in parallel, the LOC device can perform a multiple nucleic acid amplification process or a single (unipl ex) amplification process in each zone. In the multiplex nucleic acid amplification method, more than one target sequence is amplified by using one or more primers. A parallel nucleic acid amplification system having "m" chambers can perform an equivalent of n-reamplification, where n = n(l) + n(2) +... + n(i) +...+ n(m And η ( i ) is the number of different primer pairs used in the multiplex amplification method performed in chamber "i", it should be borne in mind that the SNR (signal-to-noise ratio) is higher in the parallel amplification system than in the single chamber system Performed η-reamplification method. In the special case of n ( i ) = 1, the amplification method of the chamber "i" becomes a single amplification method.

直接PCR 傳統地,PCR需要在製備反應混合物前將目標DNA作 徹底的純化。然而,藉由適當的.變更化學性質及試樣濃度 ,可以在些微DN A純化後進行核酸擴增或者直接進行核酸 擴增。當核酸擴增流程爲PCR時,此方法被稱爲直接PCR 。當LOC裝置中其中核酸擴增係在控制的恒定溫度下進行 時,此方法爲直接等溫擴增法。直接核酸擴增技術用於 LOC裝置時有相當多的優點,尤其是關於所需流體設計之 201209406 簡化方面更是如此。直接PCR或直接等溫擴增法對擴增化 學性質之調整包括增加緩衝液強度、使用具有高活性及連 續效能之聚合酶,以及可螯合可能的聚合酶抑制劑之添加 劑。試樣內抑制劑之稀釋也很重要。Direct PCR Traditionally, PCR requires thorough purification of the target DNA prior to preparation of the reaction mixture. However, by appropriate chemical properties and sample concentration, nucleic acid amplification or direct nucleic acid amplification can be performed after purification of some micro-DN A. When the nucleic acid amplification process is PCR, this method is called direct PCR. When the nucleic acid amplification is carried out at a controlled constant temperature in a LOC device, this method is a direct isothermal amplification method. Direct nucleic acid amplification techniques have considerable advantages when used in LOC devices, especially with regard to the simplified aspect of 201209406 for the desired fluid design. Modification of amplification chemistry by direct PCR or direct isothermal amplification involves increasing buffer strength, using a polymerase with high activity and continuous potency, and an additive that can sequester possible polymerase inhibitors. The dilution of the inhibitor in the sample is also important.

爲了利用直接核酸擴增技術,該LOC裝置之設計倂入 了兩個額外的特徵構件。第一個特徵構件爲試劑貯存器( 例如第8圖之貯存器5 8 ),其大小剛好可供應足夠份量之 擴增混合物或稀釋劑,因此可能會干擾擴增化學之試樣成 分之終濃度會低得足以成功的進行核酸擴增。非細胞之試 樣成分所需的稀釋程度爲5X到20X的範圍。當能適當地確 定目標核酸序列之濃度被維持在足以擴增及偵測之高程度 時,可採用不同的LOC結構例如第4圖之病原體透析區70 。於此具體例(進一步地於第6圖中顯示)中,試樣萃取 區290之上游有一透析區,其能有效地濃縮小得足以進入 擴增區292之病原體,並排除較大細胞而送至廢棄物貯槽 76。於另一具體例中,係使用透析區來選擇性地除去血漿 中的蛋白質及鹽類而保留欲硏究之細胞。 第二個能支持直接核酸擴增之LOC構造特性爲通道寬 高比之設計以調整試樣及擴增混合物成分之混合比例。舉 例來說,爲了確保單一混合步驟可將試樣中伴隨之抑制劑 稀釋到較佳的5X到20X之範圍,所以試樣及試劑通道之長 度及橫切面都經過設計,於開始發生混合之位置上游處的 試樣通道造成的流動阻抗高出試劑混合物流動通道之流動 阻抗4X到1 9X。對微通道內流動阻抗之控制可透過設計幾 -83- 201209406 何性的控制輕易地達成。當橫切面大小一定時’微通道之 流動阻抗隨著通道長度而線性地增加。對混合設計很重要 地,微通道之流動阻抗更主要地視最小的橫切面尺寸大小 而定。例如,當寬高比非常不一致時’具有長方型橫切面 之微通道的流動阻抗係與最小正交尺寸之立方體呈反比。 逆轉錄酶PCR ( RT-PCR)In order to utilize direct nucleic acid amplification techniques, the design of the LOC device incorporates two additional features. The first characteristic member is a reagent reservoir (e.g., reservoir 58 of Figure 8) that is sized to supply a sufficient amount of amplification mixture or diluent and thus may interfere with the final concentration of the amplification chemistry sample component. It will be low enough to successfully perform nucleic acid amplification. The dilution required for the non-cellular sample components is in the range of 5X to 20X. When it is properly determined that the concentration of the target nucleic acid sequence is maintained at a high level sufficient for amplification and detection, a different LOC structure such as the pathogen dialysis zone 70 of Figure 4 can be employed. In this specific example (further shown in Figure 6), there is a dialysis zone upstream of the sample extraction zone 290 which is effective to concentrate pathogens small enough to enter the amplification zone 292 and to exclude larger cells. To the waste storage tank 76. In another embodiment, a dialysis zone is used to selectively remove proteins and salts from the plasma while retaining the cells to be studied. The second LOC structural feature that supports direct nucleic acid amplification is the channel aspect ratio design to adjust the mixing ratio of the sample and the amplification mixture components. For example, to ensure that the single mixing step can dilute the accompanying inhibitor in the sample to a preferred range of 5X to 20X, the length and cross-section of the sample and reagent channels are designed to begin mixing. The flow path impedance at the upstream sample channel is 4X to 19X higher than the flow impedance of the reagent mixture flow channel. The control of the flow impedance in the microchannel can be easily achieved by designing the control. When the cross-sectional size is constant, the flow impedance of the microchannel increases linearly with the length of the channel. Important for hybrid designs, the flow impedance of the microchannel is more primarily dependent on the smallest cross-sectional dimension. For example, when the aspect ratio is very inconsistent, the flow impedance of the microchannel having a rectangular cross section is inversely proportional to the cube of the smallest orthogonal dimension. Reverse transcriptase PCR (RT-PCR)

當被分析或萃取之試樣核酸物種爲RN A例如來自RN A 病毒或信使RNA之RNA時,在進行PCR擴增前必需先把該 RNA逆轉錄爲互補DNA ( cDNA )。該逆轉錄反應可於進行 PCR之同一室進行(單步驟RT-PCR)或其可以分隔開來的 初反應來進行(兩步驟RT-PCR)。於在此所述之LOC變化 型中,單步驟RT-PCR可簡單地藉著把逆轉錄酶以及聚合 酶加到試劑貯存器62中且以程式控制該加熱器1 54,使得 溫度循環先適於進行逆錄步驟而後再進行核酸擴增步驟。 兩步驟RT-PCR亦可輕易地藉著使用試劑貯存器58儲存及 配送緩衝液、引子、dNTPs及逆轉錄酶且於培育區1 14進行 逆轉錄步驟,接著以正常方式於擴增區112進行擴增來達 成。 等溫核酸擴增 對於某些應用來說,等溫核酸擴增爲一種較佳的核酸 擴增方法,其將擴增區維持在一恒定溫度(典型地約37°C 到4 1°C )而避免以不同的溫度循環重覆地循環加熱反應成 -84- 201209406 分之需求。現在已有數種等溫核酸擴增法已被描述,包括 股置換擴增(SDA )、轉錄媒介擴增法(TMA )、仰賴核 酸序列擴增法(NASBA )、重組酶聚合酶擴增法(RPA ) 、解旋酶-依賴等溫DNA擴增法(HDA)、滾環式擴增法 (RCA )、網狀分枝擴增法(RAM )及環媒介等溫擴增法 (LAMP ),任何一種此等等溫擴增法或其它等溫擴增法 皆可用於在此所述之LOC裝置之詳細具體例中。When the sample nucleic acid species to be analyzed or extracted is RN A, such as RNA from RN A virus or messenger RNA, the RNA must be reverse transcribed into complementary DNA (cDNA) prior to PCR amplification. The reverse transcription reaction can be carried out in the same chamber in which PCR is carried out (single-step RT-PCR) or an initial reaction which can be separated (two-step RT-PCR). In the LOC variants described herein, single-step RT-PCR can be performed by simply adding the reverse transcriptase and polymerase to the reagent reservoir 62 and programmatically controlling the heater 1 54, so that the temperature cycle is appropriate. The nucleic acid amplification step is carried out after performing the reverse recording step. The two-step RT-PCR can also be carried out by using the reagent reservoir 58 to store and dispense buffers, primers, dNTPs and reverse transcriptase and performing a reverse transcription step in the incubation zone 14 followed by normal amplification in the amplification zone 112. Amplification is achieved. Isothermal Nucleic Acid Amplification For some applications, isothermal nucleic acid amplification is a preferred method of nucleic acid amplification that maintains the amplified region at a constant temperature (typically about 37 ° C to 41 ° C) It is avoided to cyclically heat the reaction to a temperature of -84-201209406 at different temperature cycles. Several isothermal nucleic acid amplification methods have been described, including stock exchange amplification (SDA), transcription vector amplification (TMA), nucleic acid sequence amplification (NASBA), and recombinase polymerase amplification ( RPA), helicase-dependent isothermal DNA amplification (HDA), rolling circle amplification (RCA), reticulated branch amplification (RAM), and circular medium isothermal amplification (LAMP), Any of these isothermal amplification methods or other isothermal amplification methods can be used in the detailed examples of the LOC devices described herein.

爲了進行等溫核酸擴增,臨近擴增區之試劑貯存器60 及62中部再裝入PCR擴增混合物及聚合酶而替代地裝入用 特定等溫方法之適當試劑。例如,就SDA方法而言,試劑 貯存器60含有擴增緩衝液、引子及dNTPs而試劑貯存器62 則含有適當的切口酶及Exo_DNA聚合酶。就RPA方法而言 ,試劑貯存器60含有擴增緩衝液、引子及dNTPs而試劑貯 存器62則含有股替換性DNA聚合酶例如Bsu。類似地’ HDA方法而言,試劑貯存器60含有擴增緩衝液、引子及 dNTPs而試劑貯存器62則含有適當的DNA聚合酶及解旋酶 以代替熱來把雙股DNA鏈解開來。熟悉此.技術人士將瞭解 所需的試劑可以適合該核酸擴增方法之任何方式分置於兩 個試劑貯存器中。 對於來自RN A病毒例如HIV或C型肝炎病毒之病毒性核 酸的擴增而言,NASBA或TMA方法很適合因爲它們不需要 先把RNA轉錄成cDNA。於此實例中,試劑貯存器60內裝 有擴增緩衝液、引子及dNTPs而試劑貯存器62則裝有RNA 聚合酶、逆轉錄酶及任意地RNase H。 -85- 201209406 就某些形式之等溫核酸擴增法來說’在維持溫度以進 行等溫核酸擴增之前可能會需要先有一初步的變性循環來 把雙股DNA模板分離開來。於在此所述之所有LOC裝置之 具體例中此目的可以很容易地達成,因爲擴增區Π2內之 混合物之溫度可由擴增微通道1 5 8內之加熱器1 54小心地控 制(見第1 4圖)。For isothermal nucleic acid amplification, the PCR amplification mixture and polymerase are reloaded into the middle of reagent reservoirs 60 and 62 adjacent to the amplification zone instead of the appropriate reagents for the particular isothermal method. For example, in the case of the SDA method, the reagent reservoir 60 contains amplification buffers, primers, and dNTPs, while the reagent reservoir 62 contains appropriate nicking enzymes and Exo-DNA polymerase. In the case of the RPA method, the reagent reservoir 60 contains amplification buffers, primers, and dNTPs, while the reagent reservoir 62 contains a stock-replacement DNA polymerase such as Bsu. Similarly, for the 'HDA method, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, while reagent reservoir 62 contains the appropriate DNA polymerase and helicase to displace the double strand DNA strand in place of heat. Those skilled in the art will appreciate that the reagents required can be placed in two reagent reservoirs in any manner suitable for the nucleic acid amplification method. For amplification of viral nucleic acids from RN A viruses such as HIV or hepatitis C virus, NASBA or TMA methods are well suited because they do not require prior transcription of RNA into cDNA. In this example, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, while reagent reservoir 62 contains RNA polymerase, reverse transcriptase, and optionally RNase H. -85- 201209406 For some forms of isothermal nucleic acid amplification, it may be necessary to have a preliminary denaturation cycle to separate the double-stranded DNA template before maintaining the temperature for isothermal nucleic acid amplification. This object can be easily achieved in the specific examples of all of the LOC devices described herein because the temperature of the mixture in the amplification zone 小心2 can be carefully controlled by the heaters 1 54 in the amplification microchannels 158 (see Figure 14)).

等溫核酸擴增法對於試樣內可能的抑制劑較有耐受性 ,因此當需要從試樣作直接核酸擴增時此等方法通常較爲 適合。故而,等溫核酸擴增法有時可用在LOC變化型XLIII 673、LOC變化型XLIV 674及LOC變化型XLVII 677,此等 變化型分別見於第71、72及73圖。直接等溫擴增法亦可結 合一或多個擴增前(pre-amplification)透析步驟70、686 或6 82 (如第71及73圖所示)及/或雜合前(prehybridization) 透 析步驟 682 ( 如第 72圖所示 ), 分 別有助 於在核酸擴增前部份地濃縮試樣內的目標細胞或者在試樣 進入雜合室陣列1 1 0前除去不要的細胞殘渣。熟悉此技術 者應瞭解可採用任何擴增前透析及雜合前透析之組合。Isothermal nucleic acid amplification is more tolerant to possible inhibitors in the sample, so such methods are generally preferred when direct nucleic acid amplification from the sample is required. Therefore, isothermal nucleic acid amplification is sometimes used in LOC variant XLIII 673, LOC variant XLIV 674 and LOC variant XLVII 677, as shown in Figures 71, 72 and 73, respectively. Direct isothermal amplification may also be combined with one or more pre-amplification dialysis steps 70, 686 or 6 82 (as shown in Figures 71 and 73) and/or prehybridization dialysis steps. 682 (as shown in Figure 72), respectively, helps to partially concentrate the target cells in the sample prior to nucleic acid amplification or to remove unwanted cell debris before the sample enters the hybrid chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be employed.

等溫核酸擴增如第63、68及69圖示意表示般也可在平 行擴增區中進行,多重等溫核酸擴增法及某些等溫核酸擴 增法例如LAMP則可與最初的逆轉錄步驟相容來擴增RNA 光二極體 第54圖顯示整合於該L0C裝置301之CMOS電路86之光 -86- 201209406 二極體184。該光二極體184是在沒有額外遮罩或步驟下當 作CMOS電路86之部件來製造。這是CMOS光二極體優於 CCD之一項顯著的優點,CCD爲另一種感測技術,其可使 用非標準加工步驟整合到同一晶片上或者做在鄰近晶片上 。晶片上偵測的成本很低且可縮小該檢定系統之尺寸。較 短的光學路徑可減少周圍環境之雜訊以有效地收集螢光信 號及消除對傳統的透鏡及濾鏡之光學組件之需求。Isothermal nucleic acid amplification can also be performed in parallel amplification regions as shown schematically in Figures 63, 68 and 69. Multiple isothermal nucleic acid amplification methods and certain isothermal nucleic acid amplification methods such as LAMP can be used with the original The reverse transcription step is compatible to amplify the RNA photodiode. Figure 54 shows the light-86-201209406 diode 184 integrated into the CMOS circuit 86 of the LOC device 301. The photodiode 184 is fabricated as part of the CMOS circuit 86 without additional masking or steps. This is a significant advantage of CMOS photodiodes over CCDs, another sensing technique that can be integrated onto the same wafer or on adjacent wafers using non-standard processing steps. The cost of detection on the wafer is low and the size of the assay system can be reduced. The shorter optical path reduces noise in the surrounding environment to efficiently collect fluorescent signals and eliminate the need for optical components for conventional lenses and filters.

光二極體184之量子效率爲撞擊在活化區185之光子( 其有效地被轉變成光-電子)的分率。對於標準矽製程來 說,量子效率於可見光下係在0.3到0.5之範圍,視方法參 數例如該覆蓋層之份量及吸收性質而定。 光二極體184之偵測閾値可決定被偵測之螢光信號之 最小強度。該偵測閾値也能決定光二極體1 84之大小,因 此也決定了雜合及偵測區52中雜合室180的數目(見第52 圖)。室的大小及數目爲受到LOC裝置尺寸大小(於LOC 裝置301之例中,該尺寸爲1 760 μιη X 5824 μηι)限制之技 術參數,實際的估計値在其它功能性模組例如病原體透析 區70及(一或多個)擴增區11 2倂入後才能得知。 對於標準矽製程來說,光二極體184可偵測到最少5個 光子之最小量。然而,爲了確保可信的偵測,其最小量可 設爲10個光子。故而在量子效率爲0.3到0.5之範圍時(如 以上所討論地),探針的螢光發射應爲最少17個光子,不 過就可信的偵測而言應視爲3 0個光子以倂入適當的誤差邊The quantum efficiency of the photodiode 184 is the fraction of photons impinging on the active region 185, which are effectively converted into photo-electrons. For the standard tantalum process, the quantum efficiency is in the range of 0.3 to 0.5 under visible light, depending on the method parameters such as the amount of the cover layer and the absorption properties. The detection threshold of the photodiode 184 determines the minimum intensity of the detected fluorescent signal. The detection threshold 値 also determines the size of the photodiode 184, thus also determining the number of hybrid chambers 180 in the hybrid and detection zone 52 (see Figure 52). The size and number of chambers are technical parameters that are limited by the size of the LOC device (in the case of the LOC device 301, which is 1 760 μιη X 5824 μηι), and the actual estimates are in other functional modules such as the pathogen dialysis zone 70. And the amplification region (one or more) is not known until it is invaded. For standard 矽 process, photodiode 184 can detect a minimum of a minimum of 5 photons. However, to ensure reliable detection, the minimum amount can be set to 10 photons. Therefore, when the quantum efficiency is in the range of 0.3 to 0.5 (as discussed above), the fluorescent emission of the probe should be a minimum of 17 photons, but in the case of a reliable detection, it should be regarded as 30 photons. Enter the appropriate error side

-87- 201209406 以電化學發光作爲另一偵測方法 電化學發光(ECL )涉及電極表面化學物種之產生, 其而後會進行電子-轉移反應以形成可發射光線之激發狀 態。電化學發光與常見的化學發光不同,其中受激物種的 形成係仰賴電極上的發光團或共反應物之氧化或還原反應 。於此內容中,共反應物爲添加到ECL溶液之額外試劑, 其能增強ECL發射效能。於常見的化學發光中,受激物種 純粹是透過適當試劑之混合來形成。發射性原子或錯合物 傳統地被稱爲發光團。簡要地,ECL係仰賴發光團激發狀 態的產生,於激發狀態會發射出光子。當採用任一種此等 製程時,該激發狀態也可能會採行另一路徑而無法產生所 需之光線放射(即,淬熄)。 使用ECL代替螢光偵測之測試模組之具體例不需要激 發LED。電極係裝置於雜合室內以提供電脈衝來產生ECL 且用光感測器44來偵測光子。該電脈衝之持續時間及電壓 大小會受到控制;於某些具體例中,係以對電流進行控制 來取代控制電壓。 發光團及淬熄物 釕錯合物[Ru ( bpy ) 3]2+,如前文所述係用來當作探 針內的螢光播報器,亦可用來當作雜合室內ECL反應之發 光團,且以TPrA (三正丙胺(CH3CH2-CH2 ) 3N )作爲共 反應物。共反應物ECL的優點爲在光子發射後該發光團並 -88- 201209406 不會被消耗掉且試劑可供此方法重覆地進行。再進一步地 ,該[Ru ( bpy ) 3]2 + /TPrA ECL系統於水溶液內生理相關之 pH條件下仍可提供良好的信號量。可以產生與TPr A及釕 錯合物同樣的或更好的結果之另一種共反應物爲N-丁基二 乙醇胺及2-(二丁胺基)乙醇。-87- 201209406 Electrochemiluminescence as another detection method Electrochemiluminescence (ECL) involves the generation of chemical species on the surface of an electrode, which is then subjected to an electron-transfer reaction to form an excited state that emits light. Electrochemiluminescence differs from common chemiluminescence in that the formation of stimulated species depends on the oxidation or reduction of the luminophore or co-reactant on the electrode. In this context, the co-reactant is an additional reagent added to the ECL solution that enhances ECL emission performance. In common chemiluminescence, stimulated species are formed purely by mixing a suitable reagent. Emissive atoms or complexes are traditionally referred to as luminophores. Briefly, the ECL system relies on the generation of the excited state of the luminophore, which emits photons in the excited state. When either of these processes is employed, the excitation state may also take another path to produce the desired light emission (i.e., quenching). A specific example of a test module that uses ECL instead of fluorescent detection does not require an excitation LED. The electrode system is placed in the hybrid chamber to provide electrical pulses to generate the ECL and the photo sensor 44 is used to detect photons. The duration and voltage of the electrical pulse are controlled; in some specific cases, the current is controlled to replace the control voltage. The luminophore and quenching compound [Ru(bpy) 3]2+, as described above, is used as a fluorescent reporter in the probe and can also be used as a glow in a hybrid indoor ECL reaction. And TPrA (tri-n-propylamine (CH3CH2-CH2) 3N) as a co-reactant. An advantage of the co-reactant ECL is that the luminescent group and -88-201209406 are not consumed after the photon emission and the reagent can be repeatedly carried out by this method. Still further, the [Ru(bpy)3]2 + /TPrA ECL system provides a good signal level under physiologically relevant pH conditions in aqueous solution. Another co-reactant which can produce the same or better results as the TPr A and hydrazine complexes is N-butyldiethanolamine and 2-(dibutylamino)ethanol.

第76圖顯示在以[Ru ( bpy ) 3]2 +爲發光團864及TPrA爲 共反應物866之ECL方法中發生之反應。[Ru( bpy) 3]2 + /TPrA ECL 系統之 ECL 發射 862 係尾隨在[Ru(bpy) 3]2 + 及TPrA兩者於陰極8 60氧化之後。該反應如下:Figure 76 shows the reaction occurring in the ECL method with [Ru(bpy)3]2+ as the luminophore 864 and TPrA as the co-reactant 866. The ECL emission of the [Ru(bpy)3]2 + /TPrA ECL system 862 is followed by oxidation of both [Ru(bpy) 3]2 + and TPrA at the cathode 8 60 . The reaction is as follows:

(2) (3) (4)(2) (3) (4)

Ru(bpy)32+ -e' Ru(bpy)33+ TPrA -e* -> [TPrA*]+ -> TPrA* + H+ Ru(bpy)33+ + TPrA· 4 Ru(bpy)3’2+ + 產物 Ru(bpy)3*2+ Ru(bpy)32+ +ho 發射光線862之波長約爲620 nm且該陰極電勢相對於 Ag/AgCl參考電極約爲 1.1 V。對於[Ru ( bpy ) 3]2 + /TPrA ECL系統,不論是前文所述之黑洞淬熄物(Black Hole Quencher ’ BHQ 2)或愛荷華黑 RQ ( Iowa Black RQ)都是 適當的淬熄物。於在此所述之具體例中,淬熄物爲一開始 就附著在探針上之官能基團,不過在其它具體例中淬熄物 可爲游離在溶液中之個別分子。 ECL偵測之雜合探針 -89- 201209406 反.m - 由 合爲 雜且 示標 顯指 圖子 4 h 9 分 及爲 93稱 第被 常 通 應 單 生 產 ^酸 E , 性核 '股 針 探 針其 探’ 等針 此探 。 環 37莖 之 在雜合到互補核酸時會發光。第93圖顯示與目標核酸序列 23 8雜合前之單一ECL探針237。該探針具有環240、莖242 、於5’端之發光團864及於3’端之淬熄物248。環240係由與 目標核酸序列23 8互補之序列所構成。於探針序列兩邊之 互補序列相互結合在一起而形成莖242。 在沒有互補目標序列時,該探針如第93圖所示般保持 著閉合。莖242使得發光團-淬熄物配對彼此很接近,因此 這兩者間可發生明顯的共振能量轉移,而實質地消滅了發 光團在電化學激發後發射光線的能力。 第94圖顯示打開或雜合組態之ECL探針23 7。在雜合到 互補目標核酸序列23 8以後,該莖環結構會瓦解,螢光團 864及淬熄物248在空間上分隔開來,因此發光團864重獲 發射光線之能力。ECL發射862可光學地偵測到而作爲該探 針已雜合之指標。 由於探針之莖螺旋係設計成比起不互補之單一核苷酸 的探針-目標物螺旋更穩定,所以此等探針會以極高的特 異性與互補目標物雜合。因爲雙股DNA相對地較剛硬,所 以探針-目標物螺旋及莖螺旋共存就空間上來說是不可能 的。 引子-連結之ECL探針 引子-連結之莖環探針及引子-連結之線性探針(另以 -90 - 201209406Ru(bpy)32+ -e' Ru(bpy)33+ TPrA -e* -> [TPrA*]+ -> TPrA* + H+ Ru(bpy)33+ + TPrA· 4 Ru(bpy)3' The 2+ + product Ru(bpy)3*2+ Ru(bpy)32+ +ho emits light 862 at a wavelength of about 620 nm and the cathode potential is about 1.1 V with respect to the Ag/AgCl reference electrode. For the [Ru ( bpy ) 3] 2 + /TPrA ECL system, either the Black Hole Quencher 'BHQ 2 or the Iowa Black RQ is a suitable quenching. Things. In the specific examples described herein, the quencher is a functional group attached to the probe from the beginning, but in other specific examples, the quencher may be an individual molecule that is free in solution. Hybrid probe for ECL detection-89- 201209406 反.m - from the combination of miscellaneous and indicating the indications of the picture 4 h 9 points and 93 said that the first is the general production of the acid E, the nuclear nucleus The needle probe explores it. The stem of the ring 37 luminesces when hybridized to a complementary nucleic acid. Figure 93 shows a single ECL probe 237 prior to hybridization to the target nucleic acid sequence 23 8 . The probe has a ring 240, a stem 242, a luminophore 864 at the 5' end, and a quencher 248 at the 3' end. Loop 240 is composed of a sequence complementary to the target nucleic acid sequence 238. The complementary sequences on both sides of the probe sequence are joined to each other to form a stem 242. In the absence of a complementary target sequence, the probe remains closed as shown in Figure 93. The stems 242 allow the lumino-quenching pairs to be in close proximity to each other, so that significant resonance energy transfer can occur between the two, substantially eliminating the ability of the luminescent group to emit light after electrochemical excitation. Figure 94 shows the ECL probe 23 7 in an open or hybrid configuration. After hybridization to the complementary target nucleic acid sequence 23 8 , the stem-loop structure collapses, and the fluorophore 864 and the quencher 248 are spatially separated, so that the luminophore 864 regains the ability to emit light. The ECL launch 862 can be optically detected as an indicator that the probe has been hybridized. Since the stem helix of the probe is designed to be more stable than the probe-target helix of a non-complementary single nucleotide, these probes will hybridize to the complementary target with very high specificity. Since the double-stranded DNA is relatively rigid, it is spatially impossible to coexist with the probe-target helix and the stem helix. Primer-Linked ECL Probe Primer-Linked Stem Loop Probe and Lead-Linked Linear Probe (Additional -90 - 201209406

蠍探針爲人所知)爲另一種分子指標且可用於LOC裝置之 即時及定量核酸擴增。即時擴增係在L0C裝置之雜合室中 直接進行。使用引子連結探針的好處是探針元件會物理性 地連結上引子,因此在核酸擴增期間只需發生單一雜合事 件而不需要將引子及探針各別雜合。如此一來可確保本反 應比使用各別的引子及探針能更有效地立即發生且產生較 強的信號、較短反應時間及更好的鑑別能力。該探針(以 及聚合酶及擴增混合物)在製造期間被沉積在雜合室180 內,故而該LOC裝置上不需要擴增區。另一選擇地,可將 該擴增區保留不用或者用於其它反應。 引子·連結之線性ECL探針 第95及96圖分別顯示於首輪核酸擴增期間該引子-連 結之線性ECL探針693以及後續核酸擴增期間雜合組態之 ECL探針。參考第95圖,該引子-連結之線性ECL探針693 具有雙股之莖節段242。其中一股會倂入已與引子連接之 探針序列696,其與目標核酸696之一區域同源且於其51端 用發光團864標記,於31端則透過擴增阻斷物694連接到一 寡核苷酸引子7〇〇。該莖242之另一股於3'端用淬熄物分子 248標記。在首輪核酸擴增完成後’該探針會再圈成環狀 且現在藉互補序列698雜合到延伸股上。在首輪核酸擴增 期間,該寡核苷酸引子7〇〇會結合到目標DN A 23 8上(見第 95圖)且然後延伸,形成同時含有探針序列及擴增產物之 DN A股鏈。擴增阻斷物694會防止聚合酶讀取並拷貝探針 -91 - 201209406The 蝎 probe is known as another molecular indicator and can be used for both real-time and quantitative nucleic acid amplification of LOC devices. The immediate amplification is performed directly in the hybrid chamber of the L0C device. The advantage of using a primer to link the probe is that the probe element is physically linked to the primer, so that only a single heterozygous event occurs during nucleic acid amplification without the need to heterozygous the primer and probe. This ensures that the reaction occurs more efficiently and with a stronger signal, shorter reaction times, and better discrimination than using separate primers and probes. The probe (and polymerase and amplification mixture) is deposited in the hybrid chamber 180 during manufacture so that no amplification region is required on the LOC device. Alternatively, the amplification region can be left unused or used in other reactions. Primer-Linked Linear ECL Probes Figures 95 and 96 show the primer-ligated linear ECL probe 693 during the first round of nucleic acid amplification and the heterozygous ECL probe during subsequent nucleic acid amplification, respectively. Referring to Figure 95, the primer-linked linear ECL probe 693 has a double-stranded stem segment 242. One of them will break into a probe sequence 696 that has been ligated to the primer, which is homologous to a region of the target nucleic acid 696 and is labeled with a luminophore 864 at its 51-end, and is ligated to the amplification blocker 694 at the 31-end. An oligonucleotide primer 7〇〇. The other strand of the stem 242 is labeled with a quencher molecule 248 at the 3' end. After the first round of nucleic acid amplification is completed, the probe will be looped again and now hybridized to the extended strand by complementary sequence 698. During the first round of nucleic acid amplification, the oligonucleotide primer 7 结合 binds to the target DN A 23 8 (see Figure 95) and then extends to form a DN A strand that contains both the probe sequence and the amplified product. . Amplification blocker 694 prevents polymerase from reading and copying probe -91 - 201209406

區域696。於後續的變性過程中,延伸的寡核苷酸引子 700/模板雜合體會脫離,同樣地該引子-連結之線性探針之 雙股莖部242也會脫離以釋出該淬熄物24 8。一旦溫度降低 以進行結合及延伸步驟時,該引子-連接之線性ECL探針之 引子連接探針序列696會捲曲起來且雜合到該延伸股上之 擴增互補序列69 8且光線發射被偵測到而顯示有目標DNA 存在。未延伸之引子連接之線性ECL探針則保有它們的雙 股莖部且光線發射仍維持在淬熄狀態。此偵測方法特別適 合快速偵測系統,因爲它依靠單-分子流程。 引子連結之莖環ECL探針Area 696. During subsequent denaturation, the extended oligonucleotide primer 700/template hybrid will detach, and likewise the double-strand 242 of the primer-linked linear probe will also detach to release the quencher. . Once the temperature is lowered for the binding and extension step, the primer-ligated probe sequence 696 of the primer-ligated linear ECL probe will curl up and hybridize to the amplified complementary sequence 69 8 on the stretched strand and the light emission is detected. It is indicated that the target DNA is present. Linear ECL probes with unextended primers retain their bistrand and the light emission remains quenched. This detection method is especially suitable for fast detection systems because it relies on a single-molecule process. Lead-chained ECL probe

第97A至97F圖顯示引子·連結之莖環ECL探針705之操 作。參考第97A圖,該引子-連結之莖環ECL探針705具有 互補之雙股DNA的莖部242及合倂探針序列之環部240。其 中一股莖部股708於5’端用發光團864標記。另一股71 0於3' 端用淬熄物248標記且攜有擴增阻斷物694及寡核苷酸引子 700。於最初變性期期間(見第97B ),目標核酸23 8之雙 股彼此分離,該引子-連接之莖環ECL探針705之莖部242亦 如此。當溫度在結合期冷卻時(見第97C圖),於引子-連 接之莖環ECL探針705上之寡核苷酸引子700會雜合到該目 標核酸序列23 8。於延伸期間(見第97D圖),該目標核酸 序列2 3 8之互補體706被合成且形成含有探針序列705及擴 增產物之DNA股。該擴增阻斷物694可防止聚合酶讀取及 拷貝該探針區域705。當探針於變性之後結合(見第97E圖 -92- 201209406 )時,該引子-連接之莖環ECL探針705之環節段240之探針 序列(見第97F圖)會結合到延伸股上的互補序列706。此 組態把發光團864留在離淬熄物248相對較遠處,使得光線 發射顯著提高。 ECL控制探針Figures 97A through 97F show the operation of the lead-coupled stem-loop ECL probe 705. Referring to Figure 97A, the primer-ligated stem-loop ECL probe 705 has a stem portion 242 of complementary double-stranded DNA and a loop portion 240 of the conjugate probe sequence. One of the stem strands 708 is marked with a luminophore 864 at the 5' end. The other 71 0 is labeled with quencher 248 at the 3' end and carries amplification blocker 694 and oligonucleotide primer 700. During the initial degeneration period (see 97B), the double strands of the target nucleic acid 23 8 are separated from each other, as is the stem portion 242 of the primer-ligated stem-loop ECL probe 705. When the temperature is cooled during the binding phase (see Figure 97C), the oligonucleotide primer 700 on the primer-ligated stem-loop ECL probe 705 will hybridize to the target nucleic acid sequence 23 8 . During extension (see Figure 97D), the complement 706 of the target nucleic acid sequence 298 is synthesized and forms a DNA strand containing the probe sequence 705 and the amplification product. The amplification blocker 694 prevents the polymerase from reading and copying the probe region 705. When the probe binds after denaturation (see Figure 97E, Figure 92-201209406), the probe sequence of the linker 240 of the primer-ligated stem-loop ECL probe 705 (see Figure 97F) is bound to the extended strand. Complementary sequence 706. This configuration leaves the luminophore 864 relatively far from the quencher 248, resulting in a significant increase in light emission. ECL control probe

雜合室陣列110包含一些具有正向及反向ECL控制探針 之雜合室180以供檢定品質控制。第98及99圖示意地顯示 不含發光團之反向控制ECL探針786,且第100及101圖則爲 不含淬熄物之正向控制ECL探針787之略圖。該正向及反向 控制ECL探針具有類似以上所述ECL探針之莖環結構。然 而,不論該等探針係雜合成爲打開組態或保持閉鎖,一 ECL信號862 (見第94圖)總是由正向控制ECL探針787發 射出來且反向控制ECL探針786不會發射ECL信號862。 參考第98及99圖,反向控制ECL探針786不具發光團( 及可以或不可具有淬熄物248)。因此,不論該目標核酸 序列23 8係與第99圖顯示之探針雜合,或者該探針仍保持 著如第98圖所示之莖部242及環部240組態,該ECL信號皆 可忽略。另一選擇地,反向控制ECL可被設計成總是保持 著淬熄狀態。例如,可令該探針具有不會雜合到硏究試樣 內之任何核酸序列之人造探針(環)序列240,使得該探 針分子之莖部242與自己再雜合且發光團及淬熄物維持著 很接近而不會有可察覺的ECL信號被偵測到。此反向控制 可解釋任何淬熄不完全而發生之低量發射。 -93- 201209406 相反地,該正向控制ECL探針78 7如第100及101圖所示 地被建構成不含淬熄物。不論該正向控制探針787是否與 目標核酸序列2 3 8雜合,沒有任何東西會淬熄來自發光團 864 之 ECL 發射 862。Hybrid chamber array 110 includes a number of hybrid chambers 180 with forward and reverse ECL control probes for assay quality control. Figures 98 and 99 schematically show reverse control ECL probes 786 without luminophores, and panels 100 and 101 are thumbnails of forward control ECL probes 787 without quenching. The forward and reverse control ECL probes have a stem-loop structure similar to that described above for ECL probes. However, regardless of whether the probes are synthesized into an open configuration or remain latched, an ECL signal 862 (see Figure 94) is always emitted by the forward control ECL probe 787 and the reverse control ECL probe 786 does not. The ECL signal 862 is transmitted. Referring to Figures 98 and 99, the reverse control ECL probe 786 has no luminophores (and may or may not have quencher 248). Therefore, regardless of whether the target nucleic acid sequence 23 8 is heterozygous with the probe shown in FIG. 99, or the probe remains in the configuration of the stem portion 242 and the loop portion 240 as shown in FIG. 98, the ECL signal can be ignore. Alternatively, the reverse control ECL can be designed to always remain quenched. For example, the probe can be provided with an artificial probe (loop) sequence 240 that does not hybridize to any of the nucleic acid sequences in the sample, such that the stem portion 242 of the probe molecule is hybridized with itself and luminophore and quenched. The extinguisher is kept close without an appreciable ECL signal being detected. This reverse control can account for any low-volume emissions that occur when quenching is incomplete. In contrast, the forward control ECL probe 78 7 is constructed to be free of quenching as shown in Figures 100 and 101. Regardless of whether the forward control probe 787 is heterozygous to the target nucleic acid sequence 2 3 8 , nothing will quench the ECL emission 862 from the luminophore 864.

第91及92圖顯示建構正向控制室之另一種可能性。於 此例中,可在密封以避免接觸擴增子(或任何含有目標分 子之液流)之校準室3 82中裝入ECL發光團溶液,使得電極 處總能偵測到正信號。 類似地,該控制室可爲反向控制室,由於該控制室缺 乏入口所以可防止任何目標物接觸探針,從而永遠不會偵 測到ECL信號。Figures 91 and 92 show another possibility for constructing a forward control room. In this case, the ECL luminophore solution can be loaded into the calibration chamber 382 that is sealed to avoid contact with the amplicon (or any liquid stream containing the target molecule) so that a positive signal is always detected at the electrode. Similarly, the control room can be a reverse control chamber that prevents any target from contacting the probe due to the lack of access to the control chamber, so that the ECL signal is never detected.

第52圖顯示遍佈於雜合室陣列110之該正向及反向控 制探針(分別爲3 7 8及380 )之可能分佈。對ECL而言,正 向及反向控制ECL探針786及78 7分別可用控制螢光探針378 及3 80來取代。該控制探針可沿著雜合室陣列1 10之斜對角 線安置於雜合室1 80中。不過,陣列內控制探針之配置是 隨意的(如同雜合室陣列Π 0之組態般)。 ECL偵測之校準室 該光二極體1 84 (其對任何存在於感測器陣列之周圍 光線以及來自陣列其它位置之光線有反應)之電學特性之 不一致性會引入背景雜訊且偏移到輸出信號內。此背景會 透過雜合室陣列1 10內之校準室3 82從各輸出信號中除去, 該陣列可以不含任何探針、含有無ECL發光團之探針或者 -94- 201209406 含有具發光團及淬熄物但設計成總在淬熄狀態之探針。遍 佈雜合室陣列之校準室382的數目及配置係隨意的。不過 ,如果光二極體184由較接近的校準室382來校準時,校準 會比較正確。參考第116圖,該雜合室陣列110於每八個雜 合室180就有一個校準室382。亦即,校準室3 82係位於排 成3x3正方形形狀之雜合室180的中央。於此組態中,雜合 室18 0係由緊鄰之校準室382來校準。Figure 52 shows the possible distribution of the forward and reverse control probes (3, 7 and 380, respectively) throughout the hybrid chamber array 110. For ECL, the forward and reverse control ECL probes 786 and 78 7 can be replaced with control fluorescent probes 378 and 380, respectively. The control probes can be disposed in the hybrid chamber 180 along diagonally diagonal lines of the hybrid chamber array 1 10. However, the configuration of the control probes within the array is arbitrary (as is the configuration of the hybrid chamber array Π 0). The inconsistency of the electrical characteristics of the photodiode 1 84 (which reacts to any ambient light present in the sensor array and from other locations in the array) in the calibration chamber of the ECL detection introduces background noise and shifts to Inside the output signal. This background is removed from each output signal by a calibration chamber 382 in the hybrid chamber array 110. The array may be free of any probes, probes containing no ECL luminophores, or -94-201209406 containing luminophores and Quenching but designed as a probe that is always quenched. The number and configuration of calibration chambers 382 throughout the array of hybrid chambers are optional. However, if the photodiode 184 is calibrated by a closer calibration chamber 382, the calibration will be correct. Referring to Fig. 116, the hybrid chamber array 110 has a calibration chamber 382 in every eight hybrid chambers 180. That is, the calibration chamber 382 is located in the center of the hybrid chamber 180 arranged in a 3x3 square shape. In this configuration, the hybrid chamber 18 is calibrated by the calibration chamber 382 immediately adjacent.

第75圖顯示一微分影像器電路(differential imager circuit ) 788,其可把施加電脈衝之後對應於校準室382之 光二極體184所產生之信號從周圍雜合室180之ECL信號中 扣除下來。該微分影像器電路78 8會從像素790及“虛擬”像 素792中採樣信號。由室陣列區域之周圍光線產生的信號 也會被扣除下來。來自像素790之信號很微弱(即,接近 暗信號),在沒有暗程度之參考時很難區別是背景信號或 者是極弱信號。 使用期間,“讀取列(read_row ) ”794及“讀取列d ( read_row_d) ”795被活化且M4 797及MD4 801電晶體被啓 動》開關807及809被關閉,使得來自像素790及“虛擬”像 素792之輸出分別被儲存於像素電容器803及虛擬像素電容 器8 05中。在像素信號被儲存以後,開關8 07及8 09會被失 活化。而後該“讀取行(read_col) ”開關811及虛擬“讀取 行”開關813會被關閉且輸出之切換式電容放大器815會放 大該微分信號8 1 7。 -95- 201209406 ECL量及信號效率 ECL之正常的效率度量値爲每一“法拉第”電子(即, 每一參與電化學之電子)得到之光子數。該ECL效率以 ♦ ECL表不: Φεα = [ΐάτFig. 75 shows a differential imager circuit 788 which subtracts the signal generated by the photodiode 184 corresponding to the calibration chamber 382 from the ECL signal of the surrounding hybrid chamber 180 after the application of the electrical pulse. The differential imager circuit 78 8 samples the signal from the pixel 790 and the "virtual" pixel 792. Signals generated by ambient light from the array area of the chamber are also subtracted. The signal from pixel 790 is very weak (i.e., close to a dark signal) and it is difficult to distinguish between a background signal or a very weak signal when there is no darkness reference. During use, "read column (read_row)" 794 and "read column d (read_row_d)" 795 are activated and M4 797 and MD4 801 transistors are activated" switches 807 and 809 are turned off, such that from pixel 790 and "virtual The outputs of the pixels 792 are stored in the pixel capacitor 803 and the virtual pixel capacitor 850, respectively. After the pixel signal is stored, switches 8 07 and 08 09 are deactivated. The "read_col" switch 811 and the virtual "read row" switch 813 are then turned off and the output switched capacitor amplifier 815 amplifies the differential signal 8 1 7 . -95- 201209406 ECL Amount and Signal Efficiency The normal efficiency measure of ECL is the number of photons obtained for each "Faraday" electron (ie, each electron participating in the electron). The ECL efficiency is ♦ ECL is not: Φεα = [ΐάτ

其中I爲每秒光子強度’ i爲電流安培數,F爲法拉第常 數及NA爲亞佛加厥常數。 共反應物ECL之效率Where I is the photon intensity per second 'i is the current amperage, F is the Faraday constant and NA is the Yafox constant. Co-reactant ECL efficiency

湮沒(annihilation ) ECL於去氧、非質子溶液(例如 ’氮沖洗之乙腈溶液)簡單得足以作效率測量,且φΕ(:Ι^之 —致許可値爲約5%。然而,一般認爲共反應物系統無法有 意義的直接測量效率。替代性地,發射強度係藉著與易製 備之標準溶液例如以同樣格式測量之Ru ( bpy ) 32 +比對來 衡量。此文獻(見於例如J. K. Lei and and M. J. Powell, J. El ectrochem. Soc.,137,3 1 2 7 ( 1 990 ),以及 R. Pyati and Μ. M. Richter > Annu. Rep. Prog. Chem. C, 103,12-78 (2007 ))指出(沒有促進劑例如界面活性劑):RU ( bpy ) 32 + ECL與TPrA共反應物之效率峰値相當於湮沒ECL 於乙腈見到程度之5% (例如2%效率;見於I. Rubinstein & A. J . Bard,J. Am . Chem. Soc., 1 03 5 1 2 - 5 1 6 ( 1 9 8 1 ))。 -96- 201209406 ECL電位An annihilation ECL in a deoxygenated, aprotic solution (such as a 'nitrogen flushed acetonitrile solution) is simply sufficient for efficiency measurements, and φΕ(:Ι^—to permit a 値 of about 5%. However, it is generally considered The reactant system does not have a meaningful direct measurement efficiency. Alternatively, the emission intensity is measured by a standard solution that is easily prepared, for example, a Ru(bpy) 32+ alignment measured in the same format. (See, for example, JK Lei and And MJ Powell, J. El ectrochem. Soc., 137, 3 1 2 7 (1 990 ), and R. Pyati and Μ. M. Richter > Annu. Rep. Prog. Chem. C, 103, 12-78 (2007)) pointed out (without accelerators such as surfactants): the efficiency peak of the RU (bpy) 32 + ECL and TPrA co-reactant is equivalent to 5% of the degree of ec湮 ECL seen in acetonitrile (eg 2% efficiency; see I. Rubinstein & A. J. Bard, J. Am. Chem. Soc., 1 03 5 1 2 - 5 1 6 (1 9 8 1 )) -96- 201209406 ECL potential

Ru(bpy) 32 + /TPrA系統之工作電極之電壓爲約+1.1 V (於文獻中一般係相對於Ag/AgCl參考電極來測量)。這 麼高的電壓會縮短電極壽命,不過這對於用過即丟裝置例 如本發明診斷系統所用之LOC裝置而言並不是問題。The voltage at the working electrode of the Ru(bpy) 32 + /TPrA system is about +1.1 V (generally measured in the literature relative to the Ag/AgCl reference electrode). This high voltage will shorten the electrode life, but this is not a problem for a LOC device used in a diagnostic device such as the disposable device.

陰極及陽極間的理想電壓視溶液成分及電極材料之組 合而定。選擇正確的電壓需要在最高信號量、試劑及電極 穩定性,及活化不良副反應(例如室內之水之電解)間取 捨妥協。在緩衝的水性Ru ( bpy ) 32 + /共反應物溶液及鉑電 極之測試中,該ECL發射最高是2.1-2.2 V(視共反應物之 選擇而定)。當電壓在低於1.9V及高於2.6V時發射強度會 跌到<75%峰値,當電壓在低於1.7V及高於2.8V時發射強度 會跌到<50%峰値。因此,此類系統中ECL運作時較佳的陰 極-陽極電壓差爲1.7-2.8¥,以1.9-2.6¥的範圍爲特佳。 如此一來可讓與電壓呈函數關係之發射強度達到最高,而 避免會在電極處造成明顯的氣體逸失之電壓。 ECL發射波長 ECL發射光862之波長具有約620 nm (於空氣或真空測 得)之強度峰値,且該發射涵蓋相當廣的波長範圍。顯著 的發射係在約5 50 nm到700 nm之波長。再者,高峰發射波 長因活性物種周圍的化學環境不同可有約1 〇%之變動。在 此所述之LOC裝置具體例,其不含波長-特異之濾鏡,對於 -97- 201209406 捕捉這類廣幅又會變動之光譜的信號有兩個優點。第一個 優點爲靈敏性:任何波長的濾鏡(即使在其通頻帶內)都 會減少光線穿透,所以不包含濾鏡時效率會改善。第二個 優點爲彈性:在作些許試劑改變之後就無需調整濾鏡通頻 帶,且信號比較不依賴輸入試樣之非目標成分之些微差異The ideal voltage between the cathode and the anode depends on the combination of the solution composition and the electrode material. Choosing the right voltage requires compromise between the highest semaphore, reagent and electrode stability, and poorly activated side reactions such as electrolysis of water in the room. In the test of buffered aqueous Ru(bpy)32+/co-reactant solution and platinum electrode, the ECL emission is at most 2.1-2.2 V (depending on the choice of co-reactant). When the voltage is below 1.9V and above 2.6V, the emission intensity will drop to <75% peak. When the voltage is below 1.7V and above 2.8V, the emission intensity will drop to <50% peak. Therefore, the preferred cathode-anode voltage difference for ECL operation in such systems is 1.7-2.8 yen, which is particularly good in the range of 1.9-2.6. This maximizes the emission intensity as a function of voltage and avoids voltages that cause significant gas loss at the electrodes. ECL Emission Wavelength The wavelength of the ECL emission light 862 has an intensity peak of about 620 nm (measured in air or vacuum) and the emission covers a relatively wide range of wavelengths. Significant emission systems are at wavelengths from about 5 50 nm to 700 nm. Furthermore, the peak emission wavelength may vary by about 1% due to the different chemical environments surrounding the active species. The specific example of the LOC device described herein, which does not include a wavelength-specific filter, has two advantages for capturing signals of such wide and varying spectra from -97 to 201209406. The first advantage is sensitivity: any wavelength filter (even within its passband) reduces light penetration, so efficiency is improved without filters. The second advantage is flexibility: there is no need to adjust the filter passband after making some reagent changes, and the signal comparison does not depend on the slight difference of the non-target components of the input sample.

參與ECL之溶液體積 ECL係依賴溶液內發光團(及共反應物)之可利用性 。然而,如第78圖顯示地,受激物種868只在接近電極860 及870之溶液872中產生。於在此所示之模組中該參數邊界 層之深度爲可產生受激物種868之電極860周圍之溶液872 層之深度。 此爲一種簡化結果,因爲溶液動力學特性會導致可利 用濃度升高或降低:The volume of solution involved in ECL relies on the availability of luminescent groups (and co-reactants) in solution. However, as shown in Figure 78, the stimulated species 868 are only produced in solution 872 near electrodes 860 and 870. The depth of the boundary layer of the parameter in the module shown herein is the depth of the layer 872 of the solution around the electrode 860 that produces the stimulated species 868. This is a simplified result because the kinetics of the solution can lead to an increase or decrease in the available concentration:

可利用性升高:擴散及電泳效應可容許與較多溶液互 換。 可利用性降低:試劑吸附在電極上且變得無法用於 ECL過程中。 當邊界層深度値爲0.5 μηι時,可觀察到以下現象: 在結合使用直徑最大4.5 μπι之磁珠來把發光團864吸 引到陰極860上之實驗中可以觀察到ECL。 在指狀叉合之電極陣列中,可以發現到與電極間距呈 函數關係之Ru ( bpy ) 32 + /TPrA ECL發射862係在電極間距 -98- 201209406 0.8 μηι時最大。當電極間距約爲2 μηι時,水性溶液8 72有 共反應物866之需求會提高。此現象顯示受激物種868會擴 散數微米,其暗示著該受激物種係以類似於基態的尺度來 進行擴散性交換。 穩定狀態及脈衝式操作Increased availability: diffusion and electrophoretic effects allow for interchange with more solutions. Reduced availability: The reagent is adsorbed on the electrode and becomes unusable in the ECL process. When the boundary layer depth 値 is 0.5 μηι, the following phenomenon can be observed: ECL can be observed in an experiment in which a magnetic bead having a diameter of at most 4.5 μπ is used in combination to attract the luminophore 864 to the cathode 860. In the electrode array of the fingers, it can be found that the Ru ( bpy ) 32 + /TPrA ECL emission 862 system which is a function of the electrode spacing is the largest at the electrode spacing of -98 - 201209406 0.8 μηι. When the electrode spacing is about 2 μηι, the need for the aqueous solution 8 72 to have a co-reactant 866 is increased. This phenomenon indicates that the stimulated species 868 will diffuse by a few microns, suggesting that the stimulated species are diffusely exchanged at a scale similar to the ground state. Steady state and pulsed operation

在電極860及870脈衝式活化期間,該ECL發射862強度 (見第94圖)一般會高於該電極於穩定狀態活化時發射 862之強度。據此,電極860及870之活化信號係由CMOS電 路 86 來作脈寬調制(pulse-width modulated (PWM))。 試劑再循環及物種壽命 在Ru ( bpy ) 32 + /TPrA ECL系統中Ru錯合物並不會被 消耗掉,因此發射8 62之強度並不會隨著後續反應循環而 降低。該速率限制性步驟之壽命約爲0.2毫秒且可提供約1 毫秒之總反應循環時間。 電泳效應及其它限制 鑑於雜合室中溶液之複雜性,當ECL電壓啓動時會有 多種現象發生。巨分子電泳、歐姆傳導及小離子遷移之電 容性效應會同時發生》 寡核苷酸(探針及擴增子)之電泳會使得探針-目標 物雜合體之偵測變得複雜,因爲DNA帶有很強的負電荷且 被吸附在陰極860上。此種活動之時間尺度典型地很短( -99- 201209406 以毫秒尺度來論)。即使電壓強度只有中等強度(約1 v )電泳效應還是很強,因爲陰極860及陽極870間分隔距離 很小。 在某些LOC裝置之具體例中電泳會增進ECL發射862且 降解其它發射。此現象體現在增加或縮減電極間距時電泳 效應會相隨地增加或減少。於光二極體184上方之陰極860 及陽極8 70之指狀交合代表此等間距最小之極端例。此等 配置即使碳電極860及870間沒有共反應物8 66也可以產生 ECL 〇 歐姆加熱(D C電流) 把ECL電壓維持在約2.2 V所需之電流可參考第79圖示 意顯示之ECL電池874來決定。 流經室之DC電流係由兩種阻抗來決定:電極860及870 與溶液主體間之界面電阻Ri,及衍生自主體溶液導電度及 傳導路徑幾何性質之溶液電阻Rs。對於離子強度與該LOC 裝置之條件相關之溶液而言,室電阻係由電極8 60及8 70之 界面電阻來主宰而Rs可被忽略。 界面電阻之影響係透過度量於該LOC裝置之電極幾何 性質下通過類似溶液之巨視電流量來估計。 所採用的是使用鈾電極、通過類似溶液之電流密度之 巨視測量法。與採用最差實例(高電流)方式一致地,測 試溶液中整體離子強度及ECL反應物濃度係高於LOC裝置 所使用者。陰極面積小於陽極面積,且由具有環幾何性質 -100- 201209406 之相當面積之陽極來圍繞。對於直徑2 mm圓形所組成之陰 極而言,測得的電流爲1 · 1 mA,可產生3 5 0 A/m2之電流密 度。 於加熱模式中,該電極面積爲第79圖示意顯示之正方 形環狀幾何性質。陰極爲寬1 μηι及厚1 μηι之環。表面積爲 1 9 6平方微米且因而計算電流1 = 69 ιιΑ。During pulsed activation of electrodes 860 and 870, the intensity of the ECL emission 862 (see Figure 94) will generally be higher than the intensity of the emission 862 when the electrode is activated in a steady state. Accordingly, the activation signals of the electrodes 860 and 870 are pulse-width modulated (PWM) by the CMOS circuit 86. Reagent Recycling and Species Lifetime The Ru complex is not consumed in the Ru ( bpy ) 32 + /TPrA ECL system, so the intensity of the emitted 8 62 does not decrease with subsequent reaction cycles. The rate limiting step has a lifetime of about 0.2 milliseconds and can provide a total reaction cycle time of about 1 millisecond. Electrophoretic effects and other limitations Given the complexity of the solution in the hybrid chamber, multiple phenomena can occur when the ECL voltage is activated. The capacitive effects of macromolecular electrophoresis, ohmic conduction, and small ion migration occur simultaneously. Electrophoresis of oligonucleotides (probes and amplicons) complicates the detection of probe-target hybrids because of DNA. It has a strong negative charge and is adsorbed on the cathode 860. The time scale for such activities is typically very short (-99-201209406 on a millisecond scale). Even if the voltage intensity is only moderately strong (about 1 v), the electrophoretic effect is still strong because the separation distance between the cathode 860 and the anode 870 is small. Electrophoresis enhances ECL emission 862 and degrades other emissions in certain instances of certain LOC devices. This phenomenon is manifested in the fact that the electrophoretic effect increases or decreases concomitantly when the electrode spacing is increased or decreased. The finger-like intersection of the cathode 860 and the anode 8 70 above the photodiode 184 represents an extreme example of such a minimum spacing. These configurations can produce ECL 〇 ohmic heating (DC current) even if there is no co-reactant 8 66 between carbon electrodes 860 and 870. The current required to maintain the ECL voltage at about 2.2 V can be referred to the ECL battery shown schematically in Fig. 79. 874 to decide. The DC current flowing through the chamber is determined by two impedances: the interfacial resistance Ri between the electrodes 860 and 870 and the body of the solution, and the solution resistance Rs derived from the conductivity of the host solution and the geometry of the conduction path. For solutions in which the ionic strength is related to the conditions of the LOC device, the chamber resistance is dominated by the interfacial resistance of electrodes 8 60 and 870 and Rs can be ignored. The effect of interface resistance is estimated by measuring the amount of giant current in a similar solution under the electrode geometry of the LOC device. A giant spectroscopy method using a uranium electrode and passing a current density of a similar solution is used. Consistent with the worst case (high current) approach, the overall ionic strength and ECL reactant concentration in the test solution is higher than that of the LOC device. The cathode area is smaller than the anode area and is surrounded by an anode having a substantial area of the ring geometry -100 - 201209406. For a cathode consisting of a 2 mm diameter circle, the measured current is 1 · 1 mA, which produces a current density of 305 A/m2. In the heating mode, the electrode area is the square annular geometry shown schematically in Figure 79. The cathode is a ring having a width of 1 μηι and a thickness of 1 μηι. The surface area is 196 square microns and thus the current is calculated as 1 = 69 ιιΑ.

加熱(功率=V2/R )係以最差實例爲模型來設計,於 該最差例中所有的熱都用來提高室內水的溫度。如果不讓 LOC裝置主體排除熱,那麼此現象會以5.8°C/s的速率加熱 室內容物且有2.2 V之電壓差。 以約20°C加熱諸室會使大部份的雜合探針變性。對於 用於突變偵測之高特異性探針而言,最好進一步地把加熱 限制在4°C或更低。以此種程度之溫度穩定性,使用適當 的設計序列可以達到單鹼基錯誤配對-靈敏性雜合。此舉 可允許偵測突變及單核苷酸多形性層次之等位基因差異。 因此該DC電流會被施加到電極8 60及870爲時0.69秒以把加 熱限制在4°C。 通過室之約69 ιιΑ之電流係難以當作微莫耳濃度之ECL 物種之法拉第電流來容納。故而,電極860及870之低功 率-循環脈衝(l〇w-duty-cycle pulsing )可進一步地減少加 熱(降至1°C或更少)同時維持足夠的ECL發射862,並不 會引入與試劑耗竭相關之混亂。於其它具體例中,電流會 降至〇. 1 nA,其除去電極以脈衝活化之需求。即使電流低 如0.1 nA,ECL發射8 62仍具發光團-限制性。 -101 - 201209406 室及電極幾何性質 使ECL發光及光感測器間達最佳光學耦合 產生ECL發光最直接的化學前驅物係在離工作電極幾 奈米範圍內產生。再次參考第78圖’光發射(受激物種 868) —般係在離該位置數微米或更短的距離內發生。因 而緊鄰工作電極(陰極860 )之體積可被該光感測器44對 應之光二極體184感受到。據此,電極860及870直接緊鄰 著光感測器44內對應之光二極體184之活性表面區域185。 進一步地,該陰極860會被塑造成可增加被光二極體184“ 感測到”之側邊長度之形狀。此目的在於令可被襯底之光 二極體184偵測到之受激物種86 8的體積達到最大。 第77圖示意地顯示該陰極860之3個具體例。梳狀結構 之陰極878具有平行之突指880可與陽極870之突指指狀交 合之優點。該指狀交合之組態示於第84圖,於第90及92圖 爲LOC布局之部份視圖。該指狀交合之組態提供較窄(1 至2微米)之均勻介電隙(dielectric gap) 8 76 (見於第78 圖)且該指狀交合之梳狀結構對於蝕刻製法來說相對地簡 單。如以上所討論般,電極860及8 70間相對較窄之介電隙 876可排除某些溶液8 72對共反應物之需求,因爲受激物種 8 6 8會在陰極及陽極間擴散。排除掉對共反應物之需求可 除去共反應物對不同檢定化學性質可能的化學性衝擊且提 供更廣範圍之可能檢定方案。 再次參考第77圖,陰極860之某些具體例具有蜿蜒組 -102- 201209406 態8 82。爲了在邊長大時仍能保有耐受製造錯誤之能力, 很省事地就是做成寬的矩形曲徑8 84。Heating (power = V2/R) is designed with the worst case model in which all of the heat is used to increase the temperature of the water in the room. If the LOC device body is not allowed to remove heat, this phenomenon heats the chamber contents at a rate of 5.8 °C/s and has a voltage difference of 2.2 V. Heating the chambers at about 20 °C denatures most of the hybrid probes. For highly specific probes for mutation detection, it is preferable to further limit the heating to 4 ° C or lower. With this degree of temperature stability, single base mismatching-sensitivity hybridization can be achieved using appropriate design sequences. This allows for the detection of allelic differences in mutations and single nucleotide polymorphism levels. Therefore, the DC current is applied to the electrodes 8 60 and 870 for 0.69 seconds to limit the heating to 4 °C. A current of about 69 ιιη through the chamber is difficult to accommodate as a Faraday current of the EML species of micromolar concentration. Therefore, the low power-cycle pulsing of the electrodes 860 and 870 can further reduce the heating (down to 1 ° C or less) while maintaining sufficient ECL emission 862, and will not introduce Disorders related to reagent depletion. In other embodiments, the current will drop to 〇 1 nA, which removes the need for the electrode to be pulse activated. Even if the current is as low as 0.1 nA, the ECL emission 8 62 still has a luminophore-restricted. -101 - 201209406 Chamber and Electrode Geometry Optimum optical coupling between ECL luminescence and photosensor The most direct chemical precursor for ECL luminescence is produced within a few nanometers of the working electrode. Referring again to Figure 78, light emission (excited species 868) typically occurs within a few microns or less of the location. Therefore, the volume adjacent to the working electrode (cathode 860) can be felt by the photodiode 184 corresponding to the photo sensor 44. Accordingly, electrodes 860 and 870 are directly adjacent to the active surface region 185 of the corresponding photodiode 184 within photosensor 44. Further, the cathode 860 is shaped to increase the shape of the length of the side "sensed" by the photodiode 184. The purpose is to maximize the volume of the excited species 86 8 that can be detected by the photodiode 184 of the substrate. Fig. 77 schematically shows three specific examples of the cathode 860. The cathode 878 of the comb structure has the advantage that the parallel fingers 880 can be interdigitated with the fingers of the anode 870. The configuration of the finger joint is shown in Fig. 84, and the 90th and 92th views are partial views of the LOC layout. The configuration of the finger intersection provides a narrow (1 to 2 micron) uniform dielectric gap 8 76 (see Figure 78) and the finger-like comb structure is relatively simple for etching processes . As discussed above, the relatively narrow dielectric gap 876 between electrodes 860 and 870 can eliminate the need for co-reactants of certain solutions 876 because the excited species 864 will diffuse between the cathode and the anode. Eliminating the need for co-reactants can remove the possible chemical impact of the co-reactants on different assay chemistries and provide a wider range of possible assays. Referring again to Fig. 77, some specific examples of the cathode 860 have a 蜿蜒 group -102 - 201209406 state 8 82. In order to maintain the ability to withstand manufacturing errors when the side grows up, it is easy to make a wide rectangular path 8 84.

若有需要或者想要,陰極可具有更複雜的組態8 8 6。 例如’其可具有細圓齒區888,分支結構890或這兩者之組 合。倂有分支結構890之LOC設計之部份視圖示於第1 15及 11 6圖。更複雜的組態例如886可提供長側邊,因爲要把緊 密相間之對向陽極圖型化更爲困難,所以此組態最適合採 用共反應物之溶液化學。 電極厚度 大致上,ECL電池涉及從外面看起來呈平坦狀之工作 電極。同樣地,傳統的金屬層之微製造技術易形成金屬厚 度約1微米之平坦結構。如同稍早指出且示意地顯示於第 77、80及81圖地,增加側邊長度可加強ECL發射及光二極 體184間的耦合。 進一步提高光二極體184對發射光線8 62 (見第94圖) 之收集效率之第二種策略爲增加陰極8 60之厚度。此示意 地示於第78圖。緊鄰工作電極壁之參與體積892之部份爲 最有效率地耦合到光二極體184之區域。故而,對於一既 定寬度之工作電極860而言,發射光線862之總收集效率可 藉著增加該等電極之厚度來提高。再者,由於不需要高電 流攜帶電容,所以只要實用上可行那麼工作電極860之寬 度可予以縮小。電極860及8 70之厚度不可以無限制地增加 。應注意該特徵構件及電極之分離尺度大約在1微米之等 -103- 201209406 級,且液體充塡對寬度比深度更大之間隙不利,而電極之 最佳實用厚度爲0.25微米到2微米。 電極間距 電極860及870間之間距對於LOC裝置(尤其是電極爲 指狀交合之具體例)內信號之品質很重要。於陰極860呈 分支結構之具體例如第7 7及8 1圖所示,相鄰元件間之間距 也很重要。ECL發射效率及發射光線之收集效率兩者皆應 達到最大。 電極間距在1微米或更小之層級對ECL發射之發生最有 利。當ECL係在沒有共反應物之存在下進行時,間距小特 別有利。該間距相當於發射光線862之波長之事實的重要 性有限。故而,在諸多具體例中(其放射光線8 62 (見第 94圖)之測量係在無需光線在電極860及8 70間傳遞之位置 時),其目標通常爲讓電極間距在實用允許範圍內儘量地 小。然而,於放射光線862必需在電極8 60及8 70間傳遞之 具體例中,除了考慮ECL發射過程以外,還要考慮光的波 動性質。 來自Ru(bpy) 32+之ECL的發射光線862之波長爲約 620 nm,且故而於水中爲460 nm( 0.46微米)。於光二極 體184及ECL受激物種868係位於該電極結構之不同側且該 電極結構爲金屬質之具體例中,該發射光線862必需通過 金屬結構之元件間的間隙。如果該間隙相當於該光線之波 長,那麼繞射通常會降低到達光二極體1 84之傳播光線之 -104- 201209406 強度。然而,於該發射光線862係以大角度入射到該間隙 時,衰減模態耦合(evanescent mode couPling)可被用來 改善收集信號之強度。LOC裝置採用兩個措施以增強光二 極體184及發射光線862間的耦合效能。 首先,金屬元件間的間隔不可小於發射光線於水之波 長,即約0.4微米。再結合與指狀交合電極間之微小間距 相關之其它觀察値時,則表明電極間距之最佳範圍爲〇·4The cathode can have a more complex configuration 8 8 6 if needed or desired. For example, it may have a fine scalloped area 888, a branched structure 890, or a combination of the two. A partial view of the LOC design with branch structure 890 is shown in Figures 1 15 and 11 6 . More complex configurations such as the 886 provide long sides because it is more difficult to pattern the opposite phase of the dense phase, so this configuration is best suited for solution chemistry using co-reactants. Electrode Thickness In general, an ECL battery involves a working electrode that appears flat from the outside. Similarly, conventional metal layer microfabrication techniques tend to form flat structures having a metal thickness of about 1 micron. As indicated earlier and schematically shown in Figures 77, 80 and 81, increasing the length of the sides enhances the coupling between the ECL emission and the photodiode 184. A second strategy to further increase the collection efficiency of the photodiode 184 to the emitted light 8 62 (see Figure 94) is to increase the thickness of the cathode 860. This is shown schematically in Figure 78. The portion of the participating volume 892 adjacent the working electrode wall is the region most efficiently coupled to the photodiode 184. Thus, for a working electrode 860 of a given width, the overall collection efficiency of the emitted light 862 can be increased by increasing the thickness of the electrodes. Moreover, since high current carrying capacitance is not required, the width of the working electrode 860 can be reduced as long as it is practical. The thickness of the electrodes 860 and 870 may not be increased without limitation. It should be noted that the separation dimension of the feature member and the electrode is about -10 - 201209406, and the liquid charge is disadvantageous for the gap having a larger width than the depth, and the optimum practical thickness of the electrode is 0.25 micrometer to 2 micrometer. Electrode Spacing The distance between the electrodes 860 and 870 is important for the quality of the signal in the LOC device (especially the specific example where the electrodes are finger-to-finger). The specific structure of the cathode 860 as a branched structure, for example, as shown in Figs. 7 and 8 1 is also important. Both the ECL emission efficiency and the collection efficiency of the emitted light should be maximized. The level of electrode spacing at 1 micron or less is most beneficial for the occurrence of ECL emissions. Smaller spacing is particularly advantageous when the ECL system is carried out in the absence of a co-reactant. The fact that this spacing corresponds to the wavelength of the emitted light 862 is of limited importance. Therefore, in many specific examples (the measurement of the radiation 8 62 (see Fig. 94) is where no light is transmitted between the electrodes 860 and 870), the target is usually to make the electrode spacing within practical limits. Try to be as small as possible. However, in the specific case where the radiation 862 must be transmitted between the electrodes 8 60 and 8 70, in addition to considering the ECL emission process, the pulsation property of the light is also considered. The emitted light 862 from the ECL of Ru(bpy) 32+ has a wavelength of about 620 nm and is therefore 460 nm (0.46 microns) in water. In the case where the photodiode 184 and the ECL excited species 868 are located on different sides of the electrode structure and the electrode structure is metallic, the emitted light 862 must pass through the gap between the elements of the metal structure. If the gap is equivalent to the wavelength of the light, the diffraction typically reduces the intensity of the -104 - 201209406 of the propagating light reaching the photodiode 1 84. However, when the emitted light 862 is incident on the gap at a large angle, an evanescent mode couPling can be used to improve the intensity of the collected signal. The LOC device employs two measures to enhance the coupling efficiency between the photodiode 184 and the emitted light 862. First, the spacing between the metal components is not less than the wavelength of the emitted light in water, i.e., about 0.4 microns. When combined with other observations associated with the small spacing between the finger-like electrodes, the optimum range of electrode spacing is 〇·4

到2微米。 其次,令元件到光二極體1 8 4間之間隙距離最小化。 於在此所述之LOC裝置之具體例中’此一要求指出電極 860及870與光二極體184間之膜層總厚度宜爲1微米或更小 。於諸電極與光二極體間有多個膜層之具體例中’將其厚 度安排成四分之一波長或四分之三波長還具有抑制發射光 線8 62之反射作用的額外好處。 電極模式 第78圖爲雜合室中電極860及870之示意性部份橫切面 圖。佈滿受激物種868之陰極860之側周邊周圍的體積有時 被稱爲參與體積8 92。在陰極860上方之遮斷區域8 94可以 忽略,因爲其對光二極體184之光耦合是微不足道的。 一種決定某一特殊電極組態是否能對襯底之光二極體 184提供ECL發射862基礎之技術將參考第79、80及81圖說 明如下。 第79圖爲一種環狀幾何結構,其中陰極860圍繞著光 -105- 201209406 二極體184之周緣。於第80圖中,陰極860位於光 184邊緣內。第81圖顯示一種更複雜的組態,其中 8 6 0具有一系列平行突指8 8 〇以增加其側緣之長度。 對於以上所有之組態,模式計算如下。 就溶液之參與體積892 VECL而言,發射器之有 N e m 爲· Nem = N|um.Tp/TECL = VECLCLNA-tp/TECL (6) 其中發光團之參與數目Nlum= VeclClNa,τΕ EC L過程之壽命,CL爲發光體濃度,τρ爲脈衝持續 及Να爲亞佛加厥數。 等向發射光子之數目^^^^爲: Nphot = <l>ECL Nem (7) 其中<))ecl爲ECL效率,其定義成單一發光團之 應發射之光子平均數目。 而後,來自光二極體之電子信號計數S爲 S_Nph〇t.<|)〇<|)q, (8) 其中爲光耦合效率(光二極體184吸收之光 )及Φς爲光二極體量子效率。故而信號爲: S = VECLCLNA^EMq (9) TECL 對於第79及80圖之電極組態而言,φ。爲: (|)。= ( 2 5% :導向光二極體184之光子量) X ( 10%:未反射之光子量) 即對於第79及80圖顯示之組態而言,Φ。= 2.5% 二極體 該陰極 效數目 CL爲該 時間, ECL反 子數目 -106- 201209406 對於第81圖之電極組態而言,有50%光子朝向光二極 體184之方向發射,不過爲角度之函數之吸收效率是不變 的,因此 φ。= ( 50% :導向光二極體之光子量) X ( 10%:未反射之光子量) 即對第8 1圖之組態而言,φ。= 5%。To 2 microns. Secondly, the gap distance between the components and the photodiodes 1 8 4 is minimized. In the specific example of the LOC device described herein, this requirement indicates that the total thickness of the film between the electrodes 860 and 870 and the photodiode 184 is preferably 1 μm or less. Arranging its thickness to a quarter-wavelength or three-quarters of a wavelength in a specific example in which a plurality of layers are formed between the electrodes and the photodiode has an additional advantage of suppressing the reflection of the emitted light 862. Electrode Mode Figure 78 is a schematic cross-sectional view of a schematic portion of electrodes 860 and 870 in a hybrid chamber. The volume around the side of the cathode 860 that is filled with the excited species 868 is sometimes referred to as the participating volume of 8 92. The occlusion region 8 94 above the cathode 860 can be ignored because its optical coupling to the photodiode 184 is negligible. A technique for determining whether a particular electrode configuration can provide ECL emission 862 to the photodiode 184 of the substrate will be described below with reference to Figures 79, 80 and 81. Figure 79 is a toroidal geometry in which the cathode 860 surrounds the periphery of the light -105 - 201209406 diode 184. In Fig. 80, cathode 860 is located within the edge of light 184. Figure 81 shows a more complex configuration in which 860 has a series of parallel fingers 8 8 〇 to increase the length of its side edges. For all of the above configurations, the mode is calculated as follows. For the volume of the solution 892 VECL, the emitter has a N em of · Nem = N|um.Tp / TECL = VECLCLNA-tp / TECL (6) where the number of participants of the luminophore Nlum = VeclClNa, τ Ε EC L process The lifetime, CL is the concentration of the illuminant, τρ is the pulse duration and Να is the Yafot number. The number of isotropically emitted photons ^^^^ is: Nphot = <l> ECL Nem (7) where <)) ecl is the ECL efficiency, which is defined as the average number of photons that should be emitted by a single luminophore. Then, the electronic signal count S from the photodiode is S_Nph〇t. <|) 〇 <|)q, (8) where is the optical coupling efficiency (light absorbed by the photodiode 184) and Φ ς is the photodiode Quantum efficiency. Therefore, the signal is: S = VECLCLNA^EMq (9) TECL For the electrode configuration of Figures 79 and 80, φ. For: (|). = ( 2 5% : photon amount of guided photodiode 184) X (10%: unreflected photon amount) That is, for the configuration shown in Figures 79 and 80, Φ. = 2.5% diode The number of cathode effects CL is the time, the number of ECL counters -106- 201209406 For the electrode configuration of Fig. 81, 50% of the photons are emitted towards the direction of the photodiode 184, but at an angle The absorption efficiency of the function is constant, so φ. = ( 50% : photon amount of the guided photodiode) X (10%: unreflected photon amount) That is, for the configuration of Fig. 81, φ. = 5%.

參與體積8 92視該電極組態而定,且其詳細說明見於 對應章節中。 諸項計算的輸入參數列示於下: 表 5 : 輸入參數The participating volume 8 92 depends on the electrode configuration and its detailed description is found in the corresponding chapter. The input parameters for the calculations are listed below: Table 5: Input Parameters

參數 數値 評論 發光團濃度CL 2.89 μΜ 先前計算之探針濃度 ECL循環期(壽命)τΕα 1 ms 發光團諸反應步驟之合倂壽命 邊界層深度D 0.5 μιη 參與ECL之溶液之有效體積 (包括擴散及電泳) 電流施加持續時間τρ 0.69 s 選擇把歐姆加熱限制在4°C 洳先前所述) 室X尺寸 28 μιη 室Υ尺寸 28 μπι 室高度Ζ 8 μιη 光二極體X尺寸 16 μιη 光二極體Υ尺寸 16 μιη 電極厚度 (即,暴露緣高度) 1 μηι 電極層最小寬度及間隙 1 μπι 製程臨界尺寸 電極界面電流密度 350 A/m2 0於歐姆加熱 溶液體積電阻 0.5 Ω. m 用於歐姆加熱 施加之電壓差(工作電極-相反電極) 2.2 V -107- 201209406 光二極體周圍之環幾何結構 參考第79圖,陰極860爲環繞光二極體184周圍之環。 於此組態中,該參與體積892爲: VECL = 4χ[(電極壁旁的膜層) + (電極壁上方之四分之一圓柱)] 計算結果: 從0.5 μιη邊界層產生之光子數:3.1Μ05 光二極體之電子計數: 2.3χ103 此信號可輕易地被LOC裝置光感測器44之襯底光二極 體184偵測到。 增加周緣長度之附加突指 參考第81圖,於整個陰極8 60加上平行突指880 »只有 圖式中之水平緣提供參與體積892,以避免重覆計數垂直 緣。因而該參與體積892爲: VECL=(8x2) X [(電極壁旁的膜層)+ (電極壁上方 之四分之一圓柱)] 第8 1圖組態計算之結果: 從0.5 μιη邊界層產生之光子數:1.1Μ06 光二極體184之電子計數: 8.〇χ1〇3 此信號可輕易地以光二極體1 84測得。 -108- 201209406 完全覆蓋Number of parameters 値 Comments Luminous concentration CL 2.89 μΜ Previously calculated probe concentration ECL cycle (life) τΕα 1 ms Luminous reaction steps of the luminescent group boundary depth D 0.5 μιη Effective volume of solution involved in ECL (including diffusion And electrophoresis) Current application duration τρ 0.69 s Select to limit ohmic heating to 4 °C 洳 previously described) Chamber X size 28 μιη Room size 28 μπι Room height Ζ 8 μιη Light diode X size 16 μιη Light diode Υ Size 16 μη electrode thickness (ie, exposed edge height) 1 μηι Electrode layer minimum width and gap 1 μπι Process critical dimension electrode interface current density 350 A/m2 0 in ohmic heating solution volume resistance 0.5 Ω. m for ohmic heating application Voltage Difference (Working Electrode - Counter Electrode) 2.2 V -107 - 201209406 Ring Geometry Around the Light Diode Referring to Figure 79, the cathode 860 is a ring around the photodiode 184. In this configuration, the participating volume 892 is: VECL = 4χ [(film layer next to the electrode wall) + (quarter cylinder above the electrode wall)] Calculation result: Number of photons generated from the 0.5 μιη boundary layer: 3.1Μ05 Electronic Diode Electron Count: 2.3χ103 This signal can be easily detected by the substrate photodiode 184 of the LOC device photosensor 44. Additional Fingers to Increase the Length of the Circumference Referring to Figure 81, the parallel protrusions 880 are added throughout the cathode 8 60. » Only the horizontal edges in the figure provide the participating volume 892 to avoid repeating the counting of the vertical edges. Thus the participating volume 892 is: VECL=(8x2) X [(membrane layer beside the electrode wall) + (quarter cylinder above the electrode wall)] Figure 8 Configuration result calculated: From 0.5 μιη boundary layer Number of photons generated: 1.1Μ06 Electron count of photodiode 184: 8.〇χ1〇3 This signal can be easily measured with photodiode 1 84. -108- 201209406 Full coverage

第82及83圖顯示之組態可當作最大表面區域耦合之極 限例。在實務上,電極表面區域與光二極體184之活性表 面區域185間有90%或更佳耦合就已達到近乎最佳結果,即 使光二極體活性表面區域185對電極表面區域只有50%耦合 也能提供完全覆蓋組態之大部份優點。完全覆蓋可由兩具 體例來達成:第一具體例,如第82圖示意顯示地,係採用 一透明陰極860,該陰極係置於與該光二極體184之平面平 行的平面上且有一面積區域與該光二極體184之面積區域 匹配,將該陰極緊鄰該光二極體184安置,使得發射光線 862可通過該陰極到達光二極體上。於第83圖示意顯示之 第二具體例中,再次地陰極860與該光二極體區域平行且 該陰極與該光二極體區域配準(registered with the photodiode area),不過有溶液872塡滿陰極860及光二極 體1 84間之空洞之處。爲了建立完全覆蓋組態之信號模式 ,陰極被假設爲該光二極體184上方之一層完整層,其有 —半光子被導向光二極體184 (吸收效率仍爲10%)。 從0.5 μιη邊界層產生之光子量:7.7 MO5 光二極體之電子計數: 1.2Χ104 可使用界面活性劑及把探針固定在陰極上來改善該信 號及檢定而超越以上模式。 ECL探針及光二極體間之最大間距 -109- 201209406The configurations shown in Figures 82 and 83 can be considered as extreme examples of maximum surface area coupling. In practice, a 90% or better coupling between the electrode surface area and the active surface area 185 of the photodiode 184 has achieved near-optimal results, even though the photodiode active surface area 185 is only 50% coupled to the electrode surface area. It offers most of the advantages of a full coverage configuration. The complete coverage can be achieved by two specific examples: the first specific example, as schematically shown in Fig. 82, uses a transparent cathode 860 which is placed on a plane parallel to the plane of the photodiode 184 and has an area. The region is matched to the area of the photodiode 184, and the cathode is disposed adjacent to the photodiode 184 such that the emitted light 862 can pass through the cathode to the photodiode. In a second embodiment schematically shown in Fig. 83, again, the cathode 860 is parallel to the photodiode region and the cathode is registered with the photodiode region, but the solution 872 is full. The cavity between the cathode 860 and the photodiode 1 84. In order to establish a signal pattern that is fully covered, the cathode is assumed to be a complete layer above the photodiode 184, with half-photons being directed to the photodiode 184 (absorption efficiency is still 10%). The amount of photons generated from the 0.5 μιη boundary layer: 7.7 The electron count of the MO5 photodiode: 1.2Χ104 The above mode can be improved by using a surfactant and fixing the probe to the cathode to improve the signal and verification. Maximum spacing between ECL probes and photodiodes -109- 201209406

晶片上之雜合偵測可避免經由共焦顯微鏡來偵測之需 求(見發明背景)。此舉悖離傳統偵測技術乃爲本系統節 省時間及成本之重要因素。傳統偵測需要使用透鏡或彎曲 鏡面來光學成像。藉著採用非光學成像,該診斷系統可避 免對複雜及龐大光學元件串之需求。把光二極體緊密地置 於探針旁具有提供極高收集效率之優點:當探針及光二極 體間之材料厚度係在1微米之層級時,該發射光線之收集 角度會高達174°。此角度係考慮從最接近該光二極體(其 具有與該雜合室表面平行之平坦活性表面)之雜合室表面 的形心處之探針發射出之光線來計算。光線可被光二極體 吸收之發射角圓錐係定義成以發射探針爲頂角且感測器角 落爲其平坦面之周界。對於16微米χ16微米之感測器而言 ’此圓錐之頂角角度爲170°;於極限例中(其中光二極體 擴展開來,使其面積能匹配28微米χ26·5微米雜合室之面 積),該頂角角度爲174°»可以輕易地令室表面與光二極 體活性表面間有1微米或更小的間距。 採用非光學成像方案需要光二極體184與雜合室非常 接近以收集足夠的螢光發射之光子。光二極體及探針間最 大間距可用以下方式決定。 使用一钌螯合發光團及第8 1圖之電極組態,我們計算 出個別雜合室之16微米X16微米感測器吸收了 27,000個光 子,假設感測器量子效率爲30%則可產生8000個電子。在 進行此計算時,我們假設雜合室之集光區具有與感測區相 同之底面積,全部的雜合光子中有四分之一的角度朝向感 -110- 201209406 測器,未從感測器-介電界面散射掉之光子的比率保守地 估計値爲1 〇%。亦即,該光學系統之光線蒐集效率 = 0.025。 更精確地我們可以寫出也=[(雜合室集光區之底面 積)/ (光偵測器面積)][Ω /4π][10%被吸收量],其中Ω = 雜合室基底代表點上之光偵測器對向之立體角。對於正四 角錐幾何來說:Hybrid detection on the wafer avoids the need for detection via confocal microscopy (see background of the invention). This is an important factor in saving time and cost for the system. Traditional detection requires the use of a lens or curved mirror for optical imaging. By using non-optical imaging, the diagnostic system avoids the need for complex and bulky optical components. The close placement of the photodiode near the probe provides the advantage of providing extremely high collection efficiency: when the material thickness between the probe and the photodiode is at the 1 micron level, the emitted light can be collected at an angle of up to 174°. This angle is calculated by considering the light emitted from the probe at the centroid of the surface of the hybrid chamber closest to the photodiode having a flat active surface parallel to the surface of the hybrid chamber. The emission angle cone that the light can be absorbed by the photodiode is defined as the perimeter of the emission probe and the sensor angle falls to the perimeter of its flat surface. For a 16 micron χ 16 micron sensor, the apex angle of the cone is 170°; in the extreme case (where the photodiode is expanded to match the 28 micron χ26·5 micron hybrid chamber) The area angle, which is 174°», can easily have a spacing of 1 micron or less between the surface of the chamber and the active surface of the photodiode. The use of a non-optical imaging scheme requires that the photodiode 184 be in close proximity to the hybrid chamber to collect sufficient photons of the fluorescent emission. The maximum spacing between the photodiode and the probe can be determined in the following manner. Using a chelating luminescence group and the electrode configuration of Figure 81, we calculated that a 16 micron X16 micron sensor in a single hybrid chamber absorbed 27,000 photons, assuming a sensor quantum efficiency of 30%. 8,000 electronic. In doing this calculation, we assume that the collection area of the hybrid chamber has the same bottom area as the sensing area, and that one quarter of all the hybrid photons have an angular orientation of -110-201209406. The ratio of photons scattered by the detector-dielectric interface is conservatively estimated to be 1 〇%. That is, the light collection efficiency of the optical system is 0.025. More precisely we can write also = [(the bottom area of the hybrid chamber light collection area) / (photodetector area)] [Ω / 4π] [10% absorbed amount], where Ω = hybrid chamber substrate Represents the solid angle of the light detector on the point. For the regular pyramid geometry:

Ω = 4arcsin ( a2/ ( 4d〇2 + a2)),其中 d〇 =該室與光二 極體間之距離,且a爲光二極體之尺寸》 各雜合室可釋出1. 1 X 1 〇6光子。所選之光偵測器之偵測 閾値爲17個光子,當dQ値大於感測器大小之10倍時(即, 基本上爲正入射時)感測器表面未反射之光子的比率可從 10%增加到90%。故而,所需之最小光學效率爲: φ0 - 17/ ( 1.1χ106χ〇.9) - 1.72xl0's 該雜合室180之發光區的底面積爲29微米χ19.75微米Ω = 4arcsin ( a2/ ( 4d 〇 2 + a2)), where d 〇 = the distance between the chamber and the photodiode, and a is the size of the photodiode. 1. The hybrid chamber can release 1. 1 X 1 〇 6 photons. The detection threshold of the selected photodetector is 17 photons. When dQ値 is greater than 10 times the size of the sensor (ie, substantially normal incidence), the ratio of photons that are not reflected by the sensor surface can be 10% increased to 90%. Therefore, the minimum optical efficiency required is: φ0 - 17/ (1.1χ106χ〇.9) - 1.72xl0's The bottom area of the luminescent region of the hybrid chamber 180 is 29 microns χ 19.75 microns

求解d〇,我們得到雜合室底面及光偵測器間的最大極 限距離dQ = 1 600微米。於此限制內,以上定義之收集圓 錐角度只有0.8°。應注意此分析忽略折射的些微影響。 LOC變化型 在此所述及以上完全顯示之LOC裝置301只是許多可 能之LOC裝置設計的其中之一而已。使用上述不同功能區 進行不同組合之LOC裝置變化將從試樣置入到偵測一路描 -111 - 201209406 述下來及/或以示意流程圖來顯示以展現一些可能的組合 。在適當的情況下’該流程圖會被區分成試樣置入及製備 階段2 8 8、萃取階段290、培育階段291、擴增階段292、雜 合前階段293及偵測階段294。對於以上簡述或僅以示意形 式表示之所有LOC變化型而言’爲求簡潔明瞭’並沒有顯 示所有隨同的完整佈局。同樣地爲求清楚起見’並沒有顯 示較小的功能性單元例如液體感測器及溫度感測器’不過 應理解於各個以下LOC裝置設計中此等單元已被併入適當 的位置。 具有透析裝置、LOC裝置及互連性頂蓋之微流體裝置 一具有透析裝置784、LOC裝置785及互連性頂蓋51之 微流體裝置78 3能提供更好的模組性及更高的靈敏度。相 對於組合所有功能(例如第89圖之LOC變化型729 )之LOC 設計,把透析功能從LOC裝置分離出來可容許開發出不同 的特製化透析裝置7 84以選取不同目標物。此等特製化透 析裝置784與一LOC裝置7 85及一互連性頂蓋51組合而構成 完整的檢定系統。再者,還可開發出最適合不同檢定策略 之不同LOC裝置78 5且與不同透析裝置7 8 4協作,如此一來 可提供極有效及彈性的方法來開發系統。也可以發展無透 析裝置之LOC裝置以供特殊應用,或者組合多個LOC裝置 785 〇 該微流體裝置783之各個表面-微機電晶片構造可採用 最佳及最具成本效益之製造方法來製備。例如,透析區 -112- 201209406 7 84不需CMOS電路及可用較便宜材料及較少製程步驟來製 造。進一步地,較大及最適化之透析裝置7 84可提供檢定 系統較佳靈敏度、信號對雜訊比及動態範圍。Solving d〇, we get the maximum distance dQ = 1 600 μm between the bottom of the hybrid chamber and the photodetector. Within this limit, the collection cone angle defined above is only 0.8°. It should be noted that this analysis ignores the slight effects of refraction. LOC Variability The LOC device 301, which is fully described herein and above, is one of many possible LOC device designs. LOC device changes using different combinations of the different functional zones described above will be described by placing the sample into the detection path -111 - 201209406 and/or displaying it in a schematic flow chart to show some possible combinations. Where appropriate, the flow chart will be divided into sample placement and preparation stage 28 8 , extraction stage 290, incubation stage 291, amplification stage 292, pre-hybrid stage 293, and detection stage 294. All of the LOC variations described above or simply in schematic form are 'simplified and straightforward' and do not show all of the accompanying complete layout. Also for the sake of clarity' does not show smaller functional units such as liquid sensors and temperature sensors' but it should be understood that such units have been incorporated into the appropriate locations in each of the following LOC device designs. Microfluidic device with dialysis device, LOC device and interconnected cap - Microfluidic device 78 3 with dialysis device 784, LOC device 785 and interconnected cap 51 can provide better modularity and higher Sensitivity. Separating the dialysis function from the LOC device relative to the LOC design that combines all functions (e.g., LOC Variant 729 in Figure 89) allows for the development of different specialized dialysis devices 7 84 to select different targets. These tailored dialysis devices 784 are combined with a LOC device 785 and an interconnecting cap 51 to form a complete assay system. Furthermore, different LOC devices 78 5 that are best suited for different verification strategies can be developed and cooperated with different dialysis devices 784, thus providing an extremely efficient and flexible method to develop the system. It is also possible to develop a LOC device without a dialysis device for a particular application, or to combine multiple LOC devices 785. The various surface-microelectromechanical wafer configurations of the microfluidic device 783 can be prepared using the best and most cost effective manufacturing method. For example, the dialysis zone -112-201209406 7 84 does not require CMOS circuitry and can be fabricated with less expensive materials and fewer process steps. Further, the larger and optimized dialysis device 7 84 provides better sensitivity, signal to noise ratio, and dynamic range of the assay system.

如第102圖圖解顯示地,該微流體裝置783可利用12個 各別的擴增室(Ϊ 12.1至112.12)來製備試樣288,然後萃 取290,培育291、擴增292及偵測294病原性DNA。該組件 採用複數個擴增室以增加檢定靈敏度及改善信號對雜訊比 »此1^〇0:裝置使用雜合室陣列110.1至110.12之丑(:1^來偵測 探針-目標物雜合體。系統模組化可讓不同透析裝置7 84 被採用以偵測液體試樣內之其它目標物,例如白血球、紅 血球、病原體或者分子像是游離蛋白質或DNA,雖然目前 的說明係描述病原性DN A之偵測,不過熟悉此技術者應理 解該微流體裝置783不限於只能偵測這一個目標物。 第103圖顯示具有透析裝置784、LOC裝置785及互連 性頂蓋51之微流體裝置78 3。互連性頂蓋51係由貯存器層 78、頂蓋通道層80及界面層594所組成。該界面層594係位 於該CMOS + MST裝置48之頂蓋通道層80及MST通道層100 之間。界面層5 94可不增加矽基材84之尺寸下讓試劑貯存 器及MST層87間有更複雜的流體互連》第104圖重疊貯存 器、上通道及界面通道以顯示該界面層5 94造成之更複雜 的管路系統。 參考第1〇4及105圖,試樣(例如血液)進入試樣置入 口 68及毛細作用把血液沿著頂蓋通道94拉引到抗凝血劑表 面張力閥118。如第105圖最佳顯示地,該抗凝血劑表面張 -113- 201209406 力閥118於界面層594有兩個界面通道596及598。貯存器-側之界面通道5 96用下導管92連接到貯存器出口,試樣-側 之界面通道598以頂蓋通道94連接到上導管96。來自貯存 器54之抗凝血劑透過貯存器-側之界面通道5 96流過MST通 道90直到彎液面被固定在上導管96爲止。沿著頂蓋通道94 流動之試樣流浸潤試樣-側之界面通道5 9 8而除去彎液面, 使得抗凝血劑在血液試樣繼續流往病原體透析區70時與該 血液試樣合倂。 參考第104及105圖,於此具體例中該病原體透析區 含有界面目標物通道602及界面廢棄物通道604,其透過複 數個具有既定閩値大小之孔洞來流體耦合。位於透析區70 最上游之孔洞與其下游之孔洞不同;下游孔洞爲直徑小於 8.0微米之孔,所選擇之此大小可讓目標物得以通過而進 入界面目標物通道602。於目前的具體例中’該小孔爲直 徑3.0微米之孔洞164,所選擇之此大小可讓病原體通過而 進入界面目標物通道602»病原體透析區7〇被配置成能使 試樣於毛細作用下流經該等通道及小孔。 參考第104及105圖,血液試樣流過頂蓋通道94來到界 面廢棄細胞通道604之上游端。該界面廢棄細胞通道60 4連 到通往透析MST通道204之直徑3.0微米之小孔1 64。各透析 MST通道204把直徑3.0微米之小孔1 64連到各別的透析上導 孔168。該透析上導孔168通往界面目標物通道602 °不過 ,該上導管係配置成會固定彎液面而非令毛細驅動流繼續 流動。 -114- 201209406As shown in Figure 102, the microfluidic device 783 can utilize 12 individual amplification chambers (Ϊ 12.1 to 112.12) to prepare sample 288, then extract 290, incubate 291, amplify 292, and detect 294 pathogens. Sex DNA. The module uses a plurality of amplification chambers to increase the sensitivity of the assay and improve the signal-to-noise ratio. This device uses the hybrid chamber array 110.1 to 110.12 ugly (:1^ to detect the probe-target impurity The system is modularized to allow different dialysis devices 7 84 to be used to detect other targets in the liquid sample, such as white blood cells, red blood cells, pathogens or molecules like free proteins or DNA, although the current description describes pathogenicity. DN A detection, but those skilled in the art will appreciate that the microfluidic device 783 is not limited to detecting only one target. Figure 103 shows the microdialysis device 784, the LOC device 785, and the interconnective top cover 51. Fluidic device 78 3. The interconnective cap 51 is comprised of a reservoir layer 78, a cap channel layer 80, and an interface layer 594. The interfacial layer 594 is located in the cap channel layer 80 and MST of the CMOS + MST device 48. Between the channel layers 100. The interface layer 5 94 may have a more complex fluid interconnection between the reagent reservoir and the MST layer 87 without increasing the size of the ruthenium substrate 84. Figure 104 overlays the reservoir, the upper channel, and the interface channel to display The interface layer 5 94 is caused by Complex piping system. Referring to Figures 1 and 4, a sample (e.g., blood) enters the sample inlet 68 and capillary action pulls blood along the top channel 94 to the anticoagulant surface tension valve 118. As best shown in Fig. 105, the anticoagulant surface sheet-113-201209406 force valve 118 has two interface channels 596 and 598 at the interface layer 594. The reservoir-side interface channel 5 96 is connected by a downcomer 92. To the reservoir outlet, the sample-side interface channel 598 is connected to the upper conduit 96 by a cap channel 94. The anticoagulant from the reservoir 54 flows through the reservoir-side interface channel 5 96 through the MST channel 90 until the bend The liquid level is fixed to the upper conduit 96. The sample flow flowing along the top cover passage 94 wets the sample-side interface passage 5 9 8 to remove the meniscus, so that the anticoagulant continues to flow in the blood sample. The pathogen dialysis zone is combined with the blood sample at 70. Referring to Figures 104 and 105, in this particular example, the pathogen dialysis zone contains an interface target channel 602 and an interface waste channel 604, which pass through a plurality of predetermined enthalpies. The size of the hole is fluidly coupled. Located in the dialysis area 70 The most upstream hole is different from the hole in the downstream; the downstream hole is a hole having a diameter of less than 8.0 μm, which is selected to allow the target to pass through and enter the interface target channel 602. In the present specific example, the hole is A hole 164 having a diameter of 3.0 microns is selected to allow passage of the pathogen into the interface target channel 602. The pathogen dialysis zone 7 is configured to enable the sample to flow through the channels and apertures under capillary action. In Figures 104 and 105, the blood sample flows through the top cover channel 94 to the upstream end of the interface waste cell channel 604. The interface waste cell channel 60 4 is connected to a 3.0 micron diameter aperture 1 64 leading to the dialysis MST channel 204. Each dialysis MST channel 204 connects a small aperture 1 64 having a diameter of 3.0 microns to a respective dialysis upper pilot 168. The dialysis upper pilot hole 168 leads to the interface target passage 602. However, the upper conduit is configured to secure the meniscus rather than allowing the capillary drive flow to continue to flow. -114- 201209406

該病原體透析區7〇倂有旁路通道600以充塡該流動通 道結構而不截留氣泡。位於病原體透析區70最上游端之旁 路通道600具有CIF (毛細起動特徵構件)202以促使毛細 驅動流從旁路通道600流到界面目標物通道602 (見第104 及105圖)。該旁路通道亦具有寬曲徑以延長界面廢棄細 胞通道604到界面目標物通道602之流路。較長的流路會延 阻試樣流,使得在彎液面於最上游透析MS T通道204處形 成時試樣流能塡滿該界面目標物通道602。該試樣流始於 該上游端且當該液流沿著界面廢棄物通道6 02向下游移動 時會瓦解固定在各個透析上導孔168上之彎液面。此舉確 保在透析區充塡時該透析底通道會充滿試樣流。若沒有旁 路通道600,或沒有配置成用以固定彎液面之透析上導管 168,那麼有些透析MST通道204可能會無法充滿。類似地 ,界面目標物通道602內可能會形成氣泡。於任一例中, 流過透析區之液流實質上已被阻斷了。 界面廢棄物通道604會流到廢棄物通道72及界面目標 物通道602會流到目標物通道74 (見第104及105圖)。五 個透析區透過頂蓋通道72及74串聯地連結在一起以增加透 析流程之效率。在第五透析區的出口處,含有目標物之試 樣流藉由毛細作用沿著頂蓋通道層內之目標物通道74從透 析裝置784被拉引到LOC裝置78 5 »該廢棄物通道72會流入 廢棄物貯存器76(見第103圖)。 LOC裝置785亦可當作一獨立式微流體裝置,其具有 另一適合單一裝置之頂蓋,且於此組態中可採用任意的抗 -115- 201209406 凝血劑貯存器55來供應抗凝血劑。此獨立用途之LOC裝置 785之一個實例爲其於全血分析之用途。參考第1〇6及107 圖,目標物會沿著頂蓋通道74流入LOC裝置78 5。其流經 任意地抗凝血劑表面張力閥1 1 7 (其被用來加入任意地抗 凝血劑貯存器55之內容物)’繼續向前直到抵達胞溶表面 張力閥1 2 8爲止。於在此所述之組態中,任意地貯存器及 表面張力閥並未使用且並沒有影響試樣流動或該LOC裝置 之操作。 在有以上所述之抗凝血劑表面張力閥118時,該胞溶 表面張力閥128具有一胞溶貯存器-側之界面通道606及胞 溶-試樣側之界面通道60 8(見第107圖)。胞溶試劑透過 頂蓋通道94從貯存器5 6流到該胞溶貯存器-側之界面通道 606。該試劑會流入下導管92,通過MST通道90流到以試 劑構成臂液面之上導管96 (見第107圖)。來自目標物通 道74之試樣流會充滿該胞溶試樣-側之界面通道608。該試 樣流會除去上導管96處之彎液面及當試樣流入化學胞溶區 13 0時該胞溶試劑會與試樣混合在一起。 於化學胞溶室區1 3 0,胞溶試劑擴散地混入液流中以 胞溶目標細胞及釋出其內之基因物質。該試樣流在混合區 出口閥206處停下來。該混合區出口閥爲一沸騰起動閥206 。閥上游之液體感測器174在試樣流即將抵達該閥206時會 提供反饋。如果CMOS電路86以程式控制延遲起動以確保 目標細胞已徹底胞溶,那麼該液體感測器之反饋就會引發 該延遲期。渡過任何延遲期後,沸騰起動閥206會被啓動 -116- 201209406 且下游的液體感測器174則會註記該液流已重新沿著MS Τ 通道90開始流動。The pathogen dialysis zone 7 has a bypass passage 600 to fill the flow channel structure without trapping air bubbles. The bypass passage 600 at the most upstream end of the pathogen dialysis zone 70 has a CIF (Capillary Start Feature) 202 to cause capillary drive flow to flow from the bypass passage 600 to the interface target passage 602 (see Figures 104 and 105). The bypass channel also has a wide labyrinth to extend the flow path of the interface waste cell channel 604 to the interface target channel 602. The longer flow path will retard the sample flow so that the sample flow can fill the interface target channel 602 when the meniscus is formed at the most upstream dialysis MS T channel 204. The sample stream begins at the upstream end and disintegrates the meniscus fixed to each of the dialysis upper pilot holes 168 as the liquid stream moves downstream along the interface waste channel 206. This ensures that the dialysis bottom channel fills the sample stream when the dialysis area is filled. Some dialysis MST channels 204 may not be filled if there are no bypass channels 600, or dialysis upper conduits 168 that are not configured to hold the meniscus. Similarly, bubbles may form within the interface target channel 602. In either case, the flow through the dialysis zone is substantially blocked. Interface waste channel 604 will flow to waste channel 72 and interface target channel 602 will flow to target channel 74 (see Figures 104 and 105). The five dialysis zones are connected together in series through the cap channels 72 and 74 to increase the efficiency of the dialysis process. At the exit of the fifth dialysis zone, the sample stream containing the target is drawn by capillary action from the dialysis device 784 along the target channel 74 in the cap channel layer to the LOC device 78 5 » the waste channel 72 It will flow into the waste reservoir 76 (see Figure 103). The LOC device 785 can also be used as a stand-alone microfluidic device with another top cover suitable for a single device, and any anti-115-201209406 coagulant reservoir 55 can be used in this configuration to supply an anticoagulant. . An example of this stand-alone LOC device 785 is its use for whole blood analysis. Referring to Figures 1 and 6 and 107, the target will flow along the top cover passage 74 into the LOC unit 78 5 . It flows through any of the anticoagulant surface tension valve 1 17 (which is used to add the contents of the optional anticoagulant reservoir 55)' to continue until it reaches the cytosolic surface tension valve 128. In the configuration described herein, any reservoir and surface tension valve are not used and do not affect sample flow or operation of the LOC device. In the case of the anticoagulant surface tension valve 118 described above, the cytolytic surface tension valve 128 has a cytosolic reservoir-side interface channel 606 and a cytolysis-sample side interface channel 60 8 (see 107 picture). The lysing reagent flows from the reservoir 56 through the cap passage 94 to the cytolysis reservoir-side interface channel 606. The reagent will flow into the downcomer 92 and through the MST channel 90 to the conduit 96 above the fluid level of the reagent (see Figure 107). The sample stream from target channel 74 will fill the cytolytic sample-side interface channel 608. The sample stream removes the meniscus at the upper conduit 96 and the cytosol is mixed with the sample as it flows into the chemical cytolytic zone. In the chemical cell compartment region 130, the cytolytic reagent is diffused into the liquid stream to lysate the target cells and release the genetic material therein. The sample stream is stopped at the mixing zone outlet valve 206. The mixing zone outlet valve is a boiling starter valve 206. The liquid sensor 174 upstream of the valve provides feedback as the sample stream is about to reach the valve 206. If the CMOS circuit 86 is programmed to delay the start to ensure that the target cells are completely lysed, then the feedback from the liquid sensor will cause the delay period. After any lag period has elapsed, the boiling starter valve 206 will be activated -116-201209406 and the downstream liquid sensor 174 will note that the flow has begun to flow again along the MS 通道 channel 90.

胞溶之試樣流繼續流往限制性內切酶、接合酶及連接 子表面張力閥132。該表面張力閥132之運作與梢早對抗凝 血劑表面張力閥1 18所述相同。參考第107圖,當已胞溶試 樣流抵達固定在表面張力閥132處之彎液面時,限制性內 切酶、接合酶及連接子引子會從貯存器58中釋出且與試樣 流混合在一起。該試樣而後流經MST通道90來到培育區 114之受熱微通道。參考第107及108圖,該培育區11 4係由 被加熱器154加熱之蜿蜒微通道210所組成。 參考第108圖,該試樣流會停在培育器出口閥207處一 段充裕的時間。該培育器出口閥207爲一種類似該混合區 出口閥206之沸騰起動閥。於培育區開端之液體感測器174 ,搭配流速感測器740 (見第112圖)及CMOS電路86,可 引發培育時間延遲。在經過充份培育後,該培育器出口閥 2 07會啓動且液流重新沿著MST培育出口通道63 0流到聚合 酶表面張力閥140(見第109圖)。來自貯存器62之聚合酶 在試樣流流過擴增輸入通道63 2之蜿蜒路徑時混入該試樣 流。 參考第108及109圖,擴增輸入通道63 2導引該試樣流 流經12個擴增混合表面張力閥138。於各個擴增混合貯存 器60.1 -60.1 2之擴增混合物(見第109圖)流經各別的頂蓋 通道94於擴增混合表面張力閥138處固定彎液面。該試樣 流會輪流打開各個表面張力閥,來自各別的擴增混合物貯 -117- 201209406 存器60.1-60.12之擴增混合物被載入試樣流中且流到12個 擴增室112.1-112.12各室。該LOC裝置具有CMOS電路,其 可透過溫度感測器及加熱器對擴增區作操作性的控制。The lysate sample stream continues to flow to the restriction enzyme, ligase, and linker surface tension valve 132. The operation of the surface tension valve 132 is the same as described earlier for the anti-coagulant surface tension valve 186. Referring to Fig. 107, when the lysed sample stream reaches the meniscus fixed at the surface tension valve 132, the restriction enzyme, ligase and linker primer are released from the reservoir 58 and the sample is sampled. The streams are mixed together. The sample then flows through the MST channel 90 to the heated microchannels of the incubation zone 114. Referring to Figures 107 and 108, the incubation zone 114 is comprised of a microchannel 210 heated by a heater 154. Referring to Fig. 108, the sample stream will be stopped at the incubator outlet valve 207 for a sufficient period of time. The incubator outlet valve 207 is a boiling start valve similar to the mixing zone outlet valve 206. The liquid sensor 174 at the beginning of the incubation zone, coupled with the flow sensor 740 (see Figure 112) and the CMOS circuit 86, can cause incubation time delays. After sufficient incubation, the incubator outlet valve 207 will be activated and the flow will again flow along the MST incubation outlet channel 63 0 to the polymerase surface tension valve 140 (see Figure 109). The polymerase from reservoir 62 is mixed into the sample stream as it flows through the enthalpy path of amplification input channel 63 2 . Referring to Figures 108 and 109, the amplification input channel 63 2 directs the sample stream through 12 amplification mixing surface tension valves 138. The amplification mixture (see Figure 109) of each of the amplification mixing reservoirs 61.3-60.1 is passed through each of the top cap passages 94 to fix the meniscus at the amplifying mixing surface tension valve 138. The sample stream will alternately open the various surface tension valves, and the amplification mixture from each of the amplification mixtures stored in the sample stream is loaded into the sample stream and flows to 12 amplification chambers 112.1- 112.12 rooms. The LOC device has a CMOS circuit that operatively controls the amplification region through a temperature sensor and a heater.

參考第110圖,該12個擴增室112.1-112.12之各室分別 具有一擴增出口閥207 »該擴增出口閥207爲類似培育出口 閥207之沸騰起動閥。試樣流會停在各個擴增出口閥207處 。在擴增以後,該擴增出口閥207會打開好讓擴增子流到 含有探針之雜合室陣列110.1-110.12中,該等探針被設計 成能與目標核酸序列(在此爲病原體DNA )形成探針一目 標物雜合體。該試樣沿著流路1 76流經各個個別的陣列 110.1-110.12且經由各別的擴散屏障入口 175進入各個雜合 室180 (見第90及1 1 1圖)。Referring to Fig. 110, each of the 12 expansion chambers 112.1-112.12 has an expansion outlet valve 207. The expansion outlet valve 207 is a boiling start valve similar to the cultivation outlet valve 207. The sample stream will stop at each of the amplification outlet valves 207. After amplification, the amplification outlet valve 207 opens to allow the amplicon to flow into the hybrid chamber array 110.1-110.12 containing the probes, which are designed to interact with the target nucleic acid sequence (here the pathogen) DNA) forms a probe-target hybrid. The sample flows along flow path 176 through respective individual arrays 110.1-110.12 and through respective diffusion barrier inlets 175 into respective hybrid chambers 180 (see Figures 90 and 1 1 1).

參考第91及111圖,當試樣流抵達末端液體感測器178 時,該雜合加熱器1 82會在經過一段時間延遲後被啓動以 促進探針-目標物雜合體之產生。該流速感測器740 (見 第112圖)係包含在病原體培育區114中以決定時間延遲長 短。經過一段適當的延遲以供雜合後,施加到ECL電極860 及870之激發電流(見第111及114圖)會使得該探針一目 標物雜合體發射出光線光子,其可用襯底CMOS電路86內 之光感測器44來偵測。該光感測器係由緊鄰各雜合室之光 二極體184陣列所組成。Referring to Figures 91 and 111, when the sample stream reaches the end liquid sensor 178, the hybrid heater 182 is activated after a period of delay to promote probe-target hybrids. The flow rate sensor 740 (see Figure 112) is included in the pathogen incubation zone 114 to determine the length of time delay. After a suitable delay for hybridization, the excitation current applied to the ECL electrodes 860 and 870 (see Figures 111 and 114) causes the probe-target hybrid to emit light photons, which can be used in a substrate CMOS circuit. The light sensor 44 in 86 is detected. The photosensor consists of an array of photodiodes 184 in close proximity to each of the hybrid chambers.

第113及114圖顯示校準室382。如本專利說明書於其 它處說明地,校準室係用來校準光二極體184以調整系統 雜訊及背景値。同樣地,正向ECL控制探針7 87及反向ECL -118- 201209406 控制探針786被置於某些雜合室180中以作檢定品質控制。 具有指狀交合之ECL電極之校準室382之變化型示於第92圖 濕化器196及濕度感測器2 32被用來控制LOC裝置785 (尤其是雜合室陣列11〇)中的蒸發及冷凝作用。第110圖 顯示該濕化器196、貯水器188及蒸發器190之主要構件。Figures 113 and 114 show the calibration chamber 382. As explained elsewhere in this patent specification, the calibration chamber is used to calibrate the photodiode 184 to adjust system noise and background artifacts. Similarly, the forward ECL control probe 7 87 and the reverse ECL-118-201209406 control probe 786 are placed in some of the hybrid chambers 180 for verification quality control. A variation of the calibration chamber 382 having finger-crossing ECL electrodes is shown in Fig. 92. The humidifier 196 and the humidity sensor 2 32 are used to control evaporation in the LOC device 785 (especially the hybrid chamber array 11). And condensation. Fig. 110 shows the main components of the humidifier 196, the water reservoir 188, and the evaporator 190.

參.考第109圖,蒸發不警器(evaporation-based telltale) 189能指示儲存期間該裝置之包裝受否受損及該 微流體裝置之完整性及可靠性是否已不足。於製造期間, 會把一小滴液體加到該蒸發示警器189中央之液體感測器 174內》如果儲存期間包裝密封有破損,那麼那滴液滴就 會蒸發掉。該液體是否存在可以用液體感測器1 74偵測且 藉此指示微流體裝置密封之完整性。 結論 在此所述之裝置、系統及方法能促使人們於看護地點 以低成本快速地進行分子診斷測試》以上所述之系統及其 構件純粹是顯示用且熟悉此領域之技術人士能輕易知曉不 悖離本發明廣闊發明槪念之精神及範疇之眾多變化及修正 【圖式簡單說明】 本發明之較佳具體例現在將參考後附圖式藉由實施例 來說明,其中: -119- 201209406 第1圖顯示採用螢光偵測之測試模組及測試模組讀取 器: 第2圖爲採用螢光偵測之測試模組內電子構件之示意 槪視圖; 第3圖爲該測試模組讀取器內電子構件之示意槪視圖 » 第4圖爲該LOC裝置之整體結構之示意代表圖;Referring to Figure 109, an evaporation-based telltale 189 can indicate whether the packaging of the device has been damaged during storage and whether the integrity and reliability of the microfluidic device are insufficient. During manufacture, a small drop of liquid is added to the liquid sensor 174 in the center of the evaporative alarm 189. If the package seal is damaged during storage, the drop will evaporate. The presence or absence of the liquid can be detected by the liquid sensor 1 74 and thereby indicating the integrity of the microfluidic device seal. Conclusion The devices, systems, and methods described herein enable people to perform molecular diagnostic tests at a low cost and at a low cost. The systems and components thereof described above are purely display and can be easily understood by those skilled in the art. Numerous variations and modifications of the spirit and scope of the broad inventive concept of the present invention. [Brief Description of the Drawings] Preferred embodiments of the present invention will now be described by way of example with reference to the following drawings, in which: -119- 201209406 Figure 1 shows the test module and test module reader using the fluorescence detection: Figure 2 is a schematic view of the electronic components in the test module using the fluorescence detection; Figure 3 is the test module. Schematic view of the electronic components in the reader » Figure 4 is a schematic representation of the overall structure of the LOC device;

第5圖爲該LOC裝置之立體圖; 第6圖爲LOC裝置及其相互層疊之全部膜層之特徵構 件及結構之平面圖; 第7圖爲單獨顯示出頂蓋結構之LOC裝置平面圖; 第8圖爲該頂蓋之頂視立體圖且以虛線表示內部通道 及貯存器; 第9圖爲該頂蓋之分解頂視立體圖且以虛線表示內部 通道及貯存器;Figure 5 is a perspective view of the LOC device; Figure 6 is a plan view of the LOC device and the features and structures of all the layers laminated to each other; Figure 7 is a plan view of the LOC device showing the top cover structure separately; The top view of the top cover is a top view and the internal passage and the reservoir are indicated by broken lines; FIG. 9 is an exploded top perspective view of the top cover and the internal passage and the reservoir are indicated by broken lines;

第1 〇圖爲顯示頂蓋之上通道組態之底視立體圖: 第11圖爲單獨顯示該CMOS + MST裝置之結構之LOC裝 置平面圖; 第12圖爲該LOC裝置於試樣置入口之示意剖面圖; 第13圖爲第6圖所示之插圖AA之放大圖; 第14圖爲第6圖所示之插圖AB之放大圖; 第15圖爲第13圖所示之插圖AE之放大圖; 第16圖爲顯示該LOC裝置於插圖AE內之層狀結構之部 份立體圖; -120- 2012〇94〇6Figure 1 is a bottom perspective view showing the channel configuration above the top cover: Figure 11 is a plan view showing the LOC device showing the structure of the CMOS + MST device separately; Figure 12 is a schematic view of the LOC device at the sample inlet. Fig. 13 is an enlarged view of the illustration AA shown in Fig. 6; Fig. 14 is an enlarged view of the illustration AB shown in Fig. 6; Fig. 15 is an enlarged view of the illustration AE shown in Fig. Figure 16 is a partial perspective view showing the layered structure of the LOC device in the illustration AE; -120-2012〇94〇6

爲顯示該LOC裝置於插圖AE內之層狀結構之部 爲顯示該LOC裝置於插圖AE內之層狀結構之部 舄顯示該LOC裝置於插圖AE內之層狀結構之部 舄顯示該LOC裝置於插圖AE內之層狀結構之部 舄顯示該LOC裝置於插圖AE內之層狀結構之部 第2 2陶 111舄第21圖顯示之胞溶劑貯存器之示意剖面圖; 箄 23 tei H _舄顯示該L〇C裝置於插圖AB內之層狀結構之部 份从鳍ϋ : ^ 2 4 fei ~ 松丄 _舄顯示該L0C裝置於插圖AB內之層狀結構之部To display the LOC device in the layered structure in the inset AE, the LOC device is shown in the portion of the layered structure in the inset AE of the LOC device, and the LOC device is displayed in the layered structure in the inset AE. A schematic cross-sectional view of the cytosol reservoir shown in Fig. 21 of the layered structure of the LOC device in Fig. AE is shown in Fig. AE; 箄23 tei H _舄 shows that the L〇C device is part of the layered structure in the illustration AB from the fins: ^ 2 4 fei ~ 松丄_舄 shows the part of the layered structure of the L0C device in the illustration AB

第 份立鵝_ ; 第 份立體_ ; 第2〇_ 份立體鞫; 第21_ 份立镀_ ; ^立韆_ ; 第2 5 ϋλ _ _舄顯示該LOC裝置於插圖ΑΙ內之層狀結構之部 第26陶 格… _舄顯示該L0C裝置於插圖AB內之層狀結構之部 第27_似 份+ _爲顯示該LOC裝置於插圖AB內之層狀結構之部 从鳍陶; 第2 8隱似 份 _爲顯示該LOC裝置於插圖AB內之層狀結構之部 •饑 _ ; 第29 111舄顯 示該LOC裝置於插圖AB內之層狀結構之部 -121 - 201209406 份立體圖; 第30圖爲該擴增混合物貯存器及聚合酶貯存器之示意 剖面圖; 第31圖單獨顯示一沸騰起動閥之特徵構件; 第32圖爲該沸騰起動閥從第31圖顯示之線33 -3 3處切 開來之示意剖面圖: 第33圖爲第15圖顯示之插圖AF之放大圖;The first geese _ ; the first three-dimensional _ ; the second _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The 26th taog of the Ministry... _舄 shows that the L0C device is in the layered structure in the illustration AB, the 27th-like part + _ is the part of the layered structure showing the LOC device in the illustration AB from the fins; 2 隐 隐 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Figure 30 is a schematic cross-sectional view of the amplification mixture reservoir and polymerase reservoir; Figure 31 shows the features of a boiling starter valve separately; Figure 32 is the line 33 of the boiling start valve shown from Figure 31. 3 is a schematic sectional view cut at 3: Fig. 33 is an enlarged view of the illustration AF shown in Fig. 15;

第34圖爲從第33圖顯示之線35-3 5處切開來之透析區 上游端之示意剖面圖; 第35圖爲第6圖顯不之插圖AC之放大圖: 第36圖爲插圖AC內該擴增區之進一步放大圖: 第37圖爲插圖AC內該擴增區之進一步放大圖; 第38圖爲插圖AC內該擴增區之進一步放大圖; 第39圖爲第38圖顯示之插圖AK內部之進一步放大圖Figure 34 is a schematic cross-sectional view of the upstream end of the dialysis zone cut from line 35-3 5 shown in Figure 33; Figure 35 is an enlarged view of the illustration AC shown in Figure 6: Figure 36 is an illustration AC Further enlarged view of the amplification region: Figure 37 is a further enlarged view of the amplification region in the illustration AC; Figure 38 is a further enlarged view of the amplification region in the illustration AC; Figure 39 is the 38th image. Illustration of AK inside further enlarged view

第40圖爲插圖AC內該擴增室之進一步放大圖; 第41圖爲插圖AC內該擴增區之進一步放大圖: 第42圖爲插圖AC內該擴增室之進一步放大圖; 第43圖爲第42圖顯示之插圖AL內部之進一步放大圖; 第44圖爲插圖AC內該擴增區之進一步放大圖: 第45圖爲第44圖顯示之插圖AM內部之進一步放大圖 第46圖爲插圖AC內該擴增室之進一步放大圖; 第47圖爲第46圖顯示之插圖AN內部之進一步放大圖 -122- 201209406 第48圖爲插圖AC內該擴增室之進一步放大圖; 第49圖爲插圖AC內該擴增室之進一步放大圖; 第50圖爲插圖AC內該擴增區之進一步放大圖; 第51圖爲該擴增區之示意剖面圖; 第52圖爲該雜合區之放大平面圖; 第53圖爲單離出兩雜合室進一步放大之平面圖··Figure 40 is a further enlarged view of the amplification chamber in the illustration AC; Figure 41 is a further enlarged view of the amplification region in the illustration AC: Figure 42 is a further enlarged view of the amplification chamber in the illustration AC; The figure is a further enlarged view of the inside of the illustration AL shown in Fig. 42; Fig. 44 is a further enlarged view of the enlarged area in the illustration AC: Fig. 45 is a further enlarged view of the inside of the illustration AM shown in Fig. 44. A further enlarged view of the amplification chamber in the illustration AC; Fig. 47 is a further enlarged view of the inside of the illustration AN shown in Fig. 46 - 122 - 201209406 Fig. 48 is a further enlarged view of the amplification chamber in the illustration AC; Figure 49 is a further enlarged view of the amplification chamber in the illustration AC; Figure 50 is a further enlarged view of the amplification region in the illustration AC; Figure 51 is a schematic cross-sectional view of the amplification region; Figure 52 is the hybrid Magnified plan view of the joint area; Figure 53 is a plan view of the further enlargement of the two hybrid chambers.

第54圖爲單一雜合室之示意剖面圖; 第55圖爲第6圖顯示之插圖AG內之濕化器之放大圖; 第56圖爲第52圖顯示之插圖AD之放大圖; 第57圖爲該LOC裝置插圖AD內之分解立體圖; 第58圖爲示於第6圖之插圖AH內之濕度感測器之放大 圖, 第5 9圖爲顯示該光感測器之光二極體陣列之部件之示 意圖, 第60圖爲示於第55圖之插圖AP內之蒸發器之放大圖; 第61圖爲連接子-帶頭PCRClinker-primed PCR)之圖 第62圖爲一具刺血針之測試模組之示意代表圖; 第63圖爲LOC變化型VII之整體結構之圖解代表圖; 第64圖爲LOC變化型VIII及其相互層疊之全部膜層之 特徵構件及結構之平面圖; 第65圖爲示於第64圖之插圖CA之放大圖; 第66圖爲第64圖顯示之LOC變化型VIII插圖CA內之層 -123- 201209406 狀結構之部份立體圖; 第67圖爲示於第65圖之插圖CE之放大圖; 第68圖爲LOC變化型VIII之整體結構之圖解代表圖; 第69圖爲LOC變化型XIV之整體結構之示意圖; 第70圖爲LOC變化型XLI之整體結構之示意圖; 第71圖爲LOC變化型XLIII之整體結構之示意圖: 第72圖爲LOC變化型XLIV之整體結構之示意圖; 第73圖爲LOC變化型XLVII之整體結構之示意圖; 第74圖爲LOC變化型XI之整體結構之圖解代表圖; 第75圖爲微分影像器(differential imager)之電路圖Figure 54 is a schematic cross-sectional view of a single hybrid chamber; Figure 55 is an enlarged view of the humidifier in the illustration AG shown in Figure 6; Figure 56 is an enlarged view of the illustration AD shown in Figure 52; The figure is an exploded perspective view of the LOC device illustration AD; Fig. 58 is an enlarged view of the humidity sensor shown in the illustration AH of Fig. 6, and Fig. 59 is a photodiode array showing the photosensor Schematic diagram of the components, Fig. 60 is an enlarged view of the evaporator shown in the illustration AP of Fig. 55; Fig. 61 is a diagram of the linker-headed PCRClinker-primed PCR. Fig. 62 is a lancet A schematic representation of the test module; Figure 63 is a graphical representation of the overall structure of the LOC variant VII; Figure 64 is a plan view of the LOC variant VIII and the features and structures of all of the layers laminated to each other; The figure is an enlarged view of the illustration CA shown in Fig. 64; Fig. 66 is a partial perspective view of the layer -123-201209406-like structure in the LOC variant VIII inset CA shown in Fig. 64; Fig. 67 is shown in the figure Figure 65 is a magnified view of the illustration CE; Figure 68 is a graphical representation of the overall structure of the LOC variant VIII Figure 69 is a schematic diagram of the overall structure of the LOC variant XIV; Figure 70 is a schematic diagram of the overall structure of the LOC variant XLI; Figure 71 is a schematic diagram of the overall structure of the LOC variant XLIII: Figure 72 is a LOC variant XLIV Schematic diagram of the overall structure; Figure 73 is a schematic diagram of the overall structure of the LOC variant XLVII; Figure 74 is a graphical representation of the overall structure of the LOC variant XI; Figure 75 is a circuit diagram of the differential imager

I 第76圖表示電化學發光(ECL)過程中發生之反應; 第7 7圖示意地顯示三種不同陰極組態; 第78圖爲雜合室內陰極及陽極示意的部份剖面圖; 第79圖示意地顯示該光二極體邊緣附近之環狀陰極; 第80圖示意地顯示光二極體邊緣內之環狀陰極; 第8 1圖示意地顯示具有一系列突指以增加側緣長度之 陰極; 第82圖示意地顯示透明陰極令表面區域耦合及ECL信 號偵測最佳化之用途: 第83圖示意地顯示固定在雜合室頂壁之陰極令表面區 域耦合及ECL信號偵測最佳化之用途; 第84圖示意地顯示與陽極指狀交合之陰極; 第85圖顯示一採用ECL偵測之測試模組及測試模組讀 -124- 201209406 取器; 第86圖爲採用ECL偵測之測試模組內之電子構件之示 意槪略圖; 第8 7圖顯示一測試模組及另一測試模組讀取器; 第8 8圖顯示一測試模組及測試模組讀取器以及存放不 同資料庫之主機系統;I Figure 76 shows the reactions that occur during electrochemiluminescence (ECL); Figure 7 shows schematically three different cathode configurations; Figure 78 shows a partial cross-sectional view of the cathode and anode of the hybrid chamber; Figure 79 Schematically showing the annular cathode near the edge of the photodiode; Fig. 80 schematically showing the annular cathode in the edge of the photodiode; Fig. 8 is a schematic view showing the cathode having a series of fingers to increase the length of the side edge; Figure 82 is a schematic illustration of the use of a transparent cathode to optimize surface area coupling and ECL signal detection: Figure 83 schematically shows the surface area coupling and ECL signal detection optimization fixed to the cathode of the top of the hybrid chamber. The use of Fig. 84 schematically shows the cathode which is in contact with the anode finger; Fig. 85 shows a test module and test module using ECL detection - 124-201209406; and Fig. 86 shows the detection using ECL A schematic diagram of the electronic components in the test module; Figure 8 shows a test module and another test module reader; Figure 8 shows a test module and test module reader and storage Host system of different databases System

第89圖爲顯示相互層疊之所有特徵構件及顯示插圖 GA至GL之位置之LOC變化型L之平面圖; 第90圖爲第89圖所示之插圖GD之放大圖; 第91圖爲第89圖所示之插圖GG之放大圖; 第92圖爲第89圖所示之插圖GH之放大圖·, 第93圖爲密閉組態中電化學發光共振能量轉移探針之Figure 89 is a plan view showing all of the feature members stacked on each other and the LOC variation type L showing the positions of the insets GA to GL; Fig. 90 is an enlarged view of the illustration GD shown in Fig. 89; An enlarged view of the illustrated illustration GG; Fig. 92 is an enlarged view of the illustration GH shown in Fig. 89, and Fig. 93 is an electrochemiluminescence resonance energy transfer probe in a closed configuration

第94圖爲開放及雜合組態中電化學發光共振能量轉移 探針之圖;Figure 94 is a diagram of an electrochemiluminescence resonance energy transfer probe in an open and hybrid configuration;

第95圖爲初始回次擴增期間之引子-連結之發光線性 探針之圖; 第96圖爲後續擴增循環期間之引子-連結之發光線性 探針之圖; 第97 A至97F圖圖解顯示一發光之引子連結莖環探針之 熱循環; 第98圖示意地顯示一呈莖環組態之反向控制之發光探 針; 第99圖示意地顯示呈開放組態之第98圖之反向控制發 -125- 201209406 光探針; 第100圖示意地顯示一呈莖環組態之正向控制之發光 探針; 第101圖示意地顯示呈開放組態之第1 00圖之正向控制 發光探針;Figure 95 is a diagram of the primer-linked luminescence linear probe during initial re-amplification; Figure 96 is a diagram of the primer-linked luminescence linear probe during the subsequent amplification cycle; Figure 97A to 97F diagram A thermal cycle is shown in which a light-emitting primer is coupled to the stem-loop probe; Figure 98 is a schematic representation of a light-emitting probe in the reverse control of the stem-loop configuration; Figure 99 is a schematic representation of Figure 98 in an open configuration. Reverse control sends a -125-201209406 optical probe; Figure 100 shows schematically a positively controlled illuminating probe in a stem-ring configuration; Figure 101 shows schematically the positive 00th aspect of the open configuration To control the illuminating probe;

第102圖爲一具有透析裝置、LOC裝置、互連性頂蓋 及電化學發光(ECL )偵測之微流體裝置之整體結構之圖 解代表圖; 第103圖爲一具有透析裝置、LOC裝置及互連性頂蓋 之微流體裝置之立體圖; 第104圖爲顯示該微流體裝置之透析裝置之特徵構件 及顯示插圖JA位置之平面圖; 第105圖爲第104圖所示之插圖JA之放大圖; 第106圖爲顯示該微流體裝置之LOC裝置之特徵構件 及顯示插圖JB至JJ位置之平面圖; jFigure 102 is a graphical representation of the overall structure of a microfluidic device having a dialysis device, a LOC device, an interconnected cap, and an electrochemiluminescence (ECL) detection; Figure 103 is a diagram showing a dialysis device, a LOC device, and FIG. 104 is a plan view showing a characteristic member of the dialysis device of the microfluidic device and a JA position of the illustration; FIG. 105 is an enlarged view of the illustration JA shown in FIG. Figure 106 is a plan view showing the features of the LOC device of the microfluidic device and the positions of the display illustrations JB to JJ;

第107圖爲第106圖所示之插圖JB之放大圖; 第108圖爲第106圖所示之插圖JC之放大圖; 第109圖爲第106圖所示之插圖JD之放大圖; 第110圖爲第106圖所示之插圖JE之放大圖: 第111圖爲第106圖所示之插圖JF之放大圖; 第112圖爲第1〇6圖所示之插圖JG之放大圖; 第113圖爲第1〇6圖所示之插圖之放大圖; 第114圖爲第1〇6圖所示之插圖之放大圖; 第115圖爲LOC變化型L之雜合室之放大圖; -126- 201209406 第1 16圖爲LOC變化型L之雜合室陣列並顯示校正室分 佈之放大圖; 【主要元件符號說明】Figure 107 is an enlarged view of the illustration JB shown in Figure 106; Figure 108 is an enlarged view of the illustration JC shown in Figure 106; Figure 109 is an enlarged view of the illustration JD shown in Figure 106; The figure is an enlarged view of the illustration JE shown in Fig. 106: Fig. 111 is an enlarged view of the illustration JF shown in Fig. 106; Fig. 112 is an enlarged view of the illustration JG shown in Fig. 1; The figure is an enlarged view of the illustration shown in Figure 1-6; Figure 114 is an enlarged view of the illustration shown in Figure 1-6; Figure 115 is an enlarged view of the hybrid chamber of the LOC variant L; -126 - 201209406 Figure 16 is a magnified view of the LOC variant L hybrid chamber array and showing the distribution of the calibration chamber; [Key component symbol description]

1 〇 :測試模組 1 1 :測試模組 1 2 :測試模組讀取器 1 3 :外殻 14 :微型-USB插頭 15 :電感器 1 6 :微型-USB埠 17:用戶界面(UI)觸控螢幕 1 8 :顯示螢幕 1 9 :按鈕 20 :開始鈕 21 :蜂巢式無線電台 22 :無菌密封膠帶 2 3 :無線網路連線 24 :大貯槽 25 :衛星導航系統1 〇: Test Module 1 1 : Test Module 1 2 : Test Module Reader 1 3 : Case 14 : Micro-USB Plug 15 : Inductor 1 6 : Micro-USB 埠 17: User Interface (UI) Touch Screen 1 8 : Display Screen 1 9 : Button 20 : Start Button 21 : Honeycomb Radio 22 : Aseptic Sealing Tape 2 3 : Wireless Network Connection 24 : Large Storage Tank 25 : Satellite Navigation System

26 : LED 27 :資料存儲器 28 :行動電話/智慧型手機 29 : USB-相容LED驅動器 -127- 201209406 30 : LOC裝置 3 1 :電源調節器 3 2 :電源供應電容器 33 :時鐘 3 4 :控制器 35 :暫存器 36 : USB裝置驅動器 3 7 :驅動器26 : LED 27 : Data Memory 28 : Mobile Phone / Smartphone 29 : USB-compatible LED Driver -127- 201209406 30 : LOC Device 3 1 : Power Conditioner 3 2 : Power Supply Capacitor 33 : Clock 3 4 : Control 35: register 36: USB device driver 3 7 : driver

38 : RAM 39 : ( ECL激發)驅動器 40 :程式和資料快閃記憶體 41 :暫存器 42 :處理器 4 3 :程式儲存器 44 :光感測器 4 5 :指示器 46 :頂蓋 47 :唯USB電源/指示器模組 48 : CMOS + MST晶片(裝置) 49 :發泡體插圖或其它有孔元件 5 1 :互連性頂蓋 52 :中間MST通道 5 4 :(抗凝血劑)貯存器 5 6 :(胞溶試劑)貯存器 -128- 201209406 57 :印刷電路板(PCB ) 5 8 :貯存器 60 :貯存器 62 :貯存器 64 :下封條 66 :頂壁層 6 8 :試樣置入口38 : RAM 39 : ( ECL activated ) drive 40 : program and data flash memory 41 : register 42 : processor 4 3 : program memory 44 : light sensor 4 5 : indicator 46 : top cover 47 : USB power only / indicator module 48 : CMOS + MST chip (device) 49 : Foam illustration or other perforated element 5 1 : Interconnected top cover 52 : Intermediate MST channel 5 4 : (anticoagulant Reservoir 5 6 : (cytolytic reagent) reservoir -128 - 201209406 57 : printed circuit board (PCB) 5 8 : reservoir 60 : reservoir 62 : reservoir 64 : lower seal 66 : top wall layer 6 8 : Sample inlet

7 〇 :透析區 72 :廢棄物通道 74 :目標物通道 76 :廢棄物單元(廢棄物貯存器、廢棄物貯槽) 7 8 :貯存器層 80 :頂蓋通道層 8 2 :上封條層 84 :矽基材 86 : CMOS 電路 87 : MS, 8 8 ’·鈍化層 90 : MST通道 92 :下導管 94 :頂蓋通道 96 :上導管 97 :壁區 98 :彎液面錨 -129- 201209406 1 00 : MST通道層 106 :沸騰-起動閥 107 :電子書讀取器 108 :沸騰-起動閥 109 :平板電腦7 〇: dialysis zone 72: waste channel 74: target channel 76: waste unit (waste storage, waste storage tank) 7 8 : reservoir layer 80: roof channel layer 8 2 : upper seal layer 84:矽 Substrate 86: CMOS circuit 87: MS, 8 8 '·passivation layer 90: MST channel 92: downcomer 94: top cover channel 96: upper conduit 97: wall region 98: meniscus anchor-129- 201209406 1 00 : MST channel layer 106: Boiling-start valve 107: e-book reader 108: boiling-start valve 109: tablet

1 1 〇 :雜合室陣列 1 1 I :流行病學資料 1 1 2 :擴增區 1 1 3 :基因資料 1 1 4 :培育區1 1 〇 : Hybrid chamber array 1 1 I : Epidemiological data 1 1 2 : Amplification area 1 1 3 : Genetic data 1 1 4 : Cultivation area

115 :電子健康記錄(HER) 1 1 6 :抗凝血劑 1 1 7 :表面張力閥 1 1 8 :表面張力閥 1 1 9 :試樣流 1 2 0 :彎液面 1 2 1 :電子病歷(EMR ) 122 :排氣孔 123 :個人健康記錄(PHR) 125 :網路 126 :沸騰-起動閥 1 28 :表面張力閥 1 3 0 :化學胞溶區 1 3 1 :混合區 -130- 201209406 132 :表面張力閥 1 3 3 :培育器入口通道 134 :下導管(開口)115: Electronic Health Record (HER) 1 1 6 : Anticoagulant 1 1 7 : Surface tension valve 1 1 8 : Surface tension valve 1 1 9 : Sample flow 1 2 0 : Meniscus 1 2 1 : Electronic medical record (EMR) 122: vent hole 123: personal health record (PHR) 125: network 126: boiling-start valve 1 28: surface tension valve 1 3 0 : chemical cytolysis zone 1 3 1 : mixing zone -130- 201209406 132: Surface tension valve 1 3 3 : incubator inlet passage 134: downcomer (opening)

1 3 6 :視窗 140 :表面張力閥 146 :閥入口 1 4 8 :閥出口 1 5 0 :閥下導管 152 :加熱器 153 :沸騰-起動閥加熱器接點 154 :加熱器 1 5 6 :加熱器接點 158 :微通道 160:擴增區出口通道 164 :小孔 168 :透析上導管孔 170 :溫度感測器 174 :液體感測器 175 :擴散屏障 176 :流路 178 :液體感測器 180 :雜合室 1 8 2 :加熱器 184 :光二極體 -131 - 201209406 1 8 5 :活化區 186: FRET探針 1 8 8 :貯水器 189 :示警器1 3 6 : Window 140 : Surface tension valve 146 : Valve inlet 1 4 8 : Valve outlet 1 5 0 : Valve down conduit 152 : Heater 153 : Boiling - Start valve heater contact 154 : Heater 1 5 6 : Heating Connector 158: microchannel 160: amplification zone outlet channel 164: aperture 168: dialysis upper catheter aperture 170: temperature sensor 174: liquid sensor 175: diffusion barrier 176: flow path 178: liquid sensor 180 : Hybrid chamber 1 8 2 : Heater 184 : Light diode -131 - 201209406 1 8 5 : Activation zone 186: FRET probe 1 8 8 : Water reservoir 189 : Alarm device

190 :蒸發器 1 9 1 :加熱器 192 :供水通道 1 93 :上導管 1 94 :下導管 1 9 5 :金屬頂層 196 :濕化器190: Evaporator 1 9 1 : Heater 192 : Water supply channel 1 93 : Upper pipe 1 94 : Down pipe 1 9 5 : Metal top layer 196 : Humidifier

1 9 8 :第一上導管孔 202 : CIF 204 :透析MST通道 206 :混合區出口閥1 9 8 : First upper conduit hole 202 : CIF 204 : Dialysis MST channel 206 : Mixing zone outlet valve

207:培育區出口閥 208 :頂蓋通道液體感測器 210 :微通道 212:中間MST通道 2 1 8 : T i A1 電極 2 2 0 : T i A1 電極 2 2 2 :間隙 2 3 2 :濕度感測器 2 3 4 :加熱器 -132- 201209406 237: ECL探針 23 8 :目標核酸序列 240 :環 242 :莖 2 4 8 :淬熄物 288 :試樣置入及製備 290 :核酸萃取207: incubation zone outlet valve 208: top cover channel liquid sensor 210: microchannel 212: intermediate MST channel 2 1 8 : T i A1 electrode 2 2 0 : T i A1 electrode 2 2 2 : gap 2 3 2 : humidity Sensor 2 3 4 : Heater-132-201209406 237: ECL probe 23 8 : Target nucleic acid sequence 240: Ring 242: Stem 2 4 8 : Quenching 288: Sample placement and preparation 290: Nucleic acid extraction

291 :核酸培育 292 :核酸擴增 294 :偵測及分析 2 9 6 :第一電極 298 :第二電極 3 00 :程式化前延遲 301 : LOC裝置 3 2 8 :白血球透析區 3 76 :傳導管柱 3 7 8 :正向控制探針 3 8 0 :反向控制探針 3 82 :校準室 3 90 :刺血針 3 9 2 :刺血針釋放鈕 408 :膜封條 410 :護膜罩291: Nucleic Acid Breeding 292: Nucleic Acid Amplification 294: Detection and Analysis 2 9 6 : First Electrode 298: Second Electrode 3 00: Delay before Stylization 301: LOC Device 3 2 8 : White Blood Cell Dialysis Zone 3 76 : Conductive Tube Column 3 7 8 : Forward control probe 3 8 0 : Reverse control probe 3 82 : Calibration chamber 3 90 : Lancet 3 9 2 : Lancet release button 408 : Film seal 410 : Mask cover

492 : LOC變化型 VII 201209406 518 : LOC變化型 VIII 5 9 4 :界面層 5 96 :界面通道 5 98 :界面通道 600 :旁路通道 602 :界面目標物通道 604 :界面廢棄物(廢棄細胞) 606 :界面通道 608 :界面通道 630:培育出口通道 63 2 :擴增輸入通道492 : LOC variant VII 201209406 518 : LOC variant VIII 5 9 4 : interface layer 5 96 : interface channel 5 98 : interface channel 600 : bypass channel 602 : interface target channel 604 : interface waste (abandoned cells) 606 : Interface channel 608: Interface channel 630: Cultivate exit channel 63 2 : Amplification input channel

641 : LOC XIV641 : LOC XIV

673 : LOC變化型 XLIII 674 : LOC變化型 CLIV 677 : LOC變化型 XLVn 6 8 2 :透析區 6 86 :擴增前透析步驟 693 :線性ECL探針 694 :擴增 6 96 :引子連接探針 6 9 8 :已擴增之互補序列 700 :寡核苷酸引子 7 05 : ECL探針 706 :互補序列 通道673 : LOC variant XLIII 674 : LOC variant CLIV 677 : LOC variant XLVn 6 8 2 : dialysis zone 6 86 : pre-amplification dialysis step 693 : linear ECL probe 694 : amplification 6 96 : primer-linking probe 6 9 8 : Amplified complementary sequence 700 : Oligonucleotide primer 7 05 : ECL probe 706 : Complementary sequence channel

-134- 201209406 708 :莖股鏈 710 :另一股 729 : LOC變化型 740 :流速感測器 766 :廢棄物貯存器 783 :微流體裝置 784 :透析裝置-134- 201209406 708 : Stem strand 710 : Another strand 729 : LOC variant 740 : Flow sensor 766 : Waste reservoir 783 : Microfluidic device 784 : Dialysis unit

785 : LOC裝置 786 :反向控制ECL探針 7 87 :正向控制ECL探針 788 :微分影像器電路 7 9 0 :像素 792 : “虛擬”像素 7 9 4 : “讀取列” 795 : “讀取列d” 797 : M4電晶體 801 : MD4電晶體 803 :像素電容器 805 :虛擬像素電容器 8 07 :開關 8 0 9 :開關 811 : “讀取行”開關 813 :虛擬“讀取行”開關 815 :電容放大器 -135 201209406 8 1 7 :微分信號 846 :發光團785 : LOC device 786 : reverse control ECL probe 7 87 : forward control ECL probe 788 : differential imager circuit 7 9 0 : pixel 792 : "virtual" pixel 7 9 4 : "read column" 795 : " Read column d" 797: M4 transistor 801: MD4 transistor 803: pixel capacitor 805: virtual pixel capacitor 8 07: switch 8 0 9 : switch 811: "read row" switch 813: virtual "read row" switch 815: Capacitor Amplifier - 135 201209406 8 1 7 : Differential Signal 846 : Luminous Cluster

860: ECL激發電極(陰極) 8 62 : ECL發射(ECL信號) 864 :發光團 8 66 :共反應物 8 68 :受激物種 8 70 : ECL激發電極(陽極) 8 7 2 :溶液 8 74 : ECL電池 8 7 6 :介電隙 878:梳狀結構陰極 8 8 0 :平行突指 8 82 :蜿蜒組態 8 8 6 :更複雜組態 8 8 8 :細圓齒區 8 9 0 :分支結構 8 92 :參與體積 8 9 4 :遮斷區域 -136-860: ECL excitation electrode (cathode) 8 62 : ECL emission (ECL signal) 864 : Luminous group 8 66 : Co-reactant 8 68 : Excited species 8 70 : ECL excitation electrode (anode) 8 7 2 : Solution 8 74 : ECL battery 8 7 6 : Dielectric gap 878: comb structure cathode 8 8 0 : parallel finger 8 82 : 蜿蜒 configuration 8 8 6 : more complex configuration 8 8 8 : fine scalloped area 8 9 0 : branch Structure 8 92: Participation volume 8 9 4: Interrupted area -136-

Claims (1)

201209406 七、申請專利範圍: 1. 一種用來濃縮生物試樣內之病原體之測試模組,該 測試模組包含: 一具有用於收納試樣之貯槽之外殼; 一與該貯槽流體連通(fluid communication)且被配 置成能把病原體與試樣中之其它成分分離之透析裝置;以 及201209406 VII. Patent application scope: 1. A test module for concentrating a pathogen in a biological sample, the test module comprising: an outer casing having a storage tank for accommodating the sample; and a fluid connection with the storage tank (fluid Communication) and configured as a dialysis device capable of separating the pathogen from other components in the sample; 一與該透析裝置流體連通且被配置成能分析該等病原 體之晶片上實驗室(LOC)裝置。 2.如申請專利範圍第1項之測試模組,其中該透析裝 置具有一用以接受該生物試樣之第一通道、一第二通道及 複數個小孔,該第二通道經由該等小孔與該第一通道以流 體相連,使得病原體可從該第一通道流到該第二通道而生 物試樣內之較大成分則留在該第一通道內。 3 .如申請專利範圍第2項之測試模組,其中該透析裝 置還有一系列於該第一通道及第二通道間延伸之毗連通道 ,其中諸小孔係位在該等毗連通道之上游端,各毗連通道 被配置成能固定一試樣彎液面以阻滯該第一通道與第二通 道間之毛細流動;及一介於該第一通道及第二通道間之旁 路通道,該旁路通道匯入毗連通道上游之第二通道且被配 置成能提供不中斷的毛細驅動液流從第一通道流往第二通 道;其中於使用期間,在彎液面形成之後,來自旁路通道 之液流在抵達固定於各毗連通道之彎液面時,該液流會依 序地除去各個彎液面,且該試樣液流經由該等毗連通道及 -137- 201209406 旁路通道從第一通道流往第二通道。 4.如申請專利範圍第3項之測試模組,其中該第二通 道係供作目標物通道且該第一通道係供作廢棄物通道,該 目標物通道被配置成能以毛細驅動液流流到該L Ο C裝置。 5 .如申請專利範圍第4項之測試模組,其中該病原體 含有目標核酸序列,及該LOC裝置有一核酸擴增區以擴增 該等目標核酸序列。A on-wafer laboratory (LOC) device in fluid communication with the dialysis device and configured to analyze the pathogens. 2. The test module of claim 1, wherein the dialysis device has a first passage, a second passage, and a plurality of small holes for receiving the biological sample, the second passage passing through the small passage The aperture is fluidly coupled to the first passageway such that the pathogen can flow from the first passage to the second passage and the larger component of the biological sample remains in the first passage. 3. The test module of claim 2, wherein the dialysis device further has a series of adjacent channels extending between the first channel and the second channel, wherein the small holes are located at an upstream end of the adjacent channels Each adjacent channel is configured to fix a sample meniscus to block capillary flow between the first channel and the second channel; and a bypass channel between the first channel and the second channel, the side The passageway merges into a second passage upstream of the adjoining passageway and is configured to provide an uninterrupted capillary drive flow from the first passage to the second passage; wherein during use, after the meniscus is formed, from the bypass passage When the liquid flow reaches the meniscus fixed to each of the adjacent passages, the liquid flow sequentially removes each meniscus, and the sample flow passes through the adjacent passages and the -137-201209406 bypass passage from the first One channel flows to the second channel. 4. The test module of claim 3, wherein the second channel is for a target channel and the first channel is for a waste channel, the target channel being configured to drive the flow with capillary Flow to the L Ο C device. 5. The test module of claim 4, wherein the pathogen contains a target nucleic acid sequence, and the LOC device has a nucleic acid amplification region to amplify the target nucleic acid sequences. 6 ·如申請專利範圍第5項之測試模組,其中該l 0 C裝置 有一胞溶區以胞溶該等病原體而釋出其內之目標核酸序列 7.如申請專利範圍第5項之測試模組,其中該LOC裝置 有一具有雜合探針陣列之雜合區,該探針可與目標核酸序 列雜合而形成探針-目標物雜合體。6) The test module of claim 5, wherein the l 0 C device has a cytosolic region to lyse the pathogens to release the target nucleic acid sequence therein. 7. Test as in claim 5 A module wherein the LOC device has a hybrid region with a hybrid probe array that hybridizes to a target nucleic acid sequence to form a probe-target hybrid. 8 _如申請專利範圍第7項之測試模組,其中該探針被 設計成能與目標核酸序列形成探針-目標物雜合體,該探 針-目標物雜合體被設計成能對激發電流產生反應而發射 出光線之光子。 9.如申請專利範圍第8項之測試模組,其中該LOC裝置 具有互補式金氧半導體(CMOS )電路以操作性控制聚合 酶連鎖反應(PCR )區,該CMOS電路具有一光感測器用 來感測該探針一目標物雜合體發射之光子。 1〇·如申請專利範圍第9項之測試模組,其中該雜合區 有一雜合室陣列,該等雜合室含有能與目標核酸序列雜合 之探針。 -138- 201209406 11. 如申請專利範圍第1 〇項之測試模組,其中該光感 測器爲一光二極體陣列,而該等光二極體則分別與各雜合 室緊鄰。 12. 如申請專利範圍第1 1項之測試模組,其中該CMOS 電路具有一用來儲存流體處理相關資料之數位記億體,該 等資料包括探針詳細說明及各個探針於雜合室陣列之位置8 _ As in the test module of claim 7, wherein the probe is designed to form a probe-target hybrid with the target nucleic acid sequence, the probe-target hybrid is designed to be capable of exciting current A photon that produces a reaction that emits light. 9. The test module of claim 8 wherein the LOC device has a complementary metal oxide semiconductor (CMOS) circuit for operative control of a polymerase chain reaction (PCR) region, the CMOS circuit having a photosensor To sense the photon emitted by the probe-target hybrid. The test module of claim 9, wherein the hybrid region has an array of hybrid chambers containing probes that are hybridizable to the target nucleic acid sequence. -138- 201209406 11. The test module of claim 1, wherein the photosensor is an array of photodiodes, and the photodiodes are respectively adjacent to the hybrid chambers. 12. The test module of claim 11, wherein the CMOS circuit has a digital body for storing fluid processing related information, the probe includes a detailed description of the probe and each probe is in the hybrid chamber. Array position 13. 如申請專利範圍第12項之測試模組,其中該CMOS 電路具有至少一溫度感測器以感測雜合室陣列之溫度。 14. 如申請專利範圍第13項之測試模組,其中該LOC裝 置有一受CMOS電路控制之加熱器,該CMOS電路利用來自 溫度感測器之反饋來把探針及目標核酸序列維持在雜合溫 度之下。 15. 如申請專利範圍第14項之測試模組,其中該等光 二極體離對應之雜合室不到1 600微米。 16. 如申請專利範圍第15項之測試模組,其中該探針 具有於激發狀態會發射出光子之電化學發光(ECL )發光 團。 17.如申請專利範圍第16項之測試模組,其中該等雜 合室具有電極以用電流激發該ECL發光團。。 1 8 .如申請專利範圍第1 7項之測試模組,其中各E C L探 針皆有一發光團及一貼近該發光團用以淬熄該發光團發射 之光子之淬熄物,當該探針與一目標核酸序列雜合時會移 動該淬熄物遠離發光團而使得光子不再被淬熄。 -139- 201209406 1 9 ·如申請專利範圍第1 8項之測試模組, 電路具有接合塾(bond-pads)以電子連接一 被配置成能把來自光二極體之輸出轉變成指 已與目標核酸序列雜合之指示信號,且把該 等接合墊以傳輸到外部裝置。 2 0.如申請專利範圍第13項之測試模組, 置及透析裝置係透過一頂蓋以流體相連,該 —通道與該透析裝置與L0C裝置間流體連通 容納加入試樣之液體試劑之貯存器。 其中該CMOS 外部裝置,且 示該ECL探針 信號提供給該 其中該LOC裝 頂蓋具有至少 ,以及複數個 -140-13. The test module of claim 12, wherein the CMOS circuit has at least one temperature sensor to sense the temperature of the hybrid chamber array. 14. The test module of claim 13, wherein the LOC device has a CMOS circuit controlled heater that uses feedback from a temperature sensor to maintain the probe and the target nucleic acid sequence in a hybrid Below the temperature. 15. The test module of claim 14 wherein the photodiodes are less than 1 600 microns from the corresponding hybrid chamber. 16. The test module of claim 15 wherein the probe has an electrochemiluminescent (ECL) illuminant that emits photons in an excited state. 17. The test module of claim 16, wherein the hybrid chambers have electrodes to excite the ECL luminophores with electrical current. . 1 8 . The test module of claim 17 , wherein each ECL probe has a luminophore and a quenching substance adjacent to the luminophore for quenching photons emitted by the luminophore, when the probe Hybridization with a target nucleic acid sequence moves the quencher away from the luminophore such that the photons are no longer quenched. -139- 201209406 1 9 · As in the test module of claim 18, the circuit has bond-pads for electronic connection, which is configured to convert the output from the photodiode into a target The nucleic acid sequence is hybridized with an indicator signal and the bond pads are transported to an external device. 20. The test module of claim 13 wherein the dialysis device is fluidly connected through a cap, and the channel is in fluid communication with the dialysis device and the L0C device to accommodate the storage of the liquid reagent added to the sample. Device. Wherein the CMOS external device is provided with the ECL probe signal provided to the LOC top cover having at least a plurality of -140-
TW100119246A 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample TW201209406A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201209406A true TW201209406A (en) 2012-03-01

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Family Applications Before (7)

Application Number Title Priority Date Filing Date
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample

Family Applications After (14)

Application Number Title Priority Date Filing Date
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality

Country Status (1)

Country Link
TW (22) TW201211534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715673A (en) * 2014-07-11 2017-05-24 先进诊疗公司 Point of care polymerase chain reaction device for disease detection

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055963A1 (en) * 2012-10-05 2014-04-10 California Institute Of Technology Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
JP6805166B2 (en) * 2015-04-22 2020-12-23 バークレー ライツ,インコーポレイテッド Culture station for microfluidic devices
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
US11441701B2 (en) * 2017-07-14 2022-09-13 Hewlett-Packard Development Company, L.P. Microfluidic valve
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
EP3710790A4 (en) * 2017-11-17 2021-01-20 Siemens Healthcare Diagnostics, Inc. Sensor assembly and method of using same
EP3737502A4 (en) * 2018-01-11 2021-03-10 Nanocav, LLC Microfluidic cellular device and methods of use thereof
BR112020015595A2 (en) 2018-02-01 2021-01-05 Toray Industries, Inc DEVICE FOR EVALUATING PARTICLES IN LIQUID AND METHOD FOR OPERATING THE DEVICE FOR EVALUATING PARTICLES IN LIQUID
EP3560593B1 (en) 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
WO2021216627A1 (en) * 2020-04-21 2021-10-28 Roche Sequencing Solutions, Inc. High-throughput nucleic acid sequencing with single-molecule sensor arrays
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833A (en) * 2021-06-18 2022-12-20 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same
TWI840226B (en) * 2023-05-17 2024-04-21 博錸生技股份有限公司 Automatic sample preparation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106715673A (en) * 2014-07-11 2017-05-24 先进诊疗公司 Point of care polymerase chain reaction device for disease detection

Also Published As

Publication number Publication date
TW201211533A (en) 2012-03-16
TW201219115A (en) 2012-05-16
TW201209404A (en) 2012-03-01
TW201211532A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201211242A (en) 2012-03-16
TW201209407A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201209158A (en) 2012-03-01
TW201211241A (en) 2012-03-16
TW201209405A (en) 2012-03-01
TW201211534A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201209403A (en) 2012-03-01
TW201219776A (en) 2012-05-16
TW201211539A (en) 2012-03-16
TW201211538A (en) 2012-03-16
TW201211240A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201211243A (en) 2012-03-16
TW201219770A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
TW201209406A (en) Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
US8394339B2 (en) LOC device with on-chip semiconductor controlled incubation section
CN105004596B (en) Instrument and method for the sample preparation of integration, reaction and detection
KR20170016915A (en) Microfluidic cartridges and apparatus with integrated assay controls for analysis of nucleic acids