TW200711046A - Transistors and methods of manufacture thereof - Google Patents

Transistors and methods of manufacture thereof

Info

Publication number
TW200711046A
TW200711046A TW095130731A TW95130731A TW200711046A TW 200711046 A TW200711046 A TW 200711046A TW 095130731 A TW095130731 A TW 095130731A TW 95130731 A TW95130731 A TW 95130731A TW 200711046 A TW200711046 A TW 200711046A
Authority
TW
Taiwan
Prior art keywords
gate electrode
thickness
transistors
manufacture
methods
Prior art date
Application number
TW095130731A
Other languages
English (en)
Inventor
Hongfa Luan
Thomas Schulz
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of TW200711046A publication Critical patent/TW200711046A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
TW095130731A 2005-09-02 2006-08-21 Transistors and methods of manufacture thereof TW200711046A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/219,368 US20070052036A1 (en) 2005-09-02 2005-09-02 Transistors and methods of manufacture thereof

Publications (1)

Publication Number Publication Date
TW200711046A true TW200711046A (en) 2007-03-16

Family

ID=37478691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095130731A TW200711046A (en) 2005-09-02 2006-08-21 Transistors and methods of manufacture thereof

Country Status (4)

Country Link
US (1) US20070052036A1 (zh)
EP (1) EP1760777A3 (zh)
JP (1) JP2007110091A (zh)
TW (1) TW200711046A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652854A (zh) * 2008-01-25 2010-02-17 松下电器产业株式会社 半导体装置及其制造方法
US8159034B2 (en) 2007-07-23 2012-04-17 Kabushiki Kaisha Toshiba Semiconductor device having insulated gate field effect transistors and method of manufacturing the same
TWI470734B (zh) * 2007-10-31 2015-01-21 Freescale Semiconductor Inc 不同電介質厚度之半導體裝置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088122A (ja) * 2005-09-21 2007-04-05 Renesas Technology Corp 半導体装置
EP2153432B1 (fr) * 2007-06-13 2012-09-12 Thomson Licensing Procede et dispositif d'affichage d'images comprenant deux étages de modulation
US8138076B2 (en) * 2008-05-12 2012-03-20 Taiwan Semiconductor Manufacturing Co., Ltd. MOSFETs having stacked metal gate electrodes and method
JP5291992B2 (ja) * 2008-06-10 2013-09-18 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP5288907B2 (ja) 2008-06-27 2013-09-11 株式会社東芝 半導体装置とその製造方法
US7951678B2 (en) * 2008-08-12 2011-05-31 International Business Machines Corporation Metal-gate high-k reference structure
JP2010073985A (ja) * 2008-09-19 2010-04-02 Toshiba Corp 半導体装置
US20100102393A1 (en) * 2008-10-29 2010-04-29 Chartered Semiconductor Manufacturing, Ltd. Metal gate transistors
JP4647682B2 (ja) * 2008-11-12 2011-03-09 パナソニック株式会社 半導体装置及びその製造方法
US8252649B2 (en) 2008-12-22 2012-08-28 Infineon Technologies Ag Methods of fabricating semiconductor devices and structures thereof
JP2010177240A (ja) * 2009-01-27 2010-08-12 Toshiba Corp 半導体装置及びその製造方法
JP5135250B2 (ja) * 2009-02-12 2013-02-06 株式会社東芝 半導体装置の製造方法
JP2011003717A (ja) * 2009-06-18 2011-01-06 Panasonic Corp 半導体装置及びその製造方法
JP5285519B2 (ja) 2009-07-01 2013-09-11 パナソニック株式会社 半導体装置及びその製造方法
JP6100589B2 (ja) * 2012-04-13 2017-03-22 ルネサスエレクトロニクス株式会社 自己整合型ソース・ドレインコンタクトを有する半導体装置およびその製造方法
US11094598B2 (en) * 2019-07-11 2021-08-17 Globalfoundries U.S. Inc. Multiple threshold voltage devices
US11996298B2 (en) 2022-05-03 2024-05-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reversed tone patterning method for dipole incorporation for multiple threshold voltages

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432035A (en) * 1982-06-11 1984-02-14 International Business Machines Corp. Method of making high dielectric constant insulators and capacitors using same
US5066995A (en) * 1987-03-13 1991-11-19 Harris Corporation Double level conductor structure
US4990974A (en) * 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
IT1235693B (it) * 1989-05-02 1992-09-21 Sgs Thomson Microelectronics Transistore ad effetto di campo superficiale con regione di source e/o di drain scavate per dispositivi ulsi.
US5223451A (en) * 1989-10-06 1993-06-29 Kabushiki Kaisha Toshiba Semiconductor device wherein n-channel MOSFET, p-channel MOSFET and nonvolatile memory cell are formed in one chip and method of making it
JP2921889B2 (ja) * 1989-11-27 1999-07-19 株式会社東芝 半導体装置の製造方法
US5352631A (en) * 1992-12-16 1994-10-04 Motorola, Inc. Method for forming a transistor having silicided regions
US6048769A (en) * 1997-02-28 2000-04-11 Intel Corporation CMOS integrated circuit having PMOS and NMOS devices with different gate dielectric layers
US5763922A (en) * 1997-02-28 1998-06-09 Intel Corporation CMOS integrated circuit having PMOS and NMOS devices with different gate dielectric layers
JP3077630B2 (ja) * 1997-06-05 2000-08-14 日本電気株式会社 半導体装置およびその製造方法
US6777759B1 (en) * 1997-06-30 2004-08-17 Intel Corporation Device structure and method for reducing silicide encroachment
US6020243A (en) * 1997-07-24 2000-02-01 Texas Instruments Incorporated Zirconium and/or hafnium silicon-oxynitride gate dielectric
US5994747A (en) * 1998-02-13 1999-11-30 Texas Instruments-Acer Incorporated MOSFETs with recessed self-aligned silicide gradual S/D junction
US6348390B1 (en) * 1998-02-19 2002-02-19 Acer Semiconductor Manufacturing Corp. Method for fabricating MOSFETS with a recessed self-aligned silicide contact and extended source/drain junctions
US6166417A (en) * 1998-06-30 2000-12-26 Intel Corporation Complementary metal gates and a process for implementation
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6124171A (en) * 1998-09-24 2000-09-26 Intel Corporation Method of forming gate oxide having dual thickness by oxidation process
US6084280A (en) * 1998-10-15 2000-07-04 Advanced Micro Devices, Inc. Transistor having a metal silicide self-aligned to the gate
US6410967B1 (en) * 1998-10-15 2002-06-25 Advanced Micro Devices, Inc. Transistor having enhanced metal silicide and a self-aligned gate electrode
US6911707B2 (en) * 1998-12-09 2005-06-28 Advanced Micro Devices, Inc. Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
JP3287403B2 (ja) * 1999-02-19 2002-06-04 日本電気株式会社 Mis型電界効果トランジスタ及びその製造方法
US6171910B1 (en) * 1999-07-21 2001-01-09 Motorola Inc. Method for forming a semiconductor device
US6159782A (en) * 1999-08-05 2000-12-12 Advanced Micro Devices, Inc. Fabrication of field effect transistors having dual gates with gate dielectrics of high dielectric constant
JP2001060630A (ja) * 1999-08-23 2001-03-06 Nec Corp 半導体装置の製造方法
US6753556B2 (en) * 1999-10-06 2004-06-22 International Business Machines Corporation Silicate gate dielectric
US6861304B2 (en) * 1999-11-01 2005-03-01 Hitachi, Ltd. Semiconductor integrated circuit device and method of manufacturing thereof
US6373111B1 (en) * 1999-11-30 2002-04-16 Intel Corporation Work function tuning for MOSFET gate electrodes
US6444555B2 (en) * 1999-12-07 2002-09-03 Advanced Micro Devices, Inc. Method for establishing ultra-thin gate insulator using anneal in ammonia
US6448127B1 (en) * 2000-01-14 2002-09-10 Advanced Micro Devices, Inc. Process for formation of ultra-thin base oxide in high k/oxide stack gate dielectrics of mosfets
US6225163B1 (en) * 2000-02-18 2001-05-01 National Semiconductor Corporation Process for forming high quality gate silicon dioxide layers of multiple thicknesses
US6297103B1 (en) * 2000-02-28 2001-10-02 Micron Technology, Inc. Structure and method for dual gate oxide thicknesses
US6184072B1 (en) * 2000-05-17 2001-02-06 Motorola, Inc. Process for forming a high-K gate dielectric
US6831339B2 (en) * 2001-01-08 2004-12-14 International Business Machines Corporation Aluminum nitride and aluminum oxide/aluminum nitride heterostructure gate dielectric stack based field effect transistors and method for forming same
US6436759B1 (en) * 2001-01-19 2002-08-20 Microelectronics Corp. Method for fabricating a MOS transistor of an embedded memory
US6858865B2 (en) * 2001-02-23 2005-02-22 Micron Technology, Inc. Doped aluminum oxide dielectrics
JP4895430B2 (ja) * 2001-03-22 2012-03-14 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
KR100399356B1 (ko) * 2001-04-11 2003-09-26 삼성전자주식회사 듀얼 게이트를 가지는 씨모스형 반도체 장치 형성 방법
US6740944B1 (en) * 2001-07-05 2004-05-25 Altera Corporation Dual-oxide transistors for the improvement of reliability and off-state leakage
US6794252B2 (en) * 2001-09-28 2004-09-21 Texas Instruments Incorporated Method and system for forming dual work function gate electrodes in a semiconductor device
US6475908B1 (en) * 2001-10-18 2002-11-05 Chartered Semiconductor Manufacturing Ltd. Dual metal gate process: metals and their silicides
EP1315200B1 (en) * 2001-11-26 2008-07-09 Interuniversitair Microelektronica Centrum Vzw Methods for CMOS semiconductor devices with selectable gate thicknesses
US6696332B2 (en) * 2001-12-26 2004-02-24 Texas Instruments Incorporated Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing
US6563183B1 (en) * 2001-12-31 2003-05-13 Advanced Micro Devices, Inc. Gate array with multiple dielectric properties and method for forming same
US6528858B1 (en) * 2002-01-11 2003-03-04 Advanced Micro Devices, Inc. MOSFETs with differing gate dielectrics and method of formation
US20030141560A1 (en) * 2002-01-25 2003-07-31 Shi-Chung Sun Incorporating TCS-SiN barrier layer in dual gate CMOS devices
KR100487525B1 (ko) * 2002-04-25 2005-05-03 삼성전자주식회사 실리콘게르마늄 게이트를 이용한 반도체 소자 및 그 제조방법
US6718685B2 (en) * 2002-05-08 2004-04-13 Cpd Associates, Inc. Insect trap apparatus
US6656764B1 (en) * 2002-05-15 2003-12-02 Taiwan Semiconductor Manufacturing Company Process for integration of a high dielectric constant gate insulator layer in a CMOS device
JP2003347420A (ja) * 2002-05-23 2003-12-05 Nec Electronics Corp 半導体装置及びその製造方法
US6723658B2 (en) * 2002-07-15 2004-04-20 Texas Instruments Incorporated Gate structure and method
US6919251B2 (en) * 2002-07-31 2005-07-19 Texas Instruments Incorporated Gate dielectric and method
US6852645B2 (en) * 2003-02-13 2005-02-08 Texas Instruments Incorporated High temperature interface layer growth for high-k gate dielectric
US6873048B2 (en) * 2003-02-27 2005-03-29 Sharp Laboratories Of America, Inc. System and method for integrating multiple metal gates for CMOS applications
US7019351B2 (en) * 2003-03-12 2006-03-28 Micron Technology, Inc. Transistor devices, and methods of forming transistor devices and circuit devices
US6737313B1 (en) * 2003-04-16 2004-05-18 Micron Technology, Inc. Surface treatment of an oxide layer to enhance adhesion of a ruthenium metal layer
US6890807B2 (en) * 2003-05-06 2005-05-10 Intel Corporation Method for making a semiconductor device having a metal gate electrode
US7179754B2 (en) * 2003-05-28 2007-02-20 Applied Materials, Inc. Method and apparatus for plasma nitridation of gate dielectrics using amplitude modulated radio-frequency energy
US20040262683A1 (en) * 2003-06-27 2004-12-30 Bohr Mark T. PMOS transistor strain optimization with raised junction regions
US7045847B2 (en) * 2003-08-11 2006-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with high-k gate dielectric
JP3793190B2 (ja) * 2003-09-19 2006-07-05 株式会社東芝 半導体装置の製造方法
US7105886B2 (en) * 2003-11-12 2006-09-12 Freescale Semiconductor, Inc. High K dielectric film
KR100618815B1 (ko) * 2003-11-12 2006-08-31 삼성전자주식회사 이종의 게이트 절연막을 가지는 반도체 소자 및 그 제조방법
US6921691B1 (en) * 2004-03-18 2005-07-26 Infineon Technologies Ag Transistor with dopant-bearing metal in source and drain
US20050224897A1 (en) * 2004-03-26 2005-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. High-K gate dielectric stack with buffer layer to improve threshold voltage characteristics
US7001852B2 (en) * 2004-04-30 2006-02-21 Freescale Semiconductor, Inc. Method of making a high quality thin dielectric layer
US6897095B1 (en) * 2004-05-12 2005-05-24 Freescale Semiconductor, Inc. Semiconductor process and integrated circuit having dual metal oxide gate dielectric with single metal gate electrode
US8178902B2 (en) * 2004-06-17 2012-05-15 Infineon Technologies Ag CMOS transistor with dual high-k gate dielectric and method of manufacture thereof
US8399934B2 (en) * 2004-12-20 2013-03-19 Infineon Technologies Ag Transistor device
US7060568B2 (en) * 2004-06-30 2006-06-13 Intel Corporation Using different gate dielectrics with NMOS and PMOS transistors of a complementary metal oxide semiconductor integrated circuit
US7279756B2 (en) * 2004-07-21 2007-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with high-k gate dielectric and quasi-metal gate, and method of forming thereof
US7348284B2 (en) * 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
US7595538B2 (en) * 2004-08-17 2009-09-29 Nec Electronics Corporation Semiconductor device
US7361958B2 (en) * 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
KR100604908B1 (ko) * 2004-10-11 2006-07-28 삼성전자주식회사 이종의 게이트 절연막을 구비하는 씬-바디 채널 씨모스소자 및 그 제조방법
US7344934B2 (en) * 2004-12-06 2008-03-18 Infineon Technologies Ag CMOS transistor and method of manufacture thereof
US7091568B2 (en) * 2004-12-22 2006-08-15 Freescale Semiconductor, Inc. Electronic device including dielectric layer, and a process for forming the electronic device
US7205186B2 (en) * 2004-12-29 2007-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for suppressing oxide formation
US7160781B2 (en) * 2005-03-21 2007-01-09 Infineon Technologies Ag Transistor device and methods of manufacture thereof
US7282426B2 (en) * 2005-03-29 2007-10-16 Freescale Semiconductor, Inc. Method of forming a semiconductor device having asymmetric dielectric regions and structure thereof
US20060275975A1 (en) * 2005-06-01 2006-12-07 Matt Yeh Nitridated gate dielectric layer
US7183596B2 (en) * 2005-06-22 2007-02-27 Taiwan Semiconductor Manufacturing Company, Ltd. Composite gate structure in an integrated circuit
US7361561B2 (en) * 2005-06-24 2008-04-22 Freescale Semiconductor, Inc. Method of making a metal gate semiconductor device
US7375394B2 (en) * 2005-07-06 2008-05-20 Applied Intellectual Properties Co., Ltd. Fringing field induced localized charge trapping memory
US7432201B2 (en) * 2005-07-19 2008-10-07 Applied Materials, Inc. Hybrid PVD-CVD system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8159034B2 (en) 2007-07-23 2012-04-17 Kabushiki Kaisha Toshiba Semiconductor device having insulated gate field effect transistors and method of manufacturing the same
TWI470734B (zh) * 2007-10-31 2015-01-21 Freescale Semiconductor Inc 不同電介質厚度之半導體裝置
US9362280B2 (en) 2007-10-31 2016-06-07 Freescale Semiconductor, Inc. Semiconductor devices with different dielectric thicknesses
CN101652854A (zh) * 2008-01-25 2010-02-17 松下电器产业株式会社 半导体装置及其制造方法

Also Published As

Publication number Publication date
EP1760777A3 (en) 2008-05-07
JP2007110091A (ja) 2007-04-26
US20070052036A1 (en) 2007-03-08
EP1760777A2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
TW200711046A (en) Transistors and methods of manufacture thereof
TW200742068A (en) Semiconductor devices and methods of manufacture thereof
TW200623430A (en) A metal gate electrode semiconductor device
SG148854A1 (en) Dual metal gate process:metals and their silicides
TW200705660A (en) Semiconductor device with CMOS transistor and fabricating method thereof
TW200610018A (en) Dual work-function metal gates
ATE465515T1 (de) Verfahren zur herstellung vollsilicidierter dual- gates und mit diesem verfahren erhältliche halbleiterbauelemente
TW200605303A (en) Using different gate dielectrics with NMOS and PMOS transistors of a complementary metal oxide semiconductor integrated circuit
TW200802718A (en) Vertical channel transistors and memory devices including vertical channel transistors
TW200707651A (en) CMOS transistors with dual high-k gate dielectric and methods of manufacture thereof
TW200727404A (en) Integrated circuit and method for its manufacture
TW200733387A (en) Dual metal gate self-aligned integration
TW200629477A (en) Single metal gate CMOS device
EP1687457A4 (en) METAL CARBIDE GATE STRUCTURE AND MANUFACTURING METHOD
TW200739907A (en) CMOS device having PMOS and NMOS transistors with different gate structures
TW200707735A (en) Using metal/metal nitride bilayers as gate electrodes in self-aligned aggressively scaled CMOS devices
GB2470523A (en) A cmos device comprising an nmos transistor with recessed drain and source areas and a pmos transistor having a silcon/gernanium material in the drain and sou
TW200709340A (en) Semiconductor apparatus
WO2006031425A3 (en) Cmos device having different nitrogen amounts in nmos and pmos gate dielectric layers
TW200723509A (en) Semiconductor method and device with mixed orientation substrate
TW200633217A (en) Semiconductor device and manufacturing method therefor
WO2006066265A3 (en) Drain extended pmos transistors and methods for making the same
AU2002368388A1 (en) Strained finfet cmos device structures
TW200618256A (en) Using different gate dielectrics with NMOS and PMOS transistors of a complementary metal oxide semiconductor integrated circuit
TW200703570A (en) Semionductor device having cell transistor with recess channel structure and method of manufacturing the same