WO2006109801A1 - Copper alloy and process for producing the same - Google Patents

Copper alloy and process for producing the same Download PDF

Info

Publication number
WO2006109801A1
WO2006109801A1 PCT/JP2006/307658 JP2006307658W WO2006109801A1 WO 2006109801 A1 WO2006109801 A1 WO 2006109801A1 JP 2006307658 W JP2006307658 W JP 2006307658W WO 2006109801 A1 WO2006109801 A1 WO 2006109801A1
Authority
WO
WIPO (PCT)
Prior art keywords
precipitates
inclusions
copper
copper alloy
alloy
Prior art date
Application number
PCT/JP2006/307658
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuneaki Nagamichi
Yasuhiro Maehara
Naotsugu Yoshida
Mitsuharu Yonemura
Keiji Nakajima
Takuji NAKAHATA
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Publication of WO2006109801A1 publication Critical patent/WO2006109801A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper alloy and a method for producing the same without using an element that adversely affects the environment such as Be.
  • Applications of this copper alloy include electrical and electronic parts and safety tools.
  • Examples of electrical and electronic parts include the following. In the electronics field, PC connectors, semiconductor sockets, optical pickups, coaxial connectors, and IC checker pins are listed. In the field of communications, mobile phone parts (connectors, knottery terminals, antenna parts), submarine repeater housings, exchange connectors, etc. are listed. In the automotive field, there are various electrical components such as relays, various switches, micromotors, diaphragms, and various terminals. In the aerospace field, landing gears for aircraft are listed. Medical / analytical instruments include medical connectors and industrial connectors. In the field of home appliances, relays for home appliances such as air conditioners, optical pickups for game machines, card media connectors, etc.
  • Safety tools include, for example, drilling rods, spanners, chain blocks, hammers, drivers, pliers, and -padpers used in places where there is a risk of explosion from sparks, such as ammunition stores and coal mines. There are tools.
  • Patent Document 1 proposes a copper alloy in which Ni Si is deposited, which is called a Corson series.
  • This Corson alloy has a tensile strength of 750 to 820 MPa and an electrical conductivity of about 40%. Among alloys that do not contain elements harmful to the environment such as Be, the balance between tensile strength and electrical conductivity is relatively high. It's a thing.
  • this alloy has limitations in both strength enhancement and high electrical conductivity, and there remains a problem in terms of product noirishment as described below.
  • This alloy is Ni Si
  • Ni and Si contents are reduced to increase the conductivity, the tensile strength decreases significantly.
  • Ni and Si contents are reduced to increase the conductivity, the tensile strength decreases significantly.
  • Ni and Si precipitation Ni and
  • the electrical resistance of the alloy (or its reciprocal conductivity) is determined by electron scattering, and varies greatly depending on the type of element dissolved in the alloy. Ni dissolved in the alloy remarkably increases the electrical resistance (remarkably decreases the electrical conductivity), so in the above-mentioned Corson alloy, the electrical conductivity decreases when the Ni content is increased.
  • the tensile strength of the copper alloy is obtained by age hardening. The tensile strength increases as the amount of precipitate increases and as the precipitate is finely dispersed. In the case of a Corson alloy, since the precipitated particles are only Ni Si, there is a limit to increasing the strength in terms of both precipitation and dispersion.
  • Patent Document 2 discloses a copper alloy having a good wire-bonding property, which includes elements such as Cr and Zr, and defines surface hardness and surface roughness. As described in the examples, this copper alloy is manufactured on the premise of hot rolling and solution treatment.
  • the material for the safety tool is required to have mechanical properties comparable to tool steel, for example, high strength and wear resistance, and no sparks that cause an explosion are generated. It is required to be excellent in generation.
  • copper alloys with high thermal conductivity, especially Cu-Be alloys aimed at strengthening by aging precipitation of Be, have been frequently used as safety tool materials.
  • Cu-Be alloy is a material with many environmental problems. Nevertheless, Cu-Be alloy has been widely used as a safety tool material for the following reasons.
  • FIG. 1 is a graph showing the relationship between the electrical conductivity [IACS (%)] and the thermal conductivity [TC (WZm′K)] of a copper alloy. As shown in Fig. 1, the two are in a 1: 1 relationship, and increasing the conductivity [IACS (%;)] increases the thermal conductivity [TC (W / mK)]. In other words, it is nothing other than increasing the spark resistance. When a sudden force is applied when using a tool, a spark is generated because a specific component in the alloy is burned by the heat generated by the impact. As described in Non-Patent Document 1, since the thermal conductivity of steel is as low as 1Z5 or less than that of copper, local temperature rise is likely to occur. Steel contains C, so “c + o ⁇
  • FIG. 1 shows the data shown in Non-Patent Document 1.
  • Patent Document 1 Japanese Patent No. 2572042
  • Patent Document 2 Japanese Patent No. 2714561
  • Non-patent document 1 Industrial heating, Vol.36, No.3 (1999), published by Japan Industrial Furnace Association, page 59 Disclosure of invention
  • the first object of the present invention is a copper alloy that does not contain elements harmful to the environment such as Be, has abundant product nomination, is excellent in high-temperature strength, ductility, and bending workability.
  • An object of the present invention is to provide a high-strength, high-workability copper alloy that is excellent in performance required for a material for safety tools, that is, thermal conductivity, wear resistance and spark resistance.
  • the second object of the present invention is to provide a method for producing a copper alloy having the same components as described above, but having superior ductility and bending caloricity as compared with conventional production methods.
  • TS in equation (a) means tensile strength (MPa), and IACS means conductivity (%).
  • the copper alloy is required to have a certain degree of high-temperature strength in addition to the above-described tensile strength and conductivity characteristics. This is also the force that, for example, connector materials used in automobiles and computers can be exposed to environments above 200 ° C.
  • the room temperature strength decreases significantly and the desired spring characteristics can no longer be maintained.
  • the above Cu-Be alloys and Corson alloys are heated to 400 ° C. Even after this, the room temperature strength hardly decreases.
  • the level be equal to or higher than that of Cu-Be alloys.
  • the heating temperature at which the rate of decrease in hardness before and after the heating test is 50% is defined as the heat resistance temperature, and when the heat resistance temperature exceeds 350 ° C or higher The strength is excellent. More preferably, the heat resistant temperature is 400 ° C or higher.
  • the target of bending cacheability is to be equal to or higher than that of Cu-Be alloys.
  • bending deformation in the 0-degree direction is relatively easy (good way), and bending deformation in the 90-degree direction is relatively difficult (bad way).
  • the good range of bending workability is when B ⁇ 3.0 in the 0 degree direction and B ⁇ 6.0 in the 90 degree direction. Since R varies depending on the plate thickness, in the present invention, the bending calorability was evaluated based on the test at 0.20 mm thickness.
  • the target is to have the same level of wear resistance as tool steel.
  • the wear resistance is excellent when the hardness at room temperature is 250 or more in terms of Vickers hardness.
  • the gist of the present invention is a method for producing the copper alloys shown in the following (A) to (C) and the copper alloy shown in the following (D).
  • N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 )
  • X means the grain size ( ⁇ m) of the precipitates and inclusions.
  • Weight 0/0, Cr contains 0.01 to 5%, more, Zn, Sn, Ag, Mn , Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta,
  • the medium strength of W, Ge, Te, and Se is also selected, including 0.01 to 20% in total of one or more selected, with the balance consisting of copper and impurities, and the aspect ratio of the crystal grains of the copper-based matrix
  • the total number of precipitates and inclusions and the total number of precipitates and inclusions is represented by the above formula (1).
  • a copper alloy characterized by satisfying the relationship.
  • the copper alloys (A) to (C) described above are replaced with a part of copper, and a total of 0.001 to 2% by mass of Mg, Li, Ca and rare earth elements are also selected.
  • two or more, or Z and, in total 0.0001 mass 0/0 of P, B, Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, in, Pd, Po, Sb , Au, Ga, S, Cd, As and Pb may contain one or more selected ones.
  • the crystal grain size of these copper alloys is preferably 0.01 to 35 m.
  • (D) A piece obtained by melting and producing a copper alloy having the chemical composition described in any one of (A) to (C) above, and producing at least a piece immediately after forging.
  • the aspect ratio of the crystal grains of the copper-based matrix phase is characterized by performing solution treatment and Z or hot rolling after cooling at a cooling rate of l ° CZs or higher in the temperature range from temperature to 900 ° C.
  • N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 )
  • X means the grain size ( ⁇ m) of the precipitates and inclusions.
  • solution treatment and Z or hot rolling it is desirable to perform heating in a temperature range of 600 ° C or lower, or further, heat treatment for holding in a temperature range of 150 to 750 ° C.
  • Solution treatment and Z or hot rolling processing at temperatures below 600 ° C, and 150-750 The heat treatment held in the temperature range of ° C may be performed a plurality of times.
  • solution treatment and Z or hot rolling processing in a temperature range of 600 ° C or less, and heat treatment holding in a temperature range of 150 to 750 ° C need not be performed in this order.
  • processing in a temperature range of 600 ° C or lower and heat treatment in a temperature range of 150 to 750 ° C may be performed. After the last step, you may carry out processing in the temperature range below 600 ° C! /.
  • the precipitate is a metal or a compound of copper and an additive element, or a compound of additive elements, for example, Cu Ti for a Ti additive, Cu Zr for a Zr additive, Ma
  • metallic Cr precipitates. Further, the inclusion is a metal oxide, a metal carbide, a metal nitride or the like.
  • the copper alloy of the present invention contains Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te and Se (hereinafter, these elements are referred to as “first Medium strength (referred to as “group element”) 0.1 to 20% of each one selected, or a total of 0.1 to 20% of two or more, with the balance being a chemical composition consisting of copper and impurities.
  • group element 0.1 to 20% of each one selected, or a total of 0.1 to 20% of two or more, with the balance being a chemical composition consisting of copper and impurities.
  • These elements are elements having an effect of improving corrosion resistance and heat resistance while maintaining a balance between strength and electrical conductivity. This effect is exhibited when these elements contain a total of 0.1% or more. However, when these contents are excessive, the conductivity decreases. Therefore, when these elements are contained, the total content of one or more kinds needs to be in the range of 0.1 to 20%. Ag and Sn, in particular, contribute to high strength through fine precipitation, and are therefore preferably used positively. When the following second element is included, the strength can be secured by the second element, so the lower limit of the first element can be lowered to 0.01%.
  • any one of these elements may be contained in the copper alloy of the present invention.
  • the effect of improving the strength becomes significant when the content of these elements is 0.01% or more.
  • the content of any one of Ti, Zr and Hf is preferably 0.01 to 5%. In order to obtain a state where the balance between tensile strength and electrical conductivity is extremely good, it is more desirable to contain these elements in an amount of 0.1% or more.
  • Cr is an element effective for improving the tensile strength without increasing the electrical resistance. In order to obtain the effect, it is desirable to contain 0.01% or more. In particular, in order to obtain a state in which the balance of tensile strength and electrical conductivity is about the same as or higher than that of the Cu—Be alloy, it is desirable to contain 0.1% or more. On the other hand, if the Cr content exceeds 5%, metal Cr precipitates coarsely and adversely affects ductility, bending workability, fatigue properties, and the like. Therefore, when Cr is contained, its content is preferably 0.01 to 5%.
  • the copper alloy of the present invention instead of a part of copper, 0.001 to 2% of one selected from among Mg, Li, Ca and rare earth elements, respectively, or It is desirable to include two or more kinds in a total of 0.001 to 2%. These are hereinafter referred to as “Group 3 elements”.
  • Mg, Li, Ca and rare earth elements are elements that increase the high-temperature strength by combining with oxygen atoms in the copper matrix to form fine oxides. The effect becomes significant when the total content of these elements is 0.001% or more. However, if its content exceeds 2%, the above effects are saturated, and the force also has problems such as a decrease in electrical conductivity and a deterioration in ductility and bending workability. Therefore, the total content when Mg, Li, Ca and one or more selected rare earth elements are included is preferably 0.001 to 2%.
  • rare earth elements mean Sc, Y and lanthanoids, and each element may be added alone, or misch metal may be added.
  • the copper alloy of the present invention is intended to increase the width ( ⁇ ) of the liquidus and solidus at the time of alloy penetration. Therefore, P, B, Bi ⁇ Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, Ga, S, Cd It is desirable to include 0.0001 to 3% of the selected one of As and Pb, or 0.0001 to 3% in total of 2 or more. As, Pd and Cd are harmful elements and should not be used as much as possible. These are hereinafter referred to as “Group 4 elements”. Note that ⁇ ⁇ is a force that increases due to the so-called supercooling phenomenon in the case of rapid solidification. Here, we consider ⁇ T in a thermal equilibrium state as a guide.
  • is preferably in the range of 50 to 200 ° C.
  • C, N and O are elements usually contained as impurities. These elements form carbides, nitrides and oxides with the metal elements in the alloy. If these precipitates or inclusions are fine, they have the effect of strengthening the alloy, particularly the high-temperature strength, in the same manner as the precipitates of the compounds of metals or copper and additive elements described later, or compounds of additive elements. Therefore, you may add actively.
  • O has the effect of increasing the high temperature strength by forming an acid oxide. This effect is easily obtained in alloys containing elements that easily form oxides such as Mg, Li, Ca and rare earth elements, Al, and Si. In this case, however, it is necessary to select conditions so that no solid solution O remains. Residual solute oxygen causes H 2 O gas during heat treatment in a hydrogen atmosphere, causing a steam explosion, causing a so-called hydrogen disease, blistering, etc.
  • each of these elements exceeds 1%, coarse precipitates or inclusions are formed, and ductility and bending workability are reduced. Therefore, it is preferable to limit each to 1% or less. More preferred is 0.1% or less. If H is contained as an impurity in the alloy, H
  • the content is preferably as low as possible.
  • Be is another impurity element. Be may be mixed in a copper alloy when scrap is used in large quantities as a raw material. This content should be as low as possible However, it is acceptable if it is less than 0.1%.
  • the particle size of particles having a particle size force of m or more and the total number of precipitates and inclusions satisfy the following formula (1). is required.
  • N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 )
  • X means the grain size m of the precipitates and inclusions.
  • the strength is improved without lowering the conductivity by finely depositing a precipitate of a metal or a compound of copper and an additive element, or a compound of the same additive element. Can be made. These increase the strength by precipitation hardening. Solid solution of Cr, Ti, and Zr decreases by precipitation, and the conductivity of the copper matrix approaches that of pure copper
  • the particle size of those having a particle size of Lm or more, the total number of precipitates and inclusions, and the above formula (1) Satisfaction is defined as an essential requirement.
  • the desirable total number of precipitates and inclusions is when the following equation (2) is satisfied, and more desirably when the following equation (3) is satisfied.
  • these The particle size of each and the total number of precipitates and inclusions can be determined by the method shown in the examples.
  • N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 )
  • X means the grain size ( ⁇ m) of the precipitates and inclusions.
  • the mechanical properties are, for example, in the rolling direction (direction parallel to the rolling direction: here defined as the 0 degree direction) and in the direction perpendicular to the rolling (perpendicular to the rolling direction).
  • the width direction (defined here as the 90-degree direction) is different, that is, the anisotropy of the characteristics increases, which causes problems such as restrictions on the molding direction and sampling direction.
  • the bending workability itself deteriorates. Therefore, the crystal structure aspect ratio was set to 5 or less. Smaller aspect ratio is better 4 or less is preferred. If it is 3 or less, it is more preferable. If the aspect ratio is close to 1, the value is even better.
  • the aspect ratio defined in the present invention is the average value of the (maximum diameter) / (minimum diameter) values of the crystal grains of the copper-based matrix, regardless of the direction of the structure observation. .
  • the “maximum diameter” of a crystal grain is the longest diameter of the crystal grain, and the “minimum diameter” of the crystal grain is the shortest of the crystal grain!
  • SEM scanning electron microscope
  • the crystal grain size of the copper alloy is made fine, it is advantageous for increasing the strength and also improves the ductility and the bending workability.
  • the crystal grain size is desirably 0.01 to 35 m.
  • a more desirable particle size is 0.05 to 30 / ⁇ ⁇ . Most preferred is 0.1 to 25 ⁇ .
  • the average crystal grain size of the copper matrix is, for example, an optical microscope or a scanning electron microscope (S This is a value obtained by multiplying the average section length measured by the linear cutting method using this tissue photograph by a number of fields by 1.13.
  • inclusions such as metal oxides, metal carbides, and metal nitrides that prevent fine precipitation of a metal or a compound of copper and an additive element, or a compound of additive elements, are solidified in a piece. Easy to generate immediately after. In order to suppress the formation of these inclusions, it is most important to adjust the cooling rate after solidification. As will be described later, solution treatment and Z or hot rolling are necessary to reduce the aspect ratio of the crystal grains of the copper base matrix to 5 or less in order to ensure isotropic properties. There is. However, as a result of research by the present inventors, it is clear that the formation and coarsening of the inclusions can be suppressed even if such a hot process is performed if the temperature of the flake is cooled to some extent. became
  • a copper alloy having the above chemical composition is melted, and the piece obtained by forging is at least from the piece temperature immediately after forging.
  • a temperature range up to 900 ° C after cooling at a cooling rate of 1 ° CZs or higher, solution treatment and Z or hot rolling are performed, so that the aspect ratio of the crystal grains of the copper base matrix is 5 or less.
  • the particle size of the particles having a particle size of Lm or more and the total number of precipitates and inclusions satisfy the following formula (1): did.
  • N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 )
  • X means the grain size ( ⁇ m) of the precipitates and inclusions.
  • Precipitates such as a compound of metal or copper and an additive element, or a compound of additive elements are formed in a temperature range of 280 ° C or higher.
  • inclusions such as metal oxides, metal carbides, and metal nitrides are coarsely formed, and the particle size is 20 m. In addition, it may reach several hundreds / zm.
  • the above precipitates also become coarser than 20 m. In the state where such coarse precipitates and inclusions are formed, the precipitation hardening action of the precipitates in the aging process, which is not only likely to cause cracks and breaks during subsequent processing, is impaired. High strength cannot be achieved.
  • the cooling rate in this temperature range is preferably 100 ° C / s or less, more preferably 90 ° C / s or less. More desirable is 80 ° C / s or less.
  • Solution treatment and Z or hot rolling are effective for isotropic, homogenizing, and fine graining of crystal structures.
  • high strength and excellent workability of the final product can be obtained uniformly and stably, and both the strength and the anisotropy of the characteristics can be reduced.
  • bending workability can be improved and bending workability anisotropy can be reduced.
  • the solution treatment and Z or hot rolling are preferably performed in a temperature range of 600 ° C or higher and 1060 ° C or lower. If it is less than 600 ° C, the crystal structure may not be isotropic, homogeneous or fine grained, and the aspect ratio of the crystal grain of the copper base matrix in the final product cannot be reduced to 5 or less. In some cases, good characteristics cannot be obtained uniformly and the anisotropy of characteristics increases. On the other hand, if the temperature of the solution treatment and Z or hot rolling exceeds 1060 ° C, the grain boundaries melt and cracks occur during processing, or the coarsening of the grains causes the final product. Characteristics There is a possibility that problems such as reduction and anisotropy of characteristics increase.
  • the solution treatment and Z or hot rolling are preferably performed in a temperature range of 600 ° C or higher and 1060 ° C or lower.
  • they are 650 degreeC or more and 1000 degrees C or less, More preferably, they are 700 degreeC or more and 900 degrees C or less.
  • the temperature range of 900 to 1,060 ° C. coarse precipitation of the inclusions and coarsening of the crystal grains of the copper base matrix are remarkable.
  • the solution treatment time or the heating time before hot rolling is less than 3.0 seconds, the desired crystal structure cannot be obtained even if the solution treatment temperature or the heating temperature before hot rolling is set high. Accordingly, it is desirable that the solution treatment in the temperature range of 600 to 160 ° C. or the heating before hot rolling be performed for 3.0 seconds or more. This time is preferably 1 minute or longer and more preferably 5 minutes or longer. More desirable is 10 minutes or more.
  • the upper limit of these times is not particularly defined, coarse precipitation of inclusions such as metal or a compound of copper and an additive element, a compound of additive elements, or a metal oxide, metal carbide, or metal nitride It is desirable to suppress it, suppress coarsening of crystal grains, and reduce the heating cost for 24 hours or less.
  • the heating time can be shortened. It is desirable to hold for a short time in the temperature range of 900 to 160 ° C on the high temperature side.
  • the rolling reduction in hot rolling is not particularly defined, but is preferably 20% or more as the total rolling reduction from the viewpoints of isotropic, homogenizing, and refinement of the crystal structure. More preferred is 50% or more.
  • Solution treatment and cooling after Z or hot rolling are preferably performed at a cooling rate of 1 ° C Zs or more in order to suppress precipitation of the inclusions and precipitates.
  • the larger the cooling rate the more preferable the cooling rate is 2 ° CZs or more, and the more preferable is 5 ° CZs or more.
  • Solution treatment and heating prior to Z or hot rolling are preferably performed in a reducing atmosphere, in an inert gas atmosphere, or in a vacuum of 20 Pa or less in order to prevent generation of scale due to surface oxidation. . Excellent mating properties are also ensured by the treatment under such an atmosphere.
  • Solution treatment and Z or hot rolling may be performed after "processing in a temperature range of 600 ° C or lower” or “aging treatment holding in a temperature range of 150 to 750 ° C” described later. .
  • the solution solution treatment and Z or hot After rolling it is desirable to further perform “processing in a temperature range of 600 ° C. or lower” or “aging treatment maintained in a temperature range of 150 to 750 ° C.”.
  • Processing such as rolling and drawing may be performed at 600 ° C or lower.
  • these processes may be performed in the cooling process after solidification. If processing is performed in a temperature range exceeding 600 ° C, strain during processing cannot be accumulated sufficiently, so that precipitation of a compound of a metal or copper and an additive element, or a compound of additive elements, etc. is performed during subsequent aging treatment. The product cannot be finely precipitated, and the strength of the copper alloy becomes insufficient.
  • the preferred cache temperature is 600 ° C. or lower, and more preferably 450 ° C. or lower. Most preferred is 300 ° C or lower. It may be 25 ° C or less.
  • the processing in the above temperature range is desirably performed at a processing rate (cross-sectional reduction rate) of 20% or more. More preferred is 50% or more. If processing is performed at such a processing rate, the dislocations introduced thereby become precipitation nuclei during the aging treatment, leading to refinement of the precipitates and shortening the time required for precipitation, thereby improving conductivity. Reduction of harmful solid solution elements can be realized early.
  • the aging treatment is performed by depositing a metal or a compound of copper and an additive element, or a precipitate such as a compound of the additive elements to increase the strength of the copper alloy and, at the same time, a solid solution element (Cr, It is effective to improve conductivity by reducing Ti and the like.
  • a solid solution element Cr, It is effective to improve conductivity by reducing Ti and the like.
  • the treatment temperature is less than 150 ° C, it takes a long time for the diffusion of the precipitated elements, which reduces productivity.
  • the treatment temperature exceeds 750 ° C, the precipitates become too coarse and not only can not be strengthened by precipitation hardening, but also have low ductility, bending workability, impact resistance and fatigue properties. I will give you. For this reason, it is desirable to perform the aging treatment in a temperature range of 150 to 750 ° C. Desirable aging temperature is 200-650 ° C, more preferably 250-550 ° C.
  • the aging treatment time is less than 30 seconds, the desired precipitation amount cannot be secured even if the aging treatment temperature is set high. Therefore, it is desirable to perform an aging treatment in the temperature range of 150 to 750 ° C for 30 seconds or more.
  • This treatment time is preferably 5 minutes or more, and more preferably 10 minutes or more. Most desirable is 15 minutes or more. There is no upper limit on the processing time, but it is desirable that it be 72 hours or less from the viewpoint of processing costs.
  • the aging treatment temperature is high, the treatment time can be shortened.
  • the aging treatment is preferably performed in a reducing atmosphere, an inert gas atmosphere, or a vacuum of 20 Pa or less in order to prevent the generation of scale due to surface oxidation. Excellent mating properties are also ensured by processing in such an atmosphere.
  • the processing may be performed after the solution treatment, or the solution treatment may be performed after the processing. Also good. Moreover, you may repeat these as needed. If it is repeated, the desired amount of precipitation can be obtained in a shorter time than with a single treatment (force and aging treatment), and a compound of metal or copper and an additive element, or a compound of additive elements. The precipitates such as can be deposited more finely.
  • conditions other than the above production conditions for example, conditions such as melting and forging are not particularly limited, but may be carried out as follows, for example.
  • the dissolution is preferably performed in a non-acidic or reducing atmosphere. This is also a force that causes so-called hydrogen disease, in which water vapor is generated and blisters are generated in the subsequent process when the amount of dissolved oxygen in the molten copper increases.
  • solid solution elements that easily oxidize such as Ti, Cr, Zr, Mg, Li, Ca and rare earth elements, Al, Si, etc. If this remains in the final product, ductility, bending workability and fatigue properties are significantly reduced.
  • continuous forging is preferred in terms of productivity and solidification rate, but other methods such as an ingot method may be used as long as the method satisfies the above conditions.
  • the filling temperature is 1250 ° C or higher. More preferred is 1350 ° C or higher. At this temperature, Cr, Ti, Zr, etc. can be sufficiently dissolved, inclusions such as metal oxides, metal carbides, metal nitrides, etc., compounds of metal or copper and additive elements, or the same additive elements. This is because a precipitate such as a chemical compound is not generated.
  • a method using a graphite mold usually performed with a copper alloy is recommended from the viewpoint of lubricity.
  • a refractory that does not easily react with the main alloying elements such as Ti, Cr, Zr, etc., for example, zirconia may be used.
  • a copper alloy having the chemical composition shown in Table 1 was vacuum-melted in a high-frequency melting furnace, and was poured into a zirconia mold to a depth of 20 mm to obtain a flake. For rare earth elements, single elements or misch metals were added.
  • the obtained piece was cooled by spray cooling from 900 ° C, which was the temperature immediately after fabrication (the temperature immediately after removal from the mold).
  • the temperature change of the vertical shape at a given location was measured by a thermocouple embedded in the vertical shape, and the surface temperature after the piece exited the vertical shape was measured with a contact thermometer.
  • the solidification start point was obtained by thermal analysis during continuous cooling at a predetermined rate after preparing 0.2 g of molten metal for each component.
  • a rolled material having a thickness of 15 mm, a width of 150 mm, and a length of 200 mm was produced from the obtained piece by cutting and cutting.
  • inventive examples 1 to 9 and comparative examples 10 to 12 were subjected to the solution treatment and Z or hot rolling under the conditions shown in Table 2, and the comparative examples 13 to 20 were subjected to solution heat treatment and heat treatment.
  • No hot rolling was performed.
  • These rolled materials are rolled at a reduction rate of 73 to 94% at room temperature (first rolling) to form a 0.8 mm thick plate, and subjected to aging treatment (first aging) under specified conditions.
  • aging treatment first aging
  • ⁇ Total number of precipitates and inclusions> A cross section perpendicular to the rolling surface of each specimen and parallel to the rolling direction is mirror-polished, etched with a corrosive liquid in which ammonia and hydrogen peroxide solution are mixed at a volume ratio of 9: 1, and then optical microscope is used. A 1 mm x 1 mm field of view was observed with a microscope at a magnification of 100 times. After that, the value obtained by measuring the major axis of the precipitates and inclusions (the length of the straight line in the grain that is the longest in the grain without touching the grain boundary in the middle) is defined as the grain size.
  • 10) is defined as the total number of all precipitates and inclusions according to the particle size of each sample.
  • a No. 13B tensile test piece specified in JIS Z 2201 was sampled from 0 ° and 90 ° with respect to the rolling direction, and subjected to a tensile test at room temperature (25 ° C) to obtain a tensile strength (TS).
  • TS tensile strength
  • EL fracture ductility
  • a specimen having a width of 10 mm and a length of 10 mm is taken from the direction of 0 ° and 90 ° with respect to the rolling direction, and a cross section perpendicular to the rolling surface and parallel to the rolling direction is mirror-polished, A square pyramid diamond indenter was pushed into the test piece with a load of 50 g, and the Vickers hardness defined by the ratio between the load and the surface area of the indentation was measured. Furthermore, after heating this at a predetermined temperature for 2 hours and cooling to room temperature, the Vickers hardness was measured again, and the heating temperature at which the hardness was 50% of the hardness before heating was defined as the heat resistant temperature. [0084] Bending workability>
  • the chemical composition, production conditions, crystal structure of the copper base matrix, and the total number of precipitates and inclusions are within the range specified by the present invention.
  • high values were obtained for conductivity, strength, workability (ductility, bendability), and heat resistance temperature.
  • the anisotropy of their characteristics is very small, and has excellent features!
  • Comparative Examples 10 to 20 are defined by the present invention in terms of chemical composition, production conditions, the total number of precipitates and inclusions, the average crystal grain size of the copper base matrix, and the difference in aspect ratio. Since it was out of the range, the characteristics were inferior to those of the examples of the present invention, and their anisotropy was strong.
  • a Cu alloy having the chemical composition shown in Table 4 was vacuum-melted in a high-frequency melting furnace and placed in a pig iron mold to obtain a piece having a thickness of 150 mm x width 170 mm x length 500 mm.
  • Rare earth elements were added in the form of individual elements or misch metal.
  • the temperature history during cooling after pouring was measured with a thermocouple embedded in the bottom of the saddle, and the cooling curve at the center of the alloy lump was estimated in combination with heat transfer calculations.
  • the average cooling rate up to 900 ° C after the start of solidification was 2 ⁇ 0.3 ° C / s.
  • the hot metal portion of the obtained piece is cut off and hot forged to give a thickness of 50mm x width of 200mm
  • An alloy lump with an X length of 1200 mm was prepared. These were heated to 950 ° C and then hot rolled to a thickness of 10 mm. Note that the rolling end temperature was about 750 to 400 ° C., and cooling was performed in water after the end of rolling. Some were heat-treated by solution heat treatment and surface grinding to produce a rolled material with a thickness of 9 mm. These rolled materials were rolled at room temperature (first rolling) to form a plate with a thickness of 0.6 mm, and a second solution treatment was performed at 800 ° C for 30 seconds.
  • REM rare earth element
  • Rminj of ⁇ time J means minutes and rhj means hours.
  • Example 2130 of the present invention the tensile strength, ductility and bending workability were all good. Since the value of the good way B is equal to or more than that of the bad way (below it in terms of the value of B), only the bad way is shown in Table 6. .
  • Example 38 of the present invention the melting furnace power is the pouring power to the holding furnace by pouring, and then charcoal is added in the same manner to prevent acidification, An 80 ⁇ 250 mm cross-section piece was obtained by intermittent drawing using a mold. The average drawing speed was 50 mm / min.
  • Example 39 of the present invention In the drawing method of Example 39 of the present invention, after pouring into the tundish, the acid is prevented with charcoal. The molten metal was poured continuously through the layer covered with.
  • a water-cooled copper type made of copper alloy was used and continuously drawn at an average speed of 70 mm to obtain a piece having a cross-sectional force of 100 mm ⁇ 400 mm.
  • the average cooling rates up to 900 ° C after the start of solidification are 2.8 ⁇ 0.3 ° C / s, 2.5 ⁇ 0.3 ° C / s and 2.4 ⁇ 0.2 ° C / s, respectively. s.
  • the cooling rate at the center of the slab during solidification and cooling during continuous fabrication was calculated by the combined use of the temperature history measured on the surface after exiting the saddle and the heat transfer calculation.
  • the cooling rate at the time of darvil fabrication was the same as in Example 1 by using both temperature measurement and heat transfer calculation with thermocouple embedded in the vertical side
  • time J fminj means minutes and fhj means hours.
  • Rminj for “hour” means minutes and “hour” means hours.
  • the balance of tensile strength, formability and electrical conductivity is excellent. However, it is excellent in high-temperature strength, and further, performance required for safety tool materials, that is, thermal conductivity. It is possible to provide a copper alloy excellent in wear resistance and spark resistance, and a method for producing the same.
  • FIG. 1 is a diagram showing the relationship between electrical conductivity and thermal conductivity.
  • FIG. 2 is a schematic diagram showing a forging method by the Darville method.

Abstract

[PROBLEMS] To provide a beryllium-free copper alloy satisfactory in various performances. [MEANS FOR SOLVING PROBLEMS] The copper alloy has a given chemical composition, the remainder consisting of copper and impurities. In the copper alloy, the crystal structure has an aspect ratio of 5 or lower and the total number of precipitates and inclusions having a particle diameter of 1 µm or larger satisfies the following relationship (1). This copper alloy is obtained by melting, casting, subsequently cooling the cast at a rate of 1 °C/sec or higher at least in the temperature range of from the temperature of the cast immediately after the casting to 900°C, and subjecting the cast to a solution heat treatment and/or hot rolling. logN≤0.4742+17.629×exp(-0.1133×X) (1) In the relationship (1), N is the total number of the precipitates and inclusions per unit area (mm2) and X is the particle diameter of the precipitates and inclusions (µm).

Description

銅合金およびその製造方法  Copper alloy and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、 Be等の環境に悪影響を及ぼす元素を用いな 、銅合金およびその製造 方法に関する。この銅合金の用途としては、電気電子部品、安全工具などが挙げら れる。  [0001] The present invention relates to a copper alloy and a method for producing the same without using an element that adversely affects the environment such as Be. Applications of this copper alloy include electrical and electronic parts and safety tools.
[0002] 電気電子部品としては下記のものが挙げられる。エレクトロニクス分野ではパソコン 用コネクタ、半導体ソケット、光ピックアップ、同軸コネクタ、 ICチェッカーピンなどが挙 げられる。コミュニケーション分野では携帯電話部品(コネクタ、ノ ッテリー端子、アン テナ部品)、海底中継器筐体、交換機用コネクタなどが挙げられる。自動車分野では リレー、各種スィッチ、マイクロモータ、ダイヤフラム、各種端子類などの種々の電装 部品が挙げられる。航空 ·宇宙分野では航空機用ランディングギアなどが挙げられる 。医療 ·分析機器分野では医療用コネクタ、産業用コネクタなどが挙げられる。家電 分野ではエアコン等家電用リレー、ゲーム機用光ピックアップ、カードメディアコネクタ などが挙げられる。  [0002] Examples of electrical and electronic parts include the following. In the electronics field, PC connectors, semiconductor sockets, optical pickups, coaxial connectors, and IC checker pins are listed. In the field of communications, mobile phone parts (connectors, knottery terminals, antenna parts), submarine repeater housings, exchange connectors, etc. are listed. In the automotive field, there are various electrical components such as relays, various switches, micromotors, diaphragms, and various terminals. In the aerospace field, landing gears for aircraft are listed. Medical / analytical instruments include medical connectors and industrial connectors. In the field of home appliances, relays for home appliances such as air conditioners, optical pickups for game machines, card media connectors, etc.
[0003] 安全工具としては、例えば、弾薬庫や炭坑等、火花から引火して爆発する危険性 がある場所で用いられる掘削棒やスパナ、チェーンブロック、ハンマー、ドライバー、 ペンチ、 -ッパなどの工具がある。  [0003] Safety tools include, for example, drilling rods, spanners, chain blocks, hammers, drivers, pliers, and -padpers used in places where there is a risk of explosion from sparks, such as ammunition stores and coal mines. There are tools.
背景技術  Background art
[0004] 従来、上記の電気電子部品に用いられる銅合金としては、 Beの時効析出による強 化を狙った Cu-Be合金が知られている。この合金は、引張強度と導電率の双方が優 れるので、ばね用材料などとして広く使用されている。し力しながら、 Cu-Be合金の製 造工程およびこの合金を各種部品へカ卩ェする工程において Be酸ィ匕物が生成する。  [0004] Conventionally, as a copper alloy used in the above-described electrical and electronic parts, a Cu-Be alloy aimed at strengthening by aging precipitation of Be is known. This alloy is widely used as a spring material because of its excellent tensile strength and electrical conductivity. However, Be oxides are formed in the Cu-Be alloy manufacturing process and the process of casting this alloy to various parts.
[0005] Beは環境に有害な物質である。このため、銅合金の製造、加工においては、 Be酸 化物の処理工程を設ける必要があり、製造コストが上昇し、電気電子部品のリサイク ル過程で問題となる。従って、 Beを用いず、引張強度と導電率の双方が優れる材料 の出現が待望されている。 [0006] 特許文献 1には、コルソン系と呼ばれる Ni Siを析出させた銅合金が提案されている [0005] Be is a substance harmful to the environment. For this reason, in the manufacture and processing of copper alloys, it is necessary to provide a treatment process for Be oxide, which increases the manufacturing cost and becomes a problem in the recycling process of electrical and electronic parts. Therefore, the emergence of a material that does not use Be and has both excellent tensile strength and conductivity is expected. [0006] Patent Document 1 proposes a copper alloy in which Ni Si is deposited, which is called a Corson series.
2  2
。このコルソン系合金は、その引張強度が 750〜820MPaで導電率が 40%程度であり 、 Be等の環境に有害な元素を含まない合金の中では、比較的、引張強度と導電率と のバランスがよ 、ものである。  . This Corson alloy has a tensile strength of 750 to 820 MPa and an electrical conductivity of about 40%. Among alloys that do not contain elements harmful to the environment such as Be, the balance between tensile strength and electrical conductivity is relatively high. It's a thing.
[0007] し力しながら、この合金は、その高強度化および高導電率ィ匕のいずれにも限界があ り、以下に示すように製品ノ リエーシヨンの点で問題が残る。この合金は、 Ni Siの析 [0007] However, this alloy has limitations in both strength enhancement and high electrical conductivity, and there remains a problem in terms of product noirishment as described below. This alloy is Ni Si
2 出による時効硬化性を持つものである。そして、 Niおよび Siの含有量を低減して導電 率を高めると、引張強度が著しく低下する。一方、 Ni Siの析出量を増すために Niおよ  2 It has age-hardening properties. And when Ni and Si contents are reduced to increase the conductivity, the tensile strength decreases significantly. On the other hand, in order to increase the amount of Ni Si precipitation, Ni and
2  2
び Siを増量しても、引張強度の上昇に限界があり、しかも導電率が著しく低下する。こ のため、コルソン系合金は、引張強度が高い領域および導電率が高い領域での引 張強度と導電率のバランスが悪くなり、ひいては製品ノ リエーシヨンが狭くなる。これ は、下記の理由による。  Even if the amount of Si is increased, there is a limit to the increase in tensile strength, and the conductivity is significantly reduced. For this reason, the Corson alloy has a poor balance between the tensile strength and the conductivity in the region where the tensile strength is high and the region where the electrical conductivity is high, resulting in a narrow product norelation. This is due to the following reasons.
[0008] 合金の電気抵抗 (または、その逆数である導電率)は、電子散乱によって決定され るものであり、合金中に固溶した元素の種類によって大きく変動する。合金中に固溶 した Niは、電気抵抗値を著しく上昇させる(導電率を著しく低下させる)ので、上記の コルソン系合金では、 Niを増量すると導電率が低下する。一方、銅合金の引張強度 は、時効硬化作用により得られるものである。引張強度は、析出物の量が多いほど、 また、析出物が微細に分散するほど、向上する。コルソン系合金の場合、析出粒子 は Ni Siのみであるため、析出量の面でも、分散状態の面でも、高強度化に限界があ [0008] The electrical resistance of the alloy (or its reciprocal conductivity) is determined by electron scattering, and varies greatly depending on the type of element dissolved in the alloy. Ni dissolved in the alloy remarkably increases the electrical resistance (remarkably decreases the electrical conductivity), so in the above-mentioned Corson alloy, the electrical conductivity decreases when the Ni content is increased. On the other hand, the tensile strength of the copper alloy is obtained by age hardening. The tensile strength increases as the amount of precipitate increases and as the precipitate is finely dispersed. In the case of a Corson alloy, since the precipitated particles are only Ni Si, there is a limit to increasing the strength in terms of both precipitation and dispersion.
2 2
る。  The
[0009] 特許文献 2には Cr、 Zr等の元素を含み、表面硬さおよび表面粗さを規定したワイヤ 一ボンディング性の良好な銅合金が開示されて 、る。その実施例に記載されるように 、この銅合金は、熱間圧延および溶体化処理を前提として製造されるものである。  [0009] Patent Document 2 discloses a copper alloy having a good wire-bonding property, which includes elements such as Cr and Zr, and defines surface hardness and surface roughness. As described in the examples, this copper alloy is manufactured on the premise of hot rolling and solution treatment.
[0010] しかし、熱間圧延を行うには、熱間割れ防止やスケール除去のために表面手入れ の必要があり、歩留が低下する。また、大気中で加熱されることが多いので、 Si、 Mg、 Al等の活性な添加元素が酸ィ匕しやすい。このため、生成した粗大な内部酸化物が最 終製品の特性劣化を招くなど、問題が多い。さらに、熱間圧延や溶体化処理には、 膨大なエネルギーを必要とする。このように、引用文献 2に記載の銅合金では、熱間 加工および溶体化処理を前提とするので、製造コストの低減および省エネルギー化 等の観点力 の問題があるとともに、粗大な酸ィ匕物の生成等に起因する製品特性( 引張強度および導電率のほか、曲げ加工性や疲労特性など)が劣化するという問題 を招来する。 [0010] However, in order to perform hot rolling, it is necessary to clean the surface in order to prevent hot cracking and to remove scale, resulting in a decrease in yield. In addition, since it is often heated in the atmosphere, active additive elements such as Si, Mg, and Al are likely to oxidize. For this reason, there are many problems such as the generated coarse internal oxides causing the deterioration of the characteristics of the final product. Furthermore, enormous energy is required for hot rolling and solution treatment. Thus, in the copper alloy described in Cited Document 2, Since it is premised on processing and solution treatment, there are problems in terms of viewpoints such as reduction of manufacturing costs and energy savings, as well as product characteristics (such as tensile strength and electrical conductivity in addition to tensile strength and conductivity) resulting from the formation of coarse oxides. , Bending workability, fatigue characteristics, etc.) are deteriorated.
[0011] 一方、前記の安全工具用材料としては、工具鋼に匹敵する機械的性質、例えば強 度ゃ耐摩耗性が要求されるとともに、爆発の原因となる火花が出ないこと、すなわち 耐火花発生性に優れることが要求される。このため、安全工具用材料にも、熱伝導性 の高い銅合金、特に Beの時効析出による強化を狙った Cu— Be合金が多用されてき た。前述のように、 Cu— Be合金は環境上の問題が多い材料である力 それにもかか わらず、 Cu— Be合金が安全工具用材料として多用されてきたのは次の理由による。  [0011] On the other hand, the material for the safety tool is required to have mechanical properties comparable to tool steel, for example, high strength and wear resistance, and no sparks that cause an explosion are generated. It is required to be excellent in generation. For this reason, copper alloys with high thermal conductivity, especially Cu-Be alloys aimed at strengthening by aging precipitation of Be, have been frequently used as safety tool materials. As mentioned above, Cu-Be alloy is a material with many environmental problems. Nevertheless, Cu-Be alloy has been widely used as a safety tool material for the following reasons.
[0012] 図 1は、銅合金の導電率〔IACS (%)〕と熱伝導度〔TC (WZm'K)〕との関係を示す 図である。図 1に示すように、両者はほぼ 1 : 1の関係にあり、導電率〔IACS (%;)〕を高 めることは熱伝導度〔TC (W/m-K)〕を高めること、言 、換えれば耐火花発生性を高 めることに他ならない。工具の使用時に打撃等による急激な力が加わると、火花が発 生するのは、衝撃等により発生する熱によって合金中の特定の成分が燃焼するため である。非特許文献 1に記載のとおり、鋼は、その熱伝導度が銅のそれの 1Z5以下と 低いため、局所的な温度上昇が発生しやすい。鋼は、 Cを含有するので、「c + o→ FIG. 1 is a graph showing the relationship between the electrical conductivity [IACS (%)] and the thermal conductivity [TC (WZm′K)] of a copper alloy. As shown in Fig. 1, the two are in a 1: 1 relationship, and increasing the conductivity [IACS (%;)] increases the thermal conductivity [TC (W / mK)]. In other words, it is nothing other than increasing the spark resistance. When a sudden force is applied when using a tool, a spark is generated because a specific component in the alloy is burned by the heat generated by the impact. As described in Non-Patent Document 1, since the thermal conductivity of steel is as low as 1Z5 or less than that of copper, local temperature rise is likely to occur. Steel contains C, so “c + o →
2 2
CO」の反応を起こして火花を発生させるのである。事実、 Cを含有しない純鉄ではIt causes the reaction of “CO” to generate sparks. In fact, in pure iron that does not contain C
2 2
火花が発生しないことが知られている。他の金属で火花を発生しやすいのは、 Ήまた は Ti合金である。これは、 Tiの熱伝導度が銅のそれの 1Z20と極めて低ぐしかも、「Ti + 0→TiO」の反応が起こるためである。なお、図 1は、非特許文献 1に示されるデ It is known that no sparks occur. Other metals that are prone to sparks are cocoons or Ti alloys. This is because the thermal conductivity of Ti is extremely low with 1Z20, which is copper, and the reaction of “Ti + 0 → TiO” occurs. Note that FIG. 1 shows the data shown in Non-Patent Document 1.
2 2 twenty two
ータを整理したものである。  Data.
[0013] しかし、前述のように導電率〔IACS (%;)〕と引張強さ〔TS (MPa)〕とはトレードオフの 関係にあり、両者を同時に高めることは極めて困難で、従来にあっては工具鋼並み の高い引張強度を有しながら十分に高い熱伝導度 TCを具備する銅合金としては、 上記の Cu— Be合金以外になかったためである。 [0013] However, as described above, the conductivity [IACS (%;)] and the tensile strength [TS (MPa)] are in a trade-off relationship, and it is extremely difficult to increase both at the same time. This is because there was no copper alloy other than the Cu-Be alloy described above, which had a sufficiently high thermal conductivity TC while having a high tensile strength comparable to that of tool steel.
[0014] 特許文献 1:特許第 2572042号公報 [0014] Patent Document 1: Japanese Patent No. 2572042
特許文献 2:特許第 2714561号公報 非特許文献 1 :工業加熱、 Vol.36, No.3(1999)、(社)日本工業炉協会発行、 59頁 発明の開示 Patent Document 2: Japanese Patent No. 2714561 Non-patent document 1: Industrial heating, Vol.36, No.3 (1999), published by Japan Industrial Furnace Association, page 59 Disclosure of invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 本発明の第 1の目的は、 Be等の環境に有害な元素を含まない銅合金であって、製 品ノリエーシヨンが豊富であり、高温強度、延性および曲げ加工性にも優れ、更に、 安全工具用材料に要求される性能、即ち、熱伝導度、耐摩耗性および耐火花発生 性にも優れる高強度高加工性銅合金を提供することにある。本発明の第 2の目的は 、上記の銅合金において同一成分で従来の製造方法に比べより延性および曲げカロ ェ性により優れたの銅合金の製造方法を提供することである。  [0015] The first object of the present invention is a copper alloy that does not contain elements harmful to the environment such as Be, has abundant product nomination, is excellent in high-temperature strength, ductility, and bending workability. An object of the present invention is to provide a high-strength, high-workability copper alloy that is excellent in performance required for a material for safety tools, that is, thermal conductivity, wear resistance and spark resistance. The second object of the present invention is to provide a method for producing a copper alloy having the same components as described above, but having superior ductility and bending caloricity as compared with conventional production methods.
[0016] 「製品ノリエーシヨンが豊富である」とは、添加量および Zまたは製造条件を微調整 することにより、導電率および引張強度のノ ンスを Be添加銅合金と同程度またはそ れ以上の高!、レベルから、従来知られて!/ヽる銅合金と同程度の低!、レベルまで調整 することができることを意味する。  [0016] “Product richness is abundant” means that the amount of conductivity and tensile strength is about the same as or higher than that of Be-added copper alloy by finely adjusting the additive amount and Z or manufacturing conditions. From the level, it has been known in the past! It means that you can adjust to the level.
[0017] なお、「導電率および引張強度のバランスが Be添加銅合金と同程度またはそれ以 上の高いレベルである」とは、具体的には下記の (a)式を満足するような状態を意味す る。以下、この状態を「引張強度と導電率のバランスが極めて良好な状態」と呼ぶこと とする。  [0017] Note that "the balance between conductivity and tensile strength is at the same level as or higher than that of the Be-added copper alloy" specifically means that the following equation (a) is satisfied. Means. Hereinafter, this state is referred to as “a state where the balance between tensile strength and electrical conductivity is extremely good”.
TS≥648.06 + 985.48 X exp (-0.0513 X IACS) - - -(a)  TS≥648.06 + 985.48 X exp (-0.0513 X IACS)---(a)
但し、(a)式中の TSは引張強度 (MPa)を意味し、 IACSは導電率 (%)を意味する。  However, TS in equation (a) means tensile strength (MPa), and IACS means conductivity (%).
[0018] 銅合金には、上記のような引張強度および導電率の特性のほか、ある程度の高温 強度も要求される。これは、例えば、自動車やコンピュータに用いられるコネクタ材料 は、 200°C以上の環境に曝されることがある力もである。純 Cuは、 200°C以上に加熱さ れると室温強度が大幅に低下し、もはや所望のばね特性を維持できないが、上記の Cu-Be系合金やコルソン系合金では、 400°Cまで加熱された後でも室温強度はほとん ど低下しない。 [0018] The copper alloy is required to have a certain degree of high-temperature strength in addition to the above-described tensile strength and conductivity characteristics. This is also the force that, for example, connector materials used in automobiles and computers can be exposed to environments above 200 ° C. When pure Cu is heated to 200 ° C or higher, the room temperature strength decreases significantly and the desired spring characteristics can no longer be maintained. However, the above Cu-Be alloys and Corson alloys are heated to 400 ° C. Even after this, the room temperature strength hardly decreases.
[0019] 従って、高温強度が必要とされる用途には、 Cu-Be系合金等と同等またはそれ以上 のレベルであることが望ましい。具体的には、加熱試験前後での硬度の低下率が 50 %となる加熱温度を耐熱温度と定義し、耐熱温度が 350°C以上を超える場合を高温 強度が優れることとする。より好まし 、耐熱温度は 400°C以上である。 [0019] Therefore, for applications that require high-temperature strength, it is desirable that the level be equal to or higher than that of Cu-Be alloys. Specifically, the heating temperature at which the rate of decrease in hardness before and after the heating test is 50% is defined as the heat resistance temperature, and when the heat resistance temperature exceeds 350 ° C or higher The strength is excellent. More preferably, the heat resistant temperature is 400 ° C or higher.
[0020] 曲げカ卩ェ性についても Cu-Be系合金等と同等のレベル以上であることを目標とする 。具体的には、試験片に様々な曲率半径で 90° 曲げ試験を実施し、割れが発生しな い最小の曲率半径 Rを測定し、これと板厚 tとの比 B (=RZt)により曲げ加工性を評 価できる。一般に、 0度方向の曲げ変形は比較的容易であり(good way)、 90度方 向の曲げ変形は比較的困難 (bad way)とされているため、本発明においても両方 向の特性を調査、比較することにより、特性の異方性を評価した。曲げ加工性の良好 な範囲は、 0度方向では B≤3.0、 90度方向では B≤6.0を満たす場合とする。なお、 板厚によって Rが変化するため、本発明では 0.20mm厚での試験を基準として曲げカロ 工性を評価した。 [0020] The target of bending cacheability is to be equal to or higher than that of Cu-Be alloys. Specifically, the test piece was subjected to a 90 ° bending test with various radii of curvature, and the minimum radius of curvature R without cracking was measured, and the ratio B (= RZt) of this to the thickness t Bending workability can be evaluated. In general, bending deformation in the 0-degree direction is relatively easy (good way), and bending deformation in the 90-degree direction is relatively difficult (bad way). By comparing, the anisotropy of characteristics was evaluated. The good range of bending workability is when B≤3.0 in the 0 degree direction and B≤6.0 in the 90 degree direction. Since R varies depending on the plate thickness, in the present invention, the bending calorability was evaluated based on the test at 0.20 mm thickness.
[0021] 安全工具としての銅合金には、上記のような引張強度 TSおよび導電率 IACSの特性 のほか、耐摩耗性も要求される。従って、安全工具用銅合金の場合、耐摩耗性として も工具鋼と同等のレベルであることを目標とする。具体的には、室温下における硬さ がビッカース硬さで 250以上であることを耐摩耗性が優れることとする。  [0021] In addition to the above-described properties of tensile strength TS and conductivity IACS, copper alloys as safety tools are required to have wear resistance. Therefore, in the case of copper alloy for safety tools, the target is to have the same level of wear resistance as tool steel. Specifically, the wear resistance is excellent when the hardness at room temperature is 250 or more in terms of Vickers hardness.
課題を解決するための手段  Means for solving the problem
[0022] 本発明は、下記の (A)〜(C)に示す銅合金および下記の (D)に示す銅合金の製造方 法を要旨とする。 [0022] The gist of the present invention is a method for producing the copper alloys shown in the following (A) to (C) and the copper alloy shown in the following (D).
[0023] (A) Zn、 Sn、 Ag、 Mn、 Fe、 Co、 Al、 Ni、 Si、 Mo、 V、 Nb、 Ta、 W、 Ge、 Teおよび Seの中 力 選ばれた 1種または 2種以上の合計で 0.1〜20質量%含み、残部が銅および不 純物からなり、銅基母相の結晶粒のアスペクト比が 5以下であるとともに、合金中に存 在する析出物および介在物のうち粒径が 1 μ m以上のものの粒径と、析出物および 介在物の合計個数とが下記 (1)式で示される関係を満足することを特徴とする銅合金 logN≤ 0.4742 + 17.629 X exp ( - 0.1133 X X) · · · (1)  [0023] (A) Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te and Se Selected 1 or 2 types The total amount is 0.1 to 20% by mass, the remainder is made of copper and impurities, the aspect ratio of the crystal grains of the copper-based matrix is 5 or less, and the precipitates and inclusions present in the alloy A copper alloy with a grain size of 1 μm or more and the total number of precipitates and inclusions satisfying the relationship expressed by the following formula (1) logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[0024] (B)質量0 /0で、 Ti: 0.01〜5%、 Zr: 0.01〜5%および Hf: 0.01〜5%の中力ら選ばれ た ヽずれ力 1種を含有し、更に、 Zn、 Sn、 Ag、 Mn、 Fe、 Co、 Al、 Niゝ Siゝ Mo、 V、 Nb、 Ta 、 W、 Ge、 Teおよび Seの中力 選ばれた 1種または 2種以上の合計で 0.01〜20%含 み、残部が銅および不純物からなり、銅基母相の結晶粒のアスペクト比が 5以下であ るとともに、合金中に存在する析出物および介在物のうち粒径が 1 μ m以上のものの 粒径と、析出物および介在物の合計個数とが上記 (1)式で示される関係を満足するこ とを特徴とする銅合金。 [0024] (B) at a mass 0/0, Ti: 0.01~5% , Zr: 0.01~5% and Hf: contains 0.01 to 5% of the Churyoku et chosenヽdeviated force one, further, Zn, Sn, Ag, Mn, Fe, Co, Al, Ni ゝ Si ゝ Mo, V, Nb, Ta , W, Ge, Te and Se medium strength 0.01% to 20% in total of one or more selected, with the balance consisting of copper and impurities, and the crystal aspect ratio of the copper matrix is 5 In addition to the following, the particle size of the precipitates and inclusions present in the alloy having a particle size of 1 μm or more and the total number of precipitates and inclusions are expressed by the above equation (1). Copper alloy characterized by satisfying
[0025] (C)質量0 /0で、 Cr: 0.01〜5%を含有し、更に、 Zn、 Sn、 Ag、 Mn、 Fe、 Co、 Al、 Ni、 Si 、 Mo、 V、 Nb、 Ta、 W、 Ge、 Teおよび Seの中力も選ばれた 1種または 2種以上の合計 で 0.01〜20%含み、残部が銅および不純物からなり、銅基母相の結晶粒のァスぺク ト比が 5以下であるとともに、合金中に存在する析出物および介在物のうち粒径が 1 μ m以上のものの粒径と、析出物および介在物の合計個数とが上記 (1)式で示される 関係を満足することを特徴とする銅合金。 [0025] In (C) Weight 0/0, Cr: contains 0.01 to 5%, more, Zn, Sn, Ag, Mn , Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, The medium strength of W, Ge, Te, and Se is also selected, including 0.01 to 20% in total of one or more selected, with the balance consisting of copper and impurities, and the aspect ratio of the crystal grains of the copper-based matrix And the total number of precipitates and inclusions and the total number of precipitates and inclusions is represented by the above formula (1). A copper alloy characterized by satisfying the relationship.
[0026] 上記の (A)〜(C)の銅合金は、銅の一部に代えて、合計で 0.001〜2質量%の Mg、 Li 、 Caおよび希土類元素の中力も選ばれた 1種または 2種以上、または Zならびに、合 計で 0.0001〜3質量0 /0の P、 B、 Bi、 Tl、 Rb、 Cs、 Sr、 Ba、 Tc、 Re、 Os、 Rh、 In、 Pd、 Po、 Sb、 Au、 Ga、 S、 Cd、 Asおよび Pbの中力 選ばれた 1種または 2種以上を含有しても よい。また、これらの銅合金の結晶粒径は 0.01〜35 mであることが望ましい。 [0026] The copper alloys (A) to (C) described above are replaced with a part of copper, and a total of 0.001 to 2% by mass of Mg, Li, Ca and rare earth elements are also selected. two or more, or Z and, in total 0.0001 mass 0/0 of P, B, Bi, Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, in, Pd, Po, Sb , Au, Ga, S, Cd, As and Pb may contain one or more selected ones. The crystal grain size of these copper alloys is preferably 0.01 to 35 m.
[0027] (D)上記の (A)〜(C)までのいずれか〖こ記載の化学組成を有する銅合金を溶製し、铸 造して得た铸片を、少なくとも铸造直後の铸片温度から 900°Cまでの温度域において l°CZs以上の冷却速度で冷却した後、溶体化処理および Zまたは熱間圧延を行う ことを特徴とする、銅基母相の結晶粒のアスペクト比が 5以下であり、合金中に存在 する析出物および介在物のうち粒径が 1 μ m以上のものの粒径と、析出物および介 在物の合計個数とが下記 (1)式を満足する銅合金の製造方法。  [0027] (D) A piece obtained by melting and producing a copper alloy having the chemical composition described in any one of (A) to (C) above, and producing at least a piece immediately after forging. The aspect ratio of the crystal grains of the copper-based matrix phase is characterized by performing solution treatment and Z or hot rolling after cooling at a cooling rate of l ° CZs or higher in the temperature range from temperature to 900 ° C. Copper having a particle size of 1 μm or more among the precipitates and inclusions present in the alloy and the total number of precipitates and inclusions satisfying the following formula (1): Alloy manufacturing method.
logN≤ 0.4742 + 17.629 X exp (— 0.1133 X X) · · · (1)  logN≤ 0.4742 + 17.629 X exp (— 0.1133 X X) · · · (1)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[0028] 上記の溶体化処理および Zまたは熱間圧延の後に、 600°C以下の温度域での加 ェ、または更に、 150〜750°Cの温度域で保持する熱処理を施すことが望ましい。溶 体化処理および Zまたは熱間圧延、 600°C以下の温度域での加工、および 150〜750 °cの温度域で保持する熱処理は、複数回実施してもよい。また、溶体化処理および Zまたは熱間圧延、 600°C以下の温度域での加工、および 150〜750°Cの温度域で 保持する熱処理をこの順序で固定して実施する必要は無ぐ先に 600°C以下の温度 域での加工や 150〜750°Cの温度域で保持する熱処理を実施しても良い。最後のェ 程の後に、 600°C以下の温度域での加工を実施してもよ!/、。 [0028] After the solution treatment and Z or hot rolling, it is desirable to perform heating in a temperature range of 600 ° C or lower, or further, heat treatment for holding in a temperature range of 150 to 750 ° C. Solution treatment and Z or hot rolling, processing at temperatures below 600 ° C, and 150-750 The heat treatment held in the temperature range of ° C may be performed a plurality of times. In addition, solution treatment and Z or hot rolling, processing in a temperature range of 600 ° C or less, and heat treatment holding in a temperature range of 150 to 750 ° C need not be performed in this order. In addition, processing in a temperature range of 600 ° C or lower and heat treatment in a temperature range of 150 to 750 ° C may be performed. After the last step, you may carry out processing in the temperature range below 600 ° C! /.
[0029] 本発明にお 、て析出物とは金属もしくは銅と添加元素との化合物、または添加元 素同士の化合物等であり、例えば、 Ti添加材では Cu Ti、 Zr添加材では Cu Zr、ま In the present invention, the precipitate is a metal or a compound of copper and an additive element, or a compound of additive elements, for example, Cu Ti for a Ti additive, Cu Zr for a Zr additive, Ma
4 9 2 た、 Cr添加材では金属 Crがそれぞれ析出する。また、介在物とは金属酸化物、金属 炭化物、金属窒化物等である。  4 9 2 In the case of Cr additive, metallic Cr precipitates. Further, the inclusion is a metal oxide, a metal carbide, a metal nitride or the like.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本発明の実施の形態について説明する。なお、以下の説明において、各元 素の含有量にっ 、ての「%」は「質量%」を意味する。 [0030] Hereinafter, embodiments of the present invention will be described. In the following description, “%” means “mass%” depending on the content of each element.
[0031] 1.本発明の銅合金について [0031] 1. About the copper alloy of the present invention
(A) 化学組成について  (A) Chemical composition
本発明の銅合金は、 Zn、 Sn、 Ag、 Mn、 Fe、 Co、 Al、 Ni、 Si、 Mo、 V、 Nb、 Ta、 W、 Ge 、 Teおよび Se (以下、これらの元素を「第 1群元素」と呼ぶ)の中力 選ばれた 1種をそ れぞれ 0.1〜20%、または 2種以上を合計で 0.1〜20%含み、残部が銅および不純物 からなる化学組成を有する。  The copper alloy of the present invention contains Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te and Se (hereinafter, these elements are referred to as “first Medium strength (referred to as “group element”) 0.1 to 20% of each one selected, or a total of 0.1 to 20% of two or more, with the balance being a chemical composition consisting of copper and impurities.
[0032] これらの元素は、 ヽずれも強度と導電率のバランスを維持しつつ、耐食性おょび耐 熱性を向上させる効果を有する元素である。この効果は、これらの元素が合計で 0.1 %以上含有されているときに発揮される。しかし、これらの含有量が過剰な場合には 、導電率が低下する。従って、これらの元素を含有させる場合には、 1種または 2種以 上の合計含有量で 0.1〜20%の範囲とする必要がある。特に Agおよび Snは微細析出 により高強度化に寄与するので、積極的に利用するのが好ましい。なお、下記の第 2 元素が含まれる場合は、第 2元素により強度を確保できるので、第 1元素の下限値は 0.01%まで下げることができる。  [0032] These elements are elements having an effect of improving corrosion resistance and heat resistance while maintaining a balance between strength and electrical conductivity. This effect is exhibited when these elements contain a total of 0.1% or more. However, when these contents are excessive, the conductivity decreases. Therefore, when these elements are contained, the total content of one or more kinds needs to be in the range of 0.1 to 20%. Ag and Sn, in particular, contribute to high strength through fine precipitation, and are therefore preferably used positively. When the following second element is included, the strength can be secured by the second element, so the lower limit of the first element can be lowered to 0.01%.
[0033] 本発明の合金は、銅の一部に代えて、 Ti: 0.01〜5%、 Zr: 0.01〜5%:fe t^Hf: 0.0 1〜5%の中力 選ばれたいずれ力 1種を含有してもよぐ Cr: 0.01〜5%を含有しても よい。以下、これらの元素を「第 2群元素」と呼ぶ。 [0033] In the alloy of the present invention, instead of a part of copper, Ti: 0.01-5%, Zr: 0.01-5%: fet ^ Hf: 0.0 1-5% It may contain seeds Cr: Even if it contains 0.01 to 5% Good. Hereinafter, these elements are referred to as “second group elements”.
[0034] Ti: 0.01〜5%、 Zr: 0.01〜5%および Hf: 0.01〜5%の中力ら選ばれたいずれ力 1種  [0034] Ti: 0.01-5%, Zr: 0.01-5% and Hf: 0.01-5%
Ti、 Zrまたは Hfは、いずれも引張強度を向上させるのに有効な元素であるため、こ れらの元素のいずれか 1種を本発明の銅合金に含有させてもよい。強度向上の効果 は、これらの元素の含有量が 0.01%以上の場合に顕著となる。しかし、その含有量が 5%を超えると、強度は上昇するものの導電性や加工性涎性、曲げ性)が劣化する。 従って、 Ti、 Zrおよび Hfのいずれ力 1種を含有させる場合の含有量はいずれも 0.01〜 5%とするのが望ましい。引張強度と導電率のバランスが極めて良好な状態を得るた めには、これらの元素を 0.1%以上含有させるのがより望ましい。  Since Ti, Zr, or Hf are all effective elements for improving the tensile strength, any one of these elements may be contained in the copper alloy of the present invention. The effect of improving the strength becomes significant when the content of these elements is 0.01% or more. However, if its content exceeds 5%, the strength increases, but the conductivity, workability, and bendability deteriorate. Therefore, the content of any one of Ti, Zr and Hf is preferably 0.01 to 5%. In order to obtain a state where the balance between tensile strength and electrical conductivity is extremely good, it is more desirable to contain these elements in an amount of 0.1% or more.
[0035] Cr: 0.01〜5%  [0035] Cr: 0.01 to 5%
Crは、電気抵抗を上昇させることなぐ引張強さを向上させるのに有効な元素であ る。その効果を得るためには、 0.01%以上含有させるのが望ましい。特に、 Cu— Be合 金と同程度またはそれ以上の引張強度と導電率のバランスが極めて良好な状態を得 るためには、 0.1%以上含有させるのが望ましい。一方、 Cr含有量が 5%を超えると、 金属 Crが粗大に析出して延性、曲げ加工性、疲労特性等に悪影響を及ぼす。従つ て、 Crを含有させる場合には、その含有量を 0.01〜5%とするのが望ましい。  Cr is an element effective for improving the tensile strength without increasing the electrical resistance. In order to obtain the effect, it is desirable to contain 0.01% or more. In particular, in order to obtain a state in which the balance of tensile strength and electrical conductivity is about the same as or higher than that of the Cu—Be alloy, it is desirable to contain 0.1% or more. On the other hand, if the Cr content exceeds 5%, metal Cr precipitates coarsely and adversely affects ductility, bending workability, fatigue properties, and the like. Therefore, when Cr is contained, its content is preferably 0.01 to 5%.
[0036] 本発明の銅合金は、高温強度を上げる目的で、銅の一部に代えて、 Mg、 Li、 Caお よび希土類元素の中力 選ばれた 1種をそれぞれ 0.001〜2%、または 2種以上を合 計で 0.001〜2%含むのが望ましい。以下、これらを「第 3群元素」と呼ぶ。  [0036] For the purpose of increasing the high temperature strength, the copper alloy of the present invention, instead of a part of copper, 0.001 to 2% of one selected from among Mg, Li, Ca and rare earth elements, respectively, or It is desirable to include two or more kinds in a total of 0.001 to 2%. These are hereinafter referred to as “Group 3 elements”.
[0037] Mg、 Li、 Caおよび希土類元素は、銅マトリックス中の酸素原子と結びついて微細な 酸ィ匕物を生成して高温強度を上げる元素である。その効果は、これらの元素の合計 含有量が 0.001%以上のときに顕著となる。しかし、その含有量が 2%を超えると、上 記の効果が飽和し、し力も導電率を低下させ、延性や曲げ加工性を劣化させる等の 問題がある。従って、 Mg、 Li、 Caおよび希土類元素の中力も選ばれた 1種または 2種 以上を含有させる場合の合計含有量は 0.001〜2%が望ましい。なお、希土類元素は 、 Sc、 Yおよびランタノイドを意味し、それぞれの元素の単体を添加してもよぐまた、ミ ッシュメタルを添カロしてもよ 、。  [0037] Mg, Li, Ca and rare earth elements are elements that increase the high-temperature strength by combining with oxygen atoms in the copper matrix to form fine oxides. The effect becomes significant when the total content of these elements is 0.001% or more. However, if its content exceeds 2%, the above effects are saturated, and the force also has problems such as a decrease in electrical conductivity and a deterioration in ductility and bending workability. Therefore, the total content when Mg, Li, Ca and one or more selected rare earth elements are included is preferably 0.001 to 2%. In addition, rare earth elements mean Sc, Y and lanthanoids, and each element may be added alone, or misch metal may be added.
[0038] 本発明の銅合金は、合金の铸込み時の液相線と固相線の幅( ΔΤ)を拡げる目的 で、銅のー咅に代免て、 P、 B、 Biゝ Tl、 Rb、 Cs、 Sr、 Ba、 Tc、 Re、 Os、 Rh、 In、 Pd、 Po、 Sb、 Au、 Ga、 S、 Cd、 Asおよび Pbの中力 選ばれた 1種をそれぞれ 0.0001〜3%、ま たは 2種以上を合計で 0.0001〜3%含むのが望ましい。 As、 Pdおよび Cdは有害な元 素であるので、極力用いないことが望ましい。以下、これらを「第 4群元素」と呼ぶ。な お、 ΔΤは、急冷凝固の場合には、いわゆる過冷現象により大きくなる力 ここでは、 目安として熱平衡状態での Δ Tにつ 、て考える。 [0038] The copper alloy of the present invention is intended to increase the width (ΔΤ) of the liquidus and solidus at the time of alloy penetration. Therefore, P, B, Bi ゝ Tl, Rb, Cs, Sr, Ba, Tc, Re, Os, Rh, In, Pd, Po, Sb, Au, Ga, S, Cd It is desirable to include 0.0001 to 3% of the selected one of As and Pb, or 0.0001 to 3% in total of 2 or more. As, Pd and Cd are harmful elements and should not be used as much as possible. These are hereinafter referred to as “Group 4 elements”. Note that Δ 力 is a force that increases due to the so-called supercooling phenomenon in the case of rapid solidification. Here, we consider ΔT in a thermal equilibrium state as a guide.
[0039] これらの元素は、いずれも固相線を低下させて ΔΤを拡げる効果がある。この ΔΤが 大きいと、铸込み後から凝固するまでに一定時間を確保できるので、铸込みが容易 になるが、 ΔΤが広すぎると、低温域での耐力が低下し、凝固末期に割れが生じる、 いわゆるハンダ脆性が生じる。このため、 ΔΤは 50〜200°Cの範囲とするのが好ましい [0039] All of these elements have the effect of lowering the solidus and expanding ΔΤ. If this ΔΤ is large, a certain period of time can be secured from solidification until solidification, so it becomes easy to pour, but if ΔΤ is too wide, the yield strength in the low temperature range decreases and cracking occurs at the end of solidification. So-called solder brittleness occurs. Therefore, ΔΤ is preferably in the range of 50 to 200 ° C.
[0040] C、 Nおよび Oは通常不純物として含まれる元素である。これらの元素は合金中の 金属元素と炭化物、窒化物および酸化物を形成する。これらの析出物または介在物 が微細であれば、後述する金属もしくは銅と添加元素との化合物、または添加元素 同士の化合物等の析出物と同様に合金の強化、特に高温強度を上げる作用がある ので、積極的に添加してもよい。例えば、 Oは酸ィ匕物を形成して高温強度を上げる効 果を有する。この効果は、 Mg、 Li、 Caおよび希土類元素、 Al、 Si等の酸化物を作りや すい元素を含有する合金において得られやすい。ただし、その場合も固溶 Oが残ら ないような条件を選定する必要がある。残留固溶酸素は、水素雰囲気下での熱処理 時に H Oガスとなって水蒸気爆発を起こす、いわゆる水素病を発生し、ブリスター等[0040] C, N and O are elements usually contained as impurities. These elements form carbides, nitrides and oxides with the metal elements in the alloy. If these precipitates or inclusions are fine, they have the effect of strengthening the alloy, particularly the high-temperature strength, in the same manner as the precipitates of the compounds of metals or copper and additive elements described later, or compounds of additive elements. Therefore, you may add actively. For example, O has the effect of increasing the high temperature strength by forming an acid oxide. This effect is easily obtained in alloys containing elements that easily form oxides such as Mg, Li, Ca and rare earth elements, Al, and Si. In this case, however, it is necessary to select conditions so that no solid solution O remains. Residual solute oxygen causes H 2 O gas during heat treatment in a hydrogen atmosphere, causing a steam explosion, causing a so-called hydrogen disease, blistering, etc.
2 2
が生成して製品の品質を劣化させることがあるので、注意を要する。  May generate and deteriorate the quality of the product, so be careful.
[0041] これらの元素がそれぞれ 1%を超えると粗大析出物または介在物となり、延性や曲 げ加工性を低下させる。よって、それぞれ 1%以下に制限することが好ましい。更に 好ましいのは、 0.1%以下である。また、 Hは、合金中に不純物として含まれると、 H [0041] When each of these elements exceeds 1%, coarse precipitates or inclusions are formed, and ductility and bending workability are reduced. Therefore, it is preferable to limit each to 1% or less. More preferred is 0.1% or less. If H is contained as an impurity in the alloy, H
2 ガスが合金中に残り、圧延疵等の原因となるので、その含有量はできるだけ少ないこ とが望ましい。  2 Since the gas remains in the alloy and causes rolling defects, the content is preferably as low as possible.
[0042] なお、他の不純物元素として Beがある。 Beは、原料としてスクラップを多量に使用す る場合に銅合金中に混入する場合がある。この含有量はできるだけ少ないことが望ま しいが、 0.1 %未満であれば許容できる。 [0042] Note that Be is another impurity element. Be may be mixed in a copper alloy when scrap is used in large quantities as a raw material. This content should be as low as possible However, it is acceptable if it is less than 0.1%.
[0043] (B) 析出物および介在物の合計個数について [0043] (B) Total number of precipitates and inclusions
本発明の銅合金においては、合金中に存在する析出物および介在物のうち粒径 力 m以上のものの粒径と、析出物および介在物の合計個数とが下記 (1)式を満足 することが必要である。  In the copper alloy of the present invention, among the precipitates and inclusions present in the alloy, the particle size of particles having a particle size force of m or more and the total number of precipitates and inclusions satisfy the following formula (1). is required.
logN≤ 0.4742 + 17.629 X exp (— 0.1133 X X) · · · (1)  logN≤ 0.4742 + 17.629 X exp (— 0.1133 X X) · · · (1)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 m)を意味する。(1)式には、析出物および介在物の粒 径の測定値力 1.0 μ m以上 1.5 μ m未満の場合、 X= 1を代入し、 ( a—0.5) μ m以上 ( a + 0.5) μ m未満の場合、 Χ= α ( αは 2以上の整数)を代入すればよい。 Here, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size m of the precipitates and inclusions. In Equation (1), when the measured force of the particle size of precipitates and inclusions is 1.0 μm or more and less than 1.5 μm, substitute X = 1, and (a−0.5) μ m or more (a + 0.5) If it is less than μm, substitute Χ = α (α is an integer of 2 or more).
[0044] 本発明の銅合金では、金属もしくは銅と添加元素との化合物、または添加元素同 士の化合物等の析出物を微細に析出させることによって、導電率を低下させることな く強度を向上させることができる。これらは、析出硬化により強度を高める。固溶した C r、 Tiおよび Zrは析出によって減少して銅マトリックスの導電性が純銅のそれに近づく [0044] In the copper alloy of the present invention, the strength is improved without lowering the conductivity by finely depositing a precipitate of a metal or a compound of copper and an additive element, or a compound of the same additive element. Can be made. These increase the strength by precipitation hardening. Solid solution of Cr, Ti, and Zr decreases by precipitation, and the conductivity of the copper matrix approaches that of pure copper
[0045] しかし、これらの析出物および金属酸ィ匕物、金属炭化物、金属窒化物等の介在物 の粒径が 20 m以上と粗大に析出すると、延性が低下して例えばコネクタへの加工 時の曲げ加工や打ち抜き時に割れや欠けが発生し易くなる。また、使用時に疲労特 性ゃ耐衝撃特性に悪影響を及ぼすことがある。特に、凝固後の冷却時に粗大な Ti- Cr化合物が生成すると、その後の加工工程で割れや欠けが生じやすくなる。また、時 効処理工程で硬さが増加しすぎるので、これらの析出物等の微細析出を阻害し、銅 合金の高強度化ができなくなる。このような問題は、合金中に存在する析出物および 介在物のうち粒径が 1 μ m以上のものの粒径と、析出物および介在物の合計個数と 上記 (1)式で示される関係を満たさない場合に顕著となる。 [0045] However, if these precipitates and inclusions such as metal oxides, metal carbides, metal nitrides, etc. are coarsely deposited with a particle size of 20 m or more, the ductility is reduced and, for example, when processing into a connector. Cracking and chipping are likely to occur during bending and punching. In addition, fatigue characteristics may adversely affect impact resistance during use. In particular, when a coarse Ti—Cr compound is produced during cooling after solidification, cracks and chips are likely to occur in subsequent processing steps. In addition, since the hardness increases excessively in the aging treatment process, fine precipitation of these precipitates and the like is hindered, and the strength of the copper alloy cannot be increased. Such a problem is caused by the relationship represented by the above equation (1) with the particle size of the precipitates and inclusions present in the alloy having a particle size of 1 μm or more, the total number of precipitates and inclusions. It becomes remarkable when not satisfying.
[0046] このため、本発明では、合金中に存在する析出物および介在物のうち粒径が: L m 以上のものの粒径と、析出物および介在物の合計個数と上記 (1)式を満足することを 必須要件として規定した。望ましい析出物および介在物の合計個数は、下記 (2)式を 満たす場合であり、更に望ましいのは、下記 (3)式を満たす場合である。なお、これら の粒径と、析出物および介在物の合計個数とは、実施例に示す方法により求められ る。 [0046] Therefore, in the present invention, among the precipitates and inclusions present in the alloy, the particle size of those having a particle size of Lm or more, the total number of precipitates and inclusions, and the above formula (1) Satisfaction is defined as an essential requirement. The desirable total number of precipitates and inclusions is when the following equation (2) is satisfied, and more desirably when the following equation (3) is satisfied. In addition, these The particle size of each and the total number of precipitates and inclusions can be determined by the method shown in the examples.
logN≤ 0.4742 + 7.9749 X exp (— 0.1133 X X) · · · (2)  logN≤ 0.4742 + 7.9749 X exp (— 0.1133 X X) · · · (2)
logN≤ 0.4742 + 6.3579 X exp (-0.1133 XX) · · · (3)  logN≤ 0.4742 + 6.3579 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[0047] (C) 結晶糸且織のアスペクト比について  [0047] (C) Aspect ratio of crystal yarn and weave
銅基母相のアスペクト比が 5を超えると、銅基母相として実質上等軸としての等方的 な特徴は得られなくなる。このような組織では機械的特性 (強度、延性、曲げ加工性 等)が、例えば圧延方向 (圧延方向と平行な方向:ここでは 0度方向と定義する)と圧延 直角方向 (圧延方向と直角な幅方向:ここでは 90度方向と定義する)で異なる、すな わち特性の異方性が大きくなるため、成形加工方向、採取方向などが制限されるな どの問題が生じる。また、曲げ加工性自体も劣化する。従って、結晶組織のァスぺク ト比は 5以下とした。アスペクト比は小さい方が良ぐ 4以下が好ましい。 3以下であれ ば更に好まし 、。アスペクト比が 1に近 、値であればより一層好まし 、。  If the aspect ratio of the copper-based matrix exceeds 5, it is impossible to obtain substantially isotropic characteristics as a copper-based matrix. In such a structure, the mechanical properties (strength, ductility, bending workability, etc.) are, for example, in the rolling direction (direction parallel to the rolling direction: here defined as the 0 degree direction) and in the direction perpendicular to the rolling (perpendicular to the rolling direction). The width direction (defined here as the 90-degree direction) is different, that is, the anisotropy of the characteristics increases, which causes problems such as restrictions on the molding direction and sampling direction. Also, the bending workability itself deteriorates. Therefore, the crystal structure aspect ratio was set to 5 or less. Smaller aspect ratio is better 4 or less is preferred. If it is 3 or less, it is more preferable. If the aspect ratio is close to 1, the value is even better.
[0048] なお、本発明で規定するアスペクト比とは、組織観察の方向に依らず、銅基母相の 各結晶粒の(最大径) / (最小径)の値の平均値を!、う。結晶粒の「最大径」とはその 結晶粒における最も長 ヽ径を、結晶粒の「最小径」とはその結晶粒における最も短!、 径を指し、例えば、光学顕微鏡又は走査電子顕微鏡 (SEM)によって組織を数視野 撮影し、この組織写真を用いて直線切断法により求めた「最大径」、「最小径」を 1. 1 3倍したものをそれぞれ結晶粒の「最大径」、結晶粒の「最小径」とすればよ!、。  [0048] The aspect ratio defined in the present invention is the average value of the (maximum diameter) / (minimum diameter) values of the crystal grains of the copper-based matrix, regardless of the direction of the structure observation. . The “maximum diameter” of a crystal grain is the longest diameter of the crystal grain, and the “minimum diameter” of the crystal grain is the shortest of the crystal grain! For example, several fields of tissue were photographed with an optical microscope or scanning electron microscope (SEM), and the `` maximum diameter '' and `` minimum diameter '' obtained by the linear cutting method using this tissue photograph were calculated as 1. 1 3 The doubled ones should be the “maximum diameter” of the crystal grains and the “minimum diameter” of the crystal grains!
[0049] (D) 結晶粒径について  [0049] (D) About crystal grain size
銅合金の結晶粒径を細かくすると、高強度化に有利であるとともに、延性も向上し て曲げ加工性などが向上する。しかし、結晶粒径が 0.01 mを下回ると高温強度が 低下しやすくなり、 35 mを超えると延性が低下する。従って、結晶粒径は 0.01〜35 mであるのが望ましい。更に望ましい粒径は 0.05〜30 /ζ πιである。もっとも望ましい のは、 0.1〜25 πιである。  If the crystal grain size of the copper alloy is made fine, it is advantageous for increasing the strength and also improves the ductility and the bending workability. However, when the crystal grain size is less than 0.01 m, the high-temperature strength tends to decrease, and when it exceeds 35 m, the ductility decreases. Accordingly, the crystal grain size is desirably 0.01 to 35 m. A more desirable particle size is 0.05 to 30 / ζ πι. Most preferred is 0.1 to 25 πι.
[0050] なお、銅基母相の平均結晶粒径は、例えば、光学顕微鏡又は走査電子顕微鏡 (S EM)によって組織を数視野撮影し、この組織写真を用いて直線切断法により測定し た平均切片長さを 1. 13倍した値である。 [0050] The average crystal grain size of the copper matrix is, for example, an optical microscope or a scanning electron microscope (S This is a value obtained by multiplying the average section length measured by the linear cutting method using this tissue photograph by a number of fields by 1.13.
[0051] 2.本発明の銅合金の製造方法について [0051] 2. Method for producing copper alloy of the present invention
本発明の銅合金においては、金属もしくは銅と添加元素との化合物、または添加元 素同士の化合物等の微細析出を妨げる金属酸化物、金属炭化物、金属窒化物等の 介在物が铸片の凝固直後の時点で生成しやすい。これらの介在物の生成を抑制す るためには、凝固後の冷却速度を調整することが最も重要である。また、後述のよう に、各種特性の等方性を確保すべく銅基母相の結晶粒のアスペクト比を 5以下とす るためには、溶体化処理および Zまたは熱間圧延を実施する必要がある。しかし、本 発明者らの研究により、铸片温度をある程度まで冷却しておけば、このような熱間プ 口セスを経ても、上記介在物の生成および粗大化を抑制できることが明ら力となった  In the copper alloy of the present invention, inclusions such as metal oxides, metal carbides, and metal nitrides that prevent fine precipitation of a metal or a compound of copper and an additive element, or a compound of additive elements, are solidified in a piece. Easy to generate immediately after. In order to suppress the formation of these inclusions, it is most important to adjust the cooling rate after solidification. As will be described later, solution treatment and Z or hot rolling are necessary to reduce the aspect ratio of the crystal grains of the copper base matrix to 5 or less in order to ensure isotropic properties. There is. However, as a result of research by the present inventors, it is clear that the formation and coarsening of the inclusions can be suppressed even if such a hot process is performed if the temperature of the flake is cooled to some extent. became
[0052] そこで、本発明の銅合金の製造方法にお!ヽては、上記の化学組成を有する銅合金 を溶製し、铸造して得た铸片を、少なくとも铸造直後の铸片温度から 900°Cまでの温 度域において、 l°CZs以上の冷却速度で冷却した後、溶体化処理および Zまたは 熱間圧延を行うことによって、銅基母相の結晶粒のアスペクト比が 5以下であり、しか も、合金中に存在する析出物および介在物のうち粒径が: L m以上のものの粒径と、 析出物および介在物の合計個数とが下記 (1)式を満足させることとした。 [0052] Therefore, in the method for producing a copper alloy according to the present invention, a copper alloy having the above chemical composition is melted, and the piece obtained by forging is at least from the piece temperature immediately after forging. In a temperature range up to 900 ° C, after cooling at a cooling rate of 1 ° CZs or higher, solution treatment and Z or hot rolling are performed, so that the aspect ratio of the crystal grains of the copper base matrix is 5 or less. However, among the precipitates and inclusions present in the alloy, the particle size of the particles having a particle size of Lm or more and the total number of precipitates and inclusions satisfy the following formula (1): did.
logN≤ 0.4742 + 17.629 X exp ( - 0.1133 X X) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 X X)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[0053] 上記の溶体ィヒ処理および Zまたは熱間圧延の後には、 600°C以下の温度域でカロ ェ、または、この加工の後に 150〜750°Cの温度域で保持する熱処理に供することが 望まし!/、。 600°C以下の温度域での加工および 150〜750°Cの温度域で保持する熱 処理を複数回行うことが更に望ましい。最後の熱処理の後に、上記の加工を施しても よい。  [0053] After the above-mentioned solution treatment and Z or hot rolling, it is subjected to calorie in a temperature range of 600 ° C or lower, or heat treatment held in a temperature range of 150 to 750 ° C after this processing. I want it! It is more desirable to perform the processing in the temperature range of 600 ° C or less and the heat treatment held in the temperature range of 150 to 750 ° C multiple times. You may perform said process after the last heat processing.
[0054] (A) 少なくとも铸造直後の铸片温度から 900°Cまでの温度域における冷却速度: 1 °CZs以上 金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出物 は 280°C以上の温度域で生成する。特に、铸造直後の铸片温度から 900°Cまでの温 度域における冷却速度が遅いと、金属酸化物、金属炭化物、金属窒化物等の介在 物が粗大に生成し、その粒径が 20 m以上、更には数百/ z mに達することがある。ま た、上記の析出物も 20 m以上に粗大化する。このような粗大な析出物および介在 物が生成した状態では、その後の加工時に割れや折れが発生する恐れがあるだけ でなぐ時効工程での上記の析出物の析出硬化作用が損なわれ、合金を高強度化 できなくなる。 [0054] (A) Cooling rate at least in the temperature range from the piece temperature immediately after fabrication to 900 ° C: 1 ° CZs or more Precipitates such as a compound of metal or copper and an additive element, or a compound of additive elements are formed in a temperature range of 280 ° C or higher. In particular, when the cooling rate in the temperature range from the piece temperature immediately after fabrication to 900 ° C is slow, inclusions such as metal oxides, metal carbides, and metal nitrides are coarsely formed, and the particle size is 20 m. In addition, it may reach several hundreds / zm. In addition, the above precipitates also become coarser than 20 m. In the state where such coarse precipitates and inclusions are formed, the precipitation hardening action of the precipitates in the aging process, which is not only likely to cause cracks and breaks during subsequent processing, is impaired. High strength cannot be achieved.
[0055] 従って、少なくともこの温度域においては、 l°CZs以上の冷却速度で铸片を冷却す る必要がある。冷却速度は大きい程よぐ好ましい冷却速度は、 2°CZs以上であり、さ らに好ましいのは 5°CZs以上である。なお、このような冷却速度で铸片を冷却してお けば、その後に溶体ィ匕処理および Zまたは熱間圧延を実施しても、析出物および介 在物が粗大化することはない。また、冷却速度の上限値については特に限定はない 力 この温度域における冷却速度が 100°C/sを超える条件とするためには、銅合金の 板厚を薄くする必要が生じ、生産性が悪化する。この観点からは、この温度域におけ る冷却速度は 100°C/s以下とするのが望ましぐより望ましいのは 90°C/s以下である。 更に望ましいのは 80°C/s以下である。  [0055] Therefore, at least in this temperature range, it is necessary to cool the piece at a cooling rate of 1 ° CZs or more. The higher the cooling rate, the more preferable the cooling rate is 2 ° CZs or more, and the more preferable is 5 ° CZs or more. If the strip is cooled at such a cooling rate, precipitates and inclusions will not be coarsened even if a solution solution treatment and Z or hot rolling are subsequently performed. In addition, there is no particular limitation on the upper limit of the cooling rate. Force To reduce the cooling rate in this temperature range to more than 100 ° C / s, it is necessary to reduce the thickness of the copper alloy, resulting in increased productivity. Getting worse. From this point of view, the cooling rate in this temperature range is preferably 100 ° C / s or less, more preferably 90 ° C / s or less. More desirable is 80 ° C / s or less.
[0056] (B) 溶体化処理および Zまたは熱間圧延の条件  [0056] (B) Solution treatment and Z or hot rolling conditions
溶体化処理および Zまたは熱間圧延は、結晶組織の等方化、均質化、細粒ィ匕など に有効である。これにより、最終製品の高い強度と優れた加工性を均一、かつ安定に 得ることができ、し力も特性の異方性も低減することができる。特に、曲げ加工性を向 上させ、曲げ加工性の異方性も低減することができる。  Solution treatment and Z or hot rolling are effective for isotropic, homogenizing, and fine graining of crystal structures. As a result, high strength and excellent workability of the final product can be obtained uniformly and stably, and both the strength and the anisotropy of the characteristics can be reduced. In particular, bending workability can be improved and bending workability anisotropy can be reduced.
[0057] 溶体化処理および Zまたは熱間圧延は、 600°C以上 1060°C以下の温度域で行うの が望ましい。 600°C未満では結晶組織の等方化、均質ィ匕または細粒ィ匕ができないお それがあり、最終製品の銅基母相の結晶粒のアスペクト比を 5以下にすることができ ず、良好な特性が均一に得られず、しかも特性の異方性が大きくなる場合がある。一 方、溶体化処理および Zまたは熱間圧延の温度が 1060°Cを超えると、結晶粒界が溶 融して加工時に割れが発生したり、結晶粒の粗大化に起因して最終製品の特性が 低下したり、特性の異方性が大きくなる等の問題が生じるおそれがある。 [0057] The solution treatment and Z or hot rolling are preferably performed in a temperature range of 600 ° C or higher and 1060 ° C or lower. If it is less than 600 ° C, the crystal structure may not be isotropic, homogeneous or fine grained, and the aspect ratio of the crystal grain of the copper base matrix in the final product cannot be reduced to 5 or less. In some cases, good characteristics cannot be obtained uniformly and the anisotropy of characteristics increases. On the other hand, if the temperature of the solution treatment and Z or hot rolling exceeds 1060 ° C, the grain boundaries melt and cracks occur during processing, or the coarsening of the grains causes the final product. Characteristics There is a possibility that problems such as reduction and anisotropy of characteristics increase.
[0058] 従って、溶体化処理および Zまたは熱間圧延は、 600°C以上 1060°C以下の温度域 で行うのが望ましい。好ましくは 650°C以上 1000°C以下、より好ましいのは 700°C以上 9 00°C以下である。なお、 900〜1060°Cの温度域では上記介在物の粗大析出や銅基 母相の結晶粒粗大化が顕著となるため、この温度域では短時間保持が望ましい。  [0058] Accordingly, the solution treatment and Z or hot rolling are preferably performed in a temperature range of 600 ° C or higher and 1060 ° C or lower. Preferably they are 650 degreeC or more and 1000 degrees C or less, More preferably, they are 700 degreeC or more and 900 degrees C or less. In the temperature range of 900 to 1,060 ° C., coarse precipitation of the inclusions and coarsening of the crystal grains of the copper base matrix are remarkable.
[0059] 溶体化処理時間または熱間圧延前の加熱時間が 3.0秒未満の場合、溶体化処理 温度または熱間圧延前の加熱温度を高く設定しても所望の結晶組織が得られない。 従って、 600〜1060°Cの温度域での溶体化処理または熱間圧延前の加熱は、 3.0秒 以上行うのが望ましい。この時間は、 1分以上が望ましぐ更には 5分以上が望ましい 。より望ましいのは 10分以上である。これらの時間の上限は特に定めないが、金属も しくは銅と添加元素との化合物、添加元素同士の化合物等の析出物または金属酸 化物、金属炭化物、金属窒化物等の介在物の粗大析出抑制、結晶粒の粗大化抑制 、加熱費用低減の観点力 24時間以下とするのが望ましい。なお、溶体化処理温度 や熱間圧延前の加熱温度が高い場合には、加熱時間を短くすることができる。高温 側の 900〜1060°Cの温度域では短時間保持が望ましい。  [0059] When the solution treatment time or the heating time before hot rolling is less than 3.0 seconds, the desired crystal structure cannot be obtained even if the solution treatment temperature or the heating temperature before hot rolling is set high. Accordingly, it is desirable that the solution treatment in the temperature range of 600 to 160 ° C. or the heating before hot rolling be performed for 3.0 seconds or more. This time is preferably 1 minute or longer and more preferably 5 minutes or longer. More desirable is 10 minutes or more. Although the upper limit of these times is not particularly defined, coarse precipitation of inclusions such as metal or a compound of copper and an additive element, a compound of additive elements, or a metal oxide, metal carbide, or metal nitride It is desirable to suppress it, suppress coarsening of crystal grains, and reduce the heating cost for 24 hours or less. When the solution treatment temperature and the heating temperature before hot rolling are high, the heating time can be shortened. It is desirable to hold for a short time in the temperature range of 900 to 160 ° C on the high temperature side.
[0060] 熱間圧延の圧下率は特に定めないが、結晶組織の等方化、均質化、細粒化の観 点から、合計圧下率として 20%以上とするのが望ましい。より好ましいのは 50%以上 である。  [0060] The rolling reduction in hot rolling is not particularly defined, but is preferably 20% or more as the total rolling reduction from the viewpoints of isotropic, homogenizing, and refinement of the crystal structure. More preferred is 50% or more.
[0061] 溶体化処理および Zまたは熱間圧延後の冷却は、上記の介在物および析出物の 析出を抑制するため、 l°CZs以上の冷却速度で行うことが望ましい。冷却速度は大 きい程よぐ好ましい冷却速度は、 2°CZs以上であり、さらに好ましいのは 5°CZs以上 である。  [0061] Solution treatment and cooling after Z or hot rolling are preferably performed at a cooling rate of 1 ° C Zs or more in order to suppress precipitation of the inclusions and precipitates. The larger the cooling rate, the more preferable the cooling rate is 2 ° CZs or more, and the more preferable is 5 ° CZs or more.
[0062] 溶体化処理および Zまたは熱間圧延前の加熱は、表面の酸化によるスケールの発 生を防ぐために、還元性雰囲気中、不活性ガス雰囲気中または 20Pa以下の真空中 で行うのがよい。このような雰囲気下での処理によって優れたメツキ性も確保される。  [0062] Solution treatment and heating prior to Z or hot rolling are preferably performed in a reducing atmosphere, in an inert gas atmosphere, or in a vacuum of 20 Pa or less in order to prevent generation of scale due to surface oxidation. . Excellent mating properties are also ensured by the treatment under such an atmosphere.
[0063] 溶体化処理および Zまたは熱間圧延は、後述する「600°C以下の温度域での加工」 または「150〜750°Cの温度域で保持する時効処理」の後に行っても良い。この場合、 上記の介在物や析出物を微細に析出させるため、溶体ィ匕処理および Zまたは熱間 圧延の後、更に「600°C以下の温度域での加工」あるいは「150〜750°Cの温度域で保 持する時効処理」を行うことが望ま 、。 [0063] Solution treatment and Z or hot rolling may be performed after "processing in a temperature range of 600 ° C or lower" or "aging treatment holding in a temperature range of 150 to 750 ° C" described later. . In this case, in order to precipitate the above inclusions and precipitates finely, the solution solution treatment and Z or hot After rolling, it is desirable to further perform “processing in a temperature range of 600 ° C. or lower” or “aging treatment maintained in a temperature range of 150 to 750 ° C.”.
[0064] (C) 溶体化処理および Zまたは熱間圧延の後の加工温度: 600°C以下の温度域 本発明の銅合金の製造方法においては、铸造して得た铸片は、所定の条件で冷 却された後、上記の溶体化処理および Zまたは熱間圧延、加工、時効熱処理の組 み合わせによって最終製品に至る。 [0064] (C) Processing temperature after solution treatment and Z or hot rolling: temperature range of 600 ° C or lower In the method for producing a copper alloy of the present invention, After cooling under conditions, the final product is obtained by a combination of the above solution treatment and Z or hot rolling, processing and aging heat treatment.
[0065] 圧延、線引き等の加工は、 600°C以下であればよい。例えば、連続铸造を採用する 場合には、凝固後の冷却過程でこれらの加工を行ってもよい。 600°Cを超える温度域 で加工を行うと、加工時の歪みを充分蓄積できなくなるため、引き続いて行う時効処 理で金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出 物を微細に析出させることができなくなり、銅合金の高強度化が不充分となる。  [0065] Processing such as rolling and drawing may be performed at 600 ° C or lower. For example, when adopting continuous fabrication, these processes may be performed in the cooling process after solidification. If processing is performed in a temperature range exceeding 600 ° C, strain during processing cannot be accumulated sufficiently, so that precipitation of a compound of a metal or copper and an additive element, or a compound of additive elements, etc. is performed during subsequent aging treatment. The product cannot be finely precipitated, and the strength of the copper alloy becomes insufficient.
[0066] 加工温度は、低いほど加工時の転位密度が上昇するので、引き続いて行う時効処 理で金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の析出 物をより微細に析出させることができる。このため、より高い強度を銅合金に与えること ができる。従って、好ましいカ卩ェ温度は、 600°C以下であり、より好ましいのは 450°C以 下である。最も好ましいのは 300°C以下である。 25°C以下でもよい。  [0066] The lower the processing temperature, the higher the dislocation density at the time of processing, so finer precipitates such as a compound of a metal or copper and an additive element, or a compound of additive elements can be obtained in a subsequent aging treatment. It can be deposited. For this reason, higher strength can be imparted to the copper alloy. Accordingly, the preferred cache temperature is 600 ° C. or lower, and more preferably 450 ° C. or lower. Most preferred is 300 ° C or lower. It may be 25 ° C or less.
[0067] なお、上記の温度域での加工は、その加工率(断面減少率)を 20%以上として行うこ とが望ましい。より好ましいのは 50%以上である。このような加工率での加工を行えば、 それによつて導入された転位が時効処理時に析出核となるので、析出物の微細化を もたらし、また、析出に要する時間を短縮させ、導電性に有害な固溶元素の低減を早 期に実現できる。  [0067] It should be noted that the processing in the above temperature range is desirably performed at a processing rate (cross-sectional reduction rate) of 20% or more. More preferred is 50% or more. If processing is performed at such a processing rate, the dislocations introduced thereby become precipitation nuclei during the aging treatment, leading to refinement of the precipitates and shortening the time required for precipitation, thereby improving conductivity. Reduction of harmful solid solution elements can be realized early.
[0068] (D) 時効処理条件: 150〜750°Cの温度域で保持する  [0068] (D) Aging treatment condition: Maintain in a temperature range of 150 to 750 ° C
時効処理は、金属もしくは銅と添加元素との化合物、または添加元素同士の化合 物等の析出物を析出させて銅合金を高強度化し、あわせて導電性に害を及ぼす固 溶元素(Cr、 Ti等)を低減して導電率を向上させるのに有効である。しかし、その処理 温度が 150°C未満の場合、析出元素の拡散に長時間を要し、生産性を低下させる。 一方、処理温度が 750°Cを超えると、析出物が粗大になりすぎて、析出硬化作用によ る高強度化ができないばかりか、延性、曲げ加工性、耐衝撃性および疲労特性が低 下する。このため、時効処理を 150〜750°Cの温度域で行うことが望ましい。望ましい 時効処理温度は 200〜650°Cであり、更に望ましいのは、 250〜550°Cである。 The aging treatment is performed by depositing a metal or a compound of copper and an additive element, or a precipitate such as a compound of the additive elements to increase the strength of the copper alloy and, at the same time, a solid solution element (Cr, It is effective to improve conductivity by reducing Ti and the like. However, if the treatment temperature is less than 150 ° C, it takes a long time for the diffusion of the precipitated elements, which reduces productivity. On the other hand, if the treatment temperature exceeds 750 ° C, the precipitates become too coarse and not only can not be strengthened by precipitation hardening, but also have low ductility, bending workability, impact resistance and fatigue properties. I will give you. For this reason, it is desirable to perform the aging treatment in a temperature range of 150 to 750 ° C. Desirable aging temperature is 200-650 ° C, more preferably 250-550 ° C.
[0069] 時効処理時間が 30秒未満の場合、時効処理温度を高く設定しても所望の析出量 を確保できない。従って、 150〜750°Cの温度域での時効処理を 30秒以上行うのが望 ましい。この処理時間は 5分以上が望ましぐ更には 10分以上が望ましい。最も望まし いのは 15分以上である。処理時間の上限は特に定めないが、処理費用の観点から 7 2時間以下とするのが望ましい。なお、時効処理温度が高い場合には、処理時間を 短くすることができる。 [0069] When the aging treatment time is less than 30 seconds, the desired precipitation amount cannot be secured even if the aging treatment temperature is set high. Therefore, it is desirable to perform an aging treatment in the temperature range of 150 to 750 ° C for 30 seconds or more. This treatment time is preferably 5 minutes or more, and more preferably 10 minutes or more. Most desirable is 15 minutes or more. There is no upper limit on the processing time, but it is desirable that it be 72 hours or less from the viewpoint of processing costs. When the aging treatment temperature is high, the treatment time can be shortened.
[0070] なお、時効処理は、表面の酸ィ匕によるスケールの発生を防ぐために、還元性雰囲 気中、不活性ガス雰囲気中または 20Pa以下の真空中で行うのがよい。このような雰囲 気下での処理によって優れたメツキ性も確保される。  [0070] It should be noted that the aging treatment is preferably performed in a reducing atmosphere, an inert gas atmosphere, or a vacuum of 20 Pa or less in order to prevent the generation of scale due to surface oxidation. Excellent mating properties are also ensured by processing in such an atmosphere.
[0071] 上記の溶体化処理、熱間圧延、加工および時効処理を実施する順に制限はなぐ 例えば、溶体化処理の後に加工を実施してもよいし、加工の後に溶体化処理を実施 してもよい。また、これらは、必要に応じて繰り返して行ってもよい。繰り返し行えば、 1 回の処理 (力卩ェおよび時効処理)で行うよりも、短い時間で所望の析出量を得ること ができ、金属もしくは銅と添加元素との化合物、または添加元素同士の化合物等の 析出物をより微細に析出させることができる。  [0071] There is no limitation on the order in which the solution treatment, hot rolling, processing, and aging treatment are performed. For example, the processing may be performed after the solution treatment, or the solution treatment may be performed after the processing. Also good. Moreover, you may repeat these as needed. If it is repeated, the desired amount of precipitation can be obtained in a shorter time than with a single treatment (force and aging treatment), and a compound of metal or copper and an additive element, or a compound of additive elements. The precipitates such as can be deposited more finely.
[0072] (E) その他  [0072] (E) Other
本発明の銅合金の製造方法において、上記の製造条件以外の条件、例えば溶解 、铸造等の条件については特に限定はないが、例えば、下記のように行えばよい。  In the method for producing a copper alloy of the present invention, conditions other than the above production conditions, for example, conditions such as melting and forging are not particularly limited, but may be carried out as follows, for example.
[0073] 溶解は、非酸ィ匕性または還元性の雰囲気下で行うのがよい。これは、溶銅中の固 溶酸素が多くなると後工程で、水蒸気が生成してブリスターが発生する、いわゆる水 素病などが起こる力もである。また、酸化しやすい固溶元素、例えば、 Ti、 Cr、 Zr、 M g、 Li、 Caおよび希土類元素、 Al、 Si等の酸ィ匕物を作りやすい元素の粗大酸ィ匕物が生 成し、これが最終製品まで残存すると、延性、曲げ加工性や疲労特性を著しく低下さ せる。  [0073] The dissolution is preferably performed in a non-acidic or reducing atmosphere. This is also a force that causes so-called hydrogen disease, in which water vapor is generated and blisters are generated in the subsequent process when the amount of dissolved oxygen in the molten copper increases. In addition, solid solution elements that easily oxidize, such as Ti, Cr, Zr, Mg, Li, Ca and rare earth elements, Al, Si, etc. If this remains in the final product, ductility, bending workability and fatigue properties are significantly reduced.
[0074] 铸片を得る方法は、生産性や凝固速度の点で連続铸造が好ま ヽが、上述の条件 を満たす方法であれば、他の方法、例えばインゴット法でも構わない。また、好ましい 铸込温度は、 1250°C以上である。さらに好ましいのは 1350°C以上である。この温度で あれば、 Cr、 Ti、 Zr等を十分溶解させることができ、また金属酸化物、金属炭化物、 金属窒化物等の介在物、金属もしくは銅と添加元素との化合物、または添加元素同 士の化合物等の析出物を生成させな 、からである。 [0074] As a method for obtaining a piece, continuous forging is preferred in terms of productivity and solidification rate, but other methods such as an ingot method may be used as long as the method satisfies the above conditions. Also preferred The filling temperature is 1250 ° C or higher. More preferred is 1350 ° C or higher. At this temperature, Cr, Ti, Zr, etc. can be sufficiently dissolved, inclusions such as metal oxides, metal carbides, metal nitrides, etc., compounds of metal or copper and additive elements, or the same additive elements. This is because a precipitate such as a chemical compound is not generated.
[0075] 連続铸造により铸片を得る場合には、銅合金で通常行われる黒鉛モールドを用い る方法が潤滑性の観点力 推奨される。モールド材質としては主要な合金元素であ る Ti、 Cr、 Zr等と反応しにくい耐火物、例えばジルコユアを用いてもよい。 [0075] In the case of obtaining pieces by continuous forging, a method using a graphite mold usually performed with a copper alloy is recommended from the viewpoint of lubricity. As the mold material, a refractory that does not easily react with the main alloying elements such as Ti, Cr, Zr, etc., for example, zirconia may be used.
実施例 1  Example 1
[0076] 表 1に示す化学組成を有する銅合金を高周波溶解炉にて真空溶製し、ジルコニァ 製の铸型に深さ 20mmまで铸込み、铸片を得た。希土類元素は、各元素の単体また はミッシュメタルを添カ卩した。  [0076] A copper alloy having the chemical composition shown in Table 1 was vacuum-melted in a high-frequency melting furnace, and was poured into a zirconia mold to a depth of 20 mm to obtain a flake. For rare earth elements, single elements or misch metals were added.
[0077] 得られた铸片を、铸造直後の温度 (铸型から取り出した直後の温度)である 900°Cか ら噴霧冷却により冷却した。铸型に埋め込んだ熱電対によって所定の場所の铸型の 温度変化を計測し、铸片が铸型を出た後の表面温度を接触式温度計で数点計測し た。これらの結果と伝熱解析との併用によって 900°Cまでの铸片表面の平均冷却速 度を算出した。凝固開始点は、それぞれの成分における溶湯を 0.2g用意し、所定の 速度での連続冷却中の熱分析によって求めた。得られた铸片から、切断と切削により 厚さ 15mm X幅 150mm X長さ 200mmの圧延素材を作製した。  [0077] The obtained piece was cooled by spray cooling from 900 ° C, which was the temperature immediately after fabrication (the temperature immediately after removal from the mold). The temperature change of the vertical shape at a given location was measured by a thermocouple embedded in the vertical shape, and the surface temperature after the piece exited the vertical shape was measured with a contact thermometer. By using these results in combination with heat transfer analysis, the average cooling rate on the surface of the flakes up to 900 ° C was calculated. The solidification start point was obtained by thermal analysis during continuous cooling at a predetermined rate after preparing 0.2 g of molten metal for each component. A rolled material having a thickness of 15 mm, a width of 150 mm, and a length of 200 mm was produced from the obtained piece by cutting and cutting.
[0078] その後、本発明例 1〜9および比較例 10〜12では表 2に示す条件の溶体ィヒ処理お よび Zまたは熱間圧延を行い、比較例 13〜20では、溶体化熱処理および熱間圧延 を行わなかった。これらの圧延素材に室温にて圧下率 73〜94%の圧延(1回目圧延) を施して厚さ 0.8mmの板材とし、所定の条件で時効処理( 1回目時効)を施して供試 材を作製した。更に、室温にて圧下率 75%の圧延(2回目圧延)を行って厚さ 0.2mmと し、所定の条件で時効処理 (2回目時効)した。  [0078] Thereafter, the inventive examples 1 to 9 and comparative examples 10 to 12 were subjected to the solution treatment and Z or hot rolling under the conditions shown in Table 2, and the comparative examples 13 to 20 were subjected to solution heat treatment and heat treatment. No hot rolling was performed. These rolled materials are rolled at a reduction rate of 73 to 94% at room temperature (first rolling) to form a 0.8 mm thick plate, and subjected to aging treatment (first aging) under specified conditions. Produced. Further, rolling at a reduction rate of 75% (second rolling) was performed at room temperature to a thickness of 0.2 mm, and an aging treatment (second aging) was performed under predetermined conditions.
[0079] このように作製した供試材について、下記の手法により、析出物および介在物の粒 径および単位面積当たりの合計個数、引張強度、導電率、耐熱温度および曲げカロ 工性を求めた。これらの結果を表 3に示す。  [0079] With respect to the specimens thus prepared, the following methods were used to determine the particle diameter and total number of precipitates and inclusions per unit area, tensile strength, electrical conductivity, heat resistance temperature, and bending calorieability. . These results are shown in Table 3.
[0080] <析出物および介在物の合計個数 > 各供試材の圧延面に垂直で、且つ圧延方向と平行な断面を鏡面研磨し、アンモニ ァおよび過酸ィ匕水素水を体積比 9 : 1で混合した腐食液でエッチングした後、光学顕 微鏡により 100倍の倍率で lmm X lmmの視野を観察した。その後、析出物および介 在物の長径 (途中で粒界に接しな 、条件で粒内に最も長く弓 Iける直線の長さ)を測 定して得た値を粒径と定義する。(1)式には、析出物および介在物の粒径の測定値が 1.0 /z m以上 1.5 m未満の場合、 X= lを代入し、(α— 0.5) m以上( α + 0.5) μ m未満の場合、 X= a ( aは 2以上の整数)を代入すればよい。更に、粒径毎に lmm X lmm視野の枠線を交差するものを 1Z2個、枠線内にあるものを 1個として合計個数 n算出し、任意に選んだ 10視野における個数 Ν ( =η +η + · · · +η )の平均値 (ΝΖ[0080] <Total number of precipitates and inclusions> A cross section perpendicular to the rolling surface of each specimen and parallel to the rolling direction is mirror-polished, etched with a corrosive liquid in which ammonia and hydrogen peroxide solution are mixed at a volume ratio of 9: 1, and then optical microscope is used. A 1 mm x 1 mm field of view was observed with a microscope at a magnification of 100 times. After that, the value obtained by measuring the major axis of the precipitates and inclusions (the length of the straight line in the grain that is the longest in the grain without touching the grain boundary in the middle) is defined as the grain size. In the formula (1), when the measured particle size of precipitates and inclusions is 1.0 / zm or more and less than 1.5 m, substitute X = l and (α− 0.5) m or more (α + 0.5) μ m If it is less than X, substitute X = a (a is an integer of 2 or more). Further, for each particle size, 1Z2 crosses the lmm X lmm field of view, and 1 within the frame, and calculates the total number n, and the number 任意 (= η + η + · · · + η) average value (ΝΖ
1 1 2 10 1 1 2 10
10)をその試料のそれぞれの粒径にっ 、ての析出物および介在物の合計個数と定 義する。  10) is defined as the total number of all precipitates and inclusions according to the particle size of each sample.
[0081] <引張強度と延性 >  [0081] <Tensile strength and ductility>
また、 JIS Z 2201に規定される 13B号引張試験片を圧延方向に対して 0° 、90° の 方向から採取して、室温 (25°C)で引張試験を行い、引張強さ (TS)および破断延性( EL)を測定した。  In addition, a No. 13B tensile test piece specified in JIS Z 2201 was sampled from 0 ° and 90 ° with respect to the rolling direction, and subjected to a tensile test at room temperature (25 ° C) to obtain a tensile strength (TS). The fracture ductility (EL) was measured.
[0082] <導電率 >  [0082] <Conductivity>
上記の供試材から長手方向と圧延方向が平行になるように幅 10mm X長さ 60mmの 試験片を採取し、試験片の長手方向に電流を流して試験片の両端の電位差を測定 し、 4端子法により電気抵抗を求めた。続いてマイクロメータで計測した試験片の体積 から、単位体積当たりの電気抵抗 (抵抗率)を算出し、多結晶純銅を焼鈍した標準試 料の抵抗率 1.72 Ω ' cmとの比から導電率〔IACS(%;)〕を求めた。  Take a test piece of width 10mm x length 60mm from the above specimen so that the longitudinal direction and the rolling direction are parallel, and pass a current in the longitudinal direction of the test piece to measure the potential difference at both ends of the test piece. The electrical resistance was determined by the 4-terminal method. Subsequently, the electrical resistance (resistivity) per unit volume is calculated from the volume of the test piece measured with a micrometer, and the conductivity [from the ratio of the resistivity of 1.72 Ω 'cm of the standard sample annealed with polycrystalline pure copper [ IACS (%;)] was determined.
[0083] <耐熱温度 >  [0083] <Heat-resistant temperature>
圧延方向に対して 0° となる方向および 90° となる方向力ゝら幅 10mm X長さ 10mmの 試験片を採取し、圧延面に垂直で、且つ圧延方向と平行な断面を鏡面研磨し、正四 角錐のダイヤモンド圧子を荷重 50gで試験片に押し込み、荷重とくぼみの表面積との 比から定義されるビッカース硬度を測定した。更に、これを所定の温度で 2時間加熱 し、室温まで冷却した後に、再びビッカース硬度を測定し、その硬度が加熱前の硬度 の 50%になる加熱温度を耐熱温度とした。 [0084] く曲げ加工性〉 A specimen having a width of 10 mm and a length of 10 mm is taken from the direction of 0 ° and 90 ° with respect to the rolling direction, and a cross section perpendicular to the rolling surface and parallel to the rolling direction is mirror-polished, A square pyramid diamond indenter was pushed into the test piece with a load of 50 g, and the Vickers hardness defined by the ratio between the load and the surface area of the indentation was measured. Furthermore, after heating this at a predetermined temperature for 2 hours and cooling to room temperature, the Vickers hardness was measured again, and the heating temperature at which the hardness was 50% of the hardness before heating was defined as the heat resistant temperature. [0084] Bending workability>
圧延方向に対して 0° となる方向および 90° となる方向から長手方向と圧延方向 が平行になるように、幅 10mm X長さ 60mmの試験片を複数採取し、曲げ部の曲率半 径(内径)を変えて、 90° 曲げ試験を実施した。光学顕微鏡を用いて、試験後の試験 片の曲げ部を外径側から観察した。そして、割れが発生しない最小の曲率半径を尺と し、試験片の厚さ tとの比 B (=RZt)を求めた。  Samples with a width of 10 mm and a length of 60 mm were taken so that the longitudinal direction and the rolling direction were parallel to the direction at 0 ° and 90 ° with respect to the rolling direction, and the curvature radius of the bent part ( A 90 ° bend test was performed with different inner diameters. The bending part of the test piece after the test was observed from the outer diameter side using an optical microscope. Then, the ratio B (= RZt) with the thickness t of the test piece was determined using the minimum radius of curvature at which no cracks occurred.
[0085] [表 1] [0085] [Table 1]
§§〔 §§ [
表 1 化学組成(質量 、残部 Guおよび不純物)  Table 1 Chemical composition (mass, balance Gu and impurities)
Figure imgf000022_0001
Figure imgf000022_0001
*は、本発明で規定される化学組成を外れることを意味する。 * Means out of the chemical composition defined in the present invention.
S30083 表 2 S30083 Table 2
Figure imgf000023_0001
Figure imgf000023_0001
#は、化学組成が本発明で規定される範囲を外れることを意味する。  # Means that the chemical composition is outside the range defined in the present invention.
*は、製造条件が本発明で規定される範囲を外れることを意味する。 * Means that the manufacturing conditions are outside the range defined in the present invention.
¾胆.。 ¾ gall.
Figure imgf000024_0001
表 2 3に示すように、本発明例 1 9では、化学組成、製造条件、銅基母相の結晶 組織ならびに析出物と介在物の合計個数が本発明で規定される範囲にあるので、前 記 (1)〜(3)式を満たすとともに、導電率、強度、加工性 (延性、曲げ性)、耐熱温度のい ずれも高いレベルの値が得られた。更には、それらの特性の異方性が非常に小さい t 、う優れた特長を有して!/、た。 [0089] 一方、比較例 10〜20は、化学組成、製造条件、析出物と介在物の合計個数、銅基 母相の平均結晶粒径、アスペクト比の ヽずれかが本発明で規定される範囲を外れる ため、特性が本発明例よりも劣り、それらの異方性が大き力つた。
Figure imgf000024_0001
As shown in Table 23, in the present invention example 19, the chemical composition, production conditions, crystal structure of the copper base matrix, and the total number of precipitates and inclusions are within the range specified by the present invention. In addition to satisfying the formulas (1) to (3), high values were obtained for conductivity, strength, workability (ductility, bendability), and heat resistance temperature. Furthermore, the anisotropy of their characteristics is very small, and has excellent features! [0089] On the other hand, Comparative Examples 10 to 20 are defined by the present invention in terms of chemical composition, production conditions, the total number of precipitates and inclusions, the average crystal grain size of the copper base matrix, and the difference in aspect ratio. Since it was out of the range, the characteristics were inferior to those of the examples of the present invention, and their anisotropy was strong.
実施例 2  Example 2
[0090] 表 4に示す化学組成を有する Cu合金を高周波溶解炉にて真空溶製し、铸鉄製铸 型に铸込み、厚さ 150mm X幅 170mm X長さ 500mmの铸片を得た。希土類元素は、各 元素の単体またはミッシュメタルの形態で添加した。一部の試験にお 、ては铸型底 部に埋め込んだ熱電対によって铸込み後冷却中の温度履歴を計測し、伝熱計算と の併用によって合金塊中心部の冷却曲線を見積もった。凝固開始後 900°Cまでの平 均冷却速度は 2 ±0.3°C/sであった。  [0090] A Cu alloy having the chemical composition shown in Table 4 was vacuum-melted in a high-frequency melting furnace and placed in a pig iron mold to obtain a piece having a thickness of 150 mm x width 170 mm x length 500 mm. Rare earth elements were added in the form of individual elements or misch metal. In some tests, the temperature history during cooling after pouring was measured with a thermocouple embedded in the bottom of the saddle, and the cooling curve at the center of the alloy lump was estimated in combination with heat transfer calculations. The average cooling rate up to 900 ° C after the start of solidification was 2 ± 0.3 ° C / s.
[0091] 得られた铸片の押し湯部分を切り捨て、熱間鍛造によって、厚さ 50mm X幅 200mm  [0091] The hot metal portion of the obtained piece is cut off and hot forged to give a thickness of 50mm x width of 200mm
X長さ 1200mmの合金塊を作製した。これらを 950°Cに加熱後、熱間圧延によって厚 さ 10mmまでカ卩ェした。なお、圧延終了温度は 750〜400°C程度であり、圧延終了後は 水中冷却した。一部については溶体化熱処理を施し、表面研削を施して厚さ 9mmの 圧延素材とした。これらの圧延素材に室温にて圧延(1回目圧延)を施して厚さ 0.6mm の板材とし、 800°Cで 30秒保持する 2回目の溶体化処理を行った。  An alloy lump with an X length of 1200 mm was prepared. These were heated to 950 ° C and then hot rolled to a thickness of 10 mm. Note that the rolling end temperature was about 750 to 400 ° C., and cooling was performed in water after the end of rolling. Some were heat-treated by solution heat treatment and surface grinding to produce a rolled material with a thickness of 9 mm. These rolled materials were rolled at room temperature (first rolling) to form a plate with a thickness of 0.6 mm, and a second solution treatment was performed at 800 ° C for 30 seconds.
[0092] その後、室温にて厚さ 0.4mmまたは 0.2mmまで圧延 (2回目圧延)を実施し、所定の 条件で時効処理(1回目時効)を施した。更に、室温にて圧延(3回目圧延)を行って 厚さ 0.2mmまたは 0.1mmとし、所定の条件で時効処理(2回目時効)した。これらの製 造条件を表 5に示す。  [0092] Thereafter, rolling to a thickness of 0.4 mm or 0.2 mm (second rolling) was performed at room temperature, and an aging treatment (first aging) was performed under predetermined conditions. Furthermore, rolling (third rolling) was performed at room temperature to a thickness of 0.2 mm or 0.1 mm, and aging treatment (second aging) was performed under predetermined conditions. Table 5 shows these manufacturing conditions.
[0093] このように作製した供試材につ!/ヽて、析出物および介在物の粒径および単位面積 当たりの合計個数、平均結晶粒径、アスペクト比、導電率、引張強度、延性ならびに 曲げ力卩ェ性を求めた。これらの結果を表 6に示す。  [0093] For the test materials thus prepared, the total number of particles and inclusions per unit area, average crystal grain size, aspect ratio, electrical conductivity, tensile strength, ductility, and The bending strength was determined. These results are shown in Table 6.
[0094] [表 4]
Figure imgf000026_0001
表 4
[0094] [Table 4]
Figure imgf000026_0001
Table 4
Figure imgf000026_0002
Figure imgf000026_0002
*は、化学組成が本発明で規定される範囲を外れることを意味する。  * Means that the chemical composition is outside the range defined in the present invention.
REM (希土類元素):ミッシュメタルの形態で添加した。 REM (rare earth element): added in the form of misch metal.
表 5 sffis 〔009 Table 5 sffis [009
Figure imgf000027_0001
Figure imgf000027_0001
*は、製造条件が本発明で規定される範囲を外れることを意味する。 * Means that the manufacturing conditions are outside the range defined in the present invention.
Γ時間 Jの rminjは分 (minutes)を、 rhjは時間 (hours)を意味する。 Rminj of Γ time J means minutes and rhj means hours.
?¾sl @(Θ!」,::τΘχ〜.。 ? ¾sl @ (Θ! ”, :: τΘχ〜.
Figure imgf000028_0001
Figure imgf000028_0001
[0097] 表 6に示すように、本発明例 21 30では、引張強度、延性および曲げ加工性がい ずれも良好であった。なお、曲げ力卩ェ性 Bは good wayの値が bad wayのそれと同 等かそれ以上(Bの値で言うとそれ以下)であったので、表 6には bad wayについて のみ記載してある。 [0097] As shown in Table 6, in Example 2130 of the present invention, the tensile strength, ductility and bending workability were all good. Since the value of the good way B is equal to or more than that of the bad way (below it in terms of the value of B), only the bad way is shown in Table 6. .
[0098] 一方、比較例 31 37は、化学組成、銅基母相の平均結晶粒径およびアスペクト比 のいずれかが本発明で規定される範囲を外れ、導電率、引張強度、延性および曲げ 加工性の!/、ずれかの性能に劣って!/、た。 実施例 3 [0098] On the other hand, in Comparative Example 31 37, any one of the chemical composition, the average crystal grain size of the copper base matrix and the aspect ratio is out of the range defined in the present invention, and the electrical conductivity, tensile strength, ductility and bending work are performed. Sexuality! / Inferior performance! / Example 3
[0099] 表 4に示す合金 No.14について、横引きおよび竪引きの連続铸造を実施し、合金 No .16についてダービル铸造法により金型铸造した。なお、溶解は高周波炉にて行い、 酸化防止の目的で溶湯全体を十分覆うように木炭粒を添加した。  [0099] Continuous forging and pulling were performed for Alloy No. 14 shown in Table 4, and a mold was forged for Alloy No. 16 by the Darville forging method. The melting was performed in a high-frequency furnace, and charcoal grains were added to cover the entire molten metal for the purpose of preventing oxidation.
[0100] (1)本発明例 38の横引き連続铸造では、溶解炉力 上注ぎにて保持炉に注湯した 力 その後は同様に木炭を添加して酸ィ匕を防止し、グラフアイト铸型を用いた間欠引 き抜きで 80 X 250mm断面の铸片を得た。平均引き抜き速度は 50mm/minであった。  [0100] (1) In the horizontal continuous forging of Example 38 of the present invention, the melting furnace power is the pouring power to the holding furnace by pouring, and then charcoal is added in the same manner to prevent acidification, An 80 × 250 mm cross-section piece was obtained by intermittent drawing using a mold. The average drawing speed was 50 mm / min.
[0101] (2)本発明例 39の竪引き法では、タンディッシュに注湯後は同じく木炭で酸ィ匕を防 止し、タンディッシュ力 铸型内へはジルコユア製浸漬ノズルで同じく木炭粉末で覆 つた層を介して溶湯プール中へ連続注湯した。铸型は銅合金製水冷铸型を用い、 平均速度 70mmで連続引き抜きし、断面力 100mm X 400mmの铸片を得た。  [0101] (2) In the drawing method of Example 39 of the present invention, after pouring into the tundish, the acid is prevented with charcoal. The molten metal was poured continuously through the layer covered with. As the saddle type, a water-cooled copper type made of copper alloy was used and continuously drawn at an average speed of 70 mm to obtain a piece having a cross-sectional force of 100 mm × 400 mm.
[0102] (3)本発明例 40のダービル铸造法では、図 2(a)に示すような状態で金型を保持し、 木炭粉末で還元雰囲気を確保しながら金型に注湯した後、これを図 2(b)に示す様に 傾転して図 2(c)の状態で凝固させて厚さ 100mm X幅 400mm X高さ 600mmの铸片を作 製した。  [0102] (3) In the Darville forging method of Invention Example 40, the mold is held in the state shown in Fig. 2 (a), and after pouring into the mold while ensuring a reducing atmosphere with charcoal powder, This was tilted as shown in Fig. 2 (b) and solidified in the state shown in Fig. 2 (c) to produce a piece having a thickness of 100mm x width 400mm x height 600mm.
[0103] なお、本発明例 38、 39および 40における凝固開始後 900°Cまでの平均冷却速度は 、それぞれ 2.8 ±0.3°C/s、 2.5±0.3°C/sおよび 2.4±0.2°C/sであった。連続铸造時に おける凝固'冷却中の铸片中心部の冷却速度は、铸型を出た後の表面で測温した 温度履歴と伝熱計算との併用によって算出した。ダービル铸造時の冷却速度は実施 例 1と同様に铸型側部に埋め込んだ熱電対による測温と伝熱計算を併用して行った  [0103] In Examples 38, 39 and 40 of the present invention, the average cooling rates up to 900 ° C after the start of solidification are 2.8 ± 0.3 ° C / s, 2.5 ± 0.3 ° C / s and 2.4 ± 0.2 ° C / s, respectively. s. The cooling rate at the center of the slab during solidification and cooling during continuous fabrication was calculated by the combined use of the temperature history measured on the surface after exiting the saddle and the heat transfer calculation. The cooling rate at the time of darvil fabrication was the same as in Example 1 by using both temperature measurement and heat transfer calculation with thermocouple embedded in the vertical side
[0104] 得られた铸片は表面研削し、必要に応じて熱間鍛造と熱間圧延を施した後、表 7に 示す条件で、溶体化、冷間圧延、溶体化、冷間圧延および熱処理を施し、最終的に それぞれ厚さ 0.2mmの薄帯を得た。 [0104] The obtained flakes were surface ground and subjected to hot forging and hot rolling as necessary, and then subjected to solution treatment, cold rolling, solution treatment, cold rolling and cold rolling under the conditions shown in Table 7. Heat treatment was performed, and finally a ribbon with a thickness of 0.2 mm was obtained.
[0105] 得られた薄帯を用い、上記と同様に、導電率、引張強度、延性および曲げ加工性 を調査した。これらの結果を表 8に示す。  [0105] Using the obtained ribbon, the conductivity, tensile strength, ductility and bending workability were investigated in the same manner as described above. These results are shown in Table 8.
[0106] [表 7] 表 7 s01c[0106] [Table 7] Table 7 s01c
Figure imgf000030_0001
Figure imgf000030_0001
Γ時間 Jの fminjは分 (minutes)を、 fhjは時間 (hours)を意味する。 Γ time J fminj means minutes and fhj means hours.
Figure imgf000031_0001
Figure imgf000031_0001
[0108] 表 8に示すように、本発明例 38〜40のいずれの錶造法においても高い導電率、引 張強度、伸び、曲げ加工性が得られ、本発明方法が実際の铸造機に適用できること が分かった。 [0108] As shown in Table 8, high electrical conductivity, tensile strength, elongation and bending workability were obtained in any of the forging methods of Invention Examples 38 to 40, and the method of the present invention was applied to an actual forging machine. I found it applicable.
実施例 4  Example 4
[0109] 表 4に示す合金 Νο.14、 16および 20を高周波溶解炉にて真空溶製し、铸鉄製铸型 に铸込み、厚さ 150mm X幅 170mm X長さ 500mmの铸片を得た。希土類元素は、各元 素の単体またはミッシュメタルを添加した。凝固開始後 900°Cまでの平均冷却速度は 、 2.0 ±0.3°C/sであった。その後、熱間鍛造と熱間圧延によって直径が 20mmの棒材 を作製した。一部については溶体ィ匕処理を施した後、表面研削し、直径が 10mmまで 冷間圧延し、所定の条件で熱処理した。一部についてはさらに直径 5mmまで室温で 線引きし、所定の条件で熱処理した。これらについて、引張試験、導電率、伸びおよ び耐熱温度を調査した結果を表 9に示す。 [0109] Alloys Νο.14, 16 and 20 shown in Table 4 were vacuum-melted in a high-frequency melting furnace and placed in a pig iron mold to obtain a piece having a thickness of 150 mm x width 170 mm x length 500 mm . For rare earth elements, elemental elements or misch metals were added. The average cooling rate up to 900 ° C after the start of solidification is 2.0 ± 0.3 ° C./s. After that, rods with a diameter of 20 mm were produced by hot forging and hot rolling. Some were treated with a solution, then surface ground, cold-rolled to a diameter of 10 mm, and heat-treated under specified conditions. Some were further drawn at room temperature to a diameter of 5 mm and heat-treated under specified conditions. Table 9 shows the results of investigations on tensile tests, electrical conductivity, elongation, and heat resistance.
[表 9] [Table 9]
i *f ¾^¾〔〕QL0111^" i * f ¾ ^ ¾ [] QL0111 ^ "
表 9
Figure imgf000033_0002
Table 9
Figure imgf000033_0002
「時間」の rminjは分 (minutes)を、 」は時間 (hours)を意味する。  Rminj for “hour” means minutes and “hour” means hours.
①の「◎』は (3)式を満だすことを意味する。 “◎” in ① means satisfying equation (3).
Figure imgf000033_0001
Figure imgf000033_0001
ランスに優れており、し力も耐熱性にも優れて 、た。 Excellent lance, excellent strength and heat resistance.
産業上の利用可能性  Industrial applicability
[0112] 本発明によれば、引張強度、成形性および導電率のバランスが卓越しており、しか も、高温強度に優れ、更に、安全工具用材料に要求される性能、即ち、熱伝導度、 耐摩耗性および耐火花発生性にも優れる銅合金、およびその製造方法を提供する ことができる。  [0112] According to the present invention, the balance of tensile strength, formability and electrical conductivity is excellent. However, it is excellent in high-temperature strength, and further, performance required for safety tool materials, that is, thermal conductivity. It is possible to provide a copper alloy excellent in wear resistance and spark resistance, and a method for producing the same.
図面の簡単な説明  Brief Description of Drawings
[0113] [図 1]導電率と熱伝導度との関係を示す図である。 [0113] FIG. 1 is a diagram showing the relationship between electrical conductivity and thermal conductivity.
[図 2]ダービル法による铸造方法を示す模式図である。  FIG. 2 is a schematic diagram showing a forging method by the Darville method.

Claims

請求の範囲 The scope of the claims
[1] Zn、 Sn、 Ag、 Mn、 Fe、 Co、 Al、 Ni、 Si、 Mo、 V、 Nb、 Ta、 W、 Ge、 Teおよび Seの中力ら 選ばれた 1種または 2種以上の合計で 0.1〜20質量%含み、残部が銅および不純物 からなり、銅基母相の結晶粒のアスペクト比が 5以下であるとともに、合金中に存在す る析出物および介在物のうち粒径が 1 μ m以上のものの粒径と、析出物および介在 物の合計個数とが下記 (1)式を満足することを特徴とする銅合金。  [1] Zn, Sn, Ag, Mn, Fe, Co, Al, Ni, Si, Mo, V, Nb, Ta, W, Ge, Te and Se The total amount is 0.1 to 20% by mass, the balance is copper and impurities, the aspect ratio of the copper-based matrix phase is 5 or less, and the grain size of the precipitates and inclusions present in the alloy is A copper alloy characterized in that the particle size of those having a size of 1 μm or more and the total number of precipitates and inclusions satisfy the following formula (1).
logN≤ 0.4742 + 17.629 X exp (-0.1133 XX) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[2] 質量0 /0で、 Ti: 0.01〜5%、 Zr: 0.01〜5%および Hf: 0.01〜5%の中力ら選ばれたい ずれ力 1種を含有し、更に、 Zn、 Sn、 Ag、 Mn、 Fe、 Co、 Al、 Niゝ Siゝ Mo、 V、 Nb、 Ta、 W 、 Ge、 Teおよび Seの中力 選ばれた 1種または 2種以上の合計で 0.01〜20%含み、 残部が銅および不純物力 なり、銅基母相の結晶粒のアスペクト比が 5以下であると ともに、合金中に存在する析出物および介在物のうち粒径が 1 μ m以上のものの粒 径と、析出物および介在物の合計個数とが下記 (1)式を満足することを特徴とする銅 合金。 [2] Mass 0/0, Ti: 0.01~5% , Zr: 0.01~5% and Hf: containing displacement force one to be chosen 0.01% to 5% of Churyoku et al, further, Zn, Sn, Ag, Mn, Fe, Co, Al, Ni ゝ Si ゝ Mo, V, Nb, Ta, W, Ge, Te and Se The balance is copper and impurity power, and the aspect ratio of the crystal grains of the copper base matrix is 5 or less, and among the precipitates and inclusions present in the alloy, the grain size is 1 μm or more. And a total number of precipitates and inclusions satisfying the following formula (1).
logN≤ 0.4742 + 17.629 X exp (-0.1133 XX) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[3] 質量0 /0で、 Cr: 0.01〜5%を含有し、更に、 Znゝ Snゝ Agゝ Mnゝ Feゝ Co、 Al、 Niゝ Siゝ Mo 、 V、 Nb、 Ta、 W、 Ge、 Teおよび Seの中力も選ばれた 1種または 2種以上の合計で 0.0 1〜20%含み、残部が銅および不純物からなり、銅基母相の結晶粒のアスペクト比が 5以下であるとともに、合金中に存在する析出物および介在物のうち粒径が 1 μ m以 上のものの粒径と、析出物および介在物の合計個数とが下記 (1)式を満足することを 特徴とする銅合金。 [3] Mass 0/0, Cr: contains 0.01 to 5%, more, ZnゝSnゝAgゝMnゝFeゝCo, Al, NiゝSiゝMo, V, Nb, Ta, W, Ge , Te and Se are also selected and contain 0.01-20% in total of one or more selected ones, the balance consists of copper and impurities, and the aspect ratio of the crystal grains of the copper base matrix is 5 or less The particle size of the precipitates and inclusions present in the alloy having a particle size of 1 μm or more and the total number of precipitates and inclusions satisfy the following formula (1): Copper alloy.
logN≤ 0.4742 + 17.629 X exp (-0.1133 XX) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[4] 請求項 1から請求項 3までのいずれかに記載の銅合金において、銅の一部に代え て、更に Mg、 Li、 Caおよび希土類元素の中力も選ばれた 1種または 2種以上の合計 で 0.001〜2質量%含むことを特徴とする銅合金。 [4] In the copper alloy according to any one of claims 1 to 3, instead of a part of copper, one or more of Mg, Li, Ca and rare earth elements are also selected. A copper alloy containing 0.001 to 2 mass% in total.
[5] 請求項 1から請求項 4までのいずれかに記載の銅合金において、銅の一部に代え て、更に P、 B、 Biゝ Tl、 Rb、 Cs、 Sr、 Ba、 Tc、 Re、 Os、 Rh、 In、 Pd、 Po、 Sb、 Au、 Ga、 S、 Cd、 Asおよび Pbの中力 選ばれた 1種または 2種以上の合計で 0.0001〜3質量%含 むことを特徴とする銅合金。  [5] In the copper alloy according to any one of claims 1 to 4, in place of a part of copper, P, B, Bi ゝ Tl, Rb, Cs, Sr, Ba, Tc, Re, Medium strength of Os, Rh, In, Pd, Po, Sb, Au, Ga, S, Cd, As and Pb It is characterized by containing 0.0001-3 mass% in total of one or more selected Copper alloy.
[6] 結晶粒径が 0.01〜35 μ mであることを特徴とする請求項 1から 5までのいずれかに 記載の銅合金。  [6] The copper alloy according to any one of [1] to [5], wherein the crystal grain size is 0.01 to 35 μm.
[7] 請求項 1から 5までのいずれかに記載の化学組成を有する銅合金を溶製し、铸造し て得た铸片を、少なくとも铸造直後の铸片温度から 900°Cまでの温度域にお!、て 1°C Zs以上の冷却速度で冷却した後、溶体化処理および Zまたは熱間圧延を行うことを 特徴とする、銅基母相の結晶粒のアスペクト比が 5以下であり、合金中に存在する析 出物および介在物のうち粒径が 1 μ m以上のものの粒径と、析出物および介在物の 合計個数とが下記 (1)式を満足する銅合金の製造方法。  [7] A copper alloy having the chemical composition according to any one of claims 1 to 5 is melted and formed, and at least a temperature range from the temperature of the piece immediately after forging to 900 ° C is obtained. The aspect ratio of the crystal grains of the copper base matrix is 5 or less, characterized by performing solution treatment and Z or hot rolling after cooling at a cooling rate of 1 ° C Zs or higher. The method for producing a copper alloy in which the grain size of the precipitates and inclusions present in the alloy with a grain size of 1 μm or more and the total number of precipitates and inclusions satisfy the following formula (1) .
logN≤ 0.4742 + 17.629 X exp (-0.1133 XX) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
[8] 請求項 1から 5までのいずれかに記載の化学組成を有する銅合金を溶製し、铸造し て得た铸片を、少なくとも铸造直後の铸片温度から 900°Cまでの温度域にお!、て 1°C Zs以上の冷却速度で冷却した後、溶体化処理および Zまたは熱間圧延を行い、そ の後 600°C以下の温度域でカ卩ェすることを特徴とする、銅基母相の結晶粒のァスぺク ト比が 5以下であり、合金中に存在する析出物および介在物のうち粒径が 1 μ m以上 のものの粒径と、析出物および介在物の合計個数とが下記 (1)式を満足する銅合金 の製造方法。  [8] A piece obtained by melting and forging a copper alloy having the chemical composition according to any one of claims 1 to 5, at least in a temperature range from the piece temperature immediately after forging to 900 ° C. In addition, after cooling at a cooling rate of 1 ° C Zs or higher, solution treatment and Z or hot rolling are performed, and then caulking in a temperature range of 600 ° C or lower. In addition, the aspect ratio of the crystal grains of the copper-based matrix is 5 or less, and among the precipitates and inclusions present in the alloy, the grain size is 1 μm or more, and the precipitates and inclusions. A copper alloy manufacturing method in which the total number of objects satisfies the following formula (1).
logN≤ 0.4742 + 17.629 X exp (-0.1133 XX) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 請求項 1から 5までの ヽずれかに記載の化学組成を有する銅合金を溶製し、铸造し て得た铸片を、少なくとも铸造直後の铸片温度から 900°Cまでの温度域にお!、て 1°C Zs以上の冷却速度で冷却した後、溶体化処理および Zまたは熱間圧延を行い、そ の後 600°C以下の温度域でカ卩ェし、更に 150〜750°Cの温度域で保持する熱処理に 供することを特徴とする、銅基母相の結晶粒のアスペクト比が 5以下であり、合金中に 存在する析出物および介在物のうち粒径が 1 μ m以上のものの粒径と、析出物およ び介在物の合計個数とが下記 (1)式を満足する銅合金の製造方法。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions. A copper alloy having a chemical composition according to any one of claims 1 to 5 is melted and formed, and at least a piece obtained in the temperature range from the piece temperature immediately after the production to 900 ° C is obtained. ! After cooling at a cooling rate of 1 ° C Zs or higher, solution treatment and Z or hot rolling are performed, and then it is checked in a temperature range of 600 ° C or lower, and further 150 to 750 ° C. The aspect ratio of the crystal grains of the copper base matrix is 5 or less, and the grain size of precipitates and inclusions present in the alloy is 1 μm or more. A method for producing a copper alloy in which the particle size of the material and the total number of precipitates and inclusions satisfy the following formula (1).
logN≤ 0.4742 + 17.629 X exp (-0.1133 XX) · · · (1)  logN≤ 0.4742 + 17.629 X exp (-0.1133 XX)
但し、 Nは単位面積当たりの析出物および介在物の合計個数 (個 Zmm2)、 Xは析 出物および介在物の粒径 ( μ m)を意味する。 However, N means the total number of precipitates and inclusions per unit area (pieces Zmm 2 ), and X means the grain size (μm) of the precipitates and inclusions.
溶体化処理および Zまたは熱間圧延、 600°C以下の温度域での加工、ならびに 150 〜750°Cの温度域で保持する熱処理を複数回行うことを特徴とする請求項 9に記載 の銅合金の製造方法。  The copper according to claim 9, wherein solution treatment and Z or hot rolling, processing in a temperature range of 600 ° C. or lower, and heat treatment held in a temperature range of 150 to 750 ° C. are performed a plurality of times. Alloy manufacturing method.
最後の熱処理の後に、 600°C以下の温度域での加工を行うことを特徴とする請求項 9または 10に記載の銅合金の製造方法。  11. The method for producing a copper alloy according to claim 9, wherein processing is performed in a temperature range of 600 ° C. or less after the last heat treatment.
PCT/JP2006/307658 2005-04-12 2006-04-11 Copper alloy and process for producing the same WO2006109801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-114089 2005-04-12
JP2005114089 2005-04-12

Publications (1)

Publication Number Publication Date
WO2006109801A1 true WO2006109801A1 (en) 2006-10-19

Family

ID=37087072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307658 WO2006109801A1 (en) 2005-04-12 2006-04-11 Copper alloy and process for producing the same

Country Status (2)

Country Link
TW (1) TW200643191A (en)
WO (1) WO2006109801A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983082A (en) * 2012-11-07 2013-03-20 江苏威纳德照明科技有限公司 Method of manufacturing integrated circuit
CN103498068A (en) * 2013-10-13 2014-01-08 王增琪 Preparation method of high-strength rare-earth-doped copper alloy
CN104928523A (en) * 2015-07-10 2015-09-23 苏州科茂电子材料科技有限公司 Copper alloy lead material for communication cable and preparing method thereof
CN105002413A (en) * 2015-08-05 2015-10-28 启东市佳宝金属制品有限公司 Super-heat-resisting alloy
CN105018821A (en) * 2015-08-05 2015-11-04 启东市佳宝金属制品有限公司 High-carbon alloy
CN105385887A (en) * 2015-12-28 2016-03-09 苏州众禹环境科技有限公司 Cavitation air floatation machine
CN105385885A (en) * 2015-12-25 2016-03-09 苏州露宇电子科技有限公司 Desktop-type micro-detecting nuclear magnetic resonance spectrometer
CN105400986A (en) * 2015-12-23 2016-03-16 常熟市三荣装饰材料有限公司 File cabinet
CN105506350A (en) * 2015-12-23 2016-04-20 常熟市三荣装饰材料有限公司 File cabinet
CN105506351A (en) * 2015-12-23 2016-04-20 常熟市三荣装饰材料有限公司 Display cabinet
CN105543539A (en) * 2015-12-23 2016-05-04 常熟市三荣装饰材料有限公司 Showing stand
CN105543537A (en) * 2015-12-23 2016-05-04 常熟市三荣装饰材料有限公司 Cupboard
CN105543541A (en) * 2015-12-28 2016-05-04 苏州众禹环境科技有限公司 Continuous efficient quicksand filter
CN105543538A (en) * 2015-12-23 2016-05-04 常熟市三荣装饰材料有限公司 Goods shelf
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
US10056166B2 (en) 2010-08-24 2018-08-21 Jx Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
CN112030033A (en) * 2020-09-14 2020-12-04 江西省科学院应用物理研究所 Rare earth copper alloy for high-strength high-conductivity contact line
CN113652573A (en) * 2021-07-27 2021-11-16 中国兵器科学研究院宁波分院 High-strength, high-conductivity and high-heat-resistance Cu-Ag-Hf alloy material and preparation method thereof
CN115305383A (en) * 2022-07-30 2022-11-08 江西省科学院应用物理研究所 High-strength and high-conductivity Cu-Co alloy material containing mixed rare earth and preparation method thereof
CN117512385A (en) * 2023-10-31 2024-02-06 江苏康耐特精密机械有限公司 High-precision structural member material with multi-energy-field composite surface post-treatment and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102227510B (en) * 2008-12-01 2015-06-17 Jx日矿日石金属株式会社 Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP4708485B2 (en) * 2009-03-31 2011-06-22 Jx日鉱日石金属株式会社 Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2017089003A (en) * 2015-11-03 2017-05-25 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component
CN110066940A (en) * 2019-05-30 2019-07-30 安徽协同创新设计研究院有限公司 Iron picture wire rod

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143230A (en) * 1986-12-08 1988-06-15 Nippon Mining Co Ltd Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH04231447A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Conductive material
JPH06184666A (en) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
US20020119071A1 (en) * 2000-12-15 2002-08-29 Takayuki Usami High-mechanical strength copper alloy
US20020127133A1 (en) * 2000-07-25 2002-09-12 Takayuki Usami Copper alloy material for parts of electronic and electric machinery and tools
JP2004307905A (en) * 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Cu ALLOY, AND ITS PRODUCTION METHOD
JP2005113259A (en) * 2003-02-05 2005-04-28 Sumitomo Metal Ind Ltd Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JP2005281850A (en) * 2003-09-19 2005-10-13 Sumitomo Metal Ind Ltd Copper alloy and method for producing thereof
JP2005290543A (en) * 2004-03-12 2005-10-20 Sumitomo Metal Ind Ltd Copper alloy and its production method
JP2005307334A (en) * 2004-03-26 2005-11-04 Sumitomo Metal Ind Ltd Copper alloy and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143230A (en) * 1986-12-08 1988-06-15 Nippon Mining Co Ltd Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPH04231447A (en) * 1990-12-27 1992-08-20 Nikko Kyodo Co Ltd Conductive material
JPH06184666A (en) * 1992-12-23 1994-07-05 Nikko Kinzoku Kk High strength and high electric conductivity copper alloy
US20020127133A1 (en) * 2000-07-25 2002-09-12 Takayuki Usami Copper alloy material for parts of electronic and electric machinery and tools
US20020119071A1 (en) * 2000-12-15 2002-08-29 Takayuki Usami High-mechanical strength copper alloy
JP2005113259A (en) * 2003-02-05 2005-04-28 Sumitomo Metal Ind Ltd Cu ALLOY AND MANUFACTURING METHOD THEREFOR
JP2004307905A (en) * 2003-04-03 2004-11-04 Sumitomo Metal Ind Ltd Cu ALLOY, AND ITS PRODUCTION METHOD
JP2005281850A (en) * 2003-09-19 2005-10-13 Sumitomo Metal Ind Ltd Copper alloy and method for producing thereof
JP2005290543A (en) * 2004-03-12 2005-10-20 Sumitomo Metal Ind Ltd Copper alloy and its production method
JP2005307334A (en) * 2004-03-26 2005-11-04 Sumitomo Metal Ind Ltd Copper alloy and manufacturing method therefor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9499885B2 (en) 2010-04-14 2016-11-22 Jx Nippon Mining & Metals Corporation Cu—Si—Co alloy for electronic materials, and method for producing same
US10056166B2 (en) 2010-08-24 2018-08-21 Jx Nippon Mining & Metals Corporation Copper-cobalt-silicon alloy for electrode material
CN102983082A (en) * 2012-11-07 2013-03-20 江苏威纳德照明科技有限公司 Method of manufacturing integrated circuit
CN102983082B (en) * 2012-11-07 2015-01-07 江苏威纳德照明科技有限公司 Method of manufacturing integrated circuit
CN103498068A (en) * 2013-10-13 2014-01-08 王增琪 Preparation method of high-strength rare-earth-doped copper alloy
CN103498068B (en) * 2013-10-13 2015-11-18 罗春华 A kind of preparation method of high strength rare earth Yb, Nd copper doped alloy
CN104928523A (en) * 2015-07-10 2015-09-23 苏州科茂电子材料科技有限公司 Copper alloy lead material for communication cable and preparing method thereof
CN105002413A (en) * 2015-08-05 2015-10-28 启东市佳宝金属制品有限公司 Super-heat-resisting alloy
CN105018821A (en) * 2015-08-05 2015-11-04 启东市佳宝金属制品有限公司 High-carbon alloy
CN105506350A (en) * 2015-12-23 2016-04-20 常熟市三荣装饰材料有限公司 File cabinet
CN105543538A (en) * 2015-12-23 2016-05-04 常熟市三荣装饰材料有限公司 Goods shelf
CN105506351A (en) * 2015-12-23 2016-04-20 常熟市三荣装饰材料有限公司 Display cabinet
CN105543539A (en) * 2015-12-23 2016-05-04 常熟市三荣装饰材料有限公司 Showing stand
CN105543537A (en) * 2015-12-23 2016-05-04 常熟市三荣装饰材料有限公司 Cupboard
CN105400986A (en) * 2015-12-23 2016-03-16 常熟市三荣装饰材料有限公司 File cabinet
CN105385885A (en) * 2015-12-25 2016-03-09 苏州露宇电子科技有限公司 Desktop-type micro-detecting nuclear magnetic resonance spectrometer
CN105543541A (en) * 2015-12-28 2016-05-04 苏州众禹环境科技有限公司 Continuous efficient quicksand filter
CN105385887A (en) * 2015-12-28 2016-03-09 苏州众禹环境科技有限公司 Cavitation air floatation machine
CN112030033A (en) * 2020-09-14 2020-12-04 江西省科学院应用物理研究所 Rare earth copper alloy for high-strength high-conductivity contact line
CN113652573A (en) * 2021-07-27 2021-11-16 中国兵器科学研究院宁波分院 High-strength, high-conductivity and high-heat-resistance Cu-Ag-Hf alloy material and preparation method thereof
CN113652573B (en) * 2021-07-27 2022-05-10 中国兵器科学研究院宁波分院 High-strength, high-conductivity and high-heat-resistance Cu-Ag-Hf alloy material and preparation method thereof
CN115305383A (en) * 2022-07-30 2022-11-08 江西省科学院应用物理研究所 High-strength and high-conductivity Cu-Co alloy material containing mixed rare earth and preparation method thereof
CN117512385A (en) * 2023-10-31 2024-02-06 江苏康耐特精密机械有限公司 High-precision structural member material with multi-energy-field composite surface post-treatment and preparation method thereof

Also Published As

Publication number Publication date
TW200643191A (en) 2006-12-16

Similar Documents

Publication Publication Date Title
WO2006109801A1 (en) Copper alloy and process for producing the same
JP3731600B2 (en) Copper alloy and manufacturing method thereof
JP4134279B1 (en) Cu alloy material
WO2006104152A1 (en) Copper alloy and process for producing the same
US10294547B2 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
KR20060120276A (en) Copper alloy and method for production thereof
EP2570505B1 (en) Copper alloy and copper alloy rolled material for electronic device and method for producing this alloy
JP2005113259A (en) Cu ALLOY AND MANUFACTURING METHOD THEREFOR
WO2006093140A1 (en) Copper alloy
JP5873618B2 (en) Method for producing copper alloy
JP5880670B2 (en) Method for determining melting temperature of copper alloy slabs
TWI548761B (en) Copper alloy for electronic/electric device, plastically-worked copper alloy material for electronic/electric device, part for electronic/electric device, and terminal
JP2016056414A (en) Copper rolled sheet and component for electronic and electrical device
US11319615B2 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
KR20180043196A (en) Copper alloy for electronic/electrical device, member for plastically deforming copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar
JP2005290543A (en) Copper alloy and its production method
JP2019178399A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
CN111212923B (en) Casting die material and copper alloy material
JP2005307334A (en) Copper alloy and manufacturing method therefor
JP2004269962A (en) High strength copper alloy
JP2001181758A (en) Cu-Ni-Zn ALLOY IMPROVED IN ANNEALING CRACK PROPERTY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP