TW200428021A - Radiation-sensitive resin composition, interlayer insulating film, micro-lens and method for forming the same - Google Patents

Radiation-sensitive resin composition, interlayer insulating film, micro-lens and method for forming the same Download PDF

Info

Publication number
TW200428021A
TW200428021A TW093104802A TW93104802A TW200428021A TW 200428021 A TW200428021 A TW 200428021A TW 093104802 A TW093104802 A TW 093104802A TW 93104802 A TW93104802 A TW 93104802A TW 200428021 A TW200428021 A TW 200428021A
Authority
TW
Taiwan
Prior art keywords
radiation
resin composition
weight
sensitive resin
film
Prior art date
Application number
TW093104802A
Other languages
Chinese (zh)
Other versions
TWI266889B (en
Inventor
Eiji Takamoto
Kimiyasu Sano
Michinori Nishikawa
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200428021A publication Critical patent/TW200428021A/en
Application granted granted Critical
Publication of TWI266889B publication Critical patent/TWI266889B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention discloses a radiation-sensitive resin composition including: (A) a high molecular weight compound having an acetal structure and/or a ketal structure, and an epoxy structure, and having more than 2000 weight average molecular weight in terms of polystyrene measured by gel permeation chromatography; and (B) a compound which generates an acid of less than 4.0 pKa by irradiation of radiation. In addition, the composition has high sensitivity and favorable storage stability and can easily form a patterned thin film having favorable development margin and excellent adhesiveness. Further, the composition can form an interlayer insulating film with high light penetrability and low capacitance and a micro-lens with high light penetrability and excellent melt shape.

Description

200428021 (1) 玖、發明說明 【發明所屬之技術領域】 本發明係有關感放射線性樹脂組成物、層間絕緣膜及 微透鏡,及此等之製造方法。 【先前技術】 一般薄膜晶體(以下稱爲「TFT」)型液晶顯示元件 及磁帶元件、集成電路元件、固體攝影元件等電子零件中 ’設有層狀配置之配線間絕緣用層間絕緣膜。形成層間絕 緣膜之材料較佳爲,既使所需形成圖型形狀用步驟數較少 也能具有充分平坦性之物,因此廣泛使用感放射線性樹脂 組成物(參考特開 200 1 -3 54822號公報及特開 200 1 -3 43 743號公報)。 上述電子零件中,例如TFT型液晶元件係於層間絕 緣膜上形成透明電極膜後,於上方形成液晶定向膜而得, 故層間絕緣膜於形成透明電極膜之步驟中會暴露於高溫條 件下,且會暴露於形成電極圖型用光阻劑之剝離液中,因 此需具充分耐性。 近年來TFT型液晶顯示元件趨向大畫面化、高亮度 化、高精細化、高速應答化及薄型化等,故要求形成層間 絕緣膜用組成物具高靈敏度及良好保存安定性,且所形成 之層間絕緣膜需具有低電容率及高透光等先前尙無之高性 能。 又,係以透鏡徑3至1 00 // m之微透鏡’或規則配列 -5- (2) (2)200428021 該微透鏡而得之微透鏡數組作爲傳真機、電子影印機、固 體攝影兀件等尖端傳輸濾色器之結像光學系或光纖接連器 之光學系材料用。 已知之形成微透鏡及微透鏡數組的方法如,形成相當 於透鏡之光阻圖型後,加熱處理而得熔體後直接使用於透 鏡之方法,或利用圖罩以乾鈾法將熔融狀光阻圖案複印之 底層而得透鏡形狀之方法等。又,形成該透鏡圖型時廣泛 使用感放射線性樹脂組成物(參考特開平6- 1 8702號公報 及特開平6- 1 3 623 9號公報)。 但形成上述微透鏡或微透鏡數組之元件後,爲了去除 形成配線部分之焊接線上的各種絕緣膜,需備有塗布平坦 化膜及抗蝕膜後,利用所需圖罩曝光再顯像以去除焊接線 部分之抗蝕劑,其後利用蝕刻法去除平坦化膜及各種絕緣 膜以露出焊接線部分之步驟。因此,對微透鏡及微透鏡數 組之塗布平坦化膜及抗蝕膜的塗膜步驟,與蝕刻步驟需具 耐溶劑性及耐熱性。 故要求形成微透鏡用之感放射線性樹脂組成物具高靈 敏度及良好保存安定性,又,所形成之微透鏡爲具有一定 彎曲率半徑之物,故要求具高耐熱性及高透光率等。 又,形成上述所得層間絕緣膜及微透鏡用之顯像步驟 中,既使顯像時間稍爲超過最適時間,仍會因顯像液浸透 於圖型與基板之間而易造成剝離,故需嚴格控制顯像時間 ,且對製品合格率會產生問題。 因此由感放射線性樹脂組成物形成層間絕緣膜及微透 -6 - (3) 200428021 鏡時,組成物需具有高靈敏度及保存安定性。又’對形成 過程之顯像步驟需具有既使顯像時間超過一定時間下’仍 無圖型剝離情形之良好密合性,且所形成之層間絕緣膜需 具有高耐熱性、高耐溶劑性、低電容率、高透光率等。另 外形成微透鏡時,微透鏡需具有良好熔體形狀(所需彎曲 率半徑)、高耐熱性、高耐溶劑性及高透光率’但目前尙 無符合上述要求之感放射線樹脂組成物。200428021 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a radiation-sensitive resin composition, an interlayer insulating film, and a microlens, and a manufacturing method thereof. [Prior art] General thin-film crystal (hereinafter referred to as "TFT") type liquid crystal display elements and electronic components such as magnetic tape elements, integrated circuit elements, and solid-state imaging elements are provided with an interlayer insulating film for wiring room insulation in a layered arrangement. The material for forming the interlayer insulating film is preferably one having sufficient flatness even if the number of steps required to form the pattern shape is small. Therefore, a radiation-sensitive resin composition is widely used (see JP 200 1 -3 54822). And Japanese Unexamined Patent Publication No. 200 1 -3 43 743). In the above electronic parts, for example, a TFT-type liquid crystal element is obtained by forming a transparent electrode film on an interlayer insulating film and then forming a liquid crystal alignment film thereon. Therefore, the interlayer insulating film is exposed to high temperature conditions in the step of forming a transparent electrode film. In addition, it will be exposed to a stripping solution for forming a photoresist for electrode patterns, so it must have sufficient resistance. In recent years, TFT-type liquid crystal display elements have tended to have large screens, high brightness, high definition, high-speed response, and thinness. Therefore, the composition for forming an interlayer insulating film is required to have high sensitivity and good storage stability. The interlayer insulating film needs to have previously high performance such as low permittivity and high light transmission. In addition, a microlens with a lens diameter of 3 to 1 00 // m or a regular arrangement of -5- (2) (2) 200428021 is used as a microlens array as a facsimile machine, an electronic photocopier, and a solid-state photography unit. For materials such as optical transmission system or optical fiber connector for the tip transmission color filter. Known methods for forming microlenses and microlens arrays are, for example, a method of forming a photoresist pattern equivalent to a lens, and heating to obtain a melt, and then directly using the lens, or using a pattern mask to dry the molten light by the dry uranium method. The method of obtaining the lens shape by resisting the bottom layer of pattern copying. Further, a radiation-sensitive resin composition is widely used in forming this lens pattern (refer to Japanese Patent Application Laid-Open No. 6-1 8702 and Japanese Patent Application Laid-Open No. 6-1 3 623 9). However, after forming the above-mentioned microlens or microlens array element, in order to remove various insulating films on the bonding wires forming the wiring portion, a flattening film and a resist film must be coated, and then exposed with a desired mask and then developed for removal. After the resist on the bonding wire portion is removed by etching, the planarization film and various insulating films are exposed to expose the bonding wire portion. Therefore, the coating step and the etching step of coating the microlenses and the microlens groups with a flat film and a resist film need to have solvent resistance and heat resistance. Therefore, the radiation-sensitive resin composition for forming a microlens is required to have high sensitivity and good storage stability, and the formed microlens is a substance with a certain curvature radius, so high heat resistance and high light transmittance are required. . In addition, in the developing step for forming the interlayer insulating film and microlens obtained as described above, even if the developing time slightly exceeds the optimum time, the developing solution is likely to be peeled because the developing solution penetrates between the pattern and the substrate. Strictly control the development time, and it will cause problems for the product qualification rate. Therefore, when forming an interlayer insulating film and a micro-transmissive from a radiation-sensitive resin composition, the composition needs to have high sensitivity and storage stability. Also, the development step of the formation process must have good adhesion without pattern peeling even if the development time exceeds a certain time, and the formed interlayer insulating film must have high heat resistance and high solvent resistance. , Low permittivity, high light transmittance, etc. In addition, when forming a microlens, the microlens needs to have a good melt shape (required curvature radius), high heat resistance, high solvent resistance, and high light transmittance ', but at present, there is no radiation-sensitive resin composition that meets the above requirements.

【發明內容】 發明所欲解決之課題[Summary] Problems to be solved by the invention

基於上述問題,本發明之目的爲提供一種具有高感放 射線靈敏度、良好保存安定性及顯像步驟中既使超過最佳 顯像時間仍能形成良好圖型形狀之顯像界限,且易形成密 合性優良之圖型狀薄膜的感放射線性樹脂組成物。本發明 另一目的爲,形成層間絕緣膜時可形成高透光率、低電容 率之層間絕緣膜,且形成微透鏡時可形成高透光率、良好 熔體形狀之微透鏡的感放射線性樹脂組成物。 本發明又一目的爲,提供使用上述感放射線性樹脂組 成物形成層間絕緣膜及微透鏡之方法,及利用該方法形成 之層間絕緣膜及微透鏡。 本發明其他目的及優點如下所說明。 解決課題之手段 本發明上述課題可由第一, (4) (4)200428021 含有(A)具有羧酸之縮醛酯構造及/或羧酸之縮酮酯構 造與環氧構造,且凝膠滲透色譜法所測得之聚苯乙燒換算 重量平均分子量爲2,000以上的高分子量物(以下稱爲「 高分子量物(A )」),及(B )照射放射線會產生pKa 4.0以下之酸的化合物之感放射線性樹脂組成物達成。 本發明上述課題可由第二,特徵爲含有下列步驟之形 成層間絕緣膜的方法而達成, (1 )於基板上形成上述感放射線性樹脂組成物之塗膜的 步驟; (2 )至少於部分塗膜上照射放射線之步驟; (3 )顯像步驟; (4 )加熱步驟。 本發明上述課題可由第三,特徵爲含有下列步驟之形 成微透鏡的方法而達成, (1 )於基板上形成上述感放射線性樹脂組成物之塗膜的 步驟; (2 )至少於部分塗膜上照射放射線之步驟; (3 )顯像步驟; (4 )加熱步驟。 又,本發明上述課題可由第四,上述感放射線性組成 物所形成之層間絕緣膜及微透鏡而達成。 下面將述本發明之感放射線性樹脂組成物。 闻分子量物(A) -8 - (5) 200428021 本發明所使用之高分子量物(A )爲, 醛酯構造及/或羧酸之縮酮構造與環氧構造 色譜法所測得之聚苯乙烯換算重量平均分子 上之高分子量物。 闻分子量物(A )可由具有鍵結其他碳 縮醛構造或縮酮構造之官能基,而得縮醛構 〇 與羧基鍵結而能形成羧酸之縮醛酯構造 氧基乙氧基、1-乙氧基乙氧基、卜n -丙氧基 丙氧基乙氧基、1-n-丁氧基乙氧基、Ι-i-丁 Ι-sec-丁氧基乙氧基、:l-t-丁氧基乙氧基、 乙氧基、1-環己基氧基乙氧基、1-降莰基氧 冰片基氧基乙氧基、I -苯基氧基乙氧基、 )乙氧基、卜苄基氧基乙氧基、1-苯乙基氧 環己基)(甲氧基)甲氧基、(環己基)( 基、(環己基)(η-丙氧基)甲氧基、(環 氧基)甲氧基、(環己基)(環己基氧基) 己基)(苯氧基)甲氧基、(環己基)(节 基、(苯基)(甲氧基)甲氧基、(苯基) 氧基、(苯基)(η -丙氧基)甲氧基、(本 基)甲氧基、(苯基)(環己基氧基)甲氧 (苯氧基)甲氧基、(苯基)(苄基氧基) 基)(乙氧基)甲氧基、(苄基)(η-丙氧 (苄基)(i-丙氧基)甲氧基、(苄基)( 具有羧酸之縮 ,且凝膠滲透 量爲2,000以 原子而能具有 造或縮酮構造 的基如,1 -甲 ;乙氧基、1 - i - 氧基乙氧基、 1 -環戊基氧基 基乙氧基、1-(1-萘基氧基 基乙氧基、( 乙氧基)甲氧 己基)(i-丙 甲氧基、(環 基氧基)甲氧 (乙氧基)甲 基)(i-丙氧 基、(苯基) 甲氧基、(苄 基)甲氧基、 環己基氧基) (6) (6)200428021 甲氧基、(苄基)(苯氧基)甲氧基、(苄基)(苄基氧 基)甲氧基、2 -四氫D夫喃基氧基、2_四氫D[t喃基氧基等。 其中較佳爲,1_乙氧基乙氧基、1-環己基氧基乙氧基 、2-四氫呋喃基氧基、l-n-丙氧基乙氧基、2-四氫吡喃基 氧基。 與羧基鍵結而能形成羧酸之縮酮酯構造的基如,1 -甲 基-1-甲氧基乙氧基、1-甲基-1-乙氧基乙氧基、1_甲基-卜 n-丙氧基乙氧基、1-甲基- Ι-i-丙氧基乙氧基、1·甲基-1-η· 丁氧基乙氧基、1-甲基-1-i -丁氧基乙氧基、1-甲基- l- sec_ 丁氧基乙氧基、1-甲基- Ι- t-丁氧基乙氧基、1-甲基-1-環戊 基氧基乙氧基、1-甲基-1-環己基氧基乙氧基、1-甲基-1-降莰基氧基乙氧基、1-甲基-1-冰片基氧基乙氧基、卜甲 基-卜苯基氧基乙氧基、1-甲基-1-(卜萘基氧基)乙氧基 、卜甲基-卜苄基氧基乙氧基、1-甲基-1-苯乙基氧基乙氧 基、卜環己基-1-甲氧基乙氧基、1-環己基-1-乙氧基乙氧 基、1-環己基-1-n-丙氧基乙氧基、1-環己基- Ι-i-丙氧基乙 氧基、1-環己基-1-苯氧基乙氧基、卜環己基-1-苄基氧基 乙氧基、1-苯基-1-甲氧基乙氧基、1-苯基-1-乙氧基乙氧 基、1-苯基-1-η-丙氧基乙氧基、1-苯基- Ι-i-丙氧基乙氧基 、1-苯基-1-環己基氧基乙氧基、1-苯基-1-苯基氧基乙氧 基、1-苯基-1-苄基氧基乙氧基、1-苄基-1-甲氧基乙氧基 、1-苄基-1-乙氧基乙氧基、1-苄基-1-n-丙氧基乙氧基、1-苄基-l-i-丙氧基乙氧基、1-苄基-1-環己基氧基乙氧基、1-苄基-1-苯基氧基乙氧基、1-苄基-1-苄基氧基乙氧基、2- -10- (7) (7)200428021 (2 -甲基四氫呋喃基)氧基、2- (2 -甲基-四氫吡喃基)氧 基、1-甲氧基-環戊基氧基、1-甲氧基-環己基氧基等。 其中較佳爲,1-甲基-1-甲氧基乙氧基、1-甲基-1-環 己基氧基乙氧基。 高分子量物(A )以凝膠滲透色譜法測得之聚苯乙烯 換算重量平均分子量(以下稱爲「Mw」)爲2,000以上 ’較佳爲2,000至1〇〇,〇〇〇,更佳爲4,000至50,000。此 時Mw低於2,000時顯像界限將不足,且會降低所得被膜 之殘膜率等或使圖型形狀、耐熱性等變差。又,Mw超過 1 00,000時,會降低靈敏度及使圖型形狀變差。含該高分 子量物(A )之感放射線性樹脂組成物於顯像時不會產生 顯像殘餘,且無膜邊而易形成所需圖型形狀。 高分子量物(A )符合上述條件下並無特別限制,例 如(al )具有羧酸之縮醛酯構造或羧酸之縮酮酯構造的不 飽和化合物(以下稱爲「單體(al )」)、(a2)具有環 氧基之不飽和化合物(以下稱爲「單體(a2 )」)與(a3 )(a 1 )及(a2 )以外之烯烴系不飽和化合物(以下稱爲 「單體(a3 )」)的共聚物(以下稱爲「共聚物(a )」 )0 單體(al)如,具有羧酸之縮醛酯構造或羧酸之縮酮 酯構造的降莰烯化合物、具有羧酸之縮醛酯構造或縮酮酯 構造的(甲基)丙烯酸酯化合物。具體之具有縮醛酯構造 或縮酮酯構造的降莰烯化合物如,2,3 -二-四氫吡喃-2 _基 氧基羰基-5-降莰烯、2,3-二-三甲基矽烷基氧基羰基-5-降 -11 - (8) (8)200428021 莰烯、2,3-二-三乙基矽烷基氧基羰基-5-降莰烯、2,3-二-卜丁基二甲基矽烷基氧基羰基-5-降莰烯、2,3-二-三甲基甲 鍺烷基氧基羰基-5_降莰烯、2,3_二_三乙基甲鍺烷基氧基 羰基-5-降莰烯、2,3-二-t-丁基二甲基甲鍺烷基氧基羰基-5-降莰烯、2,3-二-t-丁基氧基羰基-5-降莰烯、2,3-二·苄基 氧基羰基-5-降莰烯、2,3-二-四氫呋喃-2-基氧基羰基-5-降 莰烯、2,3-二-四氫吡喃-2-基氧基羰基-5-降莰烯、2,3-二-環丁基氧基羰基-5-降莰烯、2,3-二-環戊基氧基羰基-5-降 莰烯、2,3-二-環己基氧基羰基-5-降莰烯、2,3-二-環庚基 氧基羰基-5-降莰烯、2,3-二-1_甲氧基乙氧基羰基-5-降莰 烯、2,3-二-Ι-t-丁氧基乙氧基羰基-5-降莰烯、2,3-二-卜苄 基氧基乙氧基羰基-5-降莰烯、2,3-二-(環己基)(乙氧 基)甲氧基羰基-5-降莰烯、2,3-二-1-甲基-1-甲氧基乙氧 基羰基-5-降莰烯、2,3-二-1-甲基- Ι-i-丁氧基乙氧基羰基-5-降莰烯、2,3-二-(苄基)(乙氧基)甲氧基羰基-5-降莰 烯等; 具有縮醛酯構造或縮酮酯構造之(甲基)丙烯酸酯化 合物如,卜乙氧基乙基(甲基)丙烯酸酯、四氫_ 2 H-吡 喃-2-基(甲基)丙烯酸酯、1-(環己基氧基)乙基(甲 基)丙烯酸酯、1-(2-甲基丙氧基)乙基(甲基)丙烯酸 酯、1-(1,1-二甲基-乙氧基)乙基(甲基)丙烯酸酯、1-(環己基氧基)乙基(甲基)丙烯酸酯等。 其中較佳爲,具有羧酸之縮醛酯構造或縮酮酯構造的 (甲基)丙烯酸酯,特佳爲1-乙氧基乙基(甲基)丙烯 -12- 200428021Based on the above problems, the object of the present invention is to provide a development boundary with high radiation sensitivity, good storage stability, and a good pattern shape even after the optimal development time in the development step, and it is easy to form dense Radiation-sensitive resin composition of patterned film with excellent adhesion. Another object of the present invention is to form an interlayer insulating film with high light transmittance and low permittivity when forming an interlayer insulating film, and to form a microlens with high light transmittance and good melt shape when forming microlenses. Resin composition. Another object of the present invention is to provide a method for forming an interlayer insulating film and a microlens using the radiation-sensitive resin composition, and an interlayer insulating film and a microlens formed by the method. Other objects and advantages of the present invention are described below. Means for Solving the Problems The above-mentioned problems of the present invention can be solved by the first, (4) (4) 200428021 (A) acetal ester structure having carboxylic acid and / or ketal ester structure and epoxy structure of carboxylic acid, and gel permeation High molecular weight polystyrene-equivalent weight-average molecular weight of 2,000 or more measured by chromatography (hereinafter referred to as "high molecular weight (A)"), and (B) Compounds that produce acids with a pKa of 4.0 or less when irradiated with radiation The sense of radiation resin composition is achieved. The above-mentioned problem of the present invention can be achieved by a second method for forming an interlayer insulating film, which is characterized by containing the following steps: (1) a step of forming the coating film of the radiation-sensitive resin composition on a substrate; (2) at least partially coating A step of irradiating the film with radiation; (3) a developing step; (4) a heating step. The above-mentioned subject of the present invention can be achieved by a third method of forming a microlens, which is characterized by containing the following steps: (1) a step of forming a coating film of the radiation-sensitive resin composition on a substrate; (2) at least a part of the coating film A step of irradiating radiation; (3) a developing step; (4) a heating step. Further, the above-mentioned problem of the present invention can be achieved by the fourth, interlayer insulating film and microlens formed of the radiation-sensitive composition. The radiation-sensitive resin composition of the present invention will be described below. High molecular weight substances (A) -8-(5) 200428021 The high molecular weight substances (A) used in the present invention are polybenzenes measured by aldehyde ester structure and / or ketal structure of carboxylic acid and epoxy structure chromatography. Ethylene-equivalent weight average molecular weight high molecular weight substances. The molecular weight substance (A) can be obtained from functional groups having other acetal structures or ketal structures bonded to each other to obtain an acetal structure 〇 and a carboxyl group to form an acetal ester structure of a carboxylic acid oxyethoxy, 1 -Ethoxyethoxy, n-propoxypropoxyethoxy, 1-n-butoxyethoxy, 1-i-but 1-sec-butoxyethoxy, lt -Butoxyethoxy, ethoxy, 1-cyclohexyloxyethoxy, 1-norbornyloxybornyloxyethoxy, 1-phenyloxyethoxy,) ethoxy , Benzyloxyethoxy, 1-phenethyloxycyclohexyl) (methoxy) methoxy, (cyclohexyl) (yl, (cyclohexyl) (η-propoxy) methoxy, (cyclo (Oxyl) methoxy, (cyclohexyl) (cyclohexyloxy) hexyl) (phenoxy) methoxy, (cyclohexyl) (benzyl, (phenyl) (methoxy) methoxy, Phenyl) oxy, (phenyl) (η-propoxy) methoxy, (benzyl) methoxy, (phenyl) (cyclohexyloxy) methoxy (phenoxy) methoxy, (Phenyl) (benzyloxy) yl) (ethoxy) methoxy, (benzyl Group) (η-propoxy (benzyl) (i-propoxy) methoxy, (benzyl) (with condensation of carboxylic acid, and a gel permeation amount of 2,000 atoms can have a ketogenic or ketal structure Groups such as 1-methyl; ethoxy, 1-i-oxyethoxy, 1-cyclopentyloxyethoxy, 1- (1-naphthyloxyethoxy, (ethyl (Oxy) methoxyhexyl) (i-propylmethoxy, (cyclooxy) methoxy (ethoxy) methyl) (i-propoxy, (phenyl) methoxy, (benzyl) (Methoxy, cyclohexyloxy) (6) (6) 200428021 methoxy, (benzyl) (phenoxy) methoxy, (benzyl) (benzyloxy) methoxy, 2-tetra Hydrogen D-furanyloxy, 2-tetrahydro D [tranyloxy, etc. Among these, 1-ethoxyethoxy, 1-cyclohexyloxyethoxy, 2-tetrahydrofuryloxy Group, ln-propoxyethoxy group, 2-tetrahydropyranyloxy group. A group which is bonded to a carboxyl group to form a ketal ester of a carboxylic acid, such as 1-methyl-1-methoxyethyl. Oxy, 1-methyl-1-ethoxyethoxy, 1-methyl-bu n-propoxyethoxy, 1-methyl- 1-i-propoxyethoxy 1 · methyl-1-η · butoxyethoxy, 1-methyl-1-i-butoxyethoxy, 1-methyl-1- l-sec_ butoxyethoxy, 1-methyl -L-t-butoxyethoxy, 1-methyl-1-cyclopentyloxyethoxy, 1-methyl-1-cyclohexyloxyethoxy, 1-methyl-1 -Norbornyloxyethoxy, 1-methyl-1-bornyloxyethoxy, p-methyl-phenylphenylethoxy, 1-methyl-1- (naphthyloxy) ethoxy Methyl, p-methyl-benzyloxyethoxy, 1-methyl-1-phenethyloxyethoxy, p-cyclohexyl-1-methoxyethoxy, 1-cyclohexyl-1-ethoxy Ethoxy, 1-cyclohexyl-1-n-propoxyethoxy, 1-cyclohexyl- 1-i-propoxyethoxy, 1-cyclohexyl-1-phenoxyethoxy, Bucyclohexyl-1-benzyloxyethoxy, 1-phenyl-1-methoxyethoxy, 1-phenyl-1-ethoxyethoxy, 1-phenyl-1-η -Propoxyethoxy, 1-phenyl- 1-i-propoxyethoxy, 1-phenyl-1-cyclohexyloxyethoxy, 1-phenyl-1-phenyloxy Ethoxy, 1-phenyl-1-benzyloxyethoxy, 1-benzyl-1-methoxyethoxy, 1-benzyl-1-ethoxyethoxy, 1-benzyl -1-n-propoxyethoxy, 1-benzyl-li-propoxyethoxy, 1-benzyl-1-cyclohexyloxyethoxy, 1-benzyl-1-benzene Ethoxyethoxy, 1-benzyl-1-benzyloxyethoxy, 2--10- (7) (7) 200428021 (2-methyltetrahydrofuryl) oxy, 2- (2- Methyl-tetrahydropyranyl) oxy, 1-methoxy-cyclopentyloxy, 1-methoxy-cyclohexyloxy and the like. Among these, 1-methyl-1-methoxyethoxy and 1-methyl-1-cyclohexyloxyethoxy are preferred. The polystyrene-equivalent weight average molecular weight (hereinafter referred to as "Mw") of the high molecular weight substance (A) measured by gel permeation chromatography is 2,000 or more ', preferably 2,000 to 10,000, and more preferably 4,000 to 50,000. At this time, when the Mw is less than 2,000, the development limit will be insufficient, and the remaining film rate of the resulting film will be reduced, or the pattern shape, heat resistance, and the like will be deteriorated. When Mw exceeds 100,000, the sensitivity and the shape of the pattern are deteriorated. The radiation-sensitive resin composition containing the high-molecular weight substance (A) does not generate a development residue during development, and has no film edge and is easy to form a desired pattern shape. The high molecular weight substance (A) meets the above conditions and is not particularly limited. For example, (al) an unsaturated compound having an acetal ester structure of a carboxylic acid or a ketal ester structure of a carboxylic acid (hereinafter referred to as "monomer (al)" ), (A2) unsaturated compounds with epoxy groups (hereinafter referred to as "monomer (a2)") and olefin-based unsaturated compounds other than (a3) (a1) and (a2) (hereinafter referred to as "mono (A3) ") copolymer (hereinafter referred to as" copolymer (a) ") 0 monomer (al) such as a norbornene compound having an acetal ester structure of a carboxylic acid or a ketal ester structure of a carboxylic acid A (meth) acrylate compound having an acetal structure or a ketal structure of a carboxylic acid. Specific norbornene compounds having an acetal ester structure or a ketal ester structure are, for example, 2,3-di-tetrahydropyran-2-yloxycarbonyl-5-norbornene, 2,3-di-tri Methylsilyloxycarbonyl-5-nor-11-(8) (8) 200428021 limonene, 2,3-di-triethylsilyloxycarbonyl-5-norbornene, 2,3-di -Butyldimethylsilyloxycarbonyl-5-norbornene, 2,3-di-trimethylgermanyloxycarbonyl-5-norbornene, 2,3_di_triethylformyl Germanoalkyloxycarbonyl-5-norbornene, 2,3-di-t-butyldimethylgermanyloxycarbonyl-5-norbornene, 2,3-di-t-butyl Oxycarbonyl-5-norbornene, 2,3-di-benzyloxycarbonyl-5-norbornene, 2,3-di-tetrahydrofuran-2-yloxycarbonyl-5-norbornene, 2 , 3-Di-tetrahydropyran-2-yloxycarbonyl-5-norbornene, 2,3-di-cyclobutyloxycarbonyl-5-norbornene, 2,3-di-cyclopentene Oxycarbonyl-5-norbornene, 2,3-di-cyclohexyloxycarbonyl-5-norbornene, 2,3-di-cycloheptyloxycarbonyl-5-norbornene, 2, 3-di-1_methoxyethoxycarbonyl-5-norbornene, 2,3-di-l-t-butoxyethoxycarbonyl-5-norbornene, 2,3-di- Benzyloxy Ethoxycarbonyl-5-norbornene, 2,3-bis- (cyclohexyl) (ethoxy) methoxycarbonyl-5-norbornene, 2,3-di-1-methyl-1 -Methoxyethoxycarbonyl-5-norbornene, 2,3-di-1-methyl- 1-i-butoxyethoxycarbonyl-5-norbornene, 2,3-di- (Benzyl) (ethoxy) methoxycarbonyl-5-norbornene, etc .; (meth) acrylate compounds having an acetal ester structure or a ketal ester structure such as ethoxyethyl (methyl ) Acrylate, Tetrahydro-2H-pyran-2-yl (meth) acrylate, 1- (cyclohexyloxy) ethyl (meth) acrylate, 1- (2-methylpropoxy ) Ethyl (meth) acrylate, 1- (1,1-dimethyl-ethoxy) ethyl (meth) acrylate, 1- (cyclohexyloxy) ethyl (meth) acrylate Wait. Among them, a (meth) acrylate having an acetal structure or a ketal structure of a carboxylic acid is preferred, and 1-ethoxyethyl (meth) propylene is particularly preferred -12- 200428021

酸酯、四氫-2H-吡喃-2-基(甲基)丙烯酸酯、1_ (環己基 氧基)乙基(甲基)丙烯酸酯、1-(2-甲基丙氧基)乙基 (甲基)丙烯酸酯、二甲基-乙氧基)乙基(甲基 )丙烯酸酯、1-(環己基氧基)乙基(甲基)丙烯酸酯。 又,該單體可單獨使用或組合使用。 單體(a2)如,丙烯酸酯縮水甘油酯、甲基丙烯酸縮 水甘油酯、α -乙基丙烯酸縮水甘油酯、α -η-丙基丙烯酸 縮水甘油酯、α -η-丁基丙烯酸縮水甘油酯、丙烯酸-3,4-環氧丁酯、甲基丙烯酸-3,4-環氧丁酯、丙烯酸-6,7-環氧 庚酯、甲基丙烯酸-6,7_環氧庚酯、α-乙基丙烯酸-6,7-環 氧庚酯、〇 -乙烯基苄基縮水甘油醚、m -乙烯基苄基縮水甘 油醚、P-乙烯基苄基縮水甘油醚等。 其中就提高共聚反應性、所得微透鏡或層間絕緣膜之 耐熱性、表面硬度較佳爲,甲基丙烯酸縮水甘油醚、甲基 丙烯酸-6,7-環氧庚酯、〇-乙烯基苄基縮水甘油醚、m-乙烯 基苄基縮水甘油醚、P-乙烯基苄基縮水甘油醚等。 又,該單體可單獨使用或組合使用。 單體(a3 )如,甲基丙烯酸烷基酯、丙烯酸烷基酯、 甲基丙烯酸環狀烷基酯、丙烯酸環狀烷基酯、甲基丙烯酸 芳基酯、丙烯酸芳基酯、不飽和二羧酸二酯、二環不飽和 化合物類、馬來醯亞胺化合物類、不飽和芳香族化合物、 共軛二烯系化合物、不飽和單羧酸、不飽和二羧酸、不飽 和二羧酸酐、其他不飽和化合物。 具體之甲基丙烯酸烷基酯如,羥甲基甲基丙烯酸酯、 -13- (10) (10)200428021 2-羥乙基甲基丙烯酸酯、3-羥丙基甲基丙烯酸酯、4-羥丁 基甲基丙烯酸酯、二乙二醇單甲基丙烯酸酯、2,3-二羥丙 基甲基丙烯酸酯、2-甲基丙烯氧基乙基糖苷、4-羥苯基甲 基丙烯酸酯、甲基甲基丙烯酸酯、乙基甲基丙烯酸酯、n-丁基甲基丙烯酸酯、sec-丁基甲基丙烯酸酯、t-丁基甲基 丙烯酸酯、t-丁基甲基丙烯酸酯、2-乙基己基甲基丙烯酸 酯、異癸基甲基丙烯酸酯、η-月桂基甲基丙烯酸酯、十三 基甲基丙烯酸酯、η-硬脂基甲基丙烯酸酯等; 丙烷酸烷基酯如,甲基丙烯酸酯、異丙基丙烯酸酯等 甲基丙烯酸環狀烷基酯如,環己基甲基丙烯酸酯、2-甲基環己基甲基丙烯酸酯、三環〔5·2·1·02,6〕癸-8-基甲 基丙烯酸酯、三環〔5.2.1.02,6〕癸-8-基氧基乙基甲基丙 烯酸酯、異甲硼基甲基丙烯酸酯等; 丙烯酸環狀烷基酯如,環己基丙烯酸酯、2-甲基環己 基丙烯酸酯、三環〔5.2.1.02’6〕癸-8_基丙烯酸酯、三環 〔5.2.1.02’6〕癸-8-基氧基乙基丙烯酸酯、異甲硼基丙烯 酸酯等; 甲基丙烯酸芳基酯如,苯基甲基丙烯酸酯、苄基甲基 丙烯酸酯等; 丙烯酸芳基酯如,苯基丙烯酸酯、苄基丙烯酸酯等; 不飽和二羧酸二酯如,馬來酸二乙酯、富馬酸二乙酯 、衣康酸二乙酯等; 二環不飽和化合物類如,二環〔2.2.1〕庚-2-烯、5- -14- (11) 200428021 甲基二環〔2.2.1〕庚-2-烯、5 -乙基二環〔2.2.1〕 、5·甲氧基二環〔2.2.1〕庚-2-燒、5 -乙氧基一環 〕庚-2-嫌、5,6·二甲氧基二環〔2.2.1〕庚-2-嫌、 乙氧基二環〔2.2.1〕庚-2 -稀、5- (2’ -經基乙基) 2.2.1〕庚-2-烯、5,6-二羥基二環〔2.2.1〕庚-2-你 二(羥甲基)二環〔2.2.1〕庚-2 -烯、5,6 -二(2’-)二環〔2.2.1〕庚-2 -烯、5 -羥基-5-甲基二環〔 庚-2-烯、5 -羥基-5-乙基二環〔2.2.1〕庚-2-烯、5_ 基-5-甲基二環〔2.2.1〕庚-2-烯等; 馬來醯亞胺化合物類如,苯基馬來醯亞胺、環 來醯亞胺、苄基馬來醯亞胺、N-琥珀醯亞胺基-3-亞胺苯甲酸酯、N-琥珀醯亞胺基-4-馬來醯亞胺丁 N-琥珀醯亞胺基-6-馬來醯亞胺己酸酯、N-琥珀醯! 3-馬來醯亞胺丙酸酯、N- ( 9-吖啶基)馬來醯亞胺5 不飽和芳香族化合物如,苯乙烯、α -甲基苯 m-甲基苯乙烯、ρ-甲基苯乙烯、乙烯基甲苯、ρ-甲 乙烯等; 共軛二烯系化合物如,1,3-丁二烯、異戊二簡 二甲基-1,3-丁二烯等; 不飽和單羧酸如,丙烯酸、甲基丙烯酸、巴豆 不飽和二羧酸如,馬來酸、富馬酸、檸康酸、 、衣康酸等; 不飽和二羧酸酐如,上述不飽和二羧酸之各酐 其他不飽和化合物如,丙烯腈、甲基丙烯腈、 庚-2-烯 [2.2.1 5,6-二 二環〔 •、5,6 - 羥乙基 2.2.1 ] •羥基甲 己基馬 馬來醯 酸酯、 5胺基-等; 乙烯、 氧基苯 h 2,3- 酸等; 中康酸 氯乙烯 •15- (12) (12)200428021 、偏氯乙烯、丙烯醯胺、甲基丙烯醯胺、乙酸乙烯等。 其中就共聚反應性等較佳爲,苯乙烯、t- 丁基甲基丙 烯酸酯、三環〔5.2.1.02,6〕癸-8-基甲基丙烯酸酯、p-甲 氧基苯乙烯、2-甲基環己基丙烯酸酯、1,3-丁二烯、二環 〔2.2.1〕庚-2-烯等。 又,該單體可單獨使用或組合使用。 共聚物(A)來自單體(al)之構造單位較佳爲5至 60重量%,更佳爲10至50重量%。該範圍之含量可實現 良好製圖特性。 共聚物(A)來自單體(a2)之構造單位較佳爲10至 70重量%,更佳爲20至60重量%。該値低於10重量%時 ,所得層間絕緣膜及微透鏡之耐熱性、表面硬度將不足。 又,該値超過70重量%時,會傾向降低感放射線性樹脂 組成物之保存安定性。 共聚物(A )來自單體(a3 )之構造單位含量係指, 由100重量%減去來自單體(al)及(a2)之構造單位含 量而得之量,但所使用之單體(a3)爲不飽和單羧酸、不 飽和二羧酸或不飽和二羧酸酐時,來自不飽和單羧酸、不 飽和二羧酸及不飽和二酸酐之構造單位的合計含量超過 40重量%時,會損及所得組成物之安定性,故不宜超過該 値。 共聚物(A)之具體例較佳如,1-(環己基氧基)乙 基甲基丙烯酸酯/三環〔5.2.1.02,6〕癸-8-基甲基丙烯酸 酯/甲基丙烯酸縮水甘油酯共聚物、1-(環己基氧基)乙 -16- (13) (13)200428021 基甲基丙烯酸酯/苯乙烯/三環〔5.2.1.02,6〕癸-8-基甲 基丙烯酸酯/甲基丙烯酸縮水甘油酯/ p-乙烯基苄基縮水 甘油醚共聚物、1-(環己基氧基)乙基甲基丙烯酸酯/苯 乙儲/二環〔5.2.1.〇2’6〕癸-8 -基甲基丙烯酸酯/甲基丙 烯酸縮水甘油酯/ 2-羥乙基甲基丙烯酸酯共聚物、:!_(環 己基氧基)乙基甲基丙烯酸酯/苯乙烯/三環〔5.2.1. 〇2, 6 〕癸-8-基甲基丙烯酸酯/甲基丙烯酸縮水甘油酯/心月 桂基甲基丙烯酸酯共聚物等。 合成該聚合物(A)之方法可爲,存在適當溶劑及適 當聚合引發劑下,利用已知方法,例如自由基聚合法進行 (B )照射放射線會產生pKa 4 · 0以下之酸的化合物 本發明所使用的(B)照射放射線會產生pKa 4.0以 下之酸的化合物(以下稱爲「( B )成分」)爲,照射紫 外線、遠紫外線、X線、荷電粒子線等放射線時能產生 pKa 4.0以下之酸的化合物。又,照射放射線所產生之酸 的pKa値較佳爲3.5以下,更佳爲3.〇以下。 該化合物如’三氯甲基-s -三嗪類、二芳基碘鹽類、 三芳基锍鹽類、第4級銨鹽類、磺酸酯類等。其中較佳爲 ,二芳基碘_鹽類及三芳基銃鹽類。 具體之三氯甲基-s -三嗪類如,2 - ( 3 -氯苯基)-雙( 4,6 -三氯甲基)-s-三嗪、2-(4 -甲氧基苯基)_雙(4,6_三 氯甲基)-5-三嗪、2-(4-甲基硫苯基)-雙(4,6-三氯甲基 -17- (14) (14)200428021 )-s-三嗪、2-(4-甲氧基- /3-苯乙烯基)-雙(4,6-三氯甲 基)-5-三嗪、2-胡椒基-雙(4,6-三氯甲基)-^三嗪、2-〔2-(呋喃-2-基)乙烯基〕-雙(4,6-三氯甲基)-5-三嗪 、2-〔2-(5·甲基呋喃-2-基)乙烯基〕-雙(4,6-三氯甲基 )-s-三嗪、2-〔2- (4-二乙基胺基-2 -甲基苯基)乙烯基 〕-雙(4,6-三氯甲基)-s-三嗪或2-(4-甲氧基萘基)-雙 (4,6-三氯甲基)-s-三嗪等; 二芳基碘鐵鹽類如,二苯基碘鑰三氟乙酸鹽、二苯基 碘鑰三氟甲烷磺酸鹽、4-甲氧基苯基苯基碘鑰氟甲烷磺酸 鹽、4-甲氧基苯基苯基碘鐵三氟乙酸鹽、苯基,4-(2’-羥 基-1’-十四烷氧基)苯基碘鎩三氟甲烷磺酸鹽、4- ( 2’_羥 基-1’-十四烷氧基)苯基碘鑰六氟銻酸鹽、苯基,4- (2’-羥基-Γ_十四烷氧基)苯基碘鏺-P-甲苯磺酸鹽等; 三芳基銃鹽類如,三苯基銃三氟甲烷磺酸鹽、三苯基 銃三氟乙酸鹽、4-甲氧基苯基二苯基銃三氟甲烷磺酸鹽、 4_甲氧基苯基二苯基銃三氟乙酸鹽、4_苯基硫苯基二苯基 銃三氟甲烷磺酸鹽或4_苯基硫苯基二苯基銃三氟乙酸鹽 等; 第四級銨鹽類如,四甲基銨丁基三(2,6-二氟苯基) 硼酸鹽、四甲基銨己基三(Ρ-氯苯基)硼酸鹽、四甲基銨 己基三(3-三氟甲基苯基)硼酸鹽、苄基二甲基苯基銨丁 基三(2,6-二氟苯基)硼酸鹽、苄基二甲基苯基銨己基三 (Ρ-氯苯基)硼酸鹽、苄基二甲基苯基銨己基三(3-三氟 甲基苯基)硼酸鹽等; -18- (15) 200428021 磺酸酯類如’ 2,6 -二硝基爷基-p -甲苯5黄酸il 硝基苄基-三氟甲烷磺酸酯、N-羥基萘基醯亞胺 酸酯、N-羥基萘基醯亞胺-三氟甲烷磺酸酯。 本發明之(B)成分使用量對局分子量物(/ 量份較佳爲1至40重量份,更佳爲2至20重量 低於1重量份時將難製圖,且所得層間絕緣膜或 耐熱性及耐溶劑性將不足。又,該量超過4 0重 難製圖。 其他成分 本發明感放射線性樹脂組成物所含必須成分 高分子量物(A )及(B )成分,但必要時可含 分。 本發明感放射線性樹脂組成物可含有之其他 (C ) 1,2 _苯醌二疊氮化合物、(D )感熱性酸發 E )至少具有一個乙烯性不飽和雙鍵之化合物、 樹脂、(G )表面活性劑及(Η )接著助劑等。 (C ) 1,2 —苯醌二疊氮化合物 該(C ) 1,2-苯醌二疊氮化合物爲,照射放 生酸之1,2-苯醌二疊氮化合物,可使用苯酚性化 性化合物(以下稱爲「母核」)與丨,厂萘醌二疊 化物之縮合物。 胃S核如,三羥基二苯甲酮、四羥基二苯甲 旨、2,6·二 -p -甲苯磺 V ) 100 重 份。該量 微透鏡之 量份時將 爲,上述 有其他成 成分如, 生劑、( 〔F)環氧 射線會產 合物或醇 氮磺酸鹵 酮、五羥 -19- (16) (16)200428021 基二苯甲酮、六羥基二苯甲酮、(聚羥基苯基)鏈烷、其 他母核。 具體之三羥基二苯甲酮如,2,3,4-三羥基二苯甲酮、 2,4,6-三羥基二苯甲酮等; 四羥基二苯甲酮如,2,2’,4,4’-四羥基二苯甲酮、 2,3,4,3’-四羥基二苯甲酮、2,3,4,4’-四羥基二苯甲酮、 2,3,4,2’-四羥基-4’-甲基二苯甲酮、2,3,4,4’-四羥基-3’-甲 氧基二苯甲酮等 五羥基二苯甲酮如,2,3,4,2’,6’-五羥基二苯甲酮等; 六羥基二苯甲酮如,2,4,6,3’,4’,5’-六羥基二苯甲酮、 3,4,5,3’,4’,5’-六羥基二苯甲酮等; (聚羥基苯基)鏈烷如,雙(2,4-二羥基苯基)甲烷 、雙(P·羥基苯基)甲烷、三(P-羥基苯基)甲烷、 1,1,1-三(P-羥基苯基)乙烷、雙(2,3,4-三羥基苯基)甲 烷、2,2-雙(2,3,4-三羥基苯基)丙烷、1,1,3-三(2,5-二 甲基-4·羥基苯基)-3-苯基丙烷、4,4’_〔卜〔4-〔1-〔4-羥 基苯基〕-1-甲基乙基〕苯基〕亞乙基〕雙酚、雙(2,5_二 甲基-4-羥基苯基)-2-羥基苯基甲烷、3,3,3’,3’-四甲基· 1,1’-螺二茚-5,6,7,5’,6’,7’-己醇、2,2,4-三甲基-7,2’,4’·三 羥基黃烷等; 其他母核如,2-甲基-2- ( 2,4-二羥基苯基)-4- ( 4-羥 基苯基)-7-羥基色滿、2-〔雙{( 5-異丙基-4-羥基-2-甲 基)苯基}甲酯〕、羥基苯基)-1-甲 基乙基} -4,6-二羥基苯基)-1-甲基乙基〕-3- (1-(3- { -20- (17) (17)200428021 b(4-羥基苯基)-1·甲基乙基} ·4,6-二羥基苯基)-1-甲 基乙基)苯、4,6_雙{丨-(4_羥基苯基)-丨_甲基乙基}-二羥基苯。 又,適用上述例示之母核中的酯鍵變更爲醯胺鍵的 1,2 -萘醌二疊氮磺酸酿胺類,例如2,3,4 -三羥基二苯甲酮_ 1,2-萘醌二疊氮_4_磺酸醯胺等。 上述母核中較佳爲2,3,4,4’_四羥基二苯甲酮、4,4’-〔 b〔4-〔1_〔 4-羥基苯基〕-1-甲基乙基〕苯基〕亞乙基〕 雙酚° 又,1,2-萘醌二疊氮磺酸鹵化物較佳爲,1,2-萘醌二 疊氮磺酸氯化物,其具體例如,1,2-萘醌二疊氮_4_磺酸氯 化物及1,2 -萘醌一疊氮-5 -磺酸氯化物。其中又以使用 1,2 -萘醌二疊氮-5 -磺酸氯化物爲佳。 縮合反應時母核用之1,2-萘醌二疊氮磺酸鹵化物的使 用量,對母核1莫耳之1,2-萘醌二疊氮磺酸鹵化物較佳爲 1.0至4.0莫耳,更佳爲1.5至3.0莫耳。 縮合反應可以已知方法進行。 (C ) 1,2-萘醌二疊氮之使用率對高分子量物(a ) 1〇〇重量份較佳爲100重量份以下,更佳爲40重量份以 下。超過100重量份時將難形成圖型。 (D)感熱性酸發生劑 該(D )感熱性酸發生劑可提升耐熱性及硬度。具體 例如氟化銻類,市售品如山耶得SI-L80、山耶得SI-L110 -21 - (18) (18)200428021 、山耶得SI-L150 (以上爲三新化學工業(股)製)等。 (D )感熱性酸發生劑對高分子量物(A ) 1 00重量份 較佳爲20重量份以下,更佳爲5重量份以下。超過20重 量份時會產生析出物,而難製圖。 (E )至少具有一個乙烯性不飽和雙鍵之化合物 適用之(E)至少具有一個乙烯性不飽和雙鍵之化合 物如,單官能(甲基)丙烯酸酯、二官能(甲基)丙烯酸 酯或三官能以上之(甲基)丙烯酸酯。 該單官能(甲基)丙烯酸酯如,2_羥基乙基(甲基) 丙烯酸酯、卡必醇(甲基)丙烯酸酯、異甲硼基(甲基) 丙烯酸酯、3-甲氧基丁基(甲基)丙烯酸酯、2-(甲基) 丙烯醯氧基乙基-2-羥基丙基酞酸酯等。其市售品如,阿 洛尼 M-101、M_lll、M-114(東亞合成(股)製)、 KAYARAD TC-110S、TC-120S (曰本化藥(股)製)、比 斯克158、2311 (大阪有機化學工業(股)製)等。 二官能(甲基)丙烯酸酯如,乙二醇(甲基)丙烯酸 酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲 基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、四乙二醇 二(甲基)丙烯酸酯、雙苯氧基乙醇芴二丙烯酸酯、雙苯 氧基乙醇芴二丙烯酸酯等。其市售品如阿洛尼M-210、M-240、M-6200 (東亞合成(股)製)、KAYARAD HDDA、 HX-220、R-604 (日本化藥(股)製)、比斯克260、312 、3 3 5 HP (大阪有機化學工業(股)製)等。 -22- (19) 200428021Acid ester, tetrahydro-2H-pyran-2-yl (meth) acrylate, 1- (cyclohexyloxy) ethyl (meth) acrylate, 1- (2-methylpropoxy) ethyl (Meth) acrylate, dimethyl-ethoxy) ethyl (meth) acrylate, 1- (cyclohexyloxy) ethyl (meth) acrylate. These monomers can be used alone or in combination. Monomer (a2) such as glycidyl acrylate, glycidyl methacrylate, glycidyl α-ethylacrylate, glycidyl α-η-propylacrylate, glycidyl α-η-butylacrylate -3,4-epoxybutyl acrylate, -3,4-epoxybutyl methacrylate, -6,7-epoxyheptyl acrylate, -6,7_epoxyheptyl methacrylate, α -Ethylacrylic acid-6,7-epoxyheptyl, 0-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, P-vinylbenzyl glycidyl ether, and the like. Among them, in order to improve copolymer reactivity, heat resistance of the obtained microlens or interlayer insulating film, and surface hardness, glycidyl methacrylate, -6,7-epoxyheptyl methacrylate, and 0-vinylbenzyl are preferred. Glycidyl ether, m-vinylbenzyl glycidyl ether, P-vinylbenzyl glycidyl ether, and the like. These monomers can be used alone or in combination. Monomer (a3) such as alkyl methacrylate, alkyl acrylate, cyclic alkyl methacrylate, cyclic alkyl acrylate, aryl methacrylate, aryl acrylate, unsaturated diacrylate Carboxylic diesters, bicyclic unsaturated compounds, maleimide compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic anhydrides And other unsaturated compounds. Specific alkyl methacrylates such as methylol methacrylate, -13- (10) (10) 200428021 2-hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 4- Hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2,3-dihydroxypropyl methacrylate, 2-methacryloxyethyl glycoside, 4-hydroxyphenyl methacrylate, Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate Ester, isodecyl methacrylate, η-lauryl methacrylate, tridecyl methacrylate, η-stearyl methacrylate, etc .; alkyl propanoates such as methacrylate, Cycloalkyl methacrylates such as isopropyl acrylate, such as cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclic [5 · 2 · 1 · 02,6] dec-8 -Yl methacrylate, tricyclic [5.2.1.02,6] dec-8-yloxyethyl methacrylate, isomethylboryl methacrylate Acrylic cyclic alkyl esters such as cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclic [5.2.1.02'6] dec-8-yl acrylate, tricyclic [5.2.1.02'6] decyl -8-yloxyethyl acrylate, isomethylboryl acrylate, etc .; aryl methacrylates such as phenyl methacrylate, benzyl methacrylate, etc .; aryl acrylates such as phenyl Acrylate, benzyl acrylate, etc .; unsaturated dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, diethyl itaconic acid, etc .; bicyclic unsaturated compounds such as bicyclic [2.2.1] Hept-2-ene, 5--14- (11) 200428021 Methylbicyclo [2.2.1] Hept-2-ene, 5-ethylbicyclo [2.2.1], 5.A Oxybicyclo [2.2.1] heptan-2-yl, 5-ethoxymonocyclo] hept-2-yl, 5,6 · dimethoxybicyclo [2.2.1] hept-2-yl, ethyl Oxybicyclo [2.2.1] heptan-2 -dilute, 5- (2'-transylethyl) 2.2.1] hept-2-ene, 5,6-dihydroxybicyclo [2.2.1] heptane -2-Hydi (hydroxymethyl) bicyclo [2.2.1] hept-2-ene, 5,6-bis (2 '-) bicyclo [2.2.1] hept-2-ene, 5-hydroxy- 5-methyl Bicyclo [hept-2-ene, 5-hydroxy-5-ethylbicyclo [2.2.1] hept-2-ene, 5-yl-5-methylbicyclo [2.2.1] hept-2-ene, etc. ; Maleimide imines such as phenylmaleimide, cycloimide, benzylmaleimide, N-succinimide-3-imine benzoate, N -Succinimide-4-maleimide butimidine N-succinimide-6-maleimide hexanoate, N-succinimide! 3-maleimidoimine propionate, N- (9-acridinyl) maleimidoimine 5 unsaturated aromatic compounds such as styrene, α-methylbenzene m-methylstyrene, ρ- Methylstyrene, vinyltoluene, p-methyl vinyl, etc .; conjugated diene compounds such as 1,3-butadiene, isoprenedimethyl-1,3-butadiene, etc .; unsaturated Monocarboxylic acids such as acrylic acid, methacrylic acid, and croton unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, itaconic acid, etc .; unsaturated dicarboxylic acid anhydrides such as the aforementioned unsaturated dicarboxylic acids Each unsaturated anhydride of other unsaturated compounds such as acrylonitrile, methacrylonitrile, hept-2-ene [2.2.1 5,6-dibicyclo [•, 5,6-hydroxyethyl 2.2.1] • hydroxymethyl Hexyl maleate, 5-amino-etc .; Ethylene, oxybenzene h 2,3-acid, etc .; Vinconyl chloride • 15- (12) (12) 200428021, vinylidene chloride, acrylamide , Methacrylamide, vinyl acetate, etc. Among them, copolymerization reactivity and the like are preferably styrene, t-butyl methacrylate, tricyclic [5.2.1.02,6] dec-8-yl methacrylate, p-methoxystyrene, 2-methyl Cyclohexyl acrylate, 1,3-butadiene, bicyclo [2.2.1] hept-2-ene, and the like. These monomers can be used alone or in combination. The structural unit of the copolymer (A) derived from the monomer (al) is preferably 5 to 60% by weight, and more preferably 10 to 50% by weight. The content in this range can achieve good mapping characteristics. The structural unit of the copolymer (A) derived from the monomer (a2) is preferably 10 to 70% by weight, and more preferably 20 to 60% by weight. When the ratio is less than 10% by weight, the heat resistance and surface hardness of the obtained interlayer insulating film and microlenses will be insufficient. In addition, when the content is more than 70% by weight, the storage stability of the radiation-sensitive resin composition tends to decrease. The content of the structural unit of the copolymer (A) from the monomer (a3) refers to an amount obtained by subtracting the content of the structural unit from the monomers (al) and (a2) from 100% by weight, but the monomer ( a3) When the unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, or unsaturated dicarboxylic anhydride is used, when the total content of the structural units derived from the unsaturated monocarboxylic acid, the unsaturated dicarboxylic acid, and the unsaturated dicarboxylic anhydride exceeds 40% by weight Will damage the stability of the resulting composition, so it should not be exceeded. Specific examples of the copolymer (A) are preferably, for example, 1- (cyclohexyloxy) ethyl methacrylate / tricyclo [5.2.1.02,6] dec-8-yl methacrylate / methacrylic shrink Glyceryl ester copolymer, 1- (cyclohexyloxy) ethane-16- (13) (13) 200428021 methacrylate / styrene / tricyclo [5.2.1.02,6] dec-8-yl methacrylic acid Ester / glycidyl methacrylate / p-vinylbenzyl glycidyl ether copolymer, 1- (cyclohexyloxy) ethyl methacrylate / phenethyl storage / bicyclo [5.2.1.〇2 ' 6] dec-8-yl methacrylate / glycidyl methacrylate / 2-hydroxyethyl methacrylate copolymer:! _ (Cyclohexyloxy) ethyl methacrylate / styrene / Tricyclic [5.2.1. 〇2, 6] dec-8-yl methacrylate / glycidyl methacrylate / heart lauryl methacrylate copolymer and the like. The method for synthesizing the polymer (A) may be a compound compound in which an acid having a pKa of 4 or less is generated by irradiation with a known method such as a radical polymerization method (B) in the presence of a suitable solvent and a suitable polymerization initiator. The compound (B) used in the invention to generate radiation with an acid below pKa 4.0 (hereinafter referred to as "(B) component") is that it can generate pKa 4.0 when irradiated with radiation such as ultraviolet rays, far ultraviolet rays, X-rays, and charged particle rays. The following acid compounds. The pKa of the acid generated by irradiation of the radiation is preferably 3.5 or less, and more preferably 3.0 or less. Such compounds include, for example, 'trichloromethyl-s-triazines, diaryl iodonium salts, triarylsulfonium salts, fourth-order ammonium salts, sulfonic acid esters, and the like. Among them, diaryl iodide salts and triarylsulfonium salts are preferred. Specific trichloromethyl-s-triazines such as 2- (3-chlorophenyl) -bis (4,6-trichloromethyl) -s-triazine, 2- (4-methoxybenzene ) _Bis (4,6_trichloromethyl) -5-triazine, 2- (4-methylthiophenyl) -bis (4,6-trichloromethyl-17- (14) (14 ) 200428021) -s-triazine, 2- (4-methoxy- / 3-styryl) -bis (4,6-trichloromethyl) -5-triazine, 2-piperidyl-bis ( 4,6-trichloromethyl)-^ triazine, 2- [2- (furan-2-yl) vinyl] -bis (4,6-trichloromethyl) -5-triazine, 2- [ 2- (5 · methylfuran-2-yl) vinyl] -bis (4,6-trichloromethyl) -s-triazine, 2- [2- (4-diethylamino-2- Methylphenyl) vinyl] -bis (4,6-trichloromethyl) -s-triazine or 2- (4-methoxynaphthyl) -bis (4,6-trichloromethyl)- s-triazine, etc .; diaryl iron iodide salts, such as diphenyliodotrifluoroacetate, diphenyliodotrifluoromethanesulfonate, 4-methoxyphenylphenyliodofluoromethane Sulfonate, 4-methoxyphenylphenyliodine trifluoroacetate, phenyl, 4- (2'-hydroxy-1'-tetradecanyloxy) phenyliodonium trifluoromethanesulfonate 4- (2'_hydroxy-1'-tetradecane Phenyl) iodine molybdenum hexafluoroantimonate, phenyl, 4- (2'-hydroxy-Γ-tetradecyloxy) phenyliodide-P-toluenesulfonate, etc .; triarylsulfonium salts such as , Triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium trifluoroacetate, 4-methoxyphenyldiphenylsulfonium trifluoromethanesulfonate, 4-methoxyphenyldiphenylsulfonium Trifluoroacetate, 4-phenylthiophenyldiphenylsulfonium trifluoromethanesulfonate or 4-phenylthiophenyldiphenylsulfonium trifluoroacetate, etc .; fourth-order ammonium salts such as tetramethyl Ammonium butyltri (2,6-difluorophenyl) borate, tetramethylammonium hexyltri (P-chlorophenyl) borate, tetramethylammonium hexyltri (3-trifluoromethylphenyl) Borates, benzyldimethylphenylammonium butyltri (2,6-difluorophenyl) borate, benzyldimethylphenylammonium hexyltri (P-chlorophenyl) borate, benzyldi Methylphenylammonium hexyl tris (3-trifluoromethylphenyl) borate, etc .; -18- (15) 200428021 sulfonates such as' 2,6-dinitromethyl-p-toluene 5 xanthate il Nitrobenzyl-trifluoromethanesulfonate, N-hydroxynaphthylfluorenimide, N-hydroxynaphthylsulfonimine-trifluoromethane Sulfonate. The amount of the component (B) used in the present invention is relative to the molecular weight (/ parts are preferably 1 to 40 parts by weight, more preferably 2 to 20 parts by weight, and it will be difficult to make drawings when the amount is less than 1 part by weight, and the resulting interlayer insulating film or The solvent resistance and solvent resistance will be inadequate. In addition, it will be difficult to make the drawing if the amount exceeds 40. Other ingredients The essential components contained in the radiation-sensitive resin composition of the present invention are high molecular weight (A) and (B) components, but may be contained if necessary. Other (C) 1,2-benzoquinonediazide compounds, (D) thermoacids E) compounds and resins having at least one ethylenically unsaturated double bond that may be contained in the radiation-sensitive resin composition of the present invention (G) Surfactants and (Η) Adhesives, etc. (C) 1,2-benzoquinonediazide compound The (C) 1,2-benzoquinonediazide compound is a 1,2-benzoquinonediazide compound which is irradiated with an acid, and phenolic properties can be used. Condensate of compound (hereinafter referred to as "mother nucleus") and dinaphthoquinone diazide. The gastric S nucleus is, for example, 100 parts by weight of trihydroxybenzophenone, tetrahydroxybenzophenone, and 2,6 · di-p-toluenesulfonate. The amount of the microlens will be as follows: the other ingredients mentioned above, such as biocide, ([F) epoxy ray compound or halophenone sulfonate, pentahydroxy-19- (16) (16 ) 200428021 based benzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl) alkane, other mother cores. Specific trihydroxybenzophenones such as 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, etc .; tetrahydroxybenzophenones such as 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3,4,3'-tetrahydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,3,4, Pentahydroxybenzophenones such as 2'-tetrahydroxy-4'-methylbenzophenone, 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone, such as 2,3 , 4,2 ', 6'-pentahydroxybenzophenone, etc .; hexahydroxybenzophenone, such as 2,4,6,3', 4 ', 5'-hexahydroxybenzophenone, 3,4 , 5,3 ', 4', 5'-hexahydroxybenzophenone, etc .; (Polyhydroxyphenyl) alkanes such as bis (2,4-dihydroxyphenyl) methane, bis (P · hydroxyphenyl) ) Methane, tris (P-hydroxyphenyl) methane, 1,1,1-tris (P-hydroxyphenyl) ethane, bis (2,3,4-trishydroxyphenyl) methane, 2,2-bis (2,3,4-trihydroxyphenyl) propane, 1,1,3-tris (2,5-dimethyl-4 · hydroxyphenyl) -3-phenylpropane, 4,4 '_ [b [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylene] bisphenol, bis (2,5-dimethyl-4-hydroxyphenyl)- 2-hydroxyphenylmethane, 3,3,3 ', 3'-tetramethyl · 1,1'-spirobiindene-5,6,7,5', 6 ', 7'-hexanol, 2, 2,4-trimethyl-7,2 ', 4' · trihydroxyflavan, etc .; other mother cores such as 2-methyl-2- (2,4-dihydroxyphenyl) -4- (4- Hydroxyphenyl) -7-hydroxychroman, 2- [bis {(5-isopropyl-4-hydroxy-2-methyl) phenyl} methyl ester], hydroxyphenyl) -1-methylethyl } -4,6-dihydroxyphenyl) -1-methylethyl] -3- (1- (3- {-20- (17) (17) 200428021 b (4-hydroxyphenyl) -1 · Methylethyl} · 4,6-dihydroxyphenyl) -1-methylethyl) benzene, 4,6_bis {丨-(4_hydroxyphenyl)-丨 _methylethyl} -di Hydroxybenzene. In addition, the 1,2-naphthoquinonediazidesulfonic acid amines in which the ester bond in the mother nucleus illustrated above is changed to an amidine bond, such as 2,3,4-trihydroxybenzophenone_1,2 -Naphthoquinonediazide_4_sulfonamide and the like. Among the above-mentioned mother nuclei, 2,3,4,4'_tetrahydroxybenzophenone and 4,4 '-[b [4- [1_ [4-hydroxyphenyl] -1-methylethyl] Phenyl] ethylene] bisphenol ° Further, the 1,2-naphthoquinonediazidesulfonic acid halide is preferably 1,2-naphthoquinonediazidesulfonic acid chloride, and specific examples thereof include 1,2 -Naphthoquinonediazide_4-sulfonic acid chloride and 1,2-naphthoquinone monoazide-5 -sulfonic acid chloride. Among them, 1,2-naphthoquinonediazide-5 -sulfonic acid chloride is more preferably used. The amount of 1,2-naphthoquinonediazidesulfonic acid halide used in the mother core during the condensation reaction is preferably 1.0 to 4.0 for 1 mole of 1,2-naphthoquinonediazidesulfonic acid halide for the mother core. Moore, more preferably 1.5 to 3.0 Moore. The condensation reaction can be performed by a known method. The use rate of (C) 1,2-naphthoquinonediazide is preferably 100 parts by weight or less, and more preferably 40 parts by weight or less based on 100 parts by weight of the high molecular weight substance (a). When it exceeds 100 parts by weight, it is difficult to form a pattern. (D) Thermosensitive acid generator This (D) thermosensitive acid generator can improve heat resistance and hardness. Specific examples include antimony fluoride, and commercially available products such as Sanyed SI-L80, Sanyed SI-L110 -21-(18) (18) 200428021, and Sanyed SI-L150 (the above is Sanxin Chemical Industry Co., Ltd.)制) and so on. (D) The heat-sensitive acid generator is preferably 100 parts by weight or less of the high molecular weight substance (A), and more preferably 5 parts by weight or less. When it exceeds 20 parts by weight, precipitates may be generated, and it is difficult to make drawings. (E) Compounds having at least one ethylenically unsaturated double bond Suitable (E) Compounds having at least one ethylenically unsaturated double bond such as monofunctional (meth) acrylate, difunctional (meth) acrylate, or More than trifunctional (meth) acrylates. The monofunctional (meth) acrylate is, for example, 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, isomethylboryl (meth) acrylate, 3-methoxybutyl (Meth) acrylate, 2- (meth) acryloxyethyl-2-hydroxypropylphthalate, and the like. Its commercially available products are, for example, Aloni M-101, M_lll, M-114 (made by East Asia Synthetic (stock)), KAYARAD TC-110S, TC-120S (made by Benhua Pharmaceutical (stock)), Biske 158, 2311 (Osaka Organic Chemical Industry Co., Ltd.) and so on. Bifunctional (meth) acrylates such as ethylene glycol (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, bisphenoxyethanol 芴 diacrylate, bisphenoxyethanol 芴 diacrylate, and the like. Its commercial products such as Aroni M-210, M-240, M-6200 (manufactured by Toa Kosei Co., Ltd.), KAYARAD HDDA, HX-220, R-604 (manufactured by Nippon Kayaku Co., Ltd.), Biske 260, 312, 3 3 5 HP (made by Osaka Organic Chemical Industry Co., Ltd.), etc. -22- (19) 200428021

三官能以上之(甲基)丙烯酸酯如,三羥甲基丙烷三 (甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、三( (甲基)丙烯醯氧基乙基)磷酸酯、季戊四醇四(甲基) 丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇 六(甲基)丙烯酸酯等。其市售品如阿洛尼M-3 09、M-400、M-405、M-450、M-7100、M-803 0、M- 8 060 (東亞 合成(股)製)、KAYARAD TMPTA、DPHA、DPCA-20 、DPCA-30、DPCA-60、D P C A -1 2 0 (日本化藥(股)製) 、比斯克 295、3 00、3 60、GPT、3PA、400 (大阪有機化 學工業(股)製)等。 上述(E )至少具有一個乙烯性不飽和雙鍵之化合物 可單獨使用或組合使用。(E )至少具有一個乙烯性不飽 和雙鍵之化合物的使用率,對高分子量物(A ) 1 00重量 份較佳爲5 0重量份以下,更佳爲3 0重量份以下。Examples of the trifunctional or higher (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri ((meth) acryloxyethyl) phosphate, Pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. Its commercial products such as Alone M-3 09, M-400, M-405, M-450, M-7100, M-803 0, M- 8 060 (made by East Asia Synthetic (Stock)), KAYARAD TMPTA, DPHA, DPCA-20, DPCA-30, DPCA-60, DPCA -1 2 0 (made by Nippon Kayaku Co., Ltd.), Biske 295, 3 00, 3 60, GPT, 3PA, 400 (Osaka Organic Chemical Industry ( Share) system) and so on. The compound (E) having at least one ethylenically unsaturated double bond may be used alone or in combination. (E) The usage rate of a compound having at least one ethylenically unsaturated double bond is preferably 50 parts by weight or less, and more preferably 30 parts by weight or less, with respect to the high molecular weight substance (A).

含有該比率之(E )至少具有一個乙烯性不飽和雙鍵 之化合物時,可提升本發明感放射線性樹脂組成物所得之 保護膜或絕緣膜的耐熱性及表面硬度等。超過5 0重量份 時,會使塗布組成物所得之膜粗糙。 (F )環氧樹脂 該(F )環氧樹脂不影響與本發明感放射線性樹脂組 成物之其他成分下,並無限制,較佳爲使用雙酚A型環 氧樹脂、苯酚酚醛淸漆型環氧樹脂、甲酚酚醛淸漆型環氧 樹脂、環狀脂肪族環氧樹脂、縮水甘油酸酯型環氧樹脂、 -23- (20) (20)200428021 縮水甘油酸胺型環氧樹脂、雜環式環氧樹脂、與縮水甘油 基甲基丙烯酸酯共聚之樹脂等。其中較佳爲,雙酚A型 環氧樹脂、甲酚酚醛淸漆型環氧樹脂、縮水甘油酸酯型環 氧樹脂等。 (F)環氧樹脂之使用率對高分子量物(A) 100重量 份較佳爲3 0重量份以下。含有該比率之(F )環氧樹脂時 ’可更進一步提升本發明感放射線性樹脂組成物所得之層 間絕緣膜或微透鏡之耐熱性及表面硬度。使用率對高分子 量物(A)每100重量份超過30重量份時,將不具充分 塗膜形成能。 又,高分子量物(A )雖可稱爲「環氧樹脂」,但高 分子量物(A )具有羧酸之縮醛酯構造或縮酮酯構造,故 不同於不具該構造之(F)環氧樹脂。 (G )表面活性劑 爲了更進一步提升塗布性,本發明之感放射線性樹脂 組成物可含有(G )表面活性劑。適用之(G )表面活性 劑如,氟系表面活性劑、聚矽氧烷系表面活性劑及非離子 系表面活性劑。 氟系表面活性劑之具體例如,1,1,2,2-四氟辛基( 1,1,2,2-四氟丙基)醚、;ι,ι,2,2-四氟辛基己基醚、八乙二 醇二(1,1,2,2-四氟丁基)醚、六乙二醇(1,1,2,2,3,3-六 氟戊基)醚、八丙二醇二(1,1,2,2-四氟丁基)醚、六丙 二醇二(1,1,2,2,3,3-六氟戊基)醚、全氟十二烷基磺酸鈉 • 24 - (21) (21)200428021 、1,1,2,2,8,8,9,9,10510-十氟十二烷、l,l,2,253,3_六氟癸 烷等,或氟烷基苯磺酸鈉類、氟烷基氧基乙烯醚類、氟烷 基銨碘類、氟烷基聚環氧乙烷醚類、全氟烷基聚氧化乙醇 類、全氟烷基烷氧酸酯類、氟系烷基酯類等。When the compound (E) having at least one ethylenically unsaturated double bond is contained in this ratio, the heat resistance and surface hardness of the protective film or insulating film obtained from the radiation-sensitive resin composition of the present invention can be improved. When it exceeds 50 parts by weight, the film obtained by applying the composition may be roughened. (F) Epoxy resin The (F) epoxy resin does not affect the other components of the radiation-sensitive resin composition of the present invention, and is not limited. It is preferable to use a bisphenol A type epoxy resin and a phenol novolac type. Epoxy resin, cresol novolac epoxy resin, cyclic aliphatic epoxy resin, glycidyl epoxy resin, -23- (20) (20) 200428021 glycidyl amine epoxy resin, Heterocyclic epoxy resin, resin copolymerized with glycidyl methacrylate, etc. Among them, bisphenol A type epoxy resin, cresol novolac type epoxy resin, glycidate type epoxy resin, and the like are preferable. (F) The usage rate of the epoxy resin is preferably 30 parts by weight or less based on 100 parts by weight of the high molecular weight substance (A). When (F) epoxy resin is contained in this ratio, the heat resistance and surface hardness of the interlayer insulating film or microlens obtained from the radiation-sensitive resin composition of the present invention can be further improved. When the usage rate exceeds 30 parts by weight per 100 parts by weight of the polymer amount (A), sufficient coating film forming energy will not be obtained. Also, although the high molecular weight substance (A) can be called an "epoxy resin", the high molecular weight substance (A) has an acetal ester structure or a ketal ester structure of a carboxylic acid, so it is different from the (F) ring without the structure. Oxygen resin. (G) Surfactant In order to further improve coatability, the radiation-sensitive resin composition of the present invention may contain (G) a surfactant. Suitable (G) surfactants are, for example, fluorine-based surfactants, polysiloxane-based surfactants and non-ionic surfactants. Specific examples of the fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether; ι, ι, 2,2-tetrafluorooctyl Hexyl ether, octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol Di (1,1,2,2-tetrafluorobutyl) ether, hexapropylene glycol bis (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecylsulfonate • 24-(21) (21) 200428021, 1,1,2,2,8,8,9,9,10510-decafluorododecane, 1,1,2,253,3-hexafluorodecane, etc., or fluorine Sodium alkylbenzene sulfonates, fluoroalkyloxy vinyl ethers, fluoroalkylammonium iodides, fluoroalkyl polyethylene oxide ethers, perfluoroalkyl polyoxyethanols, perfluoroalkylalkoxy Acid esters, fluorine-based alkyl esters, and the like.

其市售品如,BM-1000、 BM-1100(以上爲 BMIts commercial products such as BM-1000, BM-1100 (above are BM

Chemie 公司製)、美可發 F142D、F172、F173、F183、 F178、F191、F471(以上爲大日本油墨化學工業(股)製 )、佛拉得 FC-170C、FC-171、FC-430、FC-431(以上爲 住友 3M (股)製)、撒佛隆 S-112、S-113、S-141、S-145、 S-382、 SC-101、 SC-103、 SC-104、 SC-105、 SC-106 (旭硝子(股)製)、艾頓普EF 3 01、3 03、3 5 2 (新秋田 化成(股)製)、SH-28PA、SH-190、SH-193、SZ-6032 、SF-842 8、DC-5 7、DC-190 (東連(股)製)等。 上述聚矽氧烷系表面活性劑如,以特雷聚矽氧烷 DC3PA、 DC7PA、 SH11PA、 SH21PA、 SH28PA、 SH29PA 、SH30PA、FC- 1 265 -3 00 (以上爲東連(股)公司製)、 TSF-4440、 TSF-4300、 TSF-4445、 TSF-4446、 TSF-4460 、TSF-4452 (以上爲GE東芝聚矽氧烷(股)製)等商品 名販售之物。 上述非離子系表面活性劑如,聚環氧乙烷月桂基醚、 聚環氧乙烷硬脂基醚、聚環氧乙烷油基醚等聚環氧乙烷烷 基醚類; 聚環氧乙烷辛基苯基醚、聚環氧乙烷壬基苯基醚等聚 環氧乙烷芳基醚類; -25- (22) (22)200428021 聚環氧乙烯二月桂酸酯、聚環氧乙烷二硬脂酸酯等聚 環氧乙烷二烷基酯類等; (甲基)丙烯酸系共聚物聚佛隆Νο·5 7、95 (共榮社 化學(股)製)等。 上述表面活性劑可單獨使用或二種以上組合使用。 該(G )表面活性劑對高分子量物(a ) 1 〇 〇重量份較 佳爲5重量份以下,更佳爲2重量份以下。超過5重量份 時’塗布組成物而得之膜易粗糙。 (Η )接著助劑 爲了更進一步提升本發明感放射線性樹脂組成物與基 板之接著性,可含有(Η )接著助劑。該接著助劑較佳爲 官能性矽烷偶合劑,其例如具有羧基、甲基丙烯醯基、異 氰酸酯基、環氧基等反應性取代基之矽烷偶合劑。具體例 如,三甲氧基矽烷基安息香酸、r -甲基丙烯氧基丙基三 甲氧基矽烷、乙烯基三乙醯氧基矽烷、乙烯基三甲氧基矽 烷、r-異氰酸酯丙基三乙氧基矽烷、r-環氧丙氧基丙基 三甲氧基矽烷、/3 - (3,4-環氧環己基)乙基三甲氧基矽烷 等。該接著助劑量對高分子量物(A ) 1 00重量份較佳爲 20重量份以下,更佳爲1 〇重量份以下。接著助劑量超過 20重量份時易產生顯像殘餘。 感放射線性樹脂組成物 調製本發明之感放射線性樹脂組成物的方法爲’將上 -26- (23) (23)200428021 述高分子量(A)、 (B)成分及上述般隨意添加之其他 成分均勻混合而得。本發明感放射線性樹脂組成物之使用 形態較佳爲,溶解於適當溶劑之溶液狀。 調製本發明之感放射線性樹脂組成物的溶劑較佳爲, 能均勻溶解高分子量物(A )、 ( B )成分及隨意添加之 其他各成分,且不與各成分反應之物。 該溶劑如,醇類、醚類、二元醇醚類、乙二醇烷基醚 乙酸酯類、二乙二醇類、丙二醇單烷基醚類、丙二醇烷基 醚乙酸酯類、丙二醇烷基醚丙酸酯類、芳香族烴類、酮類 、酯類等。 具體之醇類如,甲醇、乙醇等; 醚類如,四氫呋喃等; 二元醇酯類如,乙二醇單甲基醚、乙二醇單乙基醚等 乙二醇烷基醚乙酸酯類如,甲基溶纖劑乙酸酯、乙基 溶纖劑乙酸酯等; 二乙二醇類如,二乙二醇單甲基醚、二乙二醇單乙基 醚、二乙二醇二甲基醚、二乙二醇乙基甲基醚等; 丙二醇單烷基醚類如,丙二醇甲基醚、丙二醇乙基醚 、丙二醇丙基醚、丙二醇丁基醚等; 丙二醇烷基醚乙酸酯類如,丙二醇甲基醚乙酸酯、丙 二醇乙基醚乙酸酯、丙二醇丙基醚乙酸酯、丙二醇丁基醚 乙酸酯等; 丙二醇烷基醚丙酸酯類如,丙二醇甲基醚丙酸酯、丙 -27- (24) (24)200428021 二醇乙基醚丙酸酯、丙二醇丙基醚丙酸酯、丙二醇丁基醚 丙酸酯等; 芳香族烴類如,甲苯、二甲苯等; 酮類如,甲基乙基酮、環己酮、4-羥基-4-甲基-2-戊 酮等; 酯類如’乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯 、2-羥基丙酸乙酯、2-羥基-2-甲基丙酸甲酯、2-羥基-2-甲基丙酸乙酯、羥基乙酸甲酯、羥基乙酸乙酯、羥基乙酸 丁酯、乳酸甲酯、乳酸乙酯、乳酸丙酯、乳酸丁酯、3-羥 基丙酸甲酯、3 -羥基丙酸乙酯、3 -羥基丙酸丙酯、3 -羥基 丙酸丁酯、2-羥基-3-甲基丁酸甲酯、甲氧基乙酸甲酯、 甲氧基乙酸乙酯、甲氧基乙酸丙酯、甲氧基乙酸丁酯、乙 氧基乙酸甲酯、乙氧基乙酸乙酯、乙氧基乙酸丙酯、乙氧 基乙酸丁酯、丙氧基乙酸甲酯、丙氧基乙酸乙酯、丙氧基 乙酸丙酯、丙氧基乙酸丁酯、丁氧基乙酸甲酯、丁氧基乙 酸乙酯、丁氧基乙酸丙酯、丁氧基乙酸丁酯、2 -甲氧基丙 酸甲酯、2-甲氧基丙酸酯、2-甲氧基丙酸丙酯、2-甲氧基 丙酸丁酯、2 -乙氧基丙酸甲酯、2 -乙氧基丙酸乙酯、2 -乙 氧基丙酸丙酯、2 -乙氧基丙酸丁酯、2 -丁氧基丙酸甲酯、 2 -丁氧基丙酸乙酯、2 -丁氧基丙酸丙酯、2 -丁氧基丙酸丁 酯、3 -甲氧基丙酸甲酯、3 -甲氧基丙酸乙酯、3 -甲氧基丙 酸丙酯、3 -甲氧基丙酸丁酯、3 -乙氧基丙酸甲酯、3 -乙氧 基丙酸乙酯、3 -乙氧基丙酸丙酯、3 -乙氧基丙酸丁酯、3-丙氧基丙酸甲酯、3_丙氧基丙酸乙酯、3-丙氧基丙酸丙酯 -28- (25) (25)200428021 、3 -丙氧基丙酸丁酯、3 -丁氧基丙酸甲酯、3 -丁氧基丙酸 乙酯、3-丁氧基丙酸丙酯、3-丁氧基丙酸丁酯等。 該溶劑中就溶解性、與各成分之反應性及易形成塗膜 性較佳爲,二元醇醚類、乙二醇烷基醚乙酸酯類、酯類及 二乙二醇類。又,其可單獨使用或2種以上倂用。 本發明感放射線性樹脂組成物使用溶劑時,其使用量 對組成物中固體成分量(即由組成物全量去除溶劑部分之 量)較佳爲,組成物全體之5至5 0重量%,更佳爲1 〇至 4 0重量%。 利用孔徑〇. 2 // m之米利波阿濾器等,使上述所得組 成物溶液過濾後可供使用。 形成層間絕緣膜及微透鏡 下面將說明使用本發明感放射線性樹脂組成物形成本 發明之層間絕緣膜及微透鏡的方法。又,本發明形成層間 絕緣膜及微透鏡之方法至少含有下列步驟。 (1 )於基板上形成本發明感放射線性樹脂組成物之 塗膜的步驟。 (2 )以放射線照射至少部分塗膜之步驟。 (3 )顯像步驟。 (4 )加熱步驟。 (1 )於基板上形成本發明感放射線性樹脂組成物之塗膜 的步驟 -29- (26) (26)200428021 該步驟(1 )爲’將本發明之組成物溶液塗布於基板 表面上’再進行預烤以去除溶劑而形成感放射線性樹脂組 成物之塗膜。 本發明所使用之基板種類如,玻璃基板、矽板及其表 面形成各種金屬層之基板。 塗布組成物溶液之方法並無特別限制,可採用例如噴 霧法、滾筒塗布法、回轉塗布法、棒塗布法等適當方法。 又,預烤條件會因各成分之種類、使用比率等而異。例如 60至110 °C下30秒至15分鐘。 形成層間絕緣膜時,所形成之塗膜膜厚,即預烤後之 値較佳爲3至6//m,形成微透鏡時較佳爲〇.5至3/zm。 (2 )以放射線照射至少部分塗膜之步驟 該步驟(2 )爲,介有其一定圖型之圖罩以放射線照 射所形成之塗膜後,利用顯像液進行顯像處理以去除放射 線之照射部分而製圖。此時所使用之放射線如,紫外線、 迪紫外線、X線、荷電粒子線等。 該紫外線如,g線(波長43 6nm ) 、i線(波長 3 65nm )等。遠紫外線如KrF激元激光等。χ線如同步加 速器放射線等。荷電粒子線如電子線等。 其中較佳爲紫外線、特佳爲含g線及/或i線之放射 線。 曝光量較佳爲500至5,000 J/m2,更佳爲 750至 3,0 00 J / m2。又,已知使用先前之感放射線性樹脂組成 -30- (27) (27)200428021 物時’形成層間絕緣膜所需之曝光量爲1,500 J/m2,形 成微透鏡所需曝光量爲2,000 J/ m2,但使用本發明之感 方女Ιί線性樹脂組成物時具有,既使形成層間絕緣膜之曝光 量爲1,500 J/m2以下,形成微透鏡之曝光量爲2,000 J/ m2以下,仍可達成所需圖型之優點。 (3 )顯像步驟 顯像處理所使用之顯像液如,氫氧化鈉、氫氧化鉀、 碳酸鈉、矽酸鈉、偏矽酸鈉、氨、乙基胺、η-丙基胺、二 乙基胺、二乙基胺基乙醇、二-η-丙基胺、三乙基胺、甲 基二乙基胺、二甲基乙醇胺、三乙醇胺、四甲基銨羥化物 、四乙基銨羥化物、吡咯、哌啶、1,8 _二氮雜二環〔 5.4.0〕-7-十一烯、1,5-二氮雜二環〔4.3.0〕-5_壬烷等鹼 類水溶液。又,可使用該鹼類水溶液中添加適當量甲醇、 乙醇等水溶性有機溶劑及表面活性劑而得之水溶液,或以 能溶解本發明之組成物的各種有機溶劑爲顯像液。所使用 之顯像方法如,盛液法、浸液法、搖動浸漬法、淋液法等 適當方法。此時之顯像時間會因組成物之組成而異,例如 30至120秒。 已知先前之感放射線性樹脂組成物的顯像時間超過最 佳値20至25秒時,會造成圖型剝離,故需嚴格控制顯像 時間,但本發明之感放射線性樹脂組成物具有,超過最佳 顯像時間3 0秒以上仍可形成良好圖型,而能提升製品合 格率之優點。 -31 - (28) 200428021 (4 )加熱步驟 結束上述(3 )顯像步驟後,對形成圖型之薄 爲’例如進彳了流水洗淨之淸洗處理,更佳爲利用高 燈等全面照射放射線(後曝光),以進行薄膜中 1,2 -苯醌二疊氮化合物的分解處理。其後利用熱板 等加熱裝置對薄膜進行加熱處理(後烤處理),使 化。該後曝光步驟之曝光量較佳爲2,〇〇〇至5,000 ,後烤處理之加熱溫度爲120至250°C,較佳爲 25 0〇C。 加熱時間會因加熱機器種類而異,例如以熱板 熱處理時爲5至3 0分鐘,以烤箱進行加熱處理時;| 90分鐘。又,此時可使用2次以上加熱過程之進 法等。 如此可對應目的層間絕緣膜及微透鏡,而於基 上形成圖型狀薄膜。 所得之層間絕緣膜及微透鏡可由後述得知具有 合性、耐熱性、耐溶劑性及透明性等。 層間絕緣膜 上述所得之本發明層間絕緣膜因對基板具有良 性,且具有優良耐溶劑性、耐熱性及高透光率、低 ,故適用爲電子零件之層間絕緣膜。 膜較佳 壓水銀 殘存之 、烤箱 薄膜硬 J/ m2 150至 進行加 "〇至 階燒烤 板表面 優良密 好密合 電容率 -32- (29) (29)200428021 微透鏡 上述所得之本發明微透鏡因對基板具良好密合性,且 具有優良耐溶劑性、耐熱性及高透光率、良好流體形狀, 故適用爲固體攝影元件之微透鏡。 又,本發明之微透鏡形狀如圖1 ( a )所示,爲半凸 透鏡形狀。 【實施方式】 實施例 下面將以合成例及實施例更具體說明本發明,但本發 明非限於該例。 局分子量物(A)之合成例 合成例1 將2,2’-偶氮雙(2,4-二甲基戊腈)7重量份、二乙二 醇乙基甲基醚200重量份放入備有冷卻管及攪拌機之燒瓶 中,再加入1-(環己基氧基)乙基甲基丙烯酸酯40重量 份、苯乙烯5重量份、甲基丙烯酸縮水甘油酯45重量份 、2-羥乙基甲基丙烯酸酯1〇重量份及α-甲基苯乙烯二聚 物3重量份’以氮取代後開始緩慢攪拌。將溶液溫度升至 7〇°C後保持5小時,得含共聚物(Ad )之聚合物溶液。 共聚物(A-1)之聚苯乙烯換算重量平均分子量(Mw)爲 1 1,000。所得聚合物溶液之固體成分濃度爲31.6重量%。 -33- (30) (30)200428021 合成例2 將2,2,·偶氮雙(2,4-二甲基戊腈)7重量份、二乙二 醇乙基甲基醚200重量份放入備有冷卻管及攪拌機之燒瓶 中,再加入1-乙氧基乙基甲基丙烯酸酯40重量份、苯乙 烯5重量份、甲基丙烯酸縮水甘油酯45重量份、2-羥乙 基甲基丙烯酸酯10重量份及α -甲基苯乙烯二聚物3重量 份,以氮取代後開始緩慢攪拌。將溶液溫度升至70 °C後 保持5小時,得含共聚物(A-2 )之聚合物溶液。共聚物 (A-2)之聚苯乙烯換算重量平均分子量(Mw)爲11,〇〇〇 。所得聚合物溶液之固體成分濃度爲3 1 . 7重量%。 合成例3 將2,2’-偶氮雙(2,4-二甲基戊腈)7重量份、二乙二 醇乙基甲基醚200重量份放入備有冷卻管及攪拌機之燒瓶 中,再加入四氫dH-Dtt喃-2-基甲基丙烯酸酯40重量份、 苯乙烯5重量份、甲基丙烯酸縮水甘油酯45重量份、2-羥乙基甲基丙烯酸酯10重量份及α -甲基苯乙烯二聚物3 重量份,以氮取代後開始緩慢攬拌。將溶液溫度升至70 °C後保持5小時,得含共聚物(A-3 )之聚合物溶液。共 聚物(A-3 )之聚苯乙烯換算重量平均分子量(Mw )爲 1 1,0 0 0。所得聚合物溶液之固體成分濃度爲3 1.6重量%。 合成例4 將2,2’-偶氮雙(2,4-二甲基戊腈)10重量份、二乙 -34- (31) (31)200428021 二醇乙基甲基醚250重量份放入備有冷卻管及攪拌機之燒 瓶中,再加入苯乙烯5重量份、1-(環己基氧基)乙基甲 基丙烯酸酯22重量份、三環〔5.2.1.02,6〕癸-8-基甲基丙 烯酸酯2 8重量份、甲基丙烯酸縮水甘油酯4 5重量份及 α -甲基苯乙烯二聚物5重量份,以氮取代後開始緩慢攪 拌。將溶液溫度升至70 °C後保持4小時,得含共聚物( A-4)之聚合物溶液。共聚物(A-4)之聚苯乙烯換算重量 平均分子量(Mw)爲8,000。所得聚合物溶液之固體成分 濃度爲29.9重量%。 合成例5 將2,2’-偶氮雙(2,4-二甲基戊腈)6重量份、二乙二 醇乙基甲基醚200重量份放入備有冷卻管及攪拌機之燒瓶 中,再加入1-(環己基氧基)乙基甲基丙烯酸酯4〇重量 份、甲基丙烯酸縮水甘油酯27重量份、p-乙烯基苄基縮 水甘油醚29重量份、2-羥乙基甲基丙烯酸酯12重量份及 α -甲基苯乙烯二聚物3重量份,以氮取代後開始緩慢攪 拌。將溶液溫度升至70°C後保持4.5小時,得含共聚物( A-5 )之聚合物溶液。共聚物(A-5 )之聚苯乙烯換算重量 平均分子量(Mw)爲13,000。所得聚合物溶液之固體成 分濃度爲32.7重量%。 比較合成例1 將2,2,-偶氮雙(2,4-二甲基戊腈)10重量份、二乙 -35- (32) 200428021(Manufactured by Chemie), MEKOFA F142D, F172, F173, F183, F178, F191, F471 (the above are manufactured by Dainippon Ink Chemical Industry (Stock)), Frader FC-170C, FC-171, FC-430, FC-431 (the above is Sumitomo 3M (share) system), Safron S-112, S-113, S-141, S-145, S-382, SC-101, SC-103, SC-104, SC -105, SC-106 (Asahi Glass (stock) system), Aidenpu EF 3 01, 3 03, 3 5 2 (Shin Akita Kasei (stock) system), SH-28PA, SH-190, SH-193, SZ -6032, SF-842 8, DC-5 7, DC-190 (Eastlink (shares) system), etc. The above polysiloxane-based surfactants are, for example, Teresa polysiloxanes DC3PA, DC7PA, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, FC-1 265 -3 00 (the above are manufactured by Toren Co., Ltd.) , TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4452 (the above are manufactured by GE Toshiba Polysiloxane). The above nonionic surfactants are, for example, polyethylene oxide alkyl ethers such as polyethylene oxide lauryl ether, polyethylene oxide stearyl ether, and polyethylene oxide oleyl ether; polyepoxide Polyethylene oxide aryl ethers such as ethane octylphenyl ether, polyethylene oxide nonylphenyl ether; -25- (22) (22) 200428021 polyethylene oxide dilaurate, polycyclic ring Polyethylene oxide dialkyl esters such as ethylene oxide distearate, etc .; (meth) acrylic copolymers polyfuron No. 5 7, 95 (by Kyoeisha Chemical Co., Ltd.), etc. These surfactants can be used alone or in combination of two or more. The (G) surfactant is preferably 5 parts by weight or less, and more preferably 2 parts by weight or less with respect to 100 parts by weight of the high molecular weight substance (a). When it exceeds 5 parts by weight, the film obtained by 'coating the composition' tends to be rough. (Ii) Adhesive adjuvant In order to further improve the adhesion between the radiation-sensitive resin composition of the present invention and a substrate, (ii) an adjuvant adjuvant may be included. The bonding auxiliary agent is preferably a functional silane coupling agent, such as a silane coupling agent having a reactive substituent such as a carboxyl group, a methacryl group, an isocyanate group, or an epoxy group. Specific examples include trimethoxysilyl benzoic acid, r-methacryloxypropyltrimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, r-isocyanatepropyltriethoxy Silane, r-glycidoxypropyltrimethoxysilane, / 3-(3,4-epoxycyclohexyl) ethyltrimethoxysilane, etc. The amount of this adjuvant additive is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less based on 100 parts by weight of the high molecular weight substance (A). When the amount of the auxiliary agent exceeds 20 parts by weight, a development residue is liable to occur. Radiation-sensitive resin composition The method for preparing the radiation-sensitive resin composition of the present invention is to 'add the high molecular weight (A), (B) components described in the above -26- (23) (23) 200428021, and other optional additions as described above. The ingredients are evenly mixed. The use form of the radiation-sensitive resin composition of the present invention is preferably in the form of a solution dissolved in an appropriate solvent. The solvent for preparing the radiation-sensitive resin composition of the present invention is preferably a substance capable of uniformly dissolving the high-molecular-weight substances (A), (B) components and other components added arbitrarily without reacting with the components. Examples of the solvent include alcohols, ethers, glycol ethers, glycol alkyl ether acetates, diethylene glycols, propylene glycol monoalkyl ethers, propylene glycol alkyl ether acetates, and propylene glycol alkyls. Ether propionates, aromatic hydrocarbons, ketones, esters, etc. Specific alcohols such as methanol and ethanol; ethers such as tetrahydrofuran and the like; glycol esters such as ethylene glycol alkyl ether acetates such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; For example, methyl cellosolve acetate, ethyl cellosolve acetate, etc .; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol Dimethyl ether, diethylene glycol ethyl methyl ether, etc .; Propylene glycol monoalkyl ethers such as propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol propyl ether, propylene glycol butyl ether, etc .; propylene glycol alkyl ether acetic acid Esters such as propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate, etc .; propylene glycol alkyl ether propionates such as propylene glycol methyl Ether propionate, prop 27-27 (24) (24) 200428021 glycol ethyl ether propionate, propylene glycol propyl ether propionate, propylene glycol butyl ether propionate, etc .; aromatic hydrocarbons such as toluene, Xylene, etc .; Ketones, such as methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc .; Esters, such as' methyl acetate, acetic acid Ester, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl glycolate, hydroxy Ethyl acetate, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, 3 -Butyl hydroxypropionate, methyl 2-hydroxy-3-methylbutyrate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, ethoxylate Methyl acetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, propyl propoxyacetate, propoxy Butyl acetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butyl butoxyacetate, methyl 2-methoxypropionate, 2-methoxypropionate , Propyl 2-methoxypropionate, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate , 2-butyloxypropionic acid, 2-butoxypropionic acid Esters, ethyl 2-butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate Esters, Propyl 3-methoxypropionate, Butyl 3-methoxypropionate, Methyl 3-ethoxypropionate, Ethyl 3-ethoxypropionate, Propyl 3-ethoxypropionate Esters, Butyl 3-propoxypropionate, Methyl 3-propoxypropionate, Ethyl 3-propoxypropionate, Propyl 3-propoxypropionate-28- (25) (25) 200428021, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, butyl 3-butoxypropionate Esters, etc. In this solvent, preferred are glycol ethers, glycol alkyl ether acetates, esters, and diethylene glycols in terms of solubility, reactivity with each component, and ease of forming a coating film. Moreover, it can be used individually or in mixture of 2 or more types. When a solvent is used in the radiation-sensitive resin composition of the present invention, the use amount thereof is preferably 5 to 50% by weight based on the solid content of the composition (that is, the amount of the solvent portion removed from the entire composition). It is preferably 10 to 40% by weight. A Milliboar filter with a pore size of 0.2 // m is used to filter the composition solution obtained above. Formation of Interlayer Insulation Film and Microlens Next, a method for forming the interlayer insulation film and microlens of the present invention using the radiation-sensitive resin composition of the present invention will be described. The method for forming an interlayer insulating film and a microlens of the present invention includes at least the following steps. (1) A step of forming a coating film of the radiation-sensitive resin composition of the present invention on a substrate. (2) a step of irradiating at least a part of the coating film with radiation. (3) a developing step. (4) heating step. (1) Step -29- (26) (26) 200428021 forming a coating film of the radiation-sensitive resin composition of the present invention on a substrate This step (1) is 'applying the composition solution of the present invention on the substrate surface' Pre-baking is performed to remove the solvent to form a coating film of the radiation-sensitive resin composition. The types of substrates used in the present invention are, for example, glass substrates, silicon plates, and substrates having various metal layers formed on their surfaces. The method for applying the composition solution is not particularly limited, and appropriate methods such as a spray method, a roll coating method, a spin coating method, and a bar coating method can be used. In addition, the pre-baking conditions differ depending on the type of each component, the use ratio, and the like. For example, 30 seconds to 15 minutes at 60 to 110 ° C. When the interlayer insulating film is formed, the thickness of the coating film formed, that is, the thickness after pre-baking is preferably 3 to 6 // m, and when the microlens is formed, it is preferably 0.5 to 3 / zm. (2) Step of irradiating at least part of the coating film with radiation. This step (2) is that after the coating film formed by irradiating with radiation through a mask having a certain pattern, the imaging liquid is used for development processing to remove the radiation. Partially illuminated for mapping. The radiation used at this time includes ultraviolet rays, ultraviolet rays, X-rays, charged particle rays, and the like. The ultraviolet rays are, for example, g-line (wavelength 43.6 nm), i-line (wavelength 3 65 nm), and the like. Far ultraviolet rays such as KrF excimer laser. X-rays such as synchrotron radiation. Charged particle beams such as electron beams. Among these, ultraviolet rays are preferred, and radiation containing g rays and / or i rays is particularly preferred. The exposure is preferably 500 to 5,000 J / m2, and more preferably 750 to 3,000 J / m2. In addition, it is known that when using the previous radiation-sensitive resin composition -30- (27) (27) 200428021, the exposure required to form an interlayer insulating film is 1,500 J / m2, and the exposure required to form a microlens is 2,000 J / m2, but when using the linear resin composition of the present invention, even if the exposure amount for forming an interlayer insulating film is 1,500 J / m2 or less, the exposure amount for forming a microlens is 2,000 J / m2 In the following, the advantages of the required pattern can still be achieved. (3) the developing solution used in the developing process for the developing step, such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, η-propylamine, diamine Ethylamine, diethylaminoethanol, di-η-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium Hydroxide, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5_nonane and other bases Like aqueous solution. In addition, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol and ethanol and a surfactant to the alkaline aqueous solution, or using various organic solvents capable of dissolving the composition of the present invention as a developing solution. Appropriate methods such as liquid holding method, liquid immersion method, shaking immersion method, and leaching method are used. The development time at this time varies depending on the composition of the composition, for example, 30 to 120 seconds. It is known that when the development time of the previous radiation-sensitive resin composition exceeds the optimal value of 20 to 25 seconds, pattern peeling may occur, so the development time needs to be strictly controlled. However, the radiation-sensitive resin composition of the present invention has, If the optimal development time exceeds 30 seconds, a good pattern can still be formed, and the advantage of product qualification rate can be improved. -31-(28) 200428021 (4) After the heating step ends (3) above the developing step, the thinness of the formed pattern is' e.g., the washing process of washing with running water, and it is better to use a high-light, etc. Radiation (post-exposure) is irradiated to decompose the 1,2-benzoquinonediazide compound in the film. Thereafter, the film is subjected to a heat treatment (post-baking treatment) using a heating device such as a hot plate, and the film is chemically processed. The exposure amount in this post-exposure step is preferably 2,000 to 5,000, and the heating temperature of the post-baking treatment is 120 to 250 ° C, and more preferably 2500 ° C. The heating time varies depending on the type of heating machine, such as 5 to 30 minutes for heat treatment with a hot plate, and heat treatment with an oven; | 90 minutes. In this case, a method of heating two or more times may be used. In this way, a patterned film can be formed on the substrate corresponding to the interlayer insulating film and the microlens. The obtained interlayer insulating film and microlenses will be described later as having a combination, heat resistance, solvent resistance, transparency, and the like. Interlayer insulating film The interlayer insulating film of the present invention obtained as described above has good properties for a substrate, and has excellent solvent resistance, heat resistance, high light transmittance, and low, and is therefore suitable as an interlayer insulating film for electronic parts. The film is preferably pressurized with mercury residue, the oven film is hard J / m2 150 to be added, and the surface of the grill plate is excellent and tight. The permittivity is -32- (29) (29) 200428021 The microlens of the present invention obtained above The microlens has good adhesion to the substrate, and has excellent solvent resistance, heat resistance, high light transmittance, and good fluid shape, so it is suitable as a microlens for a solid-state imaging element. The shape of the microlens of the present invention is a semi-convex lens shape as shown in Fig. 1 (a). [Embodiments] Examples The present invention will be described in more detail with synthesis examples and examples, but the present invention is not limited to this example. Synthesis Example of Local Molecular Weight (A) Synthesis Example 1 Put 7 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether. In a flask equipped with a cooling tube and a stirrer, 40 parts by weight of 1- (cyclohexyloxy) ethyl methacrylate, 5 parts by weight of styrene, 45 parts by weight of glycidyl methacrylate, and 2-hydroxyethyl were added. 10 parts by weight of methacrylic acid ester and 3 parts by weight of α-methylstyrene dimer were substituted with nitrogen, and then slowly stirred. The temperature of the solution was raised to 70 ° C. and kept for 5 hours to obtain a polymer solution containing a copolymer (Ad). The polystyrene equivalent weight average molecular weight (Mw) of the copolymer (A-1) was 1 1,000. The solid content concentration of the obtained polymer solution was 31.6% by weight. -33- (30) (30) 200428021 Synthesis Example 2 Put 7 parts by weight of 2,2, · azobis (2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether. Into a flask equipped with a cooling tube and a stirrer, add 40 parts by weight of 1-ethoxyethyl methacrylate, 5 parts by weight of styrene, 45 parts by weight of glycidyl methacrylate, and 2-hydroxyethylformate 10 parts by weight of methacrylate and 3 parts by weight of α-methylstyrene dimer. After the substitution with nitrogen, stirring was started slowly. The temperature of the solution was raised to 70 ° C and kept for 5 hours to obtain a polymer solution containing a copolymer (A-2). The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer (A-2) was 11,000. The solid content concentration of the obtained polymer solution was 31.7% by weight. Synthesis Example 3 7 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether were placed in a flask equipped with a cooling tube and a stirrer , And then add 40 parts by weight of tetrahydrodH-Dtt-2-yl methacrylate, 5 parts by weight of styrene, 45 parts by weight of glycidyl methacrylate, 10 parts by weight of 2-hydroxyethyl methacrylate, and The α-methylstyrene dimer was 3 parts by weight, and it was slowly stirred after being substituted with nitrogen. The temperature of the solution was raised to 70 ° C and then kept for 5 hours to obtain a polymer solution containing a copolymer (A-3). The polystyrene equivalent weight average molecular weight (Mw) of the copolymer (A-3) was 1 1,0 0. The solid content concentration of the obtained polymer solution was 31.6% by weight. Synthesis Example 4 10 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) and 250 parts by weight of diethyl-34- (31) (31) 200428021 glycol ethyl methyl ether Into a flask equipped with a cooling tube and a stirrer, add 5 parts by weight of styrene, 22 parts by weight of 1- (cyclohexyloxy) ethyl methacrylate, and tricyclo [5.2.1.02,6] dec-8- 28 parts by weight of methacrylic acid ester, 4 parts by weight of glycidyl methacrylate, and 5 parts by weight of α-methylstyrene dimer. Substituting with nitrogen, stirring was started slowly. The temperature of the solution was raised to 70 ° C and then kept for 4 hours to obtain a polymer solution containing a copolymer (A-4). The polystyrene equivalent weight average molecular weight (Mw) of the copolymer (A-4) was 8,000. The solid content concentration of the obtained polymer solution was 29.9% by weight. Synthesis Example 5 6 parts by weight of 2,2'-azobis (2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether were placed in a flask equipped with a cooling tube and a stirrer Then, 40 parts by weight of 1- (cyclohexyloxy) ethyl methacrylate, 27 parts by weight of glycidyl methacrylate, 29 parts by weight of p-vinylbenzyl glycidyl ether, and 2-hydroxyethyl After 12 parts by weight of methacrylate and 3 parts by weight of α-methylstyrene dimer, nitrogen was substituted and the stirring was started slowly. The temperature of the solution was raised to 70 ° C and kept for 4.5 hours to obtain a polymer solution containing a copolymer (A-5). The polystyrene equivalent weight average molecular weight (Mw) of the copolymer (A-5) was 13,000. The solid content of the obtained polymer solution was 32.7% by weight. Comparative Synthesis Example 1 10 parts by weight of 2,2, -azobis (2,4-dimethylvaleronitrile), diethylene -35- (32) 200428021

二醇乙基甲基醚2 5 0重量份放入備有冷卻管及攪拌機之燒 瓶中,再加入苯乙烯5重量份、甲基丙烯酸22重量份、 二ί哀〔5.2.1.0 ’〕癸-8 -基甲基丙燃酸醋28重量份、甲基 丙烯酸縮水甘油酯45重量份及α -甲基苯乙烯二聚物5重 量份,以氮取代後開始緩慢攪拌。將溶液溫度升至7 0 °C 後保持4小時,得含共聚物(a -1 )之聚合物溶液。共聚 物(a-1)之聚苯乙烯換算重量平均分子量(Mw)爲 8,000。所得聚合物溶液之固體成分濃度爲29.8重量。/〇。 〔調製感放射線性樹脂組成物〕 實施例12 50 parts by weight of glycol ethyl methyl ether was placed in a flask equipped with a cooling tube and a stirrer, and then 5 parts by weight of styrene, 22 parts by weight of methacrylic acid, and two [5.2.1.0 '] dec- 28 parts by weight of 8-methylmethylpropionate, 45 parts by weight of glycidyl methacrylate, and 5 parts by weight of α-methylstyrene dimer. Substitute with nitrogen and start stirring slowly. The temperature of the solution was raised to 70 ° C. and maintained for 4 hours to obtain a polymer solution containing a copolymer (a -1). The polystyrene equivalent weight average molecular weight (Mw) of the copolymer (a-1) was 8,000. The solid content concentration of the obtained polymer solution was 29.8 weight. / 〇. [Modulated Radiation Sensitive Resin Composition] Example 1

將(A )成分之上述合成例1所得含聚合物(A -1 ) 之溶液相當於共聚物(A-1 ) 100重量份(固體成分)的 量,及(B)成分之4,7-二-η-丁氧基-1-萘基四氫噻吩三氟 甲烷磺酸鹽(Β -1 ) 5重量份溶解於二乙二醇甲基乙基醚 ,使固體成分濃度爲30重量%後,以口徑0.2 # m之膜濾 器過濾,得感放射線性樹脂組成物溶液(S-1 )。 實施例2至12 除了依表1所示改變高分子量物(A)及(B)成分 之種類及量外,其他同實施例1之方法,得感放射線性樹 脂組成物溶液(S-2 )至(S-12 )。 又,實施例7至12中添加(C)成分之1,2-苯醌二疊 氮化合物。 -36- (33) (33)200428021 比較例1 將比較合成例1所得含共聚物(a-1 )之溶液相當於 共聚物(a-Ι ) 100重量份(固體成分)的量,及1,2-萘醌 二疊氮化合物之4,4’-〔1-〔4-〔1-〔4-羥苯基〕-1-甲基乙 基〕苯基〕亞乙基〕雙酚(1·〇莫耳)與1,2-萘醌二疊氮-5-磺酸氯化物(2.0莫耳)之縮合物30重量份,溶解於二 乙二醇甲基乙基醚中,使固體成分濃度爲30重量%後, 以口徑0.2 // m之膜濾器過濾,得感放射線性樹脂組成物 溶液(S -1 )。 又,表1中成分代號係表示下列化合物。 (B-l) : 4,7-二-η-丁氧基-1-萘基四氫噻吩三氟甲烷 磺酸鹽 (Β-2) :2-(4-甲氧基-/3-苯乙烯基)-4,6_雙(三 氯乙基)-s -三嗪 (Β-3) : 4,7 -— -經基-1-萘基四氫噻吩三氟甲院擴酸 鹽 (C-1) :4,4’-〔1-〔4-〔1-〔4-羥基苯基〕-1-甲基 乙基〕苯基〕亞乙基〕雙酚(1·〇莫耳)與丨,2_萘醌二疊 氮-5 -磺酸氯化物(1 · 〇莫耳)之縮合物 (C-2) : 2,3,4,4’_四羥基二苯甲酮(1〇莫耳)與 1,2 -萘酷二疊氮-5-碳酸酷(2.44莫耳) (C-3) :4,4’-〔1-〔4-〔1-〔4-羥苯基〕-1-甲基乙 基〕苯基〕亞乙基〕雙酚(1.0莫耳)與1,2-萘醌二疊氮- -37- (34) 200428021 5-磺酸氯化物(2.0莫耳)之縮合物 (C-4 ) :4,4,-〔1-〔4-〔1-〔4_羥苯基〕-1-甲基乙 基〕苯基〕亞乙基〕雙酚(1.0莫耳)與1,2-萘醌二疊氮-4-磺酸氯化物(2.0莫耳)之縮合物 -38- 200428021 i嗽 (C)成分 量(重量份) 1 1 1 1 1 1 ο o (N 種類 1 1 1 1 1 1 (C-l) (C-l) (C-l) (C-2) (C-3) (C-4) (C-3) (B)成分 量(重量份) 〇 〇 (N m o 1 種類 (B-1) (Β-1) (Β-1) (Β-1) (Β-1) (Β-1) (B-1) (B-2) (B-3)丨 (B-1) (B-1) (B-1) 1 高分子量物(A) 量(重量份) 〇 Η 〇 〇 τ—^ 〇 1—Η 〇 ο r-H o r-H o r-H o r-H o H o t—H o o ΐΓ·Η 種類 (Α-1) (Α-2) (Α-3) (Α-1) (Α-4) ί (Α-3) (A-l) (A-l) (A-l) (A-l) (A-l) (A-l) (a-l) 組成物 (S-1) (S-2) (S-3) (S-4) (S-5) (S-6) (S-7) (S-8) (S-9) I (S-10) (S-ll) (S-12) (s-1) 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 實施例7 實施例8 實施例9 實施例10 實施例n 實施例12 比較例1 -39- (36) (36)200428021 〔評估層間絕緣膜性能〕 實施例13至24、比較例2至4 使用上述所得各感放射線性樹脂組成物,評估下列所 得層間絕緣膜之各種特性。又,比較例2至3所使用之組 成物爲,m/ p-甲酚酚醛淸漆與1,2-萘醌二疊氮-5-磺酸酯 之組成物市售品(東京應化(股)製)。 〔評估靈敏度〕 利用旋轉機將表3所示組成物塗布於矽基板上,再以 90 °C之熱板預烤2分鐘,得膜厚3.0//m之塗膜。其後介 有具一定圖型之圖罩利用佳能(股)製pLA_501F曝光機 (超高壓水銀燈)以改變曝光時間方式對所得塗膜進行曝 光,再以表2所示濃度之四甲基銨羥化物水溶液利用25 t、90秒之盛液法顯像。以超純水進行1分鐘流水洗淨 後乾燥,而於矽板上形成圖型。又,測定完全溶解3.0 // m之線與空間(1 0對1 )中空間圖型所需的曝光量,並以 該値爲靈敏度,結果如表2所示。又,該値爲1,5 00 J / m2以下時視爲良好靈敏度。 〔評估顯像界限〕 利用旋轉機將表2所不組成物塗布於砂基板上,再以 9〇°C熱板預烤2分鐘,得膜厚3.0// m之塗膜。其後介有 具0 · 3 // m之線與空間(1 0對1 )圖型之圖罩利用佳能( 股)製PLA-5 01F曝光機(超高壓水銀燈),以相當於上 -40- (37) (37)200428021 述「評估靈敏度」測定靈敏度之曝光量對所得塗膜進行曝 光,再以表2所示濃度之四甲基銨羥化物水溶液利用25 °C盛液法進行顯像。以超純水進行1分鐘流水洗淨後乾燥 ,而於矽板上形成圖型。又,以此時形成3 // m線幅所需 之顯像時間爲最佳顯像時間,結果如表2所示。測定由最 佳顯像時間起持續顯像時3 ·0// m線圖剝離之時間以作爲 顯像界限,結果如表3所示。該値爲3 0秒以上時視爲顯 像界限良好。 〔評估保存安定性〕 調製後將各組成物保存於室溫(23 °C )下,1 5天後 同上述評估靈敏度項,測定完全溶解3 ·0// m之線與空間 (1 0對1 )中空間圖型所需曝光量,再算出此時所需曝光 量之增加率,結果如表2所示。該値爲5 %以下時視爲保 存安定性良好。 〔評估耐溶劑性〕 利用旋轉機將表2所示組成物塗布於矽基板上,再以 90 °C熱板預烤2分鐘,得膜厚3.0// m之塗膜。利用佳能 (股)製PLA-501F曝光機(超高壓水銀燈)以積算照射 量3,0 00 J/ m2對所得塗膜進行曝光,再將矽基板移入淨 化烤箱內以22(TC加熱1小時,得硬化膜。測定所得硬化 膜之膜厚(T 1 )。將形成硬化膜之矽基板浸漬於控溫爲 7 0°C之二甲基亞碾中,20分鐘後測定硬化膜之膜厚(tl ) -41 - (38) (38)200428021 ,再算出浸漬所造成的膜厚變化率{ I 11 _ T1 I / T1 } x 1 0 0〔%〕’結果如表3所示。該値爲5 %以下時視爲耐 溶劑性良好。 又’評估耐溶劑性時所形成之膜無需圖型下,可省略 放射線照射步驟及顯像步驟,而僅進行形成塗膜步驟、後 烤步驟及加熱步驟後供評估。 〔評估耐熱性〕 同上述評估耐溶劑項形成硬化膜後,測定所得硬化膜 之膜厚(Τ2 )。將該硬化膜基板移入淨化烤箱中以24(TC 追加烘烤1小時後,測定硬化膜之膜厚(t2 ),再算出追 加烘烤所造成的膜厚變化率{ | t2-T2 | / T2 } X 100〔 % 〕,結果如表3所示。該値爲5 %以下時視爲耐熱性良好 〔評估透明性〕 除了以玻璃基板「柯尼故705 9 (柯尼故公司製)」 取代矽基板外,其他同上述評估耐溶劑性項,於玻璃基板 上形成硬化膜。利用分光光度計「1 5 0-20型雙光束(股 )日立製作所製」)以波長400至800nm測定具有硬化 膜之玻璃基板的光線透光率。結果此時之最低光線透光率 如表3所示。該値爲95 %以上時視爲透明性良好。 -42- 200428021 <N嗽 保存安定性 (%) Η d m ο (N Ο r-H r-H (N 〇 Η 〇 (N 〇 m 〇 m d (N 00 (Ν Ο m ο 顯像界限 顯像界限 (秒) Ο ο ο Ο ο 〇 〇 〇 〇 Ο (Ν 最佳顯像時間 (秒) g s § 〇 § 〇 § § 評估靈敏度 靈敏度 (J/m2 ) 1000 1000 1000 ο 1400 1000 1000 1000 1 1000 1000 1000 1000 900 2200 2200 顯像液濃度 (重量%) 寸 ο 寸 ο 寸 d 2.38 寸 〇 寸 d 寸 〇 寸 〇 寸 〇 寸 〇 寸 d 寸 ο 寸 ο 2.38 2.38 組成物 (s-1) (S-2) (S-3) (S-4) (S-5) (S-6) (S-7) (S-8) (S-9) (S-10) (S-11) (S-12) Τ-Η OFPR-800 OFPR-5000 實施例13 實施例Η 實施例15 實施例16 實施例17 實施例18 實施例19 實施例20 實施例21 實施例22 實施例23 實施例24 比較例2 比較例3 比較例4 -43- 200428021 £ 透明性 (%) 00 〇\ 00 〇\ 00 00 ο 00 00 vo C\ VO 〇> m 00 (N 〇〇 耐熱性 膜厚變化率 (%) cn m (N cn m <N (N <N (N CN (N m 硬化後膜厚 (//m) 寸 (N 寸 (N CN m (N 寸 CN in (N CN 寸 csi 寸 (N m (N 寸 CN (N o (N 耐溶劑性 膜厚變化率 (%) 寸 寸 寸 寸 寸 寸 m m m cn m 寸 〇 CN 硬化後膜厚 (//m) 寸 (N 寸 (N (N m (N 寸 <N (N to (N 寸 (N 寸 CN m 寸 (N (N Η o (N Os 組成物 (S-1) (S-2) (S-3) (S-4) (S-5) (S-6) (S-7) (S-8) (S-9) (S-10) (s-ll) (S-12) (s-1) i OFPR-800 OFPR-5000 實施例13 實施例Μ 實施例15 實施例16 實施例Π 實施例18 實施例19 實施例20 實施例21 實施例22 實施例23 實施例24 ' 比較例2 比較例3 比較例4 -44- (41) (41)200428021 〔評估微透鏡性能〕 實施例2 5至3 6、比較例5至7 使用上述所得各感放射線性樹脂組成物,評估下列所 得微透鏡之各特性。又,評估耐熱性及透明性能請參考上 述層間絕緣膜之評估性能的結果。 另外比較例6及7所使用之組成物爲,m-/ p-甲酚酚 醛淸漆與1,2-萘醌二疊氮-5-磺酸酯之組成物市售品(東 京應化(股)製)。 〔評估靈敏度〕 利用旋轉機將表4所示組成物塗布於矽基板上,再以 90 °C熱板預烤2分鐘,得膜厚3.0//m之塗膜。其後介有 具一定圖型之圖罩利用尼康(股)製NSR 1 75 5 i7A縮小投 影曝光機(ΝΑ = 0·50,λ=3 65 ηιη)以變化曝光時間方式, 對所得塗膜進行曝光,再以表4所示濃度之四甲基銨羥化 物水溶液利用2 5 °C、1分鐘之盛液法進行顯像。以水淸洗 後乾燥,而於矽板上形成圖型。測定形成0 · 8 // m線與空 間(1對1 )之空間線幅爲〇. 8 μ m所需曝光時間,並以該 値爲靈敏度,結果如表4所示。該値爲2,000 J / m2以下 時視爲靈敏度良好。 〔評估顯像界限〕 利用旋轉機將表4所示組成物塗布於矽基板上,再以 9 〇 °C熱板預烤2分鐘,得膜厚3.0 // m之塗膜。其後介有 -45- (42) (42)200428021 具4.0//m點與2.0//m空間圖型之圖罩,利用尼康(股) 製 NSR 1 75 5 i7A 縮小投影曝光機(ΝΑ = 0·50,;l=3 65nm) 以相當於上述評估靈敏度項測定靈敏度之曝光量,對所得 塗膜進行曝光,再以表4所示濃度之四甲基銨羥化物水溶 液利用2 5 °C、1分鐘之盛液法進行顯像。以水淸洗後乾燥 ,而於矽板上形成圖型。又,以形成0.8 // m線與空間圖 型(1對1 )之空間線幅爲0.8 // m時所需顯像時間爲最佳 顯像時間,結果如表4所示。另外,測定最佳顯像時間起 持續顯像至幅0.8 // m圖型剝離所需時間(顯像界限), 結果顯像界限如表4所示。該値爲3 0秒以上時視爲顯像 界限良好。 〔評估保存安定性〕 調製後將各組成物保存於室溫(2 3 t )下,1 5天後 測定上述評估靈敏度項中4 · 0 // m點與2 · 0 // m空間圖型完 全溶解所需曝光量,再算出此時所需曝光量之增加率,結 果如表4所示。該値爲5%以下時視爲保存安定性良好。 〔評估耐溶劑性〕 利用旋轉機將表4所示組成物塗布於矽基板上,再以 9 0°C熱板預烤2分鐘,得膜厚3·0/ζ m之塗膜。利用佳能 (股)製PLA-501F曝光機(超高壓水銀燈)以積算照射 量3,0 0 0 J/ m2對所得塗膜進行曝光後,將所得矽基板移 入淨化烤箱中以220 °C加熱1小時,得硬化膜後,測定硬 -46 - (43) 200428021 化膜之膜厚(T3)。將形成硬化膜之矽基板浸 5 0 °C之異丙基醇中’ 1 〇分鐘後測定硬化膜之聘 再算出浸漬所造成的膜厚變化率{ I t3-T3 | 〔%〕,結果如表4所示。 又,評估耐溶劑性時所形成之膜無需圖型 放射線照射步驟及顯像步驟,而僅進行形成塗 烤步驟及加熱步驟後供評估。 〔評估微透鏡形狀〕 利用旋轉機將表4所示組成物塗布於矽基 9 〇°C熱板預烤2分鐘,得膜厚3.0 // m之塗膜 具4.0 // m點與2.0 // m空間圖型之圖罩,利用 製NSR 1 75 5 i7A縮小投影曝光機(ΝΑ = 0·50, 以相當於上述評估靈敏度項測定靈敏度之曝光 塗膜進行曝光,再以表4的評估靈敏度項中顯 甲基銨羥化物水溶液利用25 t、1分鐘之盛液 。以水淸洗後乾燥,而於矽板上形成圖型。接 (股)製PLA-501F曝光機(超高壓水銀燈) 量3,000 J/m2進行曝光後,以160°C熱板加美 再以23 0 °C加熱10分鐘,得圖型爲流動熔體之 所得微透鏡之底部(連接基板面)尺寸及 表4所示。微透鏡底部之尺寸超過4.0/zm但1 時視爲良好。又,該尺寸爲5.0 // m以上時, 爲接觸狀態而不宜。剖面形狀如圖1所示模式 漬於控溫爲 ;厚(t3 ), / T3 } χΙΟΟ 下,可省略 膜步驟、後 板上,再以 。其後介有 尼康(股) Λ =365nm) 量,對所得 像濃度之四 法進行顯像 著利用佳能 以積算照射 $ 1 0分鐘’ 微透鏡。 剖面形狀如 氏於5 · 0 // m 接鄰之透鏡 圖,其中如 -47- (44) 200428021 (a )之半凸透鏡形狀時視爲良好,如(b )之略台形時視 爲不良。 -48- 200428021 寸漱 微透鏡形狀 剖面形狀 8 $ g g 底部之尺寸 (//m) r-H cn 寸 ▼—Η r*H (N 寸· r-H 寸· 寸· 卜 寸 VO 寸· vq 寸 寸· 寸· 5.0超 5.0超 耐溶劑性 膜厚變化率 (%) Η <N (N r-H (N r-H (N (N r~H r-H r-H 00 o 硬化後膜厚 (//m) 寸 CN 寸 (N ITi (N m (N* 寸 (N (N (N 寸 (N 寸 οά m 寸 CN (N 口 ο (N C) 保存 安定性 (%) cn Ο cn (N o r—1 (N 〇 T—H rn (N 〇 rn o (N 00 <N 〇 cn d 顯像界限 顯像界限 (秒) 〇 ο 〇 o O 〇 〇 〇 〇 o (N 宕 最佳顯像時間 (秒) § § § o § § o § § S 評估靈敏度 靈敏度 (J/m2) 1100 1050 1100 1000 1500 1100 1100 1050 1050 1100 1050 1100 1000 2800 3000 顯像液濃度 (重暈%) 寸 d 寸 d 寸 O 2.38 寸 d 寸 d 寸 o 寸 d 寸 o 寸 o 寸 o 寸 o 寸 d 2.38 2.38 組成物 r-H 也 也 rn (S-4) (S-5) ί (S-6) (S-8) (S-9) (S-10) r-H f 11 H (S-12) r-H OFPR-800 OFPR-5000 實施例25 實施例26 實施例27 實施例28 實施例29 實施例30 實施例31 實施例32 實施例33 實施例34 實施例35 實施例36 1 比較例5 比較例6 比較例7 -49- (46)200428021 發明效果 本發明 性及顯像步 之顯像界限 間絕緣膜時 成微透鏡時 的感放射線 又,本 層間絕緣膜 絕緣膜及微 【圖式簡單 圖1爲 可提供具有高感放射線靈敏度、良好保存安定 驟中既使超過最佳顯像時間仍能形成良好形狀 ,且易形成密合性優良之圖型狀薄膜及形成層 可形成高透光率、低電容率之層間絕緣膜,形 可形成高透光率、具有良好熔體形狀之微透鏡 性樹脂組成物。 發明可提供使用上述感放射線性樹脂組成物成 及微透鏡之方法,及利用該方法所形成之層間 透鏡。 說明】 ,微透鏡之剖面形狀的模式圖。 -50-The amount of the polymer (A -1) -containing solution obtained in the above Synthesis Example 1 of the component (A) was equivalent to 100 parts by weight of the copolymer (A-1) (solid content), and 4,7- of the component (B) 5 parts by weight of di-η-butoxy-1-naphthyltetrahydrothiophene trifluoromethanesulfonate (B -1) was dissolved in diethylene glycol methyl ethyl ether so that the solid content concentration was 30% by weight Filter through a membrane filter with a diameter of 0.2 # m to obtain a radiation-sensitive resin composition solution (S-1). Examples 2 to 12 Except that the types and amounts of the high molecular weight substances (A) and (B) were changed as shown in Table 1, the same method as in Example 1 was used to obtain a radiation-sensitive resin composition solution (S-2). To (S-12). In addition, in Examples 7 to 12, the 1,2-benzoquinonediazide compound as the component (C) was added. -36- (33) (33) 200428021 Comparative Example 1 The amount of the copolymer (a-1) -containing solution obtained in Comparative Synthesis Example 1 is equivalent to 100 parts by weight of the copolymer (a-1) (solid content), and 1 2,4-naphthoquinonediazide compound 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylene] bisphenol (1 · 〇mole) and 30 parts by weight of a condensate of 1,2-naphthoquinonediazide-5-sulfonic acid chloride (2.0 mol), dissolved in diethylene glycol methyl ethyl ether to make solid content After the concentration was 30% by weight, it was filtered through a membrane filter with a diameter of 0.2 // m to obtain a radiation-sensitive resin composition solution (S -1). In addition, the component codes in Table 1 represent the following compounds. (Bl): 4,7-di-n-butoxy-1-naphthyltetrahydrothiophene trifluoromethanesulfonate (B-2): 2- (4-methoxy- / 3-styryl ) -4,6_bis (trichloroethyl) -s-triazine (B-3): 4,7 --- --- Viatyl-1-naphthyltetrahydrothiophene trifluoromethane dilate salt (C- 1): 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylene] bisphenol (1.0 mole) and 丨Condensate of 2,2-naphthoquinonediazide-5 -sulfonic acid chloride (1.0 mol): 2,3,4,4'_tetrahydroxybenzophenone (10 mol Ear) and 1,2-naphthoyldiazide-5-carbonate (2.44 moles) (C-3): 4,4 '-[1- [4- [1- [4-hydroxyphenyl]- 1-methylethyl] phenyl] ethylene] bisphenol (1.0 mole) and 1,2-naphthoquinonediazide--37- (34) 200428021 5-sulfonic acid chloride (2.0 mole) Condensate (C-4): 4,4,-[1- [4- [1- [4- [hydroxyphenyl] -1-methylethyl] phenyl] ethylene] bisphenol (1.0 mo Ear) and 1,2-naphthoquinonediazide-4-sulfonic acid chloride (2.0 mol) -38- 200428021 i (C) component amount (parts by weight) 1 1 1 1 1 1 ο o (N type 1 1 1 1 1 1 (Cl) (C -l) (Cl) (C-2) (C-3) (C-4) (C-3) (B) Component amount (part by weight) 〇〇 (N mo 1 Kind (B-1) (Β- 1) (B-1) (B-1) (B-1) (B-1) (B-1) (B-2) (B-3) 丨 (B-1) (B-1) (B -1) 1 Amount (parts by weight) of high molecular weight (A) 〇Η 〇〇τ— ^ 〇1—Η 〇ο rH o rH o rH o rH o H ot—H oo ΐΓ · Η Species (Α-1) (Α-2) (Α-3) (Α-1) (Α-4) ί (Α-3) (Al) (Al) (Al) (Al) (Al) (Al) (al) Composition ( S-1) (S-2) (S-3) (S-4) (S-5) (S-6) (S-7) (S-8) (S-9) I (S-10) (S-ll) (S-12) (s-1) Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Example n Example 12 Comparative Examples 1 -39- (36) (36) 200428021 [Evaluation of interlayer insulating film performance] Examples 13 to 24 and Comparative Examples 2 to 4 Using each of the radiation-sensitive resin compositions obtained above, the following interlayer insulating films were evaluated. Various characteristics. In addition, the composition used in Comparative Examples 2 to 3 was a commercially available product of a composition of m / p-cresol novolak lacquer and 1,2-naphthoquinonediazide-5-sulfonate (Tokyo Ina ( Share) system). [Evaluation of sensitivity] The composition shown in Table 3 was coated on a silicon substrate by a rotary machine, and pre-baked on a hot plate at 90 ° C for 2 minutes to obtain a coating film having a film thickness of 3.0 // m. Subsequently, a mask with a certain pattern was used to expose the resulting coating film by using a pLA_501F exposure machine (ultra-high pressure mercury lamp) made by Canon (Ultra High Pressure Mercury Lamp) to change the exposure time. The aqueous solution of the compound was developed by a liquid holding method of 25 t and 90 seconds. Rinse with ultrapure water for 1 minute, then dry it to form a pattern on the silicon plate. In addition, the amount of exposure required to completely dissolve the spatial pattern in the 3.0 // m line and space (10 to 1) was measured, and this 値 was used as the sensitivity. The results are shown in Table 2. In addition, when this chirp is 1,500 J / m2 or less, it is regarded as good sensitivity. [Evaluation of development limit] The composition not shown in Table 2 was coated on a sand substrate by a rotary machine, and pre-baked on a hot plate at 90 ° C for 2 minutes to obtain a coating film having a film thickness of 3.0 // m. Then there is a mask with a line and space of 0 · 3 // m (10 to 1) pattern. Using a PLA-5 01F exposure machine (ultra-high pressure mercury lamp) made by Canon (stock), it is equivalent to above -40. -(37) (37) 200428021 Expose the obtained coating film with the exposure amount for measuring the sensitivity as described in "Evaluation Sensitivity", and then develop the solution with a 25 ° C solution using a tetramethylammonium hydroxide aqueous solution with the concentration shown in Table 2 . Rinse with ultrapure water for 1 minute, and then dry it to form a pattern on the silicon plate. In addition, the development time required to form a 3 // m line width at this time is the optimal development time, and the results are shown in Table 2. The time at which the 3 · 0 // m line graph was peeled off during the continuous development from the optimal development time was measured as the development limit. The results are shown in Table 3. When the threshold is 30 seconds or more, the imaging boundary is considered to be good. [Evaluation of storage stability] After the preparation, each composition was stored at room temperature (23 ° C), and after 15 days, the same evaluation sensitivity item as above was used to determine the line and space (3 0 // m) that completely dissolved. 1) The required exposure amount of the medium space pattern, and then calculate the increase rate of the required exposure amount at this time. The results are shown in Table 2. When the content is less than 5%, it is considered that the storage stability is good. [Evaluation of Solvent Resistance] The composition shown in Table 2 was coated on a silicon substrate with a rotary machine, and pre-baked on a hot plate at 90 ° C for 2 minutes to obtain a coating film having a film thickness of 3.0 // m. A PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc. was used to expose the resulting coating film at a total exposure of 3,000 J / m2, and the silicon substrate was moved into a purification oven and heated at 22 (TC for 1 hour, A hardened film was obtained. The film thickness (T 1) of the obtained hardened film was measured. The silicon substrate on which the hardened film was formed was immersed in a dimethyl sub-mill at a controlled temperature of 70 ° C, and the film thickness of the hardened film was measured after 20 minutes ( tl) -41-(38) (38) 200428021, and then calculate the film thickness change rate {I 11 _ T1 I / T1} x 1 0 0 [%] 'caused by immersion. The results are shown in Table 3. The value is When the solvent resistance is less than 5%, the solvent resistance is considered to be good. Also, the film formed when evaluating the solvent resistance does not need a pattern, and the radiation irradiation step and the development step can be omitted, and only the coating film forming step, post-baking step, and heating can be performed. Evaluation is performed after the steps. [Evaluation of heat resistance] After forming a cured film in the same way as the above-mentioned evaluation of the solvent resistance, the film thickness (T2) of the obtained cured film is measured. The cured film substrate is transferred to a cleaning oven and baked at 24 (TC for an additional hour). Then, the film thickness (t2) of the cured film is measured, and then the film thickness change due to additional baking is calculated. The conversion rate {| t2-T2 | / T2} X 100 [%], and the results are shown in Table 3. When the 値 is 5% or less, it is considered to be good in heat resistance [evaluation of transparency] except for the glass substrate "Konyi 705" 9 (manufactured by Konecranes Co., Ltd.) "instead of a silicon substrate, the same evaluation of solvent resistance as above was used to form a hardened film on a glass substrate. Using a spectrophotometer" 150-20 dual-beam (strand) "manufactured by Hitachi ”) The light transmittance of the glass substrate with a cured film is measured at a wavelength of 400 to 800 nm. As a result, the minimum light transmittance at this time is shown in Table 3. When the 値 is 95% or more, the transparency is considered good. -42 -200428021 < Storage stability (%) Η dm ο (N Ο rH rH (N 〇Η 〇 (N 〇m 〇md (N 00 (N 〇 m) ο Development limit (sec) ο ο ο ο Ο ο 〇〇〇〇〇 (Ν Best development time (seconds) gs § 〇§ 〇§ § Evaluation sensitivity (J / m2) 1000 1000 1000 ο 1400 1000 1000 1000 1 1000 1000 1000 1000 900 2200 2200 Display Image liquid concentration (% by weight) inch ο inch ο inch d 2.38 inch 〇 inch d inch 〇 inch 〇 inch Inch 〇 Inch d Inch ο Inch ο 2.38 2.38 Composition (s-1) (S-2) (S-3) (S-4) (S-5) (S-6) (S-7) (S- 8) (S-9) (S-10) (S-11) (S-12) T-Η OFPR-800 OFPR-5000 Example 13 Example Η Example 15 Example 16 Example 17 Example 18 Implementation Example 19 Example 20 Example 21 Example 22 Example 23 Example 24 Comparative Example 2 Comparative Example 3 Comparative Example 4 -43- 200428021 £ Transparency (%) 00 〇 \ 00 〇 \ 00 00 ο 00 00 vo C \ VO 〇 > m 00 (N 〇〇 Change rate of heat-resistant film thickness (%) cn m (N cn m < N (N < N (N CN (N m N inch (N CN m (N inch CN in (N CN inch csi inch (N m (N inch CN (N o (N solvent-resistant film thickness change rate (%) inch inch inch inch inch mm mm cn m inch 〇CN after hardening Film thickness (// m) inch (N inch (N (N m (N inch < N (N to (N inch (N inch CN m inch (N (N Η o (N Os composition (S-1) (S-2) (S-3) (S-4) (S-5) (S-6) (S-7) (S-8) (S-9) (S-10) (s-ll) (S-12) (s-1) i OFPR-800 OFPR-5000 Example 13 Example M Example 15 Example 16 Example Π Example 18 Example 19 Example 20 Example Example 21 Example 22 Example 23 Example 24 'Comparative Example 2 Comparative Example 3 Comparative Example 4 -44- (41) (41) 200428021 [Evaluation of Microlens Performance] Examples 2 5 to 3 6, Comparative Examples 5 to 7 Using each of the radiation-sensitive resin compositions obtained above, each characteristic of the microlenses obtained below was evaluated. For the evaluation of heat resistance and transparency, refer to the results of the evaluation of the interlayer insulating film described above. In addition, the composition used in Comparative Examples 6 and 7 is a commercially available product of a composition of m- / p-cresol novolak lacquer and 1,2-naphthoquinonediazide-5-sulfonate (Tokyo Industries ( Share) system). [Evaluation of sensitivity] The composition shown in Table 4 was coated on a silicon substrate with a rotary machine, and pre-baked on a hot plate at 90 ° C for 2 minutes to obtain a coating film having a film thickness of 3.0 // m. Subsequently, a mask with a certain pattern was used to reduce the exposure time by using a NSR 1 75 5 i7A reduction projection exposure machine (NA = 0 · 50, λ = 3 65 ηη) made by Nikon Corporation. After exposure, a tetramethylammonium hydroxide aqueous solution of the concentration shown in Table 4 was used to develop the solution at 25 ° C for 1 minute. After washing with water and drying, a pattern is formed on the silicon plate. The exposure time required to form a space line width of 0 · 8 // m-line and space (1 to 1) is 0.8 μm, and the , is used as the sensitivity. The results are shown in Table 4. Sensitivity is considered good when the chirp is below 2,000 J / m2. [Evaluation of the imaging limit] The composition shown in Table 4 was coated on a silicon substrate by a rotary machine, and pre-baked on a hot plate at 90 ° C for 2 minutes to obtain a coating film having a film thickness of 3.0 // m. Subsequently, there are -45- (42) (42) 200428021 masks with 4.0 / m points and 2.0 // m space patterns, using Nikon's NSR 1 75 5 i7A reduction projection exposure machine (ΝΑ = 0 · 50 ,; l = 3 65nm) Exposure the obtained coating film with an exposure amount equivalent to the sensitivity of the above-mentioned evaluation sensitivity item, and then use a tetramethylammonium hydroxide aqueous solution of the concentration shown in Table 4 to use 2 5 ° C , 1 minute of the liquid method for imaging. Rinse with water and dry to form a pattern on the silicon plate. In addition, the optimal development time is required when the spatial line width of the 0.8 // m line and the spatial pattern (1 to 1) is 0.8 // m. The results are shown in Table 4. In addition, from the optimal development time, the time required for continuous development to 0.8 // m pattern peeling (development limit) was measured. The results are shown in Table 4. When the threshold is 30 seconds or longer, the imaging boundary is considered to be good. [Evaluation and storage stability] After the preparation, each composition was stored at room temperature (2 3 t), and after 15 days, 4 · 0 // m points and 2 · 0 // m space patterns in the above evaluation sensitivity items were measured. The required exposure is completely dissolved, and the increase rate of the required exposure at this time is calculated. The results are shown in Table 4. When the content is 5% or less, it is considered that the storage stability is good. [Evaluation of Solvent Resistance] The composition shown in Table 4 was coated on a silicon substrate with a rotary machine, and then pre-baked on a hot plate at 90 ° C for 2 minutes to obtain a coating film having a film thickness of 3.00 / ζ m. After exposing the obtained coating film to a total exposure of 3,0 0 0 J / m2 with a PLA-501F exposure machine (ultra-high pressure mercury lamp) made by Canon, the silicon substrate obtained was transferred to a cleaning oven and heated at 220 ° C. 1 After 1 hour, a hardened film was obtained, and the film thickness (T3) of the hard-46-(43) 200428021 hardened film was measured. The silicon substrate on which the hardened film was formed was immersed in isopropyl alcohol at 50 ° C for 10 minutes, and then the hardened film was measured. Then the thickness change rate caused by the dipping was calculated {I t3-T3 | [%]. The results are as follows Table 4 shows. In addition, the film formed during the evaluation of the solvent resistance does not require a pattern radiation step and a development step, and is only subjected to the formation of a baking step and a heating step for evaluation. [Evaluation of the shape of the microlenses] The composition shown in Table 4 was coated on a silicon-based hot plate at 90 ° C for 2 minutes by a rotary machine, and a coating film with a thickness of 3.0 // m was obtained. 4.0 // m points and 2.0 / / m space pattern mask, using the NSR 1 75 5 i7A reduction projection exposure machine (NA = 0 · 50, exposure with the exposure coating film equivalent to the above-mentioned evaluation sensitivity measurement sensitivity), and then use the evaluation sensitivity of Table 4 The methyl ammonium hydroxide aqueous solution used in the item is a 25 t, 1 minute solution. It is washed with water and dried to form a pattern on a silicon plate. A PLA-501F exposure machine (ultra-high pressure mercury lamp) made by the company After exposure at a quantity of 3,000 J / m2, a 160 ° C hot plate was added to the US and then heated at 23 0 ° C for 10 minutes. The size of the bottom (connecting substrate surface) of the obtained microlens with a pattern of a flowing melt was shown in Table 4. The size of the bottom of the microlens exceeds 4.0 / zm but it is considered good when 1. Also, when the size is 5.0 // m or more, it is not suitable for contact. The cross-sectional shape is shown in Figure 1. The pattern is stained with temperature control; thick (T3), / T3} χΙΟΟ, you can omit the film step, the rear panel, and then. Nikon ( ) Λ = 365nm) an amount, for developing the resulting irradiated using a Canon totalizer of $ 0 minutes' method microlenses like the four concentrations. The shape of the cross-section is as follows: the lens is adjacent to 5 · 0 // m. Among them, the semi-convex lens shape such as -47- (44) 200428021 (a) is regarded as good, and the slightly trapezoidal shape as (b) is regarded as bad. -48- 200428021 inch micro lens shape section shape 8 $ gg bottom size (// m) rH cn inch ▼ —Η r * H (N inch · rH inch · inch · 寸 inch VO inch · vq inch inch · inch · 5.0 Super 5.0 Super solvent resistance film thickness change rate (%) Η < N (N rH (N rH (N (N r ~ H rH rH 00) Hardened film thickness (// m) inch CN inch (N ITi (N m (N * inch (N (N (N inch (N inch οά m inch CN (N 口 ο (NC) preservation stability (%) cn Ο cn (N or—1 (N 〇T—H rn ( N 〇rn o (N 00 < N 〇cn d Development limit Development limit (seconds) 〇ο 〇o O 〇〇〇〇o (N down optimal development time (seconds) § § § o § § o § § S Sensitivity (J / m2) 1100 1050 1100 1000 1500 1100 1100 1050 1050 1100 1050 1100 1000 2800 3000 Developer concentration (% halo) inch d inch d inch O 2.38 inch d inch d inch o inch d Inch o Inch o Inch o Inch o Inch d 2.38 2.38 The composition rH is also rn (S-4) (S-5) ί (S-6) (S-8) (S-9) (S-10) rH f 11 H (S-12) rH OFPR-800 OFPR-5000 Example 25 Example 26 Example 27 Example 28 Example 29 Example 30 Example 31 Example 32 Example 33 Example 34 Example 35 Example 36 1 Comparative Example 5 Comparative Example 6 Comparative Example 7 -49- (46) 200428021 Advantageous Effects of the Invention When the inter-boundary insulating film is a microlens, the interlayer insulating film and the micro-lens can be used. [The figure is simple. Figure 1 provides high radiation sensitivity and good storage stability. It can still form a good shape over time, and it is easy to form a patterned film with excellent adhesion and the formation layer can form an interlayer insulating film with high light transmittance and low permittivity. The shape can form a high light transmittance and has a good melt shape. The invention provides a method for forming a microlens using the above radiation-sensitive resin composition, and an interlayer lens formed by the method. [Explanation], a schematic diagram of the cross-sectional shape of a microlens. -50-

Claims (1)

200428021 Π) 拾、申請專利範圍 1 · 一種感放射線性樹脂組成物,其爲,含有(A )具 有縮醛構造及/或縮酮構造與環氧構造,且凝膠滲透色譜 法所測得之聚苯乙換算重量平均分子量爲2,0卩0以上之高 分子量物,及(B )照射放射線會產生PKa 4.0以下之酸 的化合物。 2 ·如申請專利範圍第1項之感放射線性樹脂組成物, 其中另含(C ) 1,2-苯醌二疊氮化合物。 3 ·如申請專利範圍第1或2項之感放射線性樹脂組成 物,其中感放射線性樹脂組成物係形成層間絕緣膜用。 4 · 一種形成層間絕緣膜之方法,其特徵爲,至少含有 下列步驟: (1 )於基板上形成如申請專利範圍第3項之感放射 線性樹脂組成物的塗膜之步驟; (2 )以放射線照射至少部分塗膜之步驟; (3 )顯像步驟; (4 )加熱步驟。 5 · —種層間絕緣膜,其係由如申請專利範圍第3項之 感放射線性樹脂組成物所形成。 6 ·如申請專利範圍第1或2項之感放射線性樹脂組成 物,其中感放射線性樹脂組成物係形成微透鏡用。 7 · —種形成微透鏡之方法,其特徵爲,至少含有下列 步驟: (1 )於基板上形成如申請專利範圍第6項之感放射 -51 - (2) 200428021 線性樹脂組成物的塗膜之步驟; (2 )以放射線照射至少部分塗膜之步驟; (3 )顯像步驟; (4 )加熱步驟。 8 . —種微透鏡,其係由如申請專利範圍第6項之感放 射線性樹脂組成物所形成。 - 52-200428021 Π) Patent application scope 1 · A radiation-sensitive resin composition containing (A) an acetal structure and / or a ketal structure and an epoxy structure, and measured by gel permeation chromatography A polystyrene-equivalent weight average molecular weight is a high molecular weight substance of 2,0 卩 0 or more, and (B) a compound which generates an acid of PKa 4.0 or less upon irradiation of radiation. 2. The radiation-sensitive resin composition according to item 1 of the scope of patent application, which further contains (C) 1,2-benzoquinonediazide compound. 3. The radiation-sensitive resin composition according to item 1 or 2 of the scope of patent application, wherein the radiation-sensitive resin composition is used to form an interlayer insulating film. 4. A method for forming an interlayer insulating film, characterized in that it comprises at least the following steps: (1) a step of forming a coating film of a radiation-sensitive resin composition as described in item 3 of the patent application on a substrate; (2) using A step of irradiating at least a part of the coating film with radiation; (3) a developing step; (4) a heating step. 5-A kind of interlayer insulating film, which is formed of a radiation-sensitive resin composition such as the item 3 of the scope of patent application. 6 · The radiation-sensitive resin composition according to item 1 or 2 of the patent application scope, wherein the radiation-sensitive resin composition is used for forming a microlens. 7 · A method for forming a microlens, characterized in that it includes at least the following steps: (1) forming a radiation-sensitive sensor-51-(2) 200428021 coating film of a linear resin composition on a substrate (2) a step of irradiating at least a part of the coating film with radiation; (3) a developing step; (4) a heating step. 8. A microlens formed of a radiation-sensitive resin composition as described in claim 6 of the patent application scope. -52-
TW093104802A 2003-03-03 2004-02-25 Radiation-sensitive resin composition, interlayer insulating film, micro-lens and method for forming the same TWI266889B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055176A JP4207604B2 (en) 2003-03-03 2003-03-03 Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for forming them

Publications (2)

Publication Number Publication Date
TW200428021A true TW200428021A (en) 2004-12-16
TWI266889B TWI266889B (en) 2006-11-21

Family

ID=33119261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093104802A TWI266889B (en) 2003-03-03 2004-02-25 Radiation-sensitive resin composition, interlayer insulating film, micro-lens and method for forming the same

Country Status (3)

Country Link
JP (1) JP4207604B2 (en)
KR (1) KR100976031B1 (en)
TW (1) TWI266889B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771907B2 (en) 2008-03-28 2014-07-08 Fujifilm Corporation Positive photosensitive resin composition and method of forming cured film from the same
TWI620025B (en) * 2010-04-28 2018-04-01 Jsr股份有限公司 Positive radiation sensitive composition, interlayer insulation film and method for forming the same

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316844B2 (en) 2004-01-16 2008-01-08 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
JP4942928B2 (en) * 2004-12-24 2012-05-30 凸版印刷株式会社 Color filter resin, photosensitive resin composition, and color filter
JP4644857B2 (en) * 2005-07-22 2011-03-09 昭和電工株式会社 Photosensitive resin composition
US7695890B2 (en) 2005-09-09 2010-04-13 Brewer Science Inc. Negative photoresist for silicon KOH etch without silicon nitride
WO2008117693A1 (en) * 2007-03-28 2008-10-02 Jsr Corporation Positive-working radiation-sensitive composition and method for resist pattern formation using the composition
US7709178B2 (en) 2007-04-17 2010-05-04 Brewer Science Inc. Alkaline-resistant negative photoresist for silicon wet-etch without silicon nitride
JP4637209B2 (en) 2007-06-05 2011-02-23 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
JP4677512B2 (en) * 2007-06-05 2011-04-27 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
US8192642B2 (en) 2007-09-13 2012-06-05 Brewer Science Inc. Spin-on protective coatings for wet-etch processing of microelectronic substrates
JP4637221B2 (en) 2007-09-28 2011-02-23 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
JP4676542B2 (en) * 2008-03-28 2011-04-27 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
JP4718623B2 (en) * 2008-03-28 2011-07-06 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
JP2010026460A (en) * 2008-07-24 2010-02-04 Fujifilm Corp Positive photosensitive resin composition, and method of forming cured film using the same
KR101754841B1 (en) * 2009-05-01 2017-07-06 후지필름 가부시키가이샤 Positive-type photosensitive resin composition, and method for formation of cured film using the same
KR101757797B1 (en) * 2009-05-01 2017-07-14 후지필름 가부시키가이샤 Positive-type photosensitive resin composition, and method for formation of cured film using the same
JP5451570B2 (en) 2009-10-16 2014-03-26 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5623896B2 (en) * 2010-01-15 2014-11-12 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5396315B2 (en) * 2010-01-19 2014-01-22 富士フイルム株式会社 Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
KR101618897B1 (en) * 2010-01-20 2016-05-09 후지필름 가부시키가이샤 Process for producing cured film, photosensitive resin composition, cured film, organic electro-luminescence display and liquid crystal display
JP5623897B2 (en) * 2010-01-22 2014-11-12 富士フイルム株式会社 Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5524036B2 (en) * 2010-01-25 2014-06-18 富士フイルム株式会社 Positive photosensitive resin composition, method for forming cured film, cured film, liquid crystal display device, and organic EL display device
JP5492812B2 (en) * 2010-03-11 2014-05-14 富士フイルム株式会社 Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5486521B2 (en) * 2010-03-15 2014-05-07 富士フイルム株式会社 Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP4591625B1 (en) * 2010-04-01 2010-12-01 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP5630068B2 (en) * 2010-04-28 2014-11-26 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP5676179B2 (en) 2010-08-20 2015-02-25 富士フイルム株式会社 Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
TWI550338B (en) 2010-08-30 2016-09-21 富士軟片股份有限公司 Photosensitive resin composition, oxime sulfonate compound, method for forming cured film, cured film, organic el display device and liquid crystal display device
JP5728190B2 (en) * 2010-09-28 2015-06-03 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, and resist film and pattern forming method using the same
JP5613101B2 (en) * 2010-10-22 2014-10-22 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5676222B2 (en) * 2010-11-19 2015-02-25 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5492751B2 (en) * 2010-11-25 2014-05-14 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5213943B2 (en) * 2010-12-10 2013-06-19 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5492760B2 (en) * 2010-12-13 2014-05-14 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5536625B2 (en) * 2010-12-15 2014-07-02 富士フイルム株式会社 Photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5846622B2 (en) * 2010-12-16 2016-01-20 富士フイルム株式会社 Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5635449B2 (en) 2011-03-11 2014-12-03 富士フイルム株式会社 Resin pattern and manufacturing method thereof, MEMS structure manufacturing method, semiconductor element manufacturing method, and plating pattern manufacturing method
JP5313285B2 (en) 2011-03-29 2013-10-09 富士フイルム株式会社 Positive photosensitive resin composition, pattern manufacturing method, MEMS structure and manufacturing method thereof, dry etching method, wet etching method, MEMS shutter device, and image display device
KR101822804B1 (en) 2011-07-07 2018-01-29 닛산 가가쿠 고교 가부시키 가이샤 Resin compositions
JP5325278B2 (en) * 2011-08-31 2013-10-23 富士フイルム株式会社 Positive photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5433654B2 (en) * 2011-08-31 2014-03-05 富士フイルム株式会社 Photosensitive resin composition, cured film, method for forming cured film, organic EL display device, and liquid crystal display device
JP5686708B2 (en) 2011-09-16 2015-03-18 富士フイルム株式会社 Positive photosensitive resin composition, method for forming cured film, cured film, organic EL display device, and liquid crystal display device
JP5542851B2 (en) * 2012-02-16 2014-07-09 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic EL display device and liquid crystal display device
JP6136491B2 (en) 2012-04-24 2017-05-31 Jsr株式会社 Radiation sensitive resin composition, interlayer insulating film for display element and method for forming the same
JP5949094B2 (en) 2012-04-25 2016-07-06 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film for display element, and method for forming the same
KR102016443B1 (en) 2012-09-13 2019-09-02 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
KR102069746B1 (en) 2012-11-30 2020-01-23 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
KR102183741B1 (en) 2013-01-15 2020-11-27 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
KR102138141B1 (en) 2013-02-19 2020-07-27 제이에스알 가부시끼가이샤 Nagative radiation-sensitive resin composition, cured film, forming method of the cured film, and display device
KR102172818B1 (en) 2013-04-08 2020-11-02 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
JP6136727B2 (en) 2013-08-02 2017-05-31 Jsr株式会社 Radiation sensitive resin composition, cured film, method for forming the same, and display element
JP6284849B2 (en) 2013-08-23 2018-02-28 富士フイルム株式会社 Laminate
KR102239543B1 (en) 2013-08-28 2021-04-13 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
JP6492444B2 (en) 2013-09-04 2019-04-03 Jsr株式会社 Radiation-sensitive resin composition, cured film, method for forming the same, and electronic device
JP6318957B2 (en) 2014-07-31 2018-05-09 Jsr株式会社 Radiation sensitive resin composition, cured film, method for forming the same, and display element
JP6671381B2 (en) 2015-02-02 2020-03-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Latent acids and their use
JP2016200698A (en) 2015-04-09 2016-12-01 Jsr株式会社 Liquid crystal display element, radiation-sensitive resin composition, interlayer insulation film, method for producing interlayer insulation film, and method for manufacturing liquid crystal display element
JP6665528B2 (en) 2015-12-25 2020-03-13 Jsr株式会社 Radiation-sensitive resin composition, cured film, method for forming the same, and display element
WO2020049865A1 (en) * 2018-09-05 2020-03-12 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and method for producing electronic device
WO2022030445A1 (en) * 2020-08-03 2022-02-10 株式会社日本触媒 Copolymer, copolymer solution, photosensitive resin composition, cured article, method for producing copolymer, and method for producing copolymer solution
KR20230044294A (en) 2020-09-04 2023-04-03 후지필름 가부시키가이샤 Method for manufacturing an organic layer pattern, and method for manufacturing a semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715881B2 (en) * 1993-12-28 1998-02-18 日本電気株式会社 Photosensitive resin composition and pattern forming method
JP4524944B2 (en) * 2001-03-28 2010-08-18 Jsr株式会社 Radiation sensitive resin composition, its use for forming interlayer insulating film and microlens, and interlayer insulating film and microlens
KR20020082006A (en) * 2001-04-23 2002-10-30 금호석유화학 주식회사 Novel acid-labile polymer and formulation material using an acid-labile polymer
JP4715058B2 (en) * 2001-08-02 2011-07-06 Jsr株式会社 Radiation sensitive resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8771907B2 (en) 2008-03-28 2014-07-08 Fujifilm Corporation Positive photosensitive resin composition and method of forming cured film from the same
TWI461848B (en) * 2008-03-28 2014-11-21 Fujifilm Corp Positive type photosensitive resin composition and curing film forming method using it
TWI620025B (en) * 2010-04-28 2018-04-01 Jsr股份有限公司 Positive radiation sensitive composition, interlayer insulation film and method for forming the same

Also Published As

Publication number Publication date
TWI266889B (en) 2006-11-21
KR100976031B1 (en) 2010-08-17
JP2004264623A (en) 2004-09-24
JP4207604B2 (en) 2009-01-14
KR20040078554A (en) 2004-09-10

Similar Documents

Publication Publication Date Title
TW200428021A (en) Radiation-sensitive resin composition, interlayer insulating film, micro-lens and method for forming the same
TWI437365B (en) Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
TWI405038B (en) A radiation-sensitive resin composition, an interlayer insulating film and a microlens, and a method for manufacturing the same
KR100776121B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
JP5105073B2 (en) Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens
KR101538804B1 (en) Radiation sensitive resin composition, and interlayer insulation film and method for producing the same
TWI361951B (en)
KR101289163B1 (en) Radiation Sensitive Resin Composition, and Formation of Interlayer Insulating Film and Microlens
TWI510857B (en) Sensitive radiation linear resin composition, and interlayer insulating film and microlens and the like
TWI383255B (en) A method for forming a radiation linear resin composition and an interlayer insulating film and a microlens
TWI326799B (en)
TWI338190B (en)
TWI282905B (en) Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those
KR101000327B1 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for forming the same
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens
TW200903154A (en) Radiation sensitive resin composition, laminated insulating film, micro lens and preparation method thereof
JP5447161B2 (en) Microlens formation method, microlens, solid-state imaging device, and radiation-sensitive composition

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent