JP5105073B2 - Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens - Google Patents

Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens Download PDF

Info

Publication number
JP5105073B2
JP5105073B2 JP2008076158A JP2008076158A JP5105073B2 JP 5105073 B2 JP5105073 B2 JP 5105073B2 JP 2008076158 A JP2008076158 A JP 2008076158A JP 2008076158 A JP2008076158 A JP 2008076158A JP 5105073 B2 JP5105073 B2 JP 5105073B2
Authority
JP
Japan
Prior art keywords
group
radiation
weight
resin composition
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008076158A
Other languages
Japanese (ja)
Other versions
JP2009229892A (en
Inventor
友希 大沼
政暁 花村
謙一 濱田
孝浩 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008076158A priority Critical patent/JP5105073B2/en
Priority to CN2009101270632A priority patent/CN101546127B/en
Priority to TW098109358A priority patent/TWI430025B/en
Priority to KR1020090024420A priority patent/KR101525254B1/en
Publication of JP2009229892A publication Critical patent/JP2009229892A/en
Application granted granted Critical
Publication of JP5105073B2 publication Critical patent/JP5105073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds

Description

本発明は、感放射線性樹脂組成物、ならびに層間絶縁膜およびマイクロレンズの製造方法に関する。   The present invention relates to a radiation-sensitive resin composition, and a method for producing an interlayer insulating film and a microlens.

薄膜トランジスタ(以下、「TFT」と記す。)型液晶表示素子や磁気ヘッド素子、集積回路素子、固体撮像素子などの電子部品には、一般に層状に配置される配線の間を絶縁するために層間絶縁膜が設けられている。層間絶縁膜を形成する材料としては、必要とするパターン形状を得るための工程数が少なくしかも十分な平坦性を有するものが好ましいことから、感放射線性樹脂組成物が幅広く使用されている(特許文献1および特許文献2参照)。   In an electronic component such as a thin film transistor (hereinafter referred to as “TFT”) type liquid crystal display element, magnetic head element, integrated circuit element, solid-state imaging element, etc., an interlayer insulation is generally used to insulate between wirings arranged in layers. A membrane is provided. As a material for forming an interlayer insulating film, a material having a small number of steps for obtaining a required pattern shape and having sufficient flatness is preferable, and thus a radiation sensitive resin composition is widely used (patents) Reference 1 and Patent Document 2).

一方、ファクシミリ、電子複写機、固体撮像素子等のオンチップカラーフィルターの結像光学系あるいは光ファイバコネクタの光学系材料として3〜100μm程度のレンズ径を有するマイクロレンズ、またはそれらのマイクロレンズを規則的に配列したマイクロレンズアレイが使用されている。マイクロレンズまたはマイクロレンズアレイの形成には、レンズに相当するレジストパターンを形成した後、加熱処理することによってメルトフローさせ、そのままレンズとして利用する方法や、メルトフローさせたレンズパターンをマスクにしてドライエッチングにより下地にレンズ形状を転写させる方法等が知られている。前記レンズパターンの形成には、感放射線性樹脂組成物が幅広く使用されている(特許文献3および特許文献4参照)。   On the other hand, a microlens having a lens diameter of about 3 to 100 μm or an optical system material for an on-chip color filter such as a facsimile, an electronic copying machine, a solid-state image sensor, or the like is defined as an optical system material. An array of microlenses is used. To form a microlens or microlens array, a resist pattern corresponding to the lens is formed and then melt-flowed by heat treatment and used as it is as a lens, or by using the melt-flowed lens pattern as a mask and drying. A method of transferring a lens shape to a base by etching is known. For the formation of the lens pattern, a radiation sensitive resin composition is widely used (see Patent Document 3 and Patent Document 4).

これらの層間絶縁膜およびマイクロレンズまたはマイクロレンズアレイには、高耐熱性、高耐溶剤性、高透明性、下地との密着性等の諸性能が要求されている。また近年、TFT型液晶表示素子においては、大画面化、高速応答化、薄型化等の動向にあり、それに用いられる層間絶縁膜形成用組成物としては高感度であること、形成される層間絶縁膜としては低誘電率であることにおいて、従来にも増して高性能が要求されている。さらに、層間絶縁膜やマイクロレンズを製造するにあたっては、その現像工程において、現像時間が最適時間よりわずかでも過剰となると、パターンと基板との間に現像液が浸透して剥がれが生じやすくなるため、現像時間を厳密に制御する必要があったことから、十分な現像マージンを有する感放射線性樹脂組成物の開発が要求されている。
特開2001−354822号公報 特開2001−343743号公報 特開平6−18702号公報 特開平6−136239号公報
These interlayer insulating films and microlenses or microlens arrays are required to have various performances such as high heat resistance, high solvent resistance, high transparency, and adhesion to the substrate. In recent years, TFT-type liquid crystal display devices have been in the trend of larger screens, higher response speeds, thinner thicknesses, etc., and as a composition for forming an interlayer insulating film used therefor, they have high sensitivity, and the interlayer insulation to be formed. The film is required to have higher performance than the conventional one because of its low dielectric constant. Furthermore, when manufacturing an interlayer insulating film or a microlens, if the development time is slightly longer than the optimum time in the development process, the developer tends to penetrate between the pattern and the substrate, and peeling is likely to occur. Since it was necessary to strictly control the development time, development of a radiation sensitive resin composition having a sufficient development margin is required.
JP 2001-354822 A JP 2001-343743 A JP-A-6-18702 JP-A-6-136239

本発明は以上のような事情に基づいてなされたものである。それ故、本発明の目的は、高い感放射線感度と優れた現像マージンを有しそして下地との密着性にも優れたパターン状薄膜を容易に形成することができる感放射線性組成物を提供することにある。   The present invention has been made based on the above situation. Therefore, an object of the present invention is to provide a radiation-sensitive composition that can easily form a patterned thin film having high radiation sensitivity, excellent development margin, and excellent adhesion to a base. There is.

本発明の他の目的は、層間絶縁膜の形成に用いる場合にあっては高耐熱性、高耐溶剤性、高透過率、低誘電率の層間絶縁膜を形成でき、またマイクロレンズの形成に用いる場合にあっては高い透過率と良好なメルト形状を有するマイクロレンズを形成しうる感放射線性樹脂組成物を提供することにある。   Another object of the present invention is to form an interlayer insulating film having high heat resistance, high solvent resistance, high transmittance and low dielectric constant when used for forming an interlayer insulating film, and for forming a microlens. When using, it is providing the radiation sensitive resin composition which can form the micro lens which has a high transmittance | permeability and a favorable melt shape.

本発明のさらに別の目的は、上記感放射線性樹脂組成物を用いて層間絶縁膜およびマイクロレンズを形成する方法を提供することにある。   Still another object of the present invention is to provide a method for forming an interlayer insulating film and a microlens using the radiation sensitive resin composition.

本発明のさらに他の目的および利点は、以下の説明から明らかになろう。   Still other objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、第1に、
[A](a1)不飽和カルボン酸および不飽和カルボン酸無水物よりなる群から選ばれる少なくとも1種と、(a2)オキシラニル基含有不飽和化合物およびオキセタニル基含有不飽和化合物よりなる群から選ばれる少なくとも1種を含有してなる不飽和混合物の共重合体(以下、「共重合体[A]」ということがある。)、
[B]1,2−キノンジアジド化合物(以下、「[B]成分」ということがある。)、ならびに
[C]炭素数6〜15のアリール基を有するシルセスキオキサン(以下、「[C]成分」ということがある。)
を含有することを特徴とする感放射線性樹脂組成物によって達成される。
According to the present invention, the above objects and advantages of the present invention are as follows.
[A] (a1) at least one selected from the group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride, and (a2) selected from the group consisting of an oxiranyl group-containing unsaturated compound and an oxetanyl group-containing unsaturated compound A copolymer of an unsaturated mixture containing at least one (hereinafter sometimes referred to as "copolymer [A]"),
[B] 1,2-quinonediazide compound (hereinafter sometimes referred to as “[B] component”), and [C] a silsesquioxane having an aryl group having 6 to 15 carbon atoms (hereinafter referred to as “[C] Sometimes referred to as “component”.)
It achieves by the radiation sensitive resin composition characterized by containing.

本発明によれば、本発明の目的および利点は、第2に、
以下の工程を以下に記載順で含むことを特徴とする層間絶縁膜またはマイクロレンズの形成方法によって達成される。
(1)上記の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)照射された塗膜を現像する工程、および
(4)現像された塗膜を加熱する工程。
According to the present invention, the objects and advantages of the present invention are secondly:
This is achieved by a method for forming an interlayer insulating film or a microlens, which includes the following steps in the order described below.
(1) The process of forming the coating film of said radiation sensitive resin composition on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) a step of developing the irradiated coating film, and (4) a step of heating the developed coating film.

本発明の感放射線性樹脂組成物は、高い感放射線感度と優れた現像マージンを有し、さらに、該感放射線性樹脂組成物を用いることにより、下地との密着性に優れたパターン状薄膜を容易に形成することができる。
上記組成物から形成された本発明の層間絶縁膜は、耐溶剤性および耐熱性に優れ、高い透過率と低い誘電率を有し、電子部品の層間絶縁膜として好適に使用できる。
また、上記組成物から形成された本発明のマイクロレンズは、耐溶剤性および耐熱性に優れ、かつ高い透過率と良好なメルト形状を有するものであり、固体撮像素子のマイクロレンズとして好適に使用できる。
The radiation-sensitive resin composition of the present invention has a high radiation sensitivity and an excellent development margin, and furthermore, by using the radiation-sensitive resin composition, a patterned thin film having excellent adhesion to the ground is obtained. It can be formed easily.
The interlayer insulating film of the present invention formed from the above composition is excellent in solvent resistance and heat resistance, has high transmittance and low dielectric constant, and can be suitably used as an interlayer insulating film for electronic parts.
The microlens of the present invention formed from the above composition is excellent in solvent resistance and heat resistance, has high transmittance and good melt shape, and is suitably used as a microlens for a solid-state imaging device. it can.

以下、本発明の感放射線性樹脂組成物について詳述する。   Hereinafter, the radiation sensitive resin composition of this invention is explained in full detail.

共重合体[A]
本発明で用いられる共重合体[A]は、(a1)不飽和カルボン酸および不飽和カルボン酸無水物よりなる群から選ばれる少なくとも1種(以下、「化合物(a1)」ということがある。)と、(a2)オキシラニル基含有不飽和化合物およびオキセタニル基含有不飽和化合物よりなる群から選ばれる少なくとも1種(以下、「化合物(a2)」ということがある。)を含有してなる不飽和混合物を溶媒中、重合開始剤の存在下でラジカル共重合することによって製造することができる。
化合物(a1)はラジカル重合性を有する不飽和カルボン酸および/または不飽和カルボン酸無水物であり、例えばモノカルボン酸、ジカルボン酸、ジカルボン酸の無水物、多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステル、両末端にカルボキシル基と水酸基とを有するポリマーのモノ(メタ)アクリレート、カルボキシル基を有する多環式化合物およびその無水物などを挙げることができる。
Copolymer [A]
The copolymer [A] used in the present invention may be referred to as (a1) at least one selected from the group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride (hereinafter referred to as “compound (a1)”). ), And (a2) at least one selected from the group consisting of an oxiranyl group-containing unsaturated compound and an oxetanyl group-containing unsaturated compound (hereinafter sometimes referred to as “compound (a2)”). The mixture can be produced by radical copolymerization in a solvent in the presence of a polymerization initiator.
The compound (a1) is an unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride having radical polymerizability, such as monocarboxylic acid, dicarboxylic acid, dicarboxylic acid anhydride, polyvalent carboxylic acid mono [(meth)]. Acryloyloxyalkyl] ester, mono (meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both ends, a polycyclic compound having a carboxyl group, and anhydrides thereof.

これらの具体例としては、モノカルボン酸として例えばアクリル酸、メタクリル酸、クロトン酸など;
ジカルボン酸として、例えばマレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸など;
ジカルボン酸の無水物として、例えば上記ジカルボン酸として例示した化合物の無水物など;
多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステルとして、例えばコハク酸モノ〔2−(メタ)アクリロイロキシエチル〕、フタル酸モノ〔2−(メタ)アクリロイロキシエチル〕など;
両末端にカルボキシル基と水酸基とを有するポリマーのモノ(メタ)アクリレートとして、例えばω−カルボキシポリカプロラクトンモノ(メタ)アクリレートなど;
カルボキシル基を有する多環式化合物およびその無水物として、例えば5−カルボキシビシクロ[2.2.1]ヘプト−2−エン、5,6−ジカルボキシビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−5−メチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−5−エチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−6−メチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−6−エチルビシクロ[2.2.1]ヘプト−2−エン、5,6−ジカルボキシビシクロ[2.2.1]ヘプト−2−エン無水物などがそれぞれ挙げられる。
Specific examples thereof include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid;
Examples of dicarboxylic acids include maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid and the like;
As anhydrides of dicarboxylic acids, for example, anhydrides of the compounds exemplified as the above dicarboxylic acids;
Examples of mono [(meth) acryloyloxyalkyl] esters of polyvalent carboxylic acids such as succinic acid mono [2- (meth) acryloyloxyethyl] and phthalic acid mono [2- (meth) acryloyloxyethyl];
Examples of the mono (meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both ends, such as ω-carboxypolycaprolactone mono (meth) acrylate;
Examples of the polycyclic compound having a carboxyl group and anhydrides thereof include 5-carboxybicyclo [2.2.1] hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] hept-2- Ene, 5-carboxy-5-methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-5-ethylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6- Methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6-ethylbicyclo [2.2.1] hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] And hept-2-ene anhydride.

これらのうち、モノカルボン酸、ジカルボン酸の無水物が好ましく使用され、特にアクリル酸、メタクリル酸、無水マレイン酸が共重合反応性、アルカリ現像液に対する溶解性および入手が容易である点から好ましく用いられる。これらの化合物(a1)は、単独であるいは2種以上を組み合わせて用いられる。   Of these, monocarboxylic acid and dicarboxylic acid anhydrides are preferably used. In particular, acrylic acid, methacrylic acid, and maleic anhydride are preferably used from the viewpoint of copolymerization reactivity, solubility in an alkali developer, and availability. It is done. These compounds (a1) are used alone or in combination of two or more.

化合物(a2)はオキシラニル基を有する不飽和化合物および/またはオキセタニル基を有する不飽和化合物であり、オキシラニル基を有する不飽和化合物としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、α−エチルアクリル酸グリシジル、α−n−プロピルアクリル酸グリシジル、α−n−ブチルアクリル酸グリシジル、アクリル酸−3,4−エポキシブチル、メタクリル酸−3,4−エポキシブチル、アクリル酸−6,7−エポキシヘプチル、メタクリル酸−6,7−エポキシヘプチル、α−エチルアクリル酸−6,7−エポキシヘプチル、アクリル酸−3,4−エポキシシクロヘキシル、メタクリル酸−3,4−エポキシシクロヘキシル、アクリル酸−3,4−エポキシシクロヘキシルメチル、メタクリル酸−3,4−エポキシシクロヘキシルメチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテルなどが挙げられる。これらのうち、メタクリル酸グリシジル、メタクリル酸−6,7−エポキシヘプチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、メタクリル酸−3,4−エポキシシクロヘキシル、メタクリル酸−3,4−エポキシシクロヘキシルメチルなどが共重合反応性および得られる層間絶縁膜またはマイクロレンズの耐熱性、表面硬度を高める点から好ましく用いられる。   The compound (a2) is an unsaturated compound having an oxiranyl group and / or an unsaturated compound having an oxetanyl group. Examples of the unsaturated compound having an oxiranyl group include glycidyl acrylate, glycidyl methacrylate, and glycidyl α-ethyl acrylate. Glycidyl α-n-propyl acrylate, glycidyl α-n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, -6,7-epoxyheptyl acrylate, methacryl Acid-6,7-epoxyheptyl, α-ethylacrylic acid-6,7-epoxyheptyl, acrylic acid-3,4-epoxycyclohexyl, methacrylic acid-3,4-epoxycyclohexyl, acrylic acid-3,4-epoxy Cyclohexylmethyl, methacrylic acid-3,4 Epoxycyclohexylmethyl, o- vinylbenzyl glycidyl ether, m- vinylbenzyl glycidyl ether, p- vinylbenzyl glycidyl ether. Among these, glycidyl methacrylate, methacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, methacrylic acid-3,4-epoxycyclohexyl, methacryl Acid-3,4-epoxycyclohexylmethyl is preferably used from the viewpoint of increasing the copolymerization reactivity and the heat resistance and surface hardness of the resulting interlayer insulating film or microlens.

オキセタニル基を有する不飽和化合物としては、例えば3−(アクリロイルオキシメチル)オキセタン、3−(アクリロイルオキシメチル)−2−メチルオキセタン、3−(アクリロイルオキシメチル)−3−エチルオキセタン、3−(アクリロイルオキシメチル)−2−トリフルオロメチルオキセタン、3−(アクリロイルオキシメチル)−2−ペンタフルオロエチルオキセタン、3−(アクリロイルオキシメチル)−2−フェニルオキセタン、3−(アクリロイルオキシメチル)−2,2−ジフルオロオキセタン、3−(アクリロイルオキシメチル)−2,2,4−トリフルオロオキセタン、3−(アクリロイルオキシメチル)−2,2,4,4−テトラフルオロオキセタン、3−(2−アクリロイルオキシエチル)オキセタン、3−(2−アクリロイルオキシエチル)−2−エチルオキセタン、3−(2−アクリロイルオキシエチル)−3−エチルオキセタン、3−(2−アクリロイルオキシエチル)−2−トリフルオロメチルオキセタン、3−(2−アクリロイルオキシエチル)−2−ペンタフルオロエチルオキセタン、3−(2−アクリロイルオキシエチル)−2−フェニルオキセタン、3−(2−アクリロイルオキシエチル)−2,2−ジフルオロオキセタン、3−(2−アクリロイルオキシエチル)−2,2,4−トリフルオロオキセタン、3−(2−アクリロイルオキシエチル)−2,2,4,4−テトラフルオロオキセタン等のアクリル酸エステル、
3−(メタクリロイルオキシメチル)オキセタン、3−(メタクリロイルオキシメチル)−2−メチルオキセタン、3−(メタクリロイルオキシメチル)−3−エチルオキセタン、3−(メタクリロイルオキシメチル)−2−トリフルオロメチルオキセタン、3−(メタクリロイルオキシメチル)−2−ペンタフルオロエチルオキセタン、3−(メタクリロイルオキシメチル)−2−フェニルオキセタン、3−(メタクリロイルオキシメチル)−2,2−ジフルオロオキセタン、3−(メタクリロイルオキシメチル)−2,2,4−トリフルオロオキセタン、3−(メタクリロイルオキシメチル)−2,2,4,4−テトラフルオロオキセタン、3−(2−メタクリロイルオキシエチル)オキセタン、3−(2−メタクリロイルオキシエチル)−2−エチルオキセタン、3−(2−メタクリロイルオキシエチル)−3−エチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−トリルオロメチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−ペンタフルオロエチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−フェニルオキセタン、3−(2−メタクリロイルオキシエチル)−2,2−ジフルオロオキセタン、3−(2−メタクリロイルオキシエチル)−2,2,4−トリフルオロオキセタン、3−(2−メタクリロイルオキシエチル)−2,2,4,4−テトラフルオロオキセタン等のメタクリル酸エステル等を、それぞれ挙げることができる。
Examples of the unsaturated compound having an oxetanyl group include 3- (acryloyloxymethyl) oxetane, 3- (acryloyloxymethyl) -2-methyloxetane, 3- (acryloyloxymethyl) -3-ethyloxetane, and 3- (acryloyl). Oxymethyl) -2-trifluoromethyloxetane, 3- (acryloyloxymethyl) -2-pentafluoroethyloxetane, 3- (acryloyloxymethyl) -2-phenyloxetane, 3- (acryloyloxymethyl) -2,2 -Difluorooxetane, 3- (acryloyloxymethyl) -2,2,4-trifluorooxetane, 3- (acryloyloxymethyl) -2,2,4,4-tetrafluorooxetane, 3- (2-acryloyloxyethyl) ) Oxetane, 3- ( -Acryloyloxyethyl) -2-ethyloxetane, 3- (2-acryloyloxyethyl) -3-ethyloxetane, 3- (2-acryloyloxyethyl) -2-trifluoromethyloxetane, 3- (2-acryloyloxy) Ethyl) -2-pentafluoroethyloxetane, 3- (2-acryloyloxyethyl) -2-phenyloxetane, 3- (2-acryloyloxyethyl) -2,2-difluorooxetane, 3- (2-acryloyloxyethyl) ) Acrylic acid esters such as -2,2,4-trifluorooxetane and 3- (2-acryloyloxyethyl) -2,2,4,4-tetrafluorooxetane;
3- (methacryloyloxymethyl) oxetane, 3- (methacryloyloxymethyl) -2-methyloxetane, 3- (methacryloyloxymethyl) -3-ethyloxetane, 3- (methacryloyloxymethyl) -2-trifluoromethyloxetane, 3- (methacryloyloxymethyl) -2-pentafluoroethyloxetane, 3- (methacryloyloxymethyl) -2-phenyloxetane, 3- (methacryloyloxymethyl) -2,2-difluorooxetane, 3- (methacryloyloxymethyl) -2,2,4-trifluorooxetane, 3- (methacryloyloxymethyl) -2,2,4,4-tetrafluorooxetane, 3- (2-methacryloyloxyethyl) oxetane, 3- (2-methacryloyloxyethyl) 2-ethyloxetane, 3- (2-methacryloyloxyethyl) -3-ethyloxetane, 3- (2-methacryloyloxyethyl) -2-tolylolomethyloxetane, 3- (2-methacryloyloxyethyl) -2- Pentafluoroethyloxetane, 3- (2-methacryloyloxyethyl) -2-phenyloxetane, 3- (2-methacryloyloxyethyl) -2,2-difluorooxetane, 3- (2-methacryloyloxyethyl) -2,2 , 4-trifluorooxetane, methacrylic acid esters such as 3- (2-methacryloyloxyethyl) -2,2,4,4-tetrafluorooxetane, and the like.

これらのうち、3−(アクリロイルオキシメチル)−2−メチルオキセタン、3−(アクリロイルオキシメチル)−3−エチルオキセタン、3−(メタクリロイルオキシメチル)−2−メチルオキセタン、3−(メタクリロイルオキシメチル)−3−エチルオキセタンなどが共重合反応性の点から好ましく用いられる。
これらの化合物(a2)は、単独であるいは組み合わせて用いられる。
Of these, 3- (acryloyloxymethyl) -2-methyloxetane, 3- (acryloyloxymethyl) -3-ethyloxetane, 3- (methacryloyloxymethyl) -2-methyloxetane, 3- (methacryloyloxymethyl) -3-Ethyloxetane or the like is preferably used from the viewpoint of copolymerization reactivity.
These compounds (a2) are used alone or in combination.

本発明で用いられる共重合体[A]は、上記化合物(a1)、(a2)と、さらにこれらと共重合可能な他の不飽和化合物(以下、「化合物(a3)」ということがある。)との共重合体であることが好ましい。このような化合物(a3)としては、ラジカル重合性を有する不飽和化合物であれば特に制限されるものではないが、例えば、メタクリル酸アルキルエステル、メタクリル酸環状アルキルエステル、アクリル酸アルキルエステル、アクリル酸環状アルキルエステル、メタクリル酸アリールエステル、アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、水酸基を有するメタクリル酸エステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格、フラン骨格、テトラヒドロピラン骨格、ピラン骨格または(ポリ)アルキレングリコール骨格を有する不飽和化合物、フェノール性水酸基を有する不飽和化合物およびその他の不飽和化合物を挙げることができる。   The copolymer [A] used in the present invention may be referred to as the above-mentioned compounds (a1) and (a2) and other unsaturated compounds copolymerizable with these (hereinafter referred to as “compound (a3)”). And a copolymer thereof. Such a compound (a3) is not particularly limited as long as it is an unsaturated compound having radical polymerizability. For example, methacrylic acid alkyl ester, methacrylic acid cyclic alkyl ester, acrylic acid alkyl ester, acrylic acid Cyclic alkyl ester, methacrylic acid aryl ester, acrylic acid aryl ester, unsaturated dicarboxylic acid diester, methacrylic acid ester having a hydroxyl group, bicyclounsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated diene, tetrahydrofuran skeleton, furan skeleton, Mention may be made of unsaturated compounds having a tetrahydropyran skeleton, a pyran skeleton or a (poly) alkylene glycol skeleton, unsaturated compounds having a phenolic hydroxyl group and other unsaturated compounds.

これらの具体例としては、メタクリル酸アルキルエステルとして、例えば、メチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、sec−ブチルメタクリレート、t−ブチルメタクリレート、2−エチルヘキシルメタクリレート、イソデシルメタクリレート、n−ラウリルメタクリレート、トリデシルメタクリレート、n−ステアリルメタクリレートなど;メタクリル酸環状エステルとして、例えば、シクロヘキシルメタクリレート、2−メチルシクロヘキシルメタクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート(以下、「ジシクロペンタニルメタクリレート」という。)、トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチルメタクリレート、イソボロニルメタクリレートなど;アクリル酸アルキルエステルとして、例えば、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、i−プロピルアクリレート、n−ブチルアクリレート、sec−ブチルアクリレート、t−ブチルアクリレートなど;アクリル酸環状エステルとして、例えば、シクロヘキシルアクリレート、2−メチルシクロヘキシルアクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルアクリレート(以下、「ジシクロペンタニルアクリレート」という。)、トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチルアクリレート、イソボロニルアクリレートなど;アクリル酸アリールエステルとして、例えば、フェニルアクリレート、ベンジルアクリレートなど;メタクリル酸アリールエステルとして、例えば、フェニルメタクリレート、ベンジルメタクリレートなど;不飽和ジカルボン酸ジエステルとして、例えば、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチルなど;水酸基を有するメタクリル酸エステルとして、例えば、ヒドロキシメチルメタクリレート、2−ヒドロキシエチルメタクリレート、3−ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルメタクリレート、ジエチレングリコールモノメタクリレート、2,3−ジヒドロキシプロピルメタクリレート、2−メタクリロキシエチルグリコサイドなど;
ビシクロ不飽和化合物として、例えば、ビシクロ [2.2.1] ヘプト−2−エン、5−メチルビシクロ [2.2.1] ヘプト−2−エン、5−エチルビシクロ [2.2.1] ヘプト−2−エン、5−ヒドロキシビシクロ [2.2.1] ヘプト−2−エン、5−カルボキシビシクロ [2.2.1] ヘプト−2−エン、5−ヒドロキシメチルビシクロ [2.2.1] ヘプト−2−エン、5−(2−ヒドロキシエチル)ビシクロ [2.2.1] ヘプト−2−エン、5−メトキシビシクロ [2.2.1] ヘプト−2−エン、5−エトキシビシクロ [2.2.1] ヘプト−2−エン、5,6−ジヒドロキシビシクロ [2.2.1] ヘプト−2−エン、5,6−ジカルボキシビシクロ [2.2.1] ヘプト−2−エン、5,6−ジ(ヒドロキシメチル)ビシクロ [2.2.1] ヘプト−2−エン、5,6−ジ(2−ヒドロキシエチル)ビシクロ [2.2.1] ヘプト−2−エン、5,6−ジメトキシビシクロ [2.2.1] ヘプト−2−エン、5,6−ジエトキシビシクロ [2.2.1] ヘプト−2−エン、5−ヒドロキシ−5−メチルビシクロ [2.2.1] ヘプト−2−エン、5−ヒドロキシ−5−エチルビシクロ [2.2.1] ヘプト−2−エン、5−カルボキシ−5−メチルビシクロ [2.2.1] ヘプト−2−エン、5−カルボキシ−5−エチルビシクロ [2.2.1] ヘプト−2−エン、5−ヒドロキシメチル−5−メチルビシクロ [2.2.1] ヘプト−2−エン、5−カルボキシ−6−メチルビシクロ [2.2.1] ヘプト−2−エン、5−カルボキシ−6−エチルビシクロ [2.2.1] ヘプト−2−エン、5,6−ジカルボキシビシクロ [2.2.1] ヘプト−2−エン無水物(ハイミック酸無水物)、5−t−ブトキシカルボニルビシクロ [2.2.1] ヘプト−2−エン、5−シクロヘキシルオキシカルボニルビシクロ [2.2.1] ヘプト−2−エン、5−フェノキシカルボニルビシクロ [2.2.1] ヘプト−2−エン、5,6−ジ(t−ブトキシカルボニル)ビシクロ [2.2.1] ヘプト−2−エン、5,6−ジ(シクロヘキシルオキシカルボニル)ビシクロ [2.2.1] ヘプト−2−エンなど;
マレイミド化合物として、例えば、N−フェニルマレイミド、N−シクロヘキシルマレイミド、N−ベンジルマレイミド、N−(4−ヒドロキシフェニル)マレイミド、N−(4−ヒドロキシベンジル)マレイミド、N−スクシンイミジル−3−マレイミドベンゾエート、N−スクシンイミジル−4−マレイミドブチレート、N−スクシンイミジル−6−マレイミドカプロエート、N−スクシンイミジル−3−マレイミドプロピオネート、N−(9−アクリジニル)マレイミドなど;
不飽和芳香族化合物として、例えば、スチレン、α−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−メトキシスチレンなど;共役ジエンとして、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエンなど;テトラヒドロフラン骨格を含有する不飽和化合物として、例えば、テトラヒドロフルフリル(メタ)アクリレート、2−メタクリロイルオキシ−プロピオン酸テトラヒドロフルフリルエステル、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オンなど;フラン骨格を含有する不飽和化合物として、例えば、2−メチル−5−(3−フリル)−1−ペンテン−3−オン、フルフリル(メタ)アクリレート、1−フラン−2−ブチル−3−エン−2−オン、1−フラン−2−ブチル−3−メトキシ−3−エン−2−オン、6−(2−フリル)−2−メチル−1−ヘキセン−3−オン、6−フラン−2−イル−ヘキシ−1−エン−3−オン、アクリル酸2−フラン−2−イル−1−メチル−エチルエステル、6−(2−フリル)−6−メチル−1−ヘプテン−3−オンなど;テトラヒドロピラン骨格を含有する不飽和化合物として、例えば(テトラヒドロピラン−2−イル)メチルメタクリレート、2,6−ジメチル−8−(テトラヒドロピラン−2−イルオキシ)−オクト−1−エン−3−オン、2−メタクリル酸テトラヒドロピラン−2−イルエステル、1−(テトラヒドロピラン−2−オキシ)−ブチル−3−エン−2−オンなど;ピラン骨格を含有する不飽和化合物として、例えば、4−(1,4−ジオキサ−5−オキソ−6−ヘプテニル)−6−メチル−2−ピロン、4−(1,5−ジオキサ−6−オキソ−7−オクテニル)−6−メチル−2−ピロンなど;
(ポリ)アルキレングリコール骨格を有する不飽和化合物として、例えばポリエチレングリコール(n=2〜10)モノ(メタ)アクリレート、ポリプロピレングリコール(n=2〜10)モノ(メタ)アクリレートなど;
フェノール性水酸基を有する不飽和化合物としては、4−ヒドロキシベンジル(メタ)アクリレート、4−ヒドロキシフェニル(メタ)アクリレート、o−ヒドロキシスチレン、p−ヒドロキシスチレン、α−メチル−p−ヒドロキシスチレン、N−(4−ヒドロキシベンジル)(メタ)アクリルアミド、N−(3,5−ジメチル−4−ヒドロキシベンジル)(メタ)アクリルアミド、N−(4−ヒドロキシフェニル)(メタ)アクリルアミドなど;
その他の不飽和化合物として、例えばアクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニルをそれぞれ挙げることができる。
Specific examples thereof include methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, Tridecyl methacrylate, n-stearyl methacrylate and the like; Examples of methacrylic acid cyclic ester include cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate (hereinafter, “ Dicyclopentanyl methacrylate ”), tricyclo [5.2.1.0 2,6 ] decan-8-yloxyethyl methacrylate, isobornyl methacrylate. Tacrylate, etc .; As acrylic acid alkyl ester, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, etc .; As acrylic acid cyclic ester, for example , Cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl acrylate (hereinafter referred to as “dicyclopentanyl acrylate”), tricyclo [5.2.1. acrylic acid aryl esters such as phenyl acrylate, benzyl acrylate; .0 2,6] decan-8-yl oxy ethyl acrylate, isobornyl acrylate and methacrylic acid ants For example, phenyl methacrylate, benzyl methacrylate and the like; unsaturated dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate and diethyl itaconate; methacrylic acid esters having a hydroxyl group such as hydroxymethyl methacrylate, 2- Hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2,3-dihydroxypropyl methacrylate, 2-methacryloxyethylglycoside and the like;
Examples of the bicyclo unsaturated compound include bicyclo [2.2.1] hept-2-ene, 5-methylbicyclo [2.2.1] hept-2-ene, 5-ethylbicyclo [2.2.1]. Hept-2-ene, 5-hydroxybicyclo [2.2.1] Hept-2-ene, 5-carboxybicyclo [2.2.1] Hept-2-ene, 5-hydroxymethylbicyclo [2.2. 1] Hept-2-ene, 5- (2-hydroxyethyl) bicyclo [2.2.1] Hept-2-ene, 5-methoxybicyclo [2.2.1] Hept-2-ene, 5-ethoxy Bicyclo [2.2.1] hept-2-ene, 5,6-dihydroxybicyclo [2.2.1] hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] hept-2 -Ene, 5,6-di (hydroxymethyl) bicyclo [2.2 .1] Hept-2-ene, 5,6-di (2-hydroxyethyl) bicyclo [2.2.1] Hept-2-ene, 5,6-dimethoxybicyclo [2.2.1] Hept-2 -Ene, 5,6-diethoxybicyclo [2.2.1] hept-2-ene, 5-hydroxy-5-methylbicyclo [2.2.1] hept-2-ene, 5-hydroxy-5 Ethylbicyclo [2.2.1] Hept-2-ene, 5-carboxy-5-methylbicyclo [2.2.1] Hept-2-ene, 5-carboxy-5-ethylbicyclo [2.2.1] ] Hept-2-ene, 5-hydroxymethyl-5-methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6-methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6-ethylbicyclo [2.2.1] hept-2-ene 5,6-dicarboxybicyclo [2.2.1] hept-2-ene anhydride (hymic acid anhydride), 5-t-butoxycarbonylbicyclo [2.2.1] hept-2-ene, 5- Cyclohexyloxycarbonylbicyclo [2.2.1] hept-2-ene, 5-phenoxycarbonylbicyclo [2.2.1] hept-2-ene, 5,6-di (t-butoxycarbonyl) bicyclo [2. 2.1] hept-2-ene, 5,6-di (cyclohexyloxycarbonyl) bicyclo [2.2.1] hept-2-ene and the like;
Examples of maleimide compounds include N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-hydroxybenzyl) maleimide, N-succinimidyl-3-maleimidobenzoate, N-succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidocaproate, N-succinimidyl-3-maleimidopropionate, N- (9-acridinyl) maleimide and the like;
As unsaturated aromatic compounds, for example, styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxystyrene, etc .; as conjugated dienes, for example, 1,3-butadiene, isoprene, 2 As unsaturated compounds containing a tetrahydrofuran skeleton, for example, tetrahydrofurfuryl (meth) acrylate, 2-methacryloyloxy-propionic acid tetrahydrofurfuryl ester, 3- (meth) acryloyl As unsaturated compounds containing a furan skeleton, for example, 2-methyl-5- (3-furyl) -1-penten-3-one, furfuryl (meth) acrylate, 1-furan- 2-butyl-3-en-2-one, 1 Furan-2-butyl-3-methoxy-3-en-2-one, 6- (2-furyl) -2-methyl-1-hexen-3-one, 6-furan-2-yl-hex-1- En-3-one, acrylic acid 2-furan-2-yl-1-methyl-ethyl ester, 6- (2-furyl) -6-methyl-1-hepten-3-one, etc .; containing tetrahydropyran skeleton Examples of unsaturated compounds include (tetrahydropyran-2-yl) methyl methacrylate, 2,6-dimethyl-8- (tetrahydropyran-2-yloxy) -oct-1-en-3-one, and tetrahydropyran 2-methacrylate. 2-yl ester, 1- (tetrahydropyran-2-oxy) -butyl-3-en-2-one, etc .; unsaturated compounds containing a pyran skeleton include, for example, 4- (1, 4-dioxa-5-oxo-6-heptenyl) -6-methyl-2-pyrone, 4- (1,5-dioxa-6-oxo-7-octenyl) -6-methyl-2-pyrone, etc .;
Examples of unsaturated compounds having a (poly) alkylene glycol skeleton include polyethylene glycol (n = 2 to 10) mono (meth) acrylate and polypropylene glycol (n = 2 to 10) mono (meth) acrylate;
Examples of unsaturated compounds having a phenolic hydroxyl group include 4-hydroxybenzyl (meth) acrylate, 4-hydroxyphenyl (meth) acrylate, o-hydroxystyrene, p-hydroxystyrene, α-methyl-p-hydroxystyrene, N- (4-hydroxybenzyl) (meth) acrylamide, N- (3,5-dimethyl-4-hydroxybenzyl) (meth) acrylamide, N- (4-hydroxyphenyl) (meth) acrylamide and the like;
Examples of other unsaturated compounds include acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, and vinyl acetate.

これらのうち、メタクリル酸アルキルエステル、メタクリル酸環状アルキルエステル、アクリル酸環状アルキルエステル、マレイミド化合物、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格、フラン骨格、テトラヒドロピラン骨格、ピラン骨格、(ポリ)アルキレングリコール骨格を有する不飽和化合物、フェノール性水酸基を有する不飽和化合物が好ましく用いられ、特にスチレン、t−ブチルメタクリレート、n−ラウリルメタクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート、p−メトキシスチレン、2−メチルシクロヘキシルアクリレート、N−フェニルマレイミド、N−シクロヘキシルマレイミド、1,3−ブタジエン、テトラヒドロフルフリル(メタ)アクリレート、ポリエチレングリコール(n=2〜10)モノ(メタ)アクリレート、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オン、4−ヒドロキシベンジル(メタ)アクリレート、4−ヒドロキシフェニル(メタ)アクリレート、o−ヒドロキシスチレン、N−(4−ヒドロキシフェニル)(メタ)アクリルアミド、p−ヒドロキシスチレン、α−メチル−p−ヒドロキシスチレンが共重合反応性およびアルカリ水溶液に対する溶解性の点から好ましい。
これらの化合物(a3)は、単独であるいは2種以上を組み合わせて用いられる。
Among these, methacrylic acid alkyl ester, methacrylic acid cyclic alkyl ester, acrylic acid cyclic alkyl ester, maleimide compound, unsaturated aromatic compound, conjugated diene, tetrahydrofuran skeleton, furan skeleton, tetrahydropyran skeleton, pyran skeleton, (poly) alkylene An unsaturated compound having a glycol skeleton and an unsaturated compound having a phenolic hydroxyl group are preferably used, and particularly styrene, t-butyl methacrylate, n-lauryl methacrylate, tricyclo [5.2.1.0 2,6 ] decane-8. -Yl methacrylate, p-methoxystyrene, 2-methylcyclohexyl acrylate, N-phenylmaleimide, N-cyclohexylmaleimide, 1,3-butadiene, tetrahydrofurfuryl (meth) acrylate, polyethylene Glycol (n = 2 to 10) mono (meth) acrylate, 3- (meth) acryloyloxytetrahydrofuran-2-one, 4-hydroxybenzyl (meth) acrylate, 4-hydroxyphenyl (meth) acrylate, o-hydroxystyrene N- (4-hydroxyphenyl) (meth) acrylamide, p-hydroxystyrene, and α-methyl-p-hydroxystyrene are preferable from the viewpoints of copolymerization reactivity and solubility in an aqueous alkali solution.
These compounds (a3) are used alone or in combination of two or more.

本発明で用いられる共重合体[A]の好ましい具体例としては、例えば、メタクリル酸/トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート/2−メチルシクロヘキシルアクリレート/メタクリル酸グリシジル/スチレン、メタクリル酸/テトラヒドロフルフリルメタクリレート/メタクリル酸グリシジル/N−シクロヘキシルマレイミド/ラウリルメタクリレート/α−メチル−p−ヒドロキシスチレン、スチレン/メタクリル酸/メタクリル酸グリシジル/(3−エチルオキセタン−3−イル)メタクリレート/トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート、スチレン/メタクリル酸/メタクリル酸グリシジル/N−(4−ヒドロキシフェニル)メタクリルアミドが挙げられる。 Preferable specific examples of the copolymer [A] used in the present invention include, for example, methacrylic acid / tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate / 2-methylcyclohexyl acrylate / methacrylic acid. Glycidyl acid / styrene, methacrylic acid / tetrahydrofurfuryl methacrylate / glycidyl methacrylate / N-cyclohexylmaleimide / lauryl methacrylate / α-methyl-p-hydroxystyrene, styrene / methacrylic acid / glycidyl methacrylate / (3-ethyloxetane-3 -Yl) methacrylate / tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, styrene / methacrylic acid / glycidyl methacrylate / N- (4-hydroxyphenyl) methacrylamide.

本発明で用いられる共重合体[A]は、化合物(a1)から誘導される繰り返し単位を、化合物(a1)、(a2)および(a3)から誘導される繰り返し単位の合計に基づいて、好ましくは5〜40重量%、特に好ましくは5〜25重量%含有している。この繰り返し単位が5重量%未満である共重合体を使用すると、現像工程時にアルカリ水溶液に溶解しにくくなり、一方40重量%を超える共重合体はアルカリ水溶液に対する溶解性が大きくなりすぎる傾向にある。
また、本発明で用いられる共重合体[A]は、化合物(a2)から誘導される繰り返し単位を、化合物(a1)、(a2)および(a3)から誘導される繰り返し単位の合計に基づいて、好ましくは10〜80重量%、特に好ましくは30〜80重量%含有している。この繰り返し単位が10重量%未満の場合は得られる層間絶縁膜やマイクロレンズの耐熱性、表面硬度および剥離液耐性が低下する傾向にあり、一方この繰り返し単位の量が80重量%を超える場合は感放射線性樹脂組成物の保存安定性が低下する傾向にある。
The copolymer [A] used in the present invention preferably has repeating units derived from the compound (a1) based on the total number of repeating units derived from the compounds (a1), (a2) and (a3). 5 to 40% by weight, particularly preferably 5 to 25% by weight. When a copolymer having a repeating unit of less than 5% by weight is used, it is difficult to dissolve in an alkaline aqueous solution during the development step, whereas a copolymer exceeding 40% by weight tends to be too soluble in an alkaline aqueous solution. .
In addition, the copolymer [A] used in the present invention has a repeating unit derived from the compound (a2) based on the total number of repeating units derived from the compounds (a1), (a2) and (a3). , Preferably 10 to 80% by weight, particularly preferably 30 to 80% by weight. When this repeating unit is less than 10% by weight, the heat resistance, surface hardness and stripping solution resistance of the resulting interlayer insulating film and microlens tend to decrease, while when the amount of this repeating unit exceeds 80% by weight. The storage stability of the radiation sensitive resin composition tends to decrease.

本発明で用いられる共重合体[A]のポリスチレン換算重量平均分子量(以下、「Mw」という)は、好ましくは2×10〜1×10、より好ましくは5×10〜5×10である。Mwが2×10未満であると、現像マージンが十分ではなくなる場合があり、得られる被膜の残膜率などが低下したり、また得られる層間絶縁膜またはマイクロレンズのパターン形状、耐熱性などに劣ることがあり、一方1×10を超えると、感度が低下したりパターン形状に劣ることがある。また、分子量分布(以下、「Mw/Mn」という)は、好ましくは5.0以下、より好ましくは3.0以下であることが望ましい。Mw/Mnが5.0を越えると、得られる層間絶縁膜またはマイクロレンズのパターン形状に劣ることがある。上記の共重合体[A]を含む感放射線性樹脂組成物は、現像する際に現像残りを生じることなく容易に所定パターン形状を形成することができる。 The copolymer [A] used in the present invention has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”), preferably 2 × 10 3 to 1 × 10 5 , more preferably 5 × 10 3 to 5 × 10. 4 . If the Mw is less than 2 × 10 3 , the development margin may not be sufficient, the remaining film ratio of the resulting film may decrease, the pattern shape of the resulting interlayer insulating film or microlens, heat resistance, etc. On the other hand, if it exceeds 1 × 10 5 , the sensitivity may be lowered or the pattern shape may be inferior. The molecular weight distribution (hereinafter referred to as “Mw / Mn”) is preferably 5.0 or less, more preferably 3.0 or less. When Mw / Mn exceeds 5.0, the pattern shape of the obtained interlayer insulating film or microlens may be inferior. The radiation-sensitive resin composition containing the copolymer [A] can easily form a predetermined pattern shape without causing a development residue during development.

共重合体[A]は、例えば、化合物(a1)、化合物(a2)および化合物(a3)を、適当な溶媒中、ラジカル重合開始剤の存在下で重合することによって合成することができる。
共重合体[A]の製造に用いられる溶媒としては、例えば、アルコール、エーテル、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコール、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、プロピレングリコールアルキルエーテルプロピオネート、芳香族炭化水素、ケトン、エステルなどを挙げることができる。
Copolymer [A] can be synthesized, for example, by polymerizing compound (a1), compound (a2) and compound (a3) in the presence of a radical polymerization initiator in an appropriate solvent.
Examples of the solvent used for the production of the copolymer [A] include alcohol, ether, glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, propylene glycol alkyl ether propio Nates, aromatic hydrocarbons, ketones, esters and the like.

これらの具体例としては、アルコールとして、例えばメタノール、エタノール、ベンジルアルコール、2−フェニルエチルアルコール、3−フェニル−1−プロパノールなど;
エーテルとしてテトラヒドロフランなど;
グリコールエーテルとして、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなど;
エチレングリコールアルキルエーテルアセテートとして、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテートなど;
ジエチレングリコールとして、例えばジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなど;
プロピレングリコールモノアルキルエーテルとして、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなど;
プロピレングリコールアルキルエーテルプロピオネートとして、例えばプロピレングリコールメチルエーテルプロピオネート、プロピレングリコールエチルエーテルプロピオネート、プロピレングリコールプロピルエーテルプロピオネート、プロピレングリコールブチルエーテルプロピオネートなど;
プロピレングリコールアルキルエーテルアセテートとして、例えばプロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなど;
芳香族炭化水素として、例えばトルエン、キシレンなど;
ケトンとして、例えばメチルエチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノンなど;
エステルとして、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3−ヒドロキシプロピオン酸メチル、3−ヒドロキシプロピオン酸エチル、3−ヒドロキシプロピオン酸プロピル、3−ヒドロキシプロピオン酸ブチル、2−ヒドロキシ−3−メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−メトキシプロピオン酸ブチル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−エトキシプロピオン酸プロピル、2−エトキシプロピオン酸ブチル、2−ブトキシプロピオン酸メチル、2−ブトキシプロピオン酸エチル、2−ブトキシプロピオン酸プロピル、2−ブトキシプロピオン酸ブチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸プロピル、3−エトキシプロピオン酸ブチル、3−プロポキシプロピオン酸メチル、3−プロポキシプロピオン酸エチル、3−プロポキシプロピオン酸プロピル、3−プロポキシプロピオン酸ブチル、3−ブトキシプロピオン酸メチル、3−ブトキシプロピオン酸エチル、3−ブトキシプロピオン酸プロピル、3−ブトキシプロピオン酸ブチルなどのエステルをそれぞれ挙げることができる。
Specific examples thereof include alcohols such as methanol, ethanol, benzyl alcohol, 2-phenylethyl alcohol, and 3-phenyl-1-propanol;
Tetrahydrofuran as ether;
Examples of glycol ethers include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether;
Examples of ethylene glycol alkyl ether acetate include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate;
Examples of diethylene glycol include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether;
Examples of propylene glycol monoalkyl ethers include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether;
As propylene glycol alkyl ether propionate, for example, propylene glycol methyl ether propionate, propylene glycol ethyl ether propionate, propylene glycol propyl ether propionate, propylene glycol butyl ether propionate, etc .;
Examples of propylene glycol alkyl ether acetates include propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate;
Aromatic hydrocarbons such as toluene, xylene, etc .;
Examples of ketones include methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc .;
Examples of esters include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, hydroxy Ethyl acetate, hydroxybutyl acetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, 2-hydroxy -3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, propoxy Methyl acetate, ethyl propoxyacetate, propyl propoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butylbutoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, 2-methoxypropionic acid Propyl, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, methyl 2-butoxypropionate, ethyl 2-butoxypropionate Propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropyl Butyl pionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, 3-propoxypropion Examples thereof include esters such as propyl acid, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, and butyl 3-butoxypropionate.

これらのうち、エチレングリコールアルキルエーテルアセテート、ジエチレングリコール、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテートが好ましく、特に、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールメチルエーテルアセテート、3−メトキシプロピオン酸メチルが好ましい。   Of these, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, and propylene glycol alkyl ether acetate are preferable. Particularly, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol methyl ether. Acetate and methyl 3-methoxypropionate are preferred.

共重合体[A]の製造に用いられる重合開始剤としては、ラジカル重合開始剤として知られているものが使用できる。例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)などのアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t−ブチルペルオキシピバレート、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサンなどの有機過酸化物;および過酸化水素が挙げられる。ラジカル重合開始剤として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。
共重合体[A]の製造においては、分子量を調整するために分子量調整剤を使用することができる。その具体例としては、クロロホルム、四臭化炭素等のハロゲン化炭化水素;n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、チオグリコール酸等のメルカプタン;ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン;ターピノーレン、α−メチルスチレンダイマー等が挙げられる。
As the polymerization initiator used for the production of the copolymer [A], those known as radical polymerization initiators can be used. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2,4-dimethylvaleronitrile) Azo compounds such as; benzoyl peroxide, lauroyl peroxide, t-butyl peroxypivalate, organic peroxides such as 1,1′-bis- (t-butylperoxy) cyclohexane; and hydrogen peroxide. When a peroxide is used as the radical polymerization initiator, the peroxide may be used together with a reducing agent to form a redox initiator.
In the production of the copolymer [A], a molecular weight modifier can be used to adjust the molecular weight. Specific examples thereof include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, thioglycolic acid; dimethylxanthogen sulfide, Xanthogens such as diisopropylxanthogen disulfide; terpinolene, α-methylstyrene dimer and the like.

[B]成分
本発明で用いられる[B]成分は、放射線の照射によりカルボン酸を発生する1,2−キノンジアジド化合物であり、フェノール性化合物またはアルコール性化合物(以下、「母核」という。)と、1,2−ナフトキノンジアジドスルホン酸ハライドの縮合物を用いることができる。
上記母核としては、例えば、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ペンタヒドロキシベンゾフェノン、ヘキサヒドロキシベンゾフェノン、(ポリヒドロキシフェニル)アルカン、その他の母核を挙げることができる。
[B] Component The [B] component used in the present invention is a 1,2-quinonediazide compound that generates a carboxylic acid upon irradiation with radiation, and is a phenolic compound or an alcoholic compound (hereinafter referred to as “mother nucleus”). And a condensate of 1,2-naphthoquinonediazide sulfonic acid halide can be used.
Examples of the mother nucleus include trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl) alkane, and other mother nuclei.

これらの具体例としては、トリヒドロキシベンゾフェノンとして、例えば2,3,4−トリヒドロキシベンゾフェノン、2,4,6−トリヒドロキシベンゾフェノン等;
テトラヒドロキシベンゾフェノンとして、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,3’−テトラヒドロキシベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,2’−テトラヒドロキシ−4’−メチルベンゾフェノン、2,3,4,4’−テトラヒドロキシ−3’−メトキシベンゾフェノン等;
ペンタヒドロキシベンゾフェノンとして、例えば2,3,4,2’,6’−ペンタヒドロキシベンゾフェノン等;
ヘキサヒドロキシベンゾフェノンとして、例えば2,4,6,3’,4’,5’−ヘキサヒドロキシベンゾフェノン、3,4,5,3’,4’,5’−ヘキサヒドロキシベンゾフェノン等;
(ポリヒドロキシフェニル)アルカンとして、例えばビス(2,4−ジヒドロキシフェニル)メタン、ビス(p−ヒドロキシフェニル)メタン、トリ(p−ヒドロキシフェニル)メタン、1,1,1−トリ(p−ヒドロキシフェニル)エタン、ビス(2,3,4−トリヒドロキシフェニル)メタン、2,2−ビス(2,3,4−トリヒドロキシフェニル)プロパン、1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン、4,4’−〔1−〔4−〔1−〔4−ヒドロキシフェニル〕−1−メチルエチル〕フェニル〕エチリデン〕ビスフェノール、ビス(2,5−ジメチル−4−ヒドロキシフェニル)−2−ヒドロキシフェニルメタン、3,3,3’,3’−テトラメチル−1,1’−スピロビインデン−5,6,7,5’,6’,7’−ヘキサノール、2,2,4−トリメチル−7,2’,4’−トリヒドロキシフラバン等;
その他の母核として、例えば2−メチル−2−(2,4−ジヒドロキシフェニル)−4−(4−ヒドロキシフェニル)−7−ヒドロキシクロマン、2−[ビス{(5−イソプロピル−4−ヒドロキシ−2−メチル)フェニル}メチル]、1−[1−(3−{1−(4−ヒドロキシフェニル)−1−メチルエチル}−4,6−ジヒドロキシフェニル)−1−メチルエチル]−3−(1−(3−{1−(4−ヒドロキシフェニル)−1−メチルエチル}−4,6−ジヒドロキシフェニル)−1−メチルエチル)ベンゼン、4,6−ビス{1−(4−ヒドロキシフェニル)−1−メチルエチル}−1,3−ジヒドロキシベンゼンが挙げられる。
Specific examples thereof include trihydroxybenzophenone such as 2,3,4-trihydroxybenzophenone and 2,4,6-trihydroxybenzophenone;
As tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3,4,3′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3,4 2,2'-tetrahydroxy-4'-methylbenzophenone, 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone, etc .;
Examples of pentahydroxybenzophenone include 2,3,4,2 ′, 6′-pentahydroxybenzophenone and the like;
Examples of hexahydroxybenzophenone include 2,4,6,3 ′, 4 ′, 5′-hexahydroxybenzophenone, 3,4,5,3 ′, 4 ′, 5′-hexahydroxybenzophenone and the like;
Examples of (polyhydroxyphenyl) alkanes include bis (2,4-dihydroxyphenyl) methane, bis (p-hydroxyphenyl) methane, tri (p-hydroxyphenyl) methane, and 1,1,1-tri (p-hydroxyphenyl). ) Ethane, bis (2,3,4-trihydroxyphenyl) methane, 2,2-bis (2,3,4-trihydroxyphenyl) propane, 1,1,3-tris (2,5-dimethyl-4) -Hydroxyphenyl) -3-phenylpropane, 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol, bis (2,5-dimethyl- 4-hydroxyphenyl) -2-hydroxyphenylmethane, 3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindene-5 6,7,5 ′, 6 ′, 7′-hexanol, 2,2,4-trimethyl-7,2 ′, 4′-trihydroxyflavan and the like;
As other mother nucleus, for example, 2-methyl-2- (2,4-dihydroxyphenyl) -4- (4-hydroxyphenyl) -7-hydroxychroman, 2- [bis {(5-isopropyl-4-hydroxy- 2-methyl) phenyl} methyl], 1- [1- (3- {1- (4-hydroxyphenyl) -1-methylethyl} -4,6-dihydroxyphenyl) -1-methylethyl] -3- ( 1- (3- {1- (4-hydroxyphenyl) -1-methylethyl} -4,6-dihydroxyphenyl) -1-methylethyl) benzene, 4,6-bis {1- (4-hydroxyphenyl) -1-methylethyl} -1,3-dihydroxybenzene.

また、上記例示した母核のエステル結合をアミド結合に変更した1,2−ナフトキノンジアジドスルホン酸アミド、例えば2,3,4−トリヒドロキシベンゾフェノン−1,2−ナフトキノンジアジド−4−スルホン酸アミド等も好適に使用される。
これらの母核のうち、2,3,4,4’−テトラヒドロキシベンゾフェノン、4,4’−〔1−〔4−〔1−〔4−ヒドロキシフェニル〕−1−メチルエチル〕フェニル〕エチリデン〕ビスフェノールが好ましい。
また、1,2−ナフトキノンジアジドスルホン酸ハライドとしては、例えば1,2−ナフトキノンジアジドスルホン酸クロリドが好ましく、その具体例としては1,2−ナフトキノンジアジド−4−スルホン酸クロリドおよび1,2−ナフトキノンジアジド−5−スルホン酸クロリドを挙げることができ、このうち、1,2−ナフトキノンジアジド−5−スルホン酸クロリドを使用することが好ましい。
Further, 1,2-naphthoquinone diazide sulfonic acid amides in which the ester bond of the mother nucleus exemplified above is changed to an amide bond, such as 2,3,4-trihydroxybenzophenone-1,2-naphthoquinone diazide-4-sulfonic acid amide, etc. Are also preferably used.
Among these mother nuclei, 2,3,4,4′-tetrahydroxybenzophenone, 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] Bisphenol is preferred.
The 1,2-naphthoquinone diazide sulfonic acid halide is preferably 1,2-naphthoquinone diazide sulfonic acid chloride, and specific examples thereof include 1,2-naphthoquinone diazide-4-sulfonic acid chloride and 1,2-naphtho. Examples thereof include quinonediazide-5-sulfonic acid chloride, and among these, 1,2-naphthoquinonediazide-5-sulfonic acid chloride is preferably used.

縮合反応においては、フェノール性化合物またはアルコール性化合物中のOH基数に対して、好ましくは30〜85モル%、より好ましくは50〜70モル%に相当する1,2−ナフトキノンジアジドスルホン酸ハライドを用いることができる。
縮合反応は公知の方法によって実施することができる。
これらの[B]成分は単独でまたは2種類以上を組み合わせて用いることができる。
In the condensation reaction, 1,2-naphthoquinonediazide sulfonic acid halide corresponding to 30 to 85 mol%, more preferably 50 to 70 mol% is used with respect to the number of OH groups in the phenolic compound or alcoholic compound. be able to.
The condensation reaction can be carried out by a known method.
These [B] components can be used alone or in combination of two or more.

[B]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは5〜100重量部、より好ましくは10〜50重量部である。この割合が5重量部未満の場合には、現像液となるアルカリ水溶液に対する放射線の照射部分と未照射部分との溶解度の差が小さく、パターニングが困難となる場合があり、また得られる層間絶縁膜またはマイクロレンズの耐熱性および耐溶剤性が不十分となる場合がある。一方、この割合が100重量部を超える場合には、放射線照射部分において前記アルカリ水溶液への溶解度が不十分となり、現像することが困難となる場合がある。   [B] The usage-amount of a component becomes like this. Preferably it is 5-100 weight part with respect to 100 weight part of copolymers [A], More preferably, it is 10-50 weight part. When this ratio is less than 5 parts by weight, the difference in solubility between the irradiated portion and the unirradiated portion in the alkaline aqueous solution that is the developer is small, and patterning may be difficult. Alternatively, the heat resistance and solvent resistance of the microlens may be insufficient. On the other hand, when this ratio exceeds 100 parts by weight, the solubility in the alkaline aqueous solution may be insufficient in the radiation irradiated portion, and development may be difficult.

[C]成分
本発明で用いられる[C]成分は、炭素数6〜15のアリール基を有するシルセスキオキサンである。かかる成分を感放射線性樹脂組成物中に含有せしめることにより、高い感放射線感度と優れた現像マージンを有する感放射線性樹脂組成物が得られ、低誘電率の層間絶縁膜を形成することができるとともに、下地との密着性にも優れる層間絶縁膜またはマイクロレンズを形成することができる。
[C]成分は、下記式(1)で表されるシラン化合物(以下、「化合物(c1)ということがある。)を加水分解することにより製造することができる。
Si(R)(OR)(OR)(OR) ・・・(1)
(式中、Rは炭素数6〜15のアリール基を表し、R〜Rは相互に独立に水素原子、炭素数1〜4の置換もしくは未置換のアルキル基、またはアシル基を表す。)
上記加水分解物には、原料中の加水分解されうる部分の全部が加水分解されたもの、およびその一部が加水分解され一部が加水分解されずに残存するものも包含されると解するべきである。
上記式(1)において、Rの炭素数6〜15のアリール基としては、ナフチル基、フェニル基、アントラセニル基、フェナントリル基、ベンジル基などを挙げることができ、フェニル基またはベンジル基が好ましく、フェニル基が特に好ましい。
[C] Component The [C] component used in the present invention is silsesquioxane having an aryl group having 6 to 15 carbon atoms. By incorporating such a component in the radiation sensitive resin composition, a radiation sensitive resin composition having high radiation sensitivity and an excellent development margin can be obtained, and an interlayer insulating film having a low dielectric constant can be formed. At the same time, an interlayer insulating film or a microlens having excellent adhesion to the base can be formed.
[C] component, the silane compound represented by the following following formula (1) (hereinafter may. Be referred to as "compound (c1)) can be produced by hydrolyzing.
Si (R 1 ) (OR 2 ) (OR 3 ) (OR 4 ) (1)
(In the formula, R 1 represents an aryl group having 6 to 15 carbon atoms, and R 2 to R 4 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or an acyl group. .)
It is understood that the hydrolyzate includes those in which all the hydrolyzable parts in the raw material are hydrolyzed, and those in which some of them are hydrolyzed and part of them remain without being hydrolyzed. Should.
In the above formula (1), examples of the aryl group having 6 to 15 carbon atoms of R 1 include a naphthyl group, a phenyl group, an anthracenyl group, a phenanthryl group, and a benzyl group, and a phenyl group or a benzyl group is preferable. A phenyl group is particularly preferred.

化合物(c1)の具体例としては、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ−n−プロピルオキシシラン、フェニルトリ−i−プロピルオキシシラン、フェニルトリアセトキシシラン、フェニルトリ(メトキシエトキシ)シランなどを挙げることができる。
これらのうち、フェニルトリメトキシシランおよびフェニルトリエトキシシランが反応性および保存安定性の点から好ましい。化合物(c1)は、単独であるいは2種以上を組み合わせて用いることができる。
Specific examples of the compound (c1) include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propyloxysilane, phenyltri-i-propyloxysilane, phenyltriacetoxysilane, and phenyltri (methoxyethoxy) silane. And so on.
Of these, phenyltrimethoxysilane and phenyltriethoxysilane are preferred from the viewpoints of reactivity and storage stability. A compound (c1) can be used individually or in combination of 2 or more types.

本発明で用いられる[C]成分は、現像マージンおよび得られる硬化膜の密着性の点から、化合物(c1)と下記式(2)で表わされるシラン化合物(以下、「化合物(c2)」ということがある。)との加水分解縮合物であってもよい。
Si(R)(OR)(OR)(OR) ・・・(2)
(式中、Rは炭素数1〜15のアルキル基であり、R〜Rは相互に独立に水素原子、炭素数1〜4の置換もしくは未置換のアルキル基またはアシル基である。)
上記式(2)において、前記炭素数1〜15のアルキル基としては、炭素数1〜6の直鎖もしくは分岐状のアルキル基、または炭素数5〜10の環状のアルキル基が好ましい。例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、イソボロニル基、トリシクロデキニル基などがさらに好ましく、メチル基が特に好ましい。
[C] component used by this invention is a silane compound (henceforth "compound (c2)") represented by the compound (c1) and the following formula (2) from the point of image development margin and the adhesiveness of the cured film obtained. it is.) and but it may also I hydrolyzed condensate der.
Si (R 5 ) (OR 6 ) (OR 7 ) (OR 8 ) (2)
(In the formula, R 5 is an alkyl group having 1 to 15 carbon atoms, and R 6 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or an acyl group. )
In the above formula (2), the alkyl group having 1 to 15 carbon atoms is preferably a linear or branched alkyl group having 1 to 6 carbon atoms or a cyclic alkyl group having 5 to 10 carbon atoms. For example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a tert-butyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, an isobornyl group, a tricyclodecynyl group, and the like are more preferable. The group is particularly preferred.

化合物(c2)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロピルオキシシラン、メチルトリ−i−プロピルオキシシラン、メチルトリアセトキシシラン、メチルトリ(メトキシエトキシ)シラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ−n−プロピルオキシシラン、エチルトリ−i−プロピルオキシシラン、エチルトリアセトキシシラン、エチルトリ(メトキシエトキシ)シラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−プロピルトリ−n−プロピルオキシシラン、n−プロピルトリ−i−プロピルオキシシラン、n−プロピルトリアセトキシシラン、n−プロピルトリ(メトキシエトキシ)シラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、シクロヘキシルトリ−n−プロピルオキシシラン、シクロヘキシルトリ−i−プロピルオキシシラン、シクロヘキシルトリアセトキシシラン、シクロヘキシルトリ(メトキシエトキシ)シランなどを挙げることができる。   Specific examples of the compound (c2) include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propyloxysilane, methyltri-i-propyloxysilane, methyltriacetoxysilane, methyltri (methoxyethoxy) silane, ethyltri Methoxysilane, ethyltriethoxysilane, ethyltri-n-propyloxysilane, ethyltri-i-propyloxysilane, ethyltriacetoxysilane, ethyltri (methoxyethoxy) silane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltri-n-propyloxysilane, n-propyltri-i-propyloxysilane, n-propyltriacetoxysilane, n-propyltri (methoxyethoxy) silane, cyclohexyl Silane, cyclohexyl triethoxysilane, cyclohexyltrimethoxysilane -n- propyl silane, cyclohexyl-tri -i- propyl silane, cyclohexyl triacetoxy silane, and a cyclohexyl tri (methoxyethoxy) silane.

これらのうち、メチルトリメトキシシランおよびメチルトリエトキシシランが反応性および保存安定性の点から好ましい。化合物(c2)は、単独であるいは2種以上を組み合わせて用いることができる。   Of these, methyltrimethoxysilane and methyltriethoxysilane are preferred from the viewpoints of reactivity and storage stability. A compound (c2) can be used individually or in combination of 2 or more types.

本発明で用いられる[C]成分は、化合物(c1)から誘導される繰り返し単位を、化合物(c1)および(c2)から誘導される繰り返し単位の合計に基づいて、好ましくは50重量%以上、より好ましくは50〜95重量%、特に好ましくは60〜90重量%含有している。この繰り返し単位が50重量%未満であると、感放射線性樹脂組成物中において共重合体[A]と相分離を起こし塗膜形成に支障をきたすおそれがある。
[C]成分を製造する加水分解反応は、好ましくは適当な溶媒中で行われる。このような溶媒としては、例えばメタノール、エタノール、n−プロパノール、イソプロピルアルコール、n−ブタノール、イソブチルアルコール、t−ブチルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセテート、テトラヒドロフラン、ジオキサン、アセトニトリルの如き水溶性溶剤またはそれらの水溶液が挙げられる。
The component [C] used in the present invention preferably contains 50% by weight or more of repeating units derived from the compound (c1) based on the total repeating units derived from the compounds (c1) and (c2). More preferably, it contains 50 to 95% by weight, particularly preferably 60 to 90% by weight. If this repeating unit is less than 50% by weight, phase separation may occur with the copolymer [A] in the radiation-sensitive resin composition, and the coating film formation may be hindered.
The hydrolysis reaction for producing the component [C] is preferably carried out in a suitable solvent. Examples of such solvents include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, t-butyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, propylene glycol methyl ether acetate, Examples thereof include water-soluble solvents such as tetrahydrofuran, dioxane and acetonitrile, and aqueous solutions thereof.

これらの水溶性溶剤は後の工程で除去されるので、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン等の比較的沸点の低いものが好適であり、原料の溶解性の点でアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類がさらに好ましく、メチルイソブチルケトンが特に好ましい。
また、加水分解反応は、好ましくは、酸触媒例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、酸性イオン交換樹脂、各種ルイス酸等、または塩基触媒例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジン等の含窒素芳香族化合物、塩基性イオン交換樹脂、水酸化ナトリウム等の水酸化物、炭酸カリウム等の炭酸塩、酢酸ナトリウム等のカルボン酸塩、各種ルイス塩基等の存在下で行われる。触媒の使用量は、モノマー1モルに対して好ましくは0.2モル以下であり、より好ましくは0.00001〜0.1モルである。
水の含有量、反応温度、反応時間は適宜設定される。例えば下記の条件が採用できる。
水の含有量は、製造に用いられるシラン化合物中の加水分解性基の合計量1モルに対して、1.5モル以下、好ましくは1モル以下、より好ましくは0.9モル以下の量である。
反応温度は、好ましくは40〜200℃、より好ましくは50〜150℃である。
反応時間は、好ましくは30分〜24時間、より好ましくは1〜12時間である。
Since these water-soluble solvents are removed in a later step, those having a relatively low boiling point such as methanol, ethanol, n-propanol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, and tetrahydrofuran are suitable. In terms of solubility, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone are more preferable, and methyl isobutyl ketone is particularly preferable.
The hydrolysis reaction is preferably an acid catalyst such as hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, acidic ion exchange resin, various Lewis acids, or a base catalyst such as , Ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing aromatic compounds such as pyridine, basic ion exchange resins, hydroxides such as sodium hydroxide, carbonates such as potassium carbonate, acetic acid It is carried out in the presence of a carboxylate such as sodium and various Lewis bases. The amount of the catalyst to be used is preferably 0.2 mol or less, more preferably 0.00001 to 0.1 mol, relative to 1 mol of the monomer.
Water content, reaction temperature, and reaction time are appropriately set. For example, the following conditions can be adopted.
The water content is 1.5 mol or less, preferably 1 mol or less, more preferably 0.9 mol or less with respect to 1 mol of the total amount of hydrolyzable groups in the silane compound used for production. is there.
The reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C.
The reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours.

本発明で用いられる[C]成分のポリスチレン換算の重量平均分子量は、好ましくは5×10〜5×10、より好ましくは1×10〜4.5×10である。[C]成分の重量平均分子量が5×10未満であると、現像マージンが十分ではなくなるおそれがあり、一方5×10を超えると、感放射線性樹脂組成物中において共重合体[A]と相分離を起こし塗膜形成に支障をきたすおそれがある。
[C]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは10〜100重量部以下、より好ましくは15〜50重量部以下である。この使用割合が10重量部未満の場合には、所望の効果が得られないおそれがあり、一方100重量部を超える場合には、共重合体[A]と相分離を起こし塗膜形成に支障をきたすおそれがある。
The weight average molecular weight in terms of polystyrene of the [C] component used in the present invention is preferably 5 × 10 2 to 5 × 10 3 , more preferably 1 × 10 3 to 4.5 × 10 3 . If the weight average molecular weight of the component [C] is less than 5 × 10 2 , the development margin may not be sufficient. On the other hand, if it exceeds 5 × 10 3 , the copolymer [A ] May cause phase separation and hinder coating formation.
The ratio of the component [C] used is preferably 10 to 100 parts by weight or less, more preferably 15 to 50 parts by weight or less with respect to 100 parts by weight of the copolymer [A]. If the use ratio is less than 10 parts by weight, the desired effect may not be obtained. On the other hand, if it exceeds 100 parts by weight, phase separation occurs with the copolymer [A] and the coating film formation is hindered. There is a risk of causing.

その他の成分
本発明の感放射線性樹脂組成物は、上記の共重合体[A]、[B]および[C]成分を必須成分として含有するが、その他必要に応じて[D]感熱性酸生成化合物、[E]少なくとも1個のエチレン性不飽和二重結合を有する重合性化合物、[F]共重合体[A]以外のエポキシ樹脂、[G]界面活性剤、あるいは[H]接着助剤を含有することができる。
上記[D]感熱性酸生成化合物は、耐熱性や硬度を向上させるために用いることができる。その具体例としては、スルホニウム塩、ベンゾチアゾニウム塩、アンモニウム塩、ホスホニウム塩などの公知のオニウム塩が挙げられる。
[D]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは20重量部以下、より好ましくは5重量部以下である。この使用量が20重量部を超える場合には、塗膜形成工程において析出物が析出し、塗膜形成に支障をきたす場合がある。
Other Components The radiation-sensitive resin composition of the present invention contains the above-mentioned copolymers [A], [B] and [C] as essential components, but [D] a heat-sensitive acid as necessary. Product compound, [E] polymerizable compound having at least one ethylenically unsaturated double bond, epoxy resin other than [F] copolymer [A], [G] surfactant, or [H] adhesion aid An agent can be contained.
[D] The heat-sensitive acid generating compound can be used to improve heat resistance and hardness. Specific examples thereof include known onium salts such as sulfonium salts, benzothiazonium salts, ammonium salts, and phosphonium salts.
The proportion of the component [D] used is preferably 20 parts by weight or less, more preferably 5 parts by weight or less with respect to 100 parts by weight of the copolymer [A]. When the amount used exceeds 20 parts by weight, precipitates may be deposited in the coating film forming step, which may hinder the coating film formation.

上記[E]成分である少なくとも1個のエチレン性不飽和二重結合を有する重合性化合物としては、例えば公知の単官能(メタ)アクリレート、2官能(メタ)アクリレートまたは3官能以上の(メタ)アクリレートを好適に挙げることができる。なかでも、3官能以上の(メタ)アクリレートが好ましく用いられ、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが特に好ましい。
[E]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは50重量部以下、より好ましくは30重量部以下である。
このような割合で[E]成分を含有させることにより、本発明の感放射線性樹脂組成物から得られる層間絶縁膜またはマイクロレンズの耐熱性および表面硬度等を向上させることができる。この使用量が50重量部を超えると、基板上に感放射線性樹脂組成物の塗膜を形成する工程において膜荒れが生じることがある。
Examples of the polymerizable compound having at least one ethylenically unsaturated double bond as the component [E] include a known monofunctional (meth) acrylate, bifunctional (meth) acrylate, or trifunctional or higher (meth). An acrylate can be mentioned preferably. Of these, trifunctional or higher functional (meth) acrylates are preferably used, and trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol hexa (meth) acrylate are particularly preferable.
[E] The use ratio of the component is preferably 50 parts by weight or less, more preferably 30 parts by weight or less with respect to 100 parts by weight of the copolymer [A].
By including the [E] component at such a ratio, the heat resistance, surface hardness, etc. of the interlayer insulating film or microlens obtained from the radiation-sensitive resin composition of the present invention can be improved. If the amount used exceeds 50 parts by weight, film roughening may occur in the step of forming a coating film of the radiation-sensitive resin composition on the substrate.

上記[F]成分である共重合体[A]以外のエポキシ樹脂としては、相溶性に影響がないかぎり限定されるものではない。好ましくはビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、グリシジルメタアクリレートを(共)重合した樹脂等を挙げることができる。これらのうち、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂等が特に好ましい。
[F]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは30重量部以下である。このような割合で[F]成分が含有されることにより、本発明の感放射線性樹脂組成物から得られる保護膜または絶縁膜の耐熱性および表面硬度等をさらに向上させることができる。この割合が30重量部を超えると、基板上に感放射線性樹脂組成物の塗膜を形成する際、塗膜の膜厚均一性が不十分となる場合がある。
なお、共重合体[A]も「エポキシ樹脂」といい得るが、アルカリ可溶性を有する点で[F]成分とは異なる。[F]成分はアルカリ不溶性である。
The epoxy resin other than the copolymer [A] as the [F] component is not limited as long as the compatibility is not affected. Preferably, bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, cyclic aliphatic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, heterocyclic epoxy resin, glycidyl methacrylate ) Polymerized resins and the like can be mentioned. Of these, bisphenol A type epoxy resins, cresol novolac type epoxy resins, glycidyl ester type epoxy resins and the like are particularly preferable.
The proportion of the component [F] used is preferably 30 parts by weight or less with respect to 100 parts by weight of the copolymer [A]. By containing the component [F] at such a ratio, the heat resistance and surface hardness of the protective film or insulating film obtained from the radiation-sensitive resin composition of the present invention can be further improved. When this ratio exceeds 30 parts by weight, the film thickness uniformity of the coating film may be insufficient when a coating film of the radiation sensitive resin composition is formed on the substrate.
The copolymer [A] can also be referred to as an “epoxy resin”, but differs from the [F] component in that it has alkali solubility. [F] component is alkali-insoluble.

本発明の感放射線性樹脂組成物には、さらに塗布性を向上するため上記[G]成分である界面活性剤を使用することができる。[G]界面活性剤としては、例えばフッ素系界面活性剤、シリコーン系界面活性剤およびノニオン系界面活性剤を好適に用いることができる。   In the radiation sensitive resin composition of the present invention, a surfactant which is the above [G] component can be used in order to further improve the coating property. [G] As the surfactant, for example, a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant can be suitably used.

フッ素系界面活性剤の具体例としては、1,1,2,2−テトラフロロオクチル(1,1,2,2−テトラフロロプロピル)エーテル、1,1,2,2−テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10−デカフロロドデカン、1,1,2,2,3,3−ヘキサフロロデカン等の他、フルオロアルキルベンゼンスルホン酸ナトリウム;フルオロアルキルオキシエチレンエーテル;フルオロアルキルアンモニウムヨージド、フルオロアルキルポリオキシエチレンエーテル、パーフルオロアルキルポリオキシエタノール;パーフルオロアルキルアルコキシレート;フッ素系アルキルエステル等を挙げることができる。これらの市販品としては、BM−1000、BM−1100(以上、BM Chemie社製)、メガファックF142D、同F172、同F173、同F183、同F178、同F191、同F471(以上、大日本インキ化学工業(株)製)、フロラードFC−170C、FC−171、FC−430、FC−431(以上、住友スリーエム(株)製)、サーフロンS−112、同S−113、同S−131、同S−141、同S−145、同S−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(旭硝子(株)製)、エフトップEF301、同303、同352(新秋田化成(株)製)などが挙げられる。   Specific examples of the fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether. , Octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1,1 , 2,2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecyl sulfonate, 1,1,2,2,8 , 8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, etc. Sodium Zensuruhon acid; fluoroalkyl polyoxyethylene ethers; fluoroalkyl ammonium iodide, fluoroalkyl polyoxyethylene ethers, perfluoroalkyl polyoxyethylene ethanol; can be exemplified fluorine-based alkyl esters; perfluoroalkyl alkoxylates. These commercial products include BM-1000, BM-1100 (manufactured by BM Chemie), MegaFuck F142D, F172, F173, F183, F178, F191, F191 (and above, Dainippon Ink). Chemical Industries, Ltd.), Fluorad FC-170C, FC-171, FC-430, FC-431 (above, manufactured by Sumitomo 3M), Surflon S-112, S-113, S-131, S-141, S-145, S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (manufactured by Asahi Glass Co., Ltd.) ), F-top EF301, 303, and 352 (manufactured by Shin-Akita Kasei Co., Ltd.).

上記シリコーン系界面活性剤としては、例えばDC3PA、DC7PA、FS−1265、SF−8428、SH11PA、SH21PA、SH28PA、SH29PA、SH30PA、SH−190、SH−193、SZ−6032(以上、東レ・ダウコーニング・シリコーン(株)製)、TSF−4440、TSF−4300、TSF−4445、TSF−4446、TSF−4460、TSF−4452(以上、GE東芝シリコーン(株)製)等の商品名で市販されているものを挙げることができる。   Examples of the silicone surfactant include DC3PA, DC7PA, FS-1265, SF-8428, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH-190, SH-193, SZ-6032 (above, Toray Dow Corning) -Silicone Co., Ltd.), TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4442 (above, GE Toshiba Silicone Co., Ltd.) are commercially available. You can list what you have.

上記ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテルなどのポリオキシエチレンアルキルエーテル;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアリールエーテル;ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレートなどのポリオキシエチレンジアルキルエステルなど;(メタ)アクリル酸系共重合体ポリフローNo. 57、95(共栄社化学(株)製)などを使用することができる。   Examples of the nonionic surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and the like. Polyoxyethylene aryl ethers; polyoxyethylene dialkyl esters such as polyoxyethylene dilaurate and polyoxyethylene distearate; (meth) acrylic acid copolymer polyflow Nos. 57 and 95 (manufactured by Kyoeisha Chemical Co., Ltd.) Etc. can be used.

これらの界面活性剤は単独でまたは2種以上を組み合わせて使用することができる。
これらの[G]界面活性剤は、共重合体[A]100重量部に対して、好ましくは5重量部以下、より好ましくは2重量部以下で用いられる。[G]界面活性剤の使用量が5重量部を超えると、基板上に塗膜を形成する際、塗膜の膜あれが生じやすくなることがある。
These surfactants can be used alone or in combination of two or more.
These [G] surfactants are preferably used in an amount of 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the copolymer [A]. [G] If the amount of the surfactant used exceeds 5 parts by weight, the coating film may be easily formed when the coating film is formed on the substrate.

本発明の感放射線性樹脂組成物においてでは、また、基体との接着性を向上させるために[H]成分である接着助剤を使用することもできる。このような[H]接着助剤としては、官能性シランカップリング剤が好ましく使用され、例えばカルボキシル基、メタクリロイル基、イソシアネート基、エポキシ基などの反応性置換基を有するシランカップリング剤が挙げられる。具体的にはトリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアナートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。このような[H]接着助剤は、共重合体[A]100重量部に対して、好ましくは20重量部以下、より好ましくは10重量部以下の量で用いられる。接着助剤の量が20重量部を超える場合は、現像工程において現像残りが生じやすくなる場合がある。   In the radiation sensitive resin composition of the present invention, an adhesion assistant as the [H] component can also be used in order to improve the adhesion to the substrate. As such [H] adhesion assistant, a functional silane coupling agent is preferably used, and examples thereof include a silane coupling agent having a reactive substituent such as a carboxyl group, a methacryloyl group, an isocyanate group, and an epoxy group. . Specifically, trimethoxysilylbenzoic acid, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like. Such [H] adhesion assistant is preferably used in an amount of 20 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of the copolymer [A]. In the case where the amount of the adhesion assistant exceeds 20 parts by weight, there may be a case where a development residue is likely to occur in the development process.

感放射線性樹脂組成物
本発明の感放射線性樹脂組成物は、上記の共重合体[A]、[B]および[C]成分ならびに上記の如き任意的に添加するその他の成分を均一に混合することによって調製される。本発明の感放射線性樹脂組成物は、好ましくは適当な溶媒に溶解されて溶液状態で用いられる。例えば共重合体[A]、[B]および[C]成分ならびに任意的に添加されるその他の成分を、所定の割合で混合することにより、溶液状態の感放射線性樹脂組成物を調製することができる。
Radiation-sensitive resin composition The radiation-sensitive resin composition of the present invention is a uniform mixture of the above-mentioned copolymer [A], [B] and [C] components and other components optionally added as described above. To be prepared. The radiation-sensitive resin composition of the present invention is preferably used in a solution state after being dissolved in an appropriate solvent. For example, preparing a radiation-sensitive resin composition in a solution state by mixing the copolymer [A], [B] and [C] components and other optionally added components in a predetermined ratio. Can do.

本発明の感放射線性樹脂組成物の調製に用いられる溶媒としては、共重合体[A]、[B]および[C]成分ならびに任意的に配合されるその他の成分の各成分を均一に溶解し、各成分と反応しないものが用いられる。
このような溶媒としては、上述した共重合体[A]を製造するために使用できる溶媒として例示したものと同様のものを挙げることができる。
As the solvent used for the preparation of the radiation sensitive resin composition of the present invention, the respective components of the copolymer [A], [B] and [C] components and other components optionally blended are uniformly dissolved. And what does not react with each component is used.
As such a solvent, the thing similar to what was illustrated as a solvent which can be used in order to manufacture copolymer [A] mentioned above can be mentioned.

このような溶媒のうち、各成分の溶解性、各成分との反応性、塗膜形成のしやすさ等の点から、アルコール、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、エステルおよびジエチレングリコールが好ましく用いられる。これらのうち、ベンジルアルコール、2−フェニルエチルアルコール、3−フェニル−1−プロパノール、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノメチルエーテルアセテート、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルが特に好ましく使用できる。   Among such solvents, alcohol, glycol ether, ethylene glycol alkyl ether acetate, ester and diethylene glycol are preferably used from the viewpoints of solubility of each component, reactivity with each component, ease of film formation, and the like. . Among these, benzyl alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, Purpylene glycol monomethyl ether acetate, methyl methoxypropionate, and ethyl ethoxypropionate can be particularly preferably used.

さらに前記溶媒とともに膜厚の面内均一性を高めるため、高沸点溶媒を併用することもできる。併用できる高沸点溶媒としては、例えばN−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルホルムアニリド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1−オクタノール、1−ノナノール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γ−ブチロラクトン、炭酸エチレン、炭酸プロピレン、フェニルセロソルブアセテートなどが挙げられる。これらのうち、N−メチルピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミドが好ましい。   Furthermore, in order to improve the in-plane uniformity of the film thickness together with the solvent, a high boiling point solvent can be used in combination. Examples of the high boiling point solvent that can be used in combination include N-methylformamide, N, N-dimethylformamide, N-methylformanilide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and benzylethyl ether. , Dihexyl ether, acetonyl acetone, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ethylene carbonate, propylene carbonate, phenyl Examples include cellosolve acetate. Of these, N-methylpyrrolidone, γ-butyrolactone, and N, N-dimethylacetamide are preferable.

本発明の感放射性樹脂組成物の溶媒として、高沸点溶媒を併用する場合、その使用量は、溶媒全量に対して50重量%以下、好ましくは40重量%以下、さらに好ましくは30重量%以下とすることができる。高沸点溶媒の使用量がこの使用量を越えると、塗膜の膜厚均一性、感度および残膜率が低下する場合がある。   When a high boiling point solvent is used in combination as the solvent of the radiation sensitive resin composition of the present invention, the amount used is 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less, based on the total amount of the solvent. can do. If the amount of the high-boiling solvent used exceeds this amount, the coating film thickness uniformity, sensitivity, and residual film rate may decrease.

本発明の感放射線性樹脂組成物を溶液状態として調製する場合、溶液中に占める溶媒以外の成分すなわち共重合体[A]、[B]および[C]成分ならびに任意的に添加されるその他の成分の合計量)の割合は、使用目的や所望の膜厚の値等に応じて任意に設定することができる。それでも、好ましくは5〜50重量%、より好ましくは10〜40重量%、さらに好ましくは15〜35重量%である。
このようにして調製された組成物溶液は、孔径0.2μm程度のミリポアフィルタなどを用いて濾過した後、使用に供することもできる。
When preparing the radiation-sensitive resin composition of the present invention in a solution state, components other than the solvent in the solution, that is, the copolymer [A], [B] and [C] components and other optionally added components The ratio of the total amount of the components can be arbitrarily set according to the purpose of use, the desired film thickness value, and the like. Still, it is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, and further preferably 15 to 35% by weight.
The composition solution thus prepared can be used after being filtered using a Millipore filter having a pore size of about 0.2 μm.

層間絶縁膜、マイクロレンズの形成
次に本発明の感放射線性樹脂組成物を用いて、本発明の層間絶縁膜、マイクロレンズを形成する方法について述べる。本発明の層間絶縁膜またはマイクロレンズの形成方法は、以下の工程を以下に記載順で含む。
(1)本発明の感放射線性組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)照射された塗膜を現像する工程、および
(4)現像された塗膜を加熱する工程。
Formation of Interlayer Insulating Film and Microlens Next, a method for forming the interlayer insulating film and microlens of the present invention using the radiation sensitive resin composition of the present invention will be described. The method for forming an interlayer insulating film or microlens of the present invention includes the following steps in the order described below.
(1) The process of forming the coating film of the radiation sensitive composition of this invention on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) a step of developing the irradiated coating film, and (4) a step of heating the developed coating film.

(1)本発明の感放射線性組成物の塗膜を基板上に形成する工程
上記(1)の工程においては、本発明の組成物溶液を基板表面に塗布し、好ましくはプレベークを行うことにより溶剤を除去して、感放射線性樹脂組成物の塗膜を形成する。
使用できる基板の種類としては、例えばガラス基板、シリコンウエハーおよびこれらの表面に各種金属が形成された基板を挙げることができる。
組成物溶液の塗布方法としては、特に限定されず、例えばスプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、インクジェット法等の適宜の方法を採用することができ、特にスピンコート法、スリットダイ塗布法が好ましい。プレベークの条件としては、各成分の種類、使用割合等によっても異なる。例えば、60〜110℃で30秒間〜15分間程度とすることができる。
形成される塗膜の膜厚としては、プレベーク後の値として、層間絶縁膜を形成する場合にあっては例えば3〜6μm、マイクロレンズを形成する場合にあっては例えば0.5〜3μmが好ましい。
(1) Step of forming a coating film of the radiation-sensitive composition of the present invention on a substrate In the step (1), the composition solution of the present invention is applied to the substrate surface, preferably by pre-baking. The solvent is removed to form a coating film of the radiation sensitive resin composition.
Examples of the types of substrates that can be used include glass substrates, silicon wafers, and substrates on which various metals are formed.
The method of applying the composition solution is not particularly limited, and an appropriate method such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, an ink jet method, or the like is employed. In particular, spin coating and slit die coating are preferred. Prebaking conditions vary depending on the type of each component, the proportion of use, and the like. For example, it can be set at 60 to 110 ° C. for about 30 seconds to 15 minutes.
The thickness of the coating film to be formed is, for example, 3 to 6 μm when the interlayer insulating film is formed, and 0.5 to 3 μm, for example, when the microlens is formed, as the value after pre-baking preferable.

(2)該塗膜の少なくとも一部に放射線を照射する工程
上記(2)の工程においては、形成された塗膜に所定のパターンを有するマスクを介して、放射線を照射した後、現像液を用いて現像処理して放射線の照射部分を除去することによりパターニングを行う。このとき用いられる放射線としては、例えば紫外線、遠紫外線、X線、荷電粒子線等が挙げられる。
上記紫外線としては例えばg線(波長436nm)、i線(波長365nm)等が挙げられる。遠紫外線としては例えばKrFエキシマレーザー等が挙げられる。X線としては例えばシンクロトロン放射線等が挙げられる。荷電粒子線として例えば電子線等を挙げることができる。
これらのうち、紫外線が好ましく、なかでもg線および/またはi線を含む放射線が特に好ましい。
露光量としては、層間絶縁膜を形成する場合にあっては50〜1,500J/m、マイクロレンズを形成する場合にあっては50〜2,000J/mとすることが好ましい。
(2) Step of irradiating at least a part of the coating film In the step (2), the developer is irradiated with radiation through a mask having a predetermined pattern on the formed coating film. The patterning is performed by removing the irradiated portion using the development process. Examples of the radiation used at this time include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
Examples of the ultraviolet rays include g-line (wavelength 436 nm), i-line (wavelength 365 nm), and the like. Examples of the far ultraviolet rays include KrF excimer laser. Examples of X-rays include synchrotron radiation. Examples of the charged particle beam include an electron beam.
Among these, ultraviolet rays are preferable, and radiation containing g-line and / or i-line is particularly preferable.
The exposure amount, 50~1,500J / m 2 In the case of forming an interlayer insulating film, in the case of forming a micro-lens is preferably set to 50~2,000J / m 2.

(3)現像工程
現像処理に用いられる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n−プロピルアミン、ジエチルアミン、ジエチルアミノエタノール、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、1,8−ジアザビシクロ〔5.4.0〕−7−ウンデセン、1,5−ジアザビシクロ〔4.3.0〕−5−ノナン等のアルカリ(塩基性化合物)の水溶液を用いることができる。また、上記のアルカリの水溶液にメタノール、エタノール等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液、または本発明の組成物を溶解する各種有機溶媒を現像液として使用することができる。さらに、現像方法としては、例えば液盛り法、ディッピング法、揺動浸漬法、シャワー法等の適宜の方法を利用することができる。このときの現像時間は、組成物の組成によって異なるが、例えば30〜120秒間とすることができる。
なお、従来知られている感放射線性樹脂組成物は、現像時間が最適値から20〜25秒程度超過すると形成したパターンに剥がれが生じるため現像時間を厳密に制御する必要があったが、本発明の感放射線性樹脂組成物の場合、最適現像時間からの超過時間が30秒以上となっても良好なパターン形成が可能であり、製品歩留まり上の利点がある。
(3) Development process Examples of the developer used in the development process include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, diethylaminoethanol, di-acid. -N-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene An aqueous solution of an alkali (basic compound) such as 1,5-diazabicyclo [4.3.0] -5-nonane can be used. In addition, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the above aqueous alkali solution, or various organic solvents that dissolve the composition of the present invention can be used as a developing solution. Furthermore, as a developing method, for example, an appropriate method such as a liquid piling method, a dipping method, a rocking dipping method, a shower method, or the like can be used. The development time at this time varies depending on the composition of the composition, but can be, for example, 30 to 120 seconds.
In addition, the conventionally known radiation-sensitive resin composition has been required to strictly control the development time because the formed pattern peels when the development time exceeds about 20 to 25 seconds from the optimum value. In the case of the radiation-sensitive resin composition of the invention, good pattern formation is possible even when the excess time from the optimum development time is 30 seconds or more, and there is an advantage in product yield.

(4)加熱工程
上記のように実施した(3)現像工程後に、パターニングされた薄膜に対して、好ましくは例えば流水洗浄によるリンス処理を行い、さらに、好ましくは高圧水銀灯などによる放射線を全面に照射(後露光)することにより、当該薄膜中に残存する1,2−キノンジアジト化合物の分解処理を行った後、この薄膜を、ホットプレート、オーブン等の加熱装置により加熱処理(ポストベーク処理)して当該薄膜の硬化処理を行う。上記後露光工程における露光量は、好ましくは2,000〜5,000J/m程度である。また、この硬化処理における焼成温度は、例えば120〜250℃である。加熱時間は、加熱機器の種類により異なるが、例えばホットプレート上で加熱処理を行う場合には5〜30分間、オーブン中で加熱処理を行う場合には30〜90分間とすることができる。この際に、2回以上の加熱工程を行うステップベーク法等を用いることもできる。
このようにして、目的とする層間絶縁膜またはマイクロレンズに対応する、パターン状薄膜を基板の表面上に形成することができる。
上記のようにして形成された層間絶縁膜およびマイクロレンズは、後述の実施例から明らかにされるように、誘電率、密着性、耐熱性、耐溶剤性、および透明性等に優れるものである。
(4) Heating step (3) Performed as described above (3) After the development step, the patterned thin film is preferably rinsed, for example, by washing with running water, and more preferably irradiated with radiation from a high-pressure mercury lamp or the like. (After post-exposure), the 1,2-quinonediazite compound remaining in the thin film is decomposed, and then the thin film is heated (post-baked) by a heating device such as a hot plate or an oven. The thin film is cured. The exposure amount in the post-exposure step is preferably about 2,000 to 5,000 J / m 2 . Moreover, the baking temperature in this hardening process is 120-250 degreeC, for example. Although heating time changes with kinds of heating apparatus, for example, when performing heat processing on a hotplate, it can be set to 30 to 90 minutes when performing heat processing in oven, for example. At this time, a step baking method or the like in which a heating process is performed twice or more can also be used.
In this way, a patterned thin film corresponding to the target interlayer insulating film or microlens can be formed on the surface of the substrate.
The interlayer insulating film and the microlens formed as described above are excellent in dielectric constant, adhesion, heat resistance, solvent resistance, transparency, etc., as will be clarified from examples described later. .

層間絶縁膜
上記のようにして形成された本発明の層間絶縁膜は、誘電率が低く、基板への密着性が良好であり、耐溶剤性および耐熱性に優れ、高い透過率を有するものであり、電子部品の層間絶縁膜として好適に使用できる。
The interlayer insulating film of the present invention formed as described above has a low dielectric constant, good adhesion to the substrate, excellent solvent resistance and heat resistance, and high transmittance. Yes, it can be suitably used as an interlayer insulating film of electronic parts.

マイクロレンズ
上記のようにして形成された本発明のマイクロレンズは、基板への密着性が良好であり、耐溶剤性および耐熱性に優れ、かつ高い透過率と良好なメルト形状を有するものであり、固体撮像素子のマイクロレンズとして好適に使用できる。
なお、本発明のマイクロレンズの形状は、図1(a)に示したように、半凸レンズ形状となる。
The microlens of the present invention formed as described above has good adhesion to the substrate, excellent solvent resistance and heat resistance, and has high transmittance and a good melt shape. It can be suitably used as a microlens for a solid-state imaging device.
The shape of the microlens of the present invention is a semi-convex lens shape as shown in FIG.

以下に合成例、実施例を示して、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to synthesis examples and examples. However, the present invention is not limited to the following examples.

共重合体[A]の合成例
合成例1
冷却管と攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7重量部およびジエチレングリコールエチルメチルエーテル200重量部を仕込んだ。引き続きメタクリル酸16重量部、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート14重量部、2−メチルシクロヘキシルアクリレート20重量部、メタクリル酸グリシジル40重量部、スチレン10重量部およびα−メチルスチレンダイマー3重量部を仕込み、窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を4時間保持し共重合体[A−1]を含む重合体溶液を得た。
共重合体[A−1]のポリスチレン換算重量平均分子量(Mw)は8,000、分子量分布(Mw/Mn)は2.3であった。また、ここで得られた重合体溶液の固形分濃度は、34.4重量%であった。
Synthesis example of copolymer [A] Synthesis example 1
A flask equipped with a condenser and a stirrer was charged with 7 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 16 parts by weight of methacrylic acid, 14 parts by weight of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 20 parts by weight of 2-methylcyclohexyl acrylate, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of styrene Then, 3 parts by weight of α-methylstyrene dimer was charged and purged with nitrogen, and then gently stirred. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [A-1].
The copolymer [A-1] had a polystyrene equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw / Mn) of 2.3. The solid content concentration of the polymer solution obtained here was 34.4% by weight.

合成例2
冷却管と攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8重量部およびジエチレングリコールエチルメチルエーテル220重量部を仕込んだ。引き続きメタクリル酸13重量部、テトラヒドロフルフリルメタクリレート12重量部、メタクリル酸グリシジル40重量部、N−シクロヘキシルマレイミド15重量部、ラウリルメタクリレート10重量部、α−メチル−p−ヒドロキシスチレン10重量部およびα−メチルスチレンダイマー3重量部を仕込み、窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し共重合体[A−2]を含む重合体溶液を得た。
共重合体[A−2]のポリスチレン換算重量平均分子量(Mw)は8,000、分子量分布(Mw/Mn)は2.3であった。また、ここで得られた重合体溶液の固形分濃度は31.9重量%であった。
Synthesis example 2
A flask equipped with a condenser and a stirrer was charged with 8 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 13 parts by weight of methacrylic acid, 12 parts by weight of tetrahydrofurfuryl methacrylate, 40 parts by weight of glycidyl methacrylate, 15 parts by weight of N-cyclohexylmaleimide, 10 parts by weight of lauryl methacrylate, 10 parts by weight of α-methyl-p-hydroxystyrene and α- After 3 parts by weight of methylstyrene dimer was charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-2].
The copolymer [A-2] had a polystyrene equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw / Mn) of 2.3. Moreover, the solid content concentration of the polymer solution obtained here was 31.9% by weight.

合成例3
冷却管と攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8重量部およびジエチレングリコールエチルメチルエーテル220重量部を仕込んだ。引き続きスチレン10重量部、メタクリル酸20重量部、メタクリル酸グリシジル40重量部、(3−エチルオキセタン−3−イル)メタクリレート10重量部およびトリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート20重量部を仕込み、窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し共重合体[A−3]を含む重合体溶液を得た。
共重合体[A−3]のポリスチレン換算重量平均分子量(Mw)は7,900、分子量分布(Mw/Mn)は2.4であった。また、ここで得られた重合体溶液の固形分濃度は31.6重量%であった。
Synthesis example 3
A flask equipped with a condenser and a stirrer was charged with 8 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 10 parts by weight of styrene, 20 parts by weight of methacrylic acid, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of (3-ethyloxetane-3-yl) methacrylate and tricyclo [5.2.1.0 2,6 ] decane-8. -After 20 parts by weight of yl methacrylate was charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-3].
The copolymer [A-3] had a polystyrene equivalent weight average molecular weight (Mw) of 7,900 and a molecular weight distribution (Mw / Mn) of 2.4. The solid content concentration of the polymer solution obtained here was 31.6% by weight.

合成例4
冷却管と攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8重量部およびジエチレングリコールエチルメチルエーテル220重量部を仕込んだ。引き続きスチレン15重量部、メタクリル酸15重量部、メタクリル酸グリシジル45重量部およびN−(4−ヒドロキシフェニル)メタクリルアミド20重量部を仕込み、窒素置換した後、1,3−ブタジエンを5重量部添加し、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し共重合体[A−4]を含む重合体溶液を得た。
共重合体[A−4]のポリスチレン換算重量平均分子量(Mw)は7,900、分子量分布(Mw/Mn)は2.4であった。また、ここで得られた重合体溶液の固形分濃度は31.5重量%であった。
Synthesis example 4
A flask equipped with a condenser and a stirrer was charged with 8 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 15 parts by weight of styrene, 15 parts by weight of methacrylic acid, 45 parts by weight of glycidyl methacrylate and 20 parts by weight of N- (4-hydroxyphenyl) methacrylamide were charged, and after nitrogen substitution, 5 parts by weight of 1,3-butadiene was added. Then, the stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-4].
The copolymer [A-4] had a polystyrene equivalent weight average molecular weight (Mw) of 7,900 and a molecular weight distribution (Mw / Mn) of 2.4. Further, the solid content concentration of the polymer solution obtained here was 31.5% by weight.

[C]成分の合成例
合成例5
500mLの三つ口フラスコにフェニルトリメトキシシラン100gを採取し、メチルイソブチルケトン100gを加えて溶解させ、マグネチックスターラで撹拌しながら60℃に加温した。この溶液に、1重量%のシュウ酸を溶解させた8.6gのイオン交換水を1時間かけて連続的に添加した。溶液の温度を60℃に保持し4時間反応させた後、得られた反応液を室温まで冷却した。その後、反応副生成物であるアルコール分を反応液から減圧留去した。このようにして得られたシルセスキオキサン[C−1]の重量平均分子量は1,600であった。
Synthesis example of component [C] Synthesis example 5
100 g of phenyltrimethoxysilane was collected in a 500 mL three-necked flask, 100 g of methyl isobutyl ketone was added and dissolved, and the mixture was heated to 60 ° C. while stirring with a magnetic stirrer. To this solution, 8.6 g of ion-exchanged water in which 1% by weight of oxalic acid was dissolved was continuously added over 1 hour. After the temperature of the solution was maintained at 60 ° C. and reacted for 4 hours, the resulting reaction solution was cooled to room temperature. Thereafter, the alcohol as a reaction by-product was distilled off from the reaction solution under reduced pressure. The weight average molecular weight of the silsesquioxane [C-1] thus obtained was 1,600.

合成例6
500mLの三つ口フラスコにフェニルトリメトキシシラン79.8gおよびメチルトリメトキシシラン21.2gを採取し、プロピレングリコールメチルエーテルアセテート100gを加えて溶解させ、マグネチックスターラで撹拌しながら60℃に加温した。この溶液に、1重量%のシュウ酸を溶解させた8.6gのイオン交換水を1時間かけて連続的に添加した。溶液の温度を60℃に保持し4時間反応させた後、得られた反応液を室温まで冷却した。その後、反応副生成物であるアルコール分を反応液から減圧留去した。このようにして得られたシルセスキオキサン[C−2]の重量平均分子量は2,000であった。
Synthesis Example 6
Collect 79.8 g of phenyltrimethoxysilane and 21.2 g of methyltrimethoxysilane in a 500 mL three-necked flask, add 100 g of propylene glycol methyl ether acetate to dissolve, and heat to 60 ° C. while stirring with a magnetic stirrer. did. To this solution, 8.6 g of ion-exchanged water in which 1% by weight of oxalic acid was dissolved was continuously added over 1 hour. After the temperature of the solution was maintained at 60 ° C. and reacted for 4 hours, the resulting reaction solution was cooled to room temperature. Thereafter, the alcohol as a reaction by-product was distilled off from the reaction solution under reduced pressure. The weight average molecular weight of the silsesquioxane [C-2] thus obtained was 2,000.

実施例1
[感放射線性樹脂組成物の調製]
[A]成分として上記合成例1で合成した共重合体[A−1]を100重量部(固形分換算)、[B]成分として4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(2.0モル)の縮合物(B−1)30重量部およびシルセスキオキサン[C−1]を30重量部(固形分換算)とを混合し、固形分濃度が30重量%となるようにジエチレングリコールエチルメチルエーテルに溶解させた後、口径0.2μmのメンブランフィルタで濾過して、感放射線性樹脂組成物の溶液(S−1)を調製した。
Example 1
[Preparation of radiation-sensitive resin composition]
100 parts by weight (in terms of solid content) of the copolymer [A-1] synthesized in Synthesis Example 1 as the [A] component and 4,4 ′-[1- [4- [1- [ 4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid chloride (2.0 mol) (B-1) 30 Part by weight and 30 parts by weight of silsesquioxane [C-1] (in terms of solid content) were mixed and dissolved in diethylene glycol ethyl methyl ether so that the solid content concentration was 30% by weight, The solution was filtered through a 2 μm membrane filter to prepare a radiation sensitive resin composition solution (S-1).

実施例2〜8および比較例1
[感放射線性樹脂組成物の調製]
実施例1において、[A]〜[C]成分として、表1に記載のとおりの種類、量を使用した他は、実施例1と同様にして実施し、感放射線性樹脂組成物の溶液(S−2)〜(S−8)および(s−1)を調製した。
なお、実施例2、4、6、8において、[B]成分の記載は、それぞれ2種類の1,2−キノンジアジド化合物を併用したことを表している。
Examples 2 to 8 and Comparative Example 1
[Preparation of radiation-sensitive resin composition]
In Example 1, it carried out like Example 1 except having used the kind and quantity as shown in Table 1 as [A]-[C] component, and carried out similarly to the solution of a radiation sensitive resin composition ( S-2) to (S-8) and (s-1) were prepared.
In Examples 2, 4, 6, and 8, the description of the component [B] represents that two types of 1,2-quinonediazide compounds were used in combination.

実施例9
実施例1において、固形分濃度が20重量%になるようにジエチレングリコールエチルメチルエーテル/プロピレングリコールモノメチルエーテルアセテート=6/4に溶解したことと、シリコーン系界面活性剤SH−28PA(東レ・ダウコーニング・シリコーン(株)製)を添加したこと以外は実施例1と同様に組成物を調製し、感放射線性樹脂組成物の溶液(S−9)を調製した。
表1中、成分の略称は次の化合物を示す。
Example 9
In Example 1, it was dissolved in diethylene glycol ethyl methyl ether / propylene glycol monomethyl ether acetate = 6/4 so that the solid content concentration was 20% by weight, and a silicone surfactant SH-28PA (Toray Dow Corning A composition was prepared in the same manner as in Example 1 except that Silicone Co., Ltd. was added, and a radiation-sensitive resin composition solution (S-9) was prepared.
In Table 1, the abbreviations of the components indicate the following compounds.

B−1:4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(2.0モル)の縮合物
B−2:4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(1.0モル)の縮合物
F:シリコーン系界面活性剤(商品名SH−28PA、東レ・ダウコーニング・シリコーン(株)製)
B-1: 4,4 ′-[1- [4- [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5 -Condensation product of sulfonic acid chloride (2.0 mol) B-2: 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1 0.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.0 mol) F: silicone surfactant (trade name SH-28PA, manufactured by Toray Dow Corning Silicone Co., Ltd.) )

Figure 0005105073
Figure 0005105073

実施例10〜18および比較例2
<層間絶縁膜としての性能評価>
上記のように調製した感放射線性樹脂組成物を使用し、以下のように層間絶縁膜としての各種の特性を評価した。
Examples 10 to 18 and Comparative Example 2
<Performance evaluation as interlayer insulation film>
Using the radiation-sensitive resin composition prepared as described above, various characteristics as an interlayer insulating film were evaluated as follows.

[感度の評価]
シリコン基板上に、実施例10〜17、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。実施例18についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。得られた塗膜に所定のパターンを有するパターンマスクを介してキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で露光時間を変化させて露光を行った後、表2に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、0.4%の濃度の現像液を用いた場合は80秒、2.38%の濃度の現像液を用いた場合は50秒間、液盛り法で現像した。超純水で1分間流水洗浄を行い、乾燥させてウエハー上にパターンを形成した。3.0μmのライン・アンド・スペース(10対1)のスペース・パターンが完全に溶解するために必要な露光量を測定した。この値を感度として、表2に示した。この値が1,000J/m以下の場合に感度が良好であると言える。
[Evaluation of sensitivity]
On Examples 10 to 17 and Comparative Example 2 on a silicon substrate, the composition described in Table 2 was applied using a spinner, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 3. A 0 μm coating film was formed. Example 18 was coated with a slit die coater, vacuum dried at 0.5 Torr, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. The obtained coating film was exposed through a pattern mask having a predetermined pattern with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc., and the exposure time was changed. When using a developer with a concentration of tetramethylammonium hydroxide at 25 ° C. and a concentration of 0.4%, 80 seconds when using a developer with a concentration of 0.4%, 50 seconds when using a developer with a concentration of 2.38% Developed with. The substrate was washed with ultrapure water for 1 minute and dried to form a pattern on the wafer. The amount of exposure required to completely dissolve the 3.0 μm line-and-space (10 to 1) space pattern was measured. This value is shown in Table 2 as sensitivity. It can be said that the sensitivity is good when this value is 1,000 J / m 2 or less.

〔現像マージンの評価〕
シリコン基板上に、実施例10〜17、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。実施例18についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。得られた塗膜に3.0μmのライン・アンド・スペース(10対1)のパターンを有するマスクを介してキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)を使用し、上記「[感度の評価]」にて測定した感度の値に相当する露光量で露光を行い、表2に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、現像時間を変化させて液盛り法で現像した。次いで超純水で1分間流水洗浄を行い、乾燥させてウエハー上にパターンを形成した。このとき、ライン線幅が3.0μmとなるのに必要な現像時間を最適現像時間として表2に示した。また、最適現像時間からさらに現像を続けた際に3.0μmのライン・パターンが剥がれるまでの時間を測定し、現像マージンとして表2に示した。この値が30秒以上のとき、現像マージンは良好であるといえる。
[Evaluation of development margin]
On Examples 10 to 17 and Comparative Example 2 on a silicon substrate, the composition described in Table 2 was applied using a spinner, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 3. A 0 μm coating film was formed. Example 18 was coated with a slit die coater, vacuum dried at 0.5 Torr, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. Using a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. through a mask having a 3.0 μm line and space (10 to 1) pattern on the obtained coating film, Exposure is carried out with an exposure amount corresponding to the sensitivity value measured in [Evaluation of Sensitivity], and a liquid piling method is performed by changing the development time with an aqueous tetramethylammonium hydroxide solution having the concentration shown in Table 2 at 25 ° C. Developed with. Subsequently, the substrate was washed with ultrapure water for 1 minute and dried to form a pattern on the wafer. At this time, the development time necessary for the line width to be 3.0 μm is shown in Table 2 as the optimum development time. Further, when the development was further continued from the optimum development time, the time until the 3.0 μm line pattern was peeled off was measured and shown in Table 2 as a development margin. When this value is 30 seconds or more, it can be said that the development margin is good.

〔耐溶剤性の評価〕
シリコン基板上に、実施例10〜17、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして塗膜を形成した。実施例18についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして塗膜を形成した。得られた塗膜にキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で積算照射量が3,000J/mとなるように露光し、このシリコン基板をクリーンオーブン内にて220℃で1時間加熱して膜厚3.0μmの硬化膜を得た。得られた硬化膜の膜厚(T1)を測定した。そして、この硬化膜が形成されたシリコン基板を70℃に温度制御されたジメチルスルホキシド中に20分間浸漬させた後、当該硬化膜の膜厚(t1)を測定し、浸漬による膜厚変化率{|t1−T1|/T1}×100〔%〕を算出した。結果を表2に示す。この値が5%以下のとき、耐溶剤性は良好といえる。
なお、耐溶剤性の評価においては形成する膜のパターニングは不要のため、現像工程は省略し、塗膜形成工程、放射線照射工程および加熱工程のみ行い評価に供した。
[Evaluation of solvent resistance]
On the silicon substrate, for Examples 10 to 17 and Comparative Example 2, the composition shown in Table 2 was applied using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to form a coating film. did. Example 18 was coated with a slit die coater, vacuum dried at 0.5 Torr, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to form a coating film. The obtained coating film was exposed to a cumulative irradiation amount of 3,000 J / m 2 with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc., and this silicon substrate was exposed to 220 in a clean oven. Heated at 0 ° C. for 1 hour to obtain a cured film having a thickness of 3.0 μm. The film thickness (T1) of the obtained cured film was measured. And after immersing the silicon substrate in which this cured film was formed in dimethyl sulfoxide temperature-controlled at 70 degreeC for 20 minutes, the film thickness (t1) of the said cured film was measured, and the film thickness change rate by immersion { | T1-T1 | / T1} × 100 [%] was calculated. The results are shown in Table 2. When this value is 5% or less, the solvent resistance is good.
In the evaluation of solvent resistance, patterning of the film to be formed is unnecessary, so the development process was omitted, and only the coating film forming process, the radiation irradiation process, and the heating process were performed for evaluation.

〔耐熱性の評価〕
上記の耐溶剤性の評価と同様にして硬化膜を形成し、得られた硬化膜の膜厚(T2)を測定した。次いで、この硬化膜基板をクリーンオーブン内にて240℃で1時間追加ベークした後、当該硬化膜の膜厚(t2)を測定し、追加ベークによる膜厚変化率{|t2−T2|/T2}×100〔%〕を算出した。結果を表2に示す。この値が5%以下のとき、耐熱性は良好といえる。
[Evaluation of heat resistance]
A cured film was formed in the same manner as the evaluation of the solvent resistance, and the film thickness (T2) of the obtained cured film was measured. Next, this cured film substrate was additionally baked in a clean oven at 240 ° C. for 1 hour, and then the film thickness (t2) of the cured film was measured, and the film thickness change rate {| t2-T2 | / T2 due to the additional baking. } × 100 [%] was calculated. The results are shown in Table 2. When this value is 5% or less, the heat resistance is good.

〔硬化膜密着性の評価〕
上記の耐溶剤性の評価と同様にして硬化膜を形成し、あらかじめエポキシ樹脂が塗布されている直径0.27cmの円形接着面を持つアルミ製スタットピン(QUAD社製)を、基板に対してピンが垂直になるよう硬化膜上に接着し、クリーンオーブン内にて150℃で1時間ベークを行いエポキシ樹脂を硬化させた。その後、引っ張り試験機「Motorized Stand SDMS−0201−100SL((株)今田製作所製)」を用いてスタットピンを引っ張ることで基板と硬化膜が剥離する際の力の測定を行った。そのときの力の値を表2に示す。この値が150N以上であると基板に対する密着性が良好であるといえる。
[Evaluation of cured film adhesion]
A cured film is formed in the same manner as the evaluation of the solvent resistance, and an aluminum stat pin (manufactured by QUAD) having a circular adhesive surface with a diameter of 0.27 cm, to which an epoxy resin is applied in advance, is attached to the substrate. The pin was adhered onto the cured film so as to be vertical, and baked at 150 ° C. for 1 hour in a clean oven to cure the epoxy resin. Then, the force at the time of peeling a board | substrate and a cured film was measured by pulling a stat pin using the tensile tester "Motorized Standard SDMS-0201-100SL (made by Imada Manufacturing Co., Ltd.)". Table 2 shows the force values at that time. When this value is 150 N or more, it can be said that the adhesion to the substrate is good.

〔透明性の評価〕
上記の耐溶剤性の評価において、シリコン基板の代わりにガラス基板「コーニング7059(コーニング社製)」を用いたこと以外は同様にしてガラス基板上に硬化膜を形成した。この硬化膜を有するガラス基板の光線透過率を分光光度計「150−20型ダブルビーム((株)日立製作所製)」を用いて400〜800nmの範囲の波長で測定した。そのときの最低光線透過率の値を表2に示す。この値が90%以上のとき、透明性は良好といえる。
[Evaluation of transparency]
In the evaluation of the solvent resistance, a cured film was formed on the glass substrate in the same manner except that a glass substrate “Corning 7059 (manufactured by Corning)” was used instead of the silicon substrate. The light transmittance of the glass substrate having this cured film was measured at a wavelength in the range of 400 to 800 nm using a spectrophotometer “150-20 type double beam (manufactured by Hitachi, Ltd.)”. Table 2 shows the values of the minimum light transmittance at that time. When this value is 90% or more, it can be said that the transparency is good.

〔比誘電率の評価〕
研磨したSUS304製基板上に、実施例10〜17、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。実施例18についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。得られた塗膜にキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で積算照射量が3,000J/mとなるように露光し、この基板をクリーンオーブン内にて220℃で1時間焼成することにより、硬化膜を得た。この硬化膜について、蒸着法によりPt/Pd電極パターンを形成させ誘電率測定用サンプルを作成した。該基板を周波数10kHzの周波数で、横河・ヒューレットパッカード(株)製HP16451B電極およびHP4284AプレシジョンLCRメーターを用いてCV法により当該基板の比誘電率を測定した。結果を表2に示した。この値が3.9以下のとき、誘電率は良好といえる。
なお、誘電率の評価においては形成する膜のパターニングは不要のため、現像工程は省略し、塗膜形成工程、放射線照射工程および加熱工程のみ行い評価に供した。
[Evaluation of relative permittivity]
After applying the compositions shown in Table 2 on a polished SUS304 substrate using Examples 10-17 and Comparative Example 2 using a spinner, the film was prebaked on a hot plate at 90 ° C. for 2 minutes. A coating film having a thickness of 3.0 μm was formed. Example 18 was coated with a slit die coater, vacuum dried at 0.5 Torr, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. The obtained coating film was exposed with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Co., Ltd. so that the integrated irradiation amount was 3,000 J / m 2, and this substrate was 220 ° C. in a clean oven. The cured film was obtained by baking for 1 hour. About this cured film, the Pt / Pd electrode pattern was formed by the vapor deposition method, and the sample for dielectric constant measurement was created. The relative dielectric constant of the substrate was measured at a frequency of 10 kHz by a CV method using an HP16451B electrode and an HP4284A precision LCR meter manufactured by Yokogawa-Hewlett-Packard Co., Ltd. The results are shown in Table 2. When this value is 3.9 or less, the dielectric constant is good.
In the evaluation of the dielectric constant, since the patterning of the film to be formed is unnecessary, the development process was omitted, and only the coating film forming process, the radiation irradiation process, and the heating process were performed for evaluation.

Figure 0005105073
Figure 0005105073

実施例19〜26および比較例3
<マイクロレンズとしての性能評価>
上記のように調製した感放射線性樹脂組成物を使用し、以下のようにマイクロレンズとしての各種の特性を評価した。なお耐溶剤性の評価、耐熱性の評価、透明性の評価は上記層間絶縁膜としての性能評価における結果を参照されたい。
Examples 19 to 26 and Comparative Example 3
<Performance evaluation as a micro lens>
Using the radiation-sensitive resin composition prepared as described above, various characteristics as a microlens were evaluated as follows. For the evaluation of solvent resistance, evaluation of heat resistance, and evaluation of transparency, refer to the results in the performance evaluation as the interlayer insulating film.

〔感度の評価〕
シリコン基板上に、実施例19〜26、比較例3についてスピンナーを用いて、表3に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚2.0μmの塗膜を形成した。得られた塗膜に所定のパターンを有するパターンマスクを介してニコン(株)製NSR1755i7A縮小投影露光機(NA=0.50、λ=365nm)で露光時間を変化させて露光し、表3に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、1分間液盛り法で現像した。水でリンスし、乾燥してウェハー上にパターンを形成した。0.8μmライン・アンド・スペ−スパタ−ン(1対1)のスペース線幅が0.8μmとなるのに必要な露光時間を測定した。この値を感度として、表3に示した。この値が2,000J/m以下の場合に感度が良好であると言える。
[Evaluation of sensitivity]
A composition shown in Table 3 was applied to a silicon substrate using Examples 19 to 26 and Comparative Example 3 using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 2.0 μm. The coating film was formed. The obtained coating film was exposed with a NSR1755i7A reduction projection exposure machine (NA = 0.50, λ = 365 nm) manufactured by Nikon Corporation through a pattern mask having a predetermined pattern, and exposure was performed in Table 3. Development was carried out by a puddle method at 25 ° C. for 1 minute in an aqueous tetramethylammonium hydroxide solution having the concentration described. It was rinsed with water and dried to form a pattern on the wafer. The exposure time required for the space line width of the 0.8 μm line and space pattern (one to one) to be 0.8 μm was measured. This value is shown in Table 3 as sensitivity. It can be said that the sensitivity is good when this value is 2,000 J / m 2 or less.

〔現像マージンの評価〕
シリコン基板上に、実施例19〜26、比較例3についてスピンナーを用いて、表3に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚2.0μmの塗膜を形成した。得られた塗膜に所定のパターンを有するパターンマスクを介してニコン(株)製NSR1755i7A縮小投影露光機(NA=0.50、λ=365nm)で上記「[感度の評価]」にて測定した感度の値に相当する露光量で露光を行い、表3に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、1分間液盛り法で現像した。水でリンスし、乾燥してウエハー上にパターンを形成した。0.8μmライン・アンド・スペ−スパタ−ン(1対1)のスペース線幅が0.8μmとなるのに必要な現像時間を最適現像時間として表3に示した。また、最適現像時間からさらに現像を続けた際に幅0.8μmのパターンが剥がれるまでの時間(現像マージン)を測定し、現像マージンとして表3に示した。この値が30秒以上のとき、現像マージンは良好であるといえる。
[Evaluation of development margin]
A composition shown in Table 3 was applied to a silicon substrate using Examples 19 to 26 and Comparative Example 3 using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 2.0 μm. The coating film was formed. The obtained coating film was measured by the above-mentioned “[Evaluation of sensitivity]” with a NSR1755i7A reduction projection exposure machine (NA = 0.50, λ = 365 nm) manufactured by Nikon Corporation through a pattern mask having a predetermined pattern. Exposure was carried out with an exposure amount corresponding to the sensitivity value, and development was carried out with a tetramethylammonium hydroxide aqueous solution having a concentration shown in Table 3 at 25 ° C. for 1 minute. It was rinsed with water and dried to form a pattern on the wafer. Table 3 shows the development time required for the space line width of 0.8 μm line and space pattern (one to one) to be 0.8 μm as the optimum development time. Further, the time (development margin) until the pattern having a width of 0.8 μm was peeled off when the development was further continued from the optimum development time was shown in Table 3 as the development margin. When this value is 30 seconds or more, it can be said that the development margin is good.

〔マイクロレンズの形成〕
シリコン基板上に実施例19〜26、比較例3についてスピンナーを用いて、表3に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚2.0μmの塗膜を形成した。得られた塗膜に4.0μmドット・2.0μmスペ−スパタ−ンを有するパターンマスクを介してニコン(株)製NSR1755i7A縮小投影露光機(NA=0.50、λ=365nm)で上記「[感度の評価]」にて測定した感度の値に相当する露光量で露光を行い、表3の感度の評価における現像液濃度として記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、1分間液盛り法で現像した。水でリンスし、乾燥してウエハー上にパターンを形成した。その後、キャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で積算照射量が3,000J/mとなるように露光した。その後ホットプレートにて160℃で10分間加熱後さらに230℃で10分間加熱してパターンをメルトフローさせマイクロレンズを形成した。
[Formation of microlenses]
A composition shown in Table 3 was applied on a silicon substrate using Examples 19 to 26 and Comparative Example 3 using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to have a film thickness of 2.0 μm. A coating film was formed. The obtained coating film was passed through a pattern mask having 4.0 [mu] m dots and 2.0 [mu] m space pattern with the NSR1755i7A reduction projection exposure machine (NA = 0.50, [lambda] = 365 nm) manufactured by Nikon Corporation. Exposure is performed with an exposure amount corresponding to the sensitivity value measured in [Evaluation of Sensitivity], and 25 ° C. is applied in a tetramethylammonium hydroxide aqueous solution having a concentration described as the developer concentration in the sensitivity evaluation in Table 3. Development was carried out by a puddle method for 1 minute. It was rinsed with water and dried to form a pattern on the wafer. Then, it exposed so that the integrated irradiation amount might be set to 3,000 J / m < 2 > with the PLA-501F exposure machine (extra-high pressure mercury lamp) by Canon. Thereafter, the pattern was melt-flowed by heating at 160 ° C. for 10 minutes on a hot plate and further at 230 ° C. for 10 minutes to form a microlens.

形成されたマイクロレンズの底部(基板に接する面)の寸法(直径)および断面形状を表3に示す。マイクロレンズ底部の寸法は4.0μmを超え5.0μm未満であるとき、良好といえる。なお、この寸法が5.0μm以上となると、隣接するレンズ同士が接触する状態であり、好ましくない。また、断面形状は図1に示した模式図において、(a)のような半凸レンズ形状であるときに良好であり、(b)のような略台形上の場合は不良である。   Table 3 shows the size (diameter) and cross-sectional shape of the bottom (surface contacting the substrate) of the formed microlens. It can be said that the microlens bottom portion is good when it is larger than 4.0 μm and smaller than 5.0 μm. In addition, when this dimension is 5.0 μm or more, the adjacent lenses are in contact with each other, which is not preferable. Further, the cross-sectional shape is good when it is a semi-convex lens shape as shown in (a) in the schematic diagram shown in FIG. 1, and it is bad when it is on a substantially trapezoidal shape as shown in (b).

Figure 0005105073
Figure 0005105073

マイクロレンズの断面形状の模式図である。It is a schematic diagram of the cross-sectional shape of a micro lens.

Claims (6)

[A](a1)不飽和カルボン酸および不飽和カルボン酸無水物よりなる群から選ばれる少なくとも1種と、(a2)オキシラニル基含有不飽和化合物およびオキセタニル基含有不飽和化合物よりなる群から選ばれる少なくとも1種を含有してなる不飽和混合物の共重合体、
[B]1,2−キノンジアジド化合物、ならびに
[C]下記式(1)で表されるシラン化合物の加水分解縮合物であるシルセスキオキサン
を含有することを特徴とする感放射線性樹脂組成物。
Si(R)(OR)(OR)(OR) ・・・(1)
(式中、Rは炭素数6〜15のアリール基であり、R〜Rは相互に独立に水素原子、炭素数1〜4の置換もしくは未置換のアルキル基またはアシル基である。)
[A] (a1) at least one selected from the group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride, and (a2) selected from the group consisting of an oxiranyl group-containing unsaturated compound and an oxetanyl group-containing unsaturated compound A copolymer of an unsaturated mixture comprising at least one species,
[B] 1,2-quinonediazide compound, and [C] silsesquioxane is a hydrolyzed condensate of the silane compound represented by lower following formula (1)
A radiation-sensitive resin composition comprising:
Si (R 1 ) (OR 2 ) (OR 3 ) (OR 4 ) (1)
(Wherein R 1 is an aryl group having 6 to 15 carbon atoms, and R 2 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or an acyl group. )
[A](a1)不飽和カルボン酸および不飽和カルボン酸無水物よりなる群から選ばれる少なくとも1種と、(a2)オキシラニル基含有不飽和化合物およびオキセタニル基含有不飽和化合物よりなる群から選ばれる少なくとも1種を含有してなる不飽和混合物の共重合体、
[B]1,2−キノンジアジド化合物、ならびに
[C]下記式(1)で表されるシラン化合物50〜95重量%と、下記式(2)で表わされるシラン化合物5〜50重量%との加水分解縮合物であるシルセスキオキサン
を含有することを特徴とする感放射線性樹脂組成物。
Si(R )(OR )(OR )(OR ) ・・・(1)
(式中、R は炭素数6〜15のアリール基であり、R 〜R は相互に独立に水素原子、炭素数1〜4の置換もしくは未置換のアルキル基またはアシル基である。)
Si(R)(OR)(OR)(OR) ・・・(2)
(式中、Rは炭素数1〜15のアルキル基であり、R〜Rは相互に独立に水素原子、炭素数1〜4の置換もしくは未置換のアルキル基またはアシル基である。)
[A] (a1) at least one selected from the group consisting of an unsaturated carboxylic acid and an unsaturated carboxylic acid anhydride, and (a2) selected from the group consisting of an oxiranyl group-containing unsaturated compound and an oxetanyl group-containing unsaturated compound A copolymer of an unsaturated mixture comprising at least one species,
[B] Hydrolysis of 1,2-quinonediazide compound and [C] 50 to 95% by weight of a silane compound represented by the following formula (1) and 5 to 50% by weight of a silane compound represented by the following formula (2) Silsesquioxane , a decomposition condensate
A radiation-sensitive resin composition comprising:
Si (R 1 ) (OR 2 ) (OR 3 ) (OR 4 ) (1)
(Wherein R 1 is an aryl group having 6 to 15 carbon atoms, and R 2 to R 4 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or an acyl group. )
Si (R 5 ) (OR 6 ) (OR 7 ) (OR 8 ) (2)
(In the formula, R 5 is an alkyl group having 1 to 15 carbon atoms, and R 6 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or an acyl group. )
層間絶縁膜形成用である請求項1または2に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1 or 2 which is for forming an interlayer insulating film. 以下の工程を以下に記載順で含むことを特徴とする層間絶縁膜の製造方法。
(1)請求項に記載の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)照射された塗膜を現像する工程、および
(4)現像された塗膜を加熱する工程。
The manufacturing method of the interlayer insulation film characterized by including the following processes in order of description below.
(1) The process of forming the coating film of the radiation sensitive resin composition of Claim 3 on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) a step of developing the irradiated coating film, and (4) a step of heating the developed coating film.
マイクロレンズ形成用である請求項1または2に記載の感放射線性樹脂組成物。 The radiation-sensitive resin composition according to claim 1 or 2 , which is used for forming a microlens. 以下の工程を以下に記載順で含むことを特徴とするマイクロレンズの製造方法。
(1)請求項に記載の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)照射された塗膜を現像する工程、および
(4)現像された塗膜を加熱する工程。
The manufacturing method of the micro lens characterized by including the following processes in order of description below.
(1) The process of forming the coating film of the radiation sensitive resin composition of Claim 5 on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) a step of developing the irradiated coating film, and (4) a step of heating the developed coating film.
JP2008076158A 2008-03-24 2008-03-24 Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens Active JP5105073B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008076158A JP5105073B2 (en) 2008-03-24 2008-03-24 Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens
CN2009101270632A CN101546127B (en) 2008-03-24 2009-03-23 Radiation sensitive resin composition, interlayer insulation film and method for manufacturing micro-lens
TW098109358A TWI430025B (en) 2008-03-24 2009-03-23 Photosensitive resin composition, interlayer insulating film, and method for processing microlens
KR1020090024420A KR101525254B1 (en) 2008-03-24 2009-03-23 Radiation-sensitive resin composition, and process for producing interlayer insulation film and microlens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076158A JP5105073B2 (en) 2008-03-24 2008-03-24 Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens

Publications (2)

Publication Number Publication Date
JP2009229892A JP2009229892A (en) 2009-10-08
JP5105073B2 true JP5105073B2 (en) 2012-12-19

Family

ID=41193323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076158A Active JP5105073B2 (en) 2008-03-24 2008-03-24 Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens

Country Status (4)

Country Link
JP (1) JP5105073B2 (en)
KR (1) KR101525254B1 (en)
CN (1) CN101546127B (en)
TW (1) TWI430025B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101404005B1 (en) * 2010-04-28 2014-06-05 제이에스알 가부시끼가이샤 Positive radiation-sensitive composition, interlayer insulating film for display element, and formation method for same
JP5818022B2 (en) * 2010-05-13 2015-11-18 日産化学工業株式会社 Photosensitive resin composition and display device
JP5655529B2 (en) * 2010-12-01 2015-01-21 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film, and method for forming interlayer insulating film
JP6186766B2 (en) * 2012-03-30 2017-08-30 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
JP6095023B2 (en) * 2012-05-25 2017-03-15 エルジー・ケム・リミテッド Photosensitive resin composition, pattern, pattern manufacturing method, bezel pattern manufacturing method, and display panel
TWI524150B (en) 2014-06-27 2016-03-01 奇美實業股份有限公司 Photosensitive resin composition, protective film and element having the same
TWI524141B (en) 2014-06-27 2016-03-01 奇美實業股份有限公司 Photosensitive resin composition, protective film and element having the same
KR20210052431A (en) * 2018-08-31 2021-05-10 도레이 카부시키가이샤 Resin composition, cured film thereof
KR20240037946A (en) * 2021-07-28 2024-03-22 닛산 가가쿠 가부시키가이샤 Positive type photosensitive resin composition containing a specific copolymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835120B2 (en) * 2000-05-22 2006-10-18 Jsr株式会社 Radiation sensitive resin composition, interlayer insulating film and microlens
EP1331518A3 (en) * 2002-01-24 2004-04-07 JSR Corporation Radiation sensitive composition for forming an insulating film, insulating film and display device
US6984476B2 (en) * 2002-04-15 2006-01-10 Sharp Kabushiki Kaisha Radiation-sensitive resin composition, forming process for forming patterned insulation film, active matrix board and flat-panel display device equipped with the same, and process for producing flat-panel display device
JP4677871B2 (en) * 2005-10-03 2011-04-27 Jsr株式会社 Radiation sensitive resin composition and formation of interlayer insulating film and microlens
KR101280478B1 (en) * 2005-10-26 2013-07-15 주식회사 동진쎄미켐 Photosensitive resin composition
JP4655914B2 (en) * 2005-12-13 2011-03-23 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
TW200813635A (en) * 2006-05-16 2008-03-16 Nissan Chemical Ind Ltd Positive type photosensitive resin composition and porous film obtained therefrom

Also Published As

Publication number Publication date
KR101525254B1 (en) 2015-06-02
TW200949441A (en) 2009-12-01
CN101546127B (en) 2012-11-28
KR20090101847A (en) 2009-09-29
CN101546127A (en) 2009-09-30
JP2009229892A (en) 2009-10-08
TWI430025B (en) 2014-03-11

Similar Documents

Publication Publication Date Title
JP4849251B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5105073B2 (en) Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens
JP4656316B2 (en) Interlayer insulating film, microlens, and manufacturing method thereof
JP4905700B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP4748324B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and manufacturing method thereof
KR101538804B1 (en) Radiation sensitive resin composition, and interlayer insulation film and method for producing the same
KR100776121B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens and Process for Preparing the Same
JP5177404B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens and method for producing the same
JP4650639B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4544370B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5029836B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
KR101021725B1 (en) Radiation Sensitive Resin Composition, Inter Layer Insulating Film and Microlens, and process for Preparing the Same
JP5157860B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4315013B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP2009204864A (en) Radiation-sensitive resin composition, interlayer dielectric and microlens, and methods for producing those
JP3733946B2 (en) Radiation sensitive resin composition for forming interlayer insulating film and microlens
KR20080068566A (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for producing the same
JP2009204865A (en) Radiation sensitive resin composition, interlayer dielectric, microlens, and method of manufacturing the same
JP2006201549A (en) Radiation sensitive resin composition, interlayer insulation film and microlens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5105073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250