TW201211532A - LOC device with parallel incubation and parallel DNA and RNA amplification functionality - Google Patents

LOC device with parallel incubation and parallel DNA and RNA amplification functionality Download PDF

Info

Publication number
TW201211532A
TW201211532A TW100119238A TW100119238A TW201211532A TW 201211532 A TW201211532 A TW 201211532A TW 100119238 A TW100119238 A TW 100119238A TW 100119238 A TW100119238 A TW 100119238A TW 201211532 A TW201211532 A TW 201211532A
Authority
TW
Taiwan
Prior art keywords
nucleic acid
pcr
hybridization
amplification
acid amplification
Prior art date
Application number
TW100119238A
Other languages
Chinese (zh)
Inventor
Geoffrey Richard Facer
Kia Silverbrook
Mehdi Azimi
Original Assignee
Geneasys Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46552736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201211532(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Geneasys Pty Ltd filed Critical Geneasys Pty Ltd
Publication of TW201211532A publication Critical patent/TW201211532A/en

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A lab-on-a-chip (LOC) device for genetic analysis of a biological sample, the LOC device having an inlet for receiving the sample containing genetic material including DNA and RNA, a supporting substrate, a plurality of reagent reservoirs, a first incubation section, the first incubation section being in fluid communication with one of the reagent reservoirs containing enzymes for enzymatic reaction with the genetic material, a second incubation section, the second incubation section being in fluid communication with one of the reagent reservoirs containing enzymes for enzymatic reaction with the genetic material in parallel with the first incubation section, a first nucleic acid amplification section downstream of the first incubation section for amplifying at least some of the genetic material, and, a second nucleic acid amplification section downstream of the second incubation section for amplifying at least some of the genetic material in parallel with the first nucleic acid amplification section, wherein, the first incubation section, the second incubation section, the first nucleic acid amplification section and the second nucleic acid amplification section are all supported on the supporting substrate.

Description

201211532 六、發明說明 【發明所屬之技術領域】 本發明關於使用微系統技術(MST)之診斷裝置。特別 是本發明關於用於分子診斷之微流體和生化之處理及分 析。 【先前技術】 φ 分子診斷已用於:可於病徵顯現之前,提供早期疾病 檢測預示之領域。分子診斷試驗係用於檢測: •遺傳病症 •後天病症 •傳染性疾病 •與健康有關情況之基因易致病因素 因高準確度及快速處理時間,分子診斷試驗得以減少 無效健康照護的發生、增進病患預後(patient outcome)、 φ 改進疾病管理及個體化患者照護。分子診斷的許多技術係 基於自生物樣本(諸如血液或唾液)萃取及擴增之特定核酸 (去氧核糖核酸(DNA)以及核酸核酸(RNA)兩者)的檢測及 辨識。核酸鹼基的互補特徵使得經合成DNA(寡核苷酸)短 序列結合(雜交)至用於核酸試驗之特定核酸序列。若發生 雜交,則互補序列存在於樣本中。此使得例如預測個人未 來會得到的疾病、判定感染性病原體的種類及致病性,或 判定個人對藥物的反應成爲可能。 201211532 以核酸爲基礎之分子診斷試驗 以核酸爲基之試驗具有四個獨立步驟: 1. 樣本製備 2. 核酸萃取 3. 核酸擴增(選用的) 4. 檢測 許多樣本類型,諸如血液、尿液、痰和組織樣本,係 用於基因分析。診斷試驗判定所需的樣本類型,因並非所 有樣本代表疾病進程。這些樣本具有各種組分,但通常只 有其中之一受到關注。例如,在血液中,高濃度的紅血球 可抑制致病微生物的檢測。因此,於核酸試驗開始時經常 需要純化及/或濃縮步驟。 血液爲較常請求的樣本類型之一。其具有三種主要組 分:白血球、紅血球及血栓細胞(血小板)。血栓細胞促進 凝集且在體外維持活性。爲抑制凝聚作用,在純化及濃縮 之前令試樣與諸如乙二胺四乙酸(EDTA)之試劑混合。通 常自樣本移除紅血球以濃縮標靶細胞。在人體中,紅血球 佔細胞物質之約99%,但其不帶有DNA因彼不具細胞 核。此外,紅血球含有諸如血紅素之可能干擾下游核酸擴 增程序(描述於下)的成分。可藉由差示(differentially)溶 胞於溶胞溶液中之紅血球來移除紅血球,而留下剩餘的完 整細胞物質,其可接著使用離心而與樣本分離。此提供自 其萃取核酸之濃縮標靶細胞。 用於萃取核酸之確切規程(protocol)取決於樣本及待 201211532 實施之診斷分桥。例如,用於萃取病毒RNA之規程與用 於萃取基因組DNA之規程相當不同。然而,自標靶細胞 萃取核酸通常包含細胞溶胞步驟及接續的核酸純化。細胞 溶胞步驟使細胞及細胞核膜破裂,而釋放出遺傳物質。此 經常使用溶胞清潔劑來完成,溶胞清潔劑係諸如十二烷基 硫酸鈉,其亦使存在於細胞中之大量蛋白質變性* 接著於清洗之前在高濃度的離液鹽(chaotropic salt) $ 存在下,通常於分餾塔中的氧化矽基質、樹脂或順磁性珠 上,以酒精〔通常爲冰乙醇或異丙醇〕沉澱步驟,或是經 由固相純化步驟純化核酸,接著以低離子強度緩衝液進行 洗提。核酸沉澱之前之任意的步驟爲添加剪切蛋白質之蛋 白酶,以進一步純化樣本。 其他的溶胞方法包括經由超聲振動之機械式溶胞以及 .將樣本加熱至94°C以破壞細胞膜之熱溶胞。 標靶DNA或RNA可以極小量存在於經萃取之物質 φ 中,尤其是若標靶來自致病性來源。核酸擴增提供選擇性 擴增(即,複製)特定標靶(就可檢測程度而言爲低濃度者) 的能力。 最常使用之核酸擴增技術爲聚合酶鏈反應(PCR)。 PCR係業界已知悉,以及於E. van Pelt-Verkuil等人之 Principles and Technical Aspects of PCR Amplification, Springer,2008中提供此類反應之綜合理解性描述。 PCR爲有用的技術,其相對複雜DNA背景而擴增標 靶DNA序列。若欲(藉由PCR)擴增RNA,則首先必須使 201211532 用名爲反轉錄酶之酵素將之轉錄爲cDNA(互補DNA)。隨 後,藉由PCR擴增得到的cdNA。 PCR爲指數型方法,只要維持反應的條件爲可接受的 則其可繼續進行。反應之成分爲:201211532 VI. Description of the Invention [Technical Field of the Invention] The present invention relates to a diagnostic apparatus using microsystem technology (MST). In particular, the present invention relates to the processing and analysis of microfluidics and biochemicals for molecular diagnostics. [Prior Art] φ molecular diagnostics have been used to provide an early indication of disease detection before the onset of symptoms. Molecular diagnostic tests are used to detect: • genetic disorders • acquired diseases • infectious diseases • genes associated with health-related genetic factors due to high accuracy and rapid processing time, molecular diagnostic tests can reduce the occurrence and improvement of ineffective health care Patient outcome, φ improved disease management and individualized patient care. Many techniques for molecular diagnostics are based on the detection and identification of specific nucleic acids (both DNA and nucleic acid (RNA)) extracted and amplified from biological samples such as blood or saliva. The complementary nature of the nucleobase allows for the binding (hybridization) of the synthetic DNA (oligonucleotide) short sequence to the particular nucleic acid sequence used for the nucleic acid assay. If hybridization occurs, the complementary sequence is present in the sample. This makes it possible, for example, to predict the disease that the individual will get in the future, to determine the type and pathogenicity of the infectious pathogen, or to determine the individual's response to the drug. 201211532 Nucleic Acid-Based Molecular Diagnostic Tests Nucleic acid-based assays have four separate steps: 1. Sample preparation 2. Nucleic acid extraction 3. Nucleic acid amplification (optional) 4. Detection of many sample types, such as blood, urine , sputum and tissue samples are used for genetic analysis. Diagnostic tests determine the type of sample required, as not all samples represent disease progression. These samples have various components, but usually only one of them is of interest. For example, in the blood, high concentrations of red blood cells can inhibit the detection of pathogenic microorganisms. Therefore, purification and/or concentration steps are often required at the beginning of a nucleic acid assay. Blood is one of the more frequently requested sample types. It has three main components: white blood cells, red blood cells, and thrombocytes (platelets). Thrombotic cells promote agglutination and maintain activity in vitro. To inhibit coacervation, the sample is mixed with a reagent such as ethylenediaminetetraacetic acid (EDTA) prior to purification and concentration. Red blood cells are typically removed from the sample to concentrate the target cells. In the human body, red blood cells account for about 99% of the cellular material, but they do not carry DNA because they do not have a nucleus. In addition, red blood cells contain components such as heme that may interfere with downstream nucleic acid amplification procedures (described below). The red blood cells can be removed by differentially lysing the red blood cells in the lysis solution, leaving the remaining intact cellular material, which can then be separated from the sample using centrifugation. This provides a concentrated target cell from which the nucleic acid is extracted. The exact protocol used to extract the nucleic acid depends on the sample and the diagnostic bridge to be implemented by 201211532. For example, the protocol used to extract viral RNA is quite different from the protocol used to extract genomic DNA. However, self-targeting cell extraction of nucleic acids typically involves a cell lysis step followed by subsequent nucleic acid purification. The cell lysis step ruptures the cell and nuclear membrane and releases the genetic material. This is often done using a lysing detergent such as sodium lauryl sulfate, which also denatures a large amount of protein present in the cell* followed by a high concentration of chaotropic salt prior to washing. In the presence of a low-ion ion, usually in a cerium oxide matrix, resin or paramagnetic beads in a fractionation column, in an alcohol (usually ice ethanol or isopropanol) precipitation step, or via a solid phase purification step, followed by a low ion The strength buffer is eluted. Any step prior to precipitation of the nucleic acid is the addition of a protein-cleaving proteinase to further purify the sample. Other lysis methods include mechanical lysis via ultrasonic vibration and heating of the sample to 94 °C to disrupt thermal lysis of the cell membrane. Target DNA or RNA can be present in the extracted material φ in very small amounts, especially if the target is from a pathogenic source. Nucleic acid amplification provides the ability to selectively amplify (i.e., replicate) a particular target (in the case of a low concentration in terms of detectability). The most commonly used nucleic acid amplification technique is the polymerase chain reaction (PCR). The PCR is known in the art and provides a comprehensive and comprehensible description of such reactions in E. van Pelt-Verkuil et al., Principles and Technical Aspects of PCR Amplification, Springer, 2008. PCR is a useful technique for amplifying a target DNA sequence relative to a complex DNA background. If RNA is to be amplified (by PCR), it is first necessary to transcribe 201211532 into cDNA (complementary DNA) using an enzyme called reverse transcriptase. Subsequently, the obtained cdNA was amplified by PCR. PCR is an exponential method which can be continued as long as the conditions for maintaining the reaction are acceptable. The composition of the reaction is:

1·引子對-具有約10-30個與毗鄰(flanking)標 靶序列區互補之核苷酸的短單股DNA 2. DNA聚合酶-合成DNA之熱穩定性酶 3. 去氧核糖核苷三磷酸(dNTP)-提供整合至新合 成之DNA股之核苷酸 4. 緩衝液-提供DNA合成之最佳化學環境 PCR —般包含將這些反應物置於含有經萃取之核酸的 小管(〜10-50微升)。將管放置於熱循環器(thermal cycler) 中;一種令反應經受一連串不等量時間之不同溫度的儀 器。各熱循環的標準規程包括變性相、黏著相及延伸相。 延伸相有時代表引子延伸相。除了此三-步驟規程外,可 採用二-步驟熱規程,於其中黏著及延伸相合倂。變性相 —般包含將反應溫度升溫至90-95 °C以使DNA股變性; 於黏著相中,將溫度降低至~5 0-60 °C以供引子黏著;接著 於延伸相中,將溫度升溫至最佳DNA聚合酶活性溫度60-72°C,以供引子延伸。此方法重複循環約20-40次,最終 結果爲產生數百萬拷貝之引子間的標靶序列。 已發展出用於分子診斷之許多標準PCR規程之變 體,其中包括諸如多引子組PCR,連接子-帶頭(linker-primed)PCR、直接 PCR、重複序列(tandem)PCR、即時 201211532 PCR以及反轉錄酶PCR。 多引子組PCR使用單一PCR混合物中之多重引子組 以產生對不同DNA序列具特異性之不同大小之擴增子。 藉由一次標靶多個基因,由單一試驗可得到額外的資訊 (以其他方式則需要數次試驗)。最佳化多引子組PCR更爲 困難,因其需要選取具近似黏著溫度之引子及具近似長度 與鹼基組成之擴增子以確保各擴增子之擴增效率相等。 連接子-帶頭(linker-primed)PCR,又稱爲接合接合子 (ligation adaptor)PCR,爲用於致能複雜DNA混合物中實 質上所有DNA序列之核酸擴增的方法,而不需要標靶-特 異性引子。此方法首先以合適的限制性內核酸酶(酵素)來 剪切(digest)標靶DNA群體。使用接合酶酵素,具有合適 的懸伸(overhanging)端之雙股寡核苷酸連接子(亦稱爲接 合子)接著與標靶DNA片段之端子接合。接下來使用對連 接子序列具有特異性之寡核苷酸引子實施核酸擴增。藉 此,可擴增毗鄰連接子寡核苷酸之DNA來源的所有片 段。 直接PCR描述一種直接於樣本上實施PCR而不需要 任何核酸萃取(或最少核酸萃取)之系統。長久以來認爲, PCR反應受到存在於未純化的生物樣本中之許多成分的抑 制,諸如血液中的原血紅素成分。傳統上,於製備反應混 合物之前,P c R需要加強純化標靶核酸。然而,利用化學 性質的適當變化及樣本濃縮,可以最少化DNA純化而進 行PCR或進行直接PCR。用於直接PCR之PCR化學性質 201211532 的調整包括加強緩衝液強度、使用高活性及進行性 (processivity)之聚合酶及與潛在聚合酶抑制劑蜜合之添加 物。 重複序列P C R利用兩次獨立的核酸擴增以增進擴增 正確擴增子的機率。重複序列 PCR中的一類型爲巢式 PCR,其中使用兩對PCR引子’以於分別的核酸擴增進行 單一基因座擴增。第一對引子與標靶核酸序列外部區域的 核酸序列雜交。第二次擴增中所使用的第二對引子(巢式 引子)結合於第一 PCR產物中並且產生含有標靶核酸的第 二PCR產物(較第一 PCR產物爲短)。此策略所運用的論 理爲:若於第一次核酸擴增期間因失誤而擴增錯誤的基因 座,由第二對引子再次擴增錯誤的基因座的機率非常低, 因此確保了特異性。 使用即時PCR或定量PCR以即時量測PCR產物之 量。藉使用含有螢光團之探針或螢光染料以及反應中的一 套參考標準,可測定樣本中之核酸的最初含量。此特別有 用於分子診斷,其中治療選擇可能取決於樣本中所載病原 體而有所不同。 反轉錄酶PCR(RT-PCR)係用於自RNA來擴增DNA。 反轉錄酶爲將RNA反轉錄成互補DNA(cDNA)之酵素,接 著藉由PCR擴增cDNA。RT-PCR廣泛地用於表現型態 (expression profiling)以判定基因的表現或辨識RNA轉錄 本(包括轉錄起始及終止位址)之序列。其亦用於擴增RN A 病毒,諸如人類免疫缺乏病毒或C型肝炎病毒。 -10- 201211532 恆溫擴增爲另一種類型的核酸擴增,其不依靠擴增反 應期間之標靶DNA的熱變性,因此不需要複雜的機械。 恆溫核酸擴增方法可因此原始位置進行或於實驗室環境外 易於被操作。包括股取代擴增(Strand Displacement Amplification)、轉錄介導擴增(Transcription Mediated Amplification)、依賴核酸序列擴增(Nucleic Acid Sequence Based Amplification)、重組酵素聚合酶擴增 ^ (Recombinase P o 1 ymerase Amp 1 ificatiοn)、滾動循環擴增 (Rolling Circle Amplification)、分枝型擴增(Ramification Amplification)、解旋恒溫 DNA 擴增(Helicase-Dependent Isothermal DNA Amplification)及環形恒溫擴增(Loop-Mediated Isothermal Amplification) 之 —些恆溫核酸擴增 方法已被敘述。 恆溫核酸擴增法不依賴模板DNA之持續加熱變性來 產生作爲進一步擴增之模板的單股分子,而是依賴諸如於 φ 常溫下藉由特異性限制內核酸酶之DMA分子的酵素性切 割,或是利用酵素分開DNA股之其他方法。 股取代擴增(SDA)依賴特定限制性酵素的能力以切割 半修飾(hemi-modified)DNA之未經修飾股,及5’-3’外核 酸酶-缺乏之聚合酶的能力以延伸並取代下游股。然後藉 由偶合義(sense)與反義(antisense)反應而達成指數性核酸 擴增,其中來自義反應之股取代作爲反義反應之模板。使 用不以慣例方式切割DN A而是於DN A之一股上產生切口 之切口酶(諸如N. Alwl,N. BstNBl及Mlyl)係有用於此 -11 - 201211532 反應。藉使用熱穩定限制性酵素W να 1 )及熱穩定性外-聚 合酶聚合酶)之組合已改進SDA。此組合顯現出使反 應的擴增效率由1 08倍擴增增加至1 〇1 ^倍擴增,以致可使 用此技術來擴增獨特的單拷貝分子。 轉錄介導擴增(ΤΜΑ)及依賴核酸序列擴增(NASBA)使 用 RNA聚合酶以複製 RNA 序列而非對應之基因組 DNA。此技術使用兩種引子及兩或三種酵素、RNA聚合 酶、反轉錄酶及任意的RNase Η(若反轉錄酶不具有Rnase 活性)。一種引子含有供RNA聚合酶之啓動子序列。在核 酸擴增的第一步驟中,此引子於限定的位置與標靶核糖體 RNA(rRNA)雜交。藉由自啓動子弓丨子的3’端開始延伸,反 轉錄酶產生標靶rRNA之DNA拷貝。若存在另外的RNase Η,則所得的RNA : DNA雙股中的RNA經由反轉錄酶之 Rnase活性而被分解。接著,第二引子結合至 DNA拷 貝。藉反轉錄酶自此引子的末端合成新的DNA股而產生 雙股DNA分子。RNA聚合酶辨識DNA模板中的啓動子序 列,並開始轉錄。各個新合成的RNA擴增子再進入過程 中並作爲新的複製之模板。 於重組酵素聚合酶擴增(RPA)中,藉結合相對的寡核 苷酸引子至模板DNA並且由DNA聚合酶將之延伸而達成 特定DNA片段之恆溫擴增。變性雙股DNA(dsDNA)模板 不需要熱。反之,RPA利用重組酵素-引子錯合物來掃描 dsDNA及促進同源(cognate)位置處的股交換。藉由單股 DNA結合蛋白與經取代模板股的交互作用來穩定所得到 201211532 的結構,因此防止引子因分支遷移而放出。重組酵素分解 離開可爲股取代DNA聚合酶(諸如Pol I (hw)的大片段)所接近之寡核苷酸的3'端,且引子接著開 始延伸。藉循環重複此步驟而達到指數性核酸擴增。 解旋酶擴增(HDA)模擬活體內系統,於活體內系統中 使用DNA解旋酶來產生用於引子雜交之單股模板並接著 以DNA聚合酶延伸引子。於HDA反應的第一步驟中,解 旋酶穿過標靶DNA,破壞聯結兩股的氫鍵,此二股隨後 由單股結合蛋白所結合。由解旋酶所暴露之單股標靶區域 使引子得以黏著。DN A聚合酶使用自由的去氧核糖核苷 三磷酸(dNTP)以接著延伸各引子的3’端,以產生兩個 DNA複製(replicate)。兩個複製的dsDNA股獨立地進入 下一個HDA循環,造成標靶序列之指數性核酸擴增。 其他的基於DNA之恆溫技術包括滾動循環擴增 (RCA),於其中DNA聚合酶繞環狀DNA模板持續地^伸 引子而產生由許多環狀重複拷貝所組成之長的DNA產 物》藉由終止反應,聚合酶產生數千拷貝之環狀模板,其 具有栓繫至原始標靶DNA的拷貝鏈。此致使標靶之空間 解析度及訊號之快速核酸擴增。於1小時內至多可產生 1012拷貝之模板。分枝型擴增爲RCA之變體,並利用封 閉的環狀探針(C-探針)或扣鎖探針及具高進行性之DNA 聚合酶,以於常溫情況下指數地擴增C-探針。 環形恆溫擴增(LAMP)提供高選擇性且利用〇ΝΑ聚合 酶及含有四個特別設計的引子之引子組,引子組辨識標祀 -13- 201211532 DNA上總共六個不同的序列。含有標靶DNA之義股及反 義股序列的內引子起始LAMP。由外引子引發之後續股取 代DNA合成釋出單股DNA。 此作爲由第二內及外引子 所引發之DNA合成的模板,第二內及外引子與標靶之另 一端雜交,產生莖-環(stem-loop)DNA結構。於接續的 LAMP循環中,內引子與產物上的環形雜交並起始取代 DN A合成,產生原始莖-環DN A及具有兩倍莖長度之新 莖-環DNA。於少於一小時內持續循環反應而聚積109拷 貝之標靶。最終產物爲具有數個反相重複標靶之莖-環 DNA,以及具有多個環形(交替黏著相同股中之反相重複 標靶所形成)之花椰菜狀結構。 於完成核酸擴增之後,必須分析擴增的產物以判定是 否產生預期的擴增子(標靶核酸之擴增量)。分析產物的方 法有透過膠體電泳簡單測定擴增子的大小、使用DNA雜 交以識別擴增子之核苷酸組成。 膠體電泳爲檢查核酸擴增步驟使否產生預期之擴增子 之最簡單方式之一。膠體電泳利用施加至膠體基質之電場 來分離DNA片段。帶負電的DNA片段將以不同速率(主 要取決於其大小)移動通過基質。於電泳完成之後,可染 色膠體中的片段使其成爲可見。於UV光下發蜜光之溴化 乙菲錠爲最常用的染劑。 藉由與DNA大小標記(DNA標準片段(DNA ladder)) 相比較來判定片段的大小,DNA大小標記含有已知大小 的DNA片段,其與擴增子一同跑膠。因寡核苷酸引子結 201211532 合至毗鄰標靶DNA之特定位置,經擴增之產物的大小可 被預測且以膠體上已知大小的帶被檢測。爲確認擴增子爲 何或若產生數種擴增子時,常利用DNA探針與擴增子雜 交。 DNA雜交意指藉由互補鹼基配對而形成雙股DNA。 用於特定擴增產物之正面識別的DNA雜交需使用長度爲 約20個核苷酸的DNA探針。若探針具有與擴增子(標 靶)DNA序列互補的序列,則雜交將於有利的溫度、pH及1. Primer pair - a short single strand of DNA having about 10-30 nucleotides complementary to the flanking target sequence region 2. DNA polymerase-synthesis DNA thermostable enzyme 3. Deoxyribonucleoside Triphosphate (dNTP) - provides nucleotides integrated into newly synthesized DNA strands. 4. Buffer - the best chemical environment for DNA synthesis. PCR generally involves placing these reagents in small tubes containing extracted nucleic acids (~10 -50 microliters). The tube is placed in a thermal cycler; an instrument that subjects the reaction to a series of different temperatures for varying amounts of time. Standard procedures for each thermal cycle include the denatured phase, the adhesive phase, and the extended phase. The extension phase sometimes represents the primer extension phase. In addition to this three-step procedure, a two-step thermal procedure can be employed in which the adhesion and extension are combined. The denatured phase generally involves heating the reaction temperature to 90-95 ° C to denature the DNA strand; in the adhesive phase, the temperature is lowered to ~50-60 °C for adhesion of the primer; then in the extended phase, the temperature is applied. Warm up to an optimal DNA polymerase activity temperature of 60-72 ° C for extension of the primer. This method repeats the cycle for about 20-40 times, with the end result being a target sequence between the millions of copies of the primer. Variants of many standard PCR protocols for molecular diagnostics have been developed, including, for example, multiple primer set PCR, linker-primed PCR, direct PCR, tandem PCR, instant 201211532 PCR, and anti- Transcriptase PCR. Multiple primer set PCR uses multiple primer sets in a single PCR mix to generate different sizes of amplicons specific for different DNA sequences. Additional information can be obtained from a single trial by targeting multiple genes at once (in other ways, several trials are required). It is more difficult to optimize multi-primer PCR because it requires the selection of primers with approximate adhesion temperature and amplicon with approximate length and base composition to ensure equal amplification efficiency of each amplicon. Linker-primed PCR, also known as ligation adaptor PCR, is a method for enabling nucleic acid amplification of virtually all DNA sequences in complex DNA mixtures without the need for targets - Specific primers. This method first digests the target DNA population with a suitable restriction endonuclease (enzyme). Using a zymase enzyme, a double stranded oligonucleotide linker (also known as an adaptor) with a suitable overhanging end is then ligated to the terminal of the target DNA fragment. Nucleic acid amplification is next carried out using oligonucleotide primers specific for the linker sequence. Thereby, all fragments of the DNA source adjacent to the linker oligonucleotide can be amplified. Direct PCR describes a system that performs PCR directly on a sample without any nucleic acid extraction (or minimal nucleic acid extraction). It has long been believed that PCR reactions are inhibited by many components present in unpurified biological samples, such as the protohemoglobin component in the blood. Traditionally, P c R requires enhanced purification of the target nucleic acid prior to preparation of the reaction mixture. However, with appropriate changes in chemical properties and sample concentration, PCR can be performed to minimize PCR purification or direct PCR. PCR chemistry for direct PCR The adjustments for 201211532 include enhancement of buffer strength, use of high activity and processivity polymerases, and additions to potential polymerase inhibitors. The repeat sequence P C R utilizes two independent nucleic acid amplifications to increase the probability of amplifying the correct amplicon. One type of repeat sequence PCR is nested PCR in which two pairs of PCR primers are used to perform single locus amplification for separate nucleic acid amplification. The first pair of primers hybridize to the nucleic acid sequence of the outer region of the target nucleic acid sequence. The second pair of primers (nested primers) used in the second amplification binds to the first PCR product and produces a second PCR product (short in the first PCR product) containing the target nucleic acid. The rationale used in this strategy is that if the wrong locus is amplified due to a mistake during the first nucleic acid amplification, the probability of re-amplifying the wrong locus by the second pair of primers is very low, thus ensuring specificity. The amount of PCR product was measured in real time using either real-time PCR or quantitative PCR. The initial amount of nucleic acid in the sample can be determined by using a probe containing a fluorophore or a fluorescent dye and a set of reference standards in the reaction. This is especially useful for molecular diagnostics where treatment options may vary depending on the pathogen contained in the sample. Reverse transcriptase PCR (RT-PCR) is used to amplify DNA from RNA. The reverse transcriptase is an enzyme that reverse transcribes RNA into complementary DNA (cDNA), and then cDNA is amplified by PCR. RT-PCR is widely used in expression profiling to determine the expression of a gene or to identify sequences of RNA transcripts, including transcription initiation and termination sites. It is also used to amplify RN A viruses, such as human immunodeficiency virus or hepatitis C virus. -10- 201211532 Constant temperature amplification is another type of nucleic acid amplification that does not rely on thermal denaturation of the target DNA during the amplification reaction, and thus does not require complicated machinery. The thermostatic nucleic acid amplification method can be performed at the original location or easily outside the laboratory environment. Including Strand Displacement Amplification, Transcription Mediated Amplification, Nucleic Acid Sequence Based Amplification, Recombinase P o 1 ymerase Amp 1 Ificatiοn), Rolling Circle Amplification, Ramification Amplification, Helicase-Dependent Isothermal DNA Amplification, and Loop-Mediated Isothermal Amplification Some constant temperature nucleic acid amplification methods have been described. The thermostatic nucleic acid amplification method does not rely on the continuous heat denaturation of the template DNA to produce a single-stranded molecule as a template for further amplification, but relies on an enzymatic cleavage such as DMA at a normal temperature by specifically limiting the internal nuclease. Or other methods of using enzymes to separate DNA strands. The ability of strand-substituted amplification (SDA) to rely on specific restriction enzymes to cleave unmodified strands of hemi-modified DNA, and 5'-3' exonuclease-deficient polymerases to extend and replace Downstream stocks. An exponential nucleic acid amplification is then achieved by a reaction between the sense and the antisense, wherein the strand of the sense reaction is substituted as a template for the antisense reaction. A nicking enzyme (such as N. Alwl, N. BstNBl and Mlyl) which produces a nick on one of the DN A strands without using a conventional method of cutting DN A is useful for this -11 - 201211532 reaction. SDA has been improved by the combination of heat stable restriction enzyme W να 1 ) and thermostable exo-polymerase polymerase. This combination appears to increase the amplification efficiency of the reaction from 1 08-fold amplification to 1 〇 1 ^ amplification, so that this technique can be used to amplify unique single-copy molecules. Transcription-mediated amplification (ΤΜΑ) and nucleic acid sequence-dependent amplification (NASBA) use RNA polymerase to replicate RNA sequences rather than corresponding genomic DNA. This technique uses two primers and two or three enzymes, an RNA polymerase, a reverse transcriptase, and any RNase Η (if the reverse transcriptase does not have Rnase activity). One primer contains a promoter sequence for RNA polymerase. In the first step of nucleic acid amplification, the primer hybridizes to the target ribosomal RNA (rRNA) at a defined location. The reverse transcriptase produces a DNA copy of the target rRNA by extension from the 3' end of the promoter scorpion. If another RNase is present, the RNA in the obtained RNA:DNA double strand is decomposed by the Rnase activity of the reverse transcriptase. Next, the second primer is bound to the DNA copy. A double-stranded DNA molecule is produced by synthesizing a new DNA strand from the end of the primer by reverse transcriptase. RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription. Each newly synthesized RNA amplicon re-enters the process and serves as a template for new replication. In recombinant enzyme polymerase amplification (RPA), constant temperature amplification of a specific DNA fragment is achieved by binding a relative oligonucleotide primer to the template DNA and extending it by a DNA polymerase. Denatured double-stranded DNA (dsDNA) templates do not require heat. In contrast, RPA uses recombinant enzyme-primer complexes to scan dsDNA and promote share exchange at cognate locations. The structure of the 201211532 obtained is stabilized by the interaction of the single-stranded DNA-binding protein with the substituted template strand, thus preventing the primer from being released due to branch migration. The recombinant enzyme decomposes off the 3' end of the oligonucleotide which is adjacent to the DNA polymerase (such as a large fragment of Pol I (hw)), and the primer then begins to extend. This step is repeated by cycling to achieve exponential nucleic acid amplification. Helicase amplification (HDA) mimics the in vivo system, using DNA helicase in an in vivo system to generate a single strand template for primer hybridization and then extending the primer with a DNA polymerase. In the first step of the HDA reaction, the helicase traverses the target DNA, destroying the hydrogen bonds that bind the two strands, which are then bound by a single strand of binding protein. The single-strand target region exposed by the helicase allows the primer to adhere. DN A polymerase uses free deoxyribonucleoside triphosphate (dNTP) to subsequently extend the 3' end of each primer to create two DNA replicas. The two replicated dsDNA strands independently enter the next HDA cycle, resulting in exponential nucleic acid amplification of the target sequence. Other DNA-based thermostating techniques include rolling-cycle amplification (RCA), in which DNA polymerases continue to extend the primer around a circular DNA template to produce a long DNA product consisting of a number of circular repeats. In response, the polymerase produces thousands of copies of a circular template with a copy strand tethered to the original target DNA. This results in a rapid nucleic acid amplification of the spatial resolution of the target and the signal. A template of up to 1012 copies can be produced in one hour. Branched amplification is a variant of RCA and uses a closed circular probe (C-probe) or a latching probe and a highly progressive DNA polymerase to exponentially amplify C at ambient temperature - Probe. Circular Amplified Amplification (LAMP) provides high selectivity and utilizes a sputum polymerase and a primer set containing four specially designed primers. The primer set identifies a total of six different sequences on the standard -13-201211532 DNA. The inner primer, which contains the sense strand of the target DNA and the antisense strand sequence, initiates the LAMP. The subsequent strand-derived DNA synthesis initiated by the external primer releases a single strand of DNA. This serves as a template for DNA synthesis initiated by the second internal and external primers, and the second inner and outer primers hybridize to the other end of the target to produce a stem-loop DNA structure. In the subsequent LAMP cycle, the inner primer hybridizes to the loop on the product and initiates the replacement of DN A synthesis, yielding the original stem-loop DN A and the new stem-loop DNA with twice the stem length. The cycle was continued for less than one hour to accumulate 109 copies of the target. The final product is stem-loop DNA with several inverted repeat targets, and a broccoli-like structure with a plurality of loops (formed alternately with inverted repeat targets in the same strand). After completion of the nucleic acid amplification, the amplified product must be analyzed to determine whether the expected amplicon (amplification amount of the target nucleic acid) is produced. The method of analyzing the product is to simply measure the size of the amplicon by colloidal electrophoresis and use DNA hybridization to identify the nucleotide composition of the amplicon. Colloidal electrophoresis is one of the simplest ways to check the nucleic acid amplification step to produce the desired amplicon. Colloidal electrophoresis utilizes an electric field applied to a colloidal matrix to separate DNA fragments. Negatively charged DNA fragments will move through the matrix at different rates (mainly depending on their size). After the electrophoresis is completed, the fragments in the colloid can be made visible. Bromination of honey under UV light Ethylene phenanthrene ingot is the most commonly used dye. The size of the fragment is determined by comparison with a DNA size marker (DNA ladder) which contains a DNA fragment of a known size which is run along with the amplicon. Due to the integration of the oligonucleotide primer junction 201211532 to a specific location adjacent to the target DNA, the size of the amplified product can be predicted and detected as a band of known size on the colloid. In order to confirm whether an amplicon or a plurality of amplicons are generated, a DNA probe is often used to hybridize with an amplicon. DNA hybridization means the formation of double-stranded DNA by complementary base pairing. DNA hybridization for the positive recognition of a particular amplification product requires the use of a DNA probe of about 20 nucleotides in length. If the probe has a sequence complementary to the amplicon (target) DNA sequence, the hybridization will be at a favorable temperature, pH and

W 離子濃度條件下發生。若發生雜交,則表示關注的基因或 DNA序列出現於原始樣本中。 光學檢測爲最常見之檢測雜交的方法。標記擴增子或 是探針以經由發螢光或電致化學發光而發光。這些方法之 引發產光部分之激發態的方式不同,但兩者同樣致能核苷 酸股之共價標記。於電致化學發光(ECL),當以電流刺激 時,由發光團分子或錯合物產生光。於發螢光時,以造成 φ 發射之激發光來發光。 使用發光源以檢測螢光,發光源提供波長爲螢光分子 吸收之激發光以及檢測單元。檢測單元包含光感測器(諸 如光電倍增管或電荷耦合裝置(CCD)陣列)以檢測發射的訊 號,以及防止激發光被包含於光感測器輸出之機構(諸如 波長-選擇濾波器)。回應激發光,螢光分子發射斯托克斯 位移(Stokes-shifted)光,以及此發射的光由檢測單元收 集。托克斯位移爲發射的光與吸收的激發光之間之頻率差 或波長差。 -15- 201211532 使用光感測器來檢測E C L發射,光感測器對於所採 用之E C L種類之發射波長爲敏感。例如,過渡金屬配位 錯合物發射可見波長的光,因而採用傳統光二極體及 .CCD作爲光感測器。ECL之優勢爲,若排除周圍光線, ECL發射可爲檢測系統中唯一存在的光,因而增進靈敏 度。 微陣列使數十萬的D N A雜交試驗得以同時進行。微 陣列爲有用的分子診斷工具,其可篩檢數千種遺傳疾病或 於單一試驗中檢測是否存在數種感染性病原體。微陣列由 許多不同的固定於基板上且成點狀之DNA探針所組成。 首先以螢光或發光分子標記標靶DNA(擴增子)(於核酸擴 增期間或之後),然後將其施加至探針陣列。於經控制的 溫度下、潮濕的環境中培養微陣列數小時或數天,此時探 針及擴增子之間發生雜交。於培養後,必須以一連串緩衝 液清洗微陣列以移除未經結合股。一旦清洗後,以氣流 (通常爲氮)乾燥微陣列表面。雜交及清洗的嚴格度很重 要。不夠嚴格可能導致高度非特異性結合。過度嚴格可能 導致無法適當進行結合而造成減低的靈敏度。藉由檢測來 自經標記之與互補探針形成雜交的擴增子之光發射而辨識 雜交。 使用微陣列掃描器檢測來自微陣列的螢光,微陣列掃 描器通常爲經電腦控制的反相掃描式螢光共軛焦顯微鏡, 其一般使用激發螢光染料的雷射及光感測器(諸如光電倍 增管或CCD)以檢測發射的訊號。螢光分子發射經下轉換 201211532 的光(如上述),而光被檢測單元收集。 發射的螢光必須被收集、與未經吸收的激發波長分 離’並被傳送至檢測器。於微陣列掃描器中常使用共軛焦 配置以藉由位於影像平面的共軛焦針孔來刪除失焦資訊。 此使得僅檢測光的聚焦部分。防止於物之焦點平面之上方 或下方的光進入檢測器,藉此增加訊號對雜訊比。檢測器 將經檢測的螢光光子轉換成電能,電能並接著被轉換成數 位訊號。此數位訊號轉變成代表來自給定像素之螢光強度 的數字。陣列的各特徵係由一或多個此像素所構成。掃描 的最終結果爲陣列表面影像。由於已知微陣列上每一個探 針的確切序列及位置,因此可同時識別及分析雜交的標靶 序列。 可於下列找到更多有關螢光探針之資訊: http : //www.premierbiosoft.com/tech_notes/FRET_probe.html 以及 http : //www.invitrogen.com/site/us/en/home/References/Molecular-probes-The-Handbook/Technical-Notes-and-product-Hi 幽 ights/Fluorescence-Resonance-Energy-Transfer-FRET.html 就地醫護分子診斷 儘管分子診斷試驗提供了優勢,臨床檢驗中此類型試 驗的成長不如預期且仍僅占檢驗醫學之實施的小部分。此 主要歸因於,與基於非關核酸方法之試驗相比,核酸試驗 相關之複雜度與成本。分子診斷試驗之於臨床處理的廣泛 適用性係與可顯著降低成本、提供自始(樣本處理)至終 -17- 201211532 (產生結果)之快速及自動化分析,以及不需大量人爲操作 之儀器發展息息相關。 用於醫師診所、鄰近的或基於使用者的醫院、家中之 就地醫護技術提供以下優點: • 快速得到結果而致能快速促進治療及改進照護品 質。 • 經由試驗極少量樣本而得到檢驗値的能力。 • 減少臨床工作量。 • 減少實驗室工作量並因減少管理工作而增進工作 效率。 • 因減少住院時間、門診病人於首次就診得知結 果,及簡化樣本的處理、儲存及運送而改善每個 病人所需成本。 • 促進臨床管理決策,諸如感染控制及抗生素使 用。 以晶片上實驗室爲基之分子診斷 以微流體技術爲基礎之分子診斷系統提供可自動化及 加速分子診斷分析之裝置。較短之檢測時間主要是因爲所 需之樣本體積極少、自動化及在微流體裝置內之低開銷內 置級聯式之診斷方法步驟。以奈升及微升爲規模之體積亦 減少試劑消耗及成本。晶片上實驗室(LOC)裝置係常見之 微流體裝置形式。LOC裝置具有在MST層內之MST結構 以用於將流體處理整合至單一支撐基材(通常爲矽)上。利 201211532 用半導體產業之VLSI (超大型積體電路)平版印'刷技術製 造使各LOC裝置之單位成本非常低廉。然而,控制流體 流經LOC裝置、添加試劑、控制反應條件等等需要大型 之外部管路及電子裝置。連接LOC裝置至這些外部裝置 大幅地限制LOC裝置之分子診斷用途於實驗室環境中。 外部儀器之費用及其操作複雜性排除以LOC爲基之分子 診斷作爲就地醫護環境中之實用選擇。 φ 鑒於上述,需要一種用於就地醫護之基於LOC裝置 之分子診斷系統。 【發明內容】 本發明各種樣態現在描述於下列數個段落。 GPC03 7.1本發明的態樣提供一種晶片上實驗室(LOC) 裝置以擴增核酸序列,LOC裝置包含: 入口,用以接收包含遺傳物質之樣本; φ 支撐基材; 複數個試劑貯存器;以及, 核酸擴增部以擴增於遺傳物質中之核酸序列;其中, 核酸擴增部係支撐於支撐基材上。 GPC03 7.2較佳地,核酸擴增部係聚合酶連鎖反應 (PCR)部。 GPC03 7.3 較佳地,LOC裝置亦具有CMOS (Complementary Metal-Oxide- Semiconductor,互補式金 屬氧化層)電路、溫度感測器以及合倂PCR部之微系統技 -19 - 201211532 術(MST)層,其中CMOS電路位於支撐基板與MST層之 間,CMOS電路係配置成使用溫度感測器輸出來反饋控制 PCR 部。 GPC037.4較佳地,PCR部具有PCR微通道,其中熱 循環遺傳物質,PCR微通道界定具有橫跨流路之橫斷面小 於100,000平方微米之流通路徑。 GPC03 7.5較佳地,PCR微通道具有橫跨流路之橫斷 面小於1 6,000平方微米。 GPC03 7.6較佳地,PCR微通道具有橫跨流路之橫斷 面小於2,5 00平方微米。 GPC03 7.7較佳地,PCR微通道具有至少一平行延伸 至PCR微通道之延長加熱器元件。 GPC03 7.8較佳地,PCR部具有複數個延長之PCR 腔室,各由分別的PCR微通道之通道部所形成,通道部 係彼此平行且相鄰,使得PCR微通道具有蜿蜒構造。 GPC037.9 較佳地,PCR部具有於熱循環期間用 於保留液體於PCR部之主動閥。 GPC03 7.1 0 較佳地’主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 GPC037.il 較佳地’ LOC裝置具有pcr部下游之 雜交部,P C R部具有用於與標靶核酸序列雜交之探針陣列 以形成探針-標靶雜交體以及用於檢測探針-標靶雜交體中 -20- •V . •V .201211532 之光感測器。 GPC037.12 較佳地,核1酸擴增部係恆溫核酸擴增 部。 GPC03 7.1 3 較佳地,LOC裝置亦具有恆溫核酸擴 增部下游之雜交部,恆溫核酸擴增部‘具有用於與標靶核酸 序列雜交之探針陣列以形成探針-標靶雜交體,以及用於 檢測探針-標靶雜交體之光感測器。 GPC03 7.1 4 較佳地,雜交部具有用以包含探針之 雜交腔室陣列,使得在各雜交腔室內之探針係配置以與標 靶核酸序列之一者雜交。 GPC03 7.1 5 較佳地,光感測器爲與雜交腔室陣列 對準配置之光二極體陣列。 GPC037.1 6 較佳地,恆溫核酸擴增部具有核酸擴 增微通道以維持樣本於反應溫度,核酸擴增微通道界定具 有橫跨流路之橫斷面小於1〇〇,〇〇〇平方微米之流通路徑。 GPC037.1 7 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GPC03 7.1 8 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於2,5 00平方微米。 GPC03 7.1 9 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面介於1平方微米和400平方微米之間。 GPC037.20 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中’表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 -21 - 201211532 以允許試劑自試劑貯存器流出。 易於使用、可大量製造且便宜的LOC裝置接收包含 核酸之生物樣本,並且接著利用LOC裝置之核酸擴增部 且利用儲存於LOC裝置之試劑貯存器中之試劑擴增樣本 中之核酸標靶。 核酸擴增部提供擴增混合物之毛細作用推進’簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶核酸序列之擴增增加分析系統之靈敏度及訊號_ 雜訊比。 試劑貯存器係和LOC裝置整合並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GPC03 8.1本發明的態樣提供一種微流體裝置以擴增 核酸序列,微流體裝置包含: 入口,用以接收包含遺傳物質之樣本; 複數個試劑貯存器,含有用以增加至樣本的試劑;以及, 核酸擴增部以擴增於遺傳物質中之核酸序列。 GPC03 8.2 較佳地,核酸擴增部係聚合酶連鎖反 應(PCR)部。 GPC03 8.3較佳地,微流體裝置亦具有CMOS電路及 溫度感測器,CMOS電路係配置成使用溫度感測器輸出來 反饋控制PCR部。 GPC03 8.4較佳地,PCR部具有PCR微通道,其中熱 循環遺傳物質,PCR微通道界定具有橫跨流路之橫斷面小 -22- 201211532 於1 00,000平方微米之流通路徑。 GPC03 8.5較佳地,PCR微通道具有橫跨流路之橫斷 面小於1 6,0 0 0平方微米。 GPC038.6較佳地,PCR微通道具有橫跨流路之橫斷 面小於2,500平方微米》 GPC03 8.7較佳地,PCR微通道具有至少一平行延伸 至PCR微通道之延長加熱器元件。Occurs under W ion concentration conditions. If hybridization occurs, the gene or DNA sequence of interest is present in the original sample. Optical detection is the most common method of detecting hybridization. The amplicon or probe is labeled to emit light via fluorescing or electrochemiluminescence. These methods have different ways of inducing the excited state of the luminescent moiety, but both are equally capable of covalent labeling of the nucleoside stock. In electrochemiluminescence (ECL), when excited by an electric current, light is generated by a luminophore molecule or a complex. When the fluorescent light is emitted, the excitation light that causes the φ emission emits light. The illuminating source is used to detect fluorescence, and the illuminating source provides excitation light having a wavelength absorbed by the fluorescent molecules and a detecting unit. The detection unit includes a photosensor (such as a photomultiplier tube or a charge coupled device (CCD) array) to detect the emitted signal and a mechanism (such as a wavelength-select filter) that prevents excitation light from being included in the output of the photosensor. Back stress illuminates, the fluorescent molecules emit Stokes-shifted light, and the emitted light is collected by the detection unit. The Tox shift is the frequency difference or wavelength difference between the emitted light and the absorbed excitation light. -15- 201211532 The light sensor is used to detect the E C L emission, and the light sensor is sensitive to the emission wavelength of the E C L type used. For example, transition metal coordination complexes emit light of visible wavelengths, thus using conventional photodiodes and .CCDs as photosensors. The advantage of ECL is that if ambient light is excluded, the ECL emission can be the only light present in the detection system, thus increasing sensitivity. The microarray allowed hundreds of thousands of D N A hybridization experiments to be performed simultaneously. Microarrays are useful molecular diagnostic tools that can screen thousands of genetic diseases or detect the presence of several infectious pathogens in a single assay. The microarray consists of a number of different DNA probes that are fixed to the substrate and are spotted. The target DNA (amplicon) is first labeled with fluorescent or luminescent molecules (during or after nucleic acid amplification) and then applied to the probe array. The microarray is cultured for several hours or days at a controlled temperature in a humid environment where hybridization occurs between the probe and the amplicon. After incubation, the microarray must be washed with a series of buffers to remove unbound strands. Once cleaned, the surface of the microarray is dried with a stream of air (usually nitrogen). The stringency of hybridization and cleaning is important. Less stringent may result in highly non-specific binding. Excessive rigor may result in inability to properly combine and result in reduced sensitivity. Hybridization is identified by detecting the light emission from the labeled amplicon that hybridizes with the complementary probe. Fluorescence from the microarray is detected using a microarray scanner, typically a computer-controlled, inverting scanning fluorescent conjugated focus microscope that typically uses a laser and photosensor that excites the fluorescent dye ( Such as a photomultiplier tube or CCD) to detect the transmitted signal. The fluorescent molecules emit light that is down-converted to 201211532 (as described above), and the light is collected by the detection unit. The emitted fluorescence must be collected, separated from the unabsorbed excitation wavelength, and transmitted to the detector. A conjugate focal configuration is often used in microarray scanners to remove out-of-focus information by conjugated focal pinholes located in the image plane. This makes it possible to detect only the focused portion of the light. Prevents light above or below the focus plane of the object from entering the detector, thereby increasing the signal-to-noise ratio. The detector converts the detected fluorescent photons into electrical energy, which is then converted into a digital signal. This digital signal is converted to a number representing the intensity of the fluorescence from a given pixel. Each feature of the array consists of one or more of these pixels. The final result of the scan is an image of the surface of the array. Since the exact sequence and position of each probe on the microarray is known, the hybridized target sequence can be simultaneously identified and analyzed. Find out more about fluorescent probes here: http://www.premierbiosoft.com/tech_notes/FRET_probe.html and http://www.invitrogen.com/site/us/en/home/References/ Molecular-probes-The-Handbook/Technical-Notes-and-product-Hi 幽ights/Fluorescence-Resonance-Energy-Transfer-FRET.html In situ Medical Molecular Diagnostics Although molecular diagnostic tests offer advantages, this type of test in clinical tests The growth was not as good as expected and still only a small part of the implementation of laboratory medicine. This is mainly due to the complexity and cost associated with nucleic acid testing compared to experiments based on non-amino acid methods. The broad applicability of molecular diagnostic tests to clinical treatment is associated with rapid and automated analysis that can significantly reduce costs, provide initial (sample processing) to final -17-201211532 (results), and instruments that do not require extensive human manipulation. Development is closely related. For physicians' clinics, proximity or user-based hospitals, home-based healthcare technologies offer the following benefits: • Quick results to quickly promote treatment and improve care. • Ability to test sputum by testing a very small number of samples. • Reduce clinical effort. • Reduce lab workload and increase work efficiency by reducing management effort. • Improve the cost per patient by reducing hospital stays, getting results from outpatient visits at the first visit, and simplifying the handling, storage and delivery of samples. • Promote clinical management decisions such as infection control and antibiotic use. On-wafer laboratory-based molecular diagnostics Molecular diagnostic systems based on microfluidics provide devices that automate and accelerate molecular diagnostic analysis. The shorter detection time is primarily due to the fact that the required sample volume is less active, automated, and low-cost built-in cascaded diagnostic method steps within the microfluidic device. The volume of nanoliters and microliters also reduces reagent consumption and cost. The on-wafer laboratory (LOC) device is a common form of microfluidic device. The LOC device has an MST structure within the MST layer for integrating fluid processing onto a single support substrate (typically helium). 201211532 The VLSI (Very Large Integral Circuit) lithographic printing technology of the semiconductor industry makes the unit cost of each LOC device very low. However, controlling the flow of fluid through the LOC unit, adding reagents, controlling reaction conditions, and the like requires large external piping and electronics. Connecting the LOC devices to these external devices greatly limits the molecular diagnostic use of the LOC devices in a laboratory environment. The cost of external instruments and their operational complexity excludes LOC-based molecular diagnostics as a practical option in a local healthcare setting. φ In view of the above, there is a need for a molecular diagnostic system based on LOC devices for in situ care. SUMMARY OF THE INVENTION Various aspects of the invention are now described in the following paragraphs. GPC03 7.1 Aspects of the invention provide a on-wafer laboratory (LOC) device for amplifying a nucleic acid sequence, the LOC device comprising: an inlet for receiving a sample comprising genetic material; a φ support substrate; a plurality of reagent reservoirs; The nucleic acid amplification unit is a nucleic acid sequence amplified in the genetic material; wherein the nucleic acid amplification unit is supported on the support substrate. Preferably, the GPC03 7.2 is a polymerase chain reaction (PCR) unit. GPC03 7.3 Preferably, the LOC device also has a CMOS (Complementary Metal-Oxide-Semiconductor) circuit, a temperature sensor, and a micro-system technology -19 - 201211532 (MST) layer of the PCR unit. The CMOS circuit is located between the support substrate and the MST layer, and the CMOS circuit is configured to use the temperature sensor output to feedback control the PCR portion. GPC037.4 Preferably, the PCR portion has a PCR microchannel in which the thermal cycle genetic material, the PCR microchannel defines a flow path having a cross-section across the flow path of less than 100,000 square microns. GPC03 7.5 Preferably, the PCR microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GPC03 7.6 Preferably, the PCR microchannel has a cross-section across the flow path of less than 2,500 square microns. GPC03 7.7 Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GPC03 7.8 Preferably, the PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a 蜿蜒 structure. GPC037.9 Preferably, the PCR section has an active valve for retaining liquid in the PCR section during thermal cycling. GPC03 7.1 0 Preferably, the 'active valve train' has a boiling initiation valve configured to hold a meniscus holder that blocks the meniscus of the liquid drive flow of the liquid, and to boil the liquid to relieve the bend from the meniscus holder The liquid level causes it to restore the capillary drive flow to the heater. GPC037.il preferably 'the LOC device has a hybridization portion downstream of the PCR portion, the PCR portion has a probe array for hybridization with the target nucleic acid sequence to form a probe-target hybrid and for detecting the probe-target Light sensor in the hybrid -20- • V . • V .201211532. GPC037.12 Preferably, the nuclear 1 acid amplification unit is a thermostatic nucleic acid amplification unit. GPC03 7.1 3 Preferably, the LOC device also has a hybridization portion downstream of the thermostatic nucleic acid amplification portion, and the thermostatic nucleic acid amplification portion has a probe array for hybridizing with the target nucleic acid sequence to form a probe-target hybrid, And a light sensor for detecting the probe-target hybrid. GPC03 7.1 4 Preferably, the hybridization portion has an array of hybridization chambers for containing probes such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. GPC03 7.1 5 Preferably, the photosensor is an array of photodiodes arranged in alignment with the hybridization chamber array. GPC037.1 6 Preferably, the thermostated nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a cross section having a cross-flow path of less than 1 〇〇, 〇〇〇 square Micron circulation path. GPC037.1 7 Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GPC03 7.1 8 Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 2,500 square microns. GPC03 7.1 9 Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path between 1 square micron and 400 square micrometers. GPC037.20 Preferably, the reagent reservoirs each have a surface tension valve to retain the reagent therein. The surface tension valve has a meniscus holder for fixing the meniscus of the reagent until the contact with the sample stream removes the bend. Level 21 - 201211532 to allow reagents to flow from the reagent reservoir. An easy to use, mass-produced, and inexpensive LOC device receives a biological sample comprising nucleic acid, and then amplifies the nucleic acid target in the sample using a nucleic acid amplification portion of the LOC device and using a reagent stored in a reagent reservoir of the LOC device. The Nucleic Acid Amplification section provides a capillary action advancement of the amplification mixture to simplify the design of the analytical system, further increasing reliability and reducing the cost of the analytical system. Amplification of the target nucleic acid sequence increases the sensitivity of the analytical system and the signal _ noise ratio. The reagent reservoir is integrated with the LOC device and meets all reagent requirements for analysis. The reagent reservoir provides low system component count and simple manufacturing procedures, resulting in an inexpensive analytical system. GPC03 8.1 Aspects of the invention provide a microfluidic device for amplifying a nucleic acid sequence, the microfluidic device comprising: an inlet for receiving a sample comprising genetic material; a plurality of reagent reservoirs containing reagents for addition to the sample; The nucleic acid amplification unit amplifies the nucleic acid sequence in the genetic material. GPC03 8.2 Preferably, the nucleic acid amplification unit is a polymerase chain reaction (PCR) unit. GPC03 8.3 Preferably, the microfluidic device also has a CMOS circuit and a temperature sensor, the CMOS circuit being configured to use a temperature sensor output to feedback control the PCR portion. GPC03 8.4 Preferably, the PCR portion has a PCR microchannel in which the thermal cycle genetic material, the PCR microchannel defines a flow path having a cross-section across the flow path -22-201211532 at 100,000 square microns. GPC03 8.5 Preferably, the PCR microchannel has a cross-section across the flow path of less than 1,600 square microns. Preferably, the PCR microchannel has a cross-section across the flow path of less than 2,500 square microns. GPC03 8.7 Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel.

0 GPC03 8.8較佳地,PCR部具有複數個延長之PCR 腔室,各由分別的PCR微通道之通道部所形成,通道部 係彼此平行且相鄰,使得PCR微通道具有蜿蜒構造。 GPC03 8.9較佳地,PCR部具有於熱循環期間用於保 留液體於PCR部之主動閥。 GPC03 8.1 0較佳地,主動閥係具有經配置以固定阻止 液體之毛細驅動流的彎液面之彎液面固定器的沸騰引發 閥,以及用以沸騰液體以自彎液面固定器解除彎液面使其 φ 恢復毛細驅動流的加熱器。 GPC03 8.1 1 較佳地,微流體裝置亦具有PCR部下 游之雜交部,PCR部具有用於與標靶核酸序列雜交以形成 探針-標靶雜交體之探針陣列以及用於檢測探針-標靶雜交 體中之光感測器。 GPC03 8.1 2 較佳地,核酸擴增部係恆溫核酸擴增 部。 GPC03 8.1 3 較佳地,微流體裝置亦具有恆溫核酸 擴增部下游之雜交部,恆溫核酸擴增部具有用於與標靶核 23- 201211532 酸序列雜交以形成探針-標靶雜交體之探針陣列,以及用 於檢測探針-標靶雜交體之光感測器。 GPC038.1 4 較佳地,雜交部具有用以包含探針之 雜交腔室陣列,使得在各雜交腔室內之探針係配置以與標 靶核酸序列之一者雜交。 GPC03 8.1 5 較佳地,光感測器爲與雜交腔室陣列 對準配置之光二極體陣列。 GPC03 8.1 6 較佳地,恆溫核酸擴增部具有核酸擴 增微通道以維持樣本於反應溫度,核酸擴增微通道界定具 有橫跨流路之橫斷面小於1 00,000平方微米之流通路徑。 GPC03 8.1 7 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GPC03 8.1 8 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於2,5 00平方微米。 GPC03 8.1 9 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面介於1平方微米和400平方微米之間》 GPC03 8.20 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器’ 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 以允許試劑自試劑貯存器流出。 易於使用、可大量製造且便宜的微流體裝置接收包含 核酸之生物樣本,並且接著利用微流體裝置之核酸擴增部 且利用儲存於微流體裝置之試劑貯存器中之試劑擴增樣本 中之核酸標靶。 • 24 - 201211532 核酸擴增部提供擴增混合物之毛細作用推進,簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶核酸序列之擴增增加分析系統之靈敏度及訊號-雜訊比。 試劑貯存器係和微流體裝置整合並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 $ GPC039.1本發明的態樣提供一種試驗模組以擴增核 酸序列,試驗模組包含: 具有容器之外殻,用以接收包含遺傳物質之樣本; 複數個試劑貯存器,含有用以增加至樣本的試劑;以及, 核酸擴增部以擴增於遺傳物質中之核酸序列。 GPC039.2 較佳地,核酸擴增部係聚合酶連鎖反 應(PCR)部。 GPC039.3較佳地,試驗模組亦具有CMOS電路及溫 φ 度感測器,CMOS電路係配置成使用溫度感測器輸出來反 饋控制PCR部。 GPC039.4較佳地,PCR部具有PCR微通道,其中熱 循環遺傳物質,PCR微通道界定具有橫跨流路之橫斷面小 於1 00,000平方微米之流通路徑。 GPC〇39.5較佳地,PCR微通道具有橫跨流路之橫斷 面小於1 6,000平方微米。 GPC039.6較佳地,PCR微通道具有橫跨流路之橫斷 面小於2,500平方微米。 -25- 201211532 GPC039.7較佳地,PCR微通道具有至少一平行延伸 至PCR微通道之延長加熱器元件》 GPC039.8較佳地,PCR部具有複數個延長之PCR 腔室,各由分別的PCR微通道之通道部所形成,通道部 係彼此平行且相鄰,使得PCR微通道具有蜿蜒構造。 GPC039.9較佳地,PCR部具有於熱循環期間用於保 留液體於PCR部之主動閥。 GPC039.1 0 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的灣液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 GPC03 9.1 1 較佳地,微流體裝置亦具有PCR部下 游之雜交部,PCR部具有用於與標靶核酸序列雜交以形成 探針-標靶雜交體之探針陣列以及用於檢測探針-標靶雜交 體中之光感測器。 GPC039.1 2 較佳地,核酸擴增部係恆溫核酸擴增 部。 GPC039.1 3 較佳地,試驗模組亦具有恆溫核酸擴 增部下游之雜交部,恆溫核酸擴增部具有用於與標靶核酸 序列雜交以形成探針-標靶雜交體之探針陣列,以及用於 檢測探針-標靶雜交體之光感測器。 GPC03 9.1 4 較佳地,雜交部具有用以包含探針之 雜交腔室陣列,使得在各雜交腔室內之探針係配置以與標 靶核酸序列之一者雜交。 -26- 201211532 GPC039.1 5 較佳地,光感測器爲與雜交腔室陣列 對準配置之光二極體陣列。 GPC039.1 6 較佳地,恆溫核酸擴增部具有核酸擴 增微通道以維持樣本於反應溫度,核酸擴增微通道界定具 有橫跨流路之橫斷面小於1 00,000平方微米之流通路徑。 GPC03 9.1 7 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GPC039.1 8 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於2,500平方微米。 GPC03 9.1 9 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面介於1平方微米和400平方微米之間。 GPC03 9.20 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器’ 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 以允許試劑自試劑貯存器流出。 易於使用、可大量製造、便宜且可攜式的試驗模組接 收包含核酸之樣本,並且接著使用模組之核酸擴增部且利 用儲存於試驗模組之試劑貯存器中之試劑擴增樣本中之核 酸標靶。 核酸擴增部提供擴增混合物之毛細作用推進,簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶核酸序列之擴增增加分析系統之靈敏度及訊號_ 雜訊比。 試劑貯存器係和試驗模組整合並且滿足分析之所有試 -27- 201211532 劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GPC040.1 本發明的態樣提供一種微流體裝置以 擴增核酸序列,微流體裝置包含: 入口,用以接收包含遺傳物質之樣本: 複數個試劑貯存器,含有用以增加至樣本的試劑; 第一核酸擴增部以擴增遺傳物質之核酸序列;以及, 第二核酸擴增部以擴增於遺傳物質中之核酸序列,其平行 第一核酸擴增部。 GPC040.2 較佳地,第一核酸擴增部係第一聚合 酶連鎖反應(PCR)部且第二核酸擴增部係第二聚合酶連鎖 反應(PCR)部。 GPC040.3較佳地,第一PCR部具有第一組引子對以 黏合至第一組互補核酸序列,且第二PCR部具有第二組 引子對以黏合至第二組互補核酸序列,第一組互補核酸序 列與第二組互補核酸序列不同。 GPC040.4較佳地’第一 PCR部及第二pCr部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型: 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液; 熱循環時間; 熱循環重複;以及, -28- 201211532 特定PCR相期間之溫度。 GPC040.5較佳地’微流體裝置亦具有第一PCR部下 游之第一雜交部,其具有與第一標靶核酸序列雜交以形成 探針-標靶雜交體之第一探針陣列,及第二PCR部下游之 第二雜交部,其具有用於與第二標靶核酸序列雜交以形成 探針-標靶雜交體之第二探針陣列,以及用於檢測探針-標 靶雜交體之光感測器。 φ GPC040.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,且第二核酸擴增部係第二恆溫核酸擴增部》 GPC040.7較佳地,第一恆溫核酸擴增部具有用於與 第一組互補核酸序列黏合之第一組引子對,以及第二恆溫 核酸擴增部具有與第二組互補核酸序列黏合之第二組引子 對,第一組互補核酸序列與第二組互補核酸序列不同。 GPC040.8較佳地,第一恆溫核酸擴增部及第二恆溫 核酸擴增部係配置成以不同擴增參數操作,擴增參數爲下 φ 列之至少一者: 反轉錄酶型: 聚合酶型: 去氧核糖核苷三磷酸濃度; 緩衝液溶液;以及, 核酸擴增期間之溫度。 GPC〇4〇.9較佳地,微流體裝置亦具有第一恆溫核酸 擴增部下游之第一雜交部,其具有與第一標靶核酸序列雜 交以形成探針-標靶雜交體之第一探針陣列,及第二恆溫 -29 - 201211532 核酸擴增部下游之第二雜交部,其具有用於與第二標靶核 酸序列雜交以形成探針-標靶雜交體之第二探針陣列,以 及用於檢測探針-標靶雜交體之光感測器。 GPC040.1 0 較佳地,第一雜交部具有包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第一探針 係配置以和第一標靶核酸序列之一者雜交。 GPC040.il 較佳地,光感測器爲與第一和第二探 針陣列對準配置之光二極體陣列。 GPC040.1 2 較佳地,第一恆溫核酸擴增部具有核 酸擴增微通道以維持樣本於反應溫度,核酸擴增微通道界 定具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GPC040.1 3 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GPC040.1 4 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 以允許試劑自試劑貯存器流出。 GPC040.1 5 較佳地,微流體裝置亦具有CMOS電 路及溫度感測器,CMOS電路係配置成使用溫度感測器輸 出來反饋控制第一及第二PCR部。 GPC040.16 較佳地,第一 PCR部具有PCR微通 道,其中熱循環遺傳物質,PCR微通道界定具有橫跨流路 之橫斷面小於100,000平方微米之流通路徑。 201211532 GPC040.1 7 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GPC040.1 8 較佳地,第一PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成, 通道部係彼此平行且相鄰,使得PCR微通道具有蜿蜒構 造。 GPC040.1 9 較佳地,第一PCR部具有於熱循環期 φ 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GPC040.20 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 易於使用、可大量製造且便宜的微流體裝置接收包含 核酸之生物樣本,並且接著利用裝置之平行核酸擴增部且 φ 利用儲存於微流體裝置之試劑貯存器中之試劑擴增樣本中 之核酸標靶。 核酸擴增部提供擴增混合物之毛細作用推進,簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶核酸序列之擴增增加分析系統之靈敏度及訊號_ 雜訊比。進一步,平行擴增腔室允許不同的標靶或標靶群 組以最佳化使用不同的引子對或不同之引子對群組’且亦 使用不同的最佳化擴增參數,隨之增加分析之靈敏度、訊 號-雜訊比及可靠度。 -31 - 201211532 試劑貯存器係和微流體裝置整合並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 G P C 0 4 1 . 1本發明的態樣提供一種試驗模組以擴增核 酸序列,試驗模組包含: 具有容器之外殼,用以接收包含遺傳物質之樣本; 複數個試劑貯存器,含有用以增加至樣本的試劑; 第一核酸擴增部以擴增於遺傳物質中之核酸序列;以及, 第二核酸擴增部以擴增於遺傳物質中之核酸序列,其平行 第一核酸擴增部。 GPC041.2 較佳地,第一核酸擴增部係第一聚合 酶連鎖反應(PCR)部且第二核酸擴增部係第二聚合酶連鎖 反應(PCR)部。 GPC041.3較佳地,第一PCR部具有第一組引子對以 黏合至第一組互補核酸序列,且第二PCR部具有第二組 引子對以黏合至第二組互補核酸序列,第一組互補核酸序 列與第二組互補核酸序列不同。 GPC041.4較佳地,第一 PCR部及第二PCR部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型; 聚合酶型: 去氧核糖核苷三磷酸濃度; 緩衝液溶液: 熱循環時間; -32- 201211532 熱循環重複;以及, 特定PCR相期間之溫度。 GPC041.5較佳地’試驗模組亦具有第一 PCR部下游 之第一雜交部,其具有與第一標靶核酸序列雜交以形成探 針-標靶雜交體之第一探針陣列,及第二PCR部下游之第 二雜交部,其具有用於與第二標靶核酸序列雜交以形成探 針-標靶雜交體之第二探針陣列,以及用於檢測探針-標靶 φ 雜交體之光感測器。 GPC041.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,且第二核酸擴增部係第二恆溫核酸擴增部。 GPC041.7較佳地,第一恆溫核酸擴增部具有用於與 第一組互補核酸序列黏合之第一組引子對,以及第二恆溫 核酸擴增部具有與第二組互補核酸序列黏合之第二組引子 對,第一組互補核酸序列與第二組互補核酸序列不同。 GPC041.8較佳地,第一恆溫核酸擴增部及第二恆溫 φ 核酸擴增部係配置成以不同擴增參數操作,擴增參數爲下 列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液;以及, 核酸擴增期間之溫度。 GPC04 1.9較佳地,試驗模組亦具有第一恆溫核酸擴 增部下游之第一雜交部,其具有與第一標靶核酸序列雜交 -33- 201211532 以形成探針-標祀雜父體之第一探針陣列,及第二恒溫核 酸擴增部下游之第二雜交部’其具有用於與第二標靶核酸 序列雜交以形成探針·標靶雜交體之第二探針陣列,以及 用於檢測探針-標靶雜交體之光感測器。 GPC04 1 . 1 0 較佳地,第一雜交部具有包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第一探針 係配置以和第一標靶核酸序列之一者雜交。 GPC04 1.il 較佳地,光感測器爲與雜交腔室陣列 對準配置之光二極體陣列。 GPC041.12 較佳地,第一恆溫核酸擴增部具有核 酸擴增微通道以維持樣本於反應溫度,核酸擴增微通道界 定具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GPC041.13 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於16,000平方微米。 GPC041.14 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 以允許試劑自試劑貯存器流出。 GPC04 1.15 較佳地,試驗模組亦具有CMOS電路 及溫度感測器,CMOS電路係配置成使用溫度感測器輸出 來反饋控制第一及第二PCR部。 GPC041.16 較佳地,第一 PCR部具有PCR微通 道,其中熱循環遺傳物質,PCR微通道界定具有橫跨流路 201211532 之橫斷面小於1 00,000平方微米之流通路徑。 GPC041.17 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GPC041.18 較佳地,第一 PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成, 通道部係彼此平行且相鄰,使得PCR微通道具有蜿蜒構 造。 φ GPC041.19 較佳地,第一PCR部具有於熱循環期 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GPC041.20 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 易於使用、可大量製造、便宜且可攜式的試驗模組接 φ 收包含核酸之樣本,並且接著使用模組之平行核酸擴增部 且利用儲存於試驗模組之試劑貯存器中之試劑擴增樣本中 之核酸標靶。 核酸擴增部提供擴增混合物之毛細作用推進,簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶核酸序列之擴增增加分析系統之靈敏度及訊號-雜訊比。進一步,平行擴增腔室允許不同的標靶或標靶群 組以最佳化使用不同的引子對或不同之引子對群組,且亦 使用不同的最佳化擴增參數,隨之增加分析之靈敏度、訊 -35- 201211532 號-雜訊比及可靠度。 試劑貯存器係和試驗模組整合並且滿足分析之所有試 劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GPC042.1 本發明的態樣提供一種微流體裝置以 擴增DNA和RNA,微流體裝置包含: 入口,用以接收包含包括DN A和RNA之遺傳物質之樣 本; 複數個試劑貯存器,含有用以增加至樣本的試劑; 第一核酸擴增部,用以擴增至少一些遺傳物質;以及, 第二核酸擴增部,用以擴增至少一些遺傳物質,其與第一 核酸擴增部平行。 GPC042.2較佳地,第一核酸擴增部係第一聚合酶連 鎖反應(PCR)部,其配置用以擴增遺傳物質中的DNA,且 第二核酸擴增部係第二PCR部,其配置用以擴增遺傳物 質中的RNA。 GPC042.3較佳地,第一PCR部具有第一組引子對以 黏合至DNA中之第一組互補核酸序列,且第二PCR部具 有第二組引子對以黏合至第二組互補核酸序列,DNA中 之第一組互補核酸序列與第二組互補核酸序列不同。 GPC042.4較佳地,第一 PCR部及第二PCR部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型; 聚合酶型; -36- 201211532 去氧核糖核苷三磷酸濃度; 緩衝液溶液; 熱循環時間; 熱循環重複;以及, 特定PCR相期間之溫度。 GPC042.5 較佳地’微流體裝置亦具有光感測 器、第一PCR部下游之第一雜交部、第二PCR部下游之 φ 第二雜交部,第一雜交部具有與第一標靶核酸序列雜交以 形成探針-標靶雜交體之第一探針陣列,及第二雜交部具 有用於與第二標靶核酸序列雜交以形成探針-標靶雜交體 之第二探針陣列,其中光感測器係配置用於檢測探針-標 靶雜交體。 GPC042.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,其配置用以擴增遺傳物質中之DNA,且第二核 酸擴增部係第二恆溫核酸擴增部,其配置用以擴增遺傳物 φ 質中之RNA。 GPC0 42.7較佳地,第一恆溫核酸擴增部具有用於與 DNA中之第一組互補核酸序列黏合之第一組引子對,以 及第二恆溫核酸擴增部具有與RNA中第二組互補核酸序 列黏合之第二組引子對,第一組互補核酸序列與第二組互 補核酸序列不同。 GPC042.8較佳地,第一恆溫核酸擴增部及第二恆溫 核酸擴增部係配置成以不同擴增參數操作’擴增參數爲下 列之至少一者: -37- 201211532 反轉錄酶型: 聚合酶型: 去氧核糖核苷三磷酸濃度: 緩衝液溶液;以及, 核酸擴增期間之溫度。 GPC042.9較佳地,微流體裝置亦另外具有光感測 器、第一恆溫核酸擴增部下游之第一雜交部以及第二恆溫 核酸擴增部下游之第二雜交部,第一雜交部具有與第一標 靶核酸序列雜交以形成探針-標靶雜交體之第一探針陣 列’及第二雜交部具有用於與第二標靶核酸序列雜交以形 成探針-標靶雜交體之第二探針陣列,其中光感測器係配 置用於檢測探針-標靶雜交體。 GPC042.1 0 較佳地,第一雜交部具有包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第一探針 係配置以和第一標靶核酸序列之一者雜交,以及第二雜交 部具有包含第二探針之第二雜交腔室陣列,使得在各雜交 腔室內之第二探針係配置以和第二標靶核酸序列之一者雜 交。 GPC042.il 較佳地,光感測器爲與第一和第二雜 交腔室陣列對準配置之光二極體陣列。 GPC042.1 2 較佳地,第一恆溫核酸擴增部具有核酸 擴增微通道以維持樣本於反應溫度,核酸擴增微通道界定 具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 -38- 201211532 GPC042.1 3 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GPC042.1 4 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器’ 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 以允許試劑自試劑貯存器流出。 GPC042.1 5較佳地,微流體裝置亦具有CMOS電路 及溫度感測器,CMOS電路係配置成使用溫度感測器輸出 來反饋控制第一及第二PCR部。 GPC042.1 6 較佳地,第一PCR部具有PCR微通 道,其中於使用期間,熱循環遺傳物質,PCR微通道界定 具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GPC042.1 7 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GPC042.1 8 較佳地,第一PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成, 通道部係彼此平行且相鄰,使得PCR微通道具有蜿蜒構 造。 GPC042.1 9 較佳地,第一PCR部具有於熱循環期 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GPC042.20 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 -39- 201211532 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 易於使用、可大量製造且便宜的微流體裝置接收包含 DNA及RNA序列之樣本,並且接著利用裝置之平行核酸 擴增部且利用儲存於微流體裝置之試劑貯存器中之試劑擴 增樣本中之標祀D N A及R N A序列。 核酸擴增部提供擴增混合物之毛細作用推進,簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶DNA及RNA序列之擴增增加分析系統之靈敏度 及訊號-雜訊比。進一步,平行擴增腔室允許不同的標靶 或標靶群組以最佳化使用不同的引子對或不同之引子對群 組,且亦使用不同的最佳化擴增參數,隨之增加分析之靈 敏度、訊號-雜訊比及可靠度。 試劑貯存器係和微流體裝置整合並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GPC043.1 本發明的態樣提供一種試驗模組以擴 增DNA和RNA,試驗模組包含: 具有容器之外殼,用以接收包含包括DNA和RNA之遺傳 物質之樣本: 複數個試劑貯存器,含有用以增加至樣本的試劑; 第一核酸擴增部,用以擴增至少一些遺傳物質;以及, 第二核酸擴增部,用以擴增至少一些遺傳物質,其與第一 核酸擴增部平行。 -40- 201211532 GPC043.2 較佳地,第一核酸擴增部係第一聚合 酶連鎖反應(PCR)部,其配置用以擴增遺傳物質中的 DNA,且第二核酸擴增部係第二PCR部,其配置用以擴 增遺傳物質中的RNA。 GPC043.3較佳地,第一PCR部具有第一組引子對以 黏合至DNA中之第一組互補核酸序列,且第二PCR部具 有第二組引子對以黏合至第二組互補核酸序列,DNA中 之第一組互補核酸序列與第二組互補核酸序列不同。 GPC043.4較佳地,第一 PCR部及第二PCR部係配置 成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液; 熱循環時間; 熱循環重複;以及, 特定PCR相期間之溫度。 GPC04 3.5較佳地,試驗模組亦具有光感測器、第一 PCR部下游之第一雜交部、第二PCR部下游之第二雜交 部,第一雜交部具有與第一標靶核酸序列雜交以形成探 針-標靶雜交體之第一探針陣列,及第二雜交部具有用於 與第二標靶核酸序列雜交以形成探針-標靶雜交體之第二 探針陣列,其中光感測器係配置用於檢測探針-標靶雜交 體。 -41 - 201211532 GPC043.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,其配置用以擴增遺傳物質中之DNA,且第二核 酸擴增部係第二恆溫核酸擴增部’其配置用以擴增遺傳物 質中之RNA。 GPC043.7較佳地,第一恆溫核酸擴增部具有用於與 DNA中之第一組互補核酸序列黏合之第一組引子對,以 及第二恆溫核酸擴增部具有與RNA中第二組互補核酸序 列黏合之第二組引子對,第一組互補核酸序列與第二組互 補核酸序列不同。 GPC043.8較佳地,第一恆溫核酸擴增部及第二恆溫 核酸擴增部係配置成以不同擴增參數操作,擴增參數爲下 列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液;以及, 核酸擴增期間之溫度。 GPC 043.9較佳地,試驗模組亦另外包含光感測器、 第一恆溫核酸擴增部下游之第一雜交部以及第二恆溫核酸 擴增部下游之第二雜交部,第一雜交部具有與第一標靶核 酸序列雜交以形成探針-標靶雜交體之第一探針陣列,及 第二雜交部具有用於與第二標靶核酸序列雜交以形成探 針-標靶雜交體之第二探針陣列,其中光感測器係配置用 於檢測探針·標靶雜交體。 -42- 201211532 GPC043.1 0 較佳地,第一雜交部具有包含第 針之第一雜交腔室陣列,使得在各雜交腔室內之第一 係配置以和第一標靶核酸序列之一者雜交,以及第二 部具有包含第二探針之第二雜交腔室陣列,使得在各 腔室內之第二探針係配置以和第二標靶核酸序列之一 交。 GPC043.1 1 較佳地,光感測器爲與第一和第 φ 交腔室陣列對準配置之光二極體陣列。 GPC043.1 2 較佳地,第一恆溫核酸擴增部具 酸擴增微通道以維持樣本於反應溫度,核酸擴增微通 定具有橫跨流路之橫斷面小於1 00,000平方微米之流 徑。 GPC043.1 3 較佳地,核酸擴增微通道具有橫 路之橫斷面小於1 6,000平方微米。 GPC043.1 4 較佳地,試劑貯存器各具有表面 φ 閥以將試劑保留於其中,表面張力閥具有彎液面固定 其用於固定試劑之彎液面直到與樣本流之接觸移除彎 以允許試劑自試劑貯存器流出。 GPC043.1 5 較佳地,試驗模組亦具有CMOS 及溫度感測器,CMOS電路係配置成使用溫度感測器 來反饋控制第一及第二PCR部。 GPC043.1 6 較佳地,第一PCR部具有 PCR 道,其中於使用期間,熱循環遺傳物質,PCR微通道 具有橫跨流路之橫斷面小於1 00,000平方微米之流 —探 探針 雜交 雜交 者雜 二雜 有核 道界 通路 跨流 張力 器, 液面 電路 輸出 微通 界定 通路 -43- 201211532 徑。 GPC043.1 7 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GPC043.1 8 較佳地,第一PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成, 通道部係彼此平行且相鄰,使得PCR微通道具有蜿蜒構 造。 GPC043.1 9 較佳地,第一PCR部具有於熱循環期 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GPC043.20較佳地,主動閥係具有經配置以固定阻 止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引發 閥,以及用以沸騰液體以自彎液面固定器解除彎液面使其 恢復毛細驅動流的加熱器。 易於使用、可大量製造、便宜且可攜式的試驗模組接 收包含DNA及RNA序列之樣本,並且接著使用模組之平 行核酸擴增部並利用儲存於試驗模組之試劑貯存器中之試 劑擴增樣本中之標靶DNA及RNA序列。 核酸擴增部提供擴增混合物之毛細作用推進,簡化分 析系統的設計,進一步增加可靠度和降低分析系統之花 費。標靶DNA及RNA序列之擴增增加分析系統之靈敏度 及訊號-雜訊比。進一步,平行擴增腔室允許不同的標靶 或標靶群組以最佳化使用不同的引子對或不同之引子對群 組,且亦使用不同的最佳化擴增參數’隨之增加分析之靈 -44- 201211532 敏度、訊號-雜訊比及可靠度。 試劑貯存器係和試驗模組整合並且滿足分析之所有試 劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GCF034.1本發明的態樣提供一種晶片上實驗室(LOC) 裝置用於生物樣本之遺傳分析,LOC裝置包含: 入口,用以接收包含遺傳物質之樣本; φ 支撐基材; 複數個試劑貯存器; 第一核酸擴增部用以擴增遺傳物質中之核酸序列;以及, 第二核酸擴增部用以擴增於遺傳物質中之核酸序列,其平 行第一核酸擴增部;其中, 第一核酸擴增部及第二核酸擴增部係均被支撐於支撐基材 上。 GC?034.2較佳地,第一核酸擴增部係第一聚合酶連 φ 鎖反應(PCR)部且第二核酸擴增部係第二PCR部。 GCF034.3較佳地,第一PCR部具有第一組引子對以 黏合至第一組互補核酸序列,且第二PCR部具有第二組 引子對以黏合至第二組互補核酸序列’第一組互補核酸序 列與第二組互補核酸序列不同。 GCF034.4較佳地,第一 PCR部及第二PCR部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型; 聚合酶型; -45- 201211532 去氧核糖核苷三磷酸濃度; 緩衝液溶液; 熱循環時間; 熱循環重複;以及, 特定PCR相期間之溫度。 GCF03 4.5較佳地’ LOC裝置亦具有光感測器、第一 PCR部下游之第一雜交部,及第二pCr部下游之第二雜 交部,第一雜交部具有與第一標靶核酸序列雜交以形成探 針-標靶雜交體之第一探針陣列,及第二雜交部具有用於 與第二標靶核酸序列雜交以形成探針-標靶雜交體之第二 探針陣列,其中光感測器係配置用於檢測探針-標靶雜交 體。 GCF03 4.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部’且第二核酸擴增部係第二恆溫核酸擴增部。 GCF03 4.7較佳地,第一恆溫核酸擴增部具有用於與 第一組互補核酸序列黏合之第一組引子對,以及第二恆溫 核酸擴增部具有與第二組互補核酸序列黏合之第二組引子 對’第一組互補核酸序列與第二組互補核酸序列不同。 GCF034.8 較佳地,第一恆溫核酸擴增部及第二 恆溫核酸擴增部係配置成以不同擴增參數操作,擴增參數 爲下列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; -46- 201211532 緩衝液溶液;以及, 核酸擴增期間之溫度。 GCF034.9較佳地’ LOC裝置亦具有光感測器、第— 恆溫核酸擴增部下游之第一雜交部,及第二恆溫核酸擴增 部下游之第二雜交部,其中第一雜交部具有與第一標祀核 酸序列雜交以形成探針-標靶雜交體之第一探針陣列,及 第二雜交部具有用於與第二標靶核酸序列雜交以形成探 針-標靶雜交體之第二探針陣列,其中光感測器係配置用 於檢測探針-標靶雜交體。 GCF034.1 0 較佳地,第一雜交部具有包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第—探針 係配置以和第一標靶核酸序列之一者雜交,且第二雜交部 具有包含第二探針之第二雜交腔室陣列,使得在各雜交腔 室內之第二探針係配置以和第二標靶核酸序列之一者雜 交。 GCF034.il 較佳地,光感測器爲與第一和第二雜 交腔室陣列對準配置之光二極體陣列。 GCF034-1 2 較佳地,第一恆溫核酸擴增部具有核 酸擴增微通道以維持樣本於反應溫度,核酸擴增微通道界 定具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GCF034.1 3 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於16,000平方微米。 GCF034.14 較佳地,試劑貯存器各具有表面張力 -47- 201211532 閥以將試劑保留於其中,表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液面 以允許試劑自試劑貯存器流出。 GCF034.1 5 較佳地,LOC裝置亦具有 CMOS電 路、溫度感測器以及合倂第一及第二PCR部之微系統技 術(MST)層,其中CMOS電路位於支撐基板與MST層之 間,CMOS電路係組態成使用溫度感測器輸出來反饋控制 第一及第二PCR部。 GCF034.1 6 較佳地,第一PCR部具有PCR微通 道,其中當使用時,熱循環樣本,PCR微通道界定具有橫 跨流路之橫斷面小於1 00,000平方微米之流通路徑》 GCF034.1 7 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GCF034.1 8 較佳地,第一 PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成, PCR微通道具有由一系列之寬曲流形成之蜿蜒構造,寬曲 流之各者爲形成延長之PCR腔室之一者的通道部。 GCF034.1 9 較佳地,第一 PCR部具有於熱循環期 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GCF034.20 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 -48- 201211532 易於使用、可大量製造且便宜的LOC裝置通過其之 .樣本入口接收生物樣本,並且利用儲存於LOC裝置之試 劑貯存器中之試劑進行樣本中之標靶基因序列之平行擴 增。 標靶核酸序列之擴增增加分析系統之靈敏度及訊號-雜訊比。進一步,平行擴增腔室允許不同的標靶或標靶群 組以最佳化使用不同的引子對或不同之引子對群組,且亦 φ 使用不同的最佳化擴增參數,隨之增加分析之靈敏度、訊 號-雜訊比及可靠度。 試劑貯存器係和LOC裝置合併並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GCF0 3 5.1本發明的態樣提供一種晶片上實驗室(LOC) 裝置用於生物樣本之遺傳分析,LOC裝置包含: 入口,用以接收包含遺傳物質之樣本: φ 支撐基材; 複數個試劑貯存器; 第一培養部,第一培養部係與試劑貯存器之一者流體連 通,試劑貯存器包含用於與遺傳物質酵素反應之酵素; 以擴增遺傳物質中之核酸序列;以及, 第二培養部,第二培養部係與試劑貯存器之一者流體連 通,試劑貯存器包含用於與遺傳物質酵素反應之酵素’第 二培養部平行於第一培養部; 第一培養部下游之第一核酸擴增部,用以擴增遺傳物質中 -49- 201211532 之核酸序列;及, 第二培養部下游之第二核酸擴增部,用以擴增遺傳物質中 之核酸序列,第二核酸擴增部與第一核酸擴增部平行;其 中, 第一培養部、第一培養部、第一核酸擴增部及第二核酸擴 增部係皆被支撐於支撐基材上。 GCF035.2較佳地’第一核酸擴增部係第—聚合酶連 鎖反應(PCR)部且第二核酸擴增部係第二PCR部。 GCF03 5.3較佳地,第一 PCR部具有第一組引子對以 黏合至第一組互補核酸序列,且第二PCR部具有第二組 引子對以黏合至第二組互補核酸序列,第一組互補核酸序 列與第二組互補核酸序列不同。 GCF035.4較佳地,第一PCR部及第二PCR部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液; 熱循環時間; 熱循環重複;以及, 特定PCR相期間之溫度。 GCF03 5.5較佳地,LOC裝置亦具有光感測器、第一 PCR部下游之第一雜交部,及第二PCR部下游之第二雜 交部,第一雜交部具有與第一標靶核酸序列雜交以形成探 -50- 201211532 針-標靶雜交體之第一探針陣列,及第二雜交部具有用於 與第二標靶核酸序列雜交以形成探針-標靶雜交體之第二 探針陣列,其中光感測器係配置用於檢測探針-標靶雜交 體。 GCF03 5.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,且第二核酸擴增部係第二恆溫核酸擴增部。 GCF03 5.7較佳地,第一恆溫核酸擴增部具有用於與 第一組互補核酸序列黏合之第一組引子對,以及第二恆溫 核酸擴增部具有與第二組互補核酸序列黏合之第二組引子 對,第一組互補核酸序列與第二組互補核酸序列不同》 GCF03 5.8較佳地,第一恆溫核酸擴增部及第二恆溫 核酸擴增部係配置成以不同擴增參數操作,擴增參數爲下 列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液;以及, 核酸擴增期間之溫度◊ GCF03 5.9較佳地,LOC裝置亦具有光感測器、第一 恆溫核酸擴增部下游之第一雜交部,及第二恆溫核酸擴增 部下游之第二雜交部,第一雜交部具有與第一標靶核酸序 列雜交以形成探針-標靶雜交體之第一探針陣列,及第二 雜交部具有用於與第二標靶核酸序列雜交以形成探針-標 靶雜交體之第二探針陣列,其中光感測器係配置用於檢測 -51 - 201211532 探針-標靶雜交體》 GCF035.1 0 較佳地,第一雜交部具有·包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第一探針 係配置以和第一標靶核酸序列之一者雜交,且第二雜交部 具有包含第二探針之第二雜交腔室陣列,使得在各雜交腔 室內之第二探針係配置以和第二標靶核酸序列之一者雜 交。 GCF03 5.il 較佳地,光感測器爲與第一和第二雜 交腔室陣列對準配置之光二極體陣列。 GCF03 5.1 2 較佳地,第一恆溫核酸擴增部具有核 酸擴增微通道以維持樣本於反應溫度,核酸擴增微通道界 定具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GCF03 5.1 3 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GCF03 5.1 4 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液 面。 GCF03 5.1 5 較佳地,LOC裝置亦具有 CMOS電 路、溫度感測器以及合倂第一及第二PCR部之微系統技 術(MST)層,其中CMOS電路位於支撐基板與MST層之 間,CMOS電路係組態成使用溫度感測器輸出來反饋控制 第一及第二PCR部。 201211532 GCF03 5.1 6 較佳地,第一PCR部具有PCR微通 道,其中當使用時,熱循環樣本,PCR微通道界定具有橫 跨流路之橫斷面小於1 00,000平方微米之流通路徑。 GCF03 5.1 7 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GCF03 5.1 8 較佳地,第一 PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成, φ PCR微通道具有由一系列之寬曲流形成之蜿蜒構造,寬曲 流之各者爲形成延長之PCR腔室之一者的通道部。 GCF03 5.1 9 較佳地,第一PCR部具有於熱循環期 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GCF03 5.20 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 % 其恢復毛細驅動流的加熱器。 易於使用、可大量製造且便宜的LOC裝置通過其之 樣本入口接收生物樣本,於平行培養部進行樣本之之平行 處理,並利用儲存於L0C裝置之試劑貯存器中之試劑在 平行核酸擴增部於樣本中之標靶基因序列進行平行擴增。 在培養部中,遺傳物質歷經各種方式之處理,例如適 體引子之核酸限制和接合,以提供針對接下來的分析階段 最適合或必須的情況,增加分析結果之資訊內容,以及增 加分析系統之靈敏度及訊號-雜訊比及可靠度。進一步, -53- 201211532 平行培養腔室允許不同的核酸模版或模版群組以最佳化歷 經不同的酵素反應,結果增進分析多樣性。 標靶核酸序列之擴增增加分析系統之靈敏度及訊號-雜訊比。進一步,平行擴增腔室允許不同的標靶或標靶群 組以最佳化使用不同的引子對或不同之引子對群組,且亦 使用不同的最佳化擴增參數,隨之增加分析之靈敏度、訊 號-雜訊比及可靠度。 試劑貯存器係和LOC裝置合倂並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 GCF03 6.1本發明的態樣提供一種晶片上實驗室(LOC) 裝置用於生物樣本之遺傳分析,LOC裝置包含: 入口,用以接收包含包括DNA和RNA之遺傳物質之樣 本; 支撐基材; 複數個試劑貯存器; 第一核酸擴增部,用以擴增至少一些遺傳物質:及, 第二核酸擴增部,用以擴增至少一些遺傳物質,第二核酸 擴增部與第一核酸擴增部平行;其中, 第一核酸擴增部及第二核酸擴增部係皆被支撐於支撐基材 上》 GCF03 6.2較佳地,第一核酸擴增部係第一聚合酶連 鎖反應(PCR)部,配置用於擴增遺傳物質中之DNA,且第 二核酸擴增部係第二PCR部,配置用於擴增遺傳物質中 201211532 之 RNA。 GCF03 6.3較佳地,第一PCR部具有第一組引子對以 黏合至DNA中之第一組互捕核酸序.列,且第二PCR部具 有第二組引子對以黏合至RNA中之第二組互補核酸序 列,第一組互補核酸序列與第二組互補核酸序列不同。 GCF036.4較佳地,第一 PCR部及第二PCR部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: φ 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液; 熱循環時間; 熱循環重複;以及, 特定PCR相期間之溫度。 GCF03 6.5較佳地,LOC裝置亦具有光感測器、第一 φ PCR部下游之第一雜交部,及第二PCR部下游之第二雜 交部,第一雜交部具有與第一標靶核酸序列雜交以形成探 針-標靶雜交體之第一探針陣列,及第二雜交部具有用於 與第二標靶核酸序列雜交以形成探針·標靶雜交體之第二 探針庫列,其中光感測器係配置用於檢測探針·標靶雜交 體。 GCF036.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,配置用以擴增遺傳物質中之DNA,且第二核酸 擴增部係第二恆溫核酸擴增部,配置用以擴增遺傳物質中 -55- 201211532 之 RNA。 GCF036.7較佳地,第一恆溫核酸擴增部具有用於與 DNA中之第一組互補核酸序列黏合之第一組引子對,以 及第二恆溫核酸擴增部具有與RNA中之第二組互補核酸 序列黏合之第二組引子對,第一組互補核酸序列與第二組 互補核酸序列不同。 GCF036.8較佳地,第一恆溫核酸擴增部及第二恆溫 核酸擴增部係配置成以不同擴增參數操作,擴增參數爲下 列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度: 緩衝液溶液;以及, 核酸擴增期間之溫度。 GCF036.9較佳地,LOC裝置亦具有光感測器、第一 恆溫核酸擴增部下游之第一雜交部,及第二恆溫核酸擴增 部下游之第二雜交部,第一雜交部具有與第一標靶核酸序 列雜交以形成探針-標靶雜交體之第一探針陣列,及第二 雜交部具有用於與第二標靶核酸序列雜交以形成探針-標 靶雜交體之第二探針陣列,其中光感測器係配置用於檢測 探針-標靶雜交體。 GCF03 6.1 0 較佳地,第一雜交部具有包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第一探針 係配置以和第一標靶核酸序列之一者雜交,且第二雜交部 -56- 201211532 具有包含第二探針之第二雜交腔室陣列,使得在各雜交腔 室內之第二探針係配置以和第二標靶核酸序列之一者雜 交。 GCF036.1 1 較佳地,光感測器爲與第一和第二雜 交腔室陣列對準配置之光二極體陣列。 GCF036.1 2 較佳地,第一恆溫核酸擴增部具有核 酸擴增微通道以維持樣本之反應溫度,核酸擴增微通道界 定具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GCF036.1 3 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於16,000平方微米。 GCF036.1 4 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液 面。 GCF03 6.1 5 較佳地,LOC裝置亦具有 CMOS電 路、溫度感測器以及合倂第一及第二PCR部之微系統技 術(MST)層,其中CMOS電路位於支撐基板與MST層之 間,CMOS電路係組態成使用溫度感測器輸出來反饋控制 第一及第二PCR部。 GCF03 6.1 6 較佳地,第一PCR部具有PCR微通 道,其中當使用時,熱循環樣本,PCR微通道界定具有橫 跨流路之橫斷面小於100,〇〇〇平方微米之流通路徑。 GCF03 6.1 7 較佳地,PCR微通道具有至少一平行 -57- 201211532 延伸至PCR微通道之延長加熱器元件。 GCF036.1 8 較佳地,第一PCR部具有複數個延長 之PCR腔室’各由分別的PCR微通道之通道部所形成, PCR微通道具有由一系列之寬曲流形成之蜿蜒構造,寬曲 流之各者爲形成延長之PCR腔室之一者的通道部。 GCF036.1 9 較佳地,第一PCR部具有於熱循環期 間用於保留液體於第一 PCR部及回應來自CMOS電路之 啓動訊號而允許液體流至第一雜交室陣列之主動閥。 GCF036.20 較佳地,主動閥係具有經配置以固定 阻止液體之毛細驅動流的彎液面之彎液面固定器的沸騰引 發閥,以及用以沸騰液體以自彎液面固定器解除彎液面使 其恢復毛細驅動流的加熱器。 易於使用、可大量製造且便宜的LOC裝置通過其之 樣本入口接收生物樣本,並利用儲存於LOC裝置之試劑 貯存器中之試劑於平行核酸擴增部進行樣本中標靶基因序 列之DNA及RNA的平行處理。 標靶核酸序列之擴增增加分析系統之靈敏度及訊號-雜訊比。進一步,平行擴增腔室允許不同的標靶或標靶群 組以最佳化使用不同的引子對或不同之引子對群組,且亦 使用不同的最佳化擴增參數’隨之增加分析之靈敏度、訊 號-雜訊比及可靠度。 試劑貯存器係和LOC裝置合倂並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 -58- 201211532 GCF0 3 7.1本發明的態樣提供一種晶片上實驗室(L〇C) 裝置用於生物樣本之遺傳分析,L〇C裝置包含: 入口,用以接收包含包括DNA和RNA之遺傳物質之 樣本; 支撐基材; 複數個試劑貯存器; 第一培養部,第一培養部係與試劑貯存器之一者流體連 φ 通,試劑貯存器包含用於與遺傳物質酵素反應之酵素; 第二培養部,第二培養部係與試劑貯存器之一者流體連 通,試劑貯存器包含用於與遺傳物質酵素反應之酵素’第 二培養部與第一培養部平行; 第一培養部下游之第一核酸擴增部,用以擴增至少一些遺 傳物質;及, 第二培養部下游之第二核酸擴增部,用以至少一些擴增遺 傳物質中,第二核酸擴增部與第一核酸擴增部平行;其 φ 中, 第一培養部、第二培養部、第一核酸擴增部及第二核酸擴 增部係皆被支撐於支撐基材上。 GCF03 7.2較佳地,第一核酸擴增部係第一聚合酶連 鎖反應(PCR)部,配置用於擴增遺傳物質中之DNA,且第 二核酸擴增部係第二PCR部,配置用於擴增遺傳物質中 之 RNA。 GCF03 7.3較佳地,第一PCR部具有第一組引子對以 黏合至DNA中之第一組互補核酸序列,且第二PCR部具 -59- 201211532 有第二組引子對以黏合至RNA中之第二組互補核酸序 列’第一組互補核酸序列與第二組互補核酸序列不同。 GCF03 7.4較佳地,第一PCR部及第二PCR部係配 置成以不同擴增參數操作,擴增參數爲下列之至少一者: 反轉錄酶型; 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液: 熱循環時間; 熱循環重複:以及, 特定PCR相期間之溫度。 GCF03 7.5較佳地,LOC裝置亦具有光感測器、第一 PCR部下游之第一雜交部,及第二PCR部下游之第二雜 交部,第一雜交部具有與第一標靶核酸序列雜交以形成探 針-標靶雜交體之第一探針陣列,及第二雜交部具有用於 與第二標靶核酸序列雜交以形成探針-標靶雜交體之第二 探針陣列,其中光感測器係配置用於檢測探針-標靶雜交 體。 GCF03 7.6較佳地,第一核酸擴增部係第一恆溫核酸 擴增部,配置用以擴增遺傳物質中之DNA,且第二核酸 擴增部係第二恆溫核酸擴增部,配置用以擴增遺傳物質中 之 RNA。 GCF037.7較佳地,第一恆溫核酸擴增部具有用於與 DNA中之第一組互補核酸序列黏合之第一組引子對,以 201211532 及第二恆溫核酸擴增部具有與RNA中之第二組互補核酸 序列黏合之第二組引子對’第一組互補核酸序列與第二組 互補核酸序列不同。 GCF03 7.8較佳地’第一恆溫核酸擴增部及第二恆溫 核酸擴增部係配置成以不同擴增參數操作,擴增參數爲下 列之至少一者: 反轉錄酶型; φ 聚合酶型; 去氧核糖核苷三磷酸濃度; 緩衝液溶液;以及, 核酸擴增期間之溫度。 GCF03 7.9較佳地,LOC裝置亦具有光感測器、第一 恆溫核酸擴增部下游之第一雜交部,及第二恆溫核酸擴增 部下游之第二雜交部,第一雜交部具有與第一標靶核酸序 列雜交以形成探針-標靶雜交體之第一探針陣列,及第二 φ 雜交部具有用於與第二標靶核酸序列雜交以形成探針-標 靶雜交體之第二探針陣列,其中光感測器係配置用於檢測 探針-標靶雜交體。 GCF037.1 0 較佳地,第一雜交部具有包含第一探 針之第一雜交腔室陣列,使得在各雜交腔室內之第一探針 係配置以和第一標靶核酸序列之一者雜交,且第二雜交部 具有包含第二探針之第二雜交腔室陣列,使得在各雜交腔 室內之第二探針係配置以和第二標靶核酸序列之一者雜 交。 201211532 GCF037.1 1 較佳地,光感測器爲與第一和第二雜 交腔室陣列對準配置之光二極體陣列。 GCF03 7. 1 2 較佳地,第一恆溫核酸擴增部具有核 酸擴增微通道以維持樣本之反應溫度,核酸擴增微通道界 定具有橫跨流路之橫斷面小於1 00,000平方微米之流通路 徑。 GCF03 7.1 3 較佳地,核酸擴增微通道具有橫跨流 路之橫斷面小於1 6,000平方微米。 GCF03 7.1 4 較佳地,試劑貯存器各具有表面張力 閥以將試劑保留於其中,表面張力閥具有彎液面固定器, 其用於固定試劑之彎液面直到與樣本流之接觸移除彎液 面。 GCF037.1 5 較佳地,LOC裝置亦具有 CMOS電 路、溫度感測器以及合倂第一及第二PCR部之微系統技 術(MST)層,其中CMOS電路位於支撐基板與MST層之 間,CMOS電路係組態成使用溫度感測器輸出來反饋控制 第一及第二PCR部。 GCF037.1 6 較佳地,第一PCR部具有PCR微通 道,其中當使用時,熱循環樣本,PCR微通道界定具有橫 跨流路之橫斷面小於1 0 0,0 0 0平方微米之流通路徑。 GCF037.1 7 較佳地,PCR微通道具有至少一平行 延伸至PCR微通道之延長加熱器元件。 GCF03 7.1 8 較佳地,第一PCR部具有複數個延長 之PCR腔室,各由分別的PCR微通道之通道部所形成,0 GPC03 8. Preferably, the PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a 蜿蜒 structure. GPC03 8. Preferably, the PCR section has an active valve for retaining liquid in the PCR section during thermal cycling. GPC03 8. Preferably, the active valve has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve meniscus from the meniscus retainer The surface φ restores the heater of the capillary drive flow. GPC03 8. Preferably, the microfluidic device also has a hybridization portion downstream of the PCR portion, the PCR portion having a probe array for hybridizing with the target nucleic acid sequence to form a probe-target hybrid and for detecting the probe-label A light sensor in the target hybrid. GPC03 8. Preferably, the nucleic acid amplification unit is a thermostatic nucleic acid amplification unit. GPC03 8. Preferably, the microfluidic device also has a hybridization section downstream of the constant temperature nucleic acid amplification section, and the thermostatic nucleic acid amplification section has a probe for hybridizing with the target nuclear 23-201211532 acid sequence to form a probe-target hybrid. A needle array, and a light sensor for detecting a probe-target hybrid. GPC038. Preferably, the hybridization portion has an array of hybridization chambers for containing probes such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. GPC03 8. Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of hybridization chambers. GPC03 8. Preferably, the thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow path having a cross section across the flow path of less than 100,000 square microns. GPC03 8. Preferably, the nucleic acid amplification microchannel has a cross section across the flow path of less than 1 6,000 square microns. GPC03 8. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 2,500 square microns. GPC03 8. Preferably, the nucleic acid amplification microchannel has a cross section across the flow path between 1 square micrometer and 400 square micrometers. GPC03 8. Preferably, the reagent reservoirs each have a surface tension valve for retaining the reagent therein, and the surface tension valve has a meniscus holder that is used to fix the meniscus of the reagent until contact with the sample stream to remove the meniscus To allow reagents to flow out of the reagent reservoir. An easy to use, mass-produced, and inexpensive microfluidic device receives a biological sample comprising a nucleic acid, and then amplifies the nucleic acid in the sample using a nucleic acid amplification portion of the microfluidic device and using a reagent stored in a reagent reservoir of the microfluidic device Target. • 24 - 201211532 The Nucleic Acid Amplification Division provides capillary action advancement of the amplification mixture, simplifies the design of the analytical system, further increases reliability and reduces the cost of the analytical system. Amplification of the target nucleic acid sequence increases the sensitivity and signal-to-noise ratio of the analytical system. The reagent reservoir is integrated with the microfluidic device and meets all reagent requirements for analysis. The reagent reservoir provides low system component count and simple manufacturing procedures, resulting in an inexpensive analytical system. $ GPC039. 1 The aspect of the invention provides a test module for amplifying a nucleic acid sequence, the test module comprising: a housing having a container for receiving a sample containing genetic material; and a plurality of reagent reservoirs for containing the sample to be added to the sample And a reagent for amplifying the nucleic acid sequence in the genetic material. GPC039. 2 Preferably, the nucleic acid amplification unit is a polymerase chain reaction (PCR) unit. GPC039. Preferably, the test module also has a CMOS circuit and a temperature φ sensor, and the CMOS circuit is configured to use a temperature sensor output to feedback control the PCR portion. GPC039. Preferably, the PCR portion has a PCR microchannel in which the thermal cycle genetic material, the PCR microchannel defines a flow path having a cross-section across the flow path of less than 100,000 square microns. GPC〇39. Preferably, the PCR microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GPC039. Preferably, the PCR microchannel has a cross-section across the flow path of less than 2,500 square microns. -25- 201211532 GPC039. Preferably, the PCR microchannel has at least one extended heater element extending parallel to the PCR microchannel" GPC039. Preferably, the PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a 蜿蜒 structure. GPC039. Preferably, the PCR section has an active valve for retaining liquid in the PCR section during thermal cycling. GPC039. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that prevents capillary flow of liquid, and to boil liquid to relieve meniscus from the meniscus retainer The heater that restores the capillary drive flow. GPC03 9. Preferably, the microfluidic device also has a hybridization portion downstream of the PCR portion, the PCR portion having a probe array for hybridizing with the target nucleic acid sequence to form a probe-target hybrid and for detecting the probe-label A light sensor in the target hybrid. GPC039. Preferably, the nucleic acid amplification unit is a thermostatic nucleic acid amplification unit. GPC039. Preferably, the test module also has a hybridization section downstream of the constant temperature nucleic acid amplification section, and the thermostatic nucleic acid amplification section has a probe array for hybridizing with the target nucleic acid sequence to form a probe-target hybrid, and A light sensor for detecting a probe-target hybrid. GPC03 9. Preferably, the hybridization portion has an array of hybridization chambers for containing probes such that the probes within each hybridization chamber are configured to hybridize to one of the target nucleic acid sequences. -26- 201211532 GPC039. Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of hybridization chambers. GPC039. Preferably, the thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow path having a cross section across the flow path of less than 100,000 square microns. GPC03 9. Preferably, the nucleic acid amplification microchannel has a cross section across the flow path of less than 1 6,000 square microns. GPC039. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 2,500 square microns. GPC03 9. Preferably, the nucleic acid amplification microchannel has a cross section across the flow path between 1 square micron and 400 square micrometers. GPC03 9. Preferably, the reagent reservoirs each have a surface tension valve for retaining the reagent therein, and the surface tension valve has a meniscus holder that is used to fix the meniscus of the reagent until contact with the sample stream to remove the meniscus To allow reagents to flow out of the reagent reservoir. An easy-to-use, mass-produced, inexpensive, and portable test module receives a sample containing the nucleic acid, and then amplifies the sample using the nucleic acid amplification portion of the module and using reagents stored in the reagent reservoir of the test module Nucleic acid target. The Nucleic Acid Amplification Department provides capillary action advancement of the amplification mixture, simplifies the design of the analysis system, further increases reliability and reduces the cost of the analysis system. Amplification of the target nucleic acid sequence increases the sensitivity of the analytical system and the signal _ noise ratio. The reagent reservoir is integrated with the test module and meets all of the analytical requirements of the analysis. The reagent reservoir provides low system component counts and simple manufacturing procedures, resulting in an inexpensive analytical system. GPC040. 1 Aspects of the invention provide a microfluidic device for amplifying a nucleic acid sequence, the microfluidic device comprising: an inlet for receiving a sample comprising genetic material: a plurality of reagent reservoirs containing reagents for addition to the sample; The nucleic acid amplification unit amplifies the nucleic acid sequence of the genetic material; and the second nucleic acid amplification unit amplifies the nucleic acid sequence in the genetic material, which is parallel to the first nucleic acid amplification unit. GPC040. Preferably, the first nucleic acid amplification unit is a first polymerase chain reaction (PCR) unit and the second nucleic acid amplification unit is a second polymerase chain reaction (PCR) unit. GPC040. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second PCR portion has a second set of primer pairs for binding to the second set of complementary nucleic acid sequences, the first set of complementary The nucleic acid sequence differs from the second set of complementary nucleic acid sequences. GPC040. 4 Preferably, the 'first PCR portion and the second pCr portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type: polymerase type; deoxyribonucleoside triphosphate Concentration; buffer solution; thermal cycle time; thermal cycle repeat; and, -28-201211532 temperature during a specific PCR phase. GPC040. Preferably, the 'microfluidic device also has a first hybridization portion downstream of the first PCR portion, having a first probe array that hybridizes with the first target nucleic acid sequence to form a probe-target hybrid, and a second a second hybridization portion downstream of the PCR portion, having a second probe array for hybridizing with the second target nucleic acid sequence to form a probe-target hybrid, and for detecting the light of the probe-target hybrid Sensor. φ GPC040. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit (GPC040). Preferably, the first thermostated nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second thermostated nucleic acid amplification portion has a second binding to the second set of complementary nucleic acid sequences. A set of primer pairs, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. GPC040. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the lower φ columns: reverse transcriptase type: polymerase type : concentration of deoxyribonucleoside triphosphate; buffer solution; and, temperature during nucleic acid amplification. GPC〇4〇. Preferably, the microfluidic device also has a first hybridization portion downstream of the first thermolabic nucleic acid amplification portion, having a first probe array that hybridizes with the first target nucleic acid sequence to form a probe-target hybrid, And a second constant temperature section -29 - 201211532 downstream of the nucleic acid amplification section, having a second probe array for hybridizing with the second target nucleic acid sequence to form a probe-target hybrid, and A photosensor that detects the probe-target hybrid. GPC040. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system within each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences. GPC040. Il Preferably, the photosensor is an array of photodiodes arranged in alignment with the first and second probe arrays. GPC040. Preferably, the first thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow path diameter of less than 100,000 square micrometers across the cross section of the flow path. GPC040. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GPC040. Preferably, the reagent reservoirs each have a surface tension valve for retaining the reagent therein, and the surface tension valve has a meniscus holder for fixing the meniscus of the reagent until contact with the sample stream to remove the meniscus Face to allow reagents to flow from the reagent reservoir. GPC040. Preferably, the microfluidic device also has a CMOS circuit and a temperature sensor, and the CMOS circuit is configured to use a temperature sensor to output feedback control of the first and second PCR portions. GPC040. Preferably, the first PCR portion has a PCR microchannel in which the genetic material is thermally cycled, and the PCR microchannel defines a flow path having a cross-section across the flow path of less than 100,000 square microns. 201211532 GPC040. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GPC040. Preferably, the first PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a ruthenium structure. GPC040. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during the thermal cycle period φ. GPC040. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve the meniscus from the meniscus holder A heater that restores the capillary drive flow. An easy to use, mass-produced, and inexpensive microfluidic device receives a biological sample comprising a nucleic acid, and then amplifies the nucleic acid in the sample using a reagent of a parallel nucleic acid amplification portion of the device and φ using a reagent reservoir stored in the microfluidic device Target. The Nucleic Acid Amplification Department provides capillary action advancement of the amplification mixture, simplifies the design of the analysis system, further increases reliability and reduces the cost of the analysis system. Amplification of the target nucleic acid sequence increases the sensitivity of the analytical system and the signal _ noise ratio. Further, the parallel amplification chamber allows for different target or target groups to optimize the use of different primer pairs or different primer pair groups' and also uses different optimized amplification parameters, which in turn increases the analysis. Sensitivity, signal-to-noise ratio and reliability. -31 - 201211532 The reagent reservoir is integrated with the microfluidic device and meets all reagent requirements for analysis. The reagent reservoir provides low system component count and simple manufacturing procedures, resulting in an inexpensive analytical system. G P C 0 4 1 .  1 The aspect of the invention provides a test module for amplifying a nucleic acid sequence, the test module comprising: a housing having a container for receiving a sample containing genetic material; a plurality of reagent reservoirs containing reagents for adding to the sample The first nucleic acid amplification unit amplifies the nucleic acid sequence in the genetic material; and the second nucleic acid amplification unit amplifies the nucleic acid sequence in the genetic material, which is parallel to the first nucleic acid amplification unit. GPC041. Preferably, the first nucleic acid amplification unit is a first polymerase chain reaction (PCR) unit and the second nucleic acid amplification unit is a second polymerase chain reaction (PCR) unit. GPC041. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second PCR portion has a second set of primer pairs for binding to the second set of complementary nucleic acid sequences, the first set of complementary The nucleic acid sequence differs from the second set of complementary nucleic acid sequences. GPC041. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type; polymerase type: deoxyribonucleoside triphosphate Concentration; Buffer solution: Thermal cycle time; -32- 201211532 Thermal cycle repetition; and, Temperature during a specific PCR phase. GPC041. Preferably, the test module also has a first hybridization portion downstream of the first PCR portion, having a first probe array that hybridizes with the first target nucleic acid sequence to form a probe-target hybrid, and a second a second hybridization portion downstream of the PCR portion, having a second probe array for hybridization with a second target nucleic acid sequence to form a probe-target hybrid, and for detecting a probe-target φ hybrid Light sensor. GPC041. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit. GPC041. Preferably, the first thermostated nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second thermostated nucleic acid amplification portion has a second binding to the second set of complementary nucleic acid sequences. A set of primer pairs, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. GPC041. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature φ nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: a reverse transcriptase type; a polymerase type; Deoxyribonucleoside triphosphate concentration; buffer solution; and, temperature during nucleic acid amplification. GPC04 1. Preferably, the test module also has a first hybridization portion downstream of the first constant temperature nucleic acid amplification portion, which has a hybridization with the first target nucleic acid sequence -33 - 201211532 to form a probe-labeled mutated parent a probe array, and a second hybridization portion downstream of the second thermolabic nucleic acid amplification portion, having a second probe array for hybridizing with the second target nucleic acid sequence to form a probe/target hybrid, and A photosensor for detecting a probe-target hybrid. GPC04 1 .  Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system within each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences. GPC04 1. Il Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of hybridization chambers. GPC041. Preferably, the first thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow path diameter of less than 100,000 square micrometers across the cross section of the flow path. GPC041. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 16,000 square microns. GPC041. Preferably, the reagent reservoirs each have a surface tension valve therein to retain the reagent therein, and the surface tension valve has a meniscus holder for fixing the meniscus of the reagent until contact with the sample stream to remove the meniscus To allow reagents to flow out of the reagent reservoir. GPC04 1. Preferably, the test module also has a CMOS circuit and a temperature sensor, and the CMOS circuit is configured to use the temperature sensor output to feedback control the first and second PCR sections. GPC041. Preferably, the first PCR portion has a PCR microchannel in which the thermal cycle genetic material, the PCR microchannel defines a flow path having a cross-section of less than 1,00,000 square microns across the flow path 201211532. GPC041. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GPC041. Preferably, the first PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a ruthenium structure. φ GPC041. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during thermal cycling. GPC041. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve the meniscus from the meniscus holder A heater that restores the capillary drive flow. An easy-to-use, mass-produced, inexpensive, and portable test module that accepts a sample containing nucleic acid, and then uses the parallel nucleic acid amplification portion of the module and utilizes reagents stored in the reagent reservoir of the test module. Increase the nucleic acid target in the sample. The Nucleic Acid Amplification Department provides capillary action advancement of the amplification mixture, simplifies the design of the analysis system, further increases reliability and reduces the cost of the analysis system. Amplification of the target nucleic acid sequence increases the sensitivity and signal-to-noise ratio of the analytical system. Further, parallel amplification chambers allow different targets or target groups to be optimized for different pairs of primer pairs or different pairs of primer pairs, and different optimized amplification parameters are used, with increased analysis Sensitivity, News -35- 201211532 - noise ratio and reliability. The reagent reservoir is integrated with the test module and meets all of the reagent requirements for analysis. The reagent reservoir provides low system component counts and simple manufacturing procedures, resulting in an inexpensive analytical system. GPC042. 1 Aspects of the invention provide a microfluidic device for amplifying DNA and RNA, the microfluidic device comprising: an inlet for receiving a sample comprising genetic material comprising DN A and RNA; a plurality of reagent reservoirs for inclusion a reagent to the sample; a first nucleic acid amplification unit for amplifying at least some genetic material; and a second nucleic acid amplification unit for amplifying at least some genetic material in parallel with the first nucleic acid amplification portion. GPC042. Preferably, the first nucleic acid amplification unit is a first polymerase chain reaction (PCR) unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second PCR unit, the configuration thereof Used to amplify RNA in genetic material. GPC042. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second PCR portion has a second set of primer pairs for binding to the second set of complementary nucleic acid sequences, DNA The first set of complementary nucleic acid sequences differs from the second set of complementary nucleic acid sequences. GPC042. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type; polymerase type; -36- 201211532 deoxyribose Nucleoside triphosphate concentration; buffer solution; thermal cycle time; thermal cycle repetition; and, temperature during a specific PCR phase. GPC042. 5 Preferably, the 'microfluidic device also has a photosensor, a first hybridization portion downstream of the first PCR portion, and a second hybridization portion downstream of the second PCR portion, the first hybridization portion having a first target nucleic acid sequence Hybridizing to form a first probe array of probe-target hybrids, and the second hybridization portion has a second probe array for hybridization with a second target nucleic acid sequence to form a probe-target hybrid, wherein The photosensor system is configured to detect probe-target hybrids. GPC042. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit configured Used to amplify RNA in the φ substance of the genetic material. GPC0 42. Preferably, the first thermostatic nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second thermostated nucleic acid amplification portion has a second set of complementary nucleic acids with the RNA. A second set of primer pairs that are sequence-bound, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. GPC042. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters: the amplification parameter is at least one of the following: -37- 201211532 reverse transcriptase type: polymerization Enzyme type: Deoxyribonucleoside triphosphate concentration: buffer solution; and, the temperature during nucleic acid amplification. GPC042. Preferably, the microfluidic device further has a photo sensor, a first hybridization portion downstream of the first thermostatic nucleic acid amplification portion, and a second hybridization portion downstream of the second thermostatic nucleic acid amplification portion, the first hybridization portion having The first target nucleic acid sequence hybridizes to form a first probe array of probe-target hybrids and the second hybridization portion has a first hybridization with a second target nucleic acid sequence to form a probe-target hybrid A two-probe array in which a photosensor is configured to detect a probe-target hybrid. GPC042. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system within each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences, And the second hybridization portion has an array of second hybridization chambers comprising a second probe such that the second probe line within each hybridization chamber is configured to hybridize to one of the second target nucleic acid sequences. GPC042. Il Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of first and second hybrid chambers. GPC042. Preferably, the first thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow path having a cross section of less than 100,000 square micrometers across the flow path. -38- 201211532 GPC042. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GPC042. Preferably, the reagent reservoirs each have a surface tension valve in which the reagent is retained, and the surface tension valve has a meniscus holder that is used to fix the meniscus of the reagent until contact with the sample stream to remove the meniscus Face to allow reagents to flow from the reagent reservoir. GPC042. Preferably, the microfluidic device also has a CMOS circuit and a temperature sensor, the CMOS circuit being configured to use the temperature sensor output to feedback control the first and second PCR portions. GPC042. Preferably, the first PCR portion has a PCR microchannel, wherein during use, the thermal cycle genetic material, the PCR microchannel defines a flow path having a cross-section across the flow path of less than 100,000 square microns. GPC042. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GPC042. Preferably, the first PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a ruthenium structure. GPC042. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during thermal cycling. GPC042. Preferably, the active valve train has a boiling pilot-39-201211532 valve configured to hold a meniscus retainer that blocks the meniscus drive flow of the liquid, and is used to boil the liquid to be fixed from the meniscus The heater removes the meniscus to restore the capillary drive flow to the heater. An easy to use, mass-produced, and inexpensive microfluidic device receives a sample comprising DNA and RNA sequences, and then amplifies the sample using a parallel nucleic acid amplification portion of the device and using reagents stored in a reagent reservoir of the microfluidic device Standard DNA and RNA sequences. The Nucleic Acid Amplification Department provides capillary action advancement of the amplification mixture, simplifies the design of the analysis system, further increases reliability and reduces the cost of the analysis system. Amplification of the target DNA and RNA sequences increases the sensitivity of the analytical system and the signal-to-noise ratio. Further, parallel amplification chambers allow different targets or target groups to be optimized for different pairs of primer pairs or different pairs of primer pairs, and different optimized amplification parameters are used, with increased analysis Sensitivity, signal-to-noise ratio and reliability. The reagent reservoir is integrated with the microfluidic device and meets all reagent requirements for analysis. The reagent reservoir provides low system component count and simple manufacturing procedures, resulting in an inexpensive analytical system. GPC043. 1 Aspects of the invention provide a test module for amplifying DNA and RNA, the test module comprising: a housing having a container for receiving a sample comprising genetic material comprising DNA and RNA: a plurality of reagent reservoirs, for use a reagent for increasing to a sample; a first nucleic acid amplification portion for amplifying at least some genetic material; and a second nucleic acid amplification portion for amplifying at least some genetic material parallel to the first nucleic acid amplification portion . -40- 201211532 GPC043. Preferably, the first nucleic acid amplification unit is a first polymerase chain reaction (PCR) unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second PCR unit, the configuration thereof Used to amplify RNA in genetic material. GPC043. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second PCR portion has a second set of primer pairs for binding to the second set of complementary nucleic acid sequences, DNA The first set of complementary nucleic acid sequences differs from the second set of complementary nucleic acid sequences. GPC043. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type; polymerase type; deoxyribonucleoside triphosphate Concentration; buffer solution; thermal cycle time; thermal cycle repetition; and, temperature during a particular PCR phase. GPC04 3. Preferably, the test module also has a photo sensor, a first hybridization portion downstream of the first PCR portion, and a second hybridization portion downstream of the second PCR portion, the first hybridization portion having a hybridization with the first target nucleic acid sequence. Forming a first probe array of probe-target hybrids, and the second hybridization portion has a second probe array for hybridizing with the second target nucleic acid sequence to form a probe-target hybrid, wherein the light The sensor system is configured to detect probe-target hybrids. -41 - 201211532 GPC043. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit. Used to amplify RNA in genetic material. GPC043. Preferably, the first thermostatic nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second thermostated nucleic acid amplification portion has a second set of complementary nucleic acids with the RNA. A second set of primer pairs that are sequence-bound, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. GPC043. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: a reverse transcriptase type; a polymerase type; Oxyribonucleoside triphosphate concentration; buffer solution; and, temperature during nucleic acid amplification. GPC 043. Preferably, the test module further comprises a photo sensor, a first hybridization section downstream of the first thermostatic nucleic acid amplification section, and a second hybridization section downstream of the second thermostatic nucleic acid amplification section, the first hybridization section having The first target nucleic acid sequence hybridizes to form a first probe array of probe-target hybrids, and the second hybridization portion has a second hybridization nucleic acid sequence for hybridization with a second target nucleic acid sequence to form a probe-target hybrid A two-probe array in which a photosensor is configured to detect a probe-target hybrid. -42- 201211532 GPC043. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first needle such that the first line configuration within each hybridization chamber is hybridized to one of the first target nucleic acid sequences, and the second portion A second hybridization chamber array comprising a second probe is configured such that a second probe line within each chamber is configured to intersect one of the second target nucleic acid sequences. GPC043. 1 1 Preferably, the photo sensor is an array of photodiodes arranged in alignment with the first and the first φ inter-chamber arrays. GPC043. Preferably, the first thermolabic nucleic acid amplification unit has an acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification micropass has a flow path of less than 100,000 square micrometers across the cross section of the flow path. GPC043. Preferably, the nucleic acid amplification microchannel has a transverse cross-section of less than 1 6,000 square microns. GPC043. Preferably, the reagent reservoirs each have a surface φ valve for retaining the reagent therein, and the surface tension valve has a meniscus fixed for fixing the meniscus of the reagent until contact with the sample stream removes the bend to allow the reagent Flowing out of the reagent reservoir. GPC043. Preferably, the test module also has a CMOS and a temperature sensor, and the CMOS circuit is configured to use a temperature sensor to feedback control the first and second PCR sections. GPC043. Preferably, the first PCR portion has a PCR channel, wherein during use, the thermal cycle genetic material, the PCR microchannel has a cross-section of less than 100,000 square micrometers across the flow path - probe hybrid hybrid The heterogeneous heterogeneous nuclear pathway cross-flow tensor, the liquid-level circuit output micro-pass defines the path -43- 201211532. GPC043. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GPC043. Preferably, the first PCR portion has a plurality of elongated PCR chambers each formed by a channel portion of a respective PCR microchannel, the channel portions being parallel and adjacent to each other such that the PCR microchannel has a ruthenium structure. GPC043. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during thermal cycling. GPC043. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve the meniscus from the meniscus holder A heater that restores the capillary drive flow. An easy-to-use, mass-produced, inexpensive, and portable test module that receives a sample containing DNA and RNA sequences, and then uses the parallel nucleic acid amplification portion of the module and utilizes reagents stored in the reagent reservoir of the test module Amplify the target DNA and RNA sequences in the sample. The Nucleic Acid Amplification Department provides capillary action advancement of the amplification mixture, simplifies the design of the analysis system, further increases reliability and reduces the cost of the analysis system. Amplification of the target DNA and RNA sequences increases the sensitivity of the analytical system and the signal-to-noise ratio. Further, the parallel amplification chamber allows for different target or target groups to be optimized using different primer pairs or different primer pair groups, and also using different optimized amplification parameters' with subsequent analysis Spirit -44- 201211532 Sensitivity, signal-noise ratio and reliability. The reagent reservoir is integrated with the test module and meets all of the reagent requirements for analysis. The reagent reservoir provides low system component counts and simple manufacturing procedures, resulting in an inexpensive analytical system. GCF034. 1 Aspects of the invention provide a on-wafer laboratory (LOC) device for genetic analysis of a biological sample, the LOC device comprising: an inlet for receiving a sample comprising genetic material; a φ support substrate; a plurality of reagent reservoirs; The first nucleic acid amplification unit is configured to amplify the nucleic acid sequence in the genetic material; and the second nucleic acid amplification unit is configured to amplify the nucleic acid sequence in the genetic material, which is parallel to the first nucleic acid amplification unit; wherein, the first Both the nucleic acid amplification unit and the second nucleic acid amplification unit are supported on a support substrate. GC?034. Preferably, the first nucleic acid amplification unit is a first polymerase linked to a φ-lock reaction (PCR) unit and the second nucleic acid amplification unit is a second PCR unit. GCF034. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second PCR portion has a second set of primer pairs for binding to the second set of complementary nucleic acid sequences 'the first set of complementary The nucleic acid sequence differs from the second set of complementary nucleic acid sequences. GCF034. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type; polymerase type; -45- 201211532 deoxyribose Nucleoside triphosphate concentration; buffer solution; thermal cycle time; thermal cycle repetition; and, temperature during a specific PCR phase. GCF03 4. 5 Preferably, the 'LOC device also has a photo sensor, a first hybridization portion downstream of the first PCR portion, and a second hybridization portion downstream of the second pCr portion, the first hybridization portion having a hybridization with the first target nucleic acid sequence Forming a first probe array of probe-target hybrids, and the second hybridization portion has a second probe array for hybridizing with the second target nucleic acid sequence to form a probe-target hybrid, wherein the light The sensor system is configured to detect probe-target hybrids. GCF03 4. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit. GCF03 4. Preferably, the first thermostated nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second thermostated nucleic acid amplification portion has a second binding to the second set of complementary nucleic acid sequences. The set of primer pairs differs from the first set of complementary nucleic acid sequences to the second set of complementary nucleic acid sequences. GCF034. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: a reverse transcriptase type; a polymerase type; Oxygen ribonucleoside triphosphate concentration; -46- 201211532 buffer solution; and, temperature during nucleic acid amplification. GCF034. 9 Preferably, the 'LOC device also has a photo sensor, a first hybridization portion downstream of the first constant temperature nucleic acid amplification portion, and a second hybridization portion downstream of the second thermostatic nucleic acid amplification portion, wherein the first hybridization portion has The first target nucleic acid sequence hybridizes to form a first probe array of the probe-target hybrid, and the second hybridization portion has a first hybridization to the second target nucleic acid sequence to form a probe-target hybrid A two-probe array in which a photosensor is configured to detect a probe-target hybrid. GCF034. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system in each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences, And the second hybridization portion has a second hybridization chamber array comprising a second probe such that the second probe line within each hybridization chamber is configured to hybridize to one of the second target nucleic acid sequences. GCF034. Il Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of first and second hybrid chambers. GCF034-1 2 Preferably, the first thermostatic nucleic acid amplification portion has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow having a cross section across the flow path of less than 100,000 square micrometers. path. GCF034. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 16,000 square microns. GCF034. Preferably, the reagent reservoirs each have a surface tension -47 - 201211532 valve to retain the reagent therein, and the surface tension valve has a meniscus holder for fixing the meniscus of the reagent until contact with the sample stream The meniscus is removed to allow reagents to flow out of the reagent reservoir. GCF034. Preferably, the LOC device also has a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer of the first and second PCR sections, wherein the CMOS circuit is located between the support substrate and the MST layer, and the CMOS circuit The system is configured to feedback control the first and second PCR sections using a temperature sensor output. GCF034. Preferably, the first PCR portion has a PCR microchannel, wherein when used, the thermal cycle sample, the PCR microchannel defines a flow path having a cross-sectional cross-section of less than 100,000 square microns" GCF034. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GCF034. Preferably, the first PCR portion has a plurality of extended PCR chambers each formed by a channel portion of a respective PCR microchannel having a 蜿蜒 structure formed by a series of wide meandering flows, width Each of the meanders is a channel portion that forms one of the extended PCR chambers. GCF034. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during thermal cycling. GCF034. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve the meniscus from the meniscus holder A heater that restores the capillary drive flow. -48- 201211532 Easy-to-use, mass-produced and inexpensive LOC devices pass through it. The sample inlet receives the biological sample and the parallel expansion of the target gene sequence in the sample is performed using reagents stored in the reagent reservoir of the LOC device. Amplification of the target nucleic acid sequence increases the sensitivity and signal-to-noise ratio of the analytical system. Further, parallel amplification chambers allow different targets or target groups to be optimized using different primer pairs or different primer pair groups, and also use different optimized amplification parameters, which in turn increases Analysis sensitivity, signal-to-noise ratio and reliability. The reagent reservoir is combined with the LOC device and meets all of the reagent requirements for analysis. The reagent reservoir provides a low number of system components and a simple manufacturing process, resulting in an inexpensive analytical system. GCF0 3 5. 1 Aspects of the invention provide a on-wafer laboratory (LOC) device for genetic analysis of a biological sample, the LOC device comprising: an inlet for receiving a sample comprising genetic material: φ a support substrate; a plurality of reagent reservoirs; a first culture portion, the first culture portion is in fluid communication with one of the reagent reservoirs, the reagent reservoir includes an enzyme for reacting with the genetic material enzyme; to amplify the nucleic acid sequence in the genetic material; and, the second culture portion The second culture part is in fluid communication with one of the reagent reservoirs, and the reagent reservoir includes an enzyme for reacting with the genetic material enzyme, the second culture portion is parallel to the first culture portion; the first nucleic acid downstream of the first culture portion An amplification unit for amplifying a nucleic acid sequence of -49-201211532 in the genetic material; and a second nucleic acid amplification portion downstream of the second culture portion for amplifying the nucleic acid sequence in the genetic material, and the second nucleic acid amplification The portion is parallel to the first nucleic acid amplification unit; wherein the first culture unit, the first culture unit, the first nucleic acid amplification unit, and the second nucleic acid amplification unit are supported on the support substrate. GCF035. Preferably, the first nucleic acid amplification unit is a polymerase-binding reaction (PCR) unit and the second nucleic acid amplification unit is a second PCR unit. GCF03 5. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second PCR portion has a second set of primer pairs for binding to the second set of complementary nucleic acid sequences, the first set of complementary The nucleic acid sequence differs from the second set of complementary nucleic acid sequences. GCF035. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type; polymerase type; deoxyribonucleoside triphosphate Concentration; buffer solution; thermal cycle time; thermal cycle repetition; and, temperature during a particular PCR phase. GCF03 5. Preferably, the LOC device also has a photo sensor, a first hybridization portion downstream of the first PCR portion, and a second hybridization portion downstream of the second PCR portion, the first hybridization portion having a hybridization with the first target nucleic acid sequence To form a first probe array of probe-50-201211532 needle-target hybrids, and the second hybridization portion has a second probe for hybridization with the second target nucleic acid sequence to form a probe-target hybrid An array wherein the photosensor is configured to detect a probe-target hybrid. GCF03 5. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit. GCF03 5. Preferably, the first thermostated nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences, and the second thermostated nucleic acid amplification portion has a second binding to the second set of complementary nucleic acid sequences. Group primer pair, the first set of complementary nucleic acid sequences are different from the second set of complementary nucleic acid sequences" GCF03 5. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: a reverse transcriptase type; a polymerase type; Oxygen ribonucleoside triphosphate concentration; buffer solution; and, temperature during nucleic acid amplification ◊ GCF03 5. Preferably, the LOC device further has a photo sensor, a first hybridization portion downstream of the first thermostatic nucleic acid amplification portion, and a second hybridization portion downstream of the second thermostatic nucleic acid amplification portion, the first hybridization portion having A target nucleic acid sequence hybridizes to form a first probe array of probe-target hybrids, and a second hybridization portion has a second for hybridization with a second target nucleic acid sequence to form a probe-target hybrid Probe array, wherein the photosensor system is configured to detect -51 - 201211532 probe-target hybrids" GCF035. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system in each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences And the second hybridization portion has a second hybridization chamber array comprising a second probe such that the second probe line within each hybridization chamber is configured to hybridize to one of the second target nucleic acid sequences. GCF03 5. Il Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of first and second hybrid chambers. GCF03 5. Preferably, the first thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the sample at the reaction temperature, and the nucleic acid amplification microchannel defines a flow path diameter of less than 100,000 square micrometers across the cross section of the flow path. GCF03 5. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GCF03 5. Preferably, the reagent reservoirs each have a surface tension valve for retaining the reagent therein, and the surface tension valve has a meniscus holder for fixing the meniscus of the reagent until contact with the sample stream to remove the meniscus surface. GCF03 5. Preferably, the LOC device also has a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer of the first and second PCR sections, wherein the CMOS circuit is located between the support substrate and the MST layer, and the CMOS circuit The system is configured to feedback control the first and second PCR sections using a temperature sensor output. 201211532 GCF03 5. Preferably, the first PCR portion has a PCR microchannel, wherein, when in use, the thermal cycle sample, the PCR microchannel defines a flow path having a cross-section across the flow path of less than 100,000 square microns. GCF03 5. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GCF03 5. Preferably, the first PCR portion has a plurality of extended PCR chambers, each formed by a channel portion of a respective PCR microchannel, and the φ PCR microchannel has a 蜿蜒 structure formed by a series of wide meandering flows. Each of the wide meanders is a channel portion that forms one of the extended PCR chambers. GCF03 5. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during thermal cycling. GCF03 5. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve the meniscus from the meniscus holder Make it a heater that restores the capillary drive flow. The easy-to-use, mass-produced and inexpensive LOC device receives the biological sample through its sample inlet, performs parallel processing of the sample in the parallel culture portion, and uses the reagent stored in the reagent reservoir of the L0C device in the parallel nucleic acid amplification unit. The target gene sequences in the sample were amplified in parallel. In the culture department, genetic material is processed in various ways, such as nucleic acid restriction and conjugation of aptamer primers, to provide the most suitable or necessary conditions for the next analysis stage, to increase the information content of the analysis results, and to increase the analysis system. Sensitivity and signal - noise ratio and reliability. Further, the -53-201211532 parallel culture chamber allows for different nucleic acid stencils or template groups to optimize for different enzyme reactions, resulting in improved assay diversity. Amplification of the target nucleic acid sequence increases the sensitivity and signal-to-noise ratio of the analytical system. Further, parallel amplification chambers allow different targets or target groups to be optimized for different pairs of primer pairs or different pairs of primer pairs, and different optimized amplification parameters are used, with increased analysis Sensitivity, signal-to-noise ratio and reliability. The reagent reservoir is combined with the LOC device and meets all reagent requirements for analysis. The reagent reservoir provides a low number of system components and a simple manufacturing process, resulting in an inexpensive analytical system. GCF03 6. 1 Aspects of the invention provide a on-wafer laboratory (LOC) device for genetic analysis of a biological sample, the LOC device comprising: an inlet for receiving a sample comprising genetic material comprising DNA and RNA; a support substrate; a reagent reservoir; a first nucleic acid amplification unit for amplifying at least some genetic material: and a second nucleic acid amplification unit for amplifying at least some genetic material, and the second nucleic acid amplification unit and the first nucleic acid amplification unit Parallel; wherein the first nucleic acid amplification portion and the second nucleic acid amplification portion are both supported on the support substrate" GCF03 6. Preferably, the first nucleic acid amplification unit is a first polymerase chain reaction (PCR) unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second PCR unit configured to be used for Amplify the RNA of 201211532 in the genetic material. GCF03 6. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of interdigitated nucleic acid sequences in the DNA. And the second PCR portion has a second set of primer pairs for binding to a second set of complementary nucleic acid sequences in the RNA, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. GCF036. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: φ reverse transcriptase type; polymerase type; deoxyribonucleoside III Phosphoric acid concentration; buffer solution; thermal cycle time; thermal cycle repetition; and, temperature during a specific PCR phase. GCF03 6. Preferably, the LOC device also has a photo sensor, a first hybridization portion downstream of the first φ PCR portion, and a second hybridization portion downstream of the second PCR portion, the first hybridization portion having a first target nucleic acid sequence Hybridizing to form a first probe array of probe-target hybrids, and the second hybridization portion has a second probe library for hybridizing with the second target nucleic acid sequence to form a probe/target hybrid, The photosensor is configured to detect a probe-target hybrid. GCF036. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit configured to be configured to Amplify RNA from -55 to 201211532 in genetic material. GCF036. Preferably, the first thermostated nucleic acid amplification section has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second thermolabic nucleic acid amplification section has a complement to the second set of RNA. A second set of primer pairs to which the nucleic acid sequence is affixed, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. GCF036. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: a reverse transcriptase type; a polymerase type; Oxyribonucleoside triphosphate concentration: a buffer solution; and, the temperature during nucleic acid amplification. GCF036. Preferably, the LOC device further has a photo sensor, a first hybridization portion downstream of the first thermostatic nucleic acid amplification portion, and a second hybridization portion downstream of the second thermostatic nucleic acid amplification portion, the first hybridization portion having A target nucleic acid sequence hybridizes to form a first probe array of probe-target hybrids, and a second hybridization portion has a second for hybridization with a second target nucleic acid sequence to form a probe-target hybrid A probe array in which a photosensor is configured to detect a probe-target hybrid. GCF03 6. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system within each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences, And the second hybridization section -56-201211532 has a second hybridization chamber array comprising a second probe such that the second probe line within each hybridization chamber is configured to hybridize to one of the second target nucleic acid sequences. GCF036. Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of first and second hybrid chambers. GCF036. Preferably, the first thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the reaction temperature of the sample, and the nucleic acid amplification microchannel defines a flow path diameter of less than 100,000 square micrometers across the cross section of the flow path. GCF036. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 16,000 square microns. GCF036. Preferably, the reagent reservoirs each have a surface tension valve for retaining the reagent therein, and the surface tension valve has a meniscus holder for fixing the meniscus of the reagent until contact with the sample stream to remove the meniscus surface. GCF03 6. Preferably, the LOC device also has a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer of the first and second PCR sections, wherein the CMOS circuit is located between the support substrate and the MST layer, and the CMOS circuit The system is configured to feedback control the first and second PCR sections using a temperature sensor output. GCF03 6. Preferably, the first PCR portion has a PCR microchannel, wherein when in use, the thermal cycle sample, the PCR microchannel defines a flow path having a cross-sectional cross-section of less than 100, 〇〇〇 square microns. GCF03 6. Preferably, the PCR microchannel has at least one parallel heater element extending from -57 to 201211532 to the PCR microchannel. GCF036. Preferably, the first PCR portion has a plurality of extended PCR chambers each formed by a channel portion of a respective PCR microchannel having a 蜿蜒 structure formed by a series of wide meandering flows, width Each of the meanders is a channel portion that forms one of the extended PCR chambers. GCF036. Preferably, the first PCR portion has an active valve for retaining liquid in the first PCR portion and in response to an activation signal from the CMOS circuit to allow liquid to flow to the first hybridization chamber array during thermal cycling. GCF036. Preferably, the active valve system has a boiling initiation valve configured to secure a meniscus retainer that blocks the meniscus of the liquid drive flow, and to boil the liquid to relieve the meniscus from the meniscus holder A heater that restores the capillary drive flow. The easy-to-use, mass-produced and inexpensive LOC device receives a biological sample through its sample inlet, and uses the reagent stored in the reagent reservoir of the LOC device to perform DNA and RNA of the target gene sequence in the sample in the parallel nucleic acid amplification portion. Parallel processing. Amplification of the target nucleic acid sequence increases the sensitivity and signal-to-noise ratio of the analytical system. Further, the parallel amplification chamber allows for different target or target groups to be optimized using different primer pairs or different primer pair groups, and also using different optimized amplification parameters' with subsequent analysis Sensitivity, signal-to-noise ratio and reliability. The reagent reservoir is combined with the LOC device and meets all reagent requirements for analysis. The reagent reservoir provides a low number of system components and a simple manufacturing process, resulting in an inexpensive analytical system. -58- 201211532 GCF0 3 7. 1 Aspects of the invention provide a on-wafer laboratory (L〇C) device for genetic analysis of a biological sample, the L〇C device comprising: an inlet for receiving a sample comprising genetic material comprising DNA and RNA; a plurality of reagent reservoirs; a first culture portion, the first culture portion is fluidly connected to one of the reagent reservoirs, and the reagent reservoir includes an enzyme for reacting with genetic material enzymes; The second culture unit is in fluid communication with one of the reagent reservoirs, and the reagent reservoir includes an enzyme for reacting with the genetic material enzyme. The second culture portion is parallel to the first culture portion; the first nucleic acid amplification downstream of the first culture portion a portion for amplifying at least some genetic material; and a second nucleic acid amplification portion downstream of the second culture portion for at least some of the amplified genetic material, the second nucleic acid amplification portion being parallel to the first nucleic acid amplification portion In the φ, the first culture part, the second culture part, the first nucleic acid amplification part, and the second nucleic acid amplification part are all supported on the support substrate. GCF03 7. Preferably, the first nucleic acid amplification unit is a first polymerase chain reaction (PCR) unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second PCR unit configured to be used for Amplify RNA in genetic material. GCF03 7. Preferably, the first PCR portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second PCR portion has a second set of primer pairs for binding to the RNA in -59-201211532 The second set of complementary nucleic acid sequences 'the first set of complementary nucleic acid sequences differs from the second set of complementary nucleic acid sequences. GCF03 7. Preferably, the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: reverse transcriptase type; polymerase type; deoxyribonucleoside triphosphate Concentration; Buffer solution: Thermal cycle time; Thermal cycle repeat: and, during the specific PCR phase. GCF03 7. Preferably, the LOC device also has a photo sensor, a first hybridization portion downstream of the first PCR portion, and a second hybridization portion downstream of the second PCR portion, the first hybridization portion having a hybridization with the first target nucleic acid sequence Forming a first probe array of probe-target hybrids, and the second hybridization portion has a second probe array for hybridizing with the second target nucleic acid sequence to form a probe-target hybrid, wherein the light The sensor system is configured to detect probe-target hybrids. GCF03 7. Preferably, the first nucleic acid amplification unit is a first constant temperature nucleic acid amplification unit configured to amplify DNA in the genetic material, and the second nucleic acid amplification unit is a second constant temperature nucleic acid amplification unit configured to be configured to Amplify RNA in genetic material. GCF037. Preferably, the first thermostatic nucleic acid amplification portion has a first set of primer pairs for binding to the first set of complementary nucleic acid sequences in the DNA, and the second constant temperature nucleic acid amplification portion has the second and the second RNA in the 201211532 The second set of primer pairs to which the complementary nucleic acid sequences are bound differs from the first set of complementary nucleic acid sequences to the second set of complementary nucleic acid sequences. GCF03 7. Preferably, the first constant temperature nucleic acid amplification unit and the second constant temperature nucleic acid amplification unit are configured to operate with different amplification parameters, and the amplification parameter is at least one of the following: a reverse transcriptase type; a φ polymerase type; Deoxyribonucleoside triphosphate concentration; buffer solution; and, temperature during nucleic acid amplification. GCF03 7. Preferably, the LOC device further has a photo sensor, a first hybridization portion downstream of the first thermostatic nucleic acid amplification portion, and a second hybridization portion downstream of the second thermostatic nucleic acid amplification portion, the first hybridization portion having A target nucleic acid sequence hybridizes to form a first probe array of probe-target hybrids, and a second φ hybridization portion has a hybridization for hybridization with a second target nucleic acid sequence to form a probe-target hybrid A two-probe array in which a photosensor is configured to detect a probe-target hybrid. GCF037. Preferably, the first hybridization portion has an array of first hybridization chambers comprising a first probe such that the first probe system within each hybridization chamber is configured to hybridize to one of the first target nucleic acid sequences, And the second hybridization portion has a second hybridization chamber array comprising a second probe such that the second probe line within each hybridization chamber is configured to hybridize to one of the second target nucleic acid sequences. 201211532 GCF037. Preferably, the photosensor is an array of photodiodes arranged in alignment with the array of first and second hybrid chambers. GCF03 7.  Preferably, the first thermolabic nucleic acid amplification section has a nucleic acid amplification microchannel to maintain the reaction temperature of the sample, and the nucleic acid amplification microchannel defines a flow path diameter of less than 100,000 square micrometers across the cross section of the flow path. GCF03 7. Preferably, the nucleic acid amplification microchannel has a cross-section across the flow path of less than 1 6,000 square microns. GCF03 7. Preferably, the reagent reservoirs each have a surface tension valve for retaining the reagent therein, and the surface tension valve has a meniscus holder for fixing the meniscus of the reagent until contact with the sample stream to remove the meniscus surface. GCF037. Preferably, the LOC device also has a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer of the first and second PCR sections, wherein the CMOS circuit is located between the support substrate and the MST layer, and the CMOS circuit The system is configured to feedback control the first and second PCR sections using a temperature sensor output. GCF037. Preferably, the first PCR portion has a PCR microchannel, wherein when used, the thermal cycle sample, the PCR microchannel defines a flow path having a cross-section across the flow path of less than 100,0 square micrometers. . GCF037. Preferably, the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. GCF03 7. Preferably, the first PCR portion has a plurality of extended PCR chambers, each formed by a channel portion of a respective PCR microchannel.

201211532 PCR微通道具有由一系列之寬曲流形后 流之各者爲形成延長之PCR腔室之一 GCF037.1 9 較佳地,第一PCR 間用於保留液體於第一 PCR部及回應 啓動訊號而允許液體流至第一雜交室_ GCF037.20 較佳地,主動閥係 阻止液體之毛細驅動流的彎液面之彎托 發閥,以及用以沸騰液體以自彎液面g 其恢復毛細驅動流的加熱器。 易於使用、可大量製造且便宜的 樣本入口接收生物樣本,於平行培養吾 處理,並利用儲存於LOC裝置之試齊 平行核酸擴增部於樣本中之標靶DNA 行擴增。The 201211532 PCR microchannel has one of a series of wide curved manifolds for each of the extended PCR chambers. GCF037.1 9 Preferably, the first PCR is used to retain liquid in the first PCR section and respond The activation signal allows the liquid to flow to the first hybridization chamber _ GCF037.20. Preferably, the active valve system prevents the bending of the meniscus of the capillary drive flow of the liquid, and the liquid is used to boil the liquid from the meniscus. A heater that restores the capillary drive flow. The sample inlet, which is easy to use, can be mass-produced, and inexpensive, receives the biological sample, is cultured in parallel, and is amplified by the target DNA in the sample by the parallel nucleic acid amplification section stored in the LOC device.

在培養部中,遺傳物質歷經各種戈 體引子之核酸限制和接合,及反轉錄, 的分析階段最適合或必須的情況,增力丨 容,以及增加分析系統之靈敏度及哥 度。進一步,平行培養腔室允許不同纪 組以最佳化歷經不同的酵素反應’結果 標靶核酸序列之擴增增加分析系i 雜訊比。進一步,平行擴增腔室允許1 組以最佳化使用不同的引子對或不同乏 使用不同的最佳化擴增參數,隨之增力I ζ之蜿蜒構造,寬曲 者的通道部》 部具有於熱循環期 來自CMOS電路之 【列之主動閥。 具有經配置以固定 艺面固定器的沸騰引 ]定器解除彎液面使 LOC裝置通過其之 5進行樣本之之平行 丨貯存器中之試劑在 和RNA序列進行平 『式之處理,例如適 以提供針對接下來 ]分析結果之資訊內 \號-雜訊比及可靠 J核酸模版或模版群 :增進分析多樣性。 流之靈敏度及訊號-=同的標靶或標靶群 :引子對群組,且亦 ]分析之靈敏度、訊 -63- 201211532 號-雜訊比及可靠度。 試劑貯存器係和LOC裝置合倂並且滿足分析之所有 試劑需求,試劑貯存器提供低系統組件數及簡單之製造程 序,導致便宜的分析系統。 【實施方式】 較佳具體實施例之詳細說明 總論 此總論指明包含本發明具體實施例之分子診斷系統的 主要組件。該系統構造及操作之綜合細節於以下說明書中 說明。 參照圖1,2,3,123和124,該系統具有下列最重要 的組件: 試驗模組10和11爲典型USB隨身碟的尺寸且非常 便宜可以製得。試驗模組10和11各包含微流體裝置,典 型地呈晶片上實驗室(LOC)裝置30的形式,且預載有試劑 以及典型地1〇〇〇個以上之用於該分子診斷分析的探針(見 圖1和 1 2 3 )。當在圖1 2 3中之試驗模組1 1使用以電致化 學發光爲基礎的檢測技術同時,槪示於圖1之試驗模組 1 0使用以螢光爲基礎的檢測技術以辨識標靶分子。該 LOC裝置30具有用於螢光或電致化學發光檢測(詳述於下) 之整合光感測器44。試驗模組1 0和1 1兩者皆使用用於 電源、數據和控制之標準微型USB接頭1 4,均具有印刷 電路板(PCB)5 7,且均具有外部供電之電容器32和電感器 -64- 201211532 1 5。該試驗模組1 〇和1 1兩者均爲僅供大量製造之單一用 途且以可供使用之無菌包裝分銷。 外殼13具有用於接收生物樣本之大容器24及可移除 之無菌密封帶22,其較佳具低黏性黏著劑,以於使用前 覆蓋大容器。具有膜防護件410之膜密封件408形成部份 外殼1 3以減少試驗模組中之抗濕性,而由小氣壓變動提 供釋壓作用。膜防護件4 1 0保護膜密封件408免於損傷。 φ 經由微型-USB埠16,試驗模組讀取器12供電給試 驗模組1 〇或1 1。試驗模組讀取器12可爲許多不同形 式’及其選擇係描述於後。圖1、3及123中所示之讀取 器12版本爲智慧型電話之具體實施例。讀取器12之方塊 圖係示於圖3中。處理器42執行來自程式儲存器43的應 用軟體。處理器42亦與顯示螢幕18及使用者界面(UI)觸 控螢幕1 7及按鈕1 9、蜂巢式無線電2 1、無線網路連接 23 ’以及衛星導航系統25界接。蜂巢式無線電21及無線 φ 網路連接2 3係用於通訊。衛星導航系統2 5係用於以位置 資料更新流行病學資料庫。替代性地,能夠以觸控螢幕 17或按鈕19手動輸入位置資料。資料儲存器27保有遺 傳及診斷資訊、試驗結果、患者資訊、用於識別各探針之 分析及探針數據及其陣列位置。資料儲存器27及程式儲 存器43可共享於共同記憶體設備。試驗模組讀取器12中 安裝的應用軟體提供結果分析與另外的試驗及診斷資訊。 爲執行診斷試驗,將試驗模組1 〇(或試驗模組i〗)插 入至試驗模組讀取器12上的微型-USB埠16。將無菌密 -65- 201211532 封帶22翻起並將生物樣本(呈液體形式)載入至樣本大容 器24中。按下開始按鈕20以藉由應用軟體來起始試驗》 樣本流進LOC裝置30且以機載分析(on-board assay)萃 取、培養、擴增及以預合成的雜交-反應性寡核苷酸探針 與樣本核酸(標靶)雜交。於試驗模組1 0的情況中(其使用 基於螢光的檢測),探針係經螢光標記且置於殼1 3中的 LED 26提供必要激發光以誘發自經雜交探針的螢光發射 (見圖1及2)。於試驗模組1 1中(其使用基於電致化學發 光(ECL)的檢測),LOC裝置30載有ECL探針(如上述)且 LED 26對於產生光致發射螢並非必要。反之,電極860 及870提供激發電流(見圖124)。使用與各LOC裝置上之 CMOS電路整合的光感測器44來檢測發射(螢光或光致發 光)。擴增所檢測的訊號並將其轉換成藉由試驗模組讀取 器12分析之數位輸出。讀取器接著顯示結果。 可本地儲存數據及/或將數據上傳至含有患者記錄之 網路伺服器。自試驗模組讀取器1 2移除試驗模組1 0或 11並將彼等適當處理。 圖1、3及123顯示組態成行動電話/智慧型電話28 之試驗模組讀取器1 2。於其他形式中,試驗模組讀取器 爲醫院、私人診所或實驗室中使用之膝上型電腦/筆記型 電腦101、專用讀取器103、電子書讀取器107、平板電 腦1 09或桌上型電腦1 05(見圖125)。讀取器可與一些額 外的應用程式界接,諸如病患記錄、帳務、線上資料庫及 多使用者環境。其亦可與一些本地或遠端周邊設備界接’ -66- 201211532 諸如印表機及病患智慧卡。 參照圖126,透過讀取器12及網路125,由試驗模組 10產生之資料可用來更新用於流行病學資料111之主機 系統所載有之流行病學資料庫、用於遺傳資料113之主機 系統所載有之遺傳資料庫、用於電子化健康記錄(EHR)l 15 之主機系統所載有之電子化健康記錄、用於電子化醫療記 錄(EMR)12 1之主機系統所載有之電子化醫療記錄,以及 φ 用於個人健康記錄(PHR)123之主機系統所載有之個人健 康記錄 '。相反地,經由網路1 25及讀取器1 2,用於流行 病學資料111之主機系統所載有之流行病學資料、用於遺 傳資料113之主機系統所載有之遺傳資料、用於電子化健 康記錄(EHR)l 15之主機系統所載有之電子化健康記錄、 用於電子化醫療記錄(EMR)121之主機系統所載有之電子 化醫療記錄,以及用於個人健康記錄(PHR) 123之主機系 統所載有之個人健康記錄可用以更新試驗模組10 LOC 30 φ 中之數位記憶體。 再次參照圖1 ' 2 ' 123及124,於行動電話組態中, 讀取器1 2使用電池電力。行動電話讀.取器含有所有預載 的試驗及診斷資訊。經由一些無線或接觸界面亦可載入或 更新資料以致能與週邊裝置、電腦或線上伺服器連通。設 置微型-USB埠16以連接電腦或主要電力供應以再充電電 池。 圖70顯示試驗模組丨〇之具體實施例,其係用於僅需 要得知特定標靶存在與否之試驗,諸如試驗個人是否受到 -67- 201211532 例如A型流行性感冒病毒Η 1 N 1感染。僅作爲內建之僅供 USB電力/指示器之模組47爲適當的。不需要其他讀取器 或應用軟體。僅供USB電力/指示器之模組47上之指示 器4 5示出正或負結果。此組態非常適於大量篩檢。 供應給系統的額外物件可包括含有供預處理特定樣本 之試劑的試驗管,及包含供樣本收集之壓舌板及刺血針。 爲便利之故,圖70顯示之具體實施例的試驗模組包括有 簧壓式可伸縮刺血針390及刺血針釋出按鈕392。可於遠 端地區使用衛星電話。 試驗模組電子裝置 圖2和1 24各自爲試驗模組1 0和1 1中之電子組件的 方塊圖。整合於該晶片上實驗室裝置(LOC)30之該CMOS 電路具有USB裝置驅動器36、控制器34、USB相容LED 驅動器29、計時器33、電源調節器3 1、RAM 38和程式 及資料快閃記憶體40。這些提供用於整個包括該光感測 器44、該溫度感測器1 70、該液體感測器1 74和各種加熱 器1 5 2 ' 1 5 4、1 8 2、2 3 4之試驗模組1 0或1 1以及關聯的 驅動器3 7和3 9以及暫存器3 5和4 1的控制和記億體。僅 該L E D 2 6 (在試驗模組1 0的例子中)、外部電源電容器3 2 和該微型USB插頭14在晶片上實驗室裝置30的外部。 該晶片上實驗室裝置3 0包括用於連結至這些外部組份的 黏合墊。該RAM 3 8及該程式和資料快閃記憶體40具有 用於1 〇〇〇個探針之應用軟體和診斷與檢測資訊(快閃/保 -68- 201211532 全儲存,例如經由加密)。在配置以ECL探測之試驗模組 11的例子中,無LED 26(見圖123和124)。資料由該晶 片上實驗室裝置30加密以保全儲存及與外部裝置通訊。 該晶片上實驗室裝置30以電致化學發光探針和該雜交腔 室負載,各具有ECL激發電極對860和870。 試驗模組1 〇的許多類型以一些檢測形式製造,準備 好可現成使用》該等檢測形式之不同在於試劑和探針之機 載分析。 快速以此系統鑑別的感染性疾病的一些例子包括: • 流行性感冒-流行性感冒病毒A、B、C、傳染性 鮭魚貧血病毒、托高土病毒 • 肺炎-呼吸道融合病毒(RSV)、腺病毒、間質肺炎 病毒、肺炎雙球菌、金黃色葡萄球菌 • 結核病-結核分枝桿菌、牛型分枝桿菌、非洲分 枝桿菌、卡氏分枝桿菌和田鼠分枝桿菌 • 惡性瘧原蟲、弓漿蟲和其他寄生性原生蟲病 • 傷寒-傷寒桿菌 • 伊波拉病毒 • 人類免疫不全病毒(HIV) • 登革熱-黃病毒 • 肝炎(A到E) • 醫源性感染-例如難養芽孢梭菌、抗萬古黴素腸 球菌以及抗藥性金黃色葡萄球菌 • 單純泡疹病毒(HSV) -69 - 201211532 巨大細胞病毒(CMV) 愛彼斯坦-巴爾病毒(EBV) 腦炎-日本腦炎病毒、章地埔拉病毒 百曰咳-百日咳菌 麻疹-副黏液病毒 腦膜炎-肺炎鏈球菌和腦膜炎雙球菌 炭疽病-炭疽桿菌 以此系統鑑別的遺傳性疾病的一些例子包括: 璲性纖維變性 血友病 鐮狀細胞貧血病 黑矇性白癡病 血色素沉著症. 腦動脈病 克隆氏病 多囊性腎臟病 先天性心臟病 蕾特氏症 由該診斷系統鑑別之癌症的少數選擇包括: 卵巢癌 結腸癌 多發性內分泌腫瘤 視網膜母細胞瘤 •透克氏症(Turcot syndrome) 201211532 上述清單並非詳盡無疑的,且該診斷系統可被配置以 使用核酸和蛋白質分析偵測許多不同疾病以及症狀。 系統組份的詳細結構 LOC裝置 LOC裝置30爲診斷系統之中心。其使用微流體平台 快速實施以核酸爲基礎之分子診斷分析的四個重要步驟, φ 即樣本製備、核酸萃取、核酸擴增和檢測。LOC裝置亦具 有替代的用途’並將詳述於下。如上述討論,試驗模組 1 〇及π可採取許多不同組態以檢測不同的標靶。同樣 地,LOC裝置30具有很多針對關注的標靶打造之不同具 體實施例。LOC裝置30之一種形式爲用於全血樣本之病 原體中的標靶核酸序列之螢光檢測之LOC裝置301。爲了 闡述的目的,LOC裝置301的結構和操作係參考圖4至 26及27至57而詳細描述。 φ 圖4爲LOC裝置301結構之圖式槪要。爲了便利 性,顯示於圖4的處理階段係以相應於實施處理階段之 LOC裝置301的功能部之元件符號表示。與各個以核酸爲 基礎的分子診斷分析的主要步驟有關的處理階段亦表示: 樣本輸入及製備288、萃取290、培養291、擴增292以 及檢測294。LOC裝置301之各種貯存器、腔室、閥以及 其他組件將於以下更仔細的描述。 圖5爲LOC裝置301之透視圖。其使用高容積 CMOS和MST(微系統技術)製造技術而製造。LOC裝置 -71 - 201211532 301之層狀構造以圖12之槪要部分剖面圖(非按比例)闡 述。LOC裝置301具有支持COMS + MST晶片48之矽基板 84,包含CMOS電路86和MST層87,以蓋46覆蓋MST 層87。爲了本專利說明書目的,術語“ MST層”關於以 不同試劑處理樣本之結構和層之集合。因此,這些結構和 組件經組態以定義具有特性尺寸的流動路徑,其支持具處 理期間之物理性質與樣本之物理性質相似之毛細作用驅動 之液體流。據此,MST層和組件通常使用面型微加工技 術和/或體型微加工技術製造。然而,其他製造方法亦可 製造針對毛細作用驅動之液體流及加工非常小容積而尺寸 化的結構和組件。描述於本說明書之特定具體實施例顯示 MST層爲支持在CMOS電路86上之結構和主動組件,但 排除蓋46之特徵。然而,熟此技藝者將理解MST層不需 要下方的CMOS或甚至不需要上覆的蓋來使其處理該樣 本。 顯示於下列圖式的LOC裝置之整體尺寸爲1 760微米 X5824微米。當然,爲了不同應用而製造的LOC裝置可具 有不同的尺寸。 圖6顯示與蓋特徵疊置之MST層87的特徵。顯示於 圖6中之插入物AA至AD、AG和AH個別放大於圖13、 14、35、56、55和63中,且對LOC裝置301內之各個結 構的充分了解詳細描述於下。當圖11獨立顯示 CMOS + MST裝置48結構時,圖7至10獨立顯示蓋46的 特徵。 -72- 201211532 層狀構造 圖12和22爲槪略顯示該CMOS+ MST裝置48之層狀 構造、該蓋46以及該兩者之間的流體交互作用之略圖。 該些圖表爲了圖示說明目的所以沒有依照比例繪製。圖 12爲通過該樣本入口 68之槪要剖面圖且圖22爲通過該 貯存器 54之槪要剖面圖。如最佳顯示於圖12,該 φ CMOS+ MST裝置48具有矽基板84,其支撐著操作上述該 MST層87內之有效元件之該CMOS電路86。鈍化層88 密封且保護該CMOS層86免於流體流經該MST層87。 流體流經於該蓋層46及MST通道層100中之各自地 該蓋通道94及該MST通道90兩者(見例如圖7和16)。 當在該較小的MS T通道90實施生化處理同時,細胞運送 發生在於該蓋46中製造之該較大的通道94中。細胞運送 通道按尺寸製作以便能運送該樣本中之細胞至該MST通 φ 道90中之預定點。運送尺寸大於20微米的細胞(例如, 某些白血球)需要通道尺寸大於20微米,且因此橫跨該流 的截面積大於400平方微米。特別在不需要運送細胞的 L Ο C中的位置之M S T通道可以顯著地小。 將理解的是該蓋通道94和MST通道90爲同屬參考 且特別的MST通道90亦可根據其特定的功能參照爲(例 如)經加熱的微通道或透析MST通道。MST通道90藉由 鈾刻通過在該鈍化層8 8上沉積且以光阻劑圖案化之M S Τ 通道層100形成。該MST通道90由頂部層66環繞,該 -73- 201211532 頂部層形成該CMOS + MST裝置48之頂部(相對於顯示於 圖中之方位)。 儘管有時作爲獨立的層顯示,該蓋通道層8〇和該貯 存層78係自單一材料片形成。當然,該材料片亦可爲非 單一性。材料片係自兩邊蝕刻以形成蓋通道層8〇與貯存 層78 ’在蓋通道層80中蝕刻該蓋通道94,在貯存層78 中貪虫刻貯存器54、56、58、60和62。另外,該貯存器和 該蓋通道由微成形加工方法形成。蝕刻和微成形加工技術 兩者皆用以製造具有橫跨該流體的截面積與20,00()平方 微米一樣大及與8平方微米一樣小的通道。 於該LOC裝置中不同位置有針對橫跨該流體之通道 的截面積之一系列適當的選擇。其中大量的樣本或具有大 組份的樣本係容納於該通道,高於20,000平方微米之截 面積(例如’在100微米厚之層中的200微米寬的通道)是 適合的。其中少量的液體或無大細胞存在的混合物係容納 於該通道,較佳係橫跨該流體之非常小的截面積。 下部密封64環繞該蓋通道94且該上密封層82環繞 該貯存器54' 56、58、60和62» 該五個貯存器54、56、58、60和62係預裝載分析特 定之試劑。此描述的具體實施例中,該貯存器預裝載下列 試劑,但可簡易的以其他試劑取代: • 貯存器54 :抗凝血劑,其具有包括紅血球溶胞 緩衝液的選擇 • 貯存器56 :溶胞試劑 -74- 201211532 • 貯存器58:限制酵素、接合酶和連接子(用於連 接子-引發 PCR(見圖 69,自 T. Stachan et al., Human Molecular Genetics 2, Garland Science, NY and London,1 999 節錄) • 貯存器 60:擴增混合物(去氧核苷酸三磷酸 (dNTPs)、弓1子、緩衝液)以及 • 貯存器62 : DNA聚合酶 φ 該蓋46和該CMOS + MST層48經由在該下部密封64 和該頂部層66中之相應的開口流體連通。該等開口係依 據流體是否自該MST通道90流至該蓋通道94或相反而 代表上管道96及下管道92。 LOC裝置操作 該LOC裝置301的操作係參考在血液樣本中之分析 病原體DNA逐步描述於下。當然,其他生物或非生物液 φ 體的種類亦使用適當的試劑、檢測規程、LOC變體和偵測 系統之套組或組合分析。參考至圖4,分析生物樣本涉及 五個主要步驟,包含:樣本輸入和準備28 8、核酸萃取 290、核酸培養291、核酸擴增292和偵測及分析294。 該樣本輸入和準備步驟28 8涉及混合該血液與抗凝血 劑116且接著以該病原體透析部70將病原體與白血球和 紅血球分開。如最佳顯示於圖7和1 2中,該血液樣本經 由該樣本入口 68進入該裝置。毛細作用吸引該血液樣本 沿著該蓋通道94至該貯存器54。當該樣本血流開啓其表 -75- 201211532 面張力閥118時,抗凝血劑自該貯存器54釋出(見圖15 和22)。該抗凝血劑可防止形成會阻塞流動的血凝塊。 如最佳顯示於圖22中,該抗凝血劑116藉由毛細作 用自該貯存器54抽出且經由該下管道92進入該MST通 道90。該下管道92具有毛細起始構造特徵(CIF)] 02以形 成彎液面的幾何形狀,使其不固定在該下管道92的邊 緣。當該抗凝血劑116自該貯存器54抽出時,在該上部 密封82中之通氣孔1 22允許空氣取代該抗凝血劑1 1 6。 顯示於圖22之該MST通道90爲表面張力閥118的 一部分。該抗凝血劑116塡充該表面張力閥118且固定至 該上管道96之彎液面120於彎液面固定器98。在使用 前,該彎液面120維持固定於該上管道96’使得該抗凝 血劑不會流入該蓋通道94。當該血液流經該蓋通道94至 該上管道96時,移除該彎液面120且將該抗凝血劑吸入 該流體。 圖15至21顯示插入物AE,其爲顯示於圖13之插入 物AA之一部分。如顯示於圖15、16和17,該表面張力 閥118具有三個獨立的M ST通道90延伸於個別的下管道 92及上管道96之間。在表面張力閥中之這些MST通道 90可變化以改變進入該樣本混合物之試劑得流速。如由 擴散所混合在一起之該樣本混合物以及該些試劑’離開該 貯存器之流速決定在該樣本流中之試劑的濃度。因此’每 各該貯存器的該表面張力閥配置以符合該所需之試劑濃 度。 -76- 201211532 該血液通過進入病原體透析部70(見圖4和15: 中標靶細胞使用根據預定閥値制定大小之孔1 64的陣 該樣本濃縮。小於該閥値的細胞通過該些孔,而大細 能通過該些孔。在該標靶細胞持續作爲分析的一部 時,不欲之細胞重新被導入廢料單元76。該不欲之 爲經由該等孔1 64陣列阻擋之大細胞,或通過該等孔 細胞。 φ 在描述於此之病原體透析部70中,自該全血樣 病原體濃縮以供微生物DNA分析。該些孔之陣列藉 體連通該蓋通道94中之輸入流至標靶通道74的許多 米直徑的孔1 64而形成。該3微米直徑的孔1 64和用 標靶通道74之該透析吸入孔1 68係由一系列的透析 通道204連接(最佳顯示於圖15和21)。病原體小到 經由該透析MST通道204通過該3微米直徑孔164 充該標靶通道74。大於3微米的細胞諸如紅血球和 φ 球留在在該蓋46之該廢料通道72中,該廢料通道通 料貯存器76(見圖7)。 其他孔形狀、大小和長寬比可用以分離特定病原 其他標靶細胞諸如用於人類DNA分析的白血球。稍 供透析部和透析變體更詳細的詳情。 再參照圖6和7,該流體被吸入通過該標靶通S 至該溶胞試劑貯存器56中之該表面張力閥128 »該 張力閥128具有七個MST通道90延伸於該溶胞試劑 器56和該標靶通道74之間。當該彎液面由該樣本流 ,其 列自 胞不 分同 細胞 之小 本之 由流 3微 於該 MST 足以 且塡 白血 向廢 體或 後提 I 74 表面 貯存 脫除 -77- 201211532 時,自所有七個該MST通道90之該流速將大於自該抗凝 血劑貯存器54之流速,其中該表面張力閥1 18具有三個 MST通道90(假設該流體的物理特性爲大致相等的)。因 此在該樣本混合物中之溶胞試劑的比例係大於該抗凝血劑 之比例。 該溶胞試劑和標靶細胞在該化學溶胞部1 3 0內之標靶 通道74中藉由擴散混合。沸騰引發閥126停止該流動直 到擴散和溶胞發生了足夠的時間,自該標靶細胞釋放該遺 傳物質(見圖6和7)。該沸騰引發閥之結構和操作參考圖 3 1和32詳細描述於下。其他主動閥種類(與被動閥相反 之諸如該表面張力閥118)亦已由申請人開發,其可用於 此以替代該沸騰引發閥。這些替代閥設計亦描述於下。 當該沸騰引發閥1 26開啓時,該經溶胞之細胞流入混 合部131以預擴增限制酶切(restriction digestion)以及連 接子接合(linker ligation)。 參考圖13,當該流體移除在混合部131起始之表面 張力閥132上的彎液面時,限制酵素、連接子和接合酶自 該貯存器5 8釋放。該混合物爲了擴散混合流經該混合 部131的長度。在該混合部131的末端爲通到該培養部 114之該培養器入口通道133的下管道134(見圖13)。該 培養器入口通道1 3 3將該混合物饋入經加熱之微通道2 1 0 的蜿蜒構造,其提供在限制酶切以及連接子接合期間保留 該樣本之培養腔室(見圖13和14)。 圖23、24、25、26、27、28和29顯示在圖6之插入 -78- 201211532 物AB內的LOC裝置301之該等層。各個圖顯示形成該 CMOS + MST層48和該盘46結構之該等層的連續附加。 插入物AB顯示該培養部114的結束和該擴增部112的開 始。如最佳顯示於圖14和23,該流體塡入該培養部n4 之該等微通道210直到抵達該沸騰引發閥106,其中該流 體在擴散發生同時停止。如上所討論,該沸騰引發閥106 上游之該微通道210成爲含有該樣本、限制酵素、接合酶 φ 和連接子的培養腔室。該加熱器154之後啓動且維持穩定 溫度以針對一段特定時間用於發生限制酶切和連接子接 合。 熟此技藝者將理解此培養步驟291 (見圖4)爲選擇的 且只需要於一些核酸擴增分析類型。再者,在一些例子 中,可能需要在該培養期間的末端具有一個加熱步驟以將 溫度增高到超過培養溫度。在進入該擴增部112前該溫度 增高使該限制酵素和接合酶不活化。當使用恆溫核酸擴增 φ 時’限制酵素和接合酶的不活化具有特定關聯。 培養之後,該沸騰引發閥106啓動(開啓)且該流體再 流回該擴增·部112。參考圖31和32,該混合物塡充該經 加熱微通道158之蜿蜒結構直到到達該沸騰引發閥1〇8, 該等微通道形成一或更多擴增腔室。如最佳顯不於圖30 之剖面示意圖,擴增混合物(dNTPs、引子、緩衝液)自貯 存器60釋放且聚合酶接著自貯存器62釋放進連接該培養 部和該擴增部(各爲1 14和1 12)之該中介MST通道212。 圖35至51顯示在圖6之插入物AC中的LOC裝置 -79- 201211532 301之層。各圖顯示連續疊加形成CMOS + MST裝置48和 蓋46結構之層。插入物AC係擴增部112的末端和雜交 及檢測部52的起始。經培養的樣本、擴增混合物和聚合 酶流經微通道1 58而至沸騰引發閥1 08。在擴散混合經足 夠時間後,啓動在微通道1 5 8中之加熱器1 54以供熱循環 或恆溫擴增。擴增混合物經歷預定數目的熱循環或預設之 擴增時間以擴增充分的標靶 DNA。在核酸擴增程序之 後,沸騰引發閥1 08開啓且流體再進入雜交及檢測部 52。沸騰引發閥之操作更詳細描述於下。 如顯示於圖5 2,雜交及檢測部5 2具有雜交腔室之陣 列1 1 0。圖5 2、5 3、5 4及5 6詳細顯示雜交腔室陣列1 1 0 和個別雜交腔室180。雜交腔室180的入口爲擴散屏障 175,其在雜交期間防止標靶核酸、探針股和雜交探針於 雜交腔室1 80之間擴散,以防止錯誤的雜交檢測結果》擴 散屏障175之流動路徑長度足夠長以在探針和核酸雜交以 及檢測訊號的時間內,防止標靶序列和探針從一個腔室擴 散出且污染另一腔室,因此避免錯誤的結果。 另一防止錯誤讀取的機制是在一些該雜交腔室中具有 相同的探針。該CMOS電路86自相對於包含相同的探針 之雜交腔室180之光二極體184導出單筆結果。導出該單 筆結果中異常的結果可被忽略或給以不同比重。 供給雜交所需的熱能係由CMOS控制加熱器182所提 供(更詳細描述於下)。在該加熱器啓動後,雜交發生於互 補標靶探針序列之間。在該C Μ Ο S電路8 6中之該LE D驅 201211532 動器29傳送訊息使位於該試驗模組10之LED26發光。 彼等探針僅於當雜交發生時發螢光從而避免通常需要用以 移除未繫結的股之清洗和乾燥步驟。雜交強制該FRET探 針186之該莖-及-環結構打開,其允許該螢光團發射回應 該LED激發光的螢光能量,詳述於下。螢光由位於各雜 交腔180下之該CMOS電路86中之光二極體184所偵測 (見下面之雜交腔室敘述)。用於所有雜交腔室之該光二極 體184以及相關的電子裝置共同形成該光感測器44(見圖 64)。在其他實施例,該光感測器可爲電荷耦合裝置陣列 (CCD陣列)。自該光二極體184偵測之訊號被放大且轉換 成可以由該試驗模組讀取器1 2分析的數位輸出。該偵測 方法進一步的細節描述於下》 LOC裝置之其他詳細說明 模組化設計 LOC裝置301具有許多功能部,包括試劑貯存器 54、56、58、60及62、透析部70、溶胞部130、培養部 114及擴增部112、閥類型、增濕器及濕度感測器。於 LOC裝置之其他具體實施例,可省略此等功能部,可附加 另外的功能部或用於上述裝置之替代用途的功能部。 例如,可使用培養部1 1 4作爲重複序列擴增分析系統 之第一擴增部112,且使用化學溶胞試劑貯存器56來加 入引子、dNTP及緩衝液的第一擴增混合,並且使用試劑 貯存器58來添加反轉錄酶及/或聚合酶。若樣本需進行化 -81 - 201211532 學溶胞,亦可添加化學溶胞試劑(連同擴增混合)至貯存器 56,或替代性地,可藉由加熱樣本一段預定的時間以在培 養部中發生熱溶胞。在一些具體實施例中,若需要化學溶 胞並使化學溶胞試劑與此混合分離,可在用於引子、 dNTP及緩衝液的混合之貯存器58之毗連上游合倂另外的 貯存器》 於一些情況中,欲省略諸如培養步驟2 9 1之步驟。於 此情況中,可特別地製造LO C裝置以免去試劑貯存器5 8 及培養部114或是貯存器可不止載有試劑,或若存在主動 閥,其不被啓動來分配試劑至樣本流中,及培養部單純成 爲將樣本自溶胞部130傳送至擴增部112之通道。加熱器 係獨立地操作,因此當反應仰賴熱時,諸如熱溶胞,令加 熱器不於此步驟期間啓動,確保熱溶胞不會發生在不需熱 溶胞之LOC裝置中。透析部70可位於微流體裝置內之流 體系統的開端,如圖4中所示者,或可位於微流體裝置內 之任何其他位置。於一些情況中,例如,於擴增階段292 之後,雜交及檢測步驟2 94之前,進行透析以移除細胞碎 片係有利者。替代性地,可於LOC裝置上任何位置合倂 二或多個透析部。同樣地,可合倂另外的擴增部1 1 2以致 能在雜交腔室陣列1 1 〇中利用特定核酸探針進行檢測之前 之多標靶的同時或連續擴增。爲分析例如其中不需要進行 透析之全血液的樣本,簡單地於LOC設計之樣本輸入及 製備部288省略透析部70。於一些情況中,即便分析不 需要進行透析,不必要於LOC裝置省略透析部70。若透 201211532 析部的存在不會造成幾何性阻礙,仍可使用於樣本輸入及 製備部具有透析部7〇之LOC而不會損失所需之功能❶ 此外,檢測部294可包括蛋白質體室陣列,其係與雜 交腔室陣列相同但載有設計成與存在於非擴增之樣本中之 樣本標靶蛋白質共軛或雜交之探針,而不是設計用來與標 靶核酸序列雜交之核酸探針。 將了解的是,爲用於此診斷系統而製造之LOC裝置 φ 係不同之根據特別LOC應用而選擇的功能部之組合。絕 大部分之功能部常見於許多LOC裝置,而針對新應用之 額外的LOC裝置之設計,有關於自現存LOC裝置中所使 用之大幅功能部選項中組構適當功能部之組合。 本說明中僅顯示少數LOC裝置,並顯示一些其他者 以闡述爲此系統所製造之LOC裝置的設計彈性。熟此技 藝者將可輕易地明白本文所示之LOC裝置並非窮舉,且 許多另外的LOC設計係關於組構適當功能部之組合。 樣本類型 LOC變體可接受及分析各種呈液體形式之樣本類型之 核酸或蛋白質內容,液體形式包括,但不限於,血液及血 液產物、唾液、腦脊髓液、尿液、精液、羊膜液、臍帶 血、母乳、汗液 '肋膜積液、淚液、心囊液、腹腔液、環 境水樣本及飲料樣本。亦可使用LOC裝置分析得自巨觀 核酸擴增之擴增子;於此情況中,所有試劑貯存器將爲空 的或是係組態成不釋出其內容物,並僅使用透析、溶胞、 -83- 201211532 培養及擴增部來將樣本從樣本入口 68傳送至供核酸檢測 之雜交腔室180,如上所述。 針對一些樣本類型,需要預處理步驟,例如於輸入至 LOC裝置中之前,可能需要使精液液化及可能需以酵素預 處理黏液以減低黏性。 樣本輸入 參照圖1及1 2,添加樣本至試驗模組1 〇之大容器 24。大容器24爲截錐,其係藉毛細作用而饋入LOC裝置 301之入口 68。於此,其流至64μιη寬χ60μηι深之蓋通道 94中並亦藉由毛細作用而被吸引至抗凝劑貯存器54。 試劑貯存器 使用微流體裝置,諸如LOC裝置301,之分析系統所 需之小量試劑使得試劑貯存器含有生化處理之所有必須試 劑,且各試劑貯存器爲小體積。此體積確實小於 1.000. 000.000立方微米,於絕大多數的情況中係小於 300.000. 000立方微米,普通小於70,000,000立方微米, 及於圖式中顯示的 LOC裝置 301的情況中係小於 20.000. 000立方微米。 透析部 參照圖1 5至2 1、3 3及3 4,病原體透析部7 0係經設 計以濃縮來自樣本之病原體標靶細胞。如前述者,頂部層 -84- 201211532 66中呈直徑爲3微米之孔口 164之複數個孔口,過濾來 自大量樣本之標靶細胞。當樣本流經直徑爲3微米之孔口 164,微生物病原體通過孔而進入一系列透析MST通道 204並經由16μιη透析汲取孔168回流至標靶通道74中 (見圖33及34)。剩餘的樣本(紅血球等)滯留於蓋通道94 中。於病原體透析部70之下游,蓋通道94成爲通往廢料 儲器76之廢料通道72。針對產生相當廢物量之生物樣本 φ 類型,試驗模組1〇之外殼13內之泡沫體(foam)插入物或 其他多孔元件49係組態成與廢料儲器76呈流體連通(見 圖1)。 病原體透析部70係皆以流體樣本之毛細作用運作。 位於病原體透析部7Ό上游端之直徑爲3微米之孔口 1 64 具有毛細作用起始特徵(CIF)166(見圖33),以致流體被向 下拉至下方的透析MST通道2 04之中。用於標靶通道74 之第一吸入孔198亦具有CIF 202(見圖15)以防止流體輕 φ 易地固定彎液面於透析吸入孔1 68之上。 於圖78中槪要顯示之小組分透析部682可具有類似 於病原體透析部7〇之結構。藉由尺寸化(且成形,若必要) 適於允許小標靶細胞或分子通向標靶通道並繼續進一步分 析之孔口,小組分透析部分離樣本與任何小標靶細胞或分 子。大尺寸的細胞或分子被移除至廢料儲槽766。因此, LOC裝置30(見圖1及123)並不受限於分離尺寸小於3 μιη之病原體,而可用於分離任何所欲尺寸之細胞或分 子。 -85- 201211532 溶胞部 再次參照圖7、1 1及1 3 ’藉化學溶胞處理,樣本中 之遺傳物質自細胞釋出。如上述者,來自溶胞貯存器56 之溶胞試劑與用於溶胞貯存器56之表面張力閥128下游 之標靶通道74中的樣本流混合。然而,一些診斷分析較 佳適合熱溶胞處理,或甚至是標靶細胞之化學及熱溶胞的 組合。LOC裝置301容納此及培養部1 14之加熱的微通道 2 1 0。樣本流塡充培養部1 1 4並停止於沸騰引發閥1 〇6。 培養微通道2 1 0將樣本加熱至細胞膜破裂之溫度。 於一些熱溶胞應用中,化學溶胞部130中不需要酵素 反應,且熱溶胞全然取代化學溶胞部130中之酵素反應。 沸騰引發閥 如以上討論者,LOC裝置301具有三個沸騰引發閥 126、106及1〇8。於圖6中顯示這些閥的位置。圖31爲 擴增部112之加熱的微通道158端部之獨立的沸騰引發閥 108之放大的平面圖。 藉由毛細作用,樣本流1 1 9沿加熱的微通道1 5 8被吸 引直至到達沸騰引發閥1 08爲止。樣本流之前沿的彎液面 120固定於閥入口 146之彎液面固定器98。彎液面固定器 98幾何使臂液面停止前進而阻止毛細作用流。如圖3 1及 32中所示者’彎液面固定器98係藉由自MST通道90至 蓋通道94之上管道開口而設置之孔口。彎液面丨2〇之表 -86- 201211532 面張力使閥保持閉合。環形加熱器152位於閥入口 146的 周圍。環形加熱器1 52經由沸騰引發閥加熱器接點丨53而 受C Μ Ο S控制。 爲打開閥’ CMOS電路86發送電脈衝至閥加熱器接 點1 53。環形加熱器1 52電阻式地進行加熱直到液體樣本 119沸騰爲止。沸騰使彎液面120自閥入口 146脫除並開 始濕潤蓋通道94。一但開始濕潤蓋通道94,毛細作用恢 復。流體樣本1 19塡充蓋通道94且流經閥下管道150而 至閥出口 148,其中毛細作用驅動之液體流沿擴增部出口 通道1 60前進至雜交及檢測部52之中。液體感測器174 置於用於診斷的閥之前及之後。 將能了解的是,一但沸騰引發閥被打開,則不可能再 關上。然而,因LOC裝置301及試驗模組10爲單一用途 裝置,不需要再關閉閥。 培養部及核酸擴增部 圖 6、 7、 13、 14、 23、 24、 25、 35 至 45、 50 及 51 顯示培養部1 1 4及擴增部1 1 2。培養部1 1 4具有單一的、 加熱的培養微通道2 1 0,其係經蝕刻而成爲自下管道開口 134至沸騰引發閥106之MST通道層100中的蜿蜒圖案 (見圖1 3及1 4)。控制培養部1 1 4的溫度致能更有效的酵 素性反應。同樣地,擴增部1 1 2具有從沸騰引發閥1 06通 向沸騰引發閥108之呈蜿蜒結構之加熱的擴增微通道 158(見圖6及14)。於混合、培養及核酸擴增發生時,此 -87- 201211532 等閥中止流動以將標靶細胞保留於加熱的培養或擴增微通 道210或158中。微通道之蜿蜒圖案亦促進(在某種程度 上)標靶細胞與試劑混合。 於培養部1 1 4及擴增部1 1 2中’樣本細胞及試劑經由 使用脈衝寬度調變(PWM)之CMOS電路86所控制的加熱 器154而被加熱。加熱的培養微通道210及擴增微通道 158之蜿蜒結構之每一個曲折具有三個獨立地可操作加熱 器154(延伸於彼之個別加熱器接點156之間(見圖14)), 其提供輸入熱通量密度之二維控制。如最佳顯示於圖5 1 中者,加熱器154係支撐於頂部層66上並埋入下密封64 中。加熱器材料爲TiAl,但許多其他的傳導性金屬也適 用。伸長的加熱器154平行於形成蜿蜒狀的寬曲折之各通 道部的縱向長度。於擴增部1 1 2中,經由個別加熱器控 制,可操作各寬曲折以作爲獨立的PCR腔室》 使用微流體裝置,諸如LOC裝置3 01,之分析系統所 需之小體積的擴增子允許於擴增部1 1 2中擴增使用小體積 的擴增混合物。此體積大槪小於400奈升,於絕大多數情 況中小於170奈升,普通小於70奈升,及於LOC裝置 3 0 1的情況中,此體積係介於2奈升與3 0奈升之間。 加熱速率增加及較佳擴散混合 各通道部的小截面積增加擴增流體混合物的加熱速 率。所有流體與加熱器1 54保持相當短的距離。減少通道 截面積(即擴增微通道158截面)至小於1 00,000平方微 -88- 201211532 米,而較“大規模”設備具有顯著較高之加熱速率。微影製 造技術使得擴增微通道158具有橫跨小於16,000平方微 米之實質上提供較高的加熱速率之流動路徑之截面。以微 影製造技術輕易地獲致1微米級尺寸特徵。若僅需要非常 小量的擴增子(如L Ο C裝置3 0 1中的情況),可使截面縮小 至小於2,500平方微米。針對以LOC裝置上之1,〇〇〇至 2,000個探針進行且於1分鐘內之“樣本入,答案出”所需 之診斷分析,橫跨流體之適當的截面積爲400平方微米及 1平方微米之間。 擴增微通道158中之加熱'器元件以每秒大於80絕對 溫度(K)之速率加熱核酸序列,於大多數的情況中爲每秒 大於100 K之速率。普通地,加熱器元件以每秒大於 1 0 0 0 K之速率加熱核酸序列,以及於許多情況中,加熱 器元件以每秒大於1 〇,〇〇〇 K之速率加熱核酸序列。通 常,基於分析系統的需求,加熱器元件以每秒大於 100,000 K、每秒大於 1,〇〇〇,〇〇〇 K、每秒大於 10,〇〇〇,〇〇〇 K、每秒大於20,000,000 K、每秒大於40,000,000 K、每 秒大於80,000,000 K及每秒大於160,〇〇〇,〇〇〇 K之速率加 熱核酸序列。 小截面積通道亦有益於任何試劑與樣本流體之擴散性 混合。於擴散性混合完成之前,靠近兩液體間之界面處, 一種液體擴散至另一液體之擴散現象最顯著。現象發生密 度隨遠離界面距離而減少。使用具相當小截面積之橫跨流 體方向之微通道,而保持兩流體靠界面流動以快速擴散混 -89- 201211532 合。縮小通道截面至小於1 00,000平方微米,獲致較“大 規模”設備具有顯著較高之擴散速率。微影製造技術使得 微通道具有橫跨小於16000平方微米之實質上提供較高的 混合速率之流動路徑的截面。若僅需要非常小量的擴增子 (如LOC裝置301中的情況),可使截面縮小至小於2,500 平方微米。針對以LOC裝置上之1,〇〇〇至2,000個探針進 行且於1分鐘內之“樣本入,答案出”所需之診斷分析,橫 跨流體之適當的截面積爲400平方微米及1平方微米之 間》 短的熱循環時間 使樣本混合物保持接近加熱器且使用極小流體量,致 使核酸擴增法期間之快速熱循環。針對至高1 5 0鹼基對 (bp)長之標靶序列,於30秒內完成各個熱循環(即,變 性、黏著及引子延伸)。在絕大多數之診斷分析中,個別 熱循環時間小於1 1秒,且大部分小於4秒。針對至高 150鹼基對(bp)長之標靶序列,用於一些最常見診斷分析 之LOC裝置30的熱循環時間爲0.45秒至1.5秒之間。此 速度之熱循環使得試驗模組能在遠少於1〇分鐘之內完成 核酸擴增程序:經常爲220秒之內。針對大多數分析,擴 增部於8 0秒之內由進入樣本入口的樣本流體產生充足的 擴增子。針對大部分的分析,於30秒內產生充足的擴增 子。 於完成預定數目擴增循環時’經由沸騰引發閥1 〇8將 -90- 201211532 擴增子饋入雜交及檢測部52。 雜交腔室 圖52、53、54、56及57顯示雜交腔室陣列110中的 雜交腔室180。雜交及檢測部52具有雜交腔室180之24 X 45陣列1 10,其各具有雜交-反應性FRET探針186、加 熱器元件1.82及整合的光二極體184。倂入光二極體184 φ 以檢測得自標靶核酸序列或蛋白質與FRET探針1 8 6雜交 之螢光。藉由 CMOS電路 86獨立地控制各光二極體 184。對發射的光而言,FRET探針186及光二極體184之 間的任何物質必須爲透明。因此,探針1 8 6及光二極體 1 84之間的壁部97亦必須對發射的光呈光學透明。於 LOC裝置301中,壁部97爲二氧化矽之薄層(約0.5微 米)。 於各雜交腔室180之下直接地倂入光二極體184允許 φ 使用極小體積之探針-標靶雜交體,卻仍產生可檢測的螢 光訊號(見圖54)。因爲小量而能使用小體積的雜交腔室。 於雜交之前,可檢測的探針-標靶雜交體量所需之探針量 大槪小於270微微克(picogram)(對應至900,000立方微 米),於大多數的情況中小於60微微克(對應至200,000立 方微米),普通小於12微微克(對應至4 0,000立方微米), 並且於附圖1中所示之LO C裝置3 0 1的情況中爲小於2.7 微微克(對應至腔室體積爲9,000立方微米)。當然,縮小 雜交腔室的尺寸容許較高的室密度及因此更多的LOC裝 -91 - 201211532 置上的探針》於LOC裝置301中,於1,500微米乘1,500 微米的面積內,雜交部具有超過1,〇〇〇個腔室(即,每個 腔室小於2,250平方微米)。較小的體積亦減少反應時 間,使得雜交及檢測更快速。各個腔室需求之小量探針的 另一優點爲,於LOC裝置製造期間,僅需要配置極小量 的探針溶液至各個腔室中。根據本發明之LOC裝置之具 體實施例可使用有1奈毫升或更少之探針溶液配置。 於核酸擴增之後,沸騰引發閥1 0 8被啓動且擴增子沿 流動路徑176流動並流進各雜交腔室180(見圖52及 5 6)。端點液體感測器1 7 8指示雜交腔室1 8 0塡充有擴增 子及可啓動加熱器182之時點。 於充分雜交時間後,啓動LED 26 (見圖2)。各雜交腔 室180中之開口設有光學窗136以將FRET探針186暴露 於激發輻射(見圖52、54及56)。LED 26發光持續充分長 的時間以誘發自探針之高強度的螢光訊號。於激發期間, 光二極體184短路(shorted)。經預編程延遲3 00(見圖2) 之後,於無激發光下,致能光二極體184及檢測螢光發 射。將光二極體184之有效區185上之入射光(見圖54)轉 換成可使用CMOS電路86測量之光電流。 各雜交腔室180載有用於檢測單一標靶核酸序列之探 針。若希望,則各雜交腔室180可載有檢測超過1,000種 不同標靶的探針。替代性地,許多或全部雜交腔室可載有 重複地檢測相同標靶核酸之相同探針。於雜交腔室陣列 1 1 〇中以此方式複製探針使得所得結果之可信度增加,以 -92- 201211532 及若希望,可藉由相鄰雜交腔室之光二極體來合倂所有結 果以得到單一結果。熟此技藝者將了解,依據分析明細, 於雜交腔室陣列no上可具有1至超過1,〇〇〇種不同的探 針。 增濕器及濕度感測器 圖6的插入物AG指示增濕器196的位置。增濕器免 φ 於LOC裝置301操作期間之試劑及探針的蒸發。如最佳 顯示於圖55之放大圖中者,水貯存器188係流體地連接 至三個蒸發器190。水貯存器188塡充有分子生物等級用 水且於製造期間爲密封的。如最佳顯示於圖55及67中 者,藉由毛細作用,水被抽拉至三個下管道1 94且沿著個 別水供應通道192而到達蒸發器190之三個上管道193 組。彎液面固定於各個上管道193以保持水。蒸發器具有 環形加熱器191,其環繞上管道193»藉由導熱柱376, φ 環形加熱器191係連接至CMOS電路86而至頂金屬層 19 5(見圖3 7)。於啓動時,環形加熱器191加熱水而致使 水蒸發並濕潤周圍的裝置。 於圖6中亦顯示濕度感測器23 2的位置。然而,最佳 如顯示於圖63中之插入物AH的放大圖者,濕度感測器 具有電容式梳狀結構。經微影地蝕刻之第一電極296及與 經微影地蝕刻之第二電極298彼此相對,使得彼等之齒交 插。相對的電極形成電容器,其具有可藉由CMOS電路 86來監測之電容。隨濕度增加,電極間之空氣隙的介電 -93- 201211532 常數增加,致使電容亦增加。濕度感測器232鄰接雜交腔 室陣列1 1 〇(最主要之濕度測量位置),以減緩含有暴露的 探針之溶液蒸發。 反饋感測器 溫度及液體感測器係倂入LOC裝置301整體以於裝 置操作期間提供反饋及診斷。參照圖3 5,將九個溫度感 測器1 70分配至擴增部1 1 2整體。同樣地,培養部1 1 4亦 具有九個溫度感測器I 70。這些感測器各使用2x2陣列之 雙極接面電晶體(BJT)以監測流體溫度及提供反饋至 CMOS電路86。CMOS電路86利用此以準確地控制核酸 擴增處理期間的熱循環以及熱溶胞及培養期間之任何加 熱。 於雜交腔室1 80中,CMOS電路86使用雜交加熱器 182作爲溫度感測器(見圖56)。雜交加熱器182之電阻係 溫度相依,且CMOS電路86利用此以得到各雜交腔室 180之溫度讀取。 LOC裝置301亦具有一些MST通道液體感測器174 及蓋通道液體感測器2 08。圖35顯示於經加熱的微通道 158中之每間隔曲折之一端的MST通道液體感測器174 之線。最佳如顯示於圖3 7中者,M S T通道液體感測器 174爲藉由CMOS結構86中之頂金屬層195之暴露的區 域所形成之一對電極。液體封閉電極間的電路以指示其存 在於感測器的位置。 -94- 201211532 圖25顯示蓋通道液體感測器208之放大透視圖。相 對的TiAl電極對218及220係沉積於頂部層66上。電極 2 1 8及220之間爲間隙222,以於缺少液體的情況中保持 電路爲開路。液體存在時使電路閉合及CMOS電路86利 用此反饋以監測流動。 重力自主(GRAVITATIONAL INDEPENDENCE) 試驗模組1〇爲方向自主。其不需被緊固至平穩表面 而操作。因毛細作用驅動之流體流以及缺少至輔助設備之 外部管路,使得模組確實爲可攜式並可簡易地插入至類似 的可攜式手持讀取器,諸如行動電話。重力自主操作代表 試驗模組亦加速度性地獨立於所有實用範圍。其耐衝擊及 耐振動並能於移動的載具上或是於攜帶的行動電話上操 作。 透析變體 具有流體通道以避免捕集的氣泡之透析部 下述爲參照圖72、73、74及75所示之LOC變體 VIII 518之LOC裝置之具體實施例。此LOC裝置具有以 流體樣本塡充且無氣泡被捕集於通道中之透析部。LOC變 體VIII 518亦具有另外的材料層,參照爲界面層594。界 面層594係設置於蓋通道層80與CMOS + MST裝置48 之MST通道層1〇〇之間。界面層594致使試劑貯存器與 MST層87之間更複雜的流體互連而不會增加矽基板84 -95- 201211532 的尺寸。In the culture department, the genetic material undergoes various nucleic acid restriction and conjugation of various genomic primers, and the most suitable or necessary conditions in the analysis phase of reverse transcription, enhances the tolerance, and increases the sensitivity and sensitivity of the analysis system. Further, the parallel culture chamber allows the different groups to optimize the different enzyme reactions. The amplification of the target nucleic acid sequence increases the analysis of the i-to-noise ratio. Further, the parallel amplification chamber allows one group to optimize the use of different primer pairs or different uses of different optimized amplification parameters, and then the force I ζ structure, the channel portion of the wide bender The part has an active valve from the CMOS circuit during the thermal cycle. A reagent having a boiling indexer configured to fix the artifact holder releases the meniscus to allow the LOC device to perform a sample in the parallel buffer of the sample through which the sample is processed, for example, To provide information on the results of the next analysis, the number / noise ratio and reliable J nucleic acid template or template group: to enhance the diversity of analysis. Flow sensitivity and signal-=the same target or target group: the primer pair group, and also the sensitivity of the analysis, the signal -63- 201211532 - noise ratio and reliability. The reagent reservoir is combined with the LOC device and meets all reagent requirements for analysis. The reagent reservoir provides a low number of system components and a simple manufacturing process, resulting in an inexpensive analytical system. [Embodiment] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Overview This general specification indicates the main components of a molecular diagnostic system incorporating a specific embodiment of the present invention. The details of the construction and operation of this system are described in the following description. Referring to Figures 1, 2, 3, 123 and 124, the system has the following most important components: Test modules 10 and 11 are typical USB flash drives and are very inexpensive to manufacture. The test modules 10 and 11 each comprise a microfluidic device, typically in the form of a laboratory on a wafer (LOC) device 30, preloaded with reagents and typically more than one or more probes for diagnostic analysis of the molecule. Needle (see Figures 1 and 1 2 3). When the test module 1 1 in FIG. 1 2 3 uses an electrochemiluminescence-based detection technique, the test module 10 shown in FIG. 1 uses a fluorescence-based detection technique to identify the target. molecule. The LOC device 30 has an integrated light sensor 44 for fluorescence or electrochemiluminescence detection (described in more detail below). Both test modules 10 and 1 1 use standard micro USB connectors 14 for power, data and control, each having a printed circuit board (PCB) 5 7, and each having an externally powered capacitor 32 and an inductor - 64- 201211532 1 5. Both test modules 1 and 11 are for a single use for mass production and are distributed in aseptic packaging for use. The outer casing 13 has a large container 24 for receiving a biological sample and a removable sterile sealing strip 22 which preferably has a low viscosity adhesive to cover the large container prior to use. The membrane seal 408 having the membrane guard 410 forms part of the outer casing 13 to reduce the moisture resistance in the test module, while the pressure drop is provided by the small pressure fluctuation. The membrane guard 4 10 protects the membrane seal 408 from damage. The test module reader 12 supplies power to the test module 1 or 11 via the micro-USB port 16. The test module reader 12 can be described in a number of different forms' and its selection. The reader 12 version shown in Figures 1, 3 and 123 is a specific embodiment of a smart phone. A block diagram of the reader 12 is shown in FIG. Processor 42 executes the application software from program storage 43. The processor 42 is also interfaced with a display screen 18 and a user interface (UI) touch screen 1 7 and button 19, a cellular radio 2 1 , a wireless network connection 23 ', and a satellite navigation system 25. Honeycomb radio 21 and wireless φ network connection 2 3 are used for communication. The satellite navigation system 25 is used to update the epidemiological database with location information. Alternatively, the location data can be manually entered using the touch screen 17 or button 19. The data store 27 holds genetic and diagnostic information, test results, patient information, analysis and probe data for identifying each probe, and its array position. The data store 27 and the program store 43 can be shared by a common memory device. The application software installed in the test module reader 12 provides results analysis and additional test and diagnostic information. To perform a diagnostic test, the test module 1 (or test module i) is inserted into the micro-USB port 16 on the test module reader 12. The sterile dense -65-201211532 sealing tape 22 is turned up and the biological sample (in liquid form) is loaded into the sample large container 24. Pressing the start button 20 to initiate the test by applying the software" sample flows into the LOC device 30 and is extracted, cultured, amplified, and pre-synthesized hybrid-reactive nucleosides by on-board assay. The acid probe hybridizes to the sample nucleic acid (target). In the case of the test module 10 (which uses fluorescence-based detection), the probe is fluorescently labeled and the LED 26 placed in the housing 13 provides the necessary excitation light to induce fluorescence from the hybridized probe. Launch (see Figures 1 and 2). In test module 11 (which uses electrochemical luminescence (ECL) based detection), LOC device 30 carries an ECL probe (as described above) and LED 26 is not necessary to produce photoluminescent fluorescing. Conversely, electrodes 860 and 870 provide an excitation current (see Figure 124). A light sensor 44 integrated with a CMOS circuit on each LOC device is used to detect the emission (fluorescent or photoluminescence). The detected signal is amplified and converted to a digital output analyzed by the test module reader 12. The reader then displays the result. Data can be stored locally and/or uploaded to a web server containing patient records. The test module 10 or 11 is removed from the test module reader 1 2 and processed as appropriate. 1, 3 and 123 show a test module reader 12 configured as a mobile/smartphone 28. In other forms, the test module reader is a laptop/notebook 101, a dedicated reader 103, an e-book reader 107, a tablet computer 109 or used in a hospital, private clinic or laboratory. Desktop computer 05 (see Figure 125). The reader can interface with a number of additional applications, such as patient records, accounting, online databases, and multi-user environments. It can also interface with some local or remote peripherals. -66- 201211532 such as printers and patient smart cards. Referring to FIG. 126, the data generated by the test module 10 through the reader 12 and the network 125 can be used to update the epidemiological database contained in the host system for epidemiological data 111 for genetic data 113. The genetic database contained in the host system, the electronic health record contained in the host system for electronic health record (EHR) 15 , and the host system for electronic medical record (EMR) 12 1 There are electronic medical records, and personal health records contained in the host system for personal health record (PHR) 123. Conversely, the epidemiological data contained in the host system for epidemiological data 111, the genetic data contained in the host system for genetic material 113, and the use of the network 1 25 and the reader 12 are used. An electronic health record contained in the host system of the Electronic Health Record (EHR) 15 , an electronic medical record contained in the host system for the Electronic Medical Record (EMR) 121, and a personal health record (PHR) 123 The personal health record contained in the host system can be used to update the digital memory in test module 10 LOC 30 φ. Referring again to Figures 1 '2' 123 and 124, in the mobile phone configuration, the reader 12 uses battery power. Mobile phone reading. The extractor contains all preloaded test and diagnostic information. Data can also be loaded or updated via some wireless or contact interface to enable communication with peripheral devices, computers or online servers. Set the mini-USB port 16 to connect to the computer or main power supply to recharge the battery. Figure 70 shows a specific embodiment of a test module for testing whether only a specific target is present or not, such as whether the test individual is subjected to -67-201211532, for example, influenza A virus Η 1 N 1 infection. It is only suitable as a built-in module 47 for USB power/indicator only. No other readers or application software is required. The indicator 45 on the module 47 of the USB power/indicator only shows a positive or negative result. This configuration is ideal for large screenings. Additional items supplied to the system may include test tubes containing reagents for pre-treating a particular sample, and a tongue depressor and lancet containing sample collection. For convenience, the test module of the embodiment shown in Fig. 70 includes a spring-loaded retractable lancet 390 and a lancet release button 392. Satellite phones can be used in remote areas. Test Module Electronics Figures 2 and 1 24 are block diagrams of the electronic components of test modules 10 and 11. The CMOS circuit integrated in the on-wafer laboratory device (LOC) 30 has a USB device driver 36, a controller 34, a USB compatible LED driver 29, a timer 33, a power conditioner 31, a RAM 38, and a program and data. Flash memory 40. These provide test patterns for the entire including the photo sensor 44, the temperature sensor 170, the liquid sensor 1 74, and various heaters 1 5 2 ' 1 5 4, 1 8 2, 2 3 4 Group 1 0 or 1 1 and associated drives 3 7 and 3 9 and the registers and registers of registers 3 5 and 4 1 . Only the L E D 2 6 (in the example of the test module 10), the external power supply capacitor 3 2 and the micro USB plug 14 are external to the laboratory device 30 on the wafer. The on-wafer laboratory device 30 includes an adhesive pad for joining to the outer components. The RAM 38 and the program and data flash memory 40 have application software and diagnostic and detection information for one probe (flash/protection - 68-201211532 full storage, for example via encryption). In the example of the test module 11 configured with ECL detection, there is no LED 26 (see Figures 123 and 124). The data is encrypted by the on-chip laboratory device 30 to preserve storage and communicate with external devices. The on-wafer laboratory device 30 is loaded with electrochemiluminescent probes and the hybridization chamber, each having an ECL excitation electrode pair 860 and 870. Many types of test modules 1 are manufactured in some form of test and are ready for ready use. These test forms differ in the onboard analysis of reagents and probes. Some examples of infectious diseases that are quickly identified by this system include: • Influenza-influenza virus A, B, C, infectious salmon anemia virus, toco soil virus • pneumonia-respiratory fusion virus (RSV), gland Virus, interstitial pneumonia virus, pneumococci, Staphylococcus aureus • tuberculosis - Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africana, Mycobacterium vaccae and Mycobacterium vaccae • Plasmodium falciparum, Toxoplasma gondii and other parasitic protozoa • Typhoid-cold bacillus • Ebola virus • Human immunodeficiency virus (HIV) • Dengue fever - flavivirus • Hepatitis (A to E) • Iatrogenic infections – such as refractory spores Bacteria, vancomycin-resistant enterococci, and drug-resistant Staphylococcus aureus • Herpes simplex virus (HSV) -69 - 201211532 Giant cell virus (CMV) Epstein-Barr virus (EBV) Encephalitis - Japanese encephalitis virus, Zhangdipula virus Baishu cough-pertussis measles-paramyxovirus meningitis-Streptococcus pneumoniae and meningococcus anthracis anthracnose-B. anthracis identified by this system Some examples include: spastic fibrosis, hemophilia, sickle cell anemia, black leukoplakia, hemochromatosis.  Crohn's disease Crohn's disease Polycystic kidney disease Congenital heart disease Leier's disease A few options for cancer identified by this diagnostic system include: Ovarian cancer Colon cancer Multiple endocrine tumors Retinoblastoma • Turk's disease (Turcot) Syndrome) 201211532 The above list is not exhaustive and the diagnostic system can be configured to detect many different diseases and symptoms using nucleic acid and protein analysis. Detailed Structure of System Components LOC Device The LOC device 30 is the center of the diagnostic system. It uses microfluidic platforms to rapidly perform four important steps in nucleic acid-based molecular diagnostic analysis, φ, sample preparation, nucleic acid extraction, nucleic acid amplification, and detection. LOC devices also have alternative uses' and will be described in more detail below. As discussed above, the test modules 1 〇 and π can take many different configurations to detect different targets. Similarly, LOC device 30 has many different specific embodiments for targeting the target of interest. One form of LOC device 30 is a LOC device 301 for fluorescence detection of a target nucleic acid sequence in a pathogen of a whole blood sample. For purposes of illustration, the structure and operation of LOC device 301 are described in detail with reference to Figures 4 through 26 and 27 through 57. φ Figure 4 is a schematic diagram of the structure of the LOC device 301. For the sake of convenience, the processing stages shown in Fig. 4 are represented by element symbols corresponding to the functional portions of the LOC device 301 that implements the processing stage. The processing stages associated with the major steps in each of the nucleic acid-based molecular diagnostic assays also represent: sample input and preparation 288, extraction 290, culture 291, amplification 292, and detection 294. The various reservoirs, chambers, valves, and other components of LOC device 301 will be described more closely below. FIG. 5 is a perspective view of the LOC device 301. It is manufactured using high volume CMOS and MST (microsystem technology) manufacturing techniques. The layered structure of the LOC device -71 - 201211532 301 is illustrated in a partial cross-sectional view (not to scale) of Figure 12. The LOC device 301 has a germanium substrate 84 supporting a COMS + MST wafer 48, including a CMOS circuit 86 and an MST layer 87, covering the MST layer 87 with a cover 46. For the purposes of this patent specification, the term "MST layer" relates to a collection of structures and layers of a sample treated with different reagents. Accordingly, these structures and components are configured to define a flow path having a characteristic size that supports a capillary action driven liquid flow having physical properties similar to the physical properties of the sample during processing. Accordingly, MST layers and components are typically fabricated using surface micromachining techniques and/or bulk micromachining techniques. However, other manufacturing methods can also produce structures and assemblies that are sized for capillary action and that are processed to very small volumes. The particular embodiment described in this specification shows that the MST layer is a structure and active component supported on CMOS circuitry 86, but excludes the features of cover 46. However, those skilled in the art will appreciate that the MST layer does not require the underlying CMOS or even the overlying cover to handle the sample. The overall dimensions of the LOC device shown in the following figures are 1 760 microns X 5824 microns. Of course, LOC devices made for different applications can have different sizes. Figure 6 shows the features of the MST layer 87 overlaid with the cover features. The inserts AA to AD, AG and AH shown in Fig. 6 are individually enlarged in Figs. 13, 14, 35, 56, 55 and 63, and a sufficient understanding of the respective structures in the LOC device 301 is described in detail below. When Fig. 11 shows the structure of the CMOS + MST device 48 independently, Figs. 7 to 10 independently show the features of the cover 46. -72- 201211532 Layered Structure Figures 12 and 22 are schematic views showing the layered configuration of the CMOS+ MST device 48, the cover 46, and the fluid interaction therebetween. The figures are not drawn to scale for illustrative purposes. Figure 12 is a cross-sectional view through the sample inlet 68 and Figure 22 is a cross-sectional view through the reservoir 54. As best shown in FIG. 12, the φ CMOS + MST device 48 has a germanium substrate 84 that supports the CMOS circuitry 86 that operates the active components within the MST layer 87 described above. Passivation layer 88 seals and protects CMOS layer 86 from fluid flow through the MST layer 87. Fluid flows through both the cover channel 94 and the MST channel 90 in the cap layer 46 and the MST channel layer 100 (see, for example, Figures 7 and 16). While biochemical treatment is being performed on the smaller MS T channel 90, cell transport occurs in the larger channel 94 made in the cover 46. The cell transport channel is sized to carry the cells in the sample to a predetermined point in the MST channel 90. Transporting cells larger than 20 microns in size (e.g., certain white blood cells) requires channel sizes greater than 20 microns, and thus cross-sectional areas across the flow are greater than 400 square microns. In particular, the M S T channel at a position in L Ο C which does not require transport of cells can be significantly small. It will be understood that the cover channel 94 and the MST channel 90 are of the same reference and that the particular MST channel 90 can also be referred to as, for example, a heated microchannel or a dialysis MST channel depending on its particular function. The MST channel 90 is formed by uranium engraving through an M S 通道 channel layer 100 deposited on the passivation layer 88 and patterned with a photoresist. The MST channel 90 is surrounded by a top layer 66 which forms the top of the CMOS + MST device 48 (relative to the orientation shown in the figure). Although sometimes shown as a separate layer, the cover channel layer 8 and the reservoir layer 78 are formed from a single piece of material. Of course, the sheet of material may also be non-uniform. The sheet of material is etched from both sides to form a lid channel layer 8 and a reservoir layer 78' etches the lid channel 94 in the lid channel layer 80, and the reservoirs 54, 56, 58, 60 and 62 are etched in the reservoir layer 78. Additionally, the reservoir and the cover channel are formed by a micro-shaping process. Both etching and microforming techniques are used to fabricate channels having a cross-sectional area across the fluid that is as large as 20,00 square feet and as small as 8 square microns. There are a series of suitable choices for one of the cross-sectional areas of the channel across the fluid at different locations in the LOC device. A large number of samples or samples having a large component are accommodated in the channel, and a cross-sectional area of more than 20,000 square micrometers (e.g., a 200 micrometer wide channel in a layer of 100 micrometers thick) is suitable. A small amount of liquid or a mixture free of large cells is contained in the channel, preferably across a very small cross-sectional area of the fluid. A lower seal 64 surrounds the cover passage 94 and the upper seal layer 82 surrounds the reservoirs 54' 56, 58, 60 and 62». The five reservoirs 54, 56, 58, 60 and 62 are preloaded with analytical specific reagents. In the specific embodiment of this description, the reservoir is preloaded with the following reagents, but can be easily replaced with other reagents: • Reservoir 54: Anticoagulant with a choice of red blood cell lysis buffer • Reservoir 56: Lysis Reagent - 74 - 201211532 • Reservoir 58: Restriction of enzymes, ligases and linkers (for linker-priming PCR (see Figure 69, from T.  Stachan et al. , Human Molecular Genetics 2, Garland Science, NY and London, 1 999 excerpt) • Reservoir 60: amplification mix (deoxynucleotide triphosphates (dNTPs), bow 1 buffer, buffer) and • reservoir 62: DNA polymerase φ The lid 46 and the CMOS + MST layer 48 are in fluid communication via respective openings in the lower seal 64 and the top layer 66. The openings represent the upper conduit 96 and the lower conduit 92 depending on whether fluid flows from the MST passage 90 to the cover passage 94 or vice versa. LOC Device Operation The operation of the LOC device 301 is described step by step with reference to the analysis of pathogen DNA in a blood sample. Of course, other types of biological or non-biological fluids are also analyzed using kits or combinations of appropriate reagents, assay protocols, LOC variants, and detection systems. Referring to Figure 4, analyzing a biological sample involves five major steps, including: sample input and preparation 28, nucleic acid extraction 290, nucleic acid culture 291, nucleic acid amplification 292, and detection and analysis 294. The sample input and preparation step 28 8 involves mixing the blood with the anticoagulant 116 and then separating the pathogen from the white blood cells and red blood cells by the pathogen dialysis unit 70. As best shown in Figures 7 and 12, the blood sample enters the device via the sample inlet 68. Capillary action draws the blood sample along the lid channel 94 to the reservoir 54. When the sample blood flow opens its surface tension valve 118, the anticoagulant is released from the reservoir 54 (see Figures 15 and 22). The anticoagulant prevents the formation of blood clots that can block flow. As best shown in Figure 22, the anticoagulant 116 is withdrawn from the reservoir 54 by capillary action and enters the MST channel 90 via the lower conduit 92. The lower duct 92 has a capillary starting configuration feature (CIF) 02 to form the meniscus geometry such that it is not fixed to the edge of the lower duct 92. When the anticoagulant 116 is withdrawn from the reservoir 54, the venting opening 222 in the upper seal 82 allows air to replace the anticoagulant 116. The MST channel 90 shown in Figure 22 is part of the surface tension valve 118. The anticoagulant 116 fills the surface tension valve 118 and is secured to the meniscus 120 of the upper conduit 96 to the meniscus holder 98. The meniscus 120 remains fixed to the upper conduit 96' prior to use such that the anticoagulant does not flow into the lid passage 94. As the blood flows through the lid channel 94 to the upper tube 96, the meniscus 120 is removed and the anticoagulant is drawn into the fluid. Figures 15 through 21 show the insert AE, which is part of the insert AA shown in Figure 13. As shown in Figures 15, 16 and 17, the surface tension valve 118 has three separate M ST channels 90 extending between the individual lower conduits 92 and the upper conduits 96. These MST channels 90 in the surface tension valve can be varied to vary the flow rate of the reagent entering the sample mixture. The concentration of the reagent in the sample stream is determined by the flow rate of the sample mixture as it is mixed by diffusion and the reagents leaving the reservoir. Thus the surface tension valve of each of the reservoirs is configured to meet the desired reagent concentration. -76- 201211532 The blood passes through the pathogen dialysis unit 70 (see Figures 4 and 15: the target target cells are concentrated using a sample of holes 1 64 sized according to a predetermined valve. Cells smaller than the valve pass through the holes, Large pores can pass through the pores. When the target cells continue to be part of the analysis, the unwanted cells are reintroduced into the waste unit 76. The unwanted cells are large cells blocked by the array of holes 1 64, Or passing through the cells. φ is concentrated in the pathogen dialysis section 70 as described herein for microbial DNA analysis from the whole blood-like pathogen. The array of holes communicates with the input stream in the cover channel 94 to the target. The plurality of meter-diameter holes 1 64 of the channel 74 are formed. The 3 micron diameter hole 1 64 and the dialysis suction port 168 of the target channel 74 are connected by a series of dialysis channels 204 (best shown in Figure 15). And 21) the pathogen is so small that the target channel 74 is filled through the 3 micron diameter hole 164 via the dialysis MST channel 204. Cells larger than 3 microns, such as red blood cells and φ balls, remain in the waste channel 72 of the cover 46, The waste channel is stored Other pore shapes, sizes, and aspect ratios can be used to isolate other target cells of a particular pathogen, such as white blood cells for human DNA analysis. More details on the dialysis section and dialysis variants. 6 and 7, the fluid is drawn through the target through S to the surface tension valve 128 in the lysis reagent reservoir 56. The tension valve 128 has seven MST channels 90 extending from the lysis reagent 56 and Between the target channels 74. When the meniscus flows from the sample, the column flows from the cell to the small cell of the cell, 3 is slightly smaller than the MST, and the white blood is discharged to the waste body or the surface of the I 74 surface. The flow rate from all seven of the MST channels 90 will be greater than the flow rate from the anticoagulant reservoir 54 when the storage is removed from -77 to 201211532, wherein the surface tension valve 18 has three MST channels 90 (assuming the The physical properties of the fluid are substantially equal. Therefore, the proportion of the lysing reagent in the sample mixture is greater than the ratio of the anticoagulant. The lysis reagent and the target cell are within the chemical lysis unit 130 By diffusion mixing in the target channel 74. The initiation valve 126 stops the flow until diffusion and lysis occur for a sufficient time to release the genetic material from the target cells (see Figures 6 and 7). The structure and operation of the boiling initiation valve are described in detail with reference to Figures 31 and 32. Other active valve types (as opposed to passive valves such as the surface tension valve 118) have also been developed by the applicant, which can be used in place of the boiling initiation valve. These alternative valve designs are also described below. Upon initiation of the valve 126, the lysed cells flow into the mixing section 131 for pre-amplification restriction digestion and linker ligation. Referring to Figure 13, when the fluid removes the meniscus on the surface tension valve 132 initiated by the mixing portion 131, the restriction enzyme, linker and ligase are released from the reservoir 58. The mixture flows through the length of the mixing portion 131 for diffusion mixing. At the end of the mixing portion 131 is a lower duct 134 (see Fig. 13) leading to the incubator inlet passage 133 of the culture portion 114. The incubator inlet channel 133 feeds the mixture into a heated microchannel 2 10 蜿蜒 configuration that provides a culture chamber that retains the sample during restriction digestion and linker ligation (see Figures 13 and 14). ). Figures 23, 24, 25, 26, 27, 28 and 29 show the layers of the LOC device 301 inserted in the -78-201211532 object AB of Figure 6. The various figures show the continuous addition of the layers forming the CMOS + MST layer 48 and the structure of the disk 46. The insert AB shows the end of the culture portion 114 and the start of the amplification portion 112. As best shown in Figures 14 and 23, the fluid breaks into the microchannels 210 of the culture portion n4 until the boiling initiation valve 106 is reached, wherein the fluid stops while diffusion occurs. As discussed above, the microchannel 210 upstream of the boiling initiation valve 106 becomes a culture chamber containing the sample, restriction enzymes, ligase φ, and linker. The heater 154 is then activated and maintains a stable temperature for the occurrence of restriction enzyme digestion and linker binding for a specific period of time. Those skilled in the art will appreciate that this incubation step 291 (see Figure 4) is selected and only requires some type of nucleic acid amplification analysis. Again, in some instances, it may be desirable to have a heating step at the end of the incubation period to increase the temperature above the culture temperature. This temperature increase before entering the amplification section 112, so that the restriction enzyme and the ligase are not activated. When a constant temperature nucleic acid is used to amplify φ, there is a specific correlation between restriction enzymes and ligase inactivation. After the cultivation, the boiling initiation valve 106 is activated (turned on) and the fluid flows back to the amplification unit 112. Referring to Figures 31 and 32, the mixture fills the crucible structure of the heated microchannel 158 until the boiling initiation valve 1〇8 is reached, which form one or more amplification chambers. As best seen in the cross-sectional view of Figure 30, the amplification mixture (dNTPs, primers, buffer) is released from the reservoir 60 and the polymerase is then released from the reservoir 62 into the culture section and the amplification section (each The intermediate MST channel 212 of 1 14 and 1 12). Figures 35 through 51 show the layers of LOC device -79 - 201211532 301 in the insert AC of Figure 6. The figures show successive layers of layers forming the CMOS + MST device 48 and cover 46 structures. The end of the insert AC-based amplification unit 112 and the start of the hybridization and detection unit 52. The cultured sample, amplification mixture, and polymerase flow through microchannel 1 58 to boiling initiation valve 108. After diffusion mixing for a sufficient period of time, the heater 1 54 in the microchannel 1 58 is activated for thermal cycling or isothermal amplification. The amplification mixture undergoes a predetermined number of thermal cycles or a predetermined amplification time to amplify sufficient target DNA. After the nucleic acid amplification procedure, the boiling initiation valve 108 is opened and the fluid re-enters the hybridization and detection portion 52. The operation of the boiling initiation valve is described in more detail below. As shown in Figure 52, the hybridization and detection section 52 has an array of hybridization chambers 110. Figures 5, 5, 3, 5 and 5 show the hybridization chamber array 110 and the individual hybridization chambers 180 in detail. The entrance to the hybridization chamber 180 is a diffusion barrier 175 that prevents diffusion of the target nucleic acid, probe strands, and hybridization probes between the hybridization chambers 180 during hybridization to prevent erroneous hybridization detection results. The path length is long enough to prevent the target sequence and probe from diffusing out of one chamber and contaminating the other during the time the probe and nucleic acid hybridize and detect the signal, thus avoiding erroneous results. Another mechanism to prevent erroneous reading is to have the same probe in some of the hybridization chambers. The CMOS circuit 86 derives a single result from the photodiode 184 of the hybridization chamber 180 containing the same probe. The results of exporting anomalies in this single result can be ignored or given a different weight. The thermal energy required to supply hybridization is provided by CMOS controlled heater 182 (described in more detail below). Hybridization occurs between the complementary target probe sequences after activation of the heater. The LE D drive 201211532 29 in the C Μ S circuit 8 6 transmits a message to cause the LED 26 located in the test module 10 to illuminate. These probes only fluoresce when hybridization occurs to avoid the cleaning and drying steps typically required to remove unbound strands. Hybridization forces the stem-and-loop structure of the FRET probe 186 to open, which allows the fluorophore to emit fluorescent energy in response to the LED excitation light, as detailed below. Fluorescence is detected by photodiode 184 in the CMOS circuit 86 located under each of the hybrid cavities 180 (see hybrid cell description below). The photodiode 184 and associated electronics for all of the hybridization chambers together form the photosensor 44 (see Figure 64). In other embodiments, the photosensor can be a charge coupled device array (CCD array). The signal detected by the photodiode 184 is amplified and converted into a digital output that can be analyzed by the test module reader 12. Further details of the detection method are described in the following. Other Detailed Description of the LOC Device The modular design LOC device 301 has a number of functional components including reagent reservoirs 54, 56, 58, 60 and 62, dialysis section 70, and lysis unit. 130, culture unit 114 and amplification unit 112, valve type, humidifier, and humidity sensor. In other embodiments of the LOC device, such functional portions may be omitted, and additional functional portions or functional portions for alternative uses of the devices may be added. For example, the culture portion 1 14 can be used as the first amplification portion 112 of the repetitive sequence amplification analysis system, and the chemical lysis reagent reservoir 56 can be used to add the first amplification mixture of the primer, the dNTP, and the buffer, and use Reagent reservoir 58 is used to add reverse transcriptase and/or polymerase. If the sample is to be lysed, a chemical lysis reagent (along with amplification mix) may be added to the reservoir 56, or alternatively, the sample may be heated in the culture by heating the sample for a predetermined period of time. Hot lysis occurs. In some embodiments, if chemical lysis is required and the chemical lysis reagent is mixed with the mixture, an additional reservoir can be combined upstream of the reservoir 58 for mixing the primer, dNTP, and buffer. In some cases, the steps such as the culturing step 291 are omitted. In this case, the LO C device can be specifically fabricated to avoid the reagent reservoir 58 and the culture portion 114 or the reservoir can be loaded with reagents, or if there is an active valve, it is not activated to dispense the reagent into the sample stream. The culture unit is simply a passage for transferring the sample from the lysis unit 130 to the amplification unit 112. The heaters operate independently, so when the reaction relies on heat, such as hot lysis, the heater is not activated during this step, ensuring that hot lysis does not occur in LOC devices that do not require thermal lysis. The dialysis section 70 can be located at the beginning of a fluidic system within the microfluidic device, as shown in Figure 4, or can be located at any other location within the microfluidic device. In some cases, for example, after the amplification phase 292, prior to the hybridization and detection step 2 94, dialysis is performed to remove the cell debris system. Alternatively, two or more dialysis sections can be combined at any location on the LOC device. Similarly, additional amplifications 1 1 2 can be combined to enable simultaneous or sequential amplification of multiple targets prior to detection using specific nucleic acid probes in the hybridization chamber array 1 1 . To analyze, for example, a sample of whole blood in which dialysis is not required, the dialysis portion 70 is simply omitted from the sample input and preparation portion 288 of the LOC design. In some cases, even if the analysis does not require dialysis, it is not necessary to omit the dialysis section 70 from the LOC device. If the presence of the 201211532 analytic portion does not cause geometric obstruction, the sample input and preparation portion can still have the LOC of the dialysis portion 7 without losing the required function. Further, the detecting portion 294 can include a protein body chamber array. a probe that is identical to the hybrid chamber array but carries a probe that is designed to conjugate or hybridize to a sample target protein present in the non-amplified sample, rather than a nucleic acid probe designed to hybridize to the target nucleic acid sequence. needle. It will be appreciated that the LOC device φ manufactured for use in this diagnostic system differs in the combination of functional components selected for the particular LOC application. Most of the functional components are common to many LOC devices, and the design of additional LOC devices for new applications has a combination of appropriate functional components in the bulk of the functional options used in existing LOC devices. Only a few LOC devices are shown in this description, and some others are shown to illustrate the design flexibility of the LOC devices manufactured for this system. Those skilled in the art will readily appreciate that the LOC devices shown herein are not exhaustive, and that many additional LOC designs are related to the combination of appropriate functional components. Sample Type LOC Variants can accept and analyze a variety of nucleic acid or protein contents in liquid form, including, but not limited to, blood and blood products, saliva, cerebrospinal fluid, urine, semen, amniotic fluid, umbilical cord Blood, breast milk, sweat 'periosteal effusion, tears, pericardial fluid, peritoneal fluid, environmental water samples and beverage samples. Amplicon derived from meganucleic acid amplification can also be analyzed using a LOC device; in this case, all reagent reservoirs will be empty or configured to not release their contents, and only use dialysis, dissolution Cells, -83-201211532 Culture and Amplification to transfer samples from sample inlet 68 to hybridization chamber 180 for nucleic acid detection, as described above. For some sample types, a pre-treatment step is required, for example, prior to input into the LOC device, it may be necessary to liquefy the semen and possibly pre-treat the mucus with enzyme to reduce stickiness. Sample Input Referring to Figures 1 and 12, a sample is added to the large container 24 of the test module 1 . The large container 24 is a truncated cone that is fed into the inlet 68 of the LOC unit 301 by capillary action. Here, it flows into the 64 μm wide 60 μηι deep cover channel 94 and is also attracted to the anticoagulant reservoir 54 by capillary action. Reagent reservoirs The use of microfluidic devices, such as LOC device 301, requires a small amount of reagent for the analytical system such that the reagent reservoir contains all of the necessary reagents for biochemical treatment, and each reagent reservoir is in a small volume. This volume is indeed less than 1. 000.  000. 000 cubic micrometers, in most cases less than 300. 000.  000 cubic micrometers, typically less than 70,000,000 cubic micrometers, and less than 20. in the case of the LOC device 301 shown in the figures. 000.  000 cubic microns. Dialysis section Referring to Figures 15 to 21, 3 3 and 3 4, the pathogen dialysis section 70 is designed to concentrate the pathogen target cells from the sample. As previously described, the top layer -84 - 201211532 66 is a plurality of orifices of aperture 3 164 having a diameter of 3 microns, filtering the target cells from a large number of samples. As the sample flows through an orifice 164 having a diameter of 3 microns, the microbial pathogen passes through the well into a series of dialysis MST channels 204 and is returned to the target channel 74 via the 16 μιη dialysis extraction well 168 (see Figures 33 and 34). The remaining sample (red blood cells, etc.) is retained in the cover channel 94. Downstream of the pathogen dialysis section 70, the cover channel 94 becomes a waste channel 72 to the waste reservoir 76. The foam insert or other porous element 49 in the outer casing 13 of the test module 1 is configured to be in fluid communication with the waste reservoir 76 for a biological sample φ type that produces a substantial amount of waste (see Figure 1). . The pathogen dialysis unit 70 operates with the capillary action of the fluid sample. A 3 micron diameter orifice 1 64 located at the upstream end of the pathogen dialysis section has a capillary action initiation feature (CIF) 166 (see Figure 33) such that fluid is drawn down into the dialysis MST channel 204 below. The first suction aperture 198 for the target channel 74 also has a CIF 202 (see Figure 15) to prevent fluid from easily occluding the meniscus above the dialysis suction port 168. The small component dialysis section 682, which is schematically shown in Fig. 78, may have a structure similar to that of the pathogen dialysis section. The small component dialysis section separates the sample from any small target cells or molecules by size (and shaping, if necessary) suitable for the orifices that allow the small target cells or molecules to pass to the target channel and continue to be further analyzed. Large size cells or molecules are removed to waste reservoir 766. Thus, LOC device 30 (see Figures 1 and 123) is not limited to isolation of pathogens having a size of less than 3 μηη, but can be used to separate cells or molecules of any desired size. -85- 201211532 Lysis Department Referring again to Figures 7, 1 1 and 1 3 ' by chemical lysis, the genetic material in the sample is released from the cell. As noted above, the lysis reagent from lysis reservoir 56 is mixed with the sample stream in target channel 74 downstream of surface tension valve 128 for lysis reservoir 56. However, some diagnostic assays are better suited for thermal lysis, or even a combination of chemical and thermal lysis of target cells. The LOC device 301 houses the heated microchannels 210 of the culture portion 1 14 . The sample stream was flooded with the culture portion 1 14 and stopped at the boiling initiation valve 1 〇6. The culture microchannel 2 10 heats the sample to the temperature at which the cell membrane ruptures. In some hot lysis applications, the enzyme reaction is not required in the chemical lysis unit 130, and the hot lysis completely replaces the enzyme reaction in the chemical lysis unit 130. Boiling Initiating Valve As discussed above, LOC unit 301 has three boiling inducing valves 126, 106 and 1〇8. The position of these valves is shown in Figure 6. Figure 31 is an enlarged plan view of the independent boiling initiation valve 108 at the end of the heated microchannel 158 of the amplification section 112. By capillary action, the sample stream 1 1 9 is drawn along the heated microchannel 158 until it reaches the boiling initiation valve 108. The meniscus 120 at the leading edge of the sample stream is secured to the meniscus holder 98 of the valve inlet 146. The meniscus holder 98 geometry stops the arm level from moving forward to prevent capillary flow. As shown in Figures 31 and 32, the meniscus holder 98 is an orifice provided by the opening of the pipe from the MST passage 90 to the cover passage 94. The meniscus 丨 2〇 -86- 201211532 The surface tension keeps the valve closed. A ring heater 152 is located around the valve inlet 146. Ring heater 1 52 is controlled by C Μ Ο S via boiling induced valve heater contact 丨53. An electrical pulse is sent to the valve heater contact 1 53 to open the valve 'CMOS circuit 86. The ring heater 1 52 is resistively heated until the liquid sample 119 is boiled. Boiling removes meniscus 120 from valve inlet 146 and begins to wet cover passage 94. Once the lid passage 94 is wetted, the capillary action is restored. The fluid sample 1 19 is filled with the passage 94 and flows through the under-valve conduit 150 to the valve outlet 148, wherein the capillary-driven liquid flow advances along the amplifying portion outlet passage 160 into the hybridization and detection portion 52. The liquid sensor 174 is placed before and after the valve for diagnosis. It will be understood that once the boiling trigger valve is opened, it is impossible to close it again. However, since the LOC device 301 and the test module 10 are single-purpose devices, it is not necessary to close the valve. Culture section and nucleic acid amplification section Figs. 6, 7, 13, 14, 23, 24, 25, 35 to 45, 50, and 51 show the culture unit 1 1 4 and the amplification unit 1 1 2 . The culture portion 141 has a single, heated culture microchannel 210 that is etched to form a ruthenium pattern in the MST channel layer 100 from the lower conduit opening 134 to the boiling initiation valve 106 (see Figure 13 and 1 4). Controlling the temperature of the culture section 1 1 4 enables a more efficient enzyme reaction. Similarly, the amplifying portion 1 1 2 has an amplifying microchannel 158 (see Figs. 6 and 14) which is heated from the boiling inducing valve 106 to the boiling structure of the boiling initiation valve 108. When mixing, culture, and nucleic acid amplification occurs, the valve, such as -87-201211532, stops the flow to retain the target cells in the heated culture or amplification microchannel 210 or 158. The microchannel 蜿蜒 pattern also promotes (to some extent) the target cells to mix with the reagents. The sample cells and reagents in the culture unit 1 14 and the amplification unit 1 1 2 are heated via a heater 154 controlled by a pulse width modulation (PWM) CMOS circuit 86. Each of the turns of the heated culture microchannel 210 and the amplification microchannel 158 has three independently operable heaters 154 extending between the individual heater contacts 156 (see Figure 14). It provides two-dimensional control of the input heat flux density. As best shown in Figure 51, heater 154 is supported on top layer 66 and buried in lower seal 64. The heater material is TiAl, but many other conductive metals are also suitable. The elongated heater 154 is parallel to the longitudinal length of each of the channel portions forming the meandering meandering. In the amplifying section 1 1 2, each wide zigzag can be operated as an independent PCR chamber via individual heater control. Using a microfluidic device, such as the LOC device 310, the small volume of amplification required for the analysis system The subsequence allows amplification of the small volume of the amplification mixture in the amplification section 1 1 2 . This volume is less than 400 nanoliters, in most cases less than 170 nanoliters, less than 70 nanoliters, and in the case of LOC device 310, this volume is between 2 nanoliters and 30 nanoliters. between. Increased heating rate and better diffusion mixing The small cross-sectional area of each channel portion increases the heating rate of the amplification fluid mixture. All fluids are kept at a relatively short distance from the heater 1 54. The channel cross-sectional area (i.e., the cross-section of the augmented microchannel 158) is reduced to less than 100,000 square micro-88-201211532 meters, while the "high-scale" equipment has a significantly higher heating rate. The lithography technique allows the amplifying microchannel 158 to have a cross-section that spans less than 16,000 square microns of flow path that substantially provides a higher heating rate. The 1 micron size feature is easily achieved with lithography manufacturing techniques. If only a very small amount of amplicons are required (as in the case of L Ο C device 301), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1 to 2,000 probes on the LOC device and "sample entry, answer out" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and 1 Between square microns. The heating element in the amplification microchannel 158 heats the nucleic acid sequence at a rate greater than 80 absolute temperatures (K) per second, in most cases at a rate greater than 100 K per second. Typically, the heater element heats the nucleic acid sequence at a rate greater than 1000 K per second, and in many cases, the heater element heats the nucleic acid sequence at a rate greater than 1 每秒, 〇〇〇 K per second. Typically, based on the requirements of the analysis system, the heater elements are greater than 100,000 K per second, greater than 1, per second, 〇〇〇, 〇〇〇K, greater than 10 per second, 〇〇〇, 〇〇〇K, per second. The nucleic acid sequence is heated at a rate greater than 20,000,000 K, greater than 40,000,000 K per second, greater than 80,000,000 K per second, and greater than 160, 〇〇〇, 〇〇〇K per second. A small cross-sectional area channel is also beneficial for the diffusive mixing of any reagent with the sample fluid. The diffusion of one liquid to another is most pronounced near the interface between the two liquids before the diffusion mixing is completed. The density of the phenomenon decreases with distance from the interface. Use a microchannel with a relatively small cross-sectional area across the direction of the fluid while keeping the two fluids flowing through the interface to quickly diffuse the mixture. Reducing the channel cross-section to less than 100,000 square microns results in a significantly higher diffusion rate for "large scale" equipment. The lithography manufacturing technique allows the microchannels to have a cross-section that spans a flow path of substantially less than 16,000 square microns that substantially provides a higher mixing rate. If only a very small amount of amplicons are required (as is the case in LOC unit 301), the cross section can be reduced to less than 2,500 square microns. For a diagnostic analysis of 1 to 2,000 probes on the LOC device and "sample entry, answer out" within 1 minute, the appropriate cross-sectional area across the fluid is 400 square microns and 1 Between square microns and a short thermal cycle time keeps the sample mixture close to the heater and uses a very small amount of fluid, resulting in a rapid thermal cycle during the nucleic acid amplification process. Each thermal cycle (i.e., variability, adhesion, and primer extension) was completed in 30 seconds for a target sequence of up to 150 base pairs (bp) long. In most diagnostic analyses, individual thermal cycle times are less than 11 seconds and most are less than 4 seconds. For a target sequence of up to 150 base pairs (bp) long, the thermal cycle time of the LOC device 30 for some of the most common diagnostic analyses is zero. 45 seconds to 1. Between 5 seconds. This thermal cycling allows the test module to complete the nucleic acid amplification process in less than one minute: often within 220 seconds. For most analyses, the augmentation produces sufficient amplicons from the sample fluid entering the sample inlet within 80 seconds. For most analyses, sufficient amplicons are generated within 30 seconds. When the predetermined number of amplification cycles is completed, the -90-201211532 amplicon is fed to the hybridization and detection portion 52 via the boiling initiation valve 1 〇8. Hybridization Chambers Figures 52, 53, 54, 56 and 57 show hybridization chambers 180 in the hybridization chamber array 110. The hybridization and detection unit 52 has a 24×45 array 1 10 of hybridization chambers 180 each having a hybrid-reactive FRET probe 186 and a heater element 1. 82 and integrated photodiode 184. Photodiode 184 φ was incorporated to detect fluorescence from the target nucleic acid sequence or protein hybridized to the FRET probe 186. Each photodiode 184 is independently controlled by a CMOS circuit 86. For the emitted light, any material between the FRET probe 186 and the photodiode 184 must be transparent. Therefore, the wall portion 97 between the probe 186 and the photodiode 1 84 must also be optically transparent to the emitted light. In the LOC device 301, the wall portion 97 is a thin layer of cerium oxide (about 0. 5 microns). Direct intrusion of photodiode 184 under each hybridization chamber 180 allows for the use of a very small volume of probe-target hybrid, yet still produces detectable fluorescent signals (see Figure 54). A small volume of hybridization chamber can be used because of the small amount. Prior to hybridization, the amount of probe required to detect the probe-target hybrid amount is greater than 270 picograms (corresponding to 900,000 cubic micrometers), and in most cases less than 60 picograms (corresponding to Up to 200,000 cubic micrometers, typically less than 12 picograms (corresponding to 40,000 cubic micrometers), and less than 2. in the case of the LO C device 3 0 1 shown in FIG. 7 picograms (corresponding to a chamber volume of 9,000 cubic microns). Of course, reducing the size of the hybridization chamber allows for higher chamber densities and therefore more probes placed on the LOC device - in the LOC device 301, in an area of 1,500 microns by 1,500 microns, the hybrid has More than one, one chamber (ie, each chamber is less than 2,250 square microns). The smaller volume also reduces reaction time, making hybridization and detection faster. Another advantage of the small number of probes required for each chamber is that during the manufacture of the LOC device, only a very small amount of probe solution needs to be placed into each chamber. A specific embodiment of the LOC device according to the present invention can be configured using a probe solution having 1 nanoliter or less. After nucleic acid amplification, the boiling initiation valve 108 is activated and the amplicon flows along the flow path 176 and into each of the hybridization chambers 180 (see Figures 52 and 566). The endpoint liquid sensor 178 indicates the point at which the hybridization chamber 1 1000 is charged with the amplicon and the starter heater 182. After sufficient hybridization time, LED 26 is activated (see Figure 2). The opening in each hybridization chamber 180 is provided with an optical window 136 to expose the FRET probe 186 to excitation radiation (see Figures 52, 54 and 56). The LED 26 emits light for a sufficient period of time to induce a high intensity fluorescent signal from the probe. The photodiode 184 is shorted during excitation. After a preprogrammed delay of 300 (see Figure 2), the photodiode 184 is enabled and the fluorescent emission is detected under no excitation light. The incident light on the active region 185 of the photodiode 184 (see Figure 54) is converted to a photocurrent that can be measured using the CMOS circuit 86. Each hybridization chamber 180 carries a probe for detecting a single target nucleic acid sequence. If desired, each hybridization chamber 180 can carry probes that detect more than 1,000 different targets. Alternatively, many or all of the hybridization chambers may carry the same probe that repeatedly detects the same target nucleic acid. Copying the probe in this manner in the hybrid chamber array 1 1 使得 increases the confidence of the results obtained, with -92-201211532 and, if desired, combining all the results by photodipoles of adjacent hybridization chambers To get a single result. Those skilled in the art will appreciate that depending on the analysis details, there may be from 1 to over 1, different probes on the hybrid chamber array no. Humidifier and Humidity Detector The insert AG of Figure 6 indicates the position of the humidifier 196. The humidifier is free of φ evaporation of reagents and probes during operation of the LOC device 301. As best shown in the enlarged view of Fig. 55, the water reservoir 188 is fluidly coupled to the three evaporators 190. The water reservoir 188 is filled with water for molecular biological grades and is sealed during manufacture. As best shown in Figures 55 and 67, by capillary action, water is drawn to the three lower tubes 1 94 and along the individual water supply channels 192 to the three upper tubes 193 of the evaporator 190. The meniscus is fixed to each of the upper ducts 193 to retain water. The evaporator has a ring heater 191 which is connected to the CMOS circuit 86 by a heat transfer column 376, φ ring heater 191, to the top metal layer 195 (see Fig. 37). At startup, the ring heater 191 heats the water causing the water to evaporate and wet the surrounding devices. The position of the humidity sensor 23 2 is also shown in FIG. However, preferably, as shown in the enlarged view of the insert AH shown in Fig. 63, the humidity sensor has a capacitive comb structure. The lithographically etched first electrode 296 and the lithographically etched second electrode 298 are opposed to each other such that their teeth are interleaved. The opposing electrodes form a capacitor having a capacitance that can be monitored by CMOS circuitry 86. As the humidity increases, the dielectric gap between the electrodes increases with the constant -93-201211532, causing the capacitance to increase. The humidity sensor 232 abuts the hybridization chamber array 1 1 〇 (the most important humidity measurement location) to slow the evaporation of the solution containing the exposed probe. The feedback sensor temperature and liquid sensor system is integrated into the LOC device 301 to provide feedback and diagnostics during device operation. Referring to Fig. 35, nine temperature sensors 1 70 are assigned to the amplification unit 1 1 2 as a whole. Similarly, the culture unit 1 14 also has nine temperature sensors I 70 . These sensors each use a 2x2 array of bipolar junction transistors (BJT) to monitor fluid temperature and provide feedback to CMOS circuitry 86. The CMOS circuit 86 utilizes this to accurately control thermal cycling during the nucleic acid amplification process as well as any thawing during thermal lysis and culture. In hybridization chamber 180, CMOS circuit 86 uses hybridization heater 182 as a temperature sensor (see Figure 56). The resistance of hybrid heater 182 is temperature dependent and CMOS circuit 86 utilizes this to obtain a temperature reading of each hybridization chamber 180. The LOC device 301 also has a number of MST channel liquid sensors 174 and a cover channel liquid sensor 206. Figure 35 shows the line of the MST channel liquid sensor 174 at one of the ends of each of the heated microchannels 158. Preferably, as shown in Figure 37, the M S T channel liquid sensor 174 is a pair of electrodes formed by the exposed regions of the top metal layer 195 in the CMOS structure 86. The liquid closes the circuit between the electrodes to indicate where they are located in the sensor. -94- 201211532 Figure 25 shows an enlarged perspective view of the cover channel liquid sensor 208. Pairs of TiAl electrode pairs 218 and 220 are deposited on top layer 66. A gap 222 is provided between the electrodes 2 18 and 220 to keep the circuit open in the absence of liquid. The circuit is closed when the liquid is present and the CMOS circuit 86 uses this feedback to monitor the flow. The GRAVITATIONAL INDEPENDENCE test module is autonomous. It does not need to be fastened to a smooth surface to operate. The fluid flow driven by capillary action and the lack of external tubing to the auxiliary device make the module truly portable and easily plugged into a similar portable handheld reader, such as a mobile phone. The gravity autonomous operation represents that the test module is also acceleration independent of all practical ranges. It is shock and vibration resistant and can be operated on mobile vehicles or on mobile phones. Dialysis Variants A dialysis section having a fluid passageway to avoid trapped bubbles. The following is a specific embodiment of the LOC apparatus of LOC Variant VIII 518 shown in Figures 72, 73, 74 and 75. The LOC device has a dialysis section that is filled with a fluid sample and trapped in a channel without bubbles. LOC Variant VIII 518 also has an additional layer of material, referenced to interface layer 594. Interface layer 594 is disposed between cover channel layer 80 and the MST channel layer 1 of CMOS + MST device 48. The interface layer 594 causes a more complex fluid interconnection between the reagent reservoir and the MST layer 87 without increasing the size of the germanium substrate 84-95-201211532.

參照圖73,設計旁路通道600以於自界面廢料通道 6 04至界面標靶通道602之流體樣本中引入時間延遲。此 時間延遲使得流體樣本流經透析M S T通道2 0 4而至固定 彎液面之透析汲取168。利用於上管道處之旁路通道600 至界面標靶通道602之毛細作用起始特徵(CIF)202,自透 析MST通道204之所有透析吸入孔168之上游之點,樣 本流體塡充界面標靶通道6 02。 不需旁路通道6 00,界面標靶通道6 02仍開始自上游 端進行塡充,但最終,行進的彎液面到達並通過尙未被塡 充之MST通道之上管道,通向於該點捕獲的空氣。捕集 的空氣降低通過白血球透析部3 28之樣本流率。 核酸擴增變體Referring to Figure 73, bypass passage 600 is designed to introduce a time delay from the fluid sample from interface waste channel 106 to interface target channel 602. This time delay causes the fluid sample to flow through the dialysis M S T channel 2 0 4 to the dialysis draw 168 of the fixed meniscus. Utilizing the capillary action initiation feature (CIF) 202 of the bypass channel 600 at the upper conduit to the interface target channel 602, from the point upstream of all dialysis suction holes 168 of the dialysis MST channel 204, the sample fluid is filled with the interface target Channel 6 02. Without the bypass channel 6 00, the interface target channel 602 still begins to charge from the upstream end, but finally, the traveling meniscus arrives and passes through the pipe above the unfilled MST channel, leading to the Point to capture the air. The trapped air reduces the sample flow rate through the leukocyte dialysis unit 3 28 . Nucleic acid amplification variant

平行P C R LOC裝置的許多變體具有平行操作的多個擴增部。例 如,圖71中所示之LOC變體VII 492具有平行擴增部 112.1至112.4,其使得多重核酸擴增分析同時進行。 圖106中所示之LOC變體XI 746亦具有平行擴增部 112.1至112.4,但還具有另外的平行培養部lit1至 1 14.4,使得擴增之前可以不同方式處理樣本。其他LOC 變體,諸如圖77中所示之LOC XIV 641,顯示平行擴增 部的數目可爲“X”,其僅受限於LOC裝置的尺寸。可製作 較大的LOC裝置可由以容納更多數目的平行擴增部。 -96 - 201211532 針對特定的標靶大小或特定的擴增混合組分,分別的 擴增部可組態成以不同週期時間及/或溫度執行。當複數 個擴增部平行執行時,LOC裝置於各部中可操作多重核酸 擴增製程或單重(unipl ex)擴增製程。在多重核酸擴增中, 使用不只一對引子進行大於一個標表序列的擴增。具有 “m”個室之平行核酸擴增系統可執行與η重擴增,其中,η =n(l) + η(2) + ··.+ n(i) + .·.+ n(m),且 n(i)爲用於室 “i” 中執行之多重擴增之不同數目的引子對,要知道的是平行 擴增系統中的SNR(訊號-對-雜訊比)大於單一室系統中執 行之η重擴增的SNR。於n(i) = 1的特殊情況中,室“i” 中的擴增變成僅爲單重擴增。Many variants of parallel P C R LOC devices have multiple amplifications operating in parallel. For example, the LOC variant VII 492 shown in Figure 71 has parallel amplification sections 112.1 to 112.4 which allow simultaneous multiplex nucleic acid amplification analysis. The LOC variant XI 746 shown in Fig. 106 also has parallel amplifications 112.1 to 112.4, but also has additional parallel cultures lit1 to 14.4 so that the samples can be processed differently before amplification. Other LOC variants, such as LOC XIV 641 shown in Figure 77, show that the number of parallel amplifications can be "X", which is only limited by the size of the LOC device. Larger LOC devices can be made to accommodate a greater number of parallel amplifications. -96 - 201211532 For a specific target size or specific amplification mix, the separate amplification sections can be configured to execute at different cycle times and/or temperatures. When a plurality of amplification sections are performed in parallel, the LOC apparatus can operate a multiplex nucleic acid amplification process or a unipl ex amplification process in each section. In multiplex nucleic acid amplification, more than one pair of primers is used for amplification of more than one marker sequence. A parallel nucleic acid amplification system having "m" chambers can perform η-reamplification, where η = n(l) + η(2) + ··.+ n(i) + .·.+ n(m) And n(i) is the different number of primer pairs used for the multiplex amplification performed in chamber "i", it is known that the SNR (signal-to-noise ratio) in the parallel amplification system is larger than the single chamber system The SNR of the η re-amplification performed in . In the special case of n(i) = 1, the amplification in chamber "i" becomes only a single amplification.

直接P C R 傳統上,於製備反應混合物之前,PCR需要大量純化 標靶DNA。然而,適當地改變化學及樣本濃度,可利用 φ 最少量的DNA純化實施核酸擴增,或進行直接擴增。當 以PCR進行核酸擴增時,此方法便稱做直接PCR。於 LOC裝置中於經控制的常溫下實施核酸擴增時,此方法爲 直接恆溫擴增。當用於LOC裝置時,尤其是關於所需流 體設計的簡化時,直接核酸擴增技術具相當多的優勢。直 接PCR或是直接恆溫擴增之擴增化學調整包括增加緩衝 液強度、使用高活性及高進行性之聚合酶及與潛在聚合酶 抑制劑螯合之添加物。稀釋樣本中存在之抑制劑亦爲重要 的。 -97- 201211532 爲利用直接核酸擴增技術,LOC裝置設計併入兩個額 外的特徵。第一特徵爲試劑貯存器(例如,圖8中的貯存 器5 8),其經適當地尺寸化以供應充分量之擴增反應混合 或稀釋劑,使得可能干擾擴增化學之樣本成分的最終濃度 足夠低以成功地進行核酸擴增。非細胞樣本成分的所欲稀 釋度爲5倍至20倍。當適度確認標靶核酸序列的濃度被 維持於足夠高以用於擴增及檢測時,使用不同的LOC結 構,例如圖4中的病原體透析部7 0。於此具體實施例中 (進一步於圖6中說明),於樣本萃取部2 90之上游使用有 效地濃縮足夠小而得以進入擴增部292之病原體的濃度並 將較大細胞排出至廢料貯存器76之透析部。於另外的具 體實施例中,使用透析部以選擇性地去除血漿中之蛋白質 及鹽而保留關注的細胞。 支持直接核酸擴增之第二LOC結構性特徵爲設計通 道的深寬比以調整樣本及擴增混合成分之間的混合比。例 如,爲確保經由單一混合步驟之相關於樣本之抑制劑的稀 釋爲較佳的5倍-20倍範圍中,設計樣本及試劑通道之長 度與截面’以使混合起始位置之上游的樣本通道構成之流 組抗較試劑混合物流動之通道的流組抗高出4倍-1 9倍。 經由控制設計幾合而容易地控制微通道中之流組抗。針對 恆定截面積’微通道之流組抗隨通道長度而線性地增加。 對於混合設計而言爲重要的是,微通道中之流組抗較多取 決於最小截面積尺寸。例如,當深寬比極爲不均一時,方 形截面之微通道的流組抗與最小垂直尺寸之立方成反比。 -98 - 201211532 反轉錄酶PCR (RT-PCR) 當分析或萃取之樣本核酸種類爲RNA時,諸如來自 RNA病毒或信使RNA,於PCR擴增之前必須先將RNA反 轉錄爲互補DNA(cDNA)。可於與PCR相同之腔室中實施 反轉錄反應(一步驟RT-PCR),或是其可爲分別的起始反 應(二步驟RT-PCR)。於此所述之LOC變體中,可藉由添 φ 加反轉錄酶及聚合酶至試劑貯存器62以及程式化加熱器 154以先循環反轉錄步驟並接續進行核酸擴增步驟,而簡 單地實施一步驟RT-PCR。藉由利用試劑貯存器58來儲存 及分配緩衝液、引子、dNTP及反轉錄酶,以及利用培養 部114以用於反轉錄步驟,接著於擴增部112中以普通方 式進行擴增,亦可簡單地完成二步驟RT-PCR。 恆溫核酸擴增 φ 針對一些應用,較佳之核酸擴增方法爲恆溫核酸擴 增,因此不需於各種溫度循環重複地循環反應成分,而是 將擴增部維持於常溫下,普通爲約37 °C至41 °C。已描述 —些恆溫核酸擴增方法,包括股取代擴增(SDA)、轉錄介 導擴增(TMA)、依賴核酸序列擴增(NASBA)、重組酵素聚 合酶擴增(RPA)、解旋恆溫DNA擴增(HDA)、滾動循環擴 增(RCA)、分枝型擴增(ram)及環形恆溫擴增(LAMP),以 及此等之任何或其他恆溫擴增方法可用於本文之LOC裝 置之特定具體實施例中。 -99- 201211532 爲實施恆溫核酸擴增’鄰接擴增部之試劑貯存器60 及62將載有用於特定恆溫方法之適當的試劑而不是載有 P C R擴增混合及聚合酶。例如,針對s D A,試劑貯存器 6 〇含有擴增緩衝液、引子及d N T P,以及試劑貯存器6 2 含有適當的核酸內切酶及外切-DNA聚合酶。針對RPA, 試劑貯存器60含有擴增緩衝液、引子、dNTP及重組酶蛋 白’及試劑貯存器62含有股取代DNA聚合酶,諸如 仏《。同樣地,針對HDA,試劑貯存器60含有擴增緩衝 液、引子及dNTP,以及試劑貯存器62含有適當的DNA 聚合酶及解旋酶(而非使用熱)以解開雙股DNA。熟此技藝 者將了解以任何適用於核酸擴增法之方式,可將必要試劑 分配於兩個試劑貯存器。 針對自RNA病毒,諸如HIV或C型肝炎病毒之病毒 核酸的擴增,NASBA或TMA係適當的因其不需先將RNA 轉錄成cDNA。於此實例中,試劑貯存器60塡充有擴增 緩衝液、引子及dNTP,以及試劑貯存器62塡充有RNA 聚合酶、反轉錄酶及任意的RNase Η。 針對一些恆溫核酸擴增類型,於維持恆溫核酸擴增之 溫度以利反應續行之前,必須採用初始變性循環以分開雙 股DNA模板。因可藉擴增微通道158中之加熱器154嚴 密地控制擴增部1 1 2中之混合的溫度,於本文中描述之 LOC裝置之所有具體實施例中均可輕易完成此變性循環 (見圖1 4)。 恆溫核酸擴增對於樣本中潛在的抑制劑之耐受性較 -100- 201211532 高,因而通常適用於自所欲樣本之直接核酸擴增。因此, 恆溫核酸擴增尤其有用於分別顯示於圖79、80及8 1中之 LOC 變體 XLIII 673、LOC 變體 XLIV 674 及 LOC 變體 XL VII 677。直接恆溫擴增亦可與如圖79及81中所示之 一或多個預擴增透析步驟7〇、686或682及/或如圖80中 所示之預-雜交透析步驟682組合,以分別於核酸擴增之 前有助於樣本中之標靶細胞的部份濃縮或是於樣本進入雜 交腔室陣列110前移除不想要的細胞碎片。熟此技藝者將 了解可使用預·擴增透析及預-雜交透析之任何組合。 亦可以平行的擴增部,諸如,圖71、76及77中所槪 述者,實施恆溫核酸擴增。多工及一些恆溫核酸擴增方 法,諸如LAMP,係與初始反轉錄步驟相容以擴增RNA。 其他設計變體 流速感測器 除了溫度及液體感測器外,LOC裝置亦可合倂經 CMOS控制的流速感測器740,如圖122中及LOC變體X 728中所槪略說明者(見圖89至105)。此等感測器甩於決 定兩步驟中的流速。於第一步驟中’蜿蜒加熱器元件814 的溫度係由施加低電流並測量電壓以決定蜿蜒加熱器元件 8 1 4的電阻而決定,且因此使用加熱器元件之電阻與溫度 之間的已知關係而決定元件8 1 4的溫度。於此階段,於元 件8 1 4中所逸散之熱最小及通道中的液體溫度等於計算的 元件814的溫度。於第二步驟中,施加較高電流至蜿蜒加 -101 - 201211532 熱器元件,使得元件8 1 4的溫度增加且一些熱因流動的液 體而流失。於施加較高電壓的同時,藉由再次測量元件 814之上的電壓,決定元件814的新電阻及再次藉由 CMOS電路86計算增加的溫度。使用蜿蜒加熱器元件814 的新溫度及已知的於第一步驟中所計算之樣本液體溫度, 決定了液體的流動速度。由已知的通道截面幾何及流動速 度來計算通道中之液體的流速。 螢光檢測系統之另外的細節 圖58及59顯示雜交-反應性FRET探針23 6。此等經 常被稱爲分子信標及係爲由單股核酸產生之莖-及-環探 針,並於與互補核酸雜交時發螢光。圖58顯示於與標靶 核酸序列238雜交之前之單一 FRET探針236。探針具有 環240、莖242、於5’端之螢光團M6及於3'端之淬熄劑 2 4 8。環2 4 0包含與標靶核酸序列2 3 8互補之序列。探針 序列兩側的互補序列黏著在一起以形成莖242。 於缺少互補標靶序列時,如圖5 8中所示者,探針維 持閉合。莖242保持螢光團-淬熄劑對彼此相當接近,使 得大量的共振能量可於彼此間傳輸,而當以激發光244照 射時實質地消除螢光團發螢光團的能力。 圖59顯示呈開放或經雜交組態的FRET探針236。於 與互補標靶核酸序列2 3 8雜交時,莖-及-環結構被破壞, 螢光團及淬熄劑於空間上分離,因此恢復螢光團2 4 6發蛮 光的能力。光學檢測地螢光發射2 5 0以作爲探針已雜交的 201211532 指標。 探針以極高專一性與互補標靶雜交,因探針之莖螺旋 係設計成較具單一不互補核苷酸之探針-標靶螺旋穩定^ 因雙股DNA相對堅固,立體上探針-標靶螺旋與莖螺旋不 可能共存。 引子-聯結的探針 φ 引子-聯結的莖-及-環探針及引子-聯結的線性探針, 亦稱作蠍子型探針,爲分子信標之替代物且可用於LOC 裝置之即時及定量核酸擴增。及時擴增可直接實施於LOC 裝置之雜交腔室中。使用引子-聯結的探針之優點爲探針 元件實體地聯結至引子’因此於核酸擴增期間僅需單次雜 交事件而不需要分別的引子雜交及探針雜交。此確保即時 有效地反應且當使用分別的引子及探針時產生更強的訊 號、更短的反應時間,具有更佳的識別度》於製造期間, φ 探針(與聚合酶及擴增混合)將沉積於雜交腔室180中且不 需LOC裝置上之獨立的擴增部。替代性地,擴增部未被 使用或用於其他反應。 引子-聯結的線性探針 圖82及83分別顯示首輪核酸擴增期間之引子-聯結 的線性探針692及於後續核酸擴增期間之雜交的組態。參 照圖82,引子-聯結的線性探針692具有雙股莖區段 242。其中一股結合引子聯結的探針序列696,其係與標 -103- 201211532 靶核酸696上的區域同源且以螢光團246標記其5’端,以 及經由擴增阻斷物694聯結其3’端至寡核苷酸引子700。 以淬熄劑部分248標記莖242之另外一股的3’端。於完成 首輪核酸擴增之後,利用目前爲互補的序列69 8,探針可 環繞且雜交至延伸的股。於首輪核酸擴增期間,寡核苷酸 引子7〇〇黏著至標靶DNA 23 8(圖82)並接著延伸而形成含 有探針序列及擴增產物兩者之DNA股。擴增阻斷物694 防止聚合酶之讀取通過及拷貝探針區域696。於接續的變 性時,雜交之延伸的寡核苷酸引子700/模板及引子-聯結 的線性探針之雙股莖242分離,因此釋出淬熄劑248。一 但用於黏著及延伸步驟的溫度降低,引子聯結的線性探針 之引子聯結的探針序列6 96捲曲並與延伸的股上之擴增的 互補序列698雜交,以及檢測出的螢光指出標靶DNA存 在。未延伸的引子-聯結的線性探針保留其雙股莖且螢光 保持淬熄。此檢測方法特別適於快速檢測系統,因其依賴 單一分子製程。 引子-聯結的莖-及-環探針 圖84A至84F顯示引子-聯結的莖-及-環探針704之 操作。參照圖84A,引子-聯結的莖-及-環探針704具有互 補雙股DNA之莖242及合倂探針序列的環240。以螢光 團2 4 6標記其中一個莖股7 0 8之5 '端》以3 ’ -端禅媳劑 248標記另一股710 ’且另一股710帶有擴增阻斷物694 及寡核苷酸引子700兩者。於初始變性相(見圖84B),標 201211532 靶核酸23 8之股及引子聯結的莖242分開莖-及-環探針 7 04。當溫度冷卻以用於黏著相時(見圖84C),引子-聯結 的莖-及-環探針704上之寡核苷酸引子700與標靶核酸序 列23 8雜交。於延伸期間(見圖84D),合成標靶核酸序列 23 8之互補706以形成含有探針序列704及擴增的產物兩 者之DNA股。擴增阻斷物69 4防止聚合酶之讀取通過及 拷貝探針區域704。變性之後,當接著黏著探針時,引 子-聯結的莖-及-環探針之環區段240之探針序列(見圖 84F)黏著至延伸的股上之互補序列706。此組態使得螢光 團246與淬熄劑248相距甚遠,造成螢光發射的顯著增 強。 控制探針 雜交腔室陣列1 1 0包括具有用於分析品質控制之正及 負控制探針之一些雜交腔室180»圖118及119槪要說明 φ 無螢光團之負控制探針796,以及圖120及121描述無淬 熄劑之正控制探針798。正及負控制探針具有如前述 FRET探針之莖-及-環結構。然而,不論探針雜交成爲開 放組態或保持封閉,將永遠自正控制探針7 9 8發射螢光訊 號250且負控制探針796從不發射螢光訊號250。 參照圖1 1 8及1 1 9,負控制探針796不具螢光團(及 可具有或不具有淬熄劑248)。因此,不論標靶核酸序列 238與探針雜交(見圖119)或是探針保持其莖-及-環組態 (見圖118),可忽略對激發光244之回應。替代性地,可 -105- 201211532 設計負控制探針796使得其永遠保持淬熄。例如,藉由合 成環2 4 0而得到將不會與所硏究的樣本中之任何核酸序列 雜交之探針序列’探針分子之莖242將與其自身重新雜 交’及螢光團及淬熄劑將保持緊密相鄰且將不會發射可見 的螢光。此負控制訊號對應於來自雜交腔室1 8 0的低階發 射,於雜交腔室1 8 0中探針未經雜交但是淬熄劑未淬熄來 自指示劑的所有發射。 相反地,建構無淬熄劑之正控制探針7 9 8,如圖1 2 0 及121中所示者。回應激發光244,不論正控制探針798 是否與標靶核酸序列2 3 8雜交,無物質使來自螢光團246 之螢光發射250淬熄。 圖52顯示雜交腔室陣列110中的正及負控制探針(分 別爲3 78及3 8 0)之可行分佈。控制探針3 78及3 80係置 於雜交腔室180中並定位成橫越雜交腔室陣列110之線》 然而,陣列內之控制探針的配置係任意的(如同雜交腔室 陣列1 1 〇之組態)。 螢光團設計 需要具長螢光壽命之螢光團以允許激發光具足夠時間 來衰變至較致能光感測器44時之螢光發射的強度爲低之 強度,藉此提高充分的訊號對雜訊比。而且,較長的螢光 壽命代表較大之整合的螢光子計數。 螢光團2 46(見圖59)之螢光壽命大於100奈秒、經常 大於200奈秒、更常見爲大於3 00奈秒,以及於大多數的 -106- 201211532 情況中爲大於400奈秒。 以過渡金屬或鑭系金屬爲底的金屬-配位子錯合物具 長壽命(自數百奈秒至毫秒)、適當的量子產率,以及高 熱、化學及光化學穩定性,此等特性均爲相關於螢光檢測 系統需求之有利特性。 以過渡金屬離子釕(Ru (II))爲底之經特別地徹底硏究 之金屬-配位子錯合物爲參(2,2’-聯吡啶)釕(II) φ ([Ru(bpy)3]2 + ) ’彼之壽命爲約1μδ。此錯合物可購自 Biosearch Technologies,其商品名爲 pulSar 6 50。 tHlsar 650 (釕整合物)之光物理性質Direct P C R Traditionally, PCR requires extensive purification of target DNA prior to preparation of the reaction mixture. However, by appropriately changing the chemical and sample concentrations, nucleic acid amplification can be performed using a minimum amount of DNA purification of φ, or direct amplification can be performed. When nucleic acid amplification is performed by PCR, this method is called direct PCR. When nucleic acid amplification is carried out in a LOC apparatus at a controlled normal temperature, the method is direct constant temperature amplification. Direct nucleic acid amplification techniques have considerable advantages when used in LOC devices, especially with regard to the simplification of the desired fluid design. Amplification chemical adjustments for direct PCR or direct isothermal amplification include increased buffer strength, the use of highly active and highly progressive polymerases, and additions to potential polymerase inhibitors. It is also important to dilute the inhibitors present in the sample. -97- 201211532 To exploit direct nucleic acid amplification technology, the LOC device design incorporates two additional features. The first feature is a reagent reservoir (eg, reservoir 58 in Figure 8) that is appropriately sized to supply a sufficient amount of amplification reaction mix or diluent such that it may interfere with the finalization of the sample component of the amplification chemistry The concentration is low enough to successfully perform nucleic acid amplification. The desired dilution of the non-cellular sample component is 5 to 20 times. When the concentration of the target nucleic acid sequence is moderately confirmed to be sufficiently high for amplification and detection, a different LOC structure is used, such as the pathogen dialysis section 70 in Figure 4. In this particular embodiment (further illustrated in Figure 6), the concentration of the pathogen sufficient to enter the amplification section 292 is effectively concentrated upstream of the sample extraction section 2 90 and the larger cells are discharged to the waste reservoir. 76 dialysis department. In another specific embodiment, a dialysis section is used to selectively remove proteins and salts in plasma while retaining cells of interest. A second LOC structural feature that supports direct nucleic acid amplification is to design the aspect ratio of the channel to adjust the mixing ratio between the sample and the amplified mixture. For example, to ensure that the dilution of the inhibitor associated with the sample via a single mixing step is in the preferred range of 5 to 20 times, the length of the sample and reagent channels and the cross-section are designed such that the sample channel upstream of the mixing start position The composition of the flow group is 4 to 1 times higher than that of the channel through which the reagent mixture flows. The flow group resistance in the microchannel is easily controlled by controlling the design. The flow resistance against a constant cross-sectional area 'microchannel' increases linearly with channel length. It is important for the hybrid design that the flow group resistance in the microchannel is more dependent on the minimum cross-sectional area size. For example, when the aspect ratio is extremely non-uniform, the flow resistance of the microchannels of the square cross section is inversely proportional to the cube of the smallest vertical dimension. -98 - 201211532 Reverse Transcriptase PCR (RT-PCR) When the sample nucleic acid species analyzed or extracted is RNA, such as from RNA virus or messenger RNA, RNA must be reverse transcribed into complementary DNA (cDNA) prior to PCR amplification. . The reverse transcription reaction (one-step RT-PCR) can be carried out in the same chamber as the PCR, or it can be a separate initial reaction (two-step RT-PCR). In the LOC variant described herein, the reverse transcription step can be first cycled and the nucleic acid amplification step can be continued by adding φ plus reverse transcriptase and polymerase to reagent reservoir 62 and stylized heater 154, simply A one-step RT-PCR was performed. The buffer, the primer, the dNTP, and the reverse transcriptase are stored and distributed by the reagent reservoir 58, and the culture unit 114 is used for the reverse transcription step, and then amplified in the amplification unit 112 in an ordinary manner. The two-step RT-PCR is simply done. Constant-temperature nucleic acid amplification φ For some applications, the preferred nucleic acid amplification method is constant-temperature nucleic acid amplification, so that it is not necessary to repeatedly circulate the reaction components at various temperature cycles, but the amplification portion is maintained at normal temperature, usually about 37 °. C to 41 °C. Has been described - some constant temperature nucleic acid amplification methods, including strand-substituted amplification (SDA), transcription-mediated amplification (TMA), nucleic acid sequence-dependent amplification (NASBA), recombinant enzyme polymerase amplification (RPA), unwinding thermostat DNA amplification (HDA), rolling cycle amplification (RCA), branched amplification (ram), and circular thermostat amplification (LAMP), and any or other isostatic amplification methods of this can be used in the LOC devices herein. In a particular embodiment. -99-201211532 The reagent reservoirs 60 and 62 for performing the constant temperature nucleic acid amplification' contiguous amplification unit will carry an appropriate reagent for a specific constant temperature method instead of carrying a PCR amplification mix and a polymerase. For example, for s D A , reagent reservoir 6 〇 contains amplification buffer, primer and d N T P, and reagent reservoir 6 2 contains appropriate endonuclease and exo-DNA polymerase. For RPA, reagent reservoir 60 contains amplification buffer, primers, dNTPs, and recombinase proteins' and reagent reservoir 62 containing a stock-substituted DNA polymerase, such as 仏. Similarly, for HDA, reagent reservoir 60 contains amplification buffer, primers, and dNTPs, and reagent reservoir 62 contains the appropriate DNA polymerase and helicase (rather than using heat) to unwind the double stranded DNA. Those skilled in the art will appreciate that the necessary reagents can be dispensed into two reagent reservoirs in any manner suitable for nucleic acid amplification. For amplification of viral viruses, such as HIV or hepatitis C virus nucleic acids, NASBA or TMA is appropriate because it does not require the transcription of RNA into cDNA. In this example, reagent reservoir 60 is filled with amplification buffer, primers, and dNTPs, and reagent reservoir 62 is filled with RNA polymerase, reverse transcriptase, and any RNase®. For some types of thermostatic nucleic acid amplification, an initial denaturation cycle must be employed to separate the double-stranded DNA template before maintaining the temperature of the thermostated nucleic acid amplification for continued reaction. Since the temperature of the mixing in the amplification section 112 can be tightly controlled by the heater 154 in the amplification microchannel 158, this denaturation cycle can be easily accomplished in all of the specific embodiments of the LOC apparatus described herein (see Figure 1 4). Thermostatic nucleic acid amplification is more resistant to potential inhibitors in the sample than -100-201211532 and is therefore generally suitable for direct nucleic acid amplification of the desired sample. Thus, thermostatic nucleic acid amplification is particularly useful for LOC Variant XLIII 673, LOC Variant XLIV 674, and LOC Variant XL VII 677, respectively, shown in Figures 79, 80, and 81. Direct thermostatic amplification can also be combined with one or more preamplification dialysis steps 7, 686 or 682 as shown in Figures 79 and 81 and/or a pre-hybridization dialysis step 682 as shown in Figure 80, Partial concentration of the target cells in the sample is facilitated prior to nucleic acid amplification, respectively, or unwanted cell debris is removed before the sample enters the hybridization chamber array 110. Those skilled in the art will appreciate that any combination of pre-amplification dialysis and pre-hybrid dialysis can be used. Constant temperature nucleic acid amplification can also be performed in parallel amplification sections, such as those described in Figures 71, 76 and 77. Multiplex and some constant temperature nucleic acid amplification methods, such as LAMP, are compatible with the initial reverse transcription step to amplify RNA. Other Design Variant Flow Sensors In addition to temperature and liquid sensors, the LOC device can also incorporate a CMOS controlled flow rate sensor 740, as illustrated in Figure 122 and in LOC Variant X 728 ( See Figures 89 to 105). These sensors are determined by the flow rate in the two steps. In the first step, the temperature of the heater element 814 is determined by applying a low current and measuring the voltage to determine the resistance of the heater element 814, and thus the resistance between the heater element and the temperature is used. The temperature of the element 8 14 is determined by the known relationship. At this stage, the heat dissipated in element 8.1 is minimal and the temperature of the liquid in the channel is equal to the temperature of the calculated element 814. In the second step, a higher current is applied to the -101 - 201211532 heater element such that the temperature of element 814 increases and some of the heat is lost due to the flowing liquid. While applying a higher voltage, the new resistance of element 814 is determined and the increased temperature is again calculated by CMOS circuit 86 by again measuring the voltage across element 814. The flow rate of the liquid is determined using the new temperature of the helium heater element 814 and the known sample liquid temperature as calculated in the first step. The flow rate of the liquid in the channel is calculated from the known channel cross-section geometry and flow velocity. Additional Details of the Fluorescence Detection System Figures 58 and 59 show hybridization-reactive FRET probes 23 6 . These are often referred to as molecular beacons and are stem-and-loop probes produced from single-stranded nucleic acids and fluoresce when hybridized to complementary nucleic acids. Figure 58 shows a single FRET probe 236 prior to hybridization to the target nucleic acid sequence 238. The probe has a ring 240, a stem 242, a fluorophore M6 at the 5' end, and a quencher 248 at the 3' end. Loop 240 contains a sequence that is complementary to the target nucleic acid sequence 238. The complementary sequences flanking the probe sequence are bonded together to form stem 242. In the absence of a complementary target sequence, as shown in Figure 58, the probe remains closed. The stems 242 maintain the fluorophore-quenching agents in close proximity to each other such that a large amount of resonant energy can be transmitted between each other and substantially eliminate the ability of the fluorophore to emit fluorophores when illuminated by the excitation light 244. Figure 59 shows a FRET probe 236 in an open or hybridized configuration. Upon hybridization with the complementary target nucleic acid sequence 2 3 8 , the stem-and-loop structure is destroyed, and the fluorophore and the quenching agent are spatially separated, thereby restoring the ability of the fluorophore to be 241. Optically detected ground fluorescence emission of 250 is used as a probe for the 201211532 indicator that has been hybridized. The probe hybridizes to the complementary target with extremely high specificity, because the stem helix of the probe is designed to be a probe with a single non-complementary nucleotide - the target is stable. Due to the relatively strong double-stranded DNA, the stereo probe - The target helix and the stem helix cannot coexist. Primer-linked probe φ primer-linked stem-and-loop probe and primer-linked linear probe, also known as scorpion probe, is a substitute for molecular beacons and can be used for immediate and in LOC devices. Quantitative nucleic acid amplification. Timely amplification can be performed directly in the hybridization chamber of the LOC device. The advantage of using a primer-ligated probe is that the probe element is physically linked to the primer' so only a single hybrid event is required during nucleic acid amplification without the need for separate primer hybridization and probe hybridization. This ensures immediate and efficient response and produces stronger signals, shorter reaction times when using separate primers and probes, and better recognition. During manufacturing, φ probes (mixed with polymerase and amplification) ) will be deposited in the hybridization chamber 180 without the need for a separate amplification portion on the LOC device. Alternatively, the amplification portion is not used or used for other reactions. Primer-Linked Linear Probes Figures 82 and 83 show the configuration of the primer-ligated linear probe 692 during the first round of nucleic acid amplification and the hybridization during subsequent nucleic acid amplification, respectively. Referring to Figure 82, the primer-coupled linear probe 692 has a double stem segment 242. One of the probe sequences 696, which binds to the primer, is homologous to the region on the target -103-201211532 target nucleic acid 696 and is labeled with its 5' end by fluorophore 246, and is linked via amplification blocker 694. The 3' end to the oligonucleotide primer 700. The 3' end of the other strand of stem 242 is labeled with quenching portion 248. After completion of the first round of nucleic acid amplification, the probe can be surrounded and hybridized to the extended strand using the currently complementary sequence 69. During the first round of nucleic acid amplification, the oligonucleotide primer 7 is attached to the target DNA 23 8 (Fig. 82) and then extended to form a DNA strand containing both the probe sequence and the amplification product. Amplification blocker 694 prevents the polymerase from reading through and copying probe region 696. Upon subsequent variability, the hybridized extended oligonucleotide primer 700/template and the primer-linked linear probe of the double stem 242 are separated, thereby releasing the quencher 248. Once the temperature for the adhesion and extension steps is reduced, the primer-joined probe sequence 6 96 of the primer-joined linear probe is crimped and hybridized to the amplified complementary sequence 698 on the extended strand, and the detected fluorescent indicator Target DNA is present. The unextended primer-linked linear probe retains its double stem and the fluorescence remains quenched. This test method is particularly suitable for rapid detection systems because it relies on a single molecular process. Primer-Linked Stem-and-Ring Probes Figures 84A through 84F show the operation of the primer-coupled stem-and-loop probes 704. Referring to Figure 84A, the primer-ligated stem-and-loop probe 704 has a stem 240 that complements the double stranded DNA and a loop 240 of the combined probe sequence. Labeling one of the stems of the stem with a fluorophore 2 4 6 to the 5' end of the stem with 3'-end zen 248 labeled another 710' and the other 710 with an amplification blocker 694 and Both nucleotide primers 700. In the initial denaturing phase (see Figure 84B), the target 201211532 target nucleic acid 23 8 and the primer-ligated stem 242 are separated from the stem-and-loop probe 7 04. When the temperature is cooled for the adhesive phase (see Figure 84C), the oligonucleotide primer 700 on the primer-linked stem-and-loop probe 704 hybridizes to the target nucleic acid sequence 238. During extension (see Figure 84D), the complement 706 of the target nucleic acid sequence 23 is synthesized to form a DNA strand containing both the probe sequence 704 and the amplified product. Amplification blocker 69 4 prevents the reading of polymerase through and copy probe region 704. After denaturation, the probe sequence of the loop-and-loop probe loop segment 240 (see Figure 84F) is adhered to the complementary sequence 706 on the extended strand when the probe is subsequently attached. This configuration causes the fluorophore 246 to be very far from the quencher 248, resulting in a significant increase in fluorescence emission. The control probe hybridization chamber array 110 includes a plurality of hybridization chambers 180 with positive and negative control probes for analytical quality control. FIGS. 118 and 119 illustrate a negative control probe 796 of φ non-fluorescent clusters, And Figures 120 and 121 depict a positive control probe 798 without quenching agent. The positive and negative control probes have a stem-and-loop structure as described above for the FRET probe. However, regardless of whether the probe hybridizes to an open configuration or remains closed, the fluorescent signal 250 will always be emitted from the positive control probe 798 and the negative control probe 796 will never emit the fluorescent signal 250. Referring to Figures 1 18 and 119, the negative control probe 796 has no fluorophore (and may or may not have a quencher 248). Thus, regardless of whether the target nucleic acid sequence 238 hybridizes to the probe (see Figure 119) or the probe maintains its stem-and-loop configuration (see Figure 118), the response to the excitation light 244 can be ignored. Alternatively, the negative control probe 796 can be designed from -105 to 201211532 such that it remains quenched forever. For example, by synthesizing loop 240, a probe sequence that will not hybridize to any of the nucleic acid sequences in the sample being studied will be re-hybridized with the stem 242 of the probe molecule and the fluorophore and quenching The agent will remain in close proximity and will not emit visible fluorescence. This negative control signal corresponds to a low order emission from the hybridization chamber 180 where the probe is not hybridized but the quencher is not quenched from all of the emission of the indicator. Conversely, a positive control probe 7 8 8 without quenching agent is constructed as shown in Figures 1 2 0 and 121. Back to the stress luminescence 244, whether or not the positive control probe 798 is hybridized to the target nucleic acid sequence 2 3 8 , the no substance quenches the fluorescent emission 250 from the fluorophore 246. Figure 52 shows a possible distribution of positive and negative control probes (3 78 and 380, respectively) in the hybridization chamber array 110. Control probes 3 78 and 380 are placed in hybridization chamber 180 and positioned to traverse the line of hybridization chamber array 110. However, the configuration of the control probes within the array is arbitrary (like hybridization chamber array 1 1 〇 组态 configuration). The fluorophore design requires a fluorophore with a long fluorescence lifetime to allow the excitation light to have sufficient time to decay to a lower intensity than the intensity of the fluorescent emission when the photosensor 44 is enabled, thereby increasing the sufficient signal For the noise ratio. Moreover, a longer fluorescence lifetime represents a larger integrated fluorescence count. Fluorescence lifetime 2 46 (see Figure 59) has a fluorescence lifetime greater than 100 nanoseconds, often greater than 200 nanoseconds, more commonly greater than 300 nanoseconds, and greater than 400 nanoseconds in most -106-201211532 cases. . Metal-coordination complexes based on transition metals or lanthanide metals have long lifetimes (from hundreds of nanoseconds to milliseconds), appropriate quantum yields, and high thermal, chemical, and photochemical stability. Both are advantageous features related to the needs of fluorescent detection systems. The particularly complex metal-coordination complex based on the transition metal ion ruthenium (Ru(II)) is ginseng (2,2'-bipyridyl) ruthenium (II) φ ([Ru(bpy) ) 3] 2 + ) 'The life of the other is about 1μδ. This complex is commercially available from Biosearch Technologies under the tradename pulSar 6 50. Photophysical properties of tHlsar 650 (钌 integrator)

參數 符號 値 單元 吸收波長 ^abs 460 nm 發射波長 λειη 650 nm 吸光係數 Ε 14800 M.W1 螢光壽命 Tf 1.0 叫 量子產率 -------- Η 1 (去氧的) N/A ϋ ¥ € ® -配位子錯合物,铽螯合物,已成功地顯示 作爲FRET探針系統中的螢光指示劑,且具有16〇〇μ3之 長壽命。 -107- 201211532 表2 :铽螯合物之光物理性質Parameter symbol 値 unit absorption wavelength ^abs 460 nm emission wavelength λειη 650 nm absorption coefficient Ε 14800 M.W1 fluorescence lifetime Tf 1.0 called quantum yield -------- Η 1 (deoxidized) N/A ϋ ¥ € ® - a ligand complex, a ruthenium chelate, has been successfully shown as a fluorescent indicator in the FRET probe system and has a long lifetime of 16 〇〇μ3. -107- 201211532 Table 2: Photophysical properties of ruthenium chelate

參數 符號 値 單元 吸收波長 ^bs 330-350 nm 發射波長 548 nm 吸光係數 Ε 13800 (hbs,及配位子相依,可高至 30000 (¾ λ-e = 340 nm) M·1 cm·1 螢光壽命 Xf 1600 (雜交的探針) μδ 量子產率 Η 1 (配位子相依) N/A LOC裝置3 0 1所使用的螢光檢測系統不利用濾鏡來移 除不想要的背景螢光。若淬熄劑248無天然發射以增加訊 號-對-雜訊比,則因此具有優勢。無天然發射,則淬熄劑 248不貢獻至背景螢光。高淬熄效率亦爲重要者,此使得 雜交發生前沒有營光。購自加州Novato市之Biosearch Technologies,Inc.的黑洞淬熄劑(BHQ)不具有天然發射及 具有高淬熄效率,以及係用於系統之合適的淬熄劑。 BHQ-1之最大吸收値發生於5 3 4 nm及淬熄範圍爲480-5 8 0 n m,使得其爲用於T b -蜜合登光團之合適的淬媳劑。 BHQ-2之最大吸收値發生於5 79 nm及淬熄範圍爲5 6 0_ 670 nm使得其爲用於Pulsar 650之合適的淬熄劑。 購自愛荷華州 Coralville市之Intergrated DNA Technologies的愛荷華黑萍熄劑(Iowa Black FQ及RQ)爲 適合的具有少許或無背景發射之替代性淬熄劑。I〇wa Black FQ之淬熄範圍爲420-620 nm,於531 nm具有最大 -108- 201211532 吸收値,並因此爲用於Tb-螯合螢光團之合適的淬熄劑。 Iowa Black RQ於656 nm具有最大吸收値及淬熄範圍爲 5 00-7 0 0 nm,使得其爲用於Pulsar 650之理想淬熄劑。 於本文所述之具體實施例中,淬熄劑2 4 8爲初始時即 附著於探針之功能部分,但於其他具體實施例中,淬熄劑 可爲游離於溶液中之分離的分子。 激發源 在本文描述之螢光偵測爲基礎的具體實施例中,因爲 低功率消耗、低成本和小尺寸,LED係選做替代雷射二極 體、高功率電燈或雷射的激發源。參照圖85,LED26係 直接安置於LOC裝置301之外部表面上之來自各腔室之 雜交腔室陣列1 1 〇上。在雜交腔室陣列1 1 0之對側爲光感 測器44,其由用於偵測螢光訊號之光二極體1 84的陣列 所組成(見圖53、54和64)。 圖86、87和88槪述用於將探針暴露於激發光之其他 具體實施例。在顯示於圖86之LOC裝置30中,由激發 LED26所產生之激發光244係由透鏡254導向雜交腔室陣 列1 10之上。脈衝激發激發LED26且由光感測器44偵測 螢光發射。 在圖87所顯示之LOC裝置30中,由激發LED26所 產生之激發光244係由透鏡254、第一光稜鏡712和第二 光稜鏡714導向雜交腔室陣列110之上。脈衝激發激發 LED26且由光感測器44偵測螢光發射。 -109- 201211532 同樣地,顯示於圖88之 LOC裝置30,由激發 LED2 6所產生之激發光244係由透鏡254、第一鏡面716 和第二鏡面718導向雜交腔室陣列110之上。再次脈衝激 發激發LED26且由光感測器44偵測螢光發射。 LED26的激發波長係倚賴螢光染料的選擇。Philips LXK2-PR14-R00爲針對 P u 1 s a r 65 0染料之合適的激發 源。SET UVT0P3 3 5T039BL LED係針對铽螯合物標記之 合適的激發源。 表格 3: Phil ips LXK2-P R14-R00 LED 規格Parameter symbol 値 unit absorption wavelength ^bs 330-350 nm emission wavelength 548 nm absorption coefficient Ε 13800 (hbs, and ligand-dependent, up to 30000 (3⁄4 λ-e = 340 nm) M·1 cm·1 fluorescence Lifetime Xf 1600 (hybridized probe) μδ Quantum yield Η 1 (coordination dependent) N/A LOC device 3 0 1 The fluorescence detection system used does not use filters to remove unwanted background fluorescence. If the quencher 248 has no natural emission to increase the signal-to-noise ratio, it is therefore advantageous. Without natural emission, the quencher 248 does not contribute to background fluorescence. High quenching efficiency is also important, which makes There was no camping before the hybridization. The black hole quencher (BHQ) from Biosearch Technologies, Inc., Novato, Calif., did not have natural emission and high quenching efficiency, and was suitable for the system's suitable quenching agent. The maximum absorption enthalpy of -1 occurs at 5 3 4 nm and the quenching range is 480-5 80 nm, making it a suitable quenching agent for T b - honey glazing. BHQ-2 maximum absorption Helium occurs at 5 79 nm and the quenching range is 560 to 670 nm making it suitable for the Pulsar 650. Quenching agent Iowa Black FQ and RQ from Intergrated DNA Technologies, Coralville, Iowa, are suitable alternative quenchers with little or no background emission. I〇wa Black FQ has a quenching range of 420-620 nm and a maximum -108-201211532 absorption enthalpy at 531 nm and is therefore a suitable quencher for Tb-chelating fluorophores. Iowa Black RQ has a maximum at 656 nm. The absorption enthalpy and quenching range is from 50,000 to 70 nm, making it an ideal quencher for Pulsar 650. In the specific embodiment described herein, the quencher 248 is initially attached to The functional portion of the probe, but in other embodiments, the quencher can be a separate molecule that is free of solution. The excitation source is in the specific embodiment based on the fluorescence detection described herein because of low power consumption Low cost and small size, the LED is selected as an excitation source instead of a laser diode, a high power electric lamp or a laser. Referring to FIG. 85, the LED 26 is directly disposed on each surface of the LOC device 301 from each chamber. Hybridization chamber array 1 1 〇. In the hybridization chamber Opposite to column 1 10 is a photosensor 44 consisting of an array of photodiodes 1 84 for detecting fluorescent signals (see Figures 53, 54 and 64). Figures 86, 87 and 88 Other specific embodiments for exposing the probe to excitation light are described. In the LOC device 30 shown in Fig. 86, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254 over the hybridization chamber array 110. The pulse excitation excites the LED 26 and the photodetector 44 detects the fluorescent emission. In the LOC device 30 shown in FIG. 87, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first aperture 712, and the second aperture 714 onto the hybridization chamber array 110. The pulse excites the excitation LED 26 and the photodetector 44 detects the fluorescent emission. Similarly, the LOC device 30 shown in FIG. 88, the excitation light 244 generated by the excitation LED 26 is directed by the lens 254, the first mirror 716, and the second mirror 718 onto the hybridization chamber array 110. The LED 26 is pulse activated again and the fluorescent emission is detected by the photo sensor 44. The excitation wavelength of LED 26 relies on the choice of fluorescent dye. Philips LXK2-PR14-R00 is a suitable excitation source for the P u 1 s a r 65 0 dye. SET UVT0P3 3 5T039BL LED is a suitable excitation source for the ruthenium chelate label. Table 3: Phil ips LXK2-P R14-R00 LED Specifications

參數 符號 値 單位 波長 λεχ 460 run 發射頻率 Vem 6.52(10)14 Hz 輸出功率 Pi 0.515 份鐘)@ ΙΑ W 輻射圖案 Lambertian數據圖 N/A 表格 4: SET UVT0P334T039BL LED 規格Parameter Symbol 单位 Unit Wavelength λεχ 460 run Transmit frequency Vem 6.52(10)14 Hz Output power Pi 0.515 parts) @ ΙΑ W Radiation pattern Lambertian data sheet N/A Table 4: SET UVT0P334T039BL LED Specifications

參數 符號 値 單位 波長 340 run 發射頻率 Ve 8.82(10)14 Hz 功率 Pi 0.000240 (分鐘)@ 20mA W 脈衝正向電流 I 200 mA 輻射圖案 Lambertian N/AParameter Symbol 单位 Unit Wavelength 340 run Transmit frequency Ve 8.82(10)14 Hz Power Pi 0.000240 (minutes) @ 20mA W Pulse forward current I 200 mA Radiation pattern Lambertian N/A

紫外光激發光 矽在UV光譜中吸收少量光。因此,使用UV激發光 是有利的。可使用UV LED激發源,但LED26之寬光譜 -110- 201211532 降低此方法之效果。爲了說明此,使用經過 LED。隨意地,UV雷射可爲激發源,除非相當 花費對於特定的試驗模組市場不實用。 LED 驅動器 LED驅動器29針對所需的持續時間在固定 動LED26。低功率USB2.0認證裝置可在至多1 φ (1〇〇毫安培)以最小操作電壓4.4伏特得到。標 節電路係用於此目的。 光二極體 圖54顯示光二極體184,其合倂於LOC裝 CMOS電路86。光二極體184係在沒有額外遮罩 製成CMOS電路86之一部分。這是CMOS光二 CCD之一項顯著的優點,CCD爲另一種感測技 φ 使用非標準式加工步驟整合到同一晶片上或者製 片上》晶片上偵測係花費低廉且降低分析系統的 短光學路徑長度降低來自週遭環境的雜訊以有效 光訊號,以及抑制對於透鏡及濾鏡之傳統光學 求。 光二極體184之量子效率爲光子衝撞其有效 分率,光子係有效轉換成光電子。對於標準矽處 可見光該量子效率根據處理參數(諸如覆蓋層之 收性質)係在0.3至0.5的範圍中。 濾的 UV 高的雷射 電流下驅 單位負載 準電力調 置301之 或步驟下 極體優於 術,其可 於相鄰晶 尺寸。較 收集該螢 總成之需 區1 8 5之 理,對於 數量及吸 -111 - 201211532 光二極體1 8 4之偵測閥値決定可被偵測之螢光訊號 最小強度。偵測閥値亦決定光二極體1 8 4的尺寸大小以 在雜交及檢測部52中之雜交腔室1 80數目(見圖52)。 室的尺寸大小和數量爲技術參數’其由LOC裝置的尺 (LOC裝置301的實例中,其尺寸爲1760微米x5824 米)所限制,且合倂其他功能性模組(諸如病原體透析部 及擴增部1 12)之後可用之不動物件的尺寸所限制。 對於標準矽處理,光二極體1 84最少偵測5個光子 然而,爲了確認可信賴的偵測,最小値可設爲10個 子。因此以量子效率範圍在〇·3至0.5 (如上所討論), 自等探針之螢光發射爲最少17個光子,而針對可靠偵 30個光子包含的的合適誤差界線。 校準腔室 光二極體184的電學特性之不均勻性、自動螢光和 未完全衰減之剩餘激發光子通量將背景雜訊引入並偏移 輸出訊號。使用一或多種校準訊號將背景自各輸出訊號 除。校準訊號藉由將在陣列中之一或多種校準光二極 184暴露於各自的校準源而產生。低校準源用來判斷標 尙未與探針反應之負結果。高校準源代表自探針-標靶 合物造成的正結果。在本文所描述的具體實施例,低校 光源由在雜交腔室陣列110中之校準腔室382所提供 其: 不含任何探針; 的 及 腔 寸 微 70 光 來 測 尙 至 移 體 靶 複 準 -112- 201211532 包含不具有螢光指示劑的探針:或 包含具有指示劑的探針和配置使得總是預期發生淬熄的淬 熄劑。 來自此種校準腔室382之輸出訊號非常接近來自在 LOC裝置中之所有雜交腔室的輸出訊號中的雜訊和偏差。 自其他雜交腔室所產生的輸出訊號減去校準訊號大體上移 除了背景和留下由螢光發射產生的訊號(若有產生任何訊 φ 號的話)。自腔室陣列之區域中的環境光線產生的訊號亦 被去除。 可理解的是參考圖118至121之上述負控制組探針可 用於校準腔室。然而,如圖1〇1和1〇2所示,其爲顯示於 圖94之LOC變體X728的插入物DG和DH之放大圖,另 一選項爲將校準腔室382與擴增子流體隔離。當雜交由流 體隔離阻止時,背景雜訊和補償可由將流體隔離之腔室淨 空或藉由包含缺少指示劑的探針或確切具有指示劑與淬熄 φ 劑兩者的任何“標準”探針來判斷。 校準腔室3 82可提供高校準源以於對應的光二極體產 生高訊號。高訊號對應在已雜交腔室中的所有探針。以指 示劑且無淬熄劑或僅以指示劑點樣探針將一致地提供近似 雜交腔室訊號之訊號,主要數量之探針已於雜交腔室內雜 交。將可理解校準腔室3 8 2可用以代替控制探針或加至控 制探針上。 遍布雜交腔室陣列的校準腔室382的數量和安排是隨 意的。然而,若光二極體184由相對最近的校準腔室382 -113- 201211532 校準,則校準較準確。參考圖56,雜交腔室陣列110對 於每八個雜交腔室1 80具有一個校準腔室382。也就是 說,校準腔室3 82係安置於每個三乘三之正方形雜交腔室 180的中間。在這個配置中,雜交腔室180係由緊接鄰近 的雜交腔室3 82所校準。 由於從周圍雜交腔室180之自螢光訊號的激發光,圖 117顯示用以自對應校準腔室3 82之光二極體184減除訊 號的差分成像器電路78 8。差分成像器電路78 8自像素 790和“虛擬”像素792取樣訊號。在一個具體實施例 中,“虛擬”像素792係被遮住以防光照射,所以其輸出 訊號提供暗參考像素。或者,“虛擬”像素792可和陣列 的其餘部分暴露於激發光。在一個具體實施例中,“虛 擬”像素792是可以接受光的,自腔室陣列之區域中的環 境光線產生的訊號亦可被減除。來自像素790的訊號是微 弱的(例如,接近暗訊號),且沒有參考暗訊號位準會很難 分辨背景値與非常微弱的訊號。 在使用期間,啓動 “read_row” 794 和 “read_ro.w_d” 795且開啓M4 797和MD4 80 1電晶體。關閉開關807 和8 09使得來自像素79〇及“虛擬”像素792的輸出各自 儲存在像素電容器803及虛擬像素電容器8 05上。在像素 訊號被儲存後,停用開關807和809。然後關閉 “read_C〇l”開關81 1和虛擬“read_c〇l”開關813,且在輸出 的該轉換的電容器放大器815放大差分訊號817。 -114- 201211532 光二極體之抑制及致能 於LED 26激發期間必須抑制光二極體184及於螢光 期間必須致能光二極體184。圖65爲單一光二極體184 之電路圖及圖66爲光二極體控制訊號之時序圖。電路具 有光二極體184及六個MOS電晶體,Mshunt 3 94、Mtx 3 96、Mreset 3 9 8、Msf 400、Mread 402 及 Mbias 404。於激 發循環開始時,藉由拖曳(pulling) Mshunt閘極384及重設 φ 閘極3 8 8爲高而開啓tl、電晶體Mshunt 3 94及Mreset 398。於此期間,激發光子於光二極體184中產生載子。 當產生的載子量可充分使光二極體184飽和時,此等載子 必須被移除。於此循環期間,因電晶體的洩漏或因基板中 之激發-產生的載子擴散,Mshunt 3 94直接地移除光二極體 184中所產生的載子,而Mreset 398重設累積於節點‘NS’ 4 06之任何載子。於激發之後,於t4開始俘獲循環。於此 循環中,來自螢光團之發射的回應被俘獲並整合入節點 φ lNS’ 406上的電路。此藉由拖曳tx閘極3 86爲高而達 成,此開啓電晶體Mtx 3 96及轉移光二極體184上任何累 積的載體至節點‘NS’ 406。俘獲循環期間可如螢光發射般 長。來自雜交腔室陣列110中之所有光二極體184的輸出 同時被俘獲。 於結束俘獲循環t5與開始讀取循環t6之間具有延 遲。此延遲肇因於,在俘獲循環之後,分別讀取雜交腔室 陣列110中之各光二極體184的需求(見圖52)。待讀取的 第一光二極體184於讀取循環之前將具有最短的延遲,而 -115- 201211532 最後光二極體184於讀取循環之前將具有最長的延遲。於 讀取循環期間,藉由拖曳閘極3 93爲高而開啓電晶體 Mread 402。使用源極-隨親器電晶體Msf 400來緩衝及讀 出‘NS’節點406之電壓。 以下討論另外之任意的致能或抑制光二極體之方法: 1· 抑制方法 圖114、115及116顯示用於Mshunl電晶體394之三 種可行的組態778、780、782。於激發期間被致能之最大 値1^1= 5 v時,Mshunt電晶體3 94具有非常高的關閉比。 如圖1 14中所示者,Mshunt閘極3 84係組態成位於光二極 體184之緣上。任意地,如圖1 15中所示者,Mshunt閘極 3 84係可組態成環繞光二極體 1 84。第三個選擇爲將 Mshunt閘極3 84組構於光二極體184之內,如圖1 16中所 示者。依此第三選擇,光二極體有效區185較少。 這三種組態778、780及782降低自光二極體184中 所有位置至Mshunt閘極3 8 4之平均路徑長度。於圖114 中,Mshunt閘極384係於光二極體184之一側上。此爲用 以製造之最簡單且對於光二極體有效區185衝擊最小的組 態。然而,滯留於光二極體184遠端之任何載子需要較長 時間以擴散通過Mshunt閘極3 84。 於圖1 1 5中,Mshunt閘極3 84環繞光二極體1 84。此 進一步降低光二極體184中之載子至Mshunt閘極384之平 均路徑長度。然而,繞光二極體184周圍而延伸Mshunt閘 -116- 201211532 極384造成光二極體有效區185大幅縮減。於圖116中之 組態78 2將Mshunt閘極3 8 4定位於有效區1 8 5中。此提供 了至Mshunt閘極3 84的最短平均路徑長度及因此得到最短 過渡時間。然而,對於有效區185之衝擊最大。其亦造成 較寬的洩漏路徑。 2- 致能方法 φ a- 觸發器光二極體以固定的延遲來驅動並聯電晶 ΒΆ 體。 b. 觸發器光二極體以可程控的延遲來驅動並聯電晶 體。 c. 由LED驅動脈衝以固定的延遲來驅動並聯電晶 體。 d. 如2c般但以可程控的延遲來驅動並聯電晶體。 圖68爲透過雜交腔室180顯示埋入於CMOS電路86 φ 中之光二極體184及觸發器光二極體187之槪略剖視圖。 以觸發器光二極體187取代光二極體184之角落中的小面 積。因相較於螢光發射時激發光的強度爲高,具小面積之 觸發器光二極體187係充分的。觸發器光二極體187係對 激發光244爲敏感。觸發器光二極體187顯示激發光2 44 已熄滅並於短暫延遲At 3 00之後啓動光二極體184(見圖 2)。此延遲使得螢光光二極體184得以於沒有激發光244 時檢測來自FRET探針186之螢光發射。此致能檢測及增 進訊號對雜訊比。 -117- 201211532 於各雜交腔室180下,光二極體184及觸發器光二 體187兩者均位於CMOS電路86中。光二極體陣列與 當電子組件合倂以形成光感測器44(見圖64)。光二極 184爲CMOS結構製造期間所製成的pn璋面而不需另 的遮罩或步驟。於MST製造期間,光二極體184之上 介電層(未顯示)係利用標準MST光蝕刻技術而任意地 化以使更多螢光照射光二極體184的有效區185。光二 體184具有視場,使得來自雜交腔室180內之探針-標 雜交體的螢光訊號入射至感測器表面上。轉換螢光成爲 著可使用CMOS電路86而被測量的光電流。 替代性地,一或多個雜交腔室180可僅專用於觸發 光二極體187。可使用這些選擇於此等與上述之2a及 的組合中。 螢光的延遲偵測 下述推導說明針對上述之LED/螢光團組合之使用 生命週期螢光團的螢光延遲偵測。在由圖60顯示之時 ^和~之間的固定強度Ie之理想脈衝激發之後,螢光 度推導爲時間的函數。 令Κ1](0於時間t等於激發態的強度,然後在激發 間及之後’每單位體積每單位時間的激發態數量由下面 分方程式描述: d[Sl] | [S1](Q IBec dt U tf ~J7e 其中C爲螢光團的莫耳濃度,ε爲莫耳消光係數,〃^爲 -118- 極 適 體 外 的 薄 極 靶 接 器 2b 長 間 強 期 微 激 201211532 發頻率,且h = 6·62606896(10)·34 Js爲普朗克常數。 此微分方程式具有一般式: ^- + p(x)y = q(x) αχ 其有解法: y(^) = jp(x)d q{x、dx + k •(2) 現在使用此來解答式(1), • [simj^ii.+ke-^ ...ο) hye 然後於時間n, [Sl](h) = 〇,且式(3)之hUltraviolet excitation 吸收 absorbs a small amount of light in the UV spectrum. Therefore, it is advantageous to use UV excitation light. A UV LED excitation source can be used, but the broad spectrum of LED26 -110- 201211532 reduces the effectiveness of this method. To illustrate this, use LEDs. Optionally, the UV laser can be an excitation source unless it is not practical for a particular test module market. The LED driver LED driver 29 is stationary LED 26 for the desired duration. The low-power USB 2.0 certified device can be obtained with a minimum operating voltage of 4.4 volts up to 1 φ (1 mA). The standard circuit is used for this purpose. Light Diode Figure 54 shows an optical diode 184 that incorporates a LOC mounted CMOS circuit 86. Light diode 184 is part of CMOS circuit 86 without additional masking. This is a significant advantage of CMOS optical CCDs. CCD is another sensing technology. φ is integrated onto the same wafer or on a wafer using non-standard processing steps.” On-wafer detection is inexpensive and reduces the short optics of the analysis system. The path length reduces the noise from the surrounding environment with effective optical signals and suppresses the traditional optical requirements for lenses and filters. The quantum efficiency of the photodiode 184 is that the photon collides with its effective fraction, and the photon is efficiently converted into photoelectrons. For standard visible light, the quantum efficiency is in the range of 0.3 to 0.5 depending on processing parameters such as the nature of the overlay. Filtered UV High Laser Current Drive Unit Load Quasi-Power Settings 301 or steps The electrode body is superior to the process and can be adjacent to the crystal size. Compared with the collection of the required area of the firefly assembly, the minimum intensity of the fluorescent signal that can be detected is determined by the number and the detection valve of the -111 - 201211532 light diode. The detection valve 値 also determines the size of the photodiode 184 to the number of hybridization chambers 1 80 in the hybridization and detection section 52 (see Figure 52). The size and number of chambers are technical parameters 'which are limited by the scale of the LOC device (1760 micron x 5824 m in the example of LOC device 301) and incorporate other functional modules (such as pathogen dialysis and expansion) The addition 1 12) is limited by the size of the non-animal pieces that can be used afterwards. For standard 矽 processing, the photodiode 1 84 detects at least 5 photons. However, to confirm reliable detection, the minimum 値 can be set to 10 sub-. Thus, with a quantum efficiency range of 〇·3 to 0.5 (as discussed above), the fluorescence emission of the self-equal probe is a minimum of 17 photons, and a suitable error bound for reliable detection of 30 photons is included. Calibration Chamber The non-uniformity of the electrical characteristics of the photodiode 184, auto-fluorescence, and residual excitation photon flux that are not fully attenuated introduces background noise and shifts the output signal. Use one or more calibration signals to divide the background from each output signal. The calibration signal is generated by exposing one or more of the calibration photodiodes 184 in the array to respective calibration sources. A low calibration source is used to determine the negative result of the label not reacting with the probe. A high calibration source represents a positive result from the probe-targeted composition. In the specific embodiment described herein, the low school light source is provided by the calibration chamber 382 in the hybridization chamber array 110: it does not contain any probes; and the cavity is 70 light to measure the migration target Quasi-112-201211532 contains a probe that does not have a fluorescent indicator: or a probe that includes an indicator and a configuration such that quenching is always expected to occur. The output signal from such a calibration chamber 382 is very close to the noise and bias in the output signal from all of the hybridization chambers in the LOC device. The output signal from the other hybridization chamber minus the calibration signal substantially removes the background and leaves the signal generated by the fluorescent emission (if any φ is generated). Signals generated by ambient light in the area of the array of chambers are also removed. It will be appreciated that the negative control set probes described above with reference to Figures 118 through 121 can be used to calibrate the chamber. However, as shown in Figures 〇1 and 1-2, which are enlarged views of the inserts DG and DH shown in LOC variant X728 of Figure 94, another option is to isolate the calibration chamber 382 from the ampersons. . When hybridization is prevented by fluid isolation, background noise and compensation can be cleared by a chamber that isolates the fluid or by a probe containing a missing indicator or any "standard" probe that has both an indicator and a quenching agent. To judge. The calibration chamber 3 82 provides a high calibration source to generate a high signal for the corresponding photodiode. The high signal corresponds to all probes in the hybridized chamber. The indicator, with no quencher or only the indicator spotting probe, will consistently provide a signal that approximates the hybridization chamber signal, and the majority of the probes have been hybridized within the hybridization chamber. It will be appreciated that the calibration chamber 382 can be used in place of or in addition to the control probe. The number and arrangement of calibration chambers 382 throughout the array of hybrid chambers is arbitrary. However, if the photodiode 184 is calibrated by the relatively closest calibration chamber 382-113-201211532, the calibration is more accurate. Referring to Figure 56, hybridization chamber array 110 has a calibration chamber 382 for every eight hybridization chambers 180. That is, the calibration chamber 382 is disposed in the middle of each of the three by three square hybridization chambers 180. In this configuration, the hybridization chamber 180 is calibrated by the adjacent hybridization chambers 382. Due to the excitation light from the fluorescent signal from the surrounding hybridization chamber 180, Figure 117 shows a differential imager circuit 78 8 for subtracting the signal from the photodiode 184 of the corresponding calibration chamber 382. Differential imager circuit 78 8 samples the signal from pixel 790 and "virtual" pixel 792. In one embodiment, the "virtual" pixel 792 is shielded from light illumination, so its output signal provides a dark reference pixel. Alternatively, the "virtual" pixel 792 can be exposed to the excitation light and the remainder of the array. In one embodiment, the "virtual" pixel 792 is light permeable and the signal from the ambient light in the region of the array of cells can also be subtracted. The signal from pixel 790 is weak (e.g., close to the dark signal), and it is difficult to distinguish between background and very weak signals without reference to the dark signal level. During use, "read_row" 794 and "read_ro.w_d" 795 are started and the M4 797 and MD4 80 1 transistors are turned on. Switches 807 and 809 are turned off such that the outputs from pixel 79 and "virtual" pixel 792 are each stored on pixel capacitor 803 and virtual pixel capacitor 085. After the pixel signal is stored, switches 807 and 809 are disabled. The "read_C〇1" switch 81 1 and the dummy "read_c〇l" switch 813 are then turned off, and the converted capacitor amplifier 815 is amplified at the output of the differential signal 817. -114- 201211532 Inhibition and Enable of Photodiode The photodiode 184 must be suppressed during the LED 26 excitation and the photodiode 184 must be enabled during the fluorescence period. 65 is a circuit diagram of a single photodiode 184 and FIG. 66 is a timing diagram of an optical diode control signal. The circuit has a photodiode 184 and six MOS transistors, Mshunt 3 94, Mtx 3 96, Mreset 3 9 8, Msf 400, Mread 402, and Mbias 404. At the beginning of the excitation cycle, tl, transistor Mshunt 3 94, and Mreset 398 are turned on by pulling Mshunt gate 384 and resetting φ gate 38 8 high. During this period, the photons are excited to generate carriers in the photodiode 184. These carriers must be removed when the amount of carrier produced is sufficient to saturate the photodiode 184. During this cycle, Mshunt 3 94 directly removes the carriers generated in photodiode 184 due to leakage of the transistor or due to excitation-generated carrier diffusion in the substrate, while Mreset 398 resets to accumulate at the node' Any carrier of NS' 4 06. After excitation, the capture cycle begins at t4. In this loop, the response from the emission of the fluorophore is captured and integrated into the circuit on node φ lNS' 406. This is achieved by dragging the tx gate 3 86 high, which turns on the transistor Mtx 3 96 and any accumulated carriers on the transfer photodiode 184 to the node 'NS' 406. The capture cycle can be as long as a fluorescent emission. The outputs from all of the photodiodes 184 in the hybridization chamber array 110 are simultaneously captured. There is a delay between the end of the capture cycle t5 and the start of the read cycle t6. This delay is due to the need to read the respective photodiodes 184 in the hybridization chamber array 110 after the capture cycle (see Figure 52). The first photodiode 184 to be read will have the shortest delay before the read cycle, while the -115-201211532 final photodiode 184 will have the longest delay before the read cycle. During the read cycle, the transistor Mread 402 is turned on by dragging the gate 3 93 high. The source-following transistor Msf 400 is used to buffer and read the voltage of the 'NS' node 406. Additional methods for enabling or suppressing photodiodes are discussed below: 1. Inhibition Methods Figures 114, 115 and 116 show three possible configurations 778, 780, 782 for Mshunl transistors 394. Mshunt transistor 3 94 has a very high turn-off ratio when the maximum 値1^1 = 5 v is enabled during excitation. As shown in FIG. 14, the Mshunt Gate 3 84 is configured to be located on the edge of the photodiode 184. Optionally, as shown in FIG. 1 15, the Mshunt Gate 3 84 can be configured to surround the photodiode 1 84. The third option is to fabricate the Mshunt gate 3 84 within the photodiode 184, as shown in FIG. According to the third option, the photodiode effective area 185 is less. These three configurations 778, 780, and 782 reduce the average path length from all locations in the photodiode 184 to the Mshunt gate 384. In FIG. 114, the Mshunt gate 384 is attached to one side of the photodiode 184. This is the simplest to manufacture and the smallest impact on the active area 185 of the photodiode. However, any carrier remaining at the far end of the photodiode 184 takes a long time to diffuse through the Mshunt gate 3 84. In Figure 115, the Mshunt gate 3 84 surrounds the photodiode 1 84. This further reduces the average path length of the carrier in the photodiode 184 to the Mshunt gate 384. However, extending the Mshunt gate around the photodiode 184 -116 - 201211532 pole 384 causes the optical diode active area 185 to be substantially reduced. Configuration 78 2 in Figure 116 positions Mshunt Gate 384 in active area 185. This provides the shortest average path length to the Mshunt gate 3 84 and thus the shortest transition time. However, the impact on the active area 185 is greatest. It also creates a wide leak path. 2- Enabled method φ a- The flip-flop photodiode drives the parallel transistor in a fixed delay. b. The flip-flop photodiode drives the parallel transistor with a programmable delay. c. The parallel drive transistor is driven by the LED drive pulse with a fixed delay. d. Drive the shunt transistor as a 2c but with a programmable delay. 68 is a schematic cross-sectional view showing the photodiode 184 and the flip-flop photodiode 187 buried in the CMOS circuit 86 φ through the hybridization chamber 180. The small area in the corner of the photodiode 184 is replaced by the flip-flop photodiode 187. The trigger photodiode 187 having a small area is sufficient because the intensity of the excitation light is higher than that of the fluorescent emission. The flip-flop photodiode 187 is sensitive to the excitation light 244. The flip-flop photodiode 187 shows that the excitation light 2 44 is extinguished and the photodiode 184 is activated after a brief delay of At 3 00 (see Fig. 2). This delay allows the fluorescent photodiode 184 to detect fluorescent emissions from the FRET probe 186 without the excitation light 244. This enables detection and improvement of the signal-to-noise ratio. -117- 201211532 Under each hybridization chamber 180, both photodiode 184 and flip-flop photodiode 187 are located in CMOS circuit 86. The photodiode array is combined with an electronic component to form a photosensor 44 (see Figure 64). The photodiode 184 is a pn plane made during the fabrication of the CMOS structure without the need for additional masking or steps. During MST fabrication, a dielectric layer (not shown) over the photodiode 184 is arbitrarily etched using standard MST photolithography techniques to cause more of the phosphor to illuminate the active region 185 of the photodiode 184. Photoreceptor 184 has a field of view such that fluorescent signals from probe-target hybrids within hybridization chamber 180 are incident on the surface of the sensor. The converted fluorescent light becomes a photocurrent that can be measured using the CMOS circuit 86. Alternatively, one or more of the hybridization chambers 180 may be dedicated only to triggering the photodiode 187. These choices can be used in combination with 2a and above. Fluorescent Delay Detection The following derivation shows the fluorescence delay detection for life cycle fluorophores for the above LED/fluorescent combination. Fluorescence is derived as a function of time after an ideal pulse excitation of the fixed intensity Ie between ^ and ~ as shown in Figure 60. Let Κ1] (0 at time t equal to the intensity of the excited state, then between and after excitation 'the number of excited states per unit volume per unit time is described by the following equation: d[Sl] | [S1](Q IBec dt U Tf ~J7e where C is the molar concentration of the fluorophore, ε is the molar extinction coefficient, 〃^ is -118- extremely thin external target 2b long-term strong micro-excitation 201211532 frequency, and h = 6·62606896(10)·34 Js is the Planck constant. This differential equation has the general formula: ^- + p(x)y = q(x) αχ There is a solution: y(^) = jp(x)dq {x, dx + k • (2) Now use this to solve equation (1), • [simj^ii.+ke-^ ... ο) hye then at time n, [Sl](h) = 〇, And the formula (3) h

Iff€CTf t /r k = --~~f-eh'Tt …(4) hve 將(4)代入(3): mm=Iff€CTf t /r k = --~~f-eh'Tt ...(4) hve Substituting (4) into (3): mm=

Iescr^ Iescr^ hve hveIescr^ Iescr^ hve hve

於時間ί 2,: [幻](,2) = 〜…(5) hve hve 於ϊ 2 激發態以指數衰減且以式(6)描述: [51](〇 = [51](i2)e-(^)/r^ …⑹ 將(5)代入(6): [S\](t) = ^^-[1 - eHll't,)lT/ ]e{,~hVli ...⑺ hve 螢光強度由下列等式得到: 119- 201211532At time ί 2,: [幻](,2) = 〜(5) hve hve 于ϊ 2 The excited state is exponentially decayed and described by equation (6): [51](〇= [51](i2)e -(^)/r^ (6) Substituting (5) into (6): [S\](t) = ^^-[1 - eHll't,)lT/ ]e{,~hVli ...(7) hve The fluorescence intensity is obtained by the following equation: 119- 201211532

其中爲螢光頻率,η爲量子產率,且1爲光學路徑長 度。 於是由(7)可知: …(9) ⑴=_ e~(h~t\V^{ -,·<·-<ι)Ιτί dt hve 』 將(9)代入(8):Where is the fluorescence frequency, η is the quantum yield, and 1 is the optical path length. Then we can see from (7): (9) (1)=_ e~(h~t\V^{ -,·<·-<ι)Ιτί dt hve 』 Substituting (9) into (8):

If{t) = Ie£c^^-[l-eHh"'),Tf ]e-(,-,2)/r/ 因爲 r/ v« 因此,我們可以寫出下列的近似式,該式描述在足夠 長的激發脈衝(ίΗΐ>> Tf)後之螢光強度衰減: 當 則 -(11) 在上一節,我們針對Tf,作的情況做總結, 當以2 則 /〆/) = 匕 。 從上述的等式,我們可以導出下列式子: rif{t) = ne£c^e'{t',l)lTf ...(12) 其中 '(0 一 Αν. 爲每單位面積每單位時間之螢光光子數且 hv· 爲每單位面積每單位時間之激發光子數 -120- «/(0 201211532 因此, 〇0 nf{t) = [nf(t)dt ...(13) '3 其中 '爲每單位面積之螢光光子數且~爲光二極體開啓的 時間點。將(12)代入(13): 〇〇 nf=jfieec^e~{t"l)lTfdt …(14) h 目前,每單位面積每單位時間到達光二極體之螢光光子 φ 數,,係由下式獲得: 以0 = &(,¥〇 ...(15) 其中&爲光學系統之光收集效率。 將(12)代入(15)我們發現 η\(ί) = φϋηεε€ΐηβ-(,-'^ …(16) 同樣地,每單位螢光面積~到達光二極體之螢光光子數將 如下述: co ns =\nsm Φ h 且代入(16)並積分: ns = φ^εοίητ fe(h'hVx, 因此, ns = φ^εοίητ^'^ ...(17) ί3的理想値係於當因螢光光子產生於光二極體184內之電 子率等於由激發光子產生於光二極體184內之電子率時, 因爲激發光子通量衰減比螢光光子通量衰減快更多。 由於螢光之每單位螢光面積的感測器輸出電子率爲: έ>(〇 = ^η;(〇 -121 - 201211532 其中¢5 /爲在螢光波長之感測器的量子效率。 代入(17)我們得到: ef{t) = ...(18) 同樣地,由於激發光子之每單位螢光面積的感測器輸出電 子率爲·_ = -(19) 其中&爲在激發波長之感測器的量子效率,且%爲相對 於激發LED之p切斷』特性的時間常數。在時間t2之 後,LED之衰減光子通量增加螢光訊號的強度且延長其衰 減時間,但我們假設對If(t)有可忽略的影響,因此我們採 取保守的方法。 目前,如先前所提及,~的理想値爲當: ef{h) = et{h) 因此,由(18)和 (19)我們得到: = Φβηββ~(,3-,ι)/τ> 並且重整之後我們得到: ln(a:/7—) —i一卜- ...(20)If{t) = Ie£c^^-[l-eHh"'),Tf ]e-(,-,2)/r/ Because r/ v« Therefore, we can write the following approximation, which Describe the attenuation of the fluorescence intensity after a sufficiently long excitation pulse (ΗΐΗΐ>gt; Tf): When -(11) In the previous section, we summarize the case for Tf, when 2 is /〆/) = dagger. From the above equation, we can derive the following formula: rif{t) = ne£c^e'{t',l)lTf (12) where '(0 Αν. is per unit area per unit The number of fluorescent photons of time and hv· is the number of excitation photons per unit area per unit time -120- «/(0 201211532 Therefore, 〇0 nf{t) = [nf(t)dt ...(13) ' 3 where ' is the number of fluorescent photons per unit area and ~ is the time point at which the photodiode is turned on. Substituting (12) into (13): 〇〇nf=jfieec^e~{t"l)lTfdt ...(14) h At present, the number of fluorescent photons φ per unit area per unit time reaches the photodiode, which is obtained by: 0 = & (, ¥〇...(15) where & is the light of the optical system Collecting efficiency. Substituting (12) into (15) we find that η\(ί) = φϋηεε€ΐηβ-(,-'^ (16) Similarly, the number of fluorescent photons per unit of fluorescent area~ reaching the photodiode Will be as follows: co ns =\nsm Φ h and substituting (16) and integrating: ns = φ^εοίητ fe(h'hVx, therefore, ns = φ^εοίητ^'^ ...(17) ί3 ideal値When the photon is generated in the photodiode 184 due to fluorescence photons, the electron rate is equal to When the illuminator is generated at the electron rate in the photodiode 184, the excitation photon flux decays more rapidly than the fluorescence photon flux. The output electron ratio of the sensor per unit of fluorescence area of the fluorescence is: έ&gt ;(〇= ^η;(〇-121 - 201211532 where ¢5 / is the quantum efficiency of the sensor at the fluorescent wavelength. Substituting (17) we get: ef{t) = ...(18) The output electron rate of the sensor due to the per-unit fluorescence area of the excited photon is _ = -(19) where & is the quantum efficiency of the sensor at the excitation wavelength, and % is the p-cut relative to the excited LED The time constant of the characteristic. After the time t2, the attenuated photon flux of the LED increases the intensity of the fluorescent signal and prolongs its decay time, but we assume a negligible effect on If(t), so we adopt a conservative approach. At present, as mentioned earlier, the ideal ~ of ̄ is: ef{h) = et{h) Therefore, from (18) and (19) we get: = Φβηββ~(,3-, ι)/τ&gt And after the reorganization we get: ln(a:/7-) -i ab - ...(20)

Tf Tc 由上面兩段’我們得到下列兩個工作等式: ns =Φ^τί^ΙΧι …(21) -122- 201211532 ψΜ] Δί= 11 …(22) τί ^ 其中F _ ^且Δί ~ ’我們亦了解,實際上,ί2 -心》Γ/。 用於螢光偵測的理想時間及使用Philips LXK2-PR1 4-R00 LED和Pulsar 650染料偵測的螢光光子數決定如 下。 φ 理想偵測時間係使用式(22)決定: 回想擴增子的濃度,且假設所有擴增子雜交,然後發 螢光的螢光團濃度爲:c = 2.8 9(10广6 mol/L。 腔室的高度爲光學路徑長度1 = 8(10)·6πι。 已將螢光區域視爲等同於光二極體區域,然而實際的 登光區域大體上大於光二極體區域;因此可大槪假設 .=〇5 ^ = 10 A_‘爲光學系統之光採集效率。光二極體的特性,& 爲在螢光波長之光二極體量子效率對在激發波長之光二極 ® 體的量子效率之比的極保守値》 以典型的LED衰減生命週期之0.5奈秒和使用Tf Tc From the above two paragraphs, we get the following two working equations: ns =Φ^τί^ΙΧι ...(21) -122- 201211532 ψΜ] Δί= 11 ...(22) τί ^ where F _ ^ and Δί ~ ' We also understand that, in fact, ί2 - heart" Γ /. The ideal time for fluorescence detection and the number of fluorescent photons detected using the Philips LXK2-PR1 4-R00 LED and Pulsar 650 dye are determined as follows. The ideal detection time of φ is determined by equation (22): Recall the concentration of the amplicon, and assume that all the amplicons are hybridized, and then the concentration of the fluorescent fluorophore is: c = 2.8 9 (10 guang 6 mol/L) The height of the chamber is the optical path length 1 = 8 (10) · 6πι. The fluorescent area has been regarded as equivalent to the photodiode area, but the actual light-emitting area is substantially larger than the photodiode area; Assume that == 5 ^ = 10 A_' is the light collection efficiency of the optical system. The characteristics of the photodiode, & is the quantum efficiency of the photodiode at the fluorescence wavelength to the quantum efficiency of the photodiode at the excitation wavelength The ratio is extremely conservative 値 with a typical LED attenuation life cycle of 0.5 nanoseconds and use

Pulsar650規格,可決定~ : F = [1.48(10)6][2.89(10)-6][8(10)'6](1) = 3.42(10)-5 1η([3.42(10Γ5](10)(0.5)) _ 1 1 Γ(10)-6 一 0.5(1 〇)-9 =4.34(10)-9 s 偵測到的光子數目係使用等式(21)決定。首先’每單 -123- 201211532 位時間發射的激發光子數目~係由檢測照明幾何而定。Pulsar650 specification can be determined ~ : F = [1.48(10)6][2.89(10)-6][8(10)'6](1) = 3.42(10)-5 1η([3.42(10Γ5]( 10)(0.5)) _ 1 1 Γ(10)-6 a 0.5(1 〇)-9 =4.34(10)-9 s The number of detected photons is determined using equation (21). First of all 'per single The number of excitation photons emitted by the -123- 201211532 bit time is determined by the detection illumination geometry.

Philips LXK2-PR14-R〇〇 LED 具有 Lambertian 輻射模 式,因此: n) = ril0 cos(0) ---(23) 其中%爲與該LED的向前軸線方向之角度爲Θ之每單 位立體角每單位時間發射的光子數目’且^爲在該向前 軸線方向之値。 由該LED每單位時間所發射的光子之總數爲: /i, =|ϋ;</Ω η =fw;oc〇s(0)i/n Ω ...(24) 現在 ΔΩ = 2π[1 - cos(0 + △ 0)] — 2π[1 — cos(0)] ΔΩ = 2n[cos{B) - cos{9 + Δ^)] :4;rsin(0)cos Δ0 ^ sinlj + 4^cos(^)sin^The Philips LXK2-PR14-R〇〇LED has a Lambertian radiation pattern, so: n) = ril0 cos(0) ---(23) where % is the solid angle per unit angle of the LED in the direction of the forward axis The number of photons emitted per unit time 'and ^ is the direction in the direction of the forward axis. The total number of photons emitted by the LED per unit time is: /i, =|ϋ;</Ω η =fw;oc〇s(0)i/n Ω (24) Now ΔΩ = 2π[ 1 - cos(0 + △ 0)] — 2π[1 — cos(0)] ΔΩ = 2n[cos{B) - cos{9 + Δ^)] : 4;rsin(0)cos Δ0 ^ sinlj + 4 ^cos(^)sin^

(ΑΘ;、了 J dQ = 2π$ΐη(θ)(1θ 代入 (24): l ;i, = cos(0)sin(0)i/0 重新排列,我們得到 */0(ΑΘ;, J dQ = 2π$ΐη(θ) (1θ substitution (24): l ; i, = cos(0)sin(0)i/0 rearrange, we get */0

...(26) LED的輸出功率爲0.515瓦且 ve= 6.52(10)14赫茲,因 此: -124- ...(27) 201211532 =_0.515_ ~[6.63(10)·34][6.52(10)14] = 1.19(10)18 光子渺 將此値帶入(26)我們得到: ηιο = 1.19(10)18 π = 3.79(10)17光子渺麵度 參照圖61,光學中心252和LED26之透鏡254係如 示意圖所示。光二極體爲16微米xl6微米,且對於在陣 列中間的光二極體,自LED26所發射至光二極體184的 光錐的立體角(Ω)係大約: Ω=感測器面積炉 [16(10)~6][16(10)~6] [2.825(10)-3]2 =3.21(10)·5 球面度 將理解該光二極體陣列44之中央光二極體184爲用 於這些計算之用途。位於該陣列邊緣的光感測器在雜交事 件時僅接收2%之少量光子用於Lambertian激發源強度分 佈0 每單位時間發射的激發光子數: ne = ή,Ω ...(28) =[3.79(10)π][3.21(10)-5] =1.22(10)13 光子渺 現在參考等式(29): -125- 201211532 ns = ^0«β^/β'Δ//Γ/ ”,=(0.5)[1.22(10/3 ][3.42(10) _i][l(l O)"4]〆靡广’晴'4 = 208每感測器之光子 因此’使用 Philips LXK2-PR14-ROO LED 和 Pulsar 650螢光團,我們可以輕易地偵測任何造成被激發之光子 數目的雜交事件。 該SET LED照明幾何顯示於圖62中。在Id = 20毫 安培,LED具有最小光學功率輸出Pl = 240微瓦,波長中 心於λβ = 3 40奈米(铽螯合物之吸收波長)。驅動LED於ID =200毫安培線性增加該輸出功率至ρι= 2,4毫瓦。藉由 將LED的光學中心252置於離雜交腔室陣列110距離 17.5毫米處,我們大約集中輸出通量於具有最大直徑爲2 毫米的圓點大小。 在雜交陣列平面之2毫米直徑點中的光子通量由等式 2 7得到》 hve 2.4(10)-3 _ [6.63(10)~34][8.82(10)14] = 4.10(10)15 光子渺 使用等式2 8,我們得到: he = ή,Ω =4.10(10)15»]; π[1(1〇)·3]2 = 3.34(10)11 光子傲 現在’再呼叫等式22及使用先前列舉的Tb螯合物特 -126- 201211532 性, ^ ln[(6.94(10)—5)(10)(0.5)] Δ^=-i" 1 1(10)-3 ~ 0.5(10)-9 = 3.98(10)9 秒 現在自等式21 : ns = (0.5)[3.34(10)n][6.94(10)-5][l(10)'3]e'398('0)',/,(,())'3 = 11,600每感測器之光子。 由雜交事件使用SET LED和铽螯合物系統所發射之 光子理論數値係可簡單的偵測得到且遠超過3 0個光子數 之低限値,此低限値爲用於上述所指示之光感測器之可信 賴的偵測所需。 探針與光二極體間之最大間隔 雜父之晶片上偵測避免以共焦顯微鏡(見本發明的背 景)偵測之需要。背離傳統偵測技術爲節省與系統有關的 時間和成本之重要的因素。傳統偵測需要必須使用透鏡和 彎曲鏡面之成像光學。藉由採用非成像光學,診斷系統避 免複雜及笨重的光學元件串之需求。將光二極體放置於非 常靠近探針具有極高收集效率的優點。當在探針和光二極 體間的材料厚度爲1微米的等級時,發射光之收集角係高 達173°。此角度藉由考慮自最靠近光二極體之雜交腔室 表面中心的探針發射的光來計算,光二極體具有平行於腔 室表面的平面活性表面區。光可以於其內由光二極體吸收 之發射角錐係定義爲在其頂點和在其平面之周圍上的感測 -127- 201211532 器角落具有發射探針。對於16微米χ16微米的感測器, 此錐體的頂角爲1 70° ;在光二極體經擴充使得其面積符 合2 9微米X 1 9.7 5微米之雜交腔室面積的限制例中,頂角 爲1 7 3 °。在腔室表面和光二極體活性表面之間的分隔爲1 微米或更小是容易達成的。 應用非成像光學方法需要光二極體184非常靠近雜交 腔室以收集螢光輻射之足夠光子。在光二極體和探針之間 的最大間隔係參照如下圖54所決定。 利用鉞螯合物螢光團和 SET UVT0P3 3 5T039BL LED,我們計算自個別雜交腔室1 80到達1 6微米X 1 6微米 之光二極體184的1 1 600個光子。在實施此計算時,我們 假設雜交腔室1 8 0之光收集區域具有與光二極體有效區 1 8 5相同的底面積,且雜交光子之總數的一半到達光二極 體1 84。即光學系統之光收集效率爲& =(λ5。 更精確我們可以寫出& =[(雜交腔室之光收集區域的 底面積)/(光二極體區域)][Ω/4π],其中由在雜交腔室之基 底於代表點之光二極體所對向的Ω =立體角。對於正確的 正方錐幾何: Q = 4arCSin(a2/(4d〇2 + a2)),其中 d〇 =在腔室與光二 極體之間的距離,且α爲光二極體尺寸。 各雜交腔室釋放23200個光子,經選擇的光二極體具 有偵測低限値爲1 7個光子,因此,所需的最小光學效率 爲 · 队:1 7/23200 = 7.33 x 1 0' 201211532 雜交腔室180之光收集區域的底面積爲29微米 X19.75 微米。 解出dQ,將得到在雜交腔室及光二極體184之間的 最大限制距離爲d〇 = 249微米。在此限制中,如上所定義 之收集錐角僅爲0.8。。應注意的是此分析忽略了折射之可 忽略的影響。 LOC變體 以上詳細描述及說明之LOC裝置301僅爲許多可行 之LOC裝置設計中之一者。現將以槪略流程圖(自樣本輸 入至檢測)說明及/或顯示使用上述的各種功能部之不同組 合之LOC裝置變體而闡述一些可行的組合。將流程適當 的分成樣本輸入及製備階段28 8、萃取階段290、培養階 段291、擴增階段292、預-雜交階段293以及檢測階段 2 94。爲清楚及簡明表示之故,僅簡單說明或槪要顯示所 有的LOC變體而未顯示細節配置。亦爲清楚表示之故, 未顯示較小的功能單元’諸如液體感測器及溫度感測器, 但應理解的是此等功能單元已被倂入以下LOC裝置設計 之各者的適當位置。...(26) The output power of the LED is 0.515 watts and ve= 6.52 (10) 14 Hz, therefore: -124- ...(27) 201211532 =_0.515_ ~[6.63(10)·34][6.52 (10)14] = 1.19(10)18 Photon 渺 Bring this 入 into (26) We get: ηιο = 1.19(10)18 π = 3.79(10)17 Photon 渺 渺 Refer to Figure 61, Optical Center 252 and The lens 254 of the LED 26 is as shown in the schematic. The photodiode is 16 micrometers x 16 micrometers, and for the photodiode in the middle of the array, the solid angle (Ω) of the light cone emitted from the LED 26 to the photodiode 184 is approximately: Ω = sensor area furnace [16 ( 10)~6][16(10)~6] [2.825(10)-3]2 =3.21(10)·5 Sphericality It will be understood that the central photodiode 184 of the photodiode array 44 is used for these calculations. Use. The photosensor at the edge of the array receives only 2% of the photons for the Lambertian excitation source intensity distribution at the hybridization event. 0 The number of excitation photons emitted per unit time: ne = ή, Ω ... (28) = [ 3.79(10)π][3.21(10)-5] =1.22(10)13 Photon 渺 Now refer to equation (29): -125- 201211532 ns = ^0«β^/β'Δ//Γ/ ” ,=(0.5)[1.22(10/3 ][3.42(10) _i][l(l O)"4]〆靡广'清'4 = 208 photons per sensor so 'use Philips LXK2- With the PR14-ROO LED and the Pulsar 650 fluorophore, we can easily detect any hybridization events that cause the number of excited photons. The SET LED illumination geometry is shown in Figure 62. At Id = 20 mA, the LED has minimal optics. The power output Pl = 240 microwatts, the wavelength center is at λβ = 3 40 nm (the absorption wavelength of the ruthenium chelate). The LED is driven linearly at ID = 200 mA to increase the output power to ρι = 2,4 mW. By placing the optical center 252 of the LED at a distance of 17.5 mm from the hybridization chamber array 110, we concentrated the output flux to a dot size with a maximum diameter of 2 mm. 2 m in the hybrid array plane The photon flux in the diameter point is obtained by Equation 2 》 hve 2.4(10)-3 _ [6.63(10)~34][8.82(10)14] = 4.10(10)15 Photon 渺 Using Equation 2 8 , we get: he = ή, Ω = 4.10(10)15»]; π[1(1〇)·3]2 = 3.34(10)11 Photon proud now 'recall equation 22 and use the previously listed Tb Chelate-126- 201211532 sex, ^ ln[(6.94(10)-5)(10)(0.5)] Δ^=-i" 1 1(10)-3 ~ 0.5(10)-9 = 3.98 (10) 9 seconds now from the equation 21: ns = (0.5)[3.34(10)n][6.94(10)-5][l(10)'3]e'398('0)',/, (,())'3 = 11,600 photons per sensor. The photon theoretical number emitted by the SET LED and the ruthenium chelate system from the hybridization event can be easily detected and far exceeds 30 photons. The lower limit is required for the reliable detection of the above-mentioned light sensor. The maximum separation between the probe and the photodiode is detected on the wafer to avoid confocal The need for detection by a microscope (see background of the invention). Deviating from traditional detection techniques is an important factor in saving time and cost associated with the system. Conventional detection requires imaging optics that must use lenses and curved mirrors. By using non-imaging optics, the diagnostic system avoids the need for complex and cumbersome strings of optical components. Placing the photodiode in a very close proximity to the probe has the advantage of extremely high collection efficiency. When the material thickness between the probe and the photodiode is 1 micron, the collection angle of the emitted light is as high as 173°. This angle is calculated by considering the light emitted from the probe closest to the center of the hybrid chamber surface of the photodiode, which has a planar active surface region parallel to the surface of the chamber. The emission cone system in which light can be absorbed by the photodiode is defined as sensing at its apex and around its plane. -127 - 201211532 The corner of the device has a transmitting probe. For a 16 micron χ 16 micron sensor, the apex angle of the cone is 1 70°; in the case where the photodiode is expanded such that its area conforms to the hybrid chamber area of 2 9 μm X 1 9.7 5 μm, The angle is 1 7 3 °. A separation of 1 micron or less between the surface of the chamber and the active surface of the photodiode is easily achieved. The application of a non-imaging optical method requires that the photodiode 184 be in close proximity to the hybridization chamber to collect sufficient photons of the fluorescent radiation. The maximum spacing between the photodiode and the probe is determined as shown in Figure 54 below. Using the ruthenium chelate fluorophore and the SET UVT0P3 3 5T039BL LED, we calculated 1,1,600 photons from individual hybridization chambers 1 80 to 16 micron X 16 micron photodiodes 184. In carrying out this calculation, we assume that the light collection region of the hybridization chamber 180 has the same bottom area as the photodiode effective region 185, and half of the total number of hybrid photons reaches the photodiode 184. That is, the light collection efficiency of the optical system is & = (λ5. More precisely we can write & = [(the bottom area of the light collection area of the hybrid chamber) / (photodiode area)] [Ω / 4π], Where Ω = solid angle is the opposite of the photodiode at the base of the hybridization chamber at the representative point. For the correct square pyramid geometry: Q = 4arCSin(a2/(4d〇2 + a2)), where d〇= The distance between the chamber and the photodiode, and α is the size of the photodiode. Each hybridization chamber releases 23,200 photons, and the selected photodiode has a detection low limit of 17 photons. The minimum optical efficiency required is: Team: 1 7/23200 = 7.33 x 1 0' 201211532 The bottom area of the light collection area of the hybridization chamber 180 is 29 microns x 19.75 microns. The solution of dQ will be obtained in the hybridization chamber and The maximum limiting distance between photodiodes 184 is d 〇 = 249 μm. In this limitation, the collecting cone angle as defined above is only 0.8. It should be noted that this analysis ignores the negligible effect of refraction. Variants The LOC device 301, described and illustrated in detail above, is only one of many possible LOC device designs. Some possible combinations will now be described with a flow chart (from sample input to detection) and/or display of LOC device variants using different combinations of the various functional units described above. The process is appropriately divided into sample inputs and Preparation stage 28 8 , extraction stage 290 , culture stage 291 , amplification stage 292 , pre-hybridization stage 293 , and detection stage 2 94. For clarity and conciseness, only a brief description or summary of all LOC variants is shown. The detailed configuration is not shown. For the sake of clarity, smaller functional units such as liquid sensors and temperature sensors are not shown, but it should be understood that these functional units have been incorporated into the following LOC device designs. The appropriate location.

LOC變體 XI 圖106至113顯不LOC變體XI 746。此LOC裝置萃 取290、培養291、擴增292和檢測294病原體DNA。樣 本輸入及備製階段288、以及萃取階段290係和LOC裝置 -129- 201211532 301的那些階段相同(見圖4)。在培養階段291,使用四個 平行培養部114.1至114.4。參考圖1〇8、1〇9和111,共 享的限制酵素、結合酶和連接子貯存器58將酵素添加至 樣本流經由表面張力閥1 3 2進入共同培養器饋入通道 748。同培養器饋入通道748塡充所有培養部114.1至 114.4分別通過第一、第二、第三和第四培養器入口 750、 752、 754 和 756° 參考圖1 1 2 '培養部1 1 4.1至1 1 4.4分別流至四個平 行擴增部1 1 2 . 1至1 1 2 · 4。在足夠的培養時間後,打開在 各自培養部出口之沸騰引發閥2 07。各個擴增部1 12. 1至 112.4具有各自的擴增混合貯存器60.1至60.4和聚合酶 貯存器62.1至62.4 (見圖106至109)。在核酸擴增前馬 上加入聚合酶以最佳化擴增程序。 參考圖113,各個擴增部112.1至112.4在其各個出 口具有沸騰引發閥108。在熱循環後,沸騰引發閥108開 啓使得來自各個擴增部1 1 2.1 -1 1 2.4之擴增子流入各自的 雜交腔室陣列110.1至110.4。雜交腔室陣列110.1至 110.4至係由一片氮化鈦圍繞以保護用於激發LED 26之 LED晶片支撐表面63 4(見圖3)。激發LED係密封至LED 晶片支撐表面634。如圖94和98所示’於雜交腔室180 中之氣壓係與通過MST層87中之通氣孔122和通氣通道 63 6的大氣相等(見圖90)。 如圖111所顯示,病原體透析部70具有旁路通道 600以避免氣體捕集。LOC變體XI 746亦具有流速感測 -130- 201211532 器740和液體感測器174(見圖108)以供在各功能部中之 加熱器元件之計時操作(例如雜交陣列、培養及擴增部 等)。 結論 描述於本文之裝置、系統及方法促進分子診斷試驗成 爲低花費、快速且成爲重點照護試驗。描述於上文之系統 及其組件已完全說明,且於此領域之技藝工作者將可容易 地識別不偏離主要發明槪念之精神與範疇的許多變化和修 改。 【圖式簡單說明】 現將藉由僅參照附圖之實例描述本發明之較佳具體實 施例,其中: 圖1顯示經配置而用於螢光檢測之試驗模組和試驗模 組讀取器。 圖2爲經配置而用於螢光檢測之試驗模組中之電子組 件的圖式槪要。 圖3爲試驗模組讀取器中之電子組件的圖式槪要。 圖4爲LOC裝置之結構的圖式槪要。 圖5爲LOC裝置之透視圖。 圖6爲具有來自彼此疊加之所有層之特徵和結構之 LOC裝置的平面圖。 圖7爲具有獨立顯示之蓋結構之LOC裝置的平面 -131 - 201211532 圖。 圖8爲具有以虛線顯示之內通道和貯存器之蓋的頂部 透視圖。 圖9爲具有以虛線顯示之內通道和貯存器之蓋的爆炸 頂部透視圖。 圖10爲顯示頂部通道配置之蓋的底部透視圖。 圖11爲獨立顯示CMOS + MST裝置結構之LOC裝置 的平面圖。 圖12爲在樣本入口之LOC裝置的剖面示意圖。 圖13爲圖6所示之插入物AA的放大視圖。 圖14爲圖6所示之插入物AB的放大視圖。 圖15爲圖13所示之插入物AE的放大視圖。 圖16爲圖解在插入物AE內部之LOC裝置的層狀構 造之部分透視圖》 圖17爲圖解在插入物AE內部之LOC裝置的層狀構 造之部分透視圖。 圖18爲圖解在插入物AE內部之LOC裝置的層狀構 造之部分透視圖。 圖19爲圖解在插入物AE內部之LOC裝置的層狀構 造之部分透視圖。 圖20爲圖解在插入物AE內部之LOC裝置的層狀構 造之部分透視圖。 圖21爲圖解在插入物AE內部之LOC裝置的層狀構 造之部分透視圖。 -132- 201211532 圖22爲顯示在圖21之該溶胞試劑貯存器之剖面示意 圖。 圖23爲圖解在插入物AB內部之LOC裝置的層狀構 造之部分透視圖。 圖24爲圖解在插入物AB內部之LOC裝置的層狀構 造之部分透視圖。 圖25爲圖解在插入物AI內部之LOC裝置的層狀構 φ 造之部分透視圖。 圖26爲圖解在插入物AB內部之LOC裝置的層狀構 造之部分透視圖。 圖27爲圖解在插入物AB內部之LOC裝置的層狀構 造之部分透視圖。 圖28爲圖解在插入物AB內部之LOC裝置的層狀構 造之部分透視圖。 圖29爲圖解在插入物AB內部之LOC裝置的層狀構 φ 造之部分透視圖。 圖3 0爲擴增混合貯存器及聚合酶貯存器之剖面示意 圖。 圖31顯示獨立之沸騰引發閥的特徵。 圖32爲顯示於圖31之行經線32-32之沸騰引發閥之 剖面示意圖。 圖33爲顯示於圖15之插入物AF的放大圖。 圖3 4爲顯示於圖3 3之行經線3 4 - 3 4之透析區上游端 之剖面示意圖。 -133- 201211532 圖35爲顯示於圖6之插入物AC的放大圖。 圖36爲顯示擴增部之插入物AC內部之進一步放大 圖。 圖37爲顯示擴增部之插入物AC內部之進一步放大 圖。 圖38爲顯示擴增部之插入物AC內部之進一步放大 圖。 圖39爲顯示於圖38之插入物AK內部之進一步放大 圖。 圖40爲顯示擴增腔室之插入物AC內部之進一步放 大圖。 圖41爲顯示擴增部之插入物AC內部之進一步放大 圖。 圖42爲顯示擴增腔室之插入物AC內部之進一步放 大圖。 圖43爲顯示於圖42之插入物AL內部之進一步放大 圖。 圖44爲顯示擴增部之插入物AC內部之進一步放大 圖。 圖45爲顯示於圖44之插入物AM內部之進一步放大 圖。 圖46爲顯示擴增腔室之插入物AC內部之進一步放 大圖。 圖47爲顯示於圖46之插入物AN內部之進一步放大 -134- 201211532 圖。 圖48爲顯示擴增腔室之插入物AC內部之進一步放 大圖。 圖49爲顯示擴增腔室之插入物AC內部之進一步放 大圖。 圖50爲顯示擴增部之插入物AC內部之進一步放大 圖。 圖51爲擴增部之剖面示意圖。 圖52爲雜交部之放大平面圖。 圖53爲兩個獨立之雜交腔室之進一步放大平面圖。 圖54爲單個雜交腔室之剖面示意圖。 圖55爲顯示於圖6之插入物AG中闡述之增濕器之 放大圖。 圖56爲顯示於圖52之插入物AD之放大圖。 圖57爲在插入物AD中之LOC裝置的爆炸透視圖。 圖58爲在封閉組態中FRET探針的圖。 圖59爲呈開放且雜交組態中FRET探針的圖。 圖60爲激發光密度隨著時間改變的曲線圖。 圖61爲雑交腔室陣列之激發照明幾何(excitation illumination geometry)的圖 ° 圖6 2爲感測器電子技術L E D照明幾何的圖示。 圖63爲顯示於圖6之插入物AH之濕度感測器的放 大平面圖。 圖64爲顯示部分光感測器之光二極體陣列之槪要 -135- 201211532 圖。 圖65爲單一光二極體之電路圖。 圖66爲光二極體控制訊號之時序圖。 圖67爲顯示於圖55之插入物AP之蒸發器的放大 圖。 圖68爲以偵測光二極體和觸發光二極體通過雜交腔 室之剖面示意圖。 圖69爲連接子-帶頭PCR之圖。 圖7〇爲表示具有刺血針之試驗模組的槪要圖。 圖71爲LOC變體VII之結構的圖形表示。 圖72爲具有來自彼此重疊之所有層的特徵與結構之 LOC變體VIII之平面圖。 圖73爲顯示於圖72之插入物CA之放大圖。 圖74爲說明顯示於圖72中之插入物CA內之LOC變 體的層狀結構之部分透視圖。 圖75爲顯示於圖73中之插入物CE之放大圖。 圖76爲LOC變體VIII結構之圖形表示。 圖77爲LOC變體XIV之結構的示圖。 圖78爲LOC變體XLI之結構的示圖。 圖79爲LOC變體XLIII之結構的示圖。 圖80爲LOC變體XLIV之結構的示圖。 圖8 1爲LOC變體XLVII之結構的示圖。 圖82爲在初次擴增期間之引子聯結之線性螢光探針 之圖。 -136- 201211532 圖83爲在接續擴增循環期間之引子聯結之線性螢光 探針之圖。 圖84A至84F圖示說明引子-聯結之螢光莖-及-環探 針的熱循環。 圖85爲關於雜交腔室陣列及光二‘極體之激發LED的 槪要說明。 圖86爲引導光進入LOC裝置之雜交腔室陣列的激發 LED和光學透鏡之槪要說明。 圖87爲用於引導光進入LOC裝置之雜交腔室陣列的 激發LED、光學透鏡和光學稜鏡之槪要說明。 圖88爲用於引導光進入LOC裝置之雜交腔室陣列的 激發LED、光學透鏡和鏡子排列之槪要說明。 圖89爲LOC變體X之圖形表示。 圖90爲LOC變體X之透視圖。 圖91爲顯示分開的CMOS + MST裝置結構之LOC變 體X的平面圖。 圖92爲具有以虛線顯示之試劑貯存器的蓋底面之透 視圖。 圖93爲僅顯示分開之蓋特徵的平面圖。 圖94爲顯示彼此重疊之所有特徵並顯示插入物DA 至DK的位置之平面圖。 圖95爲顯示於圖94之插入物DA的放大圖。 圖96爲顯示於圖94之插入物DB的放大圖。 圖97爲顯示於圖94之插入物DC的放大圖。 -137- 201211532 圖98爲顯示於圖94之插入物DD的放大圖。 圖99爲顯示於圖94之插入物DE的放大圖。 圖1〇〇爲顯示於圖94之插入物DF的放大圖。 圖爲顯示於圖94之插入物DG的放大圖。 圖102爲顯示於圖94之插入物DH的放大圖》 圖1〇3爲顯示於圖94之插入物DJ的放大圖。 圖104爲顯示於圖94之插入物DK的放大圖。LOC Variant XI Figures 106 through 113 show the LOC variant XI 746. This LOC device extracts 290, cultures 291, expands 292, and detects 294 pathogen DNA. The sample input and preparation phase 288, as well as the extraction phase 290, are identical to those of the LOC device -129-201211532 301 (see Figure 4). In the cultivation stage 291, four parallel culture sections 114.1 to 114.4 were used. Referring to Figures 1-8, 1〇9 and 111, the shared restriction enzyme, binding enzyme and linker reservoir 58 adds the enzyme to the sample stream via the surface tension valve 132 to the co-incubator feed channel 748. The same incubator feed channel 748 is filled with all the culture portions 114.1 to 114.4 through the first, second, third and fourth incubator inlets 750, 752, 754 and 756, respectively. Referring to Figure 1 1 2 'cultivation portion 1 1 4.1 Up to 1 1 4.4 flows to the four parallel amplification sections 1 1 2 2 . 1 to 1 1 2 · 4, respectively. After sufficient incubation time, the boiling initiation valve 2 07 at the outlet of the respective culture section is opened. Each of the amplification sections 1 12.1 to 112.4 has a respective amplification mix reservoir 60.1 to 60.4 and polymerase reservoirs 62.1 to 62.4 (see Figs. 106 to 109). A polymerase is added to the horse prior to nucleic acid amplification to optimize the amplification procedure. Referring to Fig. 113, each of the amplification sections 112.1 to 112.4 has a boiling initiation valve 108 at each of its outlets. After the thermal cycle, the boiling initiation valve 108 is opened such that the amplicon from each of the amplification sections 1 1 2.1 -1 1 2.4 flows into the respective hybridization chamber arrays 110.1 to 110.4. The hybrid chamber arrays 110.1 through 110.4 are surrounded by a piece of titanium nitride to protect the LED wafer support surface 63 4 (see Figure 3) for exciting the LEDs 26. The excitation LED is sealed to the LED wafer support surface 634. The air pressure in the hybridization chamber 180 as shown in Figs. 94 and 98 is equal to the atmosphere passing through the vent hole 122 and the vent passage 63 6 in the MST layer 87 (see Fig. 90). As shown in Figure 111, the pathogen dialysis section 70 has a bypass passage 600 to avoid gas trapping. LOC Variant XI 746 also has flow rate sensing -130-201211532 740 and liquid sensor 174 (see Figure 108) for timing operation of heater elements in various functional sections (eg hybrid array, culture and amplification) Ministry, etc.). Conclusion The devices, systems, and methods described herein promote molecular diagnostic testing as a low cost, rapid, and focused care test. The system and its components described above are fully described, and those skilled in the art will be able to readily recognize many variations and modifications without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which: FIG. 1 shows a test module and a test module reader configured for fluorescence detection. . Figure 2 is a schematic representation of the electronic components in a test module configured for fluorescence detection. Figure 3 is a schematic diagram of the electronic components in the test module reader. Figure 4 is a schematic view of the structure of the LOC device. Figure 5 is a perspective view of the LOC device. Figure 6 is a plan view of an LOC device having features and structures from all of the layers superimposed on each other. Figure 7 is a plan -131 - 201211532 diagram of a LOC device having a lid structure that is independently shown. Figure 8 is a top perspective view of the lid with the inner channel and reservoir shown in phantom. Figure 9 is an exploded top perspective view of the inner channel and reservoir cover shown in phantom. Figure 10 is a bottom perspective view showing the cover of the top channel configuration. Figure 11 is a plan view of the LOC device showing the structure of the CMOS + MST device independently. Figure 12 is a schematic cross-sectional view of the LOC device at the sample inlet. Figure 13 is an enlarged view of the insert AA shown in Figure 6. Figure 14 is an enlarged plan view of the insert AB shown in Figure 6. Figure 15 is an enlarged view of the insert AE shown in Figure 13. Figure 16 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AE. Figure 17 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AE. Figure 18 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AE. Figure 19 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AE. Figure 20 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AE. Figure 21 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AE. -132- 201211532 Figure 22 is a schematic cross-sectional view showing the lysis reagent reservoir of Figure 21. Figure 23 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AB. Figure 24 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AB. Figure 25 is a partial perspective view showing the layered structure of the LOC device inside the insert AI. Figure 26 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AB. Figure 27 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AB. Figure 28 is a partial perspective view illustrating the layered configuration of the LOC device inside the insert AB. Figure 29 is a partial perspective view showing the layered structure of the LOC device inside the insert AB. Figure 30 is a schematic cross-sectional view of the amplified hybrid reservoir and polymerase reservoir. Figure 31 shows the characteristics of a separate boiling initiation valve. Figure 32 is a schematic cross-sectional view showing the boiling initiation valve of the line 32-32 of Figure 31. Figure 33 is an enlarged view of the insert AF shown in Figure 15. Figure 3 is a schematic cross-sectional view showing the upstream end of the dialysis zone of the line 3 4 - 3 4 of Figure 3. -133- 201211532 Figure 35 is an enlarged view of the insert AC shown in Figure 6. Fig. 36 is a further enlarged view showing the inside of the insert AC of the amplifying portion. Fig. 37 is a further enlarged view showing the inside of the insert AC of the amplifying portion. Fig. 38 is a further enlarged view showing the inside of the insert AC of the amplifying portion. Figure 39 is a further enlarged view of the interior of the insert AK shown in Figure 38. Figure 40 is a further enlarged view showing the inside of the insert AC of the amplification chamber. Fig. 41 is a further enlarged view showing the inside of the insert AC of the amplifying portion. Figure 42 is a further enlarged view showing the inside of the insert AC of the amplification chamber. Figure 43 is a further enlarged view of the inside of the insert AL shown in Figure 42. Fig. 44 is a further enlarged view showing the inside of the insert AC of the amplifying portion. Figure 45 is a further enlarged view of the interior of the insert AM shown in Figure 44. Figure 46 is a further enlarged view showing the inside of the insert AC of the amplification chamber. Figure 47 is a further enlarged view of the insert AN shown in Figure 46 - 134 - 201211532. Figure 48 is a further enlarged view showing the inside of the insert AC of the amplification chamber. Figure 49 is a further enlarged view showing the inside of the insert AC of the amplification chamber. Fig. 50 is a further enlarged view showing the inside of the insert AC of the amplifying portion. Figure 51 is a schematic cross-sectional view of the amplifying portion. Figure 52 is an enlarged plan view of the hybridization section. Figure 53 is a further enlarged plan view of two separate hybridization chambers. Figure 54 is a schematic cross-sectional view of a single hybridization chamber. Figure 55 is an enlarged view of the humidifier illustrated in the insert AG of Figure 6. Figure 56 is an enlarged view of the insert AD shown in Figure 52. Figure 57 is an exploded perspective view of the LOC device in the insert AD. Figure 58 is a diagram of a FRET probe in a closed configuration. Figure 59 is a diagram of a FRET probe in an open and hybrid configuration. Figure 60 is a graph of excitation light density as a function of time. Figure 61 is a diagram of the excitation illumination geometry of the array of intersecting chambers. Figure 262 is a graphical representation of the illumination geometry of the sensor electronics L E D . Figure 63 is an enlarged plan view of the humidity sensor of the insert AH shown in Figure 6. Fig. 64 is a view showing a summary of the photodiode array of a portion of the photosensor - 135 - 201211532. Figure 65 is a circuit diagram of a single photodiode. Figure 66 is a timing diagram of the photodiode control signal. Figure 67 is an enlarged view of the evaporator of the insert AP shown in Figure 55. Figure 68 is a schematic cross-sectional view showing the detection of the photodiode and the triggering photodiode through the hybridization chamber. Figure 69 is a diagram of the linker-to-head PCR. Figure 7A is a schematic view showing a test module having a lancet. Figure 71 is a graphical representation of the structure of LOC Variant VII. Figure 72 is a plan view of a LOC variant VIII having features and structures from all layers overlapping each other. Figure 73 is an enlarged view of the insert CA shown in Figure 72. Figure 74 is a partial perspective view showing the layered structure of the LOC variant shown in the insert CA of Figure 72. Figure 75 is an enlarged view of the insert CE shown in Figure 73. Figure 76 is a graphical representation of the structure of the LOC variant VIII. Figure 77 is a diagram showing the structure of the LOC variant XIV. Figure 78 is a diagram showing the structure of the LOC variant XLI. Figure 79 is a diagram showing the structure of the LOC variant XLIII. Figure 80 is a diagram showing the structure of the LOC variant XLIV. Figure 81 is a diagram showing the structure of the LOC variant XLVII. Figure 82 is a diagram of a primer-linked linear fluorescent probe during initial amplification. -136- 201211532 Figure 83 is a diagram of a linear fluorescent probe coupled to a primer during a subsequent amplification cycle. Figures 84A through 84F illustrate the thermal cycling of the primer-coupled fluorescent stem-and-loop probe. Figure 85 is a schematic illustration of the excitation chamber array and the excitation LED of the photodiode. Figure 86 is a schematic illustration of the excitation LED and optical lens that direct light into the hybrid chamber array of the LOC device. Figure 87 is a schematic illustration of an excitation LED, an optical lens, and an optical raft for directing light into the hybrid chamber array of the LOC device. Figure 88 is a schematic illustration of the excitation LED, optical lens and mirror arrangement for directing light into the hybrid chamber array of the LOC device. Figure 89 is a graphical representation of the LOC variant X. Figure 90 is a perspective view of the LOC variant X. Figure 91 is a plan view showing the LOC variant X of a separate CMOS + MST device structure. Figure 92 is a perspective view of the bottom surface of the lid of the reagent reservoir shown in phantom. Figure 93 is a plan view showing only the features of the separate cover. Figure 94 is a plan view showing all the features overlapping each other and showing the positions of the inserts DA to DK. Figure 95 is an enlarged view of the insert DA shown in Figure 94. Figure 96 is an enlarged view of the insert DB shown in Figure 94. Figure 97 is an enlarged view of the insert DC shown in Figure 94. -137- 201211532 Figure 98 is an enlarged view of the insert DD shown in Figure 94. Figure 99 is an enlarged view of the insert DE shown in Figure 94. Figure 1A is an enlarged view of the insert DF shown in Figure 94. The figure is an enlarged view of the insert DG shown in FIG. Figure 102 is an enlarged view of the insert DH shown in Figure 94. Figure 1A is an enlarged view of the insert DJ shown in Figure 94. Figure 104 is an enlarged view of the insert DK shown in Figure 94.

圖1〇5爲顯示於圖94之插入物DL的放大圖。 圖106爲LOC變體XI結構之圖形表示。 圖107爲LOC變體XI之透視圖。 圖108爲顯示彼此重疊之所有特徵並顯示插入物EA 至EC的位置之LOC變體XI之平面圖。 圖1〇9爲僅顯示分開之蓋特徵之LOC變體XI的平面 圖。 圖110爲顯示分開的CMOS + MST裝置結構之LOC變 體XI的平面圖。 圖111爲顯示於圖108中之插入物EA的放大圖。 圖112爲顯示於圖108中之插入物EB的放大圖。 圖II3爲顯示於圖1〇8中之插入物EC的放大圖。 圖114顯示用於光二極體之並聯電晶體之一個具體實 施例。 圖115顯示用於光二極體之並聯電晶體之一個具體實 施例。 圖116顯示用於光二極體之並聯電晶體之一個具體實 -138- 201211532 施例。 圖117爲示差成像器之電路圖。 圖118槪略說明呈莖-及-環結構中之負控制螢光探 針。 圖1 1 9槪略說明呈開放構造中之圖1 1 8的負控制螢光 探針。 圖120槪略說明呈莖-及-環結構中之正控制螢光探 針。 圖12 1槪略說明呈開放構造中之圖120的正控制螢光 探針。 圖1 22槪略說明經CMOS控制之流速感測器。 圖1 23顯示經配置和ECL偵測一起使用之試驗模組 和試驗模組讀取器。 圖1 24爲經配置和ECL偵測一起使用之試驗模組中 之電子組件的圖示槪要。 圖1 25顯示試驗模組與替代的試驗模組讀取器。 圖1 26顯示試驗模組和試驗模組讀取器以及容納各種 資料庫之主機系統。 【主要元件符號說明】 I 〇 :試驗模組 II :試驗模組 1 2 :試驗模組讀取器 1 3 :外殻 -139- 201211532 14 :微型-USB接頭 15 :感應器 1 6 :微型-U S B埠 17 :觸控螢幕 18 :顯示螢幕 19 :按鈕 2 0 :開始按鈕 2 1 :蜂巢式無線電 22 :無菌密封帶 2 3 :無線網路連接 24 :大容器 2 5 :衛星導航系統 26 :發光二極體 2 7 :資料儲存器 2 8 :電話 29: LED驅動器 30 : LOC裝置 3 1 :電源調節器 32 :電容器 3 3 :計時器 3 4 :控制器 35 :暫存器 36 :微型USB裝置1 . 1或2.0 3 7 :驅動器 -140- 201211532 3 8 :隨機存取記憶體 39 : ECL激發驅動器 40 :程式和資料快取 41 : ECL激發暫存器 42 :處理器 43 :程式儲存器 44 :光感測器 45 :指示器 46 :蓋 47 :模組 48 : CMOS + MST 裝置 49 :多孔元件 52 :雜交及檢測部 54 :抗凝血劑貯存器 56、56.1、56.2、56.3:貯存器 5 7 :印刷電路板 58、58.1、58.2:貯存器 60、 60.1-60.12、60.X:貯存器 62, 62.1、 62.2、 62.3、 62.4、 62.X:貯存器 64 :下部密封 6 6 :頂部層 6 8 :樣本入口 7 〇 :透析部 72 :廢料通道 -141 - 201211532 74 :標靶通道 7 6 :廢料貯存器 7 8 :貯存器層 80 :蓋通道層 8 2 :上密封層 84 :矽基板 86 : CMOS 電路 87 : MST 層 8 8 :鈍化層 90 : MST通道 92 :下管道 94 :蓋通道 96 :上管道 97 :壁部 98:彎液面固定器 100: MST通道層 101 :膝上型電腦/筆記型電腦 102 :毛細作用起始特徵, 103 :專用讀取器 105 :桌上型電腦 106 :沸騰引發閥 107 :電子書讀取器 108 :沸騰引發閥 109 :平板電腦 -142- 201211532 110、110.1-110.12、110.X:雜交室陣列 1 1 1 :流行病學資料 112、112.卜112.12、112.X:擴增部 1 1 3 :遺傳資料 114、 114.1-114.4:培養部 1 1 5 :電子化健康記錄 1 1 6 :抗凝血劑Figure 1-5 is an enlarged view of the insert DL shown in Figure 94. Figure 106 is a graphical representation of the structure of the LOC variant XI. Figure 107 is a perspective view of the LOC variant XI. Figure 108 is a plan view of a LOC variant XI showing all of the features overlapping each other and showing the position of the inserts EA to EC. Figures 1-9 are plan views of LOC variant XI showing only separate cover features. Figure 110 is a plan view showing LOC variant XI of a separate CMOS + MST device structure. Figure 111 is an enlarged view of the insert EA shown in Figure 108. Figure 112 is an enlarged view of the insert EB shown in Figure 108. Figure II3 is an enlarged view of the insert EC shown in Figure 1-8. Figure 114 shows a specific embodiment of a parallel transistor for an optical diode. Figure 115 shows a specific embodiment of a parallel transistor for a photodiode. Figure 116 shows a specific embodiment of a parallel transistor for a photodiode - 138 - 201211532. Figure 117 is a circuit diagram of the differential imager. Figure 118 schematically illustrates the negative control fluorometer in the stem-and-loop configuration. Figure 1 1 shows a negative control fluorescent probe of Figure 1 18 in an open configuration. Figure 120 schematically illustrates the positive control fluorescent probe in the stem-and-loop configuration. Figure 12 is a schematic illustration of the positive control fluorescent probe of Figure 120 in an open configuration. Figure 1 22 illustrates a CMOS controlled flow rate sensor. Figure 1 23 shows the test module and test module reader that are configured for use with ECL detection. Figure 1 24 is a pictorial representation of the electronic components in a test module that is configured for use with ECL detection. Figure 1 25 shows the test module and the alternative test module reader. Figure 1 26 shows the test module and test module reader and the host system that houses the various databases. [Main component symbol description] I 〇: Test module II: Test module 1 2: Test module reader 1 3 : Case-139- 201211532 14 : Micro-USB connector 15: Sensor 1 6 : Micro- USB埠17: Touch screen 18: Display screen 19: Button 2 0: Start button 2 1 : Honeycomb radio 22: Aseptic sealing tape 2 3: Wireless network connection 24: Large container 2 5: Satellite navigation system 26: Illumination Diode 2 7 : Data storage 2 8 : Telephone 29 : LED driver 30 : LOC device 3 1 : Power conditioner 32 : Capacitor 3 3 : Timer 3 4 : Controller 35 : Register 36 : Micro USB device 1 . 1 or 2.0 3 7 : Drive -140 - 201211532 3 8 : Random Access Memory 39 : ECL Excitation Driver 40 : Program and Data Cache 41 : ECL Excitation Register 42 : Processor 43 : Program Memory 44 : Photosensor 45: Indicator 46: Cover 47: Module 48: CMOS + MST Device 49: Porous Element 52: Hybridization and Detection 54: Anticoagulant Reservoir 56, 56.1, 56.2, 56.3: Reservoir 5 7 : printed circuit board 58, 58.1, 58.2: reservoir 60, 60.1-60.12, 60.X: reservoir 62, 62.1, 62.2, 62.3, 62 .4, 62.X: reservoir 64: lower seal 6 6 : top layer 6 8 : sample inlet 7 〇: dialysis section 72 : waste channel - 141 - 201211532 74 : target channel 7 6 : waste reservoir 7 8 : Reservoir layer 80: cover channel layer 8 2 : upper seal layer 84 : 矽 substrate 86 : CMOS circuit 87 : MST layer 8 8 : passivation layer 90 : MST channel 92 : lower pipe 94 : cover channel 96 : upper pipe 97 : wall Part 98: Meniscus Holder 100: MST Channel Layer 101: Laptop/Notebook 102: Capillary Action Start Feature, 103: Dedicated Reader 105: Desktop Computer 106: Boiling Initiating Valve 107: E-book reader 108: Boiling trigger valve 109: Tablet PC-142- 201211532 110, 110.1-110.12, 110.X: Hybridization chamber array 1 1 1 : Epidemiological data 112, 112. Bu 112.12, 112.X: Amplification part 1 1 3 : genetic data 114, 114.1-114.4: culture part 1 1 5 : electronic health record 1 1 6 : anticoagulant

1 1 8 :表面張力閥 1 1 9 :液體樣本 1 2 0 :彎液面 1 2 1 :電子化醫療記錄 122 :通氣孔 123:個人健康記錄 125 :網路 126 :沸騰引發閥 128、128.2、128.3:表面張力閥 130、130.1-130.3:溶胞部 1 3 1 :混合部 132、 132.1、 132.3:表面張力閥 1 3 3 :培養器入口通道 134 :下管道 136 :光學窗 1 4 6 :閥入口 1 4 8 :閥出口 -143- 201211532 150 :閥下管道 152 :環形加熱器 1 5 3 :閥加熱器接點 1 5 4 :加熱器 1 5 6 :加熱器接點 158 :微通道 1 60 :出口通道 1 6 4 :孔口 166 :毛細作用起始特徵 1 6 8 :透析吸入孔 170 :溫度感測器 174 :液體感測器 175 :擴散屏障 176 :流動路徑 178 :液體感測器 1 8 0 :雜交腔室 1 8 2 :加熱器 184 :光二極體 1 8 5 :有效區 1 8 6 :探針 1 87 :光二極體 1 8 8 :水貯存器 190 :蒸發器 1 9 1 :環形加熱器 -144- 201211532 192 :水供應通道 193 :上管道 194 :下管道 1 9 5 :頂金屬層 196 :增濕器 1 9 8 :吸入孔 202 :毛細作用起始特徵 204 : MST 通道 208 :液體感測器 210 :微通道 2 1 2 : MST 通道 2 1 8 :電極 2 2 0 :電極 222 :間隙 232 :濕度感測器 2 3 4 :加熱器 23 6 : FRET 探針 23 8 :標靶核酸序列 2 40 :環 242 :莖 244 :激發光 246 :螢光團 2 4 8 :淬熄劑 250 :螢光訊號 -145 201211532 2 5 2 :光學中心 2 5 4 :透鏡 2 8 8 :樣本輸入及製備 290 :萃取階段 2 9 1 :培養階段 292 :擴增階段 293 :預-雜交階段 294 :檢測階段 296 :第一電極 298 :第二電極 3 00 :可程式化延遲 301: LOC 裝置 328:白血球透析部 3 7 6 :導熱柱 3 7 8 :正控制探針 3 8 0 :負控制探針 3 82 :校準腔室 3 8 4 :聞極 3 8 6 :鬧極 3 8 8 :間極 3 9 0 :可伸縮刺血針 3 9 2 :刺血針釋出按鈕 3 9 3 :鬧極 3 9 4 : Μ Ο S電晶體 201211532 396: MOS電晶體 398: MOS電晶體 400 : MOS電晶體 402: MOS電晶體 404: MOS電晶體 4 0 6 :節點 408 :膜密封件1 1 8 : Surface tension valve 1 1 9 : Liquid sample 1 2 0 : Meniscus 1 2 1 : Electronic medical record 122 : Vent 123: Personal health record 125 : Network 126 : Boiling trigger valve 128, 128.2, 128.3: Surface tension valve 130, 130.1-130.3: lysis unit 1 3 1 : mixing portion 132, 132.1, 132.3: surface tension valve 1 3 3 : incubator inlet passage 134: lower tube 136: optical window 1 4 6 : valve Inlet 1 4 8 : Valve outlet - 143 - 201211532 150 : Under valve 152 : Ring heater 1 5 3 : Valve heater contact 1 5 4 : Heater 1 5 6 : Heater contact 158 : Micro channel 1 60 : outlet channel 1 6 4 : orifice 166 : capillary action initiation feature 1 6 8 : dialysis suction port 170 : temperature sensor 174 : liquid sensor 175 : diffusion barrier 176 : flow path 178 : liquid sensor 1 8 0 : hybridization chamber 1 8 2 : heater 184 : photodiode 1 8 5 : effective area 1 8 6 : probe 1 87 : photodiode 1 8 8 : water reservoir 190 : evaporator 1 9 1 : Ring heater-144- 201211532 192: Water supply channel 193: Upper pipe 194: Lower pipe 1 9 5: Top metal layer 196: Humidifier 1 9 8 : Suction hole 202: Capillary action start Sign 204 : MST channel 208 : liquid sensor 210 : micro channel 2 1 2 : MST channel 2 1 8 : electrode 2 2 0 : electrode 222 : gap 232 : humidity sensor 2 3 4 : heater 23 6 : FRET Probe 23 8 : Target nucleic acid sequence 2 40 : Ring 242 : Stem 244 : Excitation light 246 : Fluorescent group 2 4 8 : Quencher 250 : Fluorescence signal -145 201211532 2 5 2 : Optical center 2 5 4 : Lens 2 8 8 : Sample input and preparation 290 : Extraction stage 2 9 1 : Culture stage 292 : Amplification stage 293 : Pre-hybridization stage 294 : Detection stage 296 : First electrode 298 : Second electrode 3 00 : Programmable Delay 301: LOC device 328: white blood cell dialysis unit 3 7 6 : heat transfer column 3 7 8 : positive control probe 3 8 0 : negative control probe 3 82 : calibration chamber 3 8 4 : smell pole 3 8 6 : trouble 3 8 8 : Interpolar 3 9 0 : Retractable lancet 3 9 2 : Lancet release button 3 9 3 : Noisy 3 9 4 : Μ Ο S transistor 201211532 396: MOS transistor 398: MOS Crystal 400: MOS transistor 402: MOS transistor 404: MOS transistor 4 0 6 : node 408: film seal

4 1 0 :膜防護件4 1 0 : Membrane guard

492 : LOC 變體 VII492 : LOC Variant VII

5 1 8 : LOC 變體 VIII 5 94 :界面層 600 :旁路通道 602 :界面標靶通道 604 :界面廢料通道 63 4 : LED晶片支撐表面 63 6 :通氣通道5 1 8 : LOC variant VIII 5 94 : interface layer 600 : bypass channel 602 : interface target channel 604 : interface waste channel 63 4 : LED wafer support surface 63 6 : ventilation channel

641 : LOC XIV 67 3 : LOC 變體 674 : LOC 變體 677 : LOC 變體 682 :透析部 6 8 6 :透析步驟 692 :引子-聯結的線性探針 694 :擴增阻斷物 -147 201211532 6 9 6 :探針區域 698 :互補序列 700 :寡核苷酸引子 704 :莖-及-環探針 706 :互補序列 708 :莖股 710 :股 7 1 2 :第一光稜鏡 7 1 4 :第二光稜鏡 7 1 6 :第一鏡 71 8 :第二鏡 728: LOC 變體 X 740 :流速感測器 746 : LOC 變體 XI 748 :培養器饋入通道 7 5 0 :培養器入口 7 5 2 :培養器入口 7 5 4 :培養器入口 7 5 6 :培養器入口 7 6 6 :廢料貯存器 7 6 8 :肓終端 7 7 8 :組態 7 8 0 :組態 7 8 2 :組態 201211532 788 :差分成像器電路 7 9 0 :像素 792 :虛擬像素 7 94 :讀取—列 795 :虛擬讀取_列 796 :負控制探針 7 97 :(電晶體)641 : LOC XIV 67 3 : LOC Variant 674 : LOC Variant 677 : LOC Variant 682 : Dialysate 6 8 6 : Dialysis Step 692 : Primer-Linked Linear Probe 694 : Amplification Blocker - 147 201211532 6 9 6 : probe region 698 : complementary sequence 700 : oligonucleotide primer 704 : stem-and-loop probe 706 : complementary sequence 708 : stem strand 710 : strand 7 1 2 : first pupil 7 1 4 : Second aperture 7 1 6 : first mirror 71 8 : second mirror 728 : LOC variant X 740 : flow rate sensor 746 : LOC variant XI 748 : incubator feed channel 7 5 0 : incubator inlet 7 5 2 : incubator inlet 7 5 4 : incubator inlet 7 5 6 : incubator inlet 7 6 6 : waste reservoir 7 6 8 : 肓 terminal 7 7 8 : configuration 7 8 0 : configuration 7 8 2 : Configuration 201211532 788: Differential Imager Circuit 7 9 0: Pixel 792: Virtual Pixel 7 94: Read - Column 795: Virtual Read_Column 796: Negative Control Probe 7 97 : (Crystal)

7 9 8 :正控制探針 8 0 1 :(電晶體) 8 0 3 :像素電容器 8 05 :虛擬像素電容器 8 0 7 :開關 8 0 9 :開關 8 1 1 :開關 8 1 3 :開關 8 1 4 :加熱元件 8 1 5 :電容器放大器 8 1 7 :示差訊號 860 : ECL激發電極 8 70 : ECL激發電極7 9 8 : Positive control probe 8 0 1 : (Chip) 8 0 3 : Pixel capacitor 8 05 : Virtual pixel capacitor 8 0 7 : Switch 8 0 9 : Switch 8 1 1 : Switch 8 1 3 : Switch 8 1 4: heating element 8 1 5 : capacitor amplifier 8 1 7 : differential signal 860 : ECL excitation electrode 8 70 : ECL excitation electrode

Claims (1)

201211532 七、申請專利範圍 1. 一種用於生物樣本之基因分析的晶片上實驗室 (LOC)裝置,該LOC裝置包含: 入口,用以接受包括含有DNA和RNA之遺傳物質的 樣本; 支撐基材; 複數個試劑貯存器; 第一培養部,該第一培養部係與該等試劑貯存器之一 者流體連通,該試劑貯存器包含用於與該遺傳物質酵素反 應之酵素; 並行於該第一培養部之第二培養部,該第二培養部係 與該等試劑貯存器之一者流體連通,該試劑貯存器包含用 於與該遺傳物質酵素反應之酵素; 該第一培養部下游之第一核酸擴增部,用於擴增至少 —些該遺傳物質;以及 該第二培養部下游之並行於該第一核酸擴增部之第二 核酸擴增部,用於擴增至少一些該遺傳物質;其中, 該第一培養部、該第二培養部、該第一核酸擴增部以 及該第二核酸擴增部係皆被承載於該支撐基材之上。 2·如申請專利範圍第1項之LOC裝置,其中該第~ 核酸擴增部係第一聚合酶連鎖反應(PC R)部,其配置用以 擴增該遺傳物質中之DN A,且該第二核酸擴增部係第二 PCR部’其配置用以擴增該遺傳物質中之rnA。 3 _如申請專利範圍第2項之LOC裝置,其中該第— -150- 201211532 PCR部具有用以黏著至DN A中之第一組互補核酸序列之 第一組引子對,且該第二PCR部具有用以黏著至RN A中 之第二組互補核酸序列之第二組引子對,該第一組互補核 酸序列係與該第二組互補核酸序列不同。 4. 如申請專利範圍第3項之LOC裝置,其中該第一 PCR部和該第二PCR部係配置以不同擴增參數操作,該 擴增參數爲下列之至少一者: | 反轉錄酶類型; 聚合酶類型; 去氧核醣核酶三磷酸鹽濃度; 緩衝溶液; 熱循環時間; 熱循環重複次數;以及 在PCR特定相期間的溫度。 5. 如申請專利範圍第4項之LOC裝置,進一步包含 φ 光感測器;該第一 PCR部下游之第一雜交部;該第二 PCR部下游之第二雜交部;該第一雜交部具有用以與第— 標靶核酸序列雜交以形成探針-標靶雜交體之探針的第一 陣列’且該第二雜交部具有用以與第二標靶核酸序列雜交 以形成探針-標靶雜交體之探針的第二陣列,其中該光感 測器係配置以偵測該探針-標靶雜交體。 6. 如申請專利範圍第1項之l〇C裝置,其中該第一 核酸擴增部係第一恆溫核酸擴增部,其配置用於擴增該遺 傳物質中之DNA,且該第二核酸擴增部係第二恆溫核酸 -151 - 201211532 擴增部,其配置用於擴增該遺傳物質中之RNA ° 7. 如申請專利範圍第6項之L〇C裝置’其中該第一 恆溫核酸擴增部具有用以黏著至DNA中之第一組互補核 酸序列之第一組引子對,且該第二恆溫核酸擴增部具有用 以黏著至RNA中之第二組互補核酸序列之第二組引子 對,該第一組互補核酸序列係與該第二組互補核酸序列不 同。 8. 如申請專利範圍第7項之L0C裝置’其中該第一 恆溫核酸擴增部和該第二恆溫核酸擴增部係配置以不同擴 增參數操作,該擴增參數係至少爲下列中之一者: 反轉錄酶類型; 聚合酶類型; 去氧核醣核酶三磷酸鹽濃度; 緩衝溶液;以及 在核酸擴增期間的溫度。 9. 如申請專利範圍第8項之LOC裝置,進一步包含 光感測器:該第一恆溫核酸擴增部下游之第一雜交部;以 及該第二恆溫核酸擴增部下游之第二雜交部;該第一雜交 部具有用於與第一標靶核酸序列雜交以形成探針-標靶雜 交體之探針的第一陣列’以及該第二雜交部具有用於與第 二標靶核酸序列雜交以形成探針-標靶雜交體之探針的第 二陣列,其中該光感測器係配置用以偵測該探針—標靶雜 交體。 10. 如申請專利範圍第9項之LOC裝置,其中該第 -152- 201211532 一雜交部具有第一雜交腔室陣列用以包含該等第一探針, 使得各雜交腔室中之該等第一探針經配置以與該第一標靶 核酸序列之一者雜交,且該第二雜交部具有第二雜交腔室 陣列用以包含該等第二探針,使得各雜交腔室中之該等第 二探針經配置以與該第二標靶核酸序列之一者雜交。 11. 如申請專利範圍第10項之LOC裝置,其中該光 感測器係設置與該第一雜交腔室陣列和該第二雜交腔室陣 列配準之光二極體陣列。 12. 如申請專利範圍第1 1項之LOC裝置,其中該第 一恆溫核酸擴增部具有用以維持該樣本之反應溫度的核酸 擴增微通道,該核酸擴增微通道界定的橫跨該流之截面積 爲小於1 00,000平方微米之流動路徑。 13. 如申請專利範圍第12項之LOC裝置,其中該核 酸擴增微通道的橫跨該流之截面積爲小於1 6,000平方微 米。 14. 如申請專利範圍第1項之LOC裝置,其中該等 試劑貯存器各具有用以保留試劑於其中之表面張力閥,該 表面張力閥具有彎液面固定器,其用於固定該試劑之彎液 面直到與該樣本流接觸而移除該彎液面。 15·如申請專利範圍第4項之LOC裝置,進一步包 含CMOS電路、溫度感測器和微系統技術(MST)層,該 MST層包含該第一和第二PCR部,其中該CMOS電路係 設置在該支撐基材和該MST層之間,該CMOS電路係經 配置以利用溫度感測器輸出以回饋控制該第一和第二PCR -153- 201211532 部。 16. 如申請專利範圍第15項之LOC裝置,其中該第 一 PCR部具有PCR微通道,其中在使用期間,該樣本係 經熱循環’該PCR微通道界定的橫跨該流之截面積爲小 於1 00,000平方微米之流動路徑。 17. 如申請專利範圍第16項之LOC裝置,其中該 PCR微通道具有至少一個平行延伸到該PCR微通道之延 長加熱器元件。 18. 如申請專利範圍第〗7項之LOC裝置,其中該第 —PCR部具有複數個延長之PCR腔室,這些腔室各藉由 該PCR微通道之個別部形成,該PCR微通道具有以一系 列寬曲流形成之蜿蜒構型,該等寬曲流各係形成該等延長 之PCR腔室之一者的通道部。 19. 如申請專利範圍第18項之LOC裝置,其中該第 一 PCR部具有主動閥以在熱循環期間令液體留在該第一 PCR部和對來自該CMOS電路之活化訊號作出反應而允許 流體進入該第一雜交腔室陣列。 20. 如申請專利範圍第19項之LOC裝置,其中該主 動閥係具有經配置以固定阻止該液體之毛細驅動流的彎液 面之彎液面固定器的沸騰引發閥,以及用以沸騰該液體以 自該彎液面固定器解除該彎液面使其恢復毛細驅動流的加 熱器。 -154-201211532 VII. Patent Application Range 1. A wafer-on-lab (LOC) device for genetic analysis of biological samples, the LOC device comprising: an inlet for accepting a sample comprising genetic material containing DNA and RNA; a plurality of reagent reservoirs; a first culture portion, the first culture portion being in fluid communication with one of the reagent reservoirs, the reagent reservoir comprising an enzyme for reacting with the genetic material enzyme; a second culture portion of the culture portion, the second culture portion being in fluid communication with one of the reagent reservoirs, the reagent reservoir comprising an enzyme for reacting with the genetic material enzyme; downstream of the first culture portion a first nucleic acid amplification unit for amplifying at least some of the genetic material; and a second nucleic acid amplification portion downstream of the second culture portion and parallel to the first nucleic acid amplification portion for amplifying at least some of the genetic a substance; wherein the first culture part, the second culture part, the first nucleic acid amplification part, and the second nucleic acid amplification part are all carried on the support substrate. 2. The LOC device of claim 1, wherein the first nucleic acid amplification portion is a first polymerase chain reaction (PC R) portion configured to amplify DN A in the genetic material, and the The second nucleic acid amplification unit is a second PCR unit configured to amplify rnA in the genetic material. 3 - The LOC device of claim 2, wherein the -150-201211532 PCR portion has a first set of primer pairs for adhering to the first set of complementary nucleic acid sequences in DN A, and the second PCR And a second set of primer pairs for adhering to a second set of complementary nucleic acid sequences in RN A, the first set of complementary nucleic acid sequences being different from the second set of complementary nucleic acid sequences. 4. The LOC device of claim 3, wherein the first PCR portion and the second PCR portion are configured to operate with different amplification parameters, the amplification parameter being at least one of: | reverse transcriptase type ; polymerase type; deoxyriboribozyme triphosphate concentration; buffer solution; thermal cycle time; number of thermal cycle repetitions; and temperature during specific phase of PCR. 5. The LOC device of claim 4, further comprising a φ photosensor; a first hybridization portion downstream of the first PCR portion; a second hybridization portion downstream of the second PCR portion; the first hybridization portion a first array of probes for hybridizing to a first target nucleic acid sequence to form a probe-target hybrid and having a second hybridization portion for hybridizing to a second target nucleic acid sequence to form a probe A second array of probes of the target hybrid, wherein the light sensor is configured to detect the probe-target hybrid. 6. The device of claim 1, wherein the first nucleic acid amplification portion is a first constant temperature nucleic acid amplification portion configured to amplify DNA in the genetic material, and the second nucleic acid The amplification unit is a second thermostated nucleic acid-151 - 201211532 amplification unit configured to amplify the RNA in the genetic material. 7. The L〇C device of claim 6 is the first thermophilic nucleic acid. The amplification portion has a first set of primer pairs for adhering to the first set of complementary nucleic acid sequences in the DNA, and the second thermolabic nucleic acid amplification portion has a second set of complementary nucleic acid sequences for adhering to the RNA A set of primer pairs, the first set of complementary nucleic acid sequences differing from the second set of complementary nucleic acid sequences. 8. The L0C device of claim 7 wherein the first thermolab nucleic acid amplification portion and the second thermolab nucleic acid amplification portion are configured to operate with different amplification parameters, the amplification parameter being at least One: reverse transcriptase type; polymerase type; deoxyribonuclease triphosphate concentration; buffer solution; and temperature during nucleic acid amplification. 9. The LOC device of claim 8, further comprising a photo sensor: a first hybridization portion downstream of the first thermolabic nucleic acid amplification portion; and a second hybridization portion downstream of the second thermolabic nucleic acid amplification portion The first hybridization portion has a first array 'for hybridization with a first target nucleic acid sequence to form a probe-target hybrid, and the second hybridization portion has a second nucleic acid sequence for use with the second target A second array of probes that hybridize to form a probe-target hybrid, wherein the photosensor is configured to detect the probe-target hybrid. 10. The LOC device of claim 9, wherein the first-152-201211532 hybridization unit has a first hybridization chamber array for containing the first probes such that the first plurality of hybridization chambers a probe configured to hybridize to one of the first target nucleic acid sequences, and the second hybridization portion has a second hybridization chamber array to include the second probes such that each of the hybridization chambers The second probe is configured to hybridize to one of the second target nucleic acid sequences. 11. The LOC device of claim 10, wherein the photosensor is provided with an array of photodiodes that are aligned with the array of first hybridization chambers and the array of second hybridization chambers. 12. The LOC device of claim 11, wherein the first thermolab nucleic acid amplification portion has a nucleic acid amplification microchannel for maintaining a reaction temperature of the sample, the nucleic acid amplification microchannel defining a cross The cross-sectional area of the flow is a flow path of less than 100,000 square microns. 13. The LOC device of claim 12, wherein the nucleic acid amplification microchannel has a cross-sectional area across the flow of less than 1 6,000 square microns. 14. The LOC device of claim 1, wherein the reagent reservoirs each have a surface tension valve for retaining a reagent therein, the surface tension valve having a meniscus holder for immobilizing the reagent The meniscus is removed from contact with the sample stream to remove the meniscus. 15. The LOC device of claim 4, further comprising a CMOS circuit, a temperature sensor, and a microsystem technology (MST) layer, the MST layer including the first and second PCR sections, wherein the CMOS circuit system is configured Between the support substrate and the MST layer, the CMOS circuit is configured to control the first and second PCR-153-201211532 portions with feedback using a temperature sensor output. 16. The LOC device of claim 15, wherein the first PCR portion has a PCR microchannel, wherein during use, the sample is thermally cycled by the PCR microchannel defining a cross-sectional area across the flow. A flow path of less than 100,000 square microns. 17. The LOC device of claim 16, wherein the PCR microchannel has at least one elongated heater element extending parallel to the PCR microchannel. 18. The LOC device of claim 7, wherein the first PCR portion has a plurality of extended PCR chambers, each of the chambers being formed by an individual portion of the PCR microchannel, the PCR microchannel having A series of wide meandering flow formations, each of which forms a channel portion of one of the elongated PCR chambers. 19. The LOC device of claim 18, wherein the first PCR portion has an active valve to allow fluid to remain in the first PCR portion during thermal cycling and to react to activation signals from the CMOS circuit to allow fluid Entering the first hybridization chamber array. 20. The LOC device of claim 19, wherein the active valve has a boiling initiation valve configured to secure a meniscus holder that blocks a meniscus of the liquid drive flow of the liquid, and to boil the The liquid is a heater that releases the meniscus from the meniscus holder to restore the capillary drive flow. -154-
TW100119238A 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality TW201211532A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35601810P 2010-06-17 2010-06-17
US43768611P 2011-01-30 2011-01-30

Publications (1)

Publication Number Publication Date
TW201211532A true TW201211532A (en) 2012-03-16

Family

ID=46552736

Family Applications (22)

Application Number Title Priority Date Filing Date
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample
TW100119238A TW201211532A (en) 2010-06-17 2011-06-01 LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves

Family Applications Before (18)

Application Number Title Priority Date Filing Date
TW100119228A TW201209158A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119223A TW201219770A (en) 2010-06-17 2011-06-01 Test module incorporating spectrometer
TW100119235A TW201209403A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification after sample preparation in a dialysis section
TW100119224A TW201209402A (en) 2010-06-17 2011-06-01 Apparatus for loading oligonucleotide spotting devices and spotting oligonucleotide probes
TW100119234A TW201211540A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with dialysis and nucleic acid amplification
TW100119246A TW201209406A (en) 2010-06-17 2011-06-01 Test module with microfluidic device having LOC and dialysis device for separating pathogens from other constituents in a biological sample
TW100119232A TW201211241A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection, genetic analysis and proteomic analysis with dialysis, chemical lysis, incubation and tandem nucleic acid amplification
TW100119249A TW201211534A (en) 2010-06-17 2011-06-01 Microfluidic device with PCR section and diffusion mixer
TW100119248A TW201211243A (en) 2010-06-17 2011-06-01 Microfluidic device with dialysis section having stomata tapering counter to flow direction
TW100119253A TW201219776A (en) 2010-06-17 2011-06-01 Microfluidic device with conductivity sensor
TW100119227A TW201211538A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, chemical lysis and tandem nucleic acid amplification
TW100119226A TW201211240A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection with dialysis, thermal lysis, nucleic acid amplification and prehybridization filtering
TW100119241A TW201211533A (en) 2010-06-17 2011-06-01 Microfluidic device for simultaneous detection of multiple conditions in a patient
TW100119252A TW201219115A (en) 2010-06-17 2011-06-01 Microfluidic test module with flexible membrane for internal microenvironment pressure-relief
TW100119251A TW201209159A (en) 2010-06-17 2011-06-01 Genetic analysis LOC with non-specific nucleic acid amplification section and subsequent specific amplification of particular sequences in a separate section
TW100119245A TW201209405A (en) 2010-06-17 2011-06-01 Microfluidic device with flow-channel structure having active valve for capillary-driven fluidic propulsion without trapped air bubbles
TW100119231A TW201211539A (en) 2010-06-17 2011-06-01 LOC device for pathogen detection and genetic analysis with chemical lysis, incubation and tandem nucleic acid amplification
TW100119243A TW201211242A (en) 2010-06-17 2011-06-01 Microfluidic device for genetic and mitochondrial analysis of a biological sample

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW100119250A TW201211244A (en) 2010-06-17 2011-06-01 Test module with diffusive mixing in small cross sectional area microchannel
TW100119237A TW201209404A (en) 2010-06-17 2011-06-01 LOC device for genetic analysis which performs nucleic acid amplification before removing non-nucleic acid constituents in a dialysis section
TW100119254A TW201209407A (en) 2010-06-17 2011-06-01 Microfluidic device with reagent mixing proportions determined by number of active outlet valves

Country Status (1)

Country Link
TW (22) TW201209158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2887206A1 (en) * 2012-10-05 2014-04-10 Rustem F. Ismagilov Methods and systems for microfluidics imaging and analysis
TWI512286B (en) * 2013-01-08 2015-12-11 Univ Nat Yunlin Sci & Tech Microfluidic bio-sensing system
US11318479B2 (en) 2013-12-18 2022-05-03 Berkeley Lights, Inc. Capturing specific nucleic acid materials from individual biological cells in a micro-fluidic device
EP3167045A4 (en) * 2014-07-11 2018-01-17 Advanced Theranostics Inc. Point of care polymerase chain reaction device for disease detection
JP2016148574A (en) * 2015-02-12 2016-08-18 セイコーエプソン株式会社 Electronic component carrier device and electronic component inspection apparatus
US20160340632A1 (en) * 2015-04-22 2016-11-24 Berkeley Lights, Inc. Culturing station for microfluidic device
EP3275992A1 (en) * 2016-07-29 2018-01-31 Bayer Aktiengesellschaft Adapter for cell-culture vessel
JP2019050798A (en) * 2017-07-05 2019-04-04 株式会社Screenホールディングス Sample container
TWI671397B (en) * 2017-07-14 2019-09-11 國立中興大學 Granular body extraction device
WO2019013825A1 (en) * 2017-07-14 2019-01-17 Hewlett-Packard Development Company, L.P. Microfluidic valve
CN111316072B (en) * 2017-11-17 2021-12-07 美国西门子医学诊断股份有限公司 Sensor assembly and method of using the same
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof
JP7172988B2 (en) 2018-02-01 2022-11-16 東レ株式会社 Apparatus for evaluating particles in liquid and method for operating the same
EP3560593B1 (en) 2018-04-25 2024-06-05 OPTOLANE Technologies Inc. Cartridge for digital real-time pcr
US11366109B2 (en) * 2018-12-06 2022-06-21 Winmems Technologies Co., Ltd. Encoded microflakes
TWI711822B (en) * 2019-10-18 2020-12-01 國立成功大學 Miniature and intelligent urine sensing system
TWI739318B (en) * 2020-02-24 2021-09-11 國立陽明交通大學 An impedance-type chip for measuring instantaneous sweat pressure, a micro-control system for sweat pressure measurement, and a measuring method of instantaneous sweat pressure
CN115551639A (en) * 2020-04-21 2022-12-30 赫孚孟拉罗股份公司 High throughput nucleic acid sequencing with single molecule sensor array
TWI795735B (en) * 2021-02-26 2023-03-11 行政院農業委員會水產試驗所 Automatic portable detection system for pathogenic bacteria
CN115494833A (en) * 2021-06-18 2022-12-20 广州视源电子科技股份有限公司 Robot control method and device
TWI793671B (en) * 2021-07-09 2023-02-21 中國醫藥大學 Tumor microenvironment on chip and production method thereof
TWI800964B (en) * 2021-10-29 2023-05-01 宏碁股份有限公司 Power supply device and electronic system
TWI805205B (en) * 2022-01-26 2023-06-11 國立中正大學 High stability waveguide analog resonance biosensing system with self-compensation
TWI818596B (en) * 2022-06-22 2023-10-11 嘉碩生醫電子股份有限公司 Shear-mode liquid-phase sensor having groove structure and methods of manufacturing and using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814499B (en) * 2021-07-22 2023-09-01 中央研究院 Device for continuously producing and analyzing rna, and methods of producing rna by using the device

Also Published As

Publication number Publication date
TW201211240A (en) 2012-03-16
TW201209159A (en) 2012-03-01
TW201209404A (en) 2012-03-01
TW201209405A (en) 2012-03-01
TW201211538A (en) 2012-03-16
TW201209158A (en) 2012-03-01
TW201211243A (en) 2012-03-16
TW201209403A (en) 2012-03-01
TW201211244A (en) 2012-03-16
TW201209406A (en) 2012-03-01
TW201211534A (en) 2012-03-16
TW201209402A (en) 2012-03-01
TW201211241A (en) 2012-03-16
TW201211533A (en) 2012-03-16
TW201219776A (en) 2012-05-16
TW201211242A (en) 2012-03-16
TW201211540A (en) 2012-03-16
TW201219115A (en) 2012-05-16
TW201219770A (en) 2012-05-16
TW201211539A (en) 2012-03-16
TW201209407A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TW201211532A (en) LOC device with parallel incubation and parallel DNA and RNA amplification functionality
TW201213798A (en) Microfluidic thermal bend actuated surface tension valve
US20110160090A1 (en) Nanocrystal-Based Lateral Flow Microarrays and Low-Voltage Signal Detection Systems