TWI512286B - Microfluidic bio-sensing system - Google Patents

Microfluidic bio-sensing system Download PDF

Info

Publication number
TWI512286B
TWI512286B TW102100518A TW102100518A TWI512286B TW I512286 B TWI512286 B TW I512286B TW 102100518 A TW102100518 A TW 102100518A TW 102100518 A TW102100518 A TW 102100518A TW I512286 B TWI512286 B TW I512286B
Authority
TW
Taiwan
Prior art keywords
sensing
sensing system
microfluidic
solution
substrate
Prior art date
Application number
TW102100518A
Other languages
Chinese (zh)
Other versions
TW201428283A (en
Inventor
Jung Chuan Chou
Yi Hung Liao
shu ying Yang
Guan Chen Ye
Tsung Yi Cheng
Chien Cheng Chen
Da Gong Wu
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW102100518A priority Critical patent/TWI512286B/en
Publication of TW201428283A publication Critical patent/TW201428283A/en
Application granted granted Critical
Publication of TWI512286B publication Critical patent/TWI512286B/en

Links

Description

微流體生醫感測系統Microfluid biomedical sensing system

本發明係有關於一種感測系統,特別係有關於一種架構於微流體裝置之生醫感測系統。The present invention relates to a sensing system, and more particularly to a biomedical sensing system constructed in a microfluidic device.

醫療電子產業係一種協助人類疾病預防、診斷、減緩與治療之民生必需工業。隨著高齡社會來臨,帶來許多醫療照護與保健領域之需求,預期將促動市場快速成長。The medical electronics industry is a must-have industry that assists in the prevention, diagnosis, mitigation and treatment of human diseases. With the advent of old age, many demands for medical care and health care are expected to drive rapid market growth.

微機電技術為一跨機械、電子、醫療、生化、控制與光電等專業領域之新興科技,目標為開發微小精密產品或將現有產品微型化,提高其性能、品質、可靠度、精確度及附加價值,同時可藉由標準製程降低成本,目前廣泛應用於生醫檢測晶片。透過微機電技術可將小至幾微升(Microliter)甚至奈升(Nanoliter)體積之液體,導入內徑幾百微米(μm)之微流道內,藉以執行混合、分離、反應、偵測等機制。Microelectromechanical technology is an emerging technology in the fields of mechanics, electronics, medical, biochemical, control and optoelectronics. The goal is to develop tiny precision products or to miniaturize existing products to improve their performance, quality, reliability, precision and add-on. Value, while reducing costs through standard processes, is currently widely used in biomedical test wafers. Micro-electromechanical technology can be used to introduce liquids as small as a few microliters or even nanoliters into a microchannel with an inner diameter of several hundred micrometers (μm) for mixing, separation, reaction, detection, etc. mechanism.

目前而言,國內有關微流體分析檢測方面之專利文獻可參考中華民國專利之證書號第I305019、I314162、I247626、I310786以及I294965號。At present, the domestic patent documents on microfluidic analysis and detection can refer to the certificates of the Republic of China Patent Nos. I305019, I314162, I247626, I310786 and I294965.

有鑑於此,本發明提出一種微流體生醫感測系統,用於檢測一待測溶液之動態特性,包括至少一前端系統與一後端系統,其中前端系統包括:一微流道,形成有一檢測區域,且待測溶液流經過檢測區域;一感測器,對應前述檢測區域並且與微流道相互連接,其中前述感測器於動態情況下偵測前述待測溶液並產生至少一感測訊號;以及後端系統包括:一讀出電路裝置,耦接前述感測器以接收前述感測訊號;一資料擷取與處理裝置,耦接讀出電路裝置以將量測之類比訊號轉換為數位訊號;一訊號接收裝置,用以分析前述數位訊號,並進行執行儲存、分析、顯示等功能。In view of the above, the present invention provides a microfluidic biomedical sensing system for detecting dynamic characteristics of a solution to be tested, including at least one front end system and a back end system, wherein the front end system includes: a micro flow channel formed with a Detecting a region, and the solution to be tested flows through the detection region; a sensor corresponding to the detection region and interconnecting with the microchannel, wherein the sensor detects the solution to be tested under dynamic conditions and generates at least one sensing And a back-end system comprising: a readout circuit device coupled to the sensor to receive the sense signal; a data capture and processing device coupled to the readout circuit device to convert the analog signal to Digital signal; a signal receiving device for analyzing the digital signal and performing functions such as storing, analyzing, and displaying.

於一實施例中,前述前端系統更包括複數個感測器以陣列方式排列,其中每一感測器包括:一基板;一感測膜,形成於基板上方;一導線層,形成於基板上方並電性連接感測膜以及前述讀出電路裝置;以及一絕緣層,形成於感測膜以及導線層上方,其中絕緣層具有一開口對應感測膜之位置以暴露該感測膜。In one embodiment, the front end system further includes a plurality of sensors arranged in an array, wherein each sensor comprises: a substrate; a sensing film formed on the substrate; and a wire layer formed on the substrate And electrically connecting the sensing film and the foregoing readout circuit device; and an insulating layer formed on the sensing film and the wire layer, wherein the insulating layer has an opening corresponding to the position of the sensing film to expose the sensing film.

101‧‧‧微流體生醫感測系統101‧‧‧Microfluid biomedical sensing system

103‧‧‧前端系統103‧‧‧ Front End System

105‧‧‧後端系統105‧‧‧ Backend system

201‧‧‧微流道201‧‧‧Microchannel

205‧‧‧待測溶液注入口205‧‧‧Test solution injection port

207‧‧‧待測溶液流出口207‧‧‧Measure solution outlet

209‧‧‧檢測區域209‧‧‧Detection area

301‧‧‧感測器301‧‧‧ sensor

303‧‧‧基板303‧‧‧Substrate

305‧‧‧感測膜305‧‧‧Sensing film

307‧‧‧導線層307‧‧‧ wire layer

309‧‧‧絕緣層309‧‧‧Insulation

401‧‧‧微流體生醫感測裝置401‧‧‧Microfluid biomedical sensing device

403‧‧‧第一結合部403‧‧‧ first joint

405‧‧‧固定基板405‧‧‧Fixed substrate

407‧‧‧第二結合部407‧‧‧Second junction

503‧‧‧待測溶液503‧‧‧Test solution

505‧‧‧注射幫浦505‧‧Injection pump

507‧‧‧連接管507‧‧‧Connecting tube

509‧‧‧廢液儲存器509‧‧‧Waste reservoir

603-1~603-N‧‧‧感測器603-1~603-N‧‧‧Sensor

605-1~605-N‧‧‧放大器605-1~605-N‧‧‧Amplifier

607‧‧‧讀出電路裝置607‧‧‧Readout circuit device

609‧‧‧資料擷取與處理裝置609‧‧‧Information acquisition and processing device

611‧‧‧訊號接收裝置611‧‧‧Signal receiving device

61~64‧‧‧步驟61~64‧‧‧Steps

GND‧‧‧參考電位節點GND‧‧‧reference potential node

S1‧‧‧感測訊號S1‧‧‧Sensor signal

S1-1~S1-N‧‧‧感測訊號S1-1~S1-N‧‧‧Sensor signal

D1‧‧‧數位訊號D1‧‧‧ digital signal

D1-1~D1-N‧‧‧數位訊號D1-1~D1-N‧‧‧Digital Signal

第1圖表示本發明一實施例之微流體生醫感測系統示意圖。Fig. 1 is a schematic view showing a microfluid biomedical sensing system according to an embodiment of the present invention.

第2圖表示第1圖之微流體生醫感測系統的前端系統示意圖。Figure 2 is a schematic diagram showing the front end system of the microfluidic biomedical sensing system of Figure 1.

第3圖表示第2圖之前端系統的微流體生醫感測裝置爆炸圖。Figure 3 shows an exploded view of the microfluidic biosensor sensing device at the front end of Figure 2.

第4A圖表示第3圖之微流道俯視圖。Fig. 4A is a plan view showing the micro flow path of Fig. 3.

第4B圖為第4A圖沿X1-X2方向之剖視圖。Fig. 4B is a cross-sectional view taken along line X1-X2 of Fig. 4A.

第5圖表示第3圖之感測器爆炸圖。Fig. 5 is a view showing the explosion of the sensor of Fig. 3.

第6A圖表示本發明一實施例之微流體生醫感測系統的訊號傳輸示意圖。Figure 6A is a diagram showing the signal transmission of the microfluidic biomedical sensing system according to an embodiment of the present invention.

第6B圖表示本發明一實施例之微流體生醫感測系統的運作步驟流程圖。Figure 6B is a flow chart showing the operational steps of the microfluidic biomedical sensing system in accordance with an embodiment of the present invention.

第7圖表示第5圖之二氧化釕感測膜之阻抗分析圖。Fig. 7 is a view showing the impedance analysis of the cerium oxide sensing film of Fig. 5.

第8A圖表示本發明一實施例之微流體生醫感測系統流量為每秒鐘5μl之量測圖。Fig. 8A is a graph showing the flow rate of the microfluid biomedical sensing system of the embodiment of the present invention at a flow rate of 5 μl per second.

第8B圖表示本發明一實施例之微流體生醫感測系統流量為每秒鐘10μl之量測圖。Fig. 8B is a graph showing the flow rate of the microfluidic biosensor system of the embodiment of the present invention at a flow rate of 10 μl per second.

第8C圖表示本發明一實施例之微流體生醫感測系統(流量為每秒鐘15μl)之量測圖。Fig. 8C is a graph showing the measurement of a microfluid biomedical sensing system (flow rate of 15 μl per second) according to an embodiment of the present invention.

第8D圖表示本發明一實施例之微流體生醫感測系統(流量為每秒鐘20μl)之量測圖。Fig. 8D is a graph showing the measurement of a microfluid biomedical sensing system (flow rate of 20 μl per second) according to an embodiment of the present invention.

第8E圖表示本發明一實施例之微流體生醫感測系統(流量為每秒鐘15μl)之量測圖。Fig. 8E is a graph showing the measurement of the microfluid biomedical sensing system (flow rate of 15 μl per second) according to an embodiment of the present invention.

第8F圖表示本發明一實施例之微流體生醫感測系統(流量為每秒鐘30μl)之量測圖。Fig. 8F is a graph showing the microfluidic biomedical sensing system (flow rate of 30 μl per second) according to an embodiment of the present invention.

第1圖表示本發明一實施例之微流體生醫感測系統示意圖,其中微流體生醫感測系統101主要包括至少一前端系統103與一後端系統105。前端系統103利用一注射幫浦505將待測溶液503注入一微流體生醫感測裝置401,其中微流體生醫感測裝置401負責檢測待測溶液並可獲得至少一感測訊號S1;後端系統105則包括一讀出電路裝置607,耦接前述微流體生醫感測裝置401之一感測器301(如第3圖所示)以接收前述感測訊號S1,其中一資料擷取與處理裝置609耦接讀出電路裝置607並可將量測之類比訊號轉換為數位訊號D1,最後透過一訊號接收裝置611以執行儲存、分析、顯示等功能。以下將就前述前端系統103與後端系統105分別加以詳細說明。1 is a schematic diagram of a microfluid biomedical sensing system according to an embodiment of the present invention, wherein the microfluid biomedical sensing system 101 mainly includes at least one front end system 103 and a back end system 105. The front end system 103 injects the solution to be tested 503 into a microfluid biomedical sensing device 401 by using an injection pump 505, wherein the microfluid biomedical sensing device 401 is responsible for detecting the solution to be tested and obtaining at least one sensing signal S1; The end system 105 includes a readout circuit device 607 coupled to one of the microfluidic biosensor sensing devices 401 (shown in FIG. 3) to receive the sensing signal S1, wherein the data is captured. The processing device 609 is coupled to the readout circuit device 607 and can convert the analog signal of the measurement into the digital signal D1, and finally through the signal receiving device 611 to perform functions such as storage, analysis, display and the like. The front end system 103 and the back end system 105 will be described in detail below.

請先參閱第2圖,其表示第1圖之微流體生醫感測系統的前端系統示意圖,其中前端系統103包括一微流體生醫感測裝置401、一注射幫浦505、複數條連接管507以及一廢液儲存器509。透過注射幫浦505與連接管507可將待測溶液503注入微流體生醫感測裝置401,且微流體生醫感測裝置401中設有感測器(圖未示),可自溶液中量測得到感測訊號S1並將其傳遞至後端系統105。此外,經量測後之溶液再經由連接管507流回至廢液儲存器509收集。Please refer to FIG. 2, which shows a front end system diagram of the microfluid biomedical sensing system of FIG. 1 , wherein the front end system 103 includes a microfluid biomedical sensing device 401, an injection pump 505, and a plurality of connecting tubes. 507 and a waste liquid storage 509. The solution 503 to be tested can be injected into the microfluid biomedical sensing device 401 through the injection pump 505 and the connecting tube 507, and the microfluid biomedical sensing device 401 is provided with a sensor (not shown), which can be self-solved. The sense signal S1 is measured and passed to the backend system 105. Further, the measured solution is again returned to the waste liquid reservoir 509 via the connection pipe 507 for collection.

第3圖表示第2圖之微流體生醫感測裝置爆炸圖,如圖中所示,微流體生醫感測裝置401係由複數個第一結 合部403、複數個第二結合部407以及兩個固定基板405將微流道201與感測器301固定於該些固定基板405中間所組成。其中固定基板405較佳採用聚甲基丙烯酸甲酯(Poly-methyl methacrylate,PMMA),第一結合部403較佳採用為不鏽鋼螺帽,且第二結合部407較佳採用不鏽鋼螺絲。Figure 3 is a view showing the exploded view of the microfluidic biomedical sensing device of Figure 2, as shown in the figure, the microfluidic biomedical sensing device 401 is composed of a plurality of first knots. The joint portion 403, the plurality of second joint portions 407, and the two fixed substrates 405 are formed by fixing the micro flow passage 201 and the sensor 301 to the middle of the fixed substrates 405. The fixed substrate 405 is preferably made of poly-methyl methacrylate (PMMA), the first joint portion 403 is preferably a stainless steel nut, and the second joint portion 407 is preferably made of stainless steel screws.

此外,微流體生醫感測裝置401之微流道201通常包括至少一待測溶液注入口205、至少一待測溶液流出口207以及一檢測區域209,如第4A圖(俯視圖)以及第4B圖(剖視圖)所示。In addition, the microchannel 201 of the microfluid biomedical sensing device 401 generally includes at least one solution injection port 205 to be tested, at least one solution solution outlet port 207, and a detection region 209, such as FIG. 4A (top view) and 4B. Figure (cross-sectional view) shows.

前述微流道201之材料較佳採用二甲基矽氧烷(poly-dimethylsiloxane,PDMS),亦或可包括聚甲基丙烯酸甲酯(Poly-methyl methacrylate,PMMA)或其他塑性材料。透過將PDMS與固化劑以10:1之體積比例混合,並靜置在微流道201之一母模基材上,經過溫度120℃以及90分鐘之固化處理,最後脫膜即可得到微流道201。前述微流道201之母模基材可使用矽晶圓、玻璃與其他塑膠基材並透過標準微機電使用之黃光微影技術製作。於本發明之一實施例中的微流道201尺寸如下:高為100μm、寬為100μm、深為100μm;以及檢測區域腔體之高為100μm、寬為200μm、深為100μm。The material of the micro flow channel 201 is preferably poly-dimethyl siloxane (PDMS), or may include poly-methyl methacrylate (PMMA) or other plastic materials. By mixing PDMS and curing agent in a volume ratio of 10:1, and standing on a master substrate of microchannel 201, curing at a temperature of 120 ° C and 90 minutes, finally removing the film to obtain a microfluid Road 201. The master substrate of the micro flow channel 201 can be fabricated using a ruthenium wafer, glass and other plastic substrates and through the yellow lithography technology used by standard MEMS. The size of the microchannel 201 in one embodiment of the present invention is as follows: height is 100 μm, width is 100 μm, depth is 100 μm; and the detection region cavity has a height of 100 μm, a width of 200 μm, and a depth of 100 μm.

第5圖表示前述微流體生醫感測裝置401之感測器301爆炸圖,其中感測器301包括一基板303;一圖形化之 感測膜305形成於基板303之上;一導線層307形成於基板303之上並與感測膜305電性接觸;以及一絕緣層309覆蓋於感測膜305與導線層307之上,其中絕緣層309具有複數個開口,以將感測膜305暴露在外。Figure 5 is a view showing the explosion of the sensor 301 of the microfluidic biosensor sensing device 401, wherein the sensor 301 includes a substrate 303; The sensing film 305 is formed on the substrate 303; a wire layer 307 is formed on the substrate 303 and is in electrical contact with the sensing film 305; and an insulating layer 309 is over the sensing film 305 and the wire layer 307, wherein The insulating layer 309 has a plurality of openings to expose the sensing film 305.

此外,基板303較佳採用可撓式塑膠基板,並可透過射頻濺鍍方式以沉積一圖形化之二氧化釕(RuO2 )薄膜,其中感測膜305可形成複數個直徑0.8mm之圓形。接著,透過網版印刷方式將銀膠形成於基板303之上,並以攝氏100℃至140℃之溫度烘烤20至40分鐘使銀膠硬化,以形成導線層307。其中導線層307包括複數條導線,且每一導線之一端係與感測膜305電性接觸,而另一端則與讀出電路裝置607(如第1圖所示)耦接。應了解的是,導線層307之材料亦可包括其他導電膠體。最後,以網版印刷方式將環氧樹脂(或其他絕緣膠)形成於感測膜305與導線層307之上,並以攝氏120℃至140℃之溫度烘烤,使環氧樹脂固定,形成絕緣層309。於本實施例中之絕緣層309形成有複數個直徑1mm並且對應感測膜305之圓形開口。需要說明的是,感測器301係對應微流道201之檢測區域209並且與微流道201相互結合。In addition, the substrate 303 is preferably a flexible plastic substrate, and can be deposited by a radio frequency sputtering method to deposit a patterned ruthenium dioxide (RuO 2 ) film, wherein the sensing film 305 can form a plurality of circles having a diameter of 0.8 mm. . Next, silver paste is formed on the substrate 303 by screen printing, and baked at a temperature of 100 ° C to 140 ° C for 20 to 40 minutes to harden the silver paste to form a wiring layer 307. The wire layer 307 includes a plurality of wires, and one end of each wire is in electrical contact with the sensing film 305, and the other end is coupled to the readout circuit device 607 (shown in FIG. 1). It should be understood that the material of the wire layer 307 may also include other conductive colloids. Finally, an epoxy resin (or other insulating glue) is formed on the sensing film 305 and the wire layer 307 by screen printing, and baked at a temperature of 120 ° C to 140 ° C to fix the epoxy resin. Insulation layer 309. The insulating layer 309 in this embodiment is formed with a plurality of circular openings having a diameter of 1 mm and corresponding to the sensing film 305. It should be noted that the sensor 301 corresponds to the detection area 209 of the micro flow channel 201 and is combined with the micro flow channel 201.

接著請參閱第6A圖表示之本發明一實施例的微流體生醫感測系統之訊號傳輸架構圖,如圖中所示,複數個如第5圖所示之感測器603-1至603-N係以陣列方式排列,其中 感測器603-1至603-N可以共用一個基板303,亦或分別使用複數個基板303且與微流道201(圖未示)相互結合,據此以同時量測複數個待測溶液並且得到複數個感測訊號S1(包括S1-1至S1-N)。Next, please refer to the signal transmission architecture diagram of the microfluid biomedical sensing system according to an embodiment of the present invention shown in FIG. 6A. As shown in the figure, a plurality of sensors 603-1 to 603 as shown in FIG. -N series are arranged in an array, wherein The sensors 603-1 to 603-N may share one substrate 303, or may use a plurality of substrates 303 and are combined with the micro flow channels 201 (not shown), thereby simultaneously measuring a plurality of solutions to be tested and A plurality of sensing signals S1 (including S1-1 to S1-N) are obtained.

另外,讀出電路裝置607中可包括複數個放大器605-1至605-N,其中放大器605-1至605-N之輸入端分別與相對應之感測器603-1至603-N電性連接,且另一輸入端則電性連接至一參考電位節點GND。前述放大器605-1至605-N更可為儀表放大器,其具有高輸入阻抗之優勢,可完整載入來自感測器603-1至603-N之複數個感測訊號S1-1至S1-N,以及透過其低輸出阻抗之特性以將放大後之感測訊號S1-1至S1-N完整載入至傳輸節點(與資料擷取與處理裝置609連接)。於一實施例中,放大器605-1至605-N之電壓放大倍率亦可設定為1,以作為一電壓隨耦器。而資料擷取與處理裝置609可包括單一轉換器或多重轉換器以進行訊號處理與多工取樣,並將類比訊號轉換為數位訊號D1(包括D1-1至D1-N)。訊號接收裝置611則可包括個人電腦、筆記型電腦、現場可開啟程式之閘極陣列晶片或一數位訊號處理器。In addition, the readout circuit device 607 may include a plurality of amplifiers 605-1 to 605-N, wherein the inputs of the amplifiers 605-1 to 605-N are respectively electrically connected to the corresponding sensors 603-1 to 603-N. Connected, and the other input is electrically connected to a reference potential node GND. The aforementioned amplifiers 605-1 to 605-N are more instrumentation amplifiers, which have the advantage of high input impedance, and can completely load a plurality of sensing signals S1-1 to S1- from the sensors 603-1 to 603-N. N, and through its low output impedance characteristics, fully load the amplified sensing signals S1-1 to S1-N to the transmitting node (connected to the data acquisition and processing device 609). In one embodiment, the voltage amplification of the amplifiers 605-1 to 605-N can also be set to 1 as a voltage follower. The data acquisition and processing device 609 can include a single converter or multiple converters for signal processing and multiplex sampling, and converts the analog signals into digital signals D1 (including D1-1 through D1-N). The signal receiving device 611 can include a personal computer, a notebook computer, a gate array chip of a field openable program, or a digital signal processor.

上述實施例中之微流體生醫感測系統的運作步驟流程圖則如第6B圖所示,其中微流體生醫感測裝置401於檢測待測溶液503之後可產生複數個感測訊號S1(步驟61); 並且由讀出電路裝置607接收該些感測訊號S1(步驟62);再經由資料擷取與處理裝置609針對該些感測訊號進行擷取,並且由類比訊號轉換為數位訊號D1之處理(步驟63);最後訊號接收裝置611接收該數位訊號D1,並執行儲存、分析、顯示等功能(步驟64)。The flowchart of the operation steps of the microfluidic biomedical sensing system in the above embodiment is as shown in FIG. 6B, wherein the microfluid biomedical sensing device 401 can generate a plurality of sensing signals S1 after detecting the solution 503 to be tested ( Step 61); And receiving, by the readout circuit device 607, the sensing signals S1 (step 62); and then capturing, by the data acquisition and processing device 609, the analog signals, and converting the analog signals into digital signals D1 ( Step 63); finally, the signal receiving device 611 receives the digital signal D1 and performs functions of storing, analyzing, displaying, etc. (step 64).

綜上所述,本發明所提供之微流體生醫感測系統101可於動態情況下量測複數個待測溶液503的特性值,其中該特性值可為電子傳輸量或是pH值等,且待測溶液503可包括各種酵素溶液以及離子溶液。In summary, the microfluidic biomedical sensing system 101 provided by the present invention can measure the characteristic values of the plurality of solutions 503 to be tested under dynamic conditions, wherein the characteristic value can be an electron transfer amount or a pH value, etc. And the solution to be tested 503 may include various enzyme solutions as well as ionic solutions.

需要說明的是,於本發明一實施例中,前述感測膜305透過電化學阻抗分析(Electrochemical Impedance Spectroscopy,EIS)之方法以測得待測溶液503的特性值。請參閱第7圖,若於待測液溶中添加赤血鹽(0.06M~1M),並觀察二氧化釕感測膜305之電子傳輸阻抗可得到:赤血鹽之添加量越高,其電子傳輸阻抗越低,因此曲線半徑越低。It should be noted that, in an embodiment of the invention, the sensing film 305 passes the method of Electrochemical Impedance Spectroscopy (EIS) to measure the characteristic value of the solution 503 to be tested. Please refer to Fig. 7. If red blood salt (0.06M~1M) is added to the solution to be tested, and the electron transport impedance of the cerium oxide sensing film 305 is observed, the higher the amount of red blood salt added, The lower the electron transmission impedance, the lower the curve radius.

第8A~8F圖則表示本發明另一實施例之微流體生醫感測系統用於量測磷酸鹽緩衝溶液pH1至pH13之量測圖,其中注射幫浦之流量分別為每秒鐘5μl、10μl、15μl、20μl、25μl、30μl。由結果可得知微流體生醫感測系統之最佳流量為15μl,且二氧化釕感測膜之感測訊號由感測窗口S1至S6之感測度(Sensitivity)分別為55.33mV/pH、56.81mV/pH、56.90 mV/pH、56.01mV/pH、55.75mV/pH、55.12mV/pH;線性度(Linearity)分別為0.987、0.986、0.984、0.985、0.983、0.986。Figures 8A-8F show a microfluidic biosensing system according to another embodiment of the present invention for measuring the pH of the phosphate buffer solution from pH 1 to pH 13, wherein the flow rate of the injection pump is 5 μl per second, 10 μl, 15 μl, 20 μl, 25 μl, 30 μl. It can be seen from the results that the optimal flow rate of the microfluidic biosensing system is 15 μl, and the sensing signal of the ceria sensing film is 55.33 mV/pH from the sensing windows S1 to S6, respectively. 56.81mV/pH, 56.90 mV/pH, 56.01 mV/pH, 55.75 mV/pH, 55.12 mV/pH; linearity was 0.987, 0.986, 0.984, 0.985, 0.983, 0.986, respectively.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. Those skilled in the art having the ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

101‧‧‧微流體生醫感測系統101‧‧‧Microfluid biomedical sensing system

103‧‧‧前端系統103‧‧‧ Front End System

105‧‧‧後端系統105‧‧‧ Backend system

401‧‧‧微流體生醫感測裝置401‧‧‧Microfluid biomedical sensing device

503‧‧‧待測溶液503‧‧‧Test solution

505‧‧‧注射幫浦505‧‧Injection pump

509‧‧‧廢液儲存器509‧‧‧Waste reservoir

607‧‧‧讀出電路裝置607‧‧‧Readout circuit device

609‧‧‧資料擷取與處理裝置609‧‧‧Information acquisition and processing device

611‧‧‧訊號接收裝置611‧‧‧Signal receiving device

S1‧‧‧感測訊號S1‧‧‧Sensor signal

D1‧‧‧數位訊號D1‧‧‧ digital signal

Claims (14)

一種微流體生醫感測系統,用於檢測一待測溶液之動態特性,包括至少一前端系統與一後端系統,其中該前端系統包括:一微流道,形成有一檢測區域,其中該待測溶液流經過該檢測區域;一感測器,對應該檢測區域並且與該微流道相互結合,其中該感測器於動態情況下偵測該待測溶液並產生至少一感測訊號,其中該感測器包括:一基板;一感測膜,形成於該基板上方;一導線層,形成於該基板上方並電性連接該感測膜以及一讀出電路裝置;一絕緣層,形成於該感測膜以及該導線層上方,其中該絕緣層具有一開口,對應該感測膜之位置以暴露該感測膜;以及該後端系統包括:該讀出電路裝置,耦接該感測器以接收該感測訊號;一資料擷取與處理裝置,耦接該讀出電路裝置以將量測之類比訊號轉換為數位訊號;一訊號接收裝置,用以分析該數位訊號,並執行儲存、分析或顯示功能。 A microfluidic biomedical sensing system for detecting dynamic characteristics of a solution to be tested, comprising at least one front end system and a back end system, wherein the front end system comprises: a micro flow channel, forming a detection area, wherein the Measuring a solution flow through the detection area; a sensor corresponding to the detection area and being combined with the micro flow path, wherein the sensor detects the solution to be tested under dynamic conditions and generates at least one sensing signal, wherein The sensor includes: a substrate; a sensing film formed on the substrate; a wire layer formed on the substrate and electrically connected to the sensing film and a readout circuit device; an insulating layer formed on The sensing film and the wire layer, wherein the insulating layer has an opening corresponding to the position of the sensing film to expose the sensing film; and the back end system includes: the readout circuit device coupled to the sensing The device is configured to receive the sensing signal; a data acquisition and processing device coupled to the readout circuit device to convert the analog signal of the measurement into a digital signal; and a signal receiving device for analyzing the digital signal And performs storage, analysis or display. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該待測溶液之特性包括pH值或電子傳輸量,且該待測溶液為酵素溶液或離子溶液。 The microfluidic biomedical sensing system of claim 1, wherein the characteristic of the solution to be tested comprises a pH value or an electron transporting amount, and the solution to be tested is an enzyme solution or an ionic solution. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該前端系統更包括複數個以陣列方式排列之感測器。 The microfluidic biomedical sensing system of claim 1, wherein the front end system further comprises a plurality of sensors arranged in an array. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該基板為可撓式基板。 The microfluid biomedical sensing system of claim 1, wherein the substrate is a flexible substrate. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該感測膜之材料包括釕氧化物。 The microfluid biomedical sensing system of claim 1, wherein the material of the sensing film comprises cerium oxide. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該導線層之材料包括銀膠,該絕緣層之材料包括環氧樹脂。 The microfluidic biomedical sensing system of claim 1, wherein the material of the wire layer comprises silver paste, and the material of the insulating layer comprises an epoxy resin. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該感測膜使用電化學阻抗分析以分析該待測溶液之電子傳輸量。 The microfluidic biomedical sensing system of claim 1, wherein the sensing membrane uses electrochemical impedance analysis to analyze the amount of electron transport of the solution to be tested. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該微流道之材料包括二甲基矽氧烷、聚甲基丙烯酸甲酯或塑性材料。 The microfluidic biomedical sensing system of claim 1, wherein the material of the microchannel comprises dimethyl siloxane, polymethyl methacrylate or a plastic material. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該微流道的母模基材包括矽晶圓、玻璃或塑膠基材。 The microfluid biomedical sensing system of claim 1, wherein the master substrate of the microchannel comprises a tantalum wafer, a glass or a plastic substrate. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該前端系統更包括複數個第一結合部、複數個第二結合部以及複數個固定基板,其中該微流道與該感測器設置於該些固定基板中間,且該些第一結合部與該些第二結合部分別對應連接以固定該微流道、該感測器與該些固定基板。 The microfluidic biomedical sensing system of claim 1, wherein the front end system further comprises a plurality of first bonding portions, a plurality of second bonding portions, and a plurality of fixed substrates, wherein the micro flow channels and the The sensor is disposed in the middle of the fixed substrates, and the first bonding portions and the second bonding portions are respectively connected to fix the micro flow channel, the sensor and the fixed substrates. 如申請專利範圍第10項所述之微流體生醫感測系統,其中該固定基板之材料包括聚甲基丙烯酸甲酯或是不鏽鋼,且該些第一結合部與該些第二結合部分別為不鏽鋼螺絲與螺帽。 The microfluidic biomedical sensing system of claim 10, wherein the material of the fixed substrate comprises polymethyl methacrylate or stainless steel, and the first bonding portion and the second bonding portions are respectively For stainless steel screws and nuts. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該讀出電路裝置包括一放大器。 The microfluidic biomedical sensing system of claim 1, wherein the readout circuit device comprises an amplifier. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該資料擷取與處理裝置包括單一轉換器或多重轉換器,以進行訊號處理與多工取樣,並將類比訊號轉換為數位訊號。 The microfluidic biomedical sensing system of claim 1, wherein the data acquisition and processing device comprises a single converter or a multiple converter for signal processing and multiplex sampling, and converting the analog signal to Digital signal. 如申請專利範圍第1項所述之微流體生醫感測系統,其中該訊號接收裝置包括個人電腦、筆記型電腦、現場可開啟程式之閘極陣列晶片或數位訊號處理器。 The microfluidic biomedical sensing system of claim 1, wherein the signal receiving device comprises a personal computer, a notebook computer, a field openable gate array chip or a digital signal processor.
TW102100518A 2013-01-08 2013-01-08 Microfluidic bio-sensing system TWI512286B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102100518A TWI512286B (en) 2013-01-08 2013-01-08 Microfluidic bio-sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102100518A TWI512286B (en) 2013-01-08 2013-01-08 Microfluidic bio-sensing system

Publications (2)

Publication Number Publication Date
TW201428283A TW201428283A (en) 2014-07-16
TWI512286B true TWI512286B (en) 2015-12-11

Family

ID=51726035

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102100518A TWI512286B (en) 2013-01-08 2013-01-08 Microfluidic bio-sensing system

Country Status (1)

Country Link
TW (1) TWI512286B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024327A1 (en) * 2002-09-12 2004-03-25 Intel Corporation Microfluidic apparatus with integrated porous-substrates/sensor for real-time(bio)chemical molecule detection
TW200528389A (en) * 2004-02-20 2005-09-01 Nat Univ Chung Hsing Method of manufacturing microchip and product made by same
TW200639397A (en) * 2005-05-10 2006-11-16 Tse-Chuan Chou Multi-purpose electrochemical type sensing system integrated with wireless telemetry
US20100200428A1 (en) * 2007-07-26 2010-08-12 I-Sens, Inc. Microfluidic sensor complex structure
CN201681080U (en) * 2010-05-24 2010-12-22 宁波大学 Digital micro-fluid generating device
TW201105971A (en) * 2009-07-06 2011-02-16 Sony Corp Microfluidic device having onboard tissue or cell sample handling capability
TW201219776A (en) * 2010-06-17 2012-05-16 Geneasys Pty Ltd Microfluidic device with conductivity sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024327A1 (en) * 2002-09-12 2004-03-25 Intel Corporation Microfluidic apparatus with integrated porous-substrates/sensor for real-time(bio)chemical molecule detection
US6806543B2 (en) * 2002-09-12 2004-10-19 Intel Corporation Microfluidic apparatus with integrated porous-substrate/sensor for real-time (bio)chemical molecule detection
TW200528389A (en) * 2004-02-20 2005-09-01 Nat Univ Chung Hsing Method of manufacturing microchip and product made by same
TW200639397A (en) * 2005-05-10 2006-11-16 Tse-Chuan Chou Multi-purpose electrochemical type sensing system integrated with wireless telemetry
US20100200428A1 (en) * 2007-07-26 2010-08-12 I-Sens, Inc. Microfluidic sensor complex structure
TW201105971A (en) * 2009-07-06 2011-02-16 Sony Corp Microfluidic device having onboard tissue or cell sample handling capability
CN201681080U (en) * 2010-05-24 2010-12-22 宁波大学 Digital micro-fluid generating device
TW201219776A (en) * 2010-06-17 2012-05-16 Geneasys Pty Ltd Microfluidic device with conductivity sensor

Also Published As

Publication number Publication date
TW201428283A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Xu et al. Silicon-based sensors for biomedical applications: a review
US10690608B2 (en) Sensor array
US20130315782A1 (en) Biochip and fabrication thereof
US11058316B2 (en) Dielectric sensing for sample characterization
Manickam et al. A CMOS electrochemical impedance spectroscopy biosensor array for label-free biomolecular detection
CN103975242B (en) Electronics effluent testing arrangement and method
Inoue et al. LSI-based amperometric sensor for bio-imaging and multi-point biosensing
Garner et al. A multichannel DNA SoC for rapid point-of-care gene detection
US10478815B2 (en) Biochip device
KR101906447B1 (en) Electric-field colorectal sensor
US20190339252A1 (en) Microcapillary sensor array
CN109298061B (en) Portable micro cancer antigen multi-parameter quantitative sensing detection system and method
US20210003528A1 (en) HANDHELD SENSOR FOR RAPID, SENSITIVE DETECTION AND QUANTIFICATION OF SARS-CoV-2 FROM SALIVA
Bausch et al. Ultra-fast cell counters based on microtubular waveguides
CN108507910A (en) A kind of microfluidic chip devices of detection Atmospheric particulates
CN105158310B (en) A kind of micro-fluidic detection chip and its application based on micro-porous electrode
US20210239635A1 (en) Planar conformal circuits for diagnostics
TWI512286B (en) Microfluidic bio-sensing system
CN103604854B (en) Biosensor array based on ion-sensitive field effect transistor
CN108279202B (en) Particle counting device and method with adjustable detection precision
TWI537560B (en) Microfluidic glucose-sensing device and bio-sensing system comprising the same
JP5086493B2 (en) Apparatus for measuring biological material and method for manufacturing the same
TW201604528A (en) Microfluidic bio-sensing device
Wang et al. A fast CEA analyzer prototype for point of care testing
JP2023509773A (en) solid state ion selective electrode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees