TW201035338A - Cu-co-si copper alloy for use in electronics, and manufacturing method therefor - Google Patents

Cu-co-si copper alloy for use in electronics, and manufacturing method therefor Download PDF

Info

Publication number
TW201035338A
TW201035338A TW099105394A TW99105394A TW201035338A TW 201035338 A TW201035338 A TW 201035338A TW 099105394 A TW099105394 A TW 099105394A TW 99105394 A TW99105394 A TW 99105394A TW 201035338 A TW201035338 A TW 201035338A
Authority
TW
Taiwan
Prior art keywords
mass
average
grain size
crystal grain
copper alloy
Prior art date
Application number
TW099105394A
Other languages
Chinese (zh)
Other versions
TWI422692B (en
Inventor
Takuma Onda
Hiroshi Kuwagaki
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW201035338A publication Critical patent/TW201035338A/en
Application granted granted Critical
Publication of TWI422692B publication Critical patent/TWI422692B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a Cu-Co-Si alloy that has mechanical and electrical properties suitable for a copper alloy for use in electronics, and has uniform mechanical properties. Said copper alloy contains 0.5-4.0% cobalt and 0.1-1.2% silicon by mass, with the remainder comprising copper and unavoidable impurities. The mean grain size is 15-30 [μ]m, and the difference in diameter between the smallest and largest grains in each 0.5 mm2 area is, on average, no more than 10 [μ]m.

Description

201035338 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種析出硬化型銅合金,尤其是 種適用於各種電子機器零件之Cu—c。—si系銅合金。; 【先前技術】 對於連接器,開關,繼電器,接腳,端子,導 Ο ❹ 之各種電子機器零件中所使用之電子材料用銅合金而^, 係要求其兼具有高強度及高導電性(或導熱性)作為基: !·生近年來,電子零件之高積體化及小型化,薄壁化魚速 發展,與此相對應地,對於電子機器零件中所使用之:合 金的要求水準亦逐漸提高。 口 從高強度及高導電性之觀點’作為電子材料用銅人 金:析出硬化型之銅合金的使用量逐漸增加,而代替以: 磷:銅’黄銅等所代表之固溶強化型銅合金。冑出硬化型 •s 係藉由對經固溶處理之過飽和固溶體進行時效产 理,使微細之析出物均勾分散,讓合金強度變高,同時: 固溶元素量’提升導電性。因此,可得到強度: 材料月"等之機械性f優異’且導電性’導熱性亦良好之 .:斤出硬化型鋼合金中’一般被稱為卡遜系合金“㈣⑽ 及曲t CU~ Nl— ^系銅合金,為兼具較高導電性,強度,201035338 VI. Description of the Invention: [Technical Field] The present invention relates to a precipitation hardening type copper alloy, particularly a Cu-c suitable for use in various electronic machine parts. —si is a copper alloy. [Prior Art] Copper alloys for electronic materials used in various electronic equipment parts such as connectors, switches, relays, pins, terminals, and guides are required to have high strength and high electrical conductivity. (or thermal conductivity) as a base: In recent years, the electronic components have been highly integrated and miniaturized, and the thin-walled fish has developed rapidly. Correspondingly, the requirements for alloys used in electronic machine parts are: The level has gradually increased. From the viewpoint of high strength and high electrical conductivity, 'the use of copper human gold as an electronic material: the use amount of precipitation hardening type copper alloy is gradually increased, instead of: solid solution strengthening copper alloy represented by phosphorus: copper 'brass or the like . The hardening type is based on the aging treatment of the solution-treated supersaturated solid solution, so that the fine precipitates are dispersed and the alloy strength is increased, and the amount of solid solution element is increased. Therefore, the strength can be obtained: the material month "the mechanical f is excellent 'and the conductivity' thermal conductivity is also good.: In the hardened steel alloy, 'generally known as the Cassson alloy' (4) (10) and the t CU~ Nl—^ is a copper alloy that combines high electrical conductivity and strength.

加工性之代表性銅合金,係'業界目前正如火如荼進 行開發之人A 口金之—。此銅合金,係藉由在銅基質令析出微 3 201035338 = Nl-Sl系金屬間化合物粒子,來謀求強度與導電率之 升。有嘗試藉由在卡遜合金中添加〜來謀求特性之更加提 於專利文獻1中,記載有co會和w同樣地與81 化合物,而提升機械強度,當對Cu〜c〇— 、 效處理之情形,相較於Cu—Ni—Si 、合金進行時 電性均|料金L度,導 % j•生均會變佳,若在成本上允許的話, 备人人 、擇Cu — Co — Si 系…添加Co時之最佳添加量為〇〇5〜2〇鲁 於專利文獻2,記載有應使鈷為 由於钻含有量若少於叫則含…二㈣。此係 蔣合τ\ a 物第2相的析出 超過2.5%,則將會析出過量的第2相粒子, =工=低二及會使銅合金具有所不期望的強磁 …中佳為’“有量為約〇_5%〜約1.5%,於最佳 之形態中,鈷含有量為約〇·7%〜約12%。 1主 專利文獻3所記載之銅合金, 束哉要疋為了要利用作為 車栽用及通信機用等之端子,連接 勹 产A n , $^材枓而開發,使Co濃 又為0.5〜2.5Wt%之具有高導電性, 糸人人 τ 没的Cu — Co ~ Si 糸3金。根據專利文獻3,將 因,接m /晨度規疋在上述範圍的原 係因為若添加量未達0.5質量% 声,_ 里/0則無去得到所欲之強 度右Co超過2.5質量%,則雖鈇 導蛩$ g '、、'、可谋未向強度化,但是 導電率顯著下降’並且熱加工性亦 〜2,〇f4%。 化,Co較佳為0.5 專利文獻4所記載之銅合金,係為了實現高強度,高 201035338 導電性及高彎曲加工性 〜3.〇Wt%。記載㈣出者,其將C〇濃度規定在0.1 若 ,農度限定在此範圍的原因,係因為 右未達此組成範圍時,則 马 ^ ^ ^ ^ r ® Bi f不具有上述效果,又若添加超 幻该組成粑圍時,則由於 ^ 造裂縫的原因,故不佳。m成結晶相’成為縳 Ο ο [專利文獻1]日本特開平1卜2则號公報 =利文獻2]日本特表购一则7號公報 利文獻3]日本特開2008 - 248333號公報 [專利文獻4]日本特開平9-2G943號公報 【發明内容】 如上述,雖然已知添加C〇有助 側,則將會對製造性,合金特性帶來不良二 1系合金中,添加高濃度Co時之特性 ° 究。然而,係認為(:0較州可更力文良並未被充分研 ^ n 可更加提升機械強度及導雷祕 二“系合金中,藉由進-步提高C。、農卢!’ 能得到特性之提升。 门Lo農度,有可 另一方面,若進一步提高c〇濃户 施固溶處理,此種情形,再紝 '4須更高溫來實 丨巧V 丹0日日粒容易叙士儿 處理步驟之前段所析出的結晶物、析:又’固溶 成為障礙物而阻礙結晶粒之成長。因此,人第-相粒子會 粒的不均—性將會變大,而發生合 α金中之再結晶 大的問題。 ,機械特性之偏差變 5 201035338 μ ’本Mum ’係提供_種兼具高導電性、 南強度及高-曲加工性’且機械特性均-之含有高濃度co 之Cu-C〇-si系合金。又,本發明之另一課題,係提供— 種用以製造此種Cu—Co — Si系合金之方法。 本發明人對減小再結晶极之偏差的方法進行潛心研究 後,得到如下見解:於含有高丨農度CqCu—c〇—以系合 金的製造中,在固溶處理步驟之前段,預先使微細之第二 相粒子儘可能以等間隔而同樣地析出於銅母相中,藉此, 即使以較高之溫度進行固溶處理,結晶粒因第二相粒子之 釘扎效果(pinning effect)而不舍燧)呈+丄 个會隻仔太大,而且釘扎效果會 均勾地作用於整個銅母相中,因此亦可使成長之再結晶板 的大小均-化。而且,已知其結果為可得到機械特性之偏 差小的Cu- Co — Si系合金。 以上述見解為背景所完成之本發明之—形態,係 電子材料用銅合金’其含有c〇: 〇 5〜4 〇質量%、以.“ ::質量% ’剩餘部分則由Cu及不可避免之雜質所構成, U 口日日粒fe為15〜30" m,每觀察視野〇5贿2之 晶粒徑與最小結晶粒徑之差的平均在…Μ下。大、、、。 本發明之銅合金於—實施形態中,係 銅人仝,入士门 !电卞材枓用 ' 3 有 C〇 . 〇.5 〜4·0 質量%、Si : 〇.1〜U 質 θ 並滿足以下⑴〜(4)任_項以上之組成條件: ® 0 ’ ⑴進-步含有最大為0·5質量%之Cr; ⑺進-步含有總計最大為G.5f4%之選自 Ag及P之1種或2種以上的元素; Mn 201035338 (3) 進一步含有總計最大為2〇質量% 之1種或2種的元素; 域自SqThe representative copper alloy for processing is the 'A mouth gold of the industry that is currently in full swing.' This copper alloy achieves an increase in strength and electrical conductivity by depositing micro 3 201035338 = Nl-Sl intermetallic compound particles in a copper matrix. In addition, in Patent Document 1, it is described in the patent document 1 that it is added to the Carson alloy, and it is described that co will be the same as the compound of 81, and the mechanical strength is increased, and when Cu~c〇 is used, the effect is treated. In the case of Cu-Ni-Si, the electrical properties of the alloy are higher than the L-degree of the material, and the yield is better. If it is allowed in cost, prepare for Cu-Co-Si. In the case of adding Co, the optimum addition amount is 〇〇5 to 2, and it is described in Patent Document 2, and it is described that cobalt is contained in the case where the content of the drill is less than the content of the diamond. If the precipitation of the second phase of the Jianghe τ\ a substance exceeds 2.5%, an excessive amount of the second phase particles will be precipitated, = work = lower two and the copper alloy will have an undesired strong magnetic force. "The amount is about 5%5% to about 1.5%. In the optimum form, the cobalt content is about 〇·7% to about 12%. 1 The copper alloy described in the main patent document 3, In order to use the terminal for the vehicle plant and the communication machine, it is developed by connecting the product A n and the material of the product, so that the concentration of Co is 0.5 to 2.5 Wt%, and the conductivity is high. Cu - Co ~ Si 糸3 gold. According to Patent Document 3, because the m / morning metric is in the above range, if the amount added is less than 0.5% by mass, _ 里 / 0 is not obtained. If the strength of the right Co exceeds 2.5% by mass, the thickness of the Co$g ', ', and the strength may be reduced, but the conductivity is remarkably lowered, and the hot workability is also ~2, 〇f4%. Preferably, the copper alloy described in Patent Document 4 is high in strength, and has high electrical conductivity of 201035338 and high bending workability of ~3.〇Wt%. (4) It is a C〇 concentration gauge. If it is 0.1, if the agricultural degree is limited to this range, because the right does not reach this composition range, then ^ ^ ^ ^ r ® Bi f does not have the above effect, and if the super-illusion is added, However, it is not good because of cracking, and m is a crystalline phase, which becomes a binding. [Patent Document 1] Japanese Patent Laid-Open No. 1 2 No. 2 Publication No. 2] Japanese Special Table Purchase No. 7 Bulletin [Patent Document 3] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. In the case of the bad II 1 series alloy, the characteristics of the high concentration of Co are added. However, the system believes that: (0 is more powerful than the state can not be fully researched ^ n can improve the mechanical strength and guide the second secret " In the alloy, by increasing the C., Nonglu!' can get the improvement of the characteristics. The door Lo agricultural degree, on the other hand, if the c〇 thicker is further improved, this situation is Then 纴 '4 must be higher temperature to be a good V V V V V V V V V V V V V V V Precipitated crystals and precipitation: 'Solution becomes an obstacle and hinders the growth of crystal grains. Therefore, the human first-phase particles will become uneven in particle size, and the recrystallization in the α-gold will occur. The problem of the mechanical properties is changed. 5 201035338 μ 'This Mum' provides Cu-C〇 with high conductivity, high strength, high strength and high-curvature workability, and mechanical properties. -Si-based alloy. Further, another object of the present invention is to provide a method for producing such a Cu-Co-Si alloy. The inventors of the present invention conducted intensive studies on a method for reducing the deviation of the recrystallization pole, and obtained the following findings: in the production of a high-intensity CqCu-c〇-based alloy, in advance of the solution treatment step, The fine second phase particles are precipitated in the copper matrix phase at equal intervals as much as possible, whereby even if the solution treatment is performed at a relatively high temperature, the crystal grains are pinned by the second phase particles. It doesn't matter if it is +), it will only be too big, and the pinning effect will act on the entire copper matrix, so that the size of the growing recrystallized plate can be equalized. Further, as a result, it is known that a Cu-Co-Si alloy having a small difference in mechanical properties can be obtained. The present invention, which is based on the above-mentioned findings, is a copper alloy for electronic materials, which contains c〇: 〇5 to 4 〇% by mass, and the following part: "% by mass" is made of Cu and is inevitable The composition of the impurities, U mouth daily grain fe is 15~30" m, the average of the difference between the crystal grain size and the minimum crystal grain size per observation field 在5 bribe 2 is large, and. The copper alloy is in the embodiment, the copper is the same, and the entry is made into the door! The electric 卞 枓 ' ' 3 has C〇. 〇.5 ~4·0 mass%, Si: 〇.1~U θ and satisfies The following (1) to (4) _ or more of the composition conditions: ® 0 ' (1) step-by-step contains a maximum of 0.5% by mass of Cr; (7) further contains a total of up to G.5f4% selected from Ag and P One or two or more elements; Mn 201035338 (3) further containing one or two elements in a total amount of up to 2% by mass; domain from Sq

(4) 進-步含有總計最大為2.0質量%之選自I(4) The step-by-step contains a total of 2.0% by mass maximum selected from I

Be B、ΊΊ、Zr、AI及Fe之!種或2種以上的元素;Sb、 且剩餘部分由Cu及不可避免之雜 粒徑W,每觀察視野。,5_2之最:結=晶 最小結晶粒徑之差的平均在10 # m以下。 ,铋與 x ’本發明於另-形態中’係-種銅合金之製造 其包含依序進行以下步驟: ’ 步驟1,對具有所需組成之鑄錠進行熔解鑄造; 步驟2,以95CTC〜l〇5(TC加熱1小時以上之後進行 壓延,將熱壓延結束時之溫度設在85(rc以上,將自熟Be B, ΊΊ, Zr, AI and Fe! Species or more than two elements; Sb, and the remainder consisting of Cu and the unavoidable particle size W, per field of view. , 5_2 of the most: knot = crystal The difference between the minimum crystal grain size is below 10 # m. , 铋 and x 'The invention is in another form - the manufacture of a series of copper alloys comprising the following steps: 'Step 1, melt casting of an ingot having a desired composition; Step 2, to 95 CTC~ L〇5 (When TC is heated for more than 1 hour, it is calendered, and the temperature at the end of hot rolling is set at 85 (rc or more, it will be self-cooked)

至4〇〇°C之平均冷卻速度設在1 5°c / S以上來進行冷卻;C 步驟3 ’進行加工度在85%以上之冷壓延; 步驟4’進行以350〜500°C加熱1〜24小時之時效處理; ◎ 步驟5,以950〜1〇5(rc進行固溶處理,將材料溫度自 85〇°C下降至400°C時的平均冷卻速度設在1 5t: / s以上來進 行冷卻; 步驟6,進行隨意之冷壓延; 步驟7,進行時效處理; 步驟8 ’進行隨意之冷壓延。 本發明並且於另一形態中,係一種具備有上述銅合金 之伸鋼品。 本發明並且於另一形態中,係一種具備有上述銅合金 201035338 之電子機器零件。 根據本發明 金之較佳之機械 糸合金。 ’可得到— 及電特性, 種具備可作為電子材料用銅合 且機械特性均一的Cu_ Co—Si L貫施方式】 (Co及Si之添加量)The average cooling rate to 4 °C is set at 15 °c / S or more for cooling; C Step 3 'Processing is more than 85% cold rolling; Step 4' is performed at 350~500 °C 1 ~24 hours aging treatment; ◎ Step 5, with 950~1〇5 (rc solution treatment, the average cooling rate when the material temperature is lowered from 85 °C to 400 °C is set at 15 5: / s or more The cooling is carried out; the step 6 is carried out by random cold rolling; the step 7 is subjected to aging treatment; and the step 8 is carried out by random cold rolling. In another aspect, the present invention is a steel-stretched product comprising the above copper alloy. According to still another aspect of the invention, there is provided an electronic machine component comprising the copper alloy 201035338. The preferred mechanical niobium alloy according to the invention is characterized in that it has an electrical property and a copper alloy for use as an electronic material. Cu_Co-Si L method with uniform mechanical properties] (addition of Co and Si)

Co及Si,可藉由實 物,不使導電率劣 k田之…處理而形成金屬間化合 午另化而實現高強度化。 右Co及Si之添‘旦、 未達0 1質旦9/ 里y刀別為Co :未達0.5質量%、Si : 運°·1貝里%,則無法得 超過4.〇質㈣、Sl:超過"質4二反地,若c°: 化,但導電率明顯降低,…以,則雖可實現高強度 Co及Si之添加量為c 致熱加工性劣化。因此, 質量%。於Cu— 〇广5〜4·0質量mo.Nu h—c。系更期望:二’由於… 2,以上,更佳在上’:較佳C。為高濃度,係在 佳為Cg:2.5〜4 g ° 之添加量較 C〇:3.2〜(Ο質量% s. 5〜丨.0質量更佳為 ^ 貝夏Z、Sl : 0.65〜1.0質量%。 (Cr之添加量)Co and Si can be formed into a high-strength by forming an intermetallic compound by the treatment of the material without causing the conductivity to be inferior. The right Co and Si add 'Dan, not up to 0 1 quality denier 9 / Li y knife is Co: less than 0.5% by mass, Si: °1·1 Berry%, can not get more than 4. Tannin (four), Sl: Exceeding "Quality 4 and the opposite, if c°:, but the conductivity is remarkably lowered, the addition of high-strength Co and Si can be achieved, and the hot workability is deteriorated. Therefore, the quality is %. In Cu- 〇广5~4·0 mass mo.Nu h-c. It is more desirable: two 'because... 2, above, better on top': better C. For high concentration, the amount of Cg: 2.5~4 g ° is better than C〇: 3.2~(Ο质量% s. 5~丨.0 is better quality ^ Becha Z, Sl: 0.65~1.0 quality %. (Cr addition amount)

Cr於溶解鑄造拉+人,、 界,因此可將粒界力二=部過:中會優先析出於結晶粒 從而可抑制產率 加工時不易產生裂縫, 造時粒界析出之Cr進:固:’利用固溶處理等對熔解鑄 仃再固洛,而於後續之時效析出時, 201035338 產生以Cr作為主成分之⑹結構的析出粒子或與 物對於通常之Cu — Ni — Si系合金而言,所添加之^ > 無助於時效析出之Si會於固溶於母相中之狀態下抑制導電 率之上升’但藉由添加作為石夕化物形成元素之^而進—: 使矽化物析出’可減少固溶Si量’可在不損害強度下,‘ 升導電率。然而,若(^濃度超過〇.5質量%,則由於容易 形成粗大之第二相粒子,因而會損害產品特性。因此,於 ❹本明之CU—Co 一 Si系合金中,最大可添加〇 $質量%之Cr dissolves in the casting and pulls + people, and the boundary, so the grain boundary force can be divided into two parts: the crystal particles will be preferentially precipitated, so that the cracks are not easily generated during the processing, and the Cr precipitates at the grain boundary are formed. : 'Using solution treatment or the like to re-solidify the molten cast iron, and in the subsequent aging precipitation, 201035338 produces precipitated particles of the (6) structure with Cr as a main component or an object for the usual Cu-Ni-Si alloy. In other words, the addition of ^ > does not contribute to the precipitation of Si, which inhibits the increase in conductivity in the state of being dissolved in the matrix phase, but by adding as an element of the formation of the lithium compound - The precipitation of 'reducing the amount of solid solution Si' can increase the conductivity without damaging the strength. However, if the concentration exceeds 5% by mass, the coarse second phase particles are easily formed, which may impair the product characteristics. Therefore, in the CU-Co-Si alloy of Sakamoto, the maximum amount can be added. % by mass

Cr°然而,若未達QG3 f量%,則由於其效果較小,因而 較佳為添加〇.03〜〇.5質量%,更佳為添加0.09〜〇.3質量 %。 、 (Mg、Mn、Ag及p之添加量) 若添加微量之Mg、Mn、Ag及p,則會改善強度、應 力緩和特性等之產品特性而不損害導電率。主要藉由使上 述Mg、Μη、Ag及p固溶於母相而發揮添加之效果,但亦 〇可藉由使第二相粒子中含有上述Mg、Mn、A^p而發揮 更進-步之效果。然而,若Mg、Mn、八…之濃度之總 计超過0.5%,則特性改善效果將會飽和,且會損室製造性。 因此,於本發明之Cu〜c〇—81系合金中,最大可。添加總計 為0.5質量%之選自^、隐^及^之^重或^重以 上。然而’若未達〇,〇1質量% ’則由於其效果較小,因此 較佳為總計添加〇.01〜〇.5質量% ’更佳為總計添加〇〇4〜 〇·2質量%。 (Sn及Ζη之添加量) 201035338However, if the amount of QG3f is less than %, the effect is small, so it is preferable to add 〇.03 to 〇.5 mass%, more preferably 0.09 to 〇.3 mass%. (Mg, Mn, Ag, and p addition amount) When a small amount of Mg, Mn, Ag, and p is added, the product characteristics such as strength and stress relaxation characteristics are improved without impairing the electrical conductivity. The effect of addition is mainly achieved by dissolving the above Mg, Μη, Ag, and p in the matrix phase, but it is also possible to further advance by including the Mg, Mn, and A^p in the second phase particles. The effect. However, if the total concentration of Mg, Mn, VIII is more than 0.5%, the characteristic improvement effect will be saturated, and the room manufacturability will be impaired. Therefore, it is the largest in the Cu~c〇-81 alloy of the present invention. The total amount of addition of 0.5% by mass is selected from ^, 隐^ and ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ However, if it is less than 〇, 〇1 mass% ’ is less effective, so it is preferable to add 〇.01 to 〇.5 mass% in total ‘more preferably 〇〇4 to 〇·2 mass%. (addition of Sn and Ζη) 201035338

Sn及Zn,添加微量亦可改善強度、應力緩和特性、鍍 敷性等之產品特性而不會損害導電率。主要藉由使上述如 及Zn固溶於母相而發揮添加之效果。然而,若Sn及之 總計超過2.0質量%,則特性改善效果將會飽和,且會損害 製造性。因此,於本發明之Cu—c〇—si系合金中,最大可 添加總計為2.0質量%之選自Sn&Zn中之i種或2種。缺 而,若未達0.05質量%,則由於其效果較小,因此較佳為 總計添加〇.〇5〜2.〇質量%,更佳為總計添加0.5H.0質量 %。 (As、Sb、Be、B、Ti、Zr、幻及叫 對於 As、Sb、Be、B、Ti、.. ..立 Zr、A1及Fe而言,根據所 ” 特性而對添加量進行調整,藉此改善導電率' 應力緩和特性、鑛敷性等之產品特性。主要藉由使 上述 As、Sb、Be ' b、Ti、Zr 、-天, 1及F e固溶於母相而發揮 添加之效果,但亦可藉由使第二相 :揮When Sn and Zn are added in a small amount, product characteristics such as strength, stress relaxation property, and plating property can be improved without impairing electrical conductivity. The effect of addition is mainly exerted by solidifying the above-mentioned Zn and Zn in the mother phase. However, if the sum of Sn and the total amount exceeds 2.0% by mass, the characteristic improvement effect will be saturated and the manufacturability will be impaired. Therefore, in the Cu-c〇-Si-based alloy of the present invention, a total of 2.0% by mass of one or two selected from the group consisting of Sn&Zn can be added. On the other hand, if it is less than 0.05% by mass, since the effect is small, it is preferable to add 〇. 5~2. 〇 mass% in total, and more preferably 0.5 H.0 mass% in total. (As, Sb, Be, B, Ti, Zr, Magic and Call for As, Sb, Be, B, Ti, .. .. Zr, A1 and Fe, adjust the amount of addition according to the "characteristics" In order to improve the conductivity characteristics such as stress relaxation characteristics and mineralization properties, the above-mentioned As, Sb, Be ' b, Ti, Zr, -D, 1 and F e are solid-solubilized in the parent phase. Add the effect, but also by making the second phase:

Be、B'Ti、Zr、A1 及 Fe,或者 3有迷 As、Sb' 而發揮更進一步之岐果少一 ^ 、斤組成之第二相粒子 /之效果。然而,若兮努_ * 質量% ’則特性改善效果將會餘和::素“計超過2·0 此,於本發明之Cu-C。—Si系合金:相害製造性。因 2.〇質量%之選自…,、二’最大可添加總計為 種吱2錄ο I· 1、Zr、A1及Fe之1 次種以上。然而,若未達〇•⑽旦 較小,因此較佳AΆ '里乂,則由於其效果 住為總计添加〇.00 1〜2 n併曰n/ 計添加0.〇5〜!.〇 f量%。 .貝Ϊ%,更佳為總 若上述Mg' Μη、Α ρ、 g Sn Zn、As、Sb、Be、B、 10 201035338 Ή、Zr、Α1及Fe之添加量合計超過3〇%,則由於容易損 害製造性,因此較佳為該等之合計在2. 〇質量%以下更 在1.5質量%以下。 佳 結晶 粒徑) Ο Ο 結晶粒會對強度造成影響,強度與結晶粒徑之—1/2 次方成比例即霍爾·佩契(HaU_Petch)方程式一般而言會成 立。又,粗大之結晶粒會使彎曲加工性惡化,成為彎曲加 工時之表面粗糙的主要原因。因此,關於銅合金,—般而 言,結晶粒之微細化可提高強度,故而較佳。具體而言又, 較佳在30#m以下,更佳在23#m以下。 〇 另一方面’如本發明之Cu—c〇—Si系合金為析出強化 型之合金,因此亦必須注意第二相粒子之析出狀態 效處理時W内之第二相粒子有㈣提卢,· ::析Γ!:粒界之第二相粒子幾乎無助於提高強产二 -社1了提间強度’使第二相粒子析出於結晶粒内較佳。 右、、、σ日日粒徑變小,則粒界 日卑,m 界面積將會變大’因而於時效處理 時,第-相粒子容易優先析出於粒 析出於結晶粒内,結晶粒 第-相粒子 令,較#太μ 、八韦系耘度之大小。具體而 。較佳在15_以上,更佳在…㈣上。 本發明中,係將平均結晶粒 圍。平均結晶粒徑較佳為18〜2λ ㈣15〜30㈣之範 控制於此種範圍,可二:得藉由將平均結晶粒徑 度提高效果、及由析出=粒崎產生之強 果。又,若為該範圍之結晶粒徑 :果6亥兩個效 則了侍到優異之彎曲加 11 201035338 工性及應力緩和特性。 本發明中,所謂結晶粒徑, 壓延方向之厚度方向的-糸‘利用顯微鏡對平行於 之最小圓的直°° *仃觀察時,包圍各個結晶粒 本發明巾1所謂平均結晶教徑係指其平均值。 本發明中,母觀察視野〇.5mm2 結晶粒徑之差的平均在丨〇 一下 曰曰粒徑與最小 之平均較理想為^,/二下,較佳在7…下。差 限之實際的最低值::二:於:際上難以實現,因此將下 於此,所謂最大处 ,'型而言最佳為3〜7,。 中所觀察到的最大之社日^ 個〇_5麵之觀察視野 於同-視野中所觀=所謂最小結晶粒徑,係指 在複數處之觀察視野中分:广。於本發明中, 粒徑之差,铁後將复工仏 寸取大結晶粒徑與最小結晶 粒徑之差的平均。 乍為取大結晶粒徑與最小結晶 最大結晶粒徑與最小紝θ 粒徑之大小均 曰“立徑之差較小,此係指結晶 心人j均—,可減小同— 特性的偏差。其結果,會使力〇 ★母個測定部位之機械 銅品或電子機器零:發明之銅合金所得之伸 (製造方法)定性提高。 卡遜系銅合今夕&amp;也丨 爐,將電解銅、s/、 ^中,百先係使用大氣熔解 之熔融液。接著 :原料加以熔解’得到所需組成 心,並“^彳^ 融㈣造成鑄錠。然後,進行熱 稷進仃冷壓延與熱處理 而厚度及特性之條或羯。 :、具有所 肀〃有固〉谷處理與時效處 12 201035338 理。固溶處理中’係以約700〜約1〇〇(rc之高溫進行加熱, 使第二相粒子固溶於Cu母質中,同時使Cu母質再結晶。 有時亦將熱壓延兼用作固溶處理。時效處理中,係於約35〇 〜約55G°C之溫度範圍加熱i小時以上,使已在固溶處理中 固溶之第二相粒子以奈米級之微細粒子的形態析出。於該 時效處理中’強度與導電率會上升。為了得到更高之強度, 有時會於時效處理前及/或時效處理後進行冷壓延。又, 於時效處理後進行冷壓延之情形時,有時會在冷壓延後進 行去應變退火(低溫退火)。 於上述各步驟之間,適當地進行用以除去表面之氧化 銹皮之研削、研磨、珠擊(shot blast)酸洗等。 本發明之銅合金基本上亦會經由上述製程,但為了將 平均結晶粒徑及結晶粒徑之偏差控制於本發明所規定的範 圍,如上所述,重要的是於固溶處理步驟之前段,預先使 微細之第二相粒子儘可能地以等間隔且同樣地析出於銅母 相中。為了得到本發明之銅合金,尤其是必須一邊注意以 下之點一邊來進行製造。 首先,於鑄造時之凝固過程中會不可避免地產生粗大 之結晶物,於鑄造時之冷卻過程中會不可避免地產生粗大 之析出物,因此於其後之步驟中,必須將該等結晶物固溶 於母相中。若以950。(:〜1〇50。(:保持1小時以上之後進行熱 壓延,且將熱壓延結束時之溫度設在85〇〇c以上,則即使於 已添加有c〇,進而已添加有Cr之情形時,上述結晶物亦可 固冷於母相中。9501以上之溫度條件與其它卡遜系合金之 13 201035338 情形相比,係較高之溫度設定。若埶厭^^ ^ 〇c0〇r 右熱壓延刖之保持溫度未 運9 5 0 C則固溶將會不充分芒 峰椬自“ 小兄刀力超過1050。。則存在材料發 生解之可能性。又,若埶懕 …乙、、Ή束時之溫度未達850°c, 、J由於已固溶之元辛會再-欠m 兀常曰冉-人析出’因而難以得到高強度。 ,為了得到高強度,較佳為以85(TC結束熱壓延,並迅 速地進行冷卻。 此時,若冷卻速度緩慢,則含有C〇或Cr之以系化合 物將會再次析出。當利用此種組成進行用以提升強度之: 處理(時效處理)時’因以冷卻過程中析出之析出物為核心而 :長為無助於提高強度之粗大的析出⑯,故無法得到高強 度。。因此,必須儘可能地提高冷卻速度,具體而言必須在 15c/s以上。然而,於至40(rc左右之溫度下,第二相粒 之析出車父為顯著,故未達400。〇時之冷卻速度不會成為問 題。因此’本發明中,係將材料溫度自85(rc至4〇(rc之平 均冷卻速度設在1 5°C / s以上’較佳為2(TC / s以上來進行 冷部。所謂‘‘自850°C降低至400°C時之平均冷卻速度”, 系心對材料溫度自8 5 0 °C降低至6 5 0 °C之冷卻時間進行測 I’並藉由“(850 一 4〇〇)(t:)/冷卻時間⑷”而算出之值 (C / s)。 作為加快冷卻之方法,水冷最為有效。然而,由於冷 卞迷度會因水冷所使用之水的溫度而變化’因此可藉由進 订水溫管理來進一步加快冷卻。若水溫在25。(:以上,則由 ;有日守會無法得到所需之冷卻速度,因此較佳為保持在2 5 C以下。若將材料放入儲有水之槽内進行水冷,則由於水 14 201035338 的溫度會上升且容易變成在25&lt;t ί·Μ ^ ^ ^ 四此較佳為以霧狀 (淋冷狀或相狀)進行噴霧,以藉由固定 .對材料進行冷卻,或使恆常低溫之 :yc以下) 上升。又,增設水冷噴嘴或增加每 1,藉此亦可使冷卻速度上升。 夺4之水 於熱壓延之後實施冷壓延。 出,奢始4 X P 為了使析出物均勻地析 出實施該冷壓延以增加成為 70% Vi I- ^ ^ ^ + 1置之應變,較佳為以 〇 %率來實施冷壓延,更佳為以85/以卜夕刮 縮率來實施冷壓延。若不,佳°上之軋 久實…: 壓延,而於熱麼延之後不 I 谷處理,則析出物將不會均勾地析 地重複熱壓延及其後之冷壓延之組合。 適田 於冷壓延後實施第一時效處。 n&amp;yt ^ . 右於實施本步驟之前 有^相粒子,則在實施本步驟時,此種第二相粒子 會進-步成長,因而與本步驟中最初 粒裡上會產生差異,但於本私❹*第一相拉子在 中㈣士』^ 一於本t明中,由於已在前段之步驟 U以均勻之大小而同樣地析出。Η “之第二相粒子 效果時效處理之時效溫度過低,則帶來釘扎 之第二相粒子的析出量將會減少,而 由固溶處理所產生的釘札 刀地付到 均。另一方面,若時效古=曰曰粒之大小變得不 度過同,則第二相粒子將會變得 二大,且第二相粒子將會不均句地析出,故第二相粒子之 子^且 均。又,時效時間越長,則第二相粒 長,因而必須設定成適當的時效時間。 15 201035338 以350〜500°C進行1〜24小時之笛 弟—時效處理,較# 為以350°C以上且未達400°C進行1), 丁 i2〜24小時之第— 處理 '以400°C以上且未達450t進仵Λ a 4丁 6〜1 2小時之第一 效處理、以45(TC以上且未達500。(:進行3 呀 時效處理,藉此’可使微細之第二相二均勻6::=: 相中。若為此種組織,則可同樣地對 、母 r一步驟之固溶處理 中產生之再結晶粒的生長進行釘扎1而可得到結晶粒徑 之偏差較小的整粒組成。 μ於第-時效處理之後進行固溶處理。於此,係—面使 第二相粒子㈣,一面使微細且均勻之再結晶粒成長。因 此,必須將固溶溫度設為95(rc〜1〇5(rc。於此,再結晶粒 先成長’然後,因第一時效處理中析出之第二相粒子固溶, 故可藉由釘札效果來控制再結晶粒之成長。然@,因於第 :相粒子固溶之後釘礼效果將會消失,故若長時間連續進 '亍口冷處%再結晶粒將會變大1此,對於適當之固 溶處理的時間而言,於95代以上且未達漏t時為6〇秒 。3〇〇秒,較佳為12〇〜18〇秒;於1〇⑻。c以上且未達1〇5〇 °C時則為30秒〜18〇秒,較佳為6〇秒〜12〇秒。 即使於固洛處理後之冷卻過程中,為了避免析出第二 相粒子,材料溫度自85(rc降低至4〇〇(&gt;c時之平均冷卻速度 應在15t/s以上,較佳應在赃/s以上。 ^於固溶處理之後實施第二時效處理。第二時效處理之 ^件可為對析出物之微細化有用而慣用實施之條件,但 、〜對度及時間進行設定以使析出物不會粗大化。例 16 201035338 舉時效處理之條彳生々 〜24小時t之一例如下:350〜⑽之溫度範圍1 、更佳為400〜500t之溫度範圍小時。再 影響冷卻速度幾乎不會對析出物之大小造成 夺效處理刖之情形日夺’增加析出位置,利用 位置來促進時效硬化,從而實現強度提升。而於第二 時效處理後之情形時’利用析出物來促進加工硬化,、從: 實現強度提升。亦可於第二時效處理之前及/或之後實施 冷壓延。Be, B'Ti, Zr, A1 and Fe, or 3 have the effect of As, Sb' and exert a further effect of less than ^, the second phase particle composed of jin. However, if the _ _ _ mass % ', the characteristic improvement effect will be the same as: "The prime" exceeds 2.0, which is in the Cu-C of the present invention. -Si-based alloy: phase-cutting manufacturability. 〇% by mass is selected from..., and the two's maximum addable amount is 吱2 recorded ο I·1, Zr, A1, and Fe of more than one type. However, if it is less than 〇•(10), it is smaller. Good AΆ 'Liu, because of its effect, the total is added 〇.00 1~2 n and 曰n/ is added 0. 〇5~!.〇f quantity%.. Bellow%, better for total When the total amount of Mg' Μη, Α ρ, g Sn Zn, As, Sb, Be, B, and 10 201035338 Ή, Zr, Α1, and Fe is more than 3% by weight, the manufacturing property is easily impaired. The total amount is equal to or less than 1.5% by mass. The best crystal size is Ο Ο The crystal grains have an effect on the strength, and the strength is proportional to the crystal grain size - 1/2 power. The HaU_Petch equation is generally true. In addition, coarse crystal grains deteriorate the bending workability and become the main cause of surface roughness during bending. The alloy, in general, the refinement of crystal grains can improve the strength, and is therefore preferable. Specifically, it is preferably 30#m or less, more preferably 23#m or less. The Cu-c〇-Si alloy is a precipitation-strengthened alloy. Therefore, it is necessary to pay attention to the precipitation of the second phase particles. The second phase particles in W have (4) Tilu, ·:::Γ: The second phase particles hardly improve the strength of the strong production. The second phase particles are better precipitated in the crystal grains. The right, and σ daily particle size becomes smaller, then the grain boundary day In the meantime, the m boundary area will become larger. Therefore, in the aging treatment, the first phase particles are preferentially precipitated out of the crystal grains, and the crystal grain first phase particles are ordered, which is more than #太μ,八韦系耘Specifically, it is preferably 15_ or more, more preferably (4). In the present invention, the average crystal grain size is average. The average crystal grain size is preferably 18 to 2λ (4) 15 to 30 (4). , can be two: by the effect of increasing the average crystal grain size, and by the precipitation = the strong fruit produced by the grain. The crystal grain size of the range: the effect of the fruit is 6 HM, and the bending is excellent. 11 201035338 The workability and the stress relaxation property. In the present invention, the crystal grain size, the thickness direction of the rolling direction is -糸' using a microscope pair Parallel to the minimum circle of the smallest circle * 仃 observation, surrounded by the respective crystal grains, the so-called average crystal diameter of the towel 1 refers to the average value thereof. In the present invention, the average observation difference of the mother observation field 〇 5 mm 2 crystal grain size The average particle size and the minimum average are preferably ^, / 2, preferably 7... The actual lowest value of the difference: 2: It is difficult to achieve on the occasion, so it will be Here, the so-called maximum, 'type is best 3 to 7,. The largest social day observed in the ^ 〇 5 5 面 观察 观察 观察 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = In the present invention, the difference in particle diameter, after iron, is the average of the difference between the large crystal grain size and the minimum crystal grain size.乍 is to take the large crystal grain size and the minimum crystal maximum crystal grain size and the minimum 纴 θ particle size are both 曰 “the difference between the vertical diameter is small, this refers to the crystal heart and mind, which can reduce the deviation of the same - characteristic As a result, the mechanical copper product or the electronic machine zero of the mother's measurement site will be qualitatively improved: the extension (manufacturing method) obtained by the invention of the copper alloy is qualitatively improved. The Carson-based copper alloy is also in the furnace and will be electrolyzed. Among copper, s/, ^, Baixian uses the melt melted by the atmosphere. Then: the raw material is melted to obtain the desired composition heart, and "^ 彳 ^ 融 (4) causes the ingot. Then, a strip or crucible of thickness and characteristics is subjected to hot rolling, cold rolling and heat treatment. :, with the 肀〃 有 有 〉 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷 谷In the solution treatment, it is heated at a high temperature of about 700 to about 1 Torr (the temperature of the rc is such that the second phase particles are solid-solubilized in the Cu matrix and the Cu matrix is recrystallized. Sometimes the hot rolling is also used. For solution treatment, in the aging treatment, it is heated in a temperature range of about 35 〇 to about 55 ° C for more than 1 hour, so that the second phase particles which have been solid-solved in the solution treatment are in the form of nanometer-sized fine particles. Precipitation. In this aging treatment, 'strength and conductivity will increase. In order to obtain higher strength, cold rolling may be performed before and/or after aging treatment. Further, cold rolling is performed after aging treatment. In the case of cold rolling, strain relief annealing (low temperature annealing) may be performed. Between the above steps, grinding, grinding, shot blasting, etc., for removing rust scale on the surface are appropriately performed. The copper alloy of the present invention is basically also subjected to the above-described process, but in order to control the deviation of the average crystal grain size and the crystal grain size within the range specified by the present invention, as described above, it is important that the solution treatment step is before the step of solution treatment. Pre-made fine The second phase particles are precipitated in the copper matrix phase at equal intervals and in the same manner as possible. In order to obtain the copper alloy of the present invention, it is particularly necessary to carry out the production while paying attention to the following points. First, during solidification during casting It will inevitably produce coarse crystals, which will inevitably produce coarse precipitates during the cooling process during casting. Therefore, in the subsequent steps, the crystals must be dissolved in the matrix phase. 950. (:~1〇50. (: After hot rolling for 1 hour or more, and the temperature at the end of hot rolling is set to 85〇〇c or more, even if c〇 has been added, it has been added. In the case of Cr, the above crystals may be solid-cooled in the parent phase. The temperature conditions above 9501 are higher than those of other Carson-based alloys 13 201035338. If the temperature is set, if it is ^ ^^ ^ 〇 C0〇r Right heat rolling 刖 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 保持 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固 固懕...B, the temperature at the end of the bundle is less than 850 °c J, because the solid solution of the element is re- owing m 兀 曰冉 曰冉 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人At this time, if the cooling rate is slow, the compound containing C 〇 or Cr will be precipitated again. When this composition is used to increase the strength: When processing (aging treatment), it is precipitated due to cooling. The precipitate is the core: it is a large precipitate 16 that does not contribute to the improvement of strength, so high strength cannot be obtained. Therefore, it is necessary to increase the cooling rate as much as possible, specifically, 15 c/s or more. At a temperature of about 40 rc, the precipitation of the second phase granule is significant, so it does not reach 400. The cooling rate of 〇 is not a problem. Therefore, in the present invention, the material temperature is from 85 (rc to 4 〇 (the average cooling rate of rc is set to 15 ° C / s or more), preferably 2 (TC / s or more for the cold part. The so-called '' The average cooling rate from 850 ° C to 400 ° C", the core temperature of the material temperature from 85 ° C to 65 ° C cooling time I' and by "(850 - 4 〇 〇) (t:) / cooling time (4)" and the calculated value (C / s). As a method of speeding up the cooling, water cooling is most effective. However, since the coldness is changed by the temperature of the water used for water cooling' Therefore, it is possible to further accelerate the cooling by ordering the water temperature management. If the water temperature is 25 ((: above), the daily cooling will not be able to obtain the required cooling rate, so it is better to keep it below 2 5 C. When the material is placed in a tank containing water for water cooling, the temperature of the water 14 201035338 will rise and it will easily become at 25 < t ί · Μ ^ ^ ^ four, which is preferably in the form of a mist (cold or phase) Spraying to cool the material by fixing it, or to raise the constant low temperature: below yc. Also, add a water-cooled nozzle or increase The cooling rate can be increased by the addition of 1%. The water of 4 is subjected to cold rolling after hot rolling. Out, the beginning of 4 XP, in order to uniformly precipitate the precipitate, the cold rolling is performed to increase to 70% Vi I - ^ ^ ^ + 1 set strain, preferably cold rolling is performed at a rate of 〇%, and it is better to carry out cold rolling at a rate of 85/ 卜 刮. If not, the rolling on the good... : Calendering, and after the heat treatment is not treated, the precipitate will not repeat the hot rolling and the subsequent cold rolling combination. The first aging is performed after the cold rolling. n&amp;yt ^ . Right before the implementation of this step, there are ^ phase particles, then in the implementation of this step, the second phase particles will grow in step, and thus there will be a difference in the initial grain in this step, but This private ❹ * first phase pull in the middle (four) 士 ^ ^ in this t Ming, because in the previous step U is uniformly precipitated in a uniform size. Η "The second phase particle effect aging treatment timeliness If the temperature is too low, the amount of precipitation of the second phase particles that are pinned will be reduced, and the solution will be produced by solution treatment. On the other hand, if the age of the grain = the size of the grain becomes inconsistent, the second phase particles will become the second largest, and the second phase particles will not Even if the aging time is longer, the second phase is longer and must be set to an appropriate aging time. 15 201035338 1 to 24 at 350~500 °C The flute of the hour - aging treatment, compared with #350 °C and less than 400 °C 1), D2~24 hours of the first - treatment '400 ° C and above and less than 450t into a 4 Ding 6 ~ 1 2 hours of the first effect treatment, to 45 (TC or more and less than 500. (: Perform 3 aging treatment, which can be used to make the second phase of the fine second uniform 6::=: phase. If it is such a structure, it can be similarly produced in the solution treatment of the mother r step. The growth of the recrystallized grains is pinned to obtain a uniform composition having a small variation in crystal grain size. μ is subjected to a solution treatment after the first aging treatment. Here, the second phase particles (four) are The fine and uniform recrystallized grains are grown. Therefore, the solid solution temperature must be 95 (rc~1〇5 (rc. Here, the recrystallized grains grow first), and then the first precipitation is precipitated. The two-phase particles are solid-solved, so the growth of recrystallized grains can be controlled by the effect of nailing. However, because the first phase of the particles is solid solution, the nailing effect will disappear, so if it continues for a long time, it will be cold. The % recrystallized grain will become larger. For the time of proper solution treatment, it is 6 〇 seconds when it is 95 generations or more and does not leak t. 3 〇〇 seconds, preferably 12 〇 18 Leap seconds; 30 seconds to 18 seconds, preferably 6 seconds to 12 seconds, less than 1 〇 (8). c and less than 1 〇 5 〇 ° C. Even if it is solid In the cooling process after the treatment, in order to avoid precipitation of the second phase particles, the material temperature is lowered from 85 (rc to 4 〇〇 (&gt;c, the average cooling rate should be 15 t/s or more, preferably 赃/s or more). ^ After the solution treatment, the second aging treatment is carried out. The second aging treatment may be a condition that is useful for the miniaturization of the precipitate, but the setting and the time are set so that the precipitate does not Example 16 201035338 时 处理 之 々 々 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 350 The size of the effect of the effect of the treatment of the situation is increasing the position of the precipitation, using the position to promote age hardening, thereby achieving strength improvement. In the case of the second aging treatment, 'use the precipitate to promote work hardening, from: The strength is increased. Cold rolling can also be performed before and/or after the second aging treatment.

本發明之L si系合金可加卫成各種伸銅品,例 如可加工成板、條、管、棒及線,並且,本發明之Cu—c〇 :Sl系銅合金可使用於導線架、連接器、接腳、端子、繼 電器、開關、二次電池用箔材等之電子零件等。 [實施例] 併顯示本發明之實施例與比較例,但該等實 施例係為了更進一步理解本發明及其優點而提供者,並不 限定本發明。 於高頻熔解爐中,以13〇〇。(:將表1(實施例)及表2(比較 例)所s己載之成分組成的銅合金加以熔化,铸造成厚度為 30mm之鑄錠。接著,將該鑄錠加熱至1〇〇(rc之後,進行熱 壓延直至板厚為l〇mm,上升溫度(熱壓延結束之溫度)係設 為900°C。熱壓延結束之後,將材料溫度自85〇°C下降至400 °C時的平均冷卻速度設為丨8°c / s而進行水冷,然後放置於 空氣中加以冷卻。接著’為了除去表面之銹皮,進行表面 切削直至厚度為9mm ’然後藉由冷壓延而形成厚度為 17 201035338 0.15mm之板。繼而,以各種時效溫度實施3〜12小時之第 -時效處理(幾個比較例並未進行此時效處理)後,以各種固 溶溫度進行120秒之固溶處理,然後立即將材料溫度自85〇 °C下降至400°C時之平均冷卻速度設為18。€/8而進行水 冷,然後放置於空氣中加以冷卻。接著,進行冷壓延至 0.10mm,再以45(rc於惰性環境氣氛中實施3小時之第二 時效處理,並且進行冷廢延至〇.〇8mm,從而製造出試驗片。 以下述方法對以上述方式所得之各試驗片的各種特性 進行評估。 干均結晶粒徑 關於結晶粒徑,係以觀察面為平行於壓延方向之厚产 方向之剖面的方式,將試料埋人樹脂中,㈣機械研磨^ 觀察面進行鏡面拋光之後,於相對於1〇〇容量份之水混合 有10容量份之濃度為36%的鹽酸而成之溶液中,溶解 為該溶液重量之5%的氣化鐵。將試料於以上述方式所製= 之溶液中浸潰10秒,使金屬組織出現。接著,利 :鏡將上述金屬組織放大100倍,將〇w之觀察視:拍 成張,W片,求出所有包圍各個結晶粒之最小圓 徑’針對各觀察視野而算出平均值,將15處觀察視野之 均值作為平均結晶粒徑。 (2)最大結晶粒徑—最小結晶粒徑之差之平均 對每= 均結晶粒徑時所測得之結晶粒徑,係針 平均值作/ 值與最小值之差’將15處觀察視野之 句值作為最大結晶粒徑—最小結晶粒徑之差之平均。 18 201035338 (3)強度 關於強度,係進行壓延平行方向之拉伸試驗,測得〇. 2 %之安全限應力(YS : MPa)。測定部位之強度之偏差為3〇 處之最大強度一最小強度之差,平均強度為此3 0處之平均 值。 (4) 導電率 關於導電率(EC · % IACS) ’係藉由利用雙電橋之體積 電阻率之測定所求出。測定部位之導電率之偏差為3〇處之 〇 最大強度一最小強度之差’平均導電率為此30處之平均值。 (5) 應力緩和特性 關於應力緩和特性’如圖1所示,係於加工為寬丨〇mm X長100mm之厚度t = 0·〇8mm之各試驗片上,以標點距離! 為25mm’且高度y〇上之負荷應力為〇 2%安全限應力之8〇 %的方式來決定高度,並負荷彎曲應力,對以15〇t加熱The L si alloy of the present invention can be cured into various copper products, for example, can be processed into sheets, strips, tubes, rods and wires, and the Cu-c〇:Sl-based copper alloy of the present invention can be used for a lead frame, Electronic components such as connectors, pins, terminals, relays, switches, and foils for secondary batteries. [Examples] The present invention and comparative examples are shown and described, but the present invention is not intended to limit the present invention in order to provide a further understanding of the present invention and its advantages. In the high frequency melting furnace, 13 〇〇. (: A copper alloy having the composition of the components contained in Table 1 (Example) and Table 2 (Comparative Example) was melted and cast into an ingot having a thickness of 30 mm. Then, the ingot was heated to 1 Torr ( After rc, hot rolling is carried out until the plate thickness is l〇mm, and the rising temperature (temperature at the end of hot rolling) is set to 900 ° C. After the end of hot rolling, the material temperature is lowered from 85 ° C to 400 ° The average cooling rate at C is set to 丨8°c / s and is water-cooled, and then placed in the air for cooling. Then, in order to remove the scale of the surface, the surface is cut until the thickness is 9 mm, and then formed by cold rolling. The thickness is 17 201035338 0.15 mm. Then, the aging treatment is carried out for 3 to 12 hours at various aging temperatures (several comparative examples are not subjected to the effect treatment), and then solid solution is performed at various solid solution temperatures for 120 seconds. After treatment, the average cooling rate of the material temperature from 85 ° C to 400 ° C is immediately set to 18. 8 / 8 and water cooling, and then placed in the air for cooling. Then, cold rolling to 0.10 mm, Then implement 45 small in an inert atmosphere at 45 (rc) The second aging treatment was carried out, and cold waste was extended to 〇.〇8 mm to prepare test pieces. Various characteristics of each test piece obtained in the above manner were evaluated by the following method. Dry average crystal grain size Regarding crystal grain size, The sample is buried in the resin in such a manner that the observation surface is parallel to the thick direction of the rolling direction. (4) Mechanical polishing ^ After the mirror surface is polished, the volume is mixed with 10 volumes of water per 1 volume. A solution of a concentration of 36% hydrochloric acid was dissolved in 5% of the weight of the solution. The sample was immersed in the solution prepared in the above manner for 10 seconds to cause metal structure to appear. , Lee: The mirror magnifies the above metal structure by 100 times, and observes the observation of 〇w: taking a sheet, a W piece, and finding the smallest circular diameter surrounding all the crystal grains'. The average value is calculated for each observation field, and 15 points are obtained. The average value of the observed field of view is taken as the average crystal grain size. (2) The average of the difference between the maximum crystal grain size and the minimum crystal grain size is the crystal grain size measured per crystal grain size, and the average value of the needle is / Minimum value 'The value of the observation angle of 15 observation fields is taken as the average of the difference between the maximum crystal grain size and the minimum crystal grain size. 18 201035338 (3) The strength is about the strength, and the tensile test is performed in the parallel direction of rolling, and the measurement is measured. Safety limit stress (YS: MPa). The deviation of the strength of the measured part is the difference between the maximum intensity and the minimum intensity at 3 ,, and the average intensity is the average value of 30. (4) Conductivity with respect to conductivity (EC · % IACS) is determined by measuring the volume resistivity of the double bridge. The deviation of the conductivity of the measurement site is the difference between the maximum intensity and the minimum intensity at 3 ' 'the average conductivity is 30. average value. (5) Stress relaxation characteristics The stress relaxation characteristics are shown in Fig. 1. They are processed on a test piece of thickness t = 0 · 〇 8 mm of width 丨〇 mm X length and 100 mm, with punctuation distance! The height is determined by the load stress of 25 mm' and the height y 〇 is 〇 2% of the safety limit stress, and the bending stress is applied, and the heating is performed at 15 〇t.

1〇〇〇小時後之圖2所示之永久變形量(高度)y進行測定,算 出應力緩和率 U1 — (y — / (y〇 - y1)(mm)] x 100(%)}。再者,yi為負荷應力前之初始的麵曲高度。測定 部位之應力緩和率之偏差為30處之最大強度一最小強度之 差’平均應力緩和率為此3 0處之平均值。 (6)彎曲加工性 、關於彎曲加工性,係藉由彎曲部之表面粗糙度來進行 一根據JIS H 3130進行Badway(彎曲轴與壓延方向為同 、&quot;)之W f曲4驗’利用共輛焦雷射顯微鏡對彎曲部之 面進行解析,求出JIS B 〇6〇1規定之叫㈣。測定部位 19 201035338 之彎曲粗糙度之偏差為30處之最大Ra —最小Ra之差,平 均彎曲粗糙度為此3 0處之Ra之平均值。The amount of permanent deformation (height) y shown in Fig. 2 after 1 hour is measured, and the stress relaxation rate U1 - (y - / (y〇 - y1) (mm)) x 100 (%)} is calculated. The yi is the initial curvature height before the load stress. The deviation of the stress relaxation rate at the measurement site is the difference between the maximum strength and the minimum intensity at 30 points. The average stress relaxation rate is the average value of the 30 points. (6) The bending workability and the bending workability are performed by the surface roughness of the curved portion, and the Bad Wend (the bending axis and the rolling direction are the same, &quot;) according to JIS H 3130. The surface of the curved portion is analyzed by a microscope to obtain the standard defined by JIS B 〇6〇1 (4). The deviation of the bending roughness of the measurement portion 19 201035338 is the difference between the maximum Ra and the minimum Ra at 30, and the average bending roughness is The average of Ra at this 30.

20 20103533820 201035338

彎曲粗 縫度偏 差(//m) IT) 〇 ο Ο 00 Ό Ο 1—^ 卜 ο ο ο ο ο ON d o d (N 00 o IQ d d 〇 〇 〇 o σ\ d 1—H 00 d 應力緩 和偏差 (%) &lt;N ι〇 (Ν 00 寸 CN 1—^ ΓΛ ΟΟ &lt;Ν m ΓΛ 卜 CO r- ΓΛ 00 fN o r〇 o r〇 (N 寸 o fN Ό cn 0C 強度 偏差 (MPa) in &lt;N 00 CN 沄 ΓΛ ΟΟ CN ΓΛ ON m 'O m 00 ro o On ro 00 m o 平均彎曲 〇m) Ο CS 00 t—Η &lt;Ν S CN m (Ν fN (Ν S &lt;Ν &gt; '( CN g (N in &lt;N 艺 CN (N tN &lt;N &lt;N (N 00 (N ΓΛ (N (N (N r~) (N (N (N (N |Ι8 ra 00 SS (Ν ΟΟ S r〇 00 00 00 (N 00 00 00 (N 00 (N 00 On 00 SS Ό CO O OO 平均 導電率 (%IACS) &lt;N m ν〇 ι〇 00 ^Τ) 00 m IT) (N ι/Ί 沄 fN »r&gt; (N 沄 l〇 ίΓ赞ί艺 jn ί-Η !〇 卜 卜 00 00 (/Ί 00 卜 卜 00 00 v〇 00 CO g Os 〇 On 00 ON OO m Os GO &lt;N 00 ON 00 級α徑一 最小粒徑 (ym) 卜 00 00 as ^Τ) 00 00 卜 OS Ό 卜 卜 〇\ oo 平均結 晶粒徑 (&quot;m) 卜 m &lt;Ν OS ΟΝ 0\ rs ir^ (N oo cs CN Os OS OO 5 姨靶&amp; θ ΨΑ w ο Os ο ιη Cs 1020 1020 1020 1020 1020 1020 1020 1020 1050 | 1050 1020 1020 1050 1050 1020 1020 時效 溫度 ΓΟ Ο JTl Ο ο »Τϊ ο ι〇 寸 ο ΙΤ) o 寸 o o IT) o o o JO o o o 1〇 o o 組成(質量%) 其它 Ο ο ο ο Ο o o o o 〇 O.lMg 0.1 Mg O.lMg O.lMg o o &lt;Ν Ο Ο ο (Ν ο (Ν Ο Ο o o o o 〇 o o o o CN d (N d 卜 Ο 卜 Ο 00 寸 ο 00 寸 ο 吞 ο Ο 卜 d 卜 d 1—^ 卜 d 1-H 卜 d r- d Γ Ο 1—H 卜 d r—^ 卜 d 卜 o 卜 d Γ Ο Γ Ο 〇 CJ 卜 ο 卜 ο ο CN ο c4 ο CN ο CN ο cn o ΓΛ o ΓΛ o co o r0 o o ΓΛ o ΓΠ o CO o ΓΛ o o ΓΛ 〇 r—Η ?Ν m 寸 \〇 卜 00 〇\ 〇 r—^ ΓΛ 2 卜 00 201035338 彎曲粗 糙度偏 差(em) ί-Η r- d d 〇 VO Ό d Ο Ο CO οο ο ο δ 〇 fN d (N d 〇 卜 o d 00 d v〇 o On U-) 〇 d s o 應力緩 和偏差 (%) ό fN o cn Os (N 寸 CN 寸 ΙΛ (Ν (N &lt;N 卜 r&quot;~H 寸 ro (N 寸 (N 00 ΓΛ ΓΛ ro r^&gt; (N ΓΛ 寸 cn 口 強度 偏差 (MPa) ΓΛ &lt;N m ON 沄 〇\ ro C\ (N Os ro r〇 r^) P; 00 rN 平均彎曲 〇m) 00 o (N 卜 1—H fN \〇 r—&lt; &lt;N 〇\ (N r-i 〇 (Ν CO ο &lt;Ν »-Η ί-Η fN CO ΓΛ iN 00 o ri 00 i-H (N (N (N 〇 (N &lt;N &lt;N g CN 艺 (N &lt;N (N CN S S 00 iN 00 〇\ 00 00 00 § Os 00 s 00 泛 S ΓΊ 00 IT) 00 ro 00 (N OO (N 00 平均 導電率 (%IACS) m m m m ro 〇&gt; 吞 (N ΙΛ 芬 夺 平均 強度 (MPa) o 00 (N 寸 ON 卜 CN Ch 00 00 落 m 00 00 00 00 00 00 oo 00 § 00 00 oc (N in ON VO 艺 VO 〇\ r—H Ό 〇\ 獻粒徑一 最小粒徑 (/«m) 00 00 r- 00 \〇 卜 卜 in 00 o \o 00 ίΛ ON On 卜 平均結 晶粒徑 (Um) ^Ti IT) m (N 00 04 卜 Q\ 卜 Ό ίά ^ ® Ο 1020 1020 1050 1050 1020 1020 1050 1050 1020 1020 1020 1020 1020 1020 1050 1050 1050 1050 時效 溫度 Cc) o o 寸 ο ^Τ) ο ο ur&gt; ο o m o o o o o ο o o ITi o o 組成(質量%) 其它 o o ο Ο O.lMg O.lMg 丨 O.lMg O.lMg 0.5Sn i 0.5Zn O.lAg | 1 0.5Sn 0.5Zn 丨 O.lAg 〇 〇 o o rsj d (N o rsj d ίΝ Ο (Ν Ο fS) d &lt;Ν d (N 〇 o o o (N d iN d ίΝ d o o (N 〇 rN d d 卜 d 1—^ r- o 卜 Ο &lt;— 卜 Ο 卜 Ο d o t—^ o 卜 d r- o 卜 d 1—&lt; 卜 o d d g o § o o 〇 U o r〇 o r〇 o ΓΛ ο rS ο ΓΊ ο rS ο rn o r〇 o o ΓΛ o rn o fO o o 00 00 rn 00 00 rS Ο Ζ Q\ CN (Ν (Ν ΓΛ to (N CN 00 (N (N fN m m ΓΛ ΓΛ 201035338Bending roughness deviation (//m) IT) 〇ο Ο 00 Ό Ο 1—^ ο ο ο ο ο ON dod (N 00 o IQ dd 〇〇〇o σ\ d 1—H 00 d stress relaxation deviation (%) &lt;N ι〇(Ν 00 寸 CN 1—^ ΓΛ ΟΟ &lt;Ν m ΓΛ Bu CO r- ΓΛ 00 fN or〇or〇(N inch o fN Ό cn 0C intensity deviation (MPa) in &lt; N 00 CN 沄ΓΛ ΟΟ CN ΓΛ ON m 'O m 00 ro o On ro 00 mo Average bending 〇m) Ο CS 00 t—Η &lt;Ν S CN m (Ν fN (Ν S &lt;Ν &gt; '( CN g (N in &lt;N 艺CN(N tN &lt;N &lt;N (N 00 (N N (N (N (N rN) (N (N (N (N r) S r〇00 00 00 (N 00 On 00 SS Ό CO O OO Average conductivity (%IACS) &lt;N m ν〇ι〇00 ^Τ) 00 m IT) (N ι /Ί 沄fN »r&gt; (N 沄l〇ίΓ赞ί艺jn ί-Η !〇卜卜00 00 (/Ί 00 卜卜00 00 v〇00 CO g Os 〇On 00 ON OO m Os GO &lt; N 00 ON 00 grade α diameter-minimum particle size (ym) 00 00 as ^Τ) 00 00 卜 OS Ό Bu Bu 〇 oo average crystal grain size (&quot;m) 卜m &lt;Ν OS ΟΝ 0\ rs Ir^ (N oo cs CN Os O S OO 5 姨 target &amp; θ ΨΑ w ο Os ο ιη Cs 1020 1020 1020 1020 1020 1020 1020 1020 1050 | 1050 1020 1020 1050 1050 1020 1020 aging temperature Ο T JTl Ο ο »Τϊ ο ι〇 inchο ΙΤ) o inch Oo IT) ooo JO ooo 1〇oo Composition (% by mass) Other Ο ο ο ο Ο oooo 〇O.lMg 0.1 Mg O.lMg O.lMg oo &lt;Ν Ο Ο ο (Ν ο (Ν Ο Ο oooo 〇oooo CN d (N d Ο Ο Ο 00 00 00 00 00 ο 吞 Ο d d d d d d d d d d d d d d d d d d d d d d — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Γ Ο Γ 〇 〇 CJ 卜 ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο 〇\ 〇r—^ ΓΛ 2 00 00 201035338 Bending roughness deviation (em) ί-Η r- dd 〇VO Ό d Ο Ο CO οο ο ο δ 〇fN d (N d 〇 od 00 dv〇o On U -) 〇dso stress relaxation deviation (%) ό fN o cn Os (N inch CN inch ΙΛ (Ν (N &lt;N 卜r&quot;~H inch ro (N inch (N 00 ΓΛ ΓΛ ro r^&gt; (N寸 inch cn mouth strength bias Difference (MPa) ΓΛ &lt;N m ON 沄〇\ ro C\ (N Os ro r〇r^) P; 00 rN mean bending 〇m) 00 o (N 卜1—H fN \〇r—&lt;&lt;;N ri\ (N ri 〇(Ν CO ο &lt;Ν »-Η ί Η N fN CO ΓΛ iN 00 o ri 00 iH (N (N (N N(N &lt;N &lt;N g CN 艺(N &lt;N (N CN SS 00 iN 00 〇\ 00 00 00 § Os 00 s 00 Pan S ΓΊ 00 IT) 00 ro 00 (N OO (N 00 Average Conductivity (%IACS) mmmm ro 〇&gt; Swallow (N芬 夺 夺 平均 平均 平均 平均 平均 平均 Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch Ch 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Trail-minimum particle size (/«m) 00 00 r- 00 \〇卜卜 in 00 o \o 00 Λ Λ ON On 卜 average crystal grain size (Um) ^Ti IT) m (N 00 04 Bu Q\ Di ά ά 20 1020 1020 1050 1050 1020 1020 1050 1050 1020 1020 1020 1020 1020 1020 1050 1050 1050 1050 aging temperature Cc) oo inch ο ^Τ) ο ο ur&gt; ο omooooo ο oo ITi oo composition (% by mass) Other oo ο Ο O.lMg O.lMg 丨O.lMg O.lMg 0.5Sn i 0.5Zn O.lAg | 1 0.5Sn 0.5Zn 丨O.lAg 〇〇oo rsj d (N o rsj d Ν Ο Ν (Ν Ο fS) d &lt;Ν d (N iooo (N irN dd 卜 d 1—^ r- o 卜Ο &lt;- Ο Ο Ο dot dot dot dot dot dot dot dot dot dot dot dot dot dot dot dot dot dot dot fO oo 00 00 rn 00 00 rS Ο Ζ Q\ CN (Ν (Ν ΓΛ to (N CN 00 (N (N fN mm ΓΛ ΓΛ 201035338

ΐ= »邀在 ο ι-Η v〇 O) 〇\ O) 〇 (N SS (N On 2 fN Γ〇 g F-H I-**&lt; 〇 i-H 應力緩 和偏差 (%) ο ιτ! 寸 Ό «ri 00 … 寸’ «/) ιτϊ fN 'O fO ro i〇 — Ό ΓΟ 寸 to 00 寸_ _ _茗 yn fN ΟΝ m iTi 00 ΓΛ 00 m CN fN i〇 平均彎曲 〇m) 00 ro ro s rn &lt;N rn rn ο Γ〇 fN 00 m rn S (Ν s &lt;N Ό O) ON fN g rn XT* ^ d\ f ^ w m 00 Ό 00 00 S r〇 00 vo 00 ν〇 JO rn m 00 00 平均 導電率 (%IACS) 00 &gt;Τ) CO in (N m IT) σ\ IT) ?; &lt;N tri (N Ό 平均 強度 (MPa) 〇\ yr\ 卜 ON O m 00 § r- s O ΓΛ CO 卜 00 卜 r〇 (N m JO 寸 r〇 00 卜 00 Μ^Φ-^Ι- 最小粒徑 (//m) &lt;N m 2 m m 00 寸 卜 寸 2 00 (N + mg 一 艺 cs CO rs &lt;N Ό m CN (N (N CO 等 Os 00 艺 妫铡&amp; θ ΨΑ w ο ι〇 ο o s o s r—H 〇 s Ο ο 1—^ 宕 Ο 〇 s »·Ή ο ο r*H Ο iri Os o g ο Os o 〇\ s o s T—&lt; 時效 溫度 CC) 1 1 1 i 1 1 1 1 1 1 1 1 o m o cn 組成(質量%) ο o o O ο ο O ο ο o 〇 o o O ο o o o ο fN d CN d (Ν Ο ο o &lt;N d (N d o o ΰ5 卜 ί-Η ο d r- d 卜 o Γ- ο ο r~* d 卜 Ο 卜 d i—l 卜 d r- o 卜 o F—&lt; 卜 o 卜 o ο υ 卜 ο o r4 o ΓΛ o r〇 ο Γ〇 ο o ΓΛ ο ΓΟ ο cn o o r〇 o rn o r〇 o rn 〇 % Ρ: 00 m 〇\ m 〇 τ~^ ζ] $ On 201035338ΐ= »Invite at ο ι-Η v〇O) 〇\ O) 〇(N SS (N On 2 fN Γ〇g FH I-**&lt; 〇iH stress relaxation deviation (%) ο ιτ! ΌΌ « Ri 00 ... inch '«/) ιτϊ fN 'O fO ro i〇 — Ό 寸 inch to 00 inch _ _ _茗yn fN ΟΝ m iTi 00 ΓΛ 00 m CN fN i〇 average bending 〇m) 00 ro ro s rn &lt;N rn rn ο Γ〇fN 00 m rn S (Ν s &lt;N Ό O) ON fN g rn XT* ^ d\ f ^ wm 00 Ό 00 00 S r〇00 vo 00 ν〇JO rn m 00 00 Average Conductivity (%IACS) 00 &gt;Τ) CO in (N m IT) σ\ IT) ?; &lt;N tri (N Ό Average Strength (MPa) 〇\ yr\ Bu ON O m 00 § r- s O ΓΛ CO 卜 卜 卜 〇 (N m JO 〇 r〇00 卜 00 Μ ^ Φ-^Ι - minimum particle size (/ / m) &lt; N m 2 mm 00 inch inch 2 00 (N + mg一艺cs CO rs &lt;N Ό m CN (N (N CO et al. Os 00 geisha & θ ΨΑ w ο ι〇ο ososr-H 〇s Ο ο 1—^ 宕Ο 〇s »·Ή ο ο r*H Ο iri Os og ο Os o 〇\ sos T—&lt; aging temperature CC) 1 1 1 i 1 1 1 1 1 1 1 1 omo cn Composition (% by mass) ο oo O ο ο O ο ο o 〇 Oo O ο ooo ο fN d CN d (Ν Ο ο o &lt;N d (N doo ΰ5 卜ί-Η ο d r-d 卜o Γ- ο ο r~* d Ο Ο di di-l 卜d r- o 卜o F-&lt; 卜o 卜o ο υ ο o r4 o ΓΛ or〇ο Γ〇ο o ΓΛ ο ΓΟ ο cn oor〇o rn or〇o rn 〇% Ρ: 00 m 〇\ m 〇τ ~^ ζ] $ On 201035338

彎曲粗 糙度偏 差(#m) S 1—^ 00 »~·Η 寸 00 r〇 (Ν 00 ο 〇\ (Ν 00 »—Η 3 ο 1—Η r—Η s (N \q 應力緩 和偏差 (%) C\ in 00 u-i ο 寸 寸 »vS Ν 寸 寸 »ri C\ 強度 偏差 (MPa) m ο 〇\ IT) *T) (N IT) s f-l fN S C\ (N (N 平均彎曲 (卿) 寸 ro s; r4 C\ (N &lt;N C\ ίΝ (N f—« ΓΛ rN ο CN ν〇 ΓΟ &lt;Ν 寸 ΓΊ (Ν (Ν g (Ν o 寸 (N 卜 r—^ (N 5S fN , ro 00 (N 00 00 (N 00 S in 00 00 (Ν 00 g (Ν 00 ΓΟ 00 ir&gt; CO S m 00 平均 導電率 (%IACS) 等 'T) 00 ΓΊ o 沄 CN 沄 平均 強度 (MPa) (N 00 00 00 VsO 00 G\ r^i 00 yr) S o 00 ON § 00 00 00 00 Ο 冢 Ό (Ν Ο Ό Ό 00 卜 C\ 00 g to m 〇\ :§ΐλ·粒控一 最小粒徑 〇m) Jn ^T) ro iT) (N (N 〇\ ΙΛ) (Ν 00 (Ν CN ι/Ί CS 宕 平均結 晶粒徑 (Um) C\ Os (N 寸 U&quot;) 00 (Ν ΓΟ (Ν {/Ί (Ν C\ CA ®朗〇 1020 1050 1020 1050 1020 1020 1020 1050 1020 :1050 1020 1050 1020 1050 時效 溫度 CC) o n o o ro o o $ o ^Τ) ο iri tT) a o un tn 組成(質量%) 1其它; ! O.lMg O.lMg 〇 〇 o o ο ο O.lMg O.lMg ο o O.lMg O.lMg o o iN d (N d o fN d ο ο ο ο (Ν Ο &lt;N d (N d &lt;N d Λ o 卜 d r^ d T—H 卜 o (N (N r-H r- ο Η Γ- ο 卜 ο ι—Η 卜 d r-H 卜 Ο 卜 o r—&lt; 卜 o r- d 〇 U o ro o o r*i o r〇 卜 寸* 卜 寸- ο ΓΛ ο ΓΟ ο Γ^Ί ο ΓΛ ο rn o ro o ΓΟ o ro 〇 Z in (N ir&gt; IT) Ό 00 〇\ ιη S 3 CS MD r〇 S 201035338 氣1〜6之合金’係Co濃度較低(〇7及2〇質量%)之 合金,為本發明之實施例,平均強度雖因以濃度低而變小, 但各種特性之偏差少。Bending roughness deviation (#m) S 1—^ 00 »~·Η inch 00 r〇(Ν 00 ο 〇\ (Ν 00 »—Η 3 ο 1—Η r—Η s (N \q stress relaxation deviation ( %) C\ in 00 ui ο inch inch»vS Ν inch inch»ri C\ intensity deviation (MPa) m ο 〇\ IT) *T) (N IT) s fl fN SC\ (N (N average bending (qing) inch Ro s; r4 C\ (N &lt;NC\ Ν (N f—« ΓΛ rN ο CN ν〇ΓΟ &lt;Ν inchΓΊ (Ν (Ν g (Νo inch (N 卜r-^ (N 5S fN , Ro 00 (N 00 00 (N 00 S in 00 00 (Ν 00 g (Ν 00 ΓΟ 00 ir&gt; CO S m 00 average conductivity (% IACS), etc. 'T) 00 ΓΊ o 沄CN 沄 average strength (MPa) (N 00 00 00 VsO 00 G\ r^i 00 yr) S o 00 ON § 00 00 00 00 Ο 冢Ό (Ν Ό Ό 00 00 卜 C\ 00 g to m 〇\ :§ΐλ· Granule-minimum Particle size 〇m) Jn ^T) ro iT) (N (N 〇\ ΙΛ) (Ν 00 (Ν CN ι/Ί CS 宕 average crystal grain size (Um) C\ Os (N inch U&quot;) 00 (Ν ΓΟ (Ν {/Ί (Ν C\ CA ® reading 1020 1050 1020 1050 1020 1020 1020 1050 1020 : 1050 1020 1050 1020 1050 aging temperature CC) onoo ro oo $ o ^Τ) ο iri tT) ao un tn composition (mass%) 1 other; ! O.lMg O.lMg 〇〇oo ο ο O.lMg O.lMg ο o O.lMg O.lMg oo iN d (N do fN d ο ο ο ο (Ν Ο &lt;N d (N d &lt;N d Λ o 卜dr^d T-H 卜o (N (N rH r- ο Η Γ- ο ο ι Η 卜 d d d d or or —&lt; 卜o r-d 〇U o ro oor*ior〇卜 inch* 卜 inch - ο ΓΛ ο ΓΟ ο Γ^Ί ο ΓΛ ο rn o ro o ΓΟ o ro 〇Z in (N ir&gt; IT) Ό 00 〇\ ιη S 3 CS MD r〇S 201035338 Alloy of alloys 1 to 6 is an alloy having a low Co concentration (〇7 and 2〇% by mass), which is an example of the present invention, and the average strength is low in concentration. It becomes smaller, but the variation of various characteristics is small.

No.7〜36之合金,係Co漢度高(3〇質量%以上)之合 金,為本發明之實施例,任-者皆具有適於電子材料用之 強度及導電率,特性之偏差亦少。The alloy of No. 7 to 36 is an alloy of Co Hando high (3% by mass or more), which is an embodiment of the present invention, and all of them have strength and electrical conductivity suitable for electronic materials, and the deviation of characteristics is also less.

No.37〜44之合金,無進行第—時效處理,在固溶處理 時因結晶粒徑發生粗大化,故強度及彎曲加工性劣化。The alloy of No. 37 to 44 was not subjected to the first aging treatment, and the crystal grain size was coarsened during the solution treatment, so that the strength and the bending workability were deteriorated.

No.45〜48之合金’無進行第—時效處理,且固溶溫度 低。第二相粒子未充分固溶,又,由於結晶粒過小,因此 強度及應力緩和特性劣化。The alloy of No. 45 to 48 was not subjected to the first aging treatment, and the solid solution temperature was low. The second phase particles are not sufficiently solid-solved, and since the crystal grains are too small, the strength and stress relaxation characteristics are deteriorated.

No.49〜54之合金’因第一日寺效處理之時效溫度過低, 第二相粒子少,故在固溶處理時結晶粒徑發生粗大化,強 度及彎曲加工性劣化。x ’結晶粒徑之偏差大。其結果, 特性之偏差變大。 Νο·55〜56之合金,由於之添加量過多,因此強度 及導電率劣化。The alloy of No. 49 to 54 was too low in the first day of the treatment, and the second phase particles were small. Therefore, the crystal grain size was coarsened during the solution treatment, and the strength and the bending workability were deteriorated. The deviation of the x' crystal grain size is large. As a result, the variation in characteristics becomes large. The alloy of Νο·55~56 is deteriorated in strength and electrical conductivity due to excessive addition.

No.57〜64之合金,因第一時效處理之時效溫度過高 第一相粒子不均一地成長,故結晶粒徑參差不齊。其結果 特性之偏差變大。 【圖式簡單說明】 圖1,係應力緩和試驗法之說明圖。 圖2,係關於應力緩和試驗法之永久變形量之說明圖。 25 201035338 【主要元件符號說明】 1 標點距離 t 厚度 y 永久變形量(高度) y〇 尚度 26Alloy No. 57-64, the aging temperature due to the first aging treatment is too high. The first phase particles grow unevenly, so the crystal grain size is uneven. As a result, the variation in characteristics becomes large. [Simple description of the drawing] Fig. 1 is an explanatory diagram of the stress relaxation test method. Fig. 2 is an explanatory view of the amount of permanent deformation of the stress relaxation test method. 25 201035338 [Explanation of main component symbols] 1 Punctuation distance t Thickness y Permanent deformation amount (height) y〇 Prevail 26

Claims (1)

201035338 七、申請專利範圍: 1. 一種電子材料用銅合金,其含有c〇 : 〇 .5〜4 ()質量 %、Si · 0.1〜1.2質量%,剩餘部分則由cu及不可避免之 雜質所構成,平均結晶粒徑為丨5〜3〇 # m,每觀察視野 0.5mm2之最大結晶粒徑與最小結晶粒徑之差的平均在1 〇以 m以下。 〇 2· 一種電子材料用銅合金,含有Co: 0.5〜4.0質量%、 S!: 〇.1〜1.2質量% ’並滿^以下⑴〜(4)任—項以上之組 成條件: (1) 進一步含有最大為〇·5質量%之cr; (2) 進步含有總計最大為0.5質量%之選自Mg、Mn、 Ag及P之1種或2種以上的元素; (3) 進步含有總計最大為2.0質量%之選自Sn及Zn 之1種或2種的元素; (4) 進一步含有總計最大為2 〇質量%之選自As、讥、 Be、B、Ti、Zr、…及以之i種或“重以上的元素; 且剩餘部分由Cu及不可避免之雜質所構成,平均結晶 粒控為15〜3—,察視野〇.5_2之最大結晶粒徑與 最小結晶粒徑之差的平均在丨〇 # m以下。 、3.-種銅合金之製造方法,係用以製造中請專利範圍第 1或2項之銅合金,其包含依序進行以下步驟: 步驟1,對具有所需組成之鑄錠進行熔解鑄造; 步称2’以啊〜崎加…小時以上之後進行熱 將熱壓延結束時之溫度設在85(rc以上,將自8贼 27 201035338 至400°C之平均冷卻速度設在1 5°C / s以上來進行冷卻; 步驟3,進行加工度在70%以上之冷壓延; 步驟4,進行以3 5 〇〜5 〇 〇 °C加熱1〜2 4小時之時效處理; 步驟5,以95〇〜1〇5〇。(:進行固溶處理,將材料溫度自 850°C下降至4〇(rc時的平均冷卻速度設在15它/8以上來進 行冷卻; 步驟6,進行隨意之冷壓延; 步驟7,進行時效處理; 步驟8,進行隨意之冷壓延。 4.一種伸銅品, 合金。 …、有申請專利範圍第1或2項之銅 5·-種電子機器零 項之銅合金。 你具備有申請專利範圍第1或2 八、圖式: (如次頁) 28201035338 VII. Patent application scope: 1. A copper alloy for electronic materials, which contains c〇: 〇.5~4 ()% by mass, Si · 0.1~1.2% by mass, and the remainder is made of cu and unavoidable impurities. The average crystal grain size is 丨5 to 3 〇#m, and the average difference between the maximum crystal grain size and the minimum crystal grain size per 0.5 mm 2 of the observation field is 1 m or less. 〇2· A copper alloy for electronic materials containing Co: 0.5 to 4.0% by mass, S!: 〇.1 to 1.2% by mass 'and full of the following (1) to (4) any of the above-mentioned composition conditions: (1) Further, it contains a maximum of 〇·5 mass% of cr; (2) Progressively contains a total of 0.5% by mass of one or more elements selected from the group consisting of Mg, Mn, Ag, and P; (3) Progress contains the largest total 2.0% by mass of an element selected from the group consisting of Sn and Zn; (4) further comprising a total of up to 2% by mass selected from the group consisting of As, 讥, Be, B, Ti, Zr, ... i species or "heavier elements; and the remainder consists of Cu and unavoidable impurities, the average crystal grain size is 15~3 -, the difference between the maximum crystal grain size and the minimum crystal grain size of the field of view 〇.5_2 The average is 丨〇# m or less. 3. The method for manufacturing a copper alloy is the copper alloy used in the manufacture of the first or second patent scope of the patent application, which comprises the following steps: Step 1: The ingot to be composed is melt-casted; the step is called 2' ah ~ Saki plus ... after hours of heat to heat the end of the hot rolling The temperature is set at 85 (rc or more, and the average cooling rate from 8 thieves 27 201035338 to 400 ° C is set to be above 15 ° C / s for cooling; step 3, cold rolling with a degree of processing of 70% or more; 4. Perform aging treatment with 3 5 〇~5 〇〇 °C for 1~2 4 hours; Step 5, with 95〇~1〇5〇. (: Solution treatment, the material temperature drops from 850 °C Up to 4 〇 (the average cooling rate at rc is set at 15 it/8 or more for cooling; step 6, optional cold rolling; step 7, aging treatment; step 8, optional cold rolling. 4. Copper, alloy. ..., copper alloy with patent application range 1 or 2, copper alloy of zero-type electronic equipment. You have the patent application scope 1 or 2, pattern: (such as the next page) 28
TW099105394A 2009-03-31 2010-02-25 Cu-Co-Si based copper alloy for electronic materials and method for producing the same TWI422692B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088287A JP4708485B2 (en) 2009-03-31 2009-03-31 Cu-Co-Si based copper alloy for electronic materials and method for producing the same

Publications (2)

Publication Number Publication Date
TW201035338A true TW201035338A (en) 2010-10-01
TWI422692B TWI422692B (en) 2014-01-11

Family

ID=42827857

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099105394A TWI422692B (en) 2009-03-31 2010-02-25 Cu-Co-Si based copper alloy for electronic materials and method for producing the same

Country Status (7)

Country Link
US (1) US20120031533A1 (en)
EP (1) EP2415887B1 (en)
JP (1) JP4708485B2 (en)
KR (1) KR101317096B1 (en)
CN (1) CN102099499B (en)
TW (1) TWI422692B (en)
WO (1) WO2010113553A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677505B1 (en) 2010-03-31 2011-04-27 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP4830035B2 (en) 2010-04-14 2011-12-07 Jx日鉱日石金属株式会社 Cu-Si-Co alloy for electronic materials and method for producing the same
JP5325178B2 (en) * 2010-08-12 2013-10-23 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy excellent in strength, electrical conductivity and bending workability and method for producing the same
JP5508326B2 (en) * 2011-03-24 2014-05-28 Jx日鉱日石金属株式会社 Co-Si copper alloy sheet
JP5451674B2 (en) 2011-03-28 2014-03-26 Jx日鉱日石金属株式会社 Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP4799701B1 (en) 2011-03-29 2011-10-26 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy strip for electronic materials and method for producing the same
CN102644005A (en) * 2011-06-15 2012-08-22 上海飞驰铜铝材有限公司 Copper material for manufacturing motor and manufacturing method thereof
JP5437520B1 (en) * 2013-07-31 2014-03-12 Jx日鉱日石金属株式会社 Cu-Co-Si-based copper alloy strip and method for producing the same
DE102014105823A1 (en) * 2014-04-25 2015-10-29 Harting Kgaa Post-cleaning process of metallic contact elements
JP6306632B2 (en) * 2016-03-31 2018-04-04 Jx金属株式会社 Copper alloy for electronic materials
JP6385383B2 (en) * 2016-03-31 2018-09-05 Jx金属株式会社 Copper alloy sheet and method for producing copper alloy sheet
WO2020112159A1 (en) 2018-11-30 2020-06-04 Amerilab Technologies, Inc. Rapidly disintegrating effervescent tablets and methods of making the same
KR102005332B1 (en) 2019-04-09 2019-10-01 주식회사 풍산 Method for manufacturing Cu-Co-Si-Fe-P alloy having Excellent Bending Formability
CN115652132B (en) * 2022-11-14 2023-03-31 宁波兴业盛泰集团有限公司 Copper alloy material and application and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408021B2 (en) * 1995-06-30 2003-05-19 古河電気工業株式会社 Copper alloy for electronic and electric parts and method for producing the same
JP3510469B2 (en) 1998-01-30 2004-03-29 古河電気工業株式会社 Copper alloy for conductive spring and method for producing the same
JP3520034B2 (en) * 2000-07-25 2004-04-19 古河電気工業株式会社 Copper alloy materials for electronic and electrical equipment parts
US7182823B2 (en) * 2002-07-05 2007-02-27 Olin Corporation Copper alloy containing cobalt, nickel and silicon
JP5475230B2 (en) * 2005-03-24 2014-04-16 Jx日鉱日石金属株式会社 Copper alloy for electronic materials
WO2006109801A1 (en) * 2005-04-12 2006-10-19 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
JP2007246931A (en) * 2006-03-13 2007-09-27 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment parts having excellent electric conductivity
JP5085908B2 (en) * 2006-10-03 2012-11-28 Jx日鉱日石金属株式会社 Copper alloy for electronic materials and manufacturing method thereof
JP5170881B2 (en) * 2007-03-26 2013-03-27 古河電気工業株式会社 Copper alloy material for electrical and electronic equipment and method for producing the same
JP4937815B2 (en) 2007-03-30 2012-05-23 Jx日鉱日石金属株式会社 Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
CN102105610B (en) * 2008-06-03 2013-05-29 古河电气工业株式会社 Copper alloy sheet material and manufacturing method thereof
JP5619389B2 (en) * 2008-08-05 2014-11-05 古河電気工業株式会社 Copper alloy material

Also Published As

Publication number Publication date
TWI422692B (en) 2014-01-11
WO2010113553A1 (en) 2010-10-07
CN102099499A (en) 2011-06-15
JP4708485B2 (en) 2011-06-22
KR101317096B1 (en) 2013-10-11
CN102099499B (en) 2013-12-18
EP2415887B1 (en) 2016-02-10
KR20110071020A (en) 2011-06-27
EP2415887A4 (en) 2013-06-05
JP2010236071A (en) 2010-10-21
US20120031533A1 (en) 2012-02-09
EP2415887A1 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
TW201035338A (en) Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
TWI571519B (en) Cu-ni-co-si based copper alloy sheet material and manufacturing method thereof
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
KR101331339B1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
TWI381397B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
TW200918678A (en) Cu-ni-si-co copper alloy for electronic materials and methodfor manufacturing same
JP5506806B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
TW201233818A (en) Copper alloy for electronic and/or electrical device, copper alloy thin plate, and conductive member
JP5319590B2 (en) Copper alloy, copper alloy manufacturing method and electronic component manufacturing method
CN105392908A (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
TW200949860A (en) Cu-ni-si alloy for electronic materials
CN102892908A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
CN107208191B (en) Copper alloy material and method for producing same
CN103228804A (en) Copper alloy for electronic devices, method for producing copper alloy for electronic devices, and copper alloy rolled material for electronic devices
JP7038823B2 (en) Cu-Co-Si-Fe-P copper alloy with excellent bending workability and its manufacturing method
TW201247908A (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
TWI432586B (en) Cu-Co-Si alloy material
JP5750070B2 (en) Copper alloy
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
TW201529871A (en) Fe-P series copper alloy plate with excellent strength, heat resistance and bending processing property
JP5981866B2 (en) Copper alloy
JP2016211054A (en) Copper alloy
TWI432587B (en) Cu-Co-Si-Zr alloy and its manufacturing method
JP5867859B2 (en) Copper alloy
TW200915349A (en) Cu-Ni-Si-Co based copper alloy for electronic material and its production method