JP4849251B2 - Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof - Google Patents

Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof Download PDF

Info

Publication number
JP4849251B2
JP4849251B2 JP2007009145A JP2007009145A JP4849251B2 JP 4849251 B2 JP4849251 B2 JP 4849251B2 JP 2007009145 A JP2007009145 A JP 2007009145A JP 2007009145 A JP2007009145 A JP 2007009145A JP 4849251 B2 JP4849251 B2 JP 4849251B2
Authority
JP
Japan
Prior art keywords
silane
propyl
methyl
propyloxysilane
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007009145A
Other languages
Japanese (ja)
Other versions
JP2008176037A (en
Inventor
政暁 花村
千浩 内池
浩司 三谷
孝浩 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007009145A priority Critical patent/JP4849251B2/en
Priority to TW097101656A priority patent/TWI425315B/en
Priority to KR1020080005152A priority patent/KR101432300B1/en
Priority to CN200810003519XA priority patent/CN101226329B/en
Publication of JP2008176037A publication Critical patent/JP2008176037A/en
Application granted granted Critical
Publication of JP4849251B2 publication Critical patent/JP4849251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、感放射線性樹脂組成物、層間絶縁膜およびマイクロレンズ、ならびにそれらの製造方法に関する。   The present invention relates to a radiation-sensitive resin composition, an interlayer insulating film and a microlens, and methods for producing them.

薄膜トランジスタ(以下、「TFT」と記す。)型液晶表示素子や磁気ヘッド素子、集積回路素子、固体撮像素子などの電子部品には、一般に層状に配置される配線の間を絶縁するために層間絶縁膜が設けられている。層間絶縁膜を形成する材料としては、必要とするパターン形状を得るための工程数が少なくしかも十分な平坦性を有するものが好ましいことから、感放射線性樹脂組成物が幅広く使用されている(特許文献1および特許文献2参照)。
上記電子部品のうち、例えばTFT型液晶表示素子は、上記の層間絶縁膜の上に、透明電極膜を形成し、さらにその上に液晶配向膜を形成する工程を経て製造されるため、層間絶縁膜は、透明電極膜の形成工程において高温条件に曝されたり、電極のパターン形成に使用されるレジストの剥離液に曝されることとなるため、これらに対する十分な耐性が必要となる。
また近年、TFT型液晶表示素子においては、大画面化、高輝度化、高精細化、高速応答化、薄型化等の動向にあり、それに用いられる層間絶縁膜形成用組成物としては高感度であり、形成される層間絶縁膜には低誘電率、高透過率等において、従来にも増して高性能が要求されている。
In an electronic component such as a thin film transistor (hereinafter referred to as “TFT”) type liquid crystal display element, magnetic head element, integrated circuit element, solid-state imaging element, etc., an interlayer insulation is generally used to insulate between wirings arranged in layers. A membrane is provided. As a material for forming an interlayer insulating film, a material having a small number of steps for obtaining a required pattern shape and having sufficient flatness is preferable, and thus a radiation sensitive resin composition is widely used (patents) Reference 1 and Patent Document 2).
Among the electronic components, for example, a TFT type liquid crystal display element is manufactured through a process of forming a transparent electrode film on the interlayer insulating film and further forming a liquid crystal alignment film on the interlayer insulating film. Since the film is exposed to a high temperature condition in the transparent electrode film forming process or exposed to a resist stripping solution used for forming an electrode pattern, sufficient resistance to these is required.
In recent years, TFT-type liquid crystal display elements have been in the trend of larger screens, higher brightness, higher definition, faster response, thinner thickness, etc., and the composition for forming an interlayer insulating film used therefor has high sensitivity. In addition, the interlayer insulating film to be formed is required to have higher performance than ever in terms of low dielectric constant and high transmittance.

一方、ファクシミリ、電子複写機、固体撮像素子等のオンチップカラーフィルターの結像光学系あるいは光ファイバコネクタの光学系材料として3〜100μm程度のレンズ径を有するマイクロレンズ、またはそれらのマイクロレンズを規則的に配列したマイクロレンズアレイが使用されている。
マイクロレンズまたはマイクロレンズアレイの形成には、レンズに相当するレジストパターンを形成した後、加熱処理することによってメルトフローさせ、そのままレンズとして利用する方法や、メルトフローさせたレンズパターンをマスクにしてドライエッチングにより下地にレンズ形状を転写させる方法等が知られている。前記レンズパターンの形成には、感放射線性樹脂組成物が幅広く使用されている(特許文献3および特許文献4参照)。
On the other hand, a microlens having a lens diameter of about 3 to 100 μm or an optical system material for an on-chip color filter such as a facsimile, an electronic copying machine, a solid-state image sensor, or the like is defined as an optical system material. An array of microlenses is used.
To form a microlens or microlens array, a resist pattern corresponding to the lens is formed and then melt-flowed by heat treatment and used as it is as a lens, or by using the melt-flowed lens pattern as a mask and drying. A method of transferring a lens shape to a base by etching is known. For the formation of the lens pattern, a radiation sensitive resin composition is widely used (see Patent Document 3 and Patent Document 4).

ところで、上記のようなマイクロレンズまたはマイクロレンズアレイが形成された素子はその後、配線形成部分であるボンディングパッド上の各種絶縁膜を除去するために、平坦化膜およびエッチング用レジスト膜を塗布し、所望のマスクを用いて露光、現像してボンディングパッド部分のエッチングレジストを除去し、次いで、エッチングにより平坦化膜や各種絶縁膜を除去してボンディングパッド部分を露出させる工程に供される。そのためマイクロレンズまたはマイクロレンズアレイには、平坦化膜およびエッチングレジストの塗膜形成工程ならびにエッチング工程において、耐溶剤性や耐熱性が必要となる。
このようなマイクロレンズを形成するために用いられる感放射線性樹脂組成物は、高感度であり、また、それから形成されるマイクロレンズが所望の曲率半径を有するものであり、高耐熱性、高透過率であること等が要求される。
By the way, the element in which the microlens or the microlens array as described above is formed is then applied with a planarizing film and an etching resist film in order to remove various insulating films on the bonding pad which is a wiring forming portion. Exposure and development are performed using a desired mask to remove the etching resist in the bonding pad portion, and then the step is performed to remove the planarizing film and various insulating films by etching to expose the bonding pad portion. Therefore, the microlens or the microlens array needs to have solvent resistance and heat resistance in the flattening film and etching resist coating film forming process and the etching process.
The radiation-sensitive resin composition used to form such a microlens has high sensitivity, and the microlens formed therefrom has a desired radius of curvature, and has high heat resistance and high transmittance. It is required to be a rate.

また、このようにして得られる層間絶縁膜やマイクロレンズは、これらを形成する際の現像工程において、現像時間が最適時間よりわずかでも過剰となると、パターンと基板との間に現像液が浸透して剥がれが生じやすくなるため、現像時間を厳密に制御する必要があり、製品の歩留まりの点で問題があった。
このように、層間絶縁膜やマイクロレンズを感放射線性樹脂組成物から形成するにあたっては、組成物としては高感度であることが要求され、また形成工程中の現像工程において現像時間が所定時間より過剰となった場合でもパターンの剥がれが生じずに良好な密着性を示し、かつそれから形成される層間絶縁膜には高耐熱性、高耐溶剤性、低誘電率、高透過率等が要求され、一方、マイクロレンズを形成する場合にはマイクロレンズとして良好なメルト形状(所望の曲率半径)、高耐熱性、高耐溶剤性、高透過率が要求されることとなるが、そのような要求を満足する感放射線性樹脂組成物は従来知られていなかった。
特開2001−354822号公報 特開2001−343743号公報 特開平6−18702号公報 特開平6−136239号公報
In addition, the interlayer insulating film and the microlens thus obtained can penetrate between the pattern and the substrate if the development time is slightly longer than the optimum time in the development process when forming them. Therefore, it is necessary to strictly control the development time, and there is a problem in terms of product yield.
As described above, in forming the interlayer insulating film and the microlens from the radiation-sensitive resin composition, the composition is required to have high sensitivity, and the developing time in the developing process during the forming process is longer than a predetermined time. Even if it becomes excessive, the pattern does not peel off and shows good adhesion, and the interlayer insulating film formed therefrom is required to have high heat resistance, high solvent resistance, low dielectric constant, high transmittance, etc. On the other hand, when forming a microlens, a good melt shape (desired radius of curvature), high heat resistance, high solvent resistance, and high transmittance are required as the microlens. A radiation-sensitive resin composition satisfying the above has not been conventionally known.
JP 2001-354822 A JP 2001-343743 A JP-A-6-18702 JP-A-6-136239

本発明は以上のような事情に基づいてなされたものである。それ故、本発明の目的は、高い感放射線感度を有し、現像工程において最適現像時間を越えてもなお良好なパターン形状を形成できるような現像マージンを有し、密着性に優れたパターン状薄膜を容易に形成することができる感放射線性樹脂組成物を提供することにある。   The present invention has been made based on the above situation. Therefore, an object of the present invention is to provide a pattern shape having high radiation sensitivity, having a development margin capable of forming a good pattern shape even in the development process exceeding the optimum development time, and having excellent adhesion. The object is to provide a radiation-sensitive resin composition capable of easily forming a thin film.

本発明の他の目的は、層間絶縁膜の形成に用いる場合にあっては高耐熱性、高耐溶剤性、高透過率、低誘電率の層間絶縁膜を形成でき、またマイクロレンズの形成に用いる場合にあっては高い透過率と良好なメルト形状を有するマイクロレンズを形成しうる感放射線性樹脂組成物を提供することにある。   Another object of the present invention is to form an interlayer insulating film having high heat resistance, high solvent resistance, high transmittance and low dielectric constant when used for forming an interlayer insulating film, and for forming a microlens. When using, it is providing the radiation sensitive resin composition which can form the micro lens which has a high transmittance | permeability and a favorable melt shape.

本発明のさらに別の目的は、上記感放射線性樹脂組成物を用いて層間絶縁膜およびマイクロレンズを形成する方法を提供することにある。
本発明のさらに他の目的は、本発明の方法により形成された層間絶縁膜およびマイクロレンズを提供することにある。
Still another object of the present invention is to provide a method for forming an interlayer insulating film and a microlens using the radiation sensitive resin composition.
Still another object of the present invention is to provide an interlayer insulating film and a microlens formed by the method of the present invention.

本発明のさらに他の目的および利点は、以下の説明から明らかになろう。   Still other objects and advantages of the present invention will become apparent from the following description.

本発明によれば、本発明の上記目的および利点は、第1に、
[A](a1)不飽和カルボン酸および/または不飽和カルボン酸無水物、
(a2)エポキシ基および/またはオキセタニル基含有不飽和化合物、および
(a3)(a1)成分および(a2)成分以外の不飽和化合物の共重合体
[B]1,2−キノンジアジド化合物、ならびに
[A]成分と熱により架橋反応する官能基を含有するシロキサンオリゴマー
を含有することを特徴とする、感放射線性樹脂組成物によって達成される。
According to the present invention, the above objects and advantages of the present invention are as follows.
[A] (a1) unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride,
(A2) an epoxy group and / or oxetanyl group-containing unsaturated compound, and (a3) a copolymer of unsaturated compounds other than components (a1) and (a2) [B] 1,2-quinonediazide compounds, and [A It is achieved by a radiation-sensitive resin composition comprising a siloxane oligomer containing a functional group that undergoes a crosslinking reaction with a component and heat.

本発明の上記目的および利点は、第2に、
以下の工程を以下に記載順で含むことを特徴とする層間絶縁膜またはマイクロレンズの形成方法によって達成される。
(1)上記の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)現像工程、および
(4)加熱工程。
The above objects and advantages of the present invention are secondly,
This is achieved by a method for forming an interlayer insulating film or a microlens, which includes the following steps in the order described below.
(1) The process of forming the coating film of said radiation sensitive resin composition on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) Development step, and (4) Heating step.

さらに本発明の上記目的および利点は、第3に、
上記方法によって形成された層間絶縁膜またはマイクロレンズによって達成される。
Further, the above object and advantage of the present invention are as follows.
This is achieved by the interlayer insulating film or microlens formed by the above method.

本発明の感放射線性樹脂組成物は、高い感放射線感度を有し、現像工程において最適現像時間を越えてもなお良好なパターン形状を形成できるような現像マージンを有し、密着性に優れたパターン状薄膜を容易に形成することができる。
上記組成物から形成された本発明の層間絶縁膜は、基板への密着性が良好であり、耐溶剤性および耐熱性に優れ、高い透過率を有し、誘電率が低いものであり、電子部品の層間絶縁膜として好適に使用できる。
また、上位組成物から形成された本発明のマイクロレンズは、基板への密着性が良好であり、耐溶剤性および耐熱性に優れ、かつ高い透過率と良好なメルト形状を有するものであり、固体撮像素子のマイクロレンズとして好適に使用できる。
The radiation-sensitive resin composition of the present invention has high radiation sensitivity, has a development margin that can form a good pattern shape even when the optimum development time is exceeded in the development process, and has excellent adhesion. A patterned thin film can be easily formed.
The interlayer insulating film of the present invention formed from the above composition has good adhesion to the substrate, excellent solvent resistance and heat resistance, high transmittance, low dielectric constant, It can be suitably used as an interlayer insulating film for parts.
Further, the microlens of the present invention formed from the upper composition has good adhesion to the substrate, excellent solvent resistance and heat resistance, and has a high transmittance and a good melt shape, It can be suitably used as a microlens for a solid-state image sensor.

以下、本発明の感放射線性樹脂組成物について詳述する。   Hereinafter, the radiation sensitive resin composition of this invention is explained in full detail.

共重合体[A]
共重合体[A]は、化合物(a1)、化合物(a2)および化合物(a3)を溶媒中、重合開始剤の存在下でラジカル重合することによって製造することができる。本発明で用いられる共重合体[A]は、化合物(a1)から誘導される構成単位を、化合物(a1)、(a2)および(a3)から誘導される繰り返し単位の合計に基づいて、好ましくは5〜40重量%、特に好ましくは5〜25重量%含有している。この構成単位が5重量%未満である共重合体を使用すると、現像工程時にアルカリ水溶液に溶解しにくくなり、一方40重量%を超える共重合体はアルカリ水溶液に対する溶解性が大きくなりすぎる傾向にある。
化合物(a1)はラジカル重合性を有する不飽和カルボン酸および/または不飽和カルボン酸無水物であり、例えばモノカルボン酸、ジカルボン酸、ジカルボン酸の無水物、多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステル、両末端にカルボキシル基と水酸基とを有するポリマーのモノ(メタ)アクリレート、カルボキシル基を有する多環式化合物およびその無水物などを挙げることができる。
Copolymer [A]
Copolymer [A] can be produced by radical polymerization of compound (a1), compound (a2) and compound (a3) in the presence of a polymerization initiator in a solvent. The copolymer [A] used in the present invention is preferably a structural unit derived from the compound (a1) based on the total of repeating units derived from the compounds (a1), (a2) and (a3). 5 to 40% by weight, particularly preferably 5 to 25% by weight. When a copolymer having a constitutional unit of less than 5% by weight is used, it is difficult to dissolve in an alkaline aqueous solution during the development process, while a copolymer exceeding 40% by weight tends to be too soluble in an alkaline aqueous solution. .
The compound (a1) is an unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride having radical polymerizability, such as monocarboxylic acid, dicarboxylic acid, dicarboxylic acid anhydride, polyvalent carboxylic acid mono [(meth)]. Acryloyloxyalkyl] ester, mono (meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both ends, a polycyclic compound having a carboxyl group, and anhydrides thereof.

これらの具体例としては、モノカルボン酸として例えばアクリル酸、メタクリル酸、クロトン酸など;
ジカルボン酸として、例えばマレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸など;
ジカルボン酸の無水物として、例えば上記ジカルボン酸として例示した化合物の無水物など;
多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステルとして、例えばコハク酸モノ〔2−(メタ)アクリロイロキシエチル〕、フタル酸モノ〔2−(メタ)アクリロイロキシエチル〕など;
両末端にカルボキシル基と水酸基とを有するポリマーのモノ(メタ)アクリレートとして、例えばω−カルボキシポリカプロラクトンモノ(メタ)アクリレートなど;
カルボキシル基を有する多環式化合物およびその無水物として、例えば5−カルボキシビシクロ[2.2.1]ヘプト−2−エン、5,6−ジカルボキシビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−5−メチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−5−エチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−6−メチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−6−エチルビシクロ[2.2.1]ヘプト−2−エン、5,6−ジカルボキシビシクロ[2.2.1]ヘプト−2−エン無水物などがそれぞれ挙げられる。
Specific examples thereof include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid;
Examples of dicarboxylic acids include maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid and the like;
As anhydrides of dicarboxylic acids, for example, anhydrides of the compounds exemplified as the above dicarboxylic acids;
Examples of mono [(meth) acryloyloxyalkyl] esters of polyvalent carboxylic acids such as succinic acid mono [2- (meth) acryloyloxyethyl] and phthalic acid mono [2- (meth) acryloyloxyethyl];
Examples of the mono (meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both ends, such as ω-carboxypolycaprolactone mono (meth) acrylate;
Examples of the polycyclic compound having a carboxyl group and anhydrides thereof include 5-carboxybicyclo [2.2.1] hept-2-ene and 5,6-dicarboxybicyclo [2.2.1] hept-2-ene. Ene, 5-carboxy-5-methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-5-ethylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6- Methylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6-ethylbicyclo [2.2.1] hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] And hept-2-ene anhydride.

これらのうち、モノカルボン酸、ジカルボン酸の無水物が好ましく使用され、特にアクリル酸、メタクリル酸、無水マレイン酸が共重合反応性、アルカリ水溶液に対する溶解性および入手が容易である点から好ましく用いられる。これらの化合物(a1)は、単独であるいは組み合わせて用いられる。
本発明で用いられる共重合体[A]は、化合物(a2)から誘導される構成単位を、化合物(a1)、(a2)および(a3)から誘導される繰り返し単位の合計に基づいて、好ましくは10〜80重量%、特に好ましくは30〜80重量%含有している。この構成単位が10重量%未満の場合は得られる層間絶縁膜やマイクロレンズの耐熱性、表面硬度および剥離液耐性が低下する傾向にあり、一方この構成単位の量が80重量%を超える場合は感放射線性樹脂組成物の保存安定性が低下する傾向にある。
Of these, monocarboxylic acid and dicarboxylic acid anhydrides are preferably used, and acrylic acid, methacrylic acid, and maleic anhydride are particularly preferably used from the viewpoints of copolymerization reactivity, solubility in alkaline aqueous solutions, and availability. . These compounds (a1) are used alone or in combination.
The copolymer [A] used in the present invention is preferably a structural unit derived from the compound (a2) based on the total of repeating units derived from the compounds (a1), (a2) and (a3). Contains 10 to 80% by weight, particularly preferably 30 to 80% by weight. When this structural unit is less than 10% by weight, the heat resistance, surface hardness and stripping solution resistance of the obtained interlayer insulating film and microlens tend to decrease, while when the amount of this structural unit exceeds 80% by weight. The storage stability of the radiation sensitive resin composition tends to decrease.

化合物(a2)はラジカル重合性を有するエポキシ基および/またはオキセタニル基含有不飽和化合物であり、エポキシ基含有不飽和化合物としては例えばアクリル酸グリシジル、メタクリル酸グリシジル、α−エチルアクリル酸グリシジル、α−n−プロピルアクリル酸グリシジル、α−n−ブチルアクリル酸グリシジル、アクリル酸−3,4−エポキシブチル、メタクリル酸−3,4−エポキシブチル、アクリル酸−6,7−エポキシヘプチル、メタクリル酸−6,7−エポキシヘプチル、α−エチルアクリル酸−6,7−エポキシヘプチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテルなどが挙げられる。これらのうち、メタクリル酸グリシジル、メタクリル酸−6,7−エポキシヘプチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、3,4−エポキシシクロへキシルメタクリレートなどが共重合反応性および得られる層間絶縁膜またはマイクロレンズの耐熱性、表面硬度を高める点から好ましく用いられる。オキセタニル基含有不飽和化合物としては例えば3−(アクリロイルオキシメチル)オキセタン、3−(アクリロイルオキシメチル)−2−メチルオキセタン、3−(アクリロイルオキシメチル)−3−エチルオキセタン、3−(アクリロイルオキシメチル)−2−トリフルオロメチルオキセタン、3−(アクリロイルオキシメチル)−2−ペンタフルオロエチルオキセタン、3−(アクリロイルオキシメチル)−2−フェニルオキセタン、3−(アクリロイルオキシメチル)−2,2−ジフルオロオキセタン、3−(アクリロイルオキシメチル)−2,2,4−トリフルオロオキセタン、3−(アクリロイルオキシメチル)−2,2,4,4−テトラフルオロオキセタン、3−(2−アクリロイルオキシエチル)オキセタン、3−(2−アクリロイルオキシエチル)−2−エチルオキセタン、3−(2−アクリロイルオキシエチル)−3−エチルオキセタン、3−(2−アクリロイルオキシエチル)−2−トリフルオロメチルオキセタン、3−(2−アクリロイルオキシエチル)−2−ペンタフルオロエチルオキセタン、3−(2−アクリロイルオキシエチル)−2−フェニルオキセタン、3−(2−アクリロイルオキシエチル)−2,2−ジフルオロオキセタン、3−(2−アクリロイルオキシエチル)−2,2,4−トリフルオロオキセタン、3−(2−アクリロイルオキシエチル)−2,2,4,4−テトラフルオロオキセタン等のアクリル酸エステル、
3−(メタクリロイルオキシメチル)オキセタン、3−(メタクリロイルオキシメチル)−2−メチルオキセタン、3−(メタクリロイルオキシメチル)−3−エチルオキセタン、3−(メタクリロイルオキシメチル)−2−トリフルオロメチルオキセタン、3−(メタクリロイルオキシメチル)−2−ペンタフルオロエチルオキセタン、3−(メタクリロイルオキシメチル)−2−フェニルオキセタン、3−(メタクリロイルオキシメチル)−2,2−ジフルオロオキセタン、3−(メタクリロイルオキシメチル)−2,2,4−トリフルオロオキセタン、3−(メタクリロイルオキシメチル)−2,2,4,4−テトラフルオロオキセタン、3−(2−メタクリロイルオキシエチル)オキセタン、3−(2−メタクリロイルオキシエチル)−2−エチルオキセタン、3−(2−メタクリロイルオキシエチル)−3−エチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−トリルオロメチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−ペンタフルオロエチルオキセタン、3−(2−メタクリロイルオキシエチル)−2−フェニルオキセタン、3−(2−メタクリロイルオキシエチル)−2,2−ジフルオロオキセタン、3−(2−メタクリロイルオキシエチル)−2,2,4−トリフルオロオキセタン、3−(2−メタクリロイルオキシエチル)−2,2,4,4−テトラフルオロオキセタン等のメタクリル酸エステル等を、それぞれ挙げることができる。これらの化合物(a2)は、単独であるいは組み合わせて用いられる。
Compound (a2) is a radically polymerizable epoxy group and / or oxetanyl group-containing unsaturated compound. Examples of the epoxy group-containing unsaturated compound include glycidyl acrylate, glycidyl methacrylate, glycidyl α-ethyl acrylate, α- glycidyl n-propyl acrylate, glycidyl α-n-butyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, -6,7-epoxyheptyl acrylate, methacrylic acid-6 , 7-epoxyheptyl, α-ethylacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, and the like. Among these, glycidyl methacrylate, methacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexyl methacrylate, etc. It is preferably used from the viewpoint of increasing the copolymerization reactivity and the heat resistance and surface hardness of the obtained interlayer insulating film or microlens. Examples of the oxetanyl group-containing unsaturated compound include 3- (acryloyloxymethyl) oxetane, 3- (acryloyloxymethyl) -2-methyloxetane, 3- (acryloyloxymethyl) -3-ethyloxetane, and 3- (acryloyloxymethyl). ) -2-Trifluoromethyloxetane, 3- (acryloyloxymethyl) -2-pentafluoroethyloxetane, 3- (acryloyloxymethyl) -2-phenyloxetane, 3- (acryloyloxymethyl) -2,2-difluoro Oxetane, 3- (acryloyloxymethyl) -2,2,4-trifluorooxetane, 3- (acryloyloxymethyl) -2,2,4,4-tetrafluorooxetane, 3- (2-acryloyloxyethyl) oxetane , 3- (2-A Liloyloxyethyl) -2-ethyloxetane, 3- (2-acryloyloxyethyl) -3-ethyloxetane, 3- (2-acryloyloxyethyl) -2-trifluoromethyloxetane, 3- (2-acryloyloxy) Ethyl) -2-pentafluoroethyloxetane, 3- (2-acryloyloxyethyl) -2-phenyloxetane, 3- (2-acryloyloxyethyl) -2,2-difluorooxetane, 3- (2-acryloyloxyethyl) ) Acrylic acid esters such as -2,2,4-trifluorooxetane and 3- (2-acryloyloxyethyl) -2,2,4,4-tetrafluorooxetane;
3- (methacryloyloxymethyl) oxetane, 3- (methacryloyloxymethyl) -2-methyloxetane, 3- (methacryloyloxymethyl) -3-ethyloxetane, 3- (methacryloyloxymethyl) -2-trifluoromethyloxetane, 3- (methacryloyloxymethyl) -2-pentafluoroethyloxetane, 3- (methacryloyloxymethyl) -2-phenyloxetane, 3- (methacryloyloxymethyl) -2,2-difluorooxetane, 3- (methacryloyloxymethyl) -2,2,4-trifluorooxetane, 3- (methacryloyloxymethyl) -2,2,4,4-tetrafluorooxetane, 3- (2-methacryloyloxyethyl) oxetane, 3- (2-methacryloyloxyethyl) 2-ethyloxetane, 3- (2-methacryloyloxyethyl) -3-ethyloxetane, 3- (2-methacryloyloxyethyl) -2-tolylolomethyloxetane, 3- (2-methacryloyloxyethyl) -2- Pentafluoroethyloxetane, 3- (2-methacryloyloxyethyl) -2-phenyloxetane, 3- (2-methacryloyloxyethyl) -2,2-difluorooxetane, 3- (2-methacryloyloxyethyl) -2,2 , 4-trifluorooxetane, methacrylic acid esters such as 3- (2-methacryloyloxyethyl) -2,2,4,4-tetrafluorooxetane, and the like. These compounds (a2) are used alone or in combination.

化合物(a3)はラジカル重合性を有する不飽和化合物であれば特に制限されるものではない。例えば、メタクリル酸アルキルエステル、メタクリル酸環状アルキルエステル、メタクリル酸環状アルキルエステル、水酸基を有するメタアクリル酸エステル、アクリル酸環状アルキルエステル、メタクリル酸アリールエステル、アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格、フラン骨格、テトラヒドロピラン骨格、ピラン骨格、下記式(3)で表される骨格をもつ不飽和化合物、下記式(I)で表されるフェノール性水酸基含有不飽和化合物およびその他の不飽和化合物を挙げることができる。   The compound (a3) is not particularly limited as long as it is an unsaturated compound having radical polymerizability. For example, methacrylic acid alkyl ester, methacrylic acid cyclic alkyl ester, methacrylic acid cyclic alkyl ester, methacrylic acid ester having a hydroxyl group, acrylic acid cyclic alkyl ester, methacrylic acid aryl ester, acrylic acid aryl ester, unsaturated dicarboxylic acid diester, bicyclo Unsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated diene, tetrahydrofuran skeleton, furan skeleton, tetrahydropyran skeleton, pyran skeleton, unsaturated compound having a skeleton represented by the following formula (3), the following formula (I) And phenolic hydroxyl group-containing unsaturated compounds represented by the formula (1) and other unsaturated compounds.

Figure 0004849251
Figure 0004849251

(式(3)中、Rは水素原子またはメチル基であり、nは1以上の整数である) (In Formula (3), R 7 is a hydrogen atom or a methyl group, and n is an integer of 1 or more)

Figure 0004849251
Figure 0004849251

ここで、Rは水素原子または炭素数1〜4のアルキル基であり、R〜Rは同一もしくは異なり、水素原子、ヒドロキシル基または炭素数1〜4のアルキル基であり、Bは単結合、−COO−、または−CONH−であり、mは0〜3の整数である、但し、R〜Rの少なくとも1つはヒドロキシル基である。
で表わされる。
Here, R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 to R 6 are the same or different, and are a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 4 carbon atoms, and B is a single atom. A bond, —COO—, or —CONH—, and m is an integer of 0 to 3, provided that at least one of R 2 to R 6 is a hydroxyl group.
It is represented by

これらの具体例としては、メタクリル酸アルキルエステルとして、例えばメチルメタクリレート、エチルメタクリレート、n−ブチルメタクリレート、sec−ブチルメタクリレート、t−ブチルメタクリレート、2−エチルヘキシルメタクリレート、イソデシルメタクリレート、n−ラウリルメタクリレート、トリデシルメタクリレート、n−ステアリルメタクリレートなど;
メタクリル酸環状アルキルエステルとして、例えばメチルアクリレート、イソプロピルアクリレートなど;
メタクリル酸環状アルキルエステルとして、例えばシクロヘキシルメタクリレート、2−メチルシクロヘキシルメタクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチルメタクリレート、イソボロニルメタクリレートなど;
水酸基を有するメタアクリル酸エステルとして、例えばヒドロキシメチルメタクリレート、2−ヒドロキシエチルメタクリレート、3−ヒドロキシプロピルメタクリレート、4−ヒドロキシブチルメタクリレート、ジエチレングリコールモノメタクリレート、2,3−ジヒドロキシプロピルメタクリレート、2−メタクリロキシエチルグリコサイド、4−ヒドロキシフェニルメタクリレートなど;
アクリル酸環状アルキルエステルとして、例えばシクロヘキシルアクリレート、2−メチルシクロヘキシルアクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルアクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチルアクリレート、イソボロニルアクリレートなど;
メタクリル酸アリールエステルとして、例えばフェニルメタクリレート、ベンジルメタクリレートなど;
アクリル酸アリールエステルとして、例えばフェニルアクリレート、ベンジルアクリレートなど;
不飽和ジカルボン酸ジエステルとして、例えばマレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチルなど;
ビシクロ不飽和化合物として、例えばビシクロ[2.2.1]ヘプト−2−エン、5−メチルビシクロ[2.2.1]ヘプト−2−エン、5−エチルビシクロ[2.2.1]ヘプト−2−エン、5−メトキシビシクロ[2.2.1]ヘプト−2−エン、5−エトキシビシクロ[2.2.1]ヘプト−2−エン、5,6−ジメトキシビシクロ[2.2.1]ヘプト−2−エン、5,6−ジエトキシビシクロ[2.2.1]ヘプト−2−エン、5−t−ブトキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5−フェノキシカルボニルビシクロ[2.2.1]ヘプト−2−エン、5,6−ジ(t−ブトキシカルボニル)ビシクロ[2.2.1]ヘプト−2−エン、5,6−ジ(シクロヘキシルオキシカルボニル)ビシクロ[2.2.1]ヘプト−2−エン、5−(2’−ヒドロキシエチル)ビシクロ[2.2.1]ヘプト−2−エン、5,6−ジヒドロキシビシクロ[2.2.1]ヘプト−2−エン、5,6−ジ(ヒドロキシメチル)ビシクロ[2.2.1]ヘプト−2−エン、5,6−ジ(2’−ヒドロキシエチル)ビシクロ[2.2.1]ヘプト−2−エン、5−ヒドロキシ−5−メチルビシクロ[2.2.1]ヘプト−2−エン、5−ヒドロキシ−5−エチルビシクロ[2.2.1]ヘプト−2−エン、5−ヒドロキシメチル−5−メチルビシクロ[2.2.1]ヘプト−2−エンなど;
マレイミド化合物として、例えばN−フェニルマレイミド、N−シクロヘキシルマレイミド、N−ベンジルマレイミド、N−(4−ヒドロキシフェニル)マレイミド、N−(4−ヒドロキシベンジル)マレイミド、N−スクシンイミジル−3−マレイミドベンゾエート、N−スクシンイミジル−4−マレイミドブチレート、N−スクシンイミジル−6−マレイミドカプロエート、N−スクシンイミジル−3−マレイミドプロピオネート、N−(9−アクリジニル)マレイミドなど;
不飽和芳香族化合物として、例えばスチレン、α−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−メトキシスチレンなど;
共役ジエンとして、例えば1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエンなど;
テトラヒドロフラン骨格を含有する不飽和化合物として、例えばテトラヒドロフルフリル(メタ)アクリレート、2−メタクリロイルオキシ−プロピオン酸テトラヒドロフルフリルエステル、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オンなど;
フラン骨格を含有する不飽和化合物として、例えば2−メチル−5−(3−フリル)−1−ペンテン−3−オン、フルフリル(メタ)アクリレート、1−フラン−2−ブチル−3−エン−2−オン、1−フラン−2−ブチル−3−メトキシ−3−エン−2−オン、6−(2−フリル)−2−メチル−1−ヘキセン−3−オン、6−フラン−2−イル−ヘキシ−1−エン−3−オン、アクリル酸2−フラン−2−イル−1−メチル−エチルエステル、6−(2−フリル)−6−メチル−1−ヘプテン−3−オンなど;
テトラヒドロピラン骨格を含有する不飽和化合物として、例えば(テトラヒドロピラン−2−イル)メチルメタクリレート、2,6−ジメチル−8−(テトラヒドロピラン−2−イルオキシ)−オクト−1−エン−3−オン、2−メタクリル酸テトラヒドロピラン−2−イルエステル、1−(テトラヒドロピラン−2−オキシ)−ブチル−3−エン−2−オンなど;
ピラン骨格を含有する不飽和化合物として、例えば4−(1,4−ジオキサ−5−オキソ−6−ヘプテニル)−6−メチル−2−ピロン、4−(1,5−ジオキサ−6−オキソ−7−オクテニル)−6−メチル−2−ピロンなど;
上記式(3)で表される骨格を含有する不飽和化合物として、例えばポリエチレングリコール(n=2〜10)モノ(メタ)アクリレート、ポリプロピレングリコール(n=2〜10)モノ(メタ)アクリレートなど;
フェノール骨格を含有する不飽和化合物としては、上記式(I)で表わされる化合物から、Bとmの定義により下記式(4)〜(8)で表わされる化合物など;
Specific examples thereof include methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, Decyl methacrylate, n-stearyl methacrylate, etc .;
Methacrylic acid cyclic alkyl esters such as methyl acrylate and isopropyl acrylate;
Examples of cyclic alkyl esters of methacrylic acid include cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, tricyclo [5.2.1.0 2,6 ]. Decane-8-yloxyethyl methacrylate, isobornyl methacrylate, etc .;
Examples of the methacrylic acid ester having a hydroxyl group include hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2,3-dihydroxypropyl methacrylate, and 2-methacryloxyethylglycol. Side, 4-hydroxyphenyl methacrylate, etc .;
Examples of acrylic acid cyclic alkyl esters include cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl acrylate, tricyclo [5.2.1.0 2,6 ]. Decane-8-yloxyethyl acrylate, isobornyl acrylate and the like;
Methacrylic acid aryl esters such as phenyl methacrylate and benzyl methacrylate;
Examples of acrylic acid aryl esters such as phenyl acrylate and benzyl acrylate;
Unsaturated dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, diethyl itaconate and the like;
Examples of the bicyclo unsaturated compound include bicyclo [2.2.1] hept-2-ene, 5-methylbicyclo [2.2.1] hept-2-ene, and 5-ethylbicyclo [2.2.1] hept. 2-ene, 5-methoxybicyclo [2.2.1] hept-2-ene, 5-ethoxybicyclo [2.2.1] hept-2-ene, 5,6-dimethoxybicyclo [2.2. 1] hept-2-ene, 5,6-diethoxybicyclo [2.2.1] hept-2-ene, 5-t-butoxycarbonylbicyclo [2.2.1] hept-2-ene, 5- Cyclohexyloxycarbonylbicyclo [2.2.1] hept-2-ene, 5-phenoxycarbonylbicyclo [2.2.1] hept-2-ene, 5,6-di (t-butoxycarbonyl) bicyclo [2. 2.1] Hept-2 Ene, 5,6-di (cyclohexyloxycarbonyl) bicyclo [2.2.1] hept-2-ene, 5- (2′-hydroxyethyl) bicyclo [2.2.1] hept-2-ene, 5 , 6-Dihydroxybicyclo [2.2.1] hept-2-ene, 5,6-di (hydroxymethyl) bicyclo [2.2.1] hept-2-ene, 5,6-di (2′- Hydroxyethyl) bicyclo [2.2.1] hept-2-ene, 5-hydroxy-5-methylbicyclo [2.2.1] hept-2-ene, 5-hydroxy-5-ethylbicyclo [2.2 .1] hept-2-ene, 5-hydroxymethyl-5-methylbicyclo [2.2.1] hept-2-ene and the like;
Examples of maleimide compounds include N-phenylmaleimide, N-cyclohexylmaleimide, N-benzylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-hydroxybenzyl) maleimide, N-succinimidyl-3-maleimidobenzoate, N -Succinimidyl-4-maleimidobutyrate, N-succinimidyl-6-maleimidocaproate, N-succinimidyl-3-maleimidopropionate, N- (9-acridinyl) maleimide and the like;
Examples of unsaturated aromatic compounds include styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxystyrene, and the like;
Examples of conjugated dienes include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and the like;
Examples of unsaturated compounds containing a tetrahydrofuran skeleton include tetrahydrofurfuryl (meth) acrylate, 2-methacryloyloxy-propionic acid tetrahydrofurfuryl ester, and 3- (meth) acryloyloxytetrahydrofuran-2-one;
Examples of unsaturated compounds containing a furan skeleton include 2-methyl-5- (3-furyl) -1-penten-3-one, furfuryl (meth) acrylate, 1-furan-2-butyl-3-ene-2. -One, 1-furan-2-butyl-3-methoxy-3-en-2-one, 6- (2-furyl) -2-methyl-1-hexen-3-one, 6-furan-2-yl -Hex-1-en-3-one, 2-furan-2-yl-1-methyl-ethyl acrylate, 6- (2-furyl) -6-methyl-1-hepten-3-one, and the like;
Examples of unsaturated compounds containing a tetrahydropyran skeleton include (tetrahydropyran-2-yl) methyl methacrylate, 2,6-dimethyl-8- (tetrahydropyran-2-yloxy) -oct-1-en-3-one, 2-methacrylic acid tetrahydropyran-2-yl ester, 1- (tetrahydropyran-2-oxy) -butyl-3-en-2-one, etc .;
Examples of unsaturated compounds containing a pyran skeleton include 4- (1,4-dioxa-5-oxo-6-heptenyl) -6-methyl-2-pyrone, 4- (1,5-dioxa-6-oxo- 7-octenyl) -6-methyl-2-pyrone and the like;
Examples of unsaturated compounds containing a skeleton represented by the above formula (3) include polyethylene glycol (n = 2 to 10) mono (meth) acrylate, polypropylene glycol (n = 2 to 10) mono (meth) acrylate, and the like;
Examples of the unsaturated compound containing a phenol skeleton include compounds represented by the following formulas (4) to (8) from the compound represented by the above formula (I) according to the definitions of B and m;

Figure 0004849251
Figure 0004849251

(式(4)中、nは1から3の整数であり、R、R、R、R、R、およびRの定義は式(I)に同じである。) (In formula (4), n is an integer of 1 to 3, and the definitions of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as in formula (I).)

Figure 0004849251
Figure 0004849251

(式(5)中、R、R、R、R、R、およびRの定義は、上記式(I)に同じである。) (In formula (5), the definitions of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as those in formula (I) above.)

Figure 0004849251
Figure 0004849251

(式(6)中、nは1から3の整数である。R、R、R、R、R、およびRの定義は上記式(I)に同じである。) (In formula (6), n is an integer of 1 to 3. The definitions of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as those in formula (I) above.)

Figure 0004849251
Figure 0004849251

(式(7)中、R、R、R、R、R、およびRの定義は上記式(I)に同じである。) (In formula (7), the definitions of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as those in formula (I) above.)

Figure 0004849251
Figure 0004849251

(式(8)中、R、R、R、R、R、およびRの定義は上記式(I)に同じである。)
その他の不飽和化合物として、例えばアクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニルをそれぞれ挙げることができる。
(In formula (8), the definitions of R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the same as those in formula (I) above.)
Examples of other unsaturated compounds include acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene chloride, acrylamide, methacrylamide, and vinyl acetate.

これらのうち、メタクリル酸アルキルエステル、メタクリル酸環状アルキルエステル、マレイミド化合物、テトラヒドロフラン骨格、フラン骨格、テトラヒドロピラン骨格、ピラン骨格、上記式(3)で表される骨格をもつ不飽和化合物、下記式(I)で表されるフェノール性水酸基含有不飽和化合物が好ましく用いられ、特にスチレン、t−ブチルメタクリレート、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート、p−メトキシスチレン、2−メチルシクロヘキシルアクリレート、N−フェニルマレイミド、N−シクロヘキシルマレイミド、テトラヒドロフルフリル(メタ)アクリレート、ポリエチレングリコール(n=2〜10)モノ(メタ)アクリレート、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オン、4−ヒドロキシベンジル(メタ)アクリレート、4−ヒドロキシフェニル(メタ)アクリレート、o−ヒドロキシスチレン、p−ヒドロキシスチレン、α−メチル−p−ヒドロキシスチレンが共重合反応性およびアルカリ水溶液に対する溶解性の点から好ましい。これらの化合物(a4)は、単独であるいは組み合わせて用いられる。 Among these, methacrylic acid alkyl ester, methacrylic acid cyclic alkyl ester, maleimide compound, tetrahydrofuran skeleton, furan skeleton, tetrahydropyran skeleton, pyran skeleton, unsaturated compound having a skeleton represented by the above formula (3), the following formula ( The phenolic hydroxyl group-containing unsaturated compound represented by I) is preferably used, and in particular, styrene, t-butyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, p-methoxystyrene. , 2-methylcyclohexyl acrylate, N-phenylmaleimide, N-cyclohexylmaleimide, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (n = 2 to 10) mono (meth) acrylate, 3- (meth) acryloyloxytetrahydrofura -2-one, 4-hydroxybenzyl (meth) acrylate, 4-hydroxyphenyl (meth) acrylate, o-hydroxystyrene, p-hydroxystyrene, and α-methyl-p-hydroxystyrene are copolymerizable with respect to an aqueous alkaline solution. It is preferable from the viewpoint of solubility. These compounds (a4) are used alone or in combination.

本発明で用いられる共重合体[A]の好ましい具体例としては、例えば、メタクリル酸/トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート/2−メチルシクロヘキシルアクリレート/メタクリル酸グリシジル/N−(3,5−ジメチル−4−ヒドロキシベンジル)メタクリルアミド、メタクリル酸/テトラヒドロフルフリルメタクリレート/メタクリル酸グリシジル/N−シクロヘキシルマレイミド/ラウリルメタクリレート/α−メチル−p−ヒドロキシスチレン、スチレン/メタクリル酸/メタクリル酸グリシジル/(3−エチルオキセタン−3−イル)メタクリレート/トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレートが挙げられる。 Preferable specific examples of the copolymer [A] used in the present invention include, for example, methacrylic acid / tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate / 2-methylcyclohexyl acrylate / methacrylic acid. Glycidyl acid / N- (3,5-dimethyl-4-hydroxybenzyl) methacrylamide, methacrylic acid / tetrahydrofurfuryl methacrylate / glycidyl methacrylate / N-cyclohexylmaleimide / lauryl methacrylate / α-methyl-p-hydroxystyrene, styrene / Methacrylic acid / glycidyl methacrylate / (3-ethyloxetane-3-yl) methacrylate / tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate.

本発明で用いられる共重合体[A]のポリスチレン換算重量平均分子量(以下、「Mw」という)は、好ましくは2×10〜1×10、より好ましくは5×10〜5×10である。Mwが2×10未満であると、現像マージンが十分ではなくなる場合があり、得られる被膜の残膜率などが低下したり、また得られる層間絶縁膜またはマイクロレンズのパターン形状、耐熱性などに劣ることがあり、一方1×10を超えると、感度が低下したりパターン形状に劣ることがある。また、分子量分布(以下、「Mw/Mn」という)は、好ましくは5.0以下、より好ましくは3.0以下であることが望ましい。Mw/Mnが5.0を越えると、得られる層間絶縁膜またはマイクロレンズのパターン形状に劣ることがある。上記の共重合体[A]を含む感放射線性樹脂組成物は、現像する際に現像残りを生じることなく容易に所定パターン形状を形成することができる。 The copolymer [A] used in the present invention has a polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”), preferably 2 × 10 3 to 1 × 10 5 , more preferably 5 × 10 3 to 5 × 10. 4 . If the Mw is less than 2 × 10 3 , the development margin may not be sufficient, the remaining film ratio of the resulting film may decrease, the pattern shape of the resulting interlayer insulating film or microlens, heat resistance, etc. On the other hand, if it exceeds 1 × 10 5 , the sensitivity may be lowered or the pattern shape may be inferior. The molecular weight distribution (hereinafter referred to as “Mw / Mn”) is preferably 5.0 or less, more preferably 3.0 or less. When Mw / Mn exceeds 5.0, the pattern shape of the obtained interlayer insulating film or microlens may be inferior. The radiation-sensitive resin composition containing the copolymer [A] can easily form a predetermined pattern shape without causing a development residue during development.

共重合体[A]の製造に用いられる溶媒としては、例えば、アルコール、エーテル、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコール、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、プロピレングリコールアルキルエーテルプロピオネート、芳香族炭化水素、ケトン、エステルなどを挙げることができる。   Examples of the solvent used for the production of the copolymer [A] include alcohol, ether, glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate, propylene glycol alkyl ether propio Nates, aromatic hydrocarbons, ketones, esters and the like.

これらの具体例としては、アルコールとして、例えばメタノール、エタノール、ベンジルアルコール、2−フェニルエチルアルコール、3−フェニル−1−プロパノールなど;
エーテルとしてテトラヒドロフランなど;
グリコールエーテルとして、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなど;
エチレングリコールアルキルエーテルアセテートとして、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテートなど;
ジエチレングリコールとして、例えばジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテルなど;
プロピレングリコールモノアルキルエーテルとして、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテルなど;
プロピレングリコールアルキルエーテルプロピオネートとして、例えばプロピレングリコールメチルエーテルプロピオネート、プロピレングリコールエチルエーテルプロピオネート、プロピレングリコールプロピルエーテルプロピオネート、プロピレングリコールブチルエーテルプロピオネートなど;
プロピレングリコールアルキルエーテルアセテートとして、例えばプロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなど;
芳香族炭化水素として、例えばトルエン、キシレンなど;
ケトンとして、例えばメチルエチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノンなど;
Specific examples thereof include alcohols such as methanol, ethanol, benzyl alcohol, 2-phenylethyl alcohol, and 3-phenyl-1-propanol;
Tetrahydrofuran as ether;
Examples of glycol ethers include ethylene glycol monomethyl ether and ethylene glycol monoethyl ether;
Examples of ethylene glycol alkyl ether acetate include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate;
Examples of diethylene glycol include diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether.
Examples of propylene glycol monoalkyl ethers include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether;
As propylene glycol alkyl ether propionate, for example, propylene glycol methyl ether propionate, propylene glycol ethyl ether propionate, propylene glycol propyl ether propionate, propylene glycol butyl ether propionate, etc .;
Examples of propylene glycol alkyl ether acetates include propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate;
Aromatic hydrocarbons such as toluene, xylene, etc .;
Examples of ketones include methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc .;

エステルとして、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、2−ヒドロキシプロピオン酸エチル、2−ヒドロキシ−2−メチルプロピオン酸メチル、2−ヒドロキシ−2−メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3−ヒドロキシプロピオン酸メチル、3−ヒドロキシプロピオン酸エチル、3−ヒドロキシプロピオン酸プロピル、3−ヒドロキシプロピオン酸ブチル、2−ヒドロキシ−3−メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2−メトキシプロピオン酸メチル、2−メトキシプロピオン酸エチル、2−メトキシプロピオン酸プロピル、2−メトキシプロピオン酸ブチル、2−エトキシプロピオン酸メチル、2−エトキシプロピオン酸エチル、2−エトキシプロピオン酸プロピル、2−エトキシプロピオン酸ブチル、2−ブトキシプロピオン酸メチル、2−ブトキシプロピオン酸エチル、2−ブトキシプロピオン酸プロピル、2−ブトキシプロピオン酸ブチル、3−メトキシプロピオン酸メチル、3−メトキシプロピオン酸エチル、3−メトキシプロピオン酸プロピル、3−メトキシプロピオン酸ブチル、3−エトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、3−エトキシプロピオン酸プロピル、3−エトキシプロピオン酸ブチル、3−プロポキシプロピオン酸メチル、3−プロポキシプロピオン酸エチル、3−プロポキシプロピオン酸プロピル、3−プロポキシプロピオン酸ブチル、3−ブトキシプロピオン酸メチル、3−ブトキシプロピオン酸エチル、3−ブトキシプロピオン酸プロピル、3−ブトキシプロピオン酸ブチルなどのエステルをそれぞれ挙げることができる。   Examples of esters include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, methyl hydroxyacetate, hydroxy Ethyl acetate, hydroxybutyl acetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, 2-hydroxy -3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, propoxy Methyl acetate, ethyl propoxyacetate, propyl propoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butylbutoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, 2-methoxypropionic acid Propyl, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, methyl 2-butoxypropionate, ethyl 2-butoxypropionate Propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropyl Butyl pionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, 3-propoxypropion Examples thereof include esters such as propyl acid, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, and butyl 3-butoxypropionate.

これらのうち、エチレングリコールアルキルエーテルアセテート、ジエチレングリコール、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテートが好ましく、特に、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールメチルエーテルアセテート、3−メトキシプロピオン酸メチルが好ましい。   Of these, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, and propylene glycol alkyl ether acetate are preferable. Particularly, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol methyl ether. Acetate and methyl 3-methoxypropionate are preferred.

共重合体[A]の製造に用いられる重合開始剤としては、一般的にラジカル重合開始剤として知られているものが使用できる。例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)などのアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t−ブチルペルオキシピバレート、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサンなどの有機過酸化物;および過酸化水素が挙げられる。ラジカル重合開始剤として過酸化物を用いる場合には、過酸化物を還元剤とともに用いてレドックス型開始剤としてもよい。   As the polymerization initiator used in the production of the copolymer [A], those generally known as radical polymerization initiators can be used. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis- (2,4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2,4-dimethylvaleronitrile) Azo compounds such as; benzoyl peroxide, lauroyl peroxide, t-butyl peroxypivalate, organic peroxides such as 1,1′-bis- (t-butylperoxy) cyclohexane; and hydrogen peroxide. When a peroxide is used as the radical polymerization initiator, the peroxide may be used together with a reducing agent to form a redox initiator.

共重合体[A]の製造においては、分子量を調整するために分子量調整剤を使用することができる。その具体例としては、クロロホルム、四臭化炭素等のハロゲン化炭化水素;n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、tert−ドデシルメルカプタン、チオグリコール酸等のメルカプタン;ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン;ターピノーレン、α−メチルスチレンダイマー等が挙げられる。   In the production of the copolymer [A], a molecular weight modifier can be used to adjust the molecular weight. Specific examples thereof include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, thioglycolic acid; dimethylxanthogen sulfide, Xanthogens such as diisopropylxanthogen disulfide; terpinolene, α-methylstyrene dimer and the like.

[B]成分
本発明で用いられる[B]成分は、放射線の照射によりカルボン酸を発生する1,2−キノンジアジド化合物であり、フェノール性化合物またはアルコール性化合物(以下、「母核」という。)と、1,2−ナフトキノンジアジドスルホン酸ハライドの縮合物を用いることができる。
上記母核としては、例えば、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ペンタヒドロキシベンゾフェノン、ヘキサヒドロキシベンゾフェノン、(ポリヒドロキシフェニル)アルカン、その他の母核を挙げることができる。
[B] Component The [B] component used in the present invention is a 1,2-quinonediazide compound that generates a carboxylic acid upon irradiation with radiation, and is a phenolic compound or an alcoholic compound (hereinafter referred to as “mother nucleus”). And a condensate of 1,2-naphthoquinonediazide sulfonic acid halide can be used.
Examples of the mother nucleus include trihydroxybenzophenone, tetrahydroxybenzophenone, pentahydroxybenzophenone, hexahydroxybenzophenone, (polyhydroxyphenyl) alkane, and other mother nuclei.

これらの具体例としては、トリヒドロキシベンゾフェノンとして、例えば2,3,4−トリヒドロキシベンゾフェノン、2,4,6−トリヒドロキシベンゾフェノン等;
テトラヒドロキシベンゾフェノンとして、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,3’−テトラヒドロキシベンゾフェノン、2,3,4,4’−テトラヒドロキシベンゾフェノン、2,3,4,2’−テトラヒドロキシ−4’−メチルベンゾフェノン、2,3,4,4’−テトラヒドロキシ−3’−メトキシベンゾフェノン等;
ペンタヒドロキシベンゾフェノンとして、例えば2,3,4,2’,6’−ペンタヒドロキシベンゾフェノン等;
ヘキサヒドロキシベンゾフェノンとして、例えば2,4,6,3’,4’,5’−ヘキサヒドロキシベンゾフェノン、3,4,5,3’,4’,5’−ヘキサヒドロキシベンゾフェノン等;
(ポリヒドロキシフェニル)アルカンとして、例えばビス(2,4−ジヒドロキシフェニル)メタン、ビス(p−ヒドロキシフェニル)メタン、トリ(p−ヒドロキシフェニル)メタン、1,1,1−トリ(p−ヒドロキシフェニル)エタン、ビス(2,3,4−トリヒドロキシフェニル)メタン、2,2−ビス(2,3,4−トリヒドロキシフェニル)プロパン、1,1,3−トリス(2,5−ジメチル−4−ヒドロキシフェニル)−3−フェニルプロパン、4,4’−〔1−〔4−〔1−〔4−ヒドロキシフェニル〕−1−メチルエチル〕フェニル〕エチリデン〕ビスフェノール、ビス(2,5−ジメチル−4−ヒドロキシフェニル)−2−ヒドロキシフェニルメタン、3,3,3’,3’−テトラメチル−1,1’−スピロビインデン−5,6,7,5’,6’,7’−ヘキサノール、2,2,4−トリメチル−7,2’,4’−トリヒドロキシフラバン等;
その他の母核として、例えば2−メチル−2−(2,4−ジヒドロキシフェニル)−4−(4−ヒドロキシフェニル)−7−ヒドロキシクロマン、2−[ビス{(5−イソプロピル−4−ヒドロキシ−2−メチル)フェニル}メチル]、1−[1−(3−{1−(4−ヒドロキシフェニル)−1−メチルエチル}−4,6−ジヒドロキシフェニル)−1−メチルエチル]−3−(1−(3−{1−(4−ヒドロキシフェニル)−1−メチルエチル}−4,6−ジヒドロキシフェニル)−1−メチルエチル)ベンゼン、4,6−ビス{1−(4−ヒドロキシフェニル)−1−メチルエチル}−1,3−ジヒドロキシベンゼンが挙げられる。
Specific examples thereof include trihydroxybenzophenone such as 2,3,4-trihydroxybenzophenone and 2,4,6-trihydroxybenzophenone;
As tetrahydroxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2,3,4,3′-tetrahydroxybenzophenone, 2,3,4,4′-tetrahydroxybenzophenone, 2,3,4 2,2'-tetrahydroxy-4'-methylbenzophenone, 2,3,4,4'-tetrahydroxy-3'-methoxybenzophenone, etc .;
Examples of pentahydroxybenzophenone include 2,3,4,2 ′, 6′-pentahydroxybenzophenone and the like;
Examples of hexahydroxybenzophenone include 2,4,6,3 ′, 4 ′, 5′-hexahydroxybenzophenone, 3,4,5,3 ′, 4 ′, 5′-hexahydroxybenzophenone and the like;
Examples of (polyhydroxyphenyl) alkanes include bis (2,4-dihydroxyphenyl) methane, bis (p-hydroxyphenyl) methane, tri (p-hydroxyphenyl) methane, and 1,1,1-tri (p-hydroxyphenyl). ) Ethane, bis (2,3,4-trihydroxyphenyl) methane, 2,2-bis (2,3,4-trihydroxyphenyl) propane, 1,1,3-tris (2,5-dimethyl-4) -Hydroxyphenyl) -3-phenylpropane, 4,4 '-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol, bis (2,5-dimethyl- 4-hydroxyphenyl) -2-hydroxyphenylmethane, 3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindene-5 6,7,5 ′, 6 ′, 7′-hexanol, 2,2,4-trimethyl-7,2 ′, 4′-trihydroxyflavan and the like;
As other mother nucleus, for example, 2-methyl-2- (2,4-dihydroxyphenyl) -4- (4-hydroxyphenyl) -7-hydroxychroman, 2- [bis {(5-isopropyl-4-hydroxy- 2-methyl) phenyl} methyl], 1- [1- (3- {1- (4-hydroxyphenyl) -1-methylethyl} -4,6-dihydroxyphenyl) -1-methylethyl] -3- ( 1- (3- {1- (4-hydroxyphenyl) -1-methylethyl} -4,6-dihydroxyphenyl) -1-methylethyl) benzene, 4,6-bis {1- (4-hydroxyphenyl) -1-methylethyl} -1,3-dihydroxybenzene.

また、上記例示した母核のエステル結合をアミド結合に変更した1,2−ナフトキノンジアジドスルホン酸アミド、例えば2,3,4−トリヒドロキシベンゾフェノン−1,2−ナフトキノンジアジド−4−スルホン酸アミド等も好適に使用される。
これらの母核のうち、2,3,4,4’−テトラヒドロキシベンゾフェノン、4,4’−〔1−〔4−〔1−〔4−ヒドロキシフェニル〕−1−メチルエチル〕フェニル〕エチリデン〕ビスフェノールが好ましい。
また、1,2−ナフトキノンジアジドスルホン酸ハライドとしては、1,2−ナフトキノンジアジドスルホン酸クロリドが好ましく、その具体例としては1,2−ナフトキノンジアジド−4−スルホン酸クロリドおよび1,2−ナフトキノンジアジド−5−スルホン酸クロリドを挙げることができ、このうち、1,2−ナフトキノンジアジド−5−スルホン酸クロリドを使用することが好ましい。
Further, 1,2-naphthoquinone diazide sulfonic acid amides in which the ester bond of the mother nucleus exemplified above is changed to an amide bond, such as 2,3,4-trihydroxybenzophenone-1,2-naphthoquinone diazide-4-sulfonic acid amide, etc. Are also preferably used.
Among these mother nuclei, 2,3,4,4′-tetrahydroxybenzophenone, 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] Bisphenol is preferred.
The 1,2-naphthoquinone diazide sulfonic acid halide is preferably 1,2-naphthoquinone diazide sulfonic acid chloride. Specific examples thereof include 1,2-naphthoquinone diazide-4-sulfonic acid chloride and 1,2-naphthoquinone diazide. -5-sulfonic acid chloride can be mentioned, and among these, 1,2-naphthoquinonediazide-5-sulfonic acid chloride is preferably used.

縮合反応においては、フェノール性化合物またはアルコール性化合物中のOH基数に対して、好ましくは30〜85モル%、より好ましくは50〜70モル%に相当する1,2−ナフトキノンジアジドスルホン酸ハライドを用いることができる。
縮合反応は公知の方法によって実施することができる。
これらの[B]成分は単独でまたは2種類以上を組み合わせて用いることができる。
In the condensation reaction, 1,2-naphthoquinonediazide sulfonic acid halide corresponding to 30 to 85 mol%, more preferably 50 to 70 mol% is used with respect to the number of OH groups in the phenolic compound or alcoholic compound. be able to.
The condensation reaction can be carried out by a known method.
These [B] components can be used alone or in combination of two or more.

[B]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは5〜100重量部、より好ましくは10〜50重量部である。この割合が5重量部未満の場合には、現像液となるアルカリ水溶液に対する放射線の照射部分と未照射部分との溶解度の差が小さく、パターニングが困難となる場合があり、また得られる層間絶縁膜またはマイクロレンズの耐熱性および耐溶剤性が不十分となる場合がある。一方、この割合が100重量部を超える場合には、放射線照射部分において前記アルカリ水溶液への溶解度が不十分となり、現像することが困難となる場合がある。   [B] The usage-amount of a component becomes like this. Preferably it is 5-100 weight part with respect to 100 weight part of copolymers [A], More preferably, it is 10-50 weight part. When this ratio is less than 5 parts by weight, the difference in solubility between the irradiated portion and the unirradiated portion in the alkaline aqueous solution that is the developer is small, and patterning may be difficult. Alternatively, the heat resistance and solvent resistance of the microlens may be insufficient. On the other hand, when this ratio exceeds 100 parts by weight, the solubility in the alkaline aqueous solution may be insufficient in the radiation irradiated portion, and development may be difficult.

[C]成分
本発明で用いられる[C]成分は、前記[A]成分と熱により架橋反応する官能基を有するシロキサンオリゴマーであり、下記式(1)および下記式(2)のそれぞれで表されるアルコキシシランを共加水分解することにより製造される。
Si(R(R(OR10 (1)
ここでRはエポキシ基、オキセタニル基、エピスルフィド基、ビニル基、アリル基、(メタ)アクリロイル基、カルボキシル基、メルカプト基、イソシアネート基、アミノ基、ウレイド基またはスチリル基を含有する置換基を表わし、R、R10は同一でも異なっていてもよく、それぞれ水素原子または1価の有機基であり、sは1〜3の整数であり、t、uはそれぞれ0〜3の整数である。但し、s+t+u=4である。
Si(R11(OR124−x (2)
ここでR11、R12は、同一でも異なっていてもよく、それぞれ1価の有機基でありそして、xは0〜2の整数である。
上記加水分解物には、原料中の加水分解されうる部分の全部が加水分解されたもの、およびその一部が加水分解され一部が加水分解されずに残存するものも包含されると解するべきである。
[C] component used in the component [C] the present invention, the is a siloxane oligomer having a functional group capable of crosslinking reaction by [A] component and heat, lower following formula (1) and the following formula (2), respectively an alkoxysilane represented Ru is prepared by co-hydrolysis.
Si (R 8 ) s (R 9 ) t (OR 10 ) u (1)
Wherein R 8 is an epoxy group, oxetanyl group, episulfide group, a vinyl group, an allyl group, (meth) acryloyl group, a carboxyl group, main mercapto group, isocyanate group, an amino group, a substituent containing a ureido group or a styryl group R 9 and R 10 may be the same or different, each is a hydrogen atom or a monovalent organic group, s is an integer from 1 to 3, and t and u are each an integer from 0 to 3. . However, s + t + u = 4.
Si (R 11 ) x (OR 12 ) 4-x (2)
Here, R 11 and R 12 may be the same or different, each is a monovalent organic group, and x is an integer of 0 to 2.
It is understood that the hydrolyzate includes those in which all the hydrolyzable parts in the raw material are hydrolyzed, and those in which some of them are hydrolyzed and part of them remain without being hydrolyzed. Should.

エポキシ基を含有する化合物(1)の具体例としては、3−グリシドキシメチルトリメトキシシラン、3−グリシドキシメチルトリエトキシシラン、3−グリシドキシメチルトリ−n−プロピルオキシシラン、3−グリシドキシメチルトリ−i−プロピルオキシシラン、3−グリシドキシメチルメチルジメトキシシラン、3−グリシドキシメチルメチルジエトキシシラン、3−グリシドキシメチルメチルジ−n−プロピルオキシシラン、3−グリシドキシメチルメチルジ−i−プロピルオキシシラン、3−グリシドキシメチルエチルジメトキシシラン、3−グリシドキシメチルエチルジエトキシシラン、3−グリシドキシメチルエチルジ−n−プロピルオキシシラン、3−グリシドキシメチルエチルジ−i−プロピルオキシシラン、3−グリシドキシメチルフェニルジメトキシシラン、3−グリシドキシメチルフェニルジエトキシシラン、3−グリシドキシメチルフェニルジ−n−プロピルオキシシラン、3−グリシドキシメチルフェニルジ−i−プロピルオキシシラン、3−グリシドキシエチルトリメトキシシラン、3−グリシドキシエチルトリエトキシシラン、3−グリシドキシエチルトリ−n−プロピルオキシシラン、3−グリシドキシエチルトリ−i−プロピルオキシシラン、3−グリシドキシエチルメチルジメトキシシラン、3−グリシドキシエチルメチルジエトキシシラン、3−グリシドキシエチルメチルジ−n−プロピルオキシシラン、3−グリシドキシエチルメチルジ−i−プロピルオキシシラン、3−グリシドキシエチルエチルジメトキシシラン、3−グリシドキシエチルエチルジエトキシシラン、3−グリシドキシエチルエチルジ−n−プロピルオキシシラン、3−グリシドキシエチルエチルジ−i−プロピルオキシシラン、3−グリシドキシエチルフェニルジメトキシシラン、3−グリシドキシエチルフェニルジエトキシシラン、3−グリシドキシエチルフェニルジ−n−プロピルオキシシラン、3−グリシドキシエチルフェニルジ−i−プロピルオキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリ−n−プロピルオキシシラン、3−グリシドキシプロピルトリ−i−プロピルオキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジ−n−プロピルオキシシラン、3−グリシドキシプロピルメチルジ−i−プロピルオキシシラン、3−グリシドキシプロピルエチルジメトキシシラン、3−グリシドキシプロピルエチルジエトキシシラン、3−グリシドキシプロピルエチルジ−n−プロピルオキシシラン、3−グリシドキシプロピルエチルジ−i−プロピルオキシシラン、3−グリシドキシプロピルフェニルジメトキシシラン、3−グリシドキシプロピルフェニルジエトキシシラン、3−グリシドキシプロピルフェニルジ−n−プロピルオキシシラン、3−グリシドキシプロピルフェニルジ−i−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)メチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルトリ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)メチルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルメチルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)メチルエチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルエチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルエチルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)メチルフェニルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルフェニルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)メチルフェニルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)エチルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルメチルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)エチルエチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルエチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルエチルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)エチルフェニルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルフェニルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルフェニルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルトリ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルメチルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルエチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルエチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルエチルジ−n−プロピルオキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルフェニルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルフェニルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)プロピルフェニルジ−n−プロピルオキシシランなど;
Specific examples of the compound (1) containing an epoxy group include 3-glycidoxymethyltrimethoxysilane, 3-glycidoxymethyltriethoxysilane, 3-glycidoxymethyltri-n-propyloxysilane, 3 -Glycidoxymethyltri-i-propyloxysilane , 3 -glycidoxymethylmethyldimethoxysilane , 3 -glycidoxymethylmethyldiethoxysilane, 3-glycidoxymethylmethyldi-n-propyloxysilane, 3 -Glycidoxymethyl methyl di-i-propyloxysilane , 3 -glycidoxymethylethyldimethoxysilane, 3-glycidoxymethylethyldiethoxysilane, 3-glycidoxymethylethyldi-n-propyloxysilane, 3-glycidoxypropyltrimethoxysilane methylethyl di -i- propyl silane, 3 - grayed Sid carboxymethyl methylphenyl dimethoxysilane, 3-glycidoxypropyl methyl phenyl diethoxy silane, 3-glycidoxypropyl-methylphenyl di -n- propyl silane, 3-glycidoxypropyl-methylphenyl di -i- propyl silane, 3 - Glycidoxyethyltrimethoxysilane, 3-glycidoxyethyltriethoxysilane, 3-glycidoxyethyltri-n-propyloxysilane, 3-glycidoxyethyltri-i-propyloxysilane , 3 -glycid Xylethylmethyldimethoxysilane, 3-glycidoxyethylmethyldiethoxysilane, 3-glycidoxyethylmethyldi-n-propyloxysilane, 3-glycidoxyethylmethyldi-i-propyloxysilane , 3 -glycidyl Sidoxyethyl ethyl dimethoxysilane, 3-glycol De carboxyethyl ethyl diethoxy silane, 3-glycidoxy ethyl ethyl di -n- propyl silane, 3-glycidoxypropyl ethyl ethyl di -i- propyl silane, 3 - glycidoxy ethyl phenyl dimethoxy silane, 3- Glycidoxyethylphenyldiethoxysilane, 3-glycidoxyethylphenyldi-n-propyloxysilane, 3-glycidoxyethylphenyldi-i-propyloxysilane , 3 -glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltri-n-propyloxysilane, 3-glycidoxypropyltri-i-propyloxysilane , 3 -glycidoxypropylmethyldimethoxysilane, 3-glycidoxysilane Sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyl methyl di -n- propyl silane, 3-glycidoxypropyl methyl di -i- propyl silane, 3 - glycidoxypropyl ethyl dimethoxysilane, 3-glycidoxypropyl ethyldiethoxysilane , 3-glycidoxypropyl ethyl di -n- propyl silane, 3-glycidoxypropyl ethyl di -i- propyl silane, 3 - glycidoxypropyl phenyl dimethoxy silane, 3-glycidoxypropyl phenyl diethoxy silane, 3-glycidoxypropyl phenyl di -n- propyl silane, 3-glycidoxypropyl phenyl di -i- propyl silane, 2 - (3,4-epoxycyclohexyl) methyl trimethoxy silane, 2- ( 3,4-epoxycyclohexyl) Le triethoxysilane, 2- (3,4-epoxycyclohexyl) methyl tri -n- propyl silane, 2 - (3,4-epoxycyclohexyl) methyl dimethoxysilane, 2- (3,4-epoxycyclohexyl) Mechirumechiruji triethoxysilane, 2- (3,4-epoxycyclohexyl) Mechirumechiruji -n- propyl silane, 2 - (3,4-epoxycyclohexyl) methyl ethyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) methyl ethyl diethoxy silane, 2- (3,4-epoxycyclohexyl) Mechiruechiruji -n- propyl silane, 2 - (3,4-epoxycyclohexyl) methyl phenyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) methyl phenyl diethoxy Run, 2- (3,4-epoxycyclohexyl) methyl phenyl di -n- propyl silane, 2 - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl triethoxy silane, 2- (3,4-epoxycyclohexyl) ethyltri -n- propyl silane, 2 - (3,4-epoxycyclohexyl) ethyl methyl dimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl methyl diethoxy silane , 2- (3,4-epoxycyclohexyl) Echirumechiruji -n- propyl silane, 2 - (3,4-epoxycyclohexyl) ethyl ethyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) ethyl ethyldiethoxysilane, 2- (3,4-epoxy Shi cyclohexyl) Echiruechiruji -n- propyl silane, 2 - (3,4-epoxycyclohexyl) ethyl phenyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) ethyl phenyl diethoxy silane, 2- (3,4-epoxy cyclohexyl) ethyl phenyl di -n- propyl silane, 2 - (3,4-epoxycyclohexyl) propyl trimethoxy silane, 2- (3,4-epoxycyclohexyl) propyl triethoxy silane, 2- (3,4-epoxy cyclohexyl) propyltrimethoxysilane -n- propyl silane, 2 - (3,4-epoxycyclohexyl) propyl methyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) propyl methyl diethoxy silane, 2- (3,4-epoxy Cyclohex ) Propyl methyl di -n- propyl silane, 2 - (3,4-epoxycyclohexyl) propyl ethyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) propyl ethyl diethoxy silane, 2- (3,4 epoxycyclohexyl) propyl ethyl di -n- propyl silane, 2 - (3,4-epoxycyclohexyl) propyl phenyl dimethoxy silane, 2- (3,4-epoxycyclohexyl) propyl phenyl diethoxy silane, 2- (3,4 - etc. epoxycyclohexyl) propyl-phenyl di -n- propyloxy Sila emissions;

エピスルフィド基を含有する化合物(1)の具体例としては、2,3−エピチオプロピルオキシメチルトリメトキシシラン、2,3−エピチオプロピルオキシメチルトリエトキシシラン、2,3−エピチオプロピルオキシメチルトリ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルトリ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルメチルジメトキシシラン、2,3−エピチオプロピルオキシメチルメチルジエトキシシラン、2,3−エピチオプロピルオキシメチルメチルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルメチルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルエチルジメトキシシラン、2,3−エピチオプロピルオキシメチルエチルジエトキシシラン、2,3−エピチオプロピルオキシメチルエチルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルエチルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルフェニルジメトキシシラン、2,3−エピチオプロピルオキシメチルフェニルジエトキシシラン、2,3−エピチオプロピルオキシメチルフェニルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシメチルフェニルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルトリメトキシシラン、2,3−エピチオプロピルオキシエチルトリエトキシシラン、2,3−エピチオプロピルオキシエチルトリ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルトリ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルメチルジメトキシシラン、2,3−エピチオプロピルオキシエチルメチルジエトキシシラン、2,3−エピチオプロピルオキシエチルメチルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルメチルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルエチルジメトキシシラン、2,3−エピチオプロピルオキシエチルエチルジエトキシシラン、2,3−エピチオプロピルオキシエチルエチルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルエチルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルフェニルジメトキシシラン、2,3−エピチオプロピルオキシエチルフェニルジエトキシシラン、2,3−エピチオプロピルオキシエチルフェニルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシエチルフェニルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルトリメトキシシラン、2,3−エピチオプロピルオキシプロピルトリエトキシシラン、2,3−エピチオプロピルオキシプロピルトリ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルトリ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルメチルジメトキシシラン、2,3−エピチオプロピルオキシプロピルメチルジエトキシシラン、2,3−エピチオプロピルオキシプロピルメチルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルメチルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルエチルジメトキシシラン、2,3−エピチオプロピルオキシプロピルエチルジエトキシシラン、2,3−エピチオプロピルオキシプロピルエチルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルエチルジ−i−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルフェニルジメトキシシラン、2,3−エピチオプロピルオキシプロピルフェニルジエトキシシラン、2,3−エピチオプロピルオキシプロピルフェニルジ−n−プロピルオキシシラン、2,3−エピチオプロピルオキシプロピルフェニルジ−i−プロピルオキシシランなど;
Specific examples of the compound (1) containing an episulfide group include 2,3-epithiopropyloxymethyltrimethoxysilane, 2,3-epithiopropyloxymethyltriethoxysilane, and 2,3-epithiopropyloxymethyl. tri -n- propyl silane, 2,3-epithiopropyl oxymethyl tri -i- propyl silane, 2, 3-epithiopropyl oxy methyl dimethoxy silane, 2,3-epithiopropyl oxymethyl diethoxy silane, 2,3-epithiopropyl oxy methyl di -n- propyl silane, 2,3-epithiopropyl oxy methyl di -i- propyl silane, 2, 3-epithiopropyl oxymethyl ethyldimethoxysilane 2,3-epithiopropyloxymethyl Chill diethoxy silane, 2,3-epithiopropyl oxymethyl ethyl di -n- propyl silane, 2,3-epithiopropyl oxymethyl ethyl di -i- propyl silane, 2, 3-epithiopropyl oxymethyl Phenyldimethoxysilane, 2,3-epithiopropyloxymethylphenyldiethoxysilane, 2,3-epithiopropyloxymethylphenyldi-n-propyloxysilane, 2,3-epithiopropyloxymethylphenyldi-i- propyl silane, 2, 3-epithiopropyl oxy ethyltrimethoxysilane, 2,3-epithiopropyl oxyethyl triethoxysilane, 2,3-epithiopropyl oxyethyl tri -n- propyl silane, 2,3 -Epithiopropyloxyethyl tri-i- B pills silane, 2, 3-epithiopropyl oxyethyl methyl dimethoxy silane, 2,3-epithiopropyl oxyethyl methyl diethoxy silane, 2,3-epithiopropyl oxyethyl methyl di -n- propyl silane, 2,3-epithiopropyl oxyethyl methyl di -i- propyl silane, 2, 3-epithiopropyl oxyethyl ethyl dimethoxy silane, 2,3-epithiopropyl oxyethyl ethyl diethoxy silane, 2,3-epi thio propyloxyethyl ethyl di -n- propyl silane, 2,3-epithiopropyl oxyethyl ethyl di -i- propyl silane, 2, 3-epithiopropyl oxyethyl phenyl dimethoxy silane, 2,3-epithio Propyloxyethyl phenyl diet Silane, 2,3-epithiopropyl oxyethyl phenyl di -n- propyl silane, 2,3-epithiopropyl oxyethyl phenyl di -i- propyl silane, 2, 3-epithiopropyl trimethoxysilane 2,3-epithiopropyloxypropyltriethoxysilane, 2,3-epithiopropyloxypropyltri-n-propyloxysilane, 2,3-epithiopropyloxypropyltri-i-propyloxysilane , 2 , 3-epithiopropyloxypropylmethyldimethoxysilane, 2,3-epithiopropyloxypropylmethyldiethoxysilane, 2,3-epithiopropyloxypropylmethyldi-n-propyloxysilane, 2,3-epithiopropyl Oxypropylmethyl di-ip Pills silane, 2, 3-epithiopropyl propyl ethyl dimethoxy silane, 2,3-epithiopropyl propyl ethyl diethoxy silane, 2,3-epithiopropyl propyl ethyl di -n- propyl silane, 2 , 3-epithiopropyl propyl ethyl di -i- propyl silane, 2, 3-epithiopropyl propyl phenyl dimethoxy silane, 2,3-epithiopropyl propyl phenyl diethoxy silane, 2,3-epithio propyloxy propylphenyl di -n- propyl silane, 2,3-epithiopropyl propyl phenyl di -i- propyloxy sila emissions, etc.;

オキセタニル基を含有する化合物(1)の具体例としては、(オキセタン−3−イル)メチルトリメトキシシラン、(オキセタン−3−イル)メチルトリエトキシシラン、(オキセタン−3−イル)メチルトリ−n−プロピルオキシシラン、(オキセタン−3−イル)メチルトリ−i−プロピルオキシシラン、(オキセタン−3−イル)メチルメチルジメトキシシラン、(オキセタン−3−イル)メチルメチルジエトキシシラン、(オキセタン−3−イル)メチルメチルジ−n−プロピルオキシシラン、(オキセタン−3−イル)メチルメチルジ−i−プロピルオキシシラン、(オキセタン−3−イル)メチルエチルジメトキシシラン、(オキセタン−3−イル)メチルエチルジエトキシシラン、(オキセタン−3−イル)メチルエチルジ−n−プロピルオキシシラン、(オキセタン−3−イル)メチルエチルジ−i−プロピルオキシシラン、(オキセタン−3−イル)メチルフェニルジメトキシシラン、(オキセタン−3−イル)メチルフェニルジエトキシシラン、(オキセタン−3−イル)メチルフェニルジ−n−プロピルオキシシラン、(オキセタン−3−イル)メチルフェニルジ−i−プロピルオキシシラン、(オキセタン−3−イル)エチルトリメトキシシラン、(オキセタン−3−イル)エチルトリエトキシシラン、(オキセタン−3−イル)エチルトリ−n−プロピルオキシシラン、(オキセタン−3−イル)エチルトリ−i−プロピルオキシシラン、(オキセタン−3−イル)エチルメチルジメトキシシラン、(オキセタン−3−イル)エチルメチルジエトキシシラン、(オキセタン−3−イル)エチルメチルジ−n−プロピルオキシシラン、(オキセタン−3−イル)エチルメチルジ−i−プロピルオキシシラン、(オキセタン−3−イル)エチルエチルジメトキシシラン、(オキセタン−3−イル)エチルエチルジエトキシシラン、(オキセタン−3−イル)エチルエチルジ−n−プロピルオキシシラン、(オキセタン−3−イル)エチルエチルジ−i−プロピルオキシシラン、(オキセタン−3−イル)エチルフェニルジメトキシシラン、(オキセタン−3−イル)エチルフェニルジエトキシシラン、(オキセタン−3−イル)エチルフェニルジ−n−プロピルオキシシラン、(オキセタン−3−イル)エチルフェニルジ−i−プロピルオキシシラン、(オキセタン−3−イル)プロピルトリメトキシシラン、(オキセタン−3−イル)プロピルトリエトキシシラン、(オキセタン−3−イル)プロピルトリ−n−プロピルオキシシラン、(オキセタン−3−イル)プロピルトリ−i−プロピルオキシシラン、(オキセタン−3−イル)プロピルメチルジメトキシシラン、(オキセタン−3−イル)プロピルメチルジエトキシシラン、(オキセタン−3−イル)プロピルメチルジ−n−プロピルオキシシラン、(オキセタン−3−イル)プロピルメチルジ−i−プロピルオキシシラン、(オキセタン−3−イル)プロピルエチルジメトキシシラン、(オキセタン−3−イル)プロピルエチルジエトキシシラン、(オキセタン−3−イル)プロピルエチルジ−n−プロピルオキシシラン、(オキセタン−3−イル)プロピルエチルジ−i−プロピルオキシシラン、(オキセタン−3−イル)プロピルフェニルジメトキシシラン、(オキセタン−3−イル)プロピルフェニルジエトキシシラン、(オキセタン−3−イル)プロピルフェニルジ−n−プロピルオキシシラン、(オキセタン−3−イル)プロピルフェニルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルトリメトキシシラン、(3−メチルオキセタン−3−イル)メチルトリエトキシシラン、(3−メチルオキセタン−3−イル)メチルトリ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルトリ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルメチルジメトキシシラン、(3−メチルオキセタン−3−イル)メチルメチルジエトキシシラン、(3−メチルオキセタン−3−イル)メチルメチルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルメチルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルエチルジメトキシシラン、(3−メチルオキセタン−3−イル)メチルエチルジエトキシシラン、(3−メチルオキセタン−3−イル)メチルエチルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルエチルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルフェニルジメトキシシラン、(3−メチルオキセタン−3−イル)メチルフェニルジエトキシシラン、(3−メチルオキセタン−3−イル)メチルフェニルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)メチルフェニルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルトリメトキシシラン、(3−メチルオキセタン−3−イル)エチルトリエトキシシラン、(3−メチルオキセタン−3−イル)エチルトリ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルトリ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルメチルジメトキシシラン、(3−メチルオキセタン−3−イル)エチルメチルジエトキシシラン、(3−メチルオキセタン−3−イル)エチルメチルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルメチルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルエチルジメトキシシラン、(3−メチルオキセタン−3−イル)エチルエチルジエトキシシラン、(3−メチルオキセタン−3−イル)エチルエチルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルエチルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルフェニルジメトキシシラン、(3−メチルオキセタン−3−イル)エチルフェニルジエトキシシラン、(3−メチルオキセタン−3−イル)エチルフェニルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)エチルフェニルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルトリメトキシシラン、(3−メチルオキセタン−3−イル)プロピルトリエトキシシラン、(3−メチルオキセタン−3−イル)プロピルトリ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルトリ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルメチルジメトキシシラン、(3−メチルオキセタン−3−イル)プロピルメチルジエトキシシラン、(3−メチルオキセタン−3−イル)プロピルメチルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルメチルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルエチルジメトキシシラン、(3−メチルオキセタン−3−イル)プロピルエチルジエトキシシラン、(3−メチルオキセタン−3−イル)プロピルエチルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルエチルジ−i−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルフェニルジメトキシシラン、(3−メチルオキセタン−3−イル)プロピルフェニルジエトキシシラン、(3−メチルオキセタン−3−イル)プロピルフェニルジ−n−プロピルオキシシラン、(3−メチルオキセタン−3−イル)プロピルフェニルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルトリメトキシシラン、(3−エチルオキセタン−3−イル)メチルトリエトキシシラン、(3−エチルオキセタン−3−イル)メチルトリ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルトリ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルメチルジメトキシシラン、(3−エチルオキセタン−3−イル)メチルメチルジエトキシシラン、(3−エチルオキセタン−3−イル)メチルメチルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルメチルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルエチルジメトキシシラン、(3−エチルオキセタン−3−イル)メチルエチルジエトキシシラン、(3−エチルオキセタン−3−イル)メチルエチルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルエチルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルフェニルジメトキシシラン、(3−エチルオキセタン−3−イル)メチルフェニルジエトキシシラン、(3−エチルオキセタン−3−イル)メチルフェニルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)メチルフェニルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルトリメトキシシラン、(3−エチルオキセタン−3−イル)エチルトリエトキシシラン、(3−エチルオキセタン−3−イル)エチルトリ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルトリ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルメチルジメトキシシラン、(3−エチルオキセタン−3−イル)エチルメチルジエトキシシラン、(3−エチルオキセタン−3−イル)エチルメチルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルメチルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルエチルジメトキシシラン、(3−エチルオキセタン−3−イル)エチルエチルジエトキシシラン、(3−エチルオキセタン−3−イル)エチルエチルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルエチルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルフェニルジメトキシシラン、(3−エチルオキセタン−3−イル)エチルフェニルジエトキシシラン、(3−エチルオキセタン−3−イル)エチルフェニルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)エチルフェニルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルトリメトキシシラン、(3−エチルオキセタン−3−イル)プロピルトリエトキシシラン、(3−エチルオキセタン−3−イル)プロピルトリ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルトリ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルメチルジメトキシシラン、(3−エチルオキセタン−3−イル)プロピルメチルジエトキシシラン、(3−エチルオキセタン−3−イル)プロピルメチルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルメチルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルエチルジメトキシシラン、(3−エチルオキセタン−3−イル)プロピルエチルジエトキシシラン、(3−エチルオキセタン−3−イル)プロピルエチルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルエチルジ−i−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルフェニルジメトキシシラン、(3−エチルオキセタン−3−イル)プロピルフェニルジエトキシシラン、(3−エチルオキセタン−3−イル)プロピルフェニルジ−n−プロピルオキシシラン、(3−エチルオキセタン−3−イル)プロピルフェニルジ−i−プロピルオキシシランなど;
Specific examples of the compound (1) containing an oxetanyl group include (oxetane-3-yl) methyltrimethoxysilane, (oxetane-3-yl) methyltriethoxysilane, and (oxetane-3-yl) methyltri-n-. Propyloxysilane, (oxetane-3-yl) methyltri-i-propyloxysilane , ( oxetane-3-yl) methylmethyldimethoxysilane, (oxetane-3-yl) methylmethyldiethoxysilane, (oxetane-3-yl) ) Methylmethyldi-n-propyloxysilane, (oxetane-3-yl) methylmethyldi-i-propyloxysilane , ( oxetane-3-yl) methylethyldimethoxysilane, (oxetane-3-yl) methylethyldiethoxysilane, Oxetane-3-yl) methylethyldi- - propyl silane, (oxetan-3-yl) Mechiruechiruji -i- propyl silane, (oxetan-3-yl) methyl phenyl dimethoxy silane, (oxetan-3-yl) methyl phenyl diethoxy silane, (oxetane-3 Yl) methylphenyldi-n-propyloxysilane, (oxetane-3-yl) methylphenyldi-i-propyloxysilane , ( oxetane-3-yl) ethyltrimethoxysilane, (oxetane-3-yl) ethyltri Ethoxysilane, (oxetane-3-yl) ethyltri-n-propyloxysilane, (oxetane-3-yl) ethyltri-i-propyloxysilane , ( oxetane-3-yl) ethylmethyldimethoxysilane, (oxetane-3- Yl) ethylmethyldiethoxy Emissions, (oxetan-3-yl) Echirumechiruji -n- propyl silane, (oxetan-3-yl) Echirumechiruji -i- propyl silane, (oxetan-3-yl) ethyl ethyl dimethoxy silane, (oxetan-3-yl ) Ethylethyldiethoxysilane, (oxetane-3-yl) ethylethyldi-n-propyloxysilane, (oxetane-3-yl) ethylethyldi-i-propyloxysilane , ( oxetane-3-yl) ethylphenyldimethoxysilane, ( Oxetane-3-yl) ethylphenyldiethoxysilane, (oxetane-3-yl) ethylphenyldi-n-propyloxysilane, (oxetane-3-yl) ethylphenyldi-i-propyloxysilane , ( oxetane-3 -Yl) propyltrimethoxy Sisilane, (oxetane-3-yl) propyltriethoxysilane, (oxetane-3-yl) propyltri-n-propyloxysilane, (oxetane-3-yl) propyltri-i-propyloxysilane , ( oxetane-3 -Yl) propylmethyldimethoxysilane, (oxetane-3-yl) propylmethyldiethoxysilane, (oxetane-3-yl) propylmethyldi-n-propyloxysilane, (oxetane-3-yl) propylmethyldi-i -Propyloxysilane , ( oxetane-3-yl) propylethyldimethoxysilane, (oxetane-3-yl) propylethyldiethoxysilane, (oxetane-3-yl) propylethyldi-n-propyloxysilane, (oxetane- 3-yl) propylethyl di-ip Pills silane, (oxetan-3-yl) propyl phenyl dimethoxy silane, (oxetan-3-yl) propyl phenyl diethoxy silane, (oxetan-3-yl) propyl phenyl di -n- propyl silane, (oxetane -3 -Yl) propylphenyldi-i-propyloxysilane , ( 3-methyloxetane-3-yl) methyltrimethoxysilane, (3-methyloxetane-3-yl) methyltriethoxysilane, (3-methyloxetane-3 -Yl) methyltri-n-propyloxysilane, (3-methyloxetane-3-yl) methyltri-i-propyloxysilane , ( 3-methyloxetane-3-yl) methylmethyldimethoxysilane, (3-methyloxetane- 3-yl) methylmethyldiethoxysilane (3-methyloxetane-3-yl) methylmethyldi-n-propyloxysilane, (3-methyloxetane-3-yl) methylmethyldi-i-propyloxysilane , ( 3-methyloxetane-3-yl) methylethyldimethoxy Silane, (3-methyloxetane-3-yl) methylethyldiethoxysilane, (3-methyloxetane-3-yl) methylethyldi-n-propyloxysilane, (3-methyloxetane-3-yl) methylethyldi-i- Propyloxysilane , ( 3-methyloxetane-3-yl) methylphenyldimethoxysilane, (3-methyloxetane-3-yl) methylphenyldiethoxysilane, (3-methyloxetane-3-yl) methylphenyldi-n -Propyloxysilane, (3-methyloxeta 3-yl) methylphenyl di -i- propyl silane, (3-methyl-oxetane-3-yl) ethyl trimethoxysilane, (3-methyl-oxetane-3-yl) ethyl triethoxysilane, (3-methyl-oxetane -3-yl) ethyltri-n-propyloxysilane, (3-methyloxetane-3-yl) ethyltri-i-propyloxysilane , ( 3-methyloxetane-3-yl) ethylmethyldimethoxysilane, (3-methyl Oxetane-3-yl) ethylmethyldiethoxysilane, (3-methyloxetane-3-yl) ethylmethyldi-n-propyloxysilane, (3-methyloxetane-3-yl) ethylmethyldi-i-propyloxysilane , ( 3 -Methyloxetane-3-yl) ethylethyldimethoxysilane, (3-methyloxetane-3-yl) ethylethyldiethoxysilane, (3-methyloxetane-3-yl) ethylethyldi-n-propyloxysilane, (3-methyloxetane-3-yl) ethylethyldi-i-propyloxy Silane , ( 3-methyloxetane-3-yl) ethylphenyldimethoxysilane, (3-methyloxetane-3-yl) ethylphenyldiethoxysilane, (3-methyloxetane-3-yl) ethylphenyldi-n-propyl Oxysilane, (3-methyloxetane-3-yl) ethylphenyldi-i-propyloxysilane , ( 3-methyloxetane-3-yl) propyltrimethoxysilane, (3-methyloxetane-3-yl) propyltri Ethoxysilane, (3-methyloxetane-3-yl) propyl Pirutori -n- propyl silane, (3-methyl-oxetane-3-yl) propyl tri -i- propyl silane, (3-methyl-oxetane-3-yl) propyl methyl dimethoxy silane, (3-methyl-oxetane-3 Yl) propylmethyldiethoxysilane, (3-methyloxetane-3-yl) propylmethyldi-n-propyloxysilane, (3-methyloxetane-3-yl) propylmethyldi-i-propyloxysilane , ( 3 -Methyloxetane-3-yl) propylethyldimethoxysilane, (3-methyloxetane-3-yl) propylethyldiethoxysilane, (3-methyloxetane-3-yl) propylethyldi-n-propyloxysilane, 3-Methyloxetane-3-yl) propylethyldi-i- B pills silane, (3-methyl-oxetane-3-yl) propyl phenyl dimethoxy silane, (3-methyl-oxetane-3-yl) propyl phenyl diethoxy silane, (3-methyl-oxetane-3-yl) propyl phenyl di - n-propyloxysilane, (3-methyloxetane-3-yl) propylphenyldi-i-propyloxysilane , ( 3-ethyloxetane-3-yl) methyltrimethoxysilane , ( 3-ethyloxetane-3-yl) ) Methyltriethoxysilane, (3-ethyloxetane-3-yl) methyltri-n-propyloxysilane, (3-ethyloxetane-3-yl) methyltri-i-propyloxysilane , ( 3-ethyloxetane-3- Yl) methylmethyldimethoxysilane, (3-ethyloxe Down-3-yl) methyl methyl diethoxy silane, (3-ethyloxetan-3-yl) Mechirumechiruji -n- propyl silane, (3-ethyloxetan-3-yl) Mechirumechiruji -i- propyl silane, (3 -Ethyloxetane-3-yl) methylethyldimethoxysilane, (3-ethyloxetane-3-yl) methylethyldiethoxysilane, (3-ethyloxetane-3-yl) methylethyldi-n-propyloxysilane, (3- Ethyloxetane-3-yl) methylethyldi-i-propyloxysilane , ( 3-ethyloxetane-3-yl) methylphenyldimethoxysilane , ( 3-ethyloxetane-3-yl) methylphenyldiethoxysilane, (3-ethyl Oxetane-3-yl) methylphenyldi-n- B pills silane, (3-ethyloxetan-3-yl) methylphenyl di -i- propyl silane, (3-ethyloxetan-3-yl) ethyl trimethoxysilane, (3-ethyloxetan-3-yl) Ethyltriethoxysilane, (3-ethyloxetane-3-yl) ethyltri-n-propyloxysilane, (3-ethyloxetane-3-yl) ethyltri-i-propyloxysilane , ( 3-ethyloxetane-3-yl) ) Ethylmethyldimethoxysilane, (3-ethyloxetane-3-yl) ethylmethyldiethoxysilane, (3-ethyloxetane-3-yl) ethylmethyldi-n-propyloxysilane, (3-ethyloxetane-3-yl) Echirumechiruji -i- propyl silane, (3-Echiruokiseta -3-yl) ethylethyldimethoxysilane, (3-ethyloxetane-3-yl) ethylethyldiethoxysilane, (3-ethyloxetane-3-yl) ethylethyldi-n-propyloxysilane, (3-ethyloxetane- 3-yl) ethylethyldi-i-propyloxysilane , ( 3-ethyloxetane-3-yl) ethylphenyldimethoxysilane , ( 3-ethyloxetane-3-yl) ethylphenyldiethoxysilane , ( 3-ethyloxetane-3 -Yl) ethylphenyldi-n-propyloxysilane, (3-ethyloxetane-3-yl) ethylphenyldi-i-propyloxysilane , ( 3-ethyloxetane-3-yl) propyltrimethoxysilane, (3 -Ethyloxetane-3-yl) propyltriethoxy Emissions, (3-ethyloxetan-3-yl) propyl tri -n- propyl silane, (3-ethyloxetan-3-yl) propyl tri -i- propyl silane, (3-ethyloxetan-3-yl) Propylmethyldimethoxysilane, (3-ethyloxetane-3-yl) propylmethyldiethoxysilane, (3-ethyloxetane-3-yl) propylmethyldi-n-propyloxysilane, (3-ethyloxetane-3-yl ) Propylmethyldi-i-propyloxysilane , ( 3-ethyloxetane-3-yl) propylethyldimethoxysilane, (3-ethyloxetane-3-yl) propylethyldiethoxysilane, (3-ethyloxetane-3- Yl) propylethyldi-n-propyloxysilane, (3-ethylo Xetane-3-yl) propylethyldi-i-propyloxysilane , ( 3-ethyloxetane-3-yl) propylphenyldimethoxysilane , ( 3-ethyloxetane-3-yl) propylphenyldiethoxysilane, (3- ethyloxetan-3-yl) propyl phenyl di -n- propyl silane, (3-ethyloxetan-3-yl) propyl phenyl di -i- propyloxy sila emissions, etc.;

ビニル基を含有する化合物(1)の具体例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ−n−プロピルオキシシラン、ビニルトリ−i−プロピルオキシシラン、ビニルトリ(メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジ−n−プロピルオキシシラン、ビニルメチルジ−i−プロピルオキシシラン、ビニルエチルジメトキシシラン、ビニルエチルジエトキシシラン、ビニルエチルジ−n−プロピルオキシシラン、ビニルエチルジ−i−プロピルオキシシラン、ビニルエチルジ(メトキシエトキシ)シラン、ビニルフェニルジメトキシシラン、ビニルフェニルジエトキシシラン、ビニルフェニルジ−n−プロピルオキシシラン、ビニルフェニルジ−i−プロピルオキシシラン、ビニルフェニルジ(メトキシエトキシ)シランなど;
Specific examples of the compound containing a vinyl group (1), vinyltrimethoxysilane, vinyltriethoxysilane, vinyl tri -n- propyl silane, vinyl tri -i- propyl silane, bi Nirutori (methoxyethoxy) silane, vinyl methyl dimethoxysilane, vinyl methyl diethoxy silane, Binirumechiruji -n- propyl silane, Binirumechiruji -i- propyl silane, vinyl-ethyl dimethoxy silane, vinyl ethyl diethoxy silane, Biniruechiruji -n- propyl silane, Biniruechiruji -i- propyl silane, bi Niruechiruji (methoxyethoxy) silane, vinyl phenyl dimethoxy silane, vinyl phenyl diethoxy silane, vinyl phenyl di -n- propyl silane, vinyl phenyl -I- propyl silane, bi Nirufeniruji (methoxyethoxy) silane, and the like;

アリル基を含有する化合物(1)の具体例としては、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリ−n−プロピルオキシシラン、アリルトリ−i−プロピルオキシシラン、アリルトリ(メトキシエトキシ)シラン、アリルメチルジメトキシシラン、アリルメチルジエトキシシラン、アリルメチルジ−n−プロピルオキシシラン、アリルメチルジ−i−プロピルオキシシラン、アリルエチルジメトキシシラン、アリルエチルジエトキシシラン、アリルエチルジ−n−プロピルオキシシラン、アリルエチルジ−i−プロピルオキシシラン、アリルエチルジ(メトキシエトキシ)シラン、アリルフェニルジメトキシシラン、アリルフェニルジエトキシシラン、アリルフェニルジ−n−プロピルオキシシラン、アリルフェニルジ−i−プロピルオキシシラン、アリルフェニルジ(メトキシエトキシ)シランなど;
Specific examples of compounds containing an allyl group (1), allyl trimethoxysilane, allyl triethoxysilane, Arirutori -n- propyl silane, Arirutori -i- propyl silane, A Rirutori (methoxyethoxy) silane, allyl methyl dimethoxy silane, allyl methyl diethoxy silane, Arirumechiruji -n- propyl silane, Arirumechiruji -i- propyl silane, A Lil ethyl dimethoxy silane, allyl ethyl diethoxy silane, Ariruechiruji -n- propyl silane, Ariruechiruji -i- propyl silane, A Riruechiruji (methoxyethoxy) silane, allyl phenyl dimethoxy silane, allyl phenyl diethoxy silane, allyl phenyl di -n- propyl silane, allyl phenyl -I- propyl silane, A Rirufeniruji (methoxyethoxy) silane, and the like;

(メタ)アクリロイル基を含有する化合物(1)の具体例としては、3−(メタ)アクリロキシメチルトリメトキシシラン、3−(メタ)アクリロキシメチルトリエトキシシラン、3−(メタ)アクリロキシメチルトリ−n−プロピルオキシシラン、3−(メタ)アクリロキシメチルトリ−i−プロピルオキシシラン、3−(メタ)アクリロキシメチルメチルジメトキシシラン、3−(メタ)アクリロキシメチルメチルジエトキシシラン、3−(メタ)アクリロキシメチルメチルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシメチルメチルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシメチルエチルジメトキシシラン、3−(メタ)アクリロキシメチルエチルジエトキシシラン、3−(メタ)アクリロキシメチルエチルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシメチルエチルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシメチルフェニルジメトキシシラン、3−(メタ)アクリロキシメチルフェニルジエトキシシラン、3−(メタ)アクリロキシメチルフェニルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシメチルフェニルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシエチルトリメトキシシラン、3−(メタ)アクリロキシエチルトリエトキシシラン、3−(メタ)アクリロキシエチルトリ−n−プロピルオキシシラン、3−(メタ)アクリロキシエチルトリ−i−プロピルオキシシラン、3−(メタ)アクリロキシエチルメチルジメトキシシラン、3−(メタ)アクリロキシエチルメチルジエトキシシラン、3−(メタ)アクリロキシエチルメチルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシエチルメチルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシエチルエチルジメトキシシラン、3−(メタ)アクリロキシエチルエチルジエトキシシラン、3−(メタ)アクリロキシエチルエチルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシエチルエチルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシエチルフェニルジメトキシシラン、3−(メタ)アクリロキシエチルフェニルジエトキシシラン、3−(メタ)アクリロキシエチルフェニルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシエチルフェニルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシプロピルトリメトキシシラン、3−(メタ)アクリロキシプロピルトリエトキシシラン、3−(メタ)アクリロキシプロピルトリ−n−プロピルオキシシラン、3−(メタ)アクリロキシプロピルトリ−i−プロピルオキシシラン、3−(メタ)アクリロキシプロピルメチルジメトキシシラン、3−(メタ)アクリロキシプロピルメチルジエトキシシラン、3−(メタ)アクリロキシプロピルメチルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシプロピルメチルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシプロピルエチルジメトキシシラン、3−(メタ)アクリロキシプロピルエチルジエトキシシラン、3−(メタ)アクリロキシプロピルエチルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシプロピルエチルジ−i−プロピルオキシシラン、3−(メタ)アクリロキシプロピルフェニルジメトキシシラン、3−(メタ)アクリロキシプロピルフェニルジエトキシシラン、3−(メタ)アクリロキシプロピルフェニルジ−n−プロピルオキシシラン、3−(メタ)アクリロキシプロピルフェニルジ−i−プロピルオキシシランなど;
Specific examples of the compound (1) containing a (meth) acryloyl group include 3- (meth) acryloxymethyltrimethoxysilane, 3- (meth) acryloxymethyltriethoxysilane, and 3- (meth) acryloxymethyl. tri -n- propyl silane, 3- (meth) acryloxy methyltrimethoxysilane -i- propyl silane, 3 - (meth) acryloxymethyl methyl dimethoxysilane, 3- (meth) acryloxy methyl diethoxy silane, 3 - (meth) acryloxy methyl di -n- propyl silane, 3- (meth) acryloxy methyl di -i- propyl silane, 3 - (meth) acryloxymethyl ethyldimethoxysilane, 3- (meth) Acryloxymethylethyldiethoxysilane, 3- (meth) acryloxymethyl Chiruji -n- propyl silane, 3- (meth) acryloxy-methylethyl di -i- propyl silane, 3 - (meth) acryloxy-methylphenyl dimethoxysilane, 3- (meth) acryloxy-methylphenyl diethoxy silane, 3- (meth) acryloxy-methylphenyl di -n- propyl silane, 3- (meth) acryloxy-methylphenyl di -i- propyl silane, 3 - (meth) acryloxyethyl trimethoxysilane, 3- (meth ) acryloxyethyl triethoxysilane, 3- (meth) acryloxyethyltrimellitic -n- propyl silane, 3- (meth) acryloxyethyltrimellitic -i- propyl silane, 3 - (meth) acryloxyethyl methyldimethoxysilane Silane, 3- (meth) acryloxyethylmethyldi Silane, 3- (meth) acryloxy ethyl methyl di -n- propyl silane, 3- (meth) acryloxy ethyl methyl di -i- propyl silane, 3 - (meth) acryloxyethyl ethyldimethoxysilane, 3 -(Meth) acryloxyethylethyldiethoxysilane, 3- (meth) acryloxyethylethyldi-n-propyloxysilane, 3- (meth) acryloxyethylethyldi-i-propyloxysilane , 3- (meta ) Acryloxyethylphenyldimethoxysilane, 3- (meth) acryloxyethylphenyldiethoxysilane, 3- (meth) acryloxyethylphenyldi-n-propyloxysilane, 3- (meth) acryloxyethylphenyldi-i - propyl silane, 3 - (meth) Akurirokishipuro Le trimethoxysilane, 3- (meth) acryloxy propyl triethoxysilane, 3- (meth) acryloxy propyl trimethoxy -n- propyl silane, 3- (meth) acryloxy propyl trimethoxy -i- propyl silane, 3 - (Meth) acryloxypropylmethyldimethoxysilane, 3- (meth) acryloxypropylmethyldiethoxysilane, 3- (meth) acryloxypropylmethyldi-n-propyloxysilane, 3- (meth) acryloxypropylmethyldi -i- propyl silane, 3 - (meth) acryloxy propyl ethyl dimethoxy silane, 3- (meth) acryloxy propyl ethyl diethoxy silane, 3- (meth) acryloxy propyl ethyl di -n- propyl silane, 3 -(Meth) acryloxypropyl ester Chiruji -i- propyl silane, 3 - (meth) acryloxy-propylphenyl dimethoxysilane, 3- (meth) acryloxy-propylphenyl diethoxy silane, 3- (meth) acryloxy-propylphenyl di -n- propyl silane, 3- (meth) acryloxy-propylphenyl di -i- propyloxy sila emissions, etc.;

カルボキシル基を含有する化合物(1)の具体例としては、カルボキシメチルトリメトキシシラン、カルボキシメチルトリエトキシシラン、カルボキシメチルトリ−n−プロピルオキシシラン、カルボキシメチルトリ−i−プロピルオキシシラン、カルボキシメチルトリ(メトキシエトキシ)シラン、カルボキシメチルメチルジメトキシシラン、カルボキシメチルメチルジエトキシシラン、カルボキシメチルメチルジ−n−プロピルオキシシラン、カルボキシメチルメチルジ−i−プロピルオキシシラン、カルボキシメチルエチルジメトキシシラン、カルボキシメチルエチルジエトキシシラン、カルボキシメチルエチルジ−n−プロピルオキシシラン、カルボキシメチルエチルジ−i−プロピルオキシシラン、カルボキシメチルエチルジ(メトキシエトキシ)シラン、カルボキシメチルフェニルジメトキシシラン、カルボキシメチルフェニルジエトキシシラン、カルボキシメチルフェニルジ−n−プロピルオキシシラン、カルボキシメチルフェニルジ−i−プロピルオキシシラン、カルボキシメチルフェニルジ(メトキシエトキシ)シラン、2−カルボキシエチルトリメトキシシラン、2−カルボキシエチルトリエトキシシラン、2−カルボキシエチルトリ−n−プロピルオキシシラン、2−カルボキシエチルトリ−i−プロピルオキシシラン、2−カルボキシエチルトリ(メトキシエトキシ)シラン、2−カルボキシエチルメチルジメトキシシラン、2−カルボキシエチルメチルジエトキシシラン、2−カルボキシエチルメチルジ−n−プロピルオキシシラン、2−カルボキシエチルメチルジ−i−プロピルオキシシラン、2−カルボキシエチルエチルジメトキシシラン、2−カルボキシエチルエチルジエトキシシラン、2−カルボキシエチルエチルジ−n−プロピルオキシシラン、2−カルボキシエチルエチルジ−i−プロピルオキシシラン、2−カルボキシエチルエチルジ(メトキシエトキシ)シラン、2−カルボキシエチルフェニルジメトキシシラン、2−カルボキシエチルフェニルジエトキシシラン、2−カルボキシエチルフェニルジ−n−プロピルオキシシラン、2−カルボキシエチルフェニルジ−i−プロピルオキシシラン、2−カルボキシエチルフェニルジ(メトキシエトキシ)シランなど;
Specific examples of the compound containing a carboxyl group (1), carboxymethyl methyltrimethoxysilane, carboxymethyl methyltriethoxysilane, carboxymethyl tri -n- propyl silane, carboxymethyl tri -i- propyl silane, mosquitoes Rubokishi methyltri (methoxyethoxy) silane, carboxymethyl methyl dimethoxy silane, carboxymethyl methyl diethoxy silane, carboxymethyl methyl di -n- propyl silane, carboxymethyl methyl di -i- propyl silane, carboxymethyl methyl ethyl dimethoxy silane , carboxymethyl ethyl diethoxy silane, carboxymethyl ethyl di -n- propyl silane, carboxymethyl ethyl di -i- propyl silane, carboxymethyl methyl ethyl di (main Kishietokishi) silane, carboxymethyl phenyl dimethoxy silane, carboxymethyl phenyl diethoxy silane, carboxymethyl phenyl di -n- propyl silane, carboxymethyl phenyl di -i- propyl silane, carboxymethyl methylphenyl di (methoxyethoxy) silane 2-carboxyethyltrimethoxysilane, 2-carboxyethyltriethoxysilane, 2-carboxyethyltri-n-propyloxysilane, 2-carboxyethyltri-i-propyloxysilane , 2 -carboxyethyltri (methoxyethoxy) Silane, 2-carboxyethylmethyldimethoxysilane, 2-carboxyethylmethyldiethoxysilane, 2-carboxyethylmethyldi-n-propyloxysilane, 2-carboxyethyl Rumechiruji -i- propyl silane, 2 - carboxyethyl ethyl dimethoxy silane, 2-carboxyethyl ethyl diethoxy silane, 2-carboxyethyl ethyl di -n- propyl silane, 2-carboxyethyl ethyl di -i- propyl silane 2 -carboxyethylethyldi (methoxyethoxy) silane, 2-carboxyethylphenyldimethoxysilane, 2-carboxyethylphenyldiethoxysilane, 2-carboxyethylphenyldi-n-propyloxysilane, 2-carboxyethylphenyldi- i-propyloxysilane , 2 -carboxyethylphenyldi (methoxyethoxy) silane and the like;

メルカプト基を含有する化合物(1)の具体例としては、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリ−n−プロピルオキシシラン、メルカプトメチルトリ−i−プロピルオキシシラン、メルカプトメチルトリ(メトキシエトキシ)シラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルメチルジ−n−プロピルオキシシラン、メルカプトメチルメチルジ−i−プロピルオキシシラン、メルカプトメチルエチルジメトキシシラン、メルカプトメチルエチルジエトキシシラン、メルカプトメチルエチルジ−n−プロピルオキシシラン、メルカプトメチルエチルジ−i−プロピルオキシシラン、メルカプトメチルエチルジ(メトキシエトキシ)シラン、メルカプトメチルフェニルジメトキシシラン、メルカプトメチルフェニルジエトキシシラン、メルカプトメチルフェニルジ−n−プロピルオキシシラン、メルカプトメチルフェニルジ−i−プロピルオキシシラン、メルカプトメチルフェニルジ(メトキシエトキシ)シラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、2−メルカプトエチルトリ−n−プロピルオキシシラン、2−メルカプトエチルトリ−i−プロピルオキシシラン、2−メルカプトエチルトリ(メトキシエトキシ)シラン、2−メルカプトエチルメチルジメトキシシラン、2−メルカプトエチルメチルジエトキシシラン、2−メルカプトエチルメチルジ−n−プロピルオキシシラン、2−メルカプトエチルメチルジ−i−プロピルオキシシラン、2−メルカプトエチルエチルジメトキシシラン、2−メルカプトエチルエチルジエトキシシラン、2−メルカプトエチルエチルジ−n−プロピルオキシシラン、2−メルカプトエチルエチルジ−i−プロピルオキシシラン、2−メルカプトエチルエチルジ(メトキシエトキシ)シラン、2−メルカプトエチルフェニルジメトキシシラン、2−メルカプトエチルフェニルジエトキシシラン、2−メルカプトエチルフェニルジ−n−プロピルオキシシラン、2−メルカプトエチルフェニルジ−i−プロピルオキシシラン、2−メルカプトエチルフェニルジ(メトキシエトキシ)シラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−メルカプトプロピルトリ−n−プロピルオキシシラン、3−メルカプトプロピルトリ−i−プロピルオキシシラン、3−メルカプトプロピルトリ(メトキシエトキシ)シラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルメチルジエトキシシラン、3−メルカプトプロピルメチルジ−n−プロピルオキシシラン、3−メルカプトプロピルメチルジ−i−プロピルオキシシラン、3−メルカプトプロピルエチルジメトキシシラン、3−メルカプトプロピルエチルジエトキシシラン、3−メルカプトプロピルエチルジ−n−プロピルオキシシラン、3−メルカプトプロピルエチルジ−i−プロピルオキシシラン、3−メルカプトプロピルエチルジ(メトキシエトキシ)シラン、3−メルカプトプロピルフェニルジメトキシシラン、3−メルカプトプロピルフェニルジエトキシシラン、3−メルカプトプロピルフェニルジ−n−プロピルオキシシラン、3−メルカプトプロピルフェニルジ−i−プロピルオキシシラン、3−メルカプトプロピルフェニルジ(メトキシエトキシ)シランなど;
イソシアネート基を含有する化合物(1)の具体例としては、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルトリ−n−プロピルオキシシラン、イソシアネートメチルトリ−i−プロピルオキシシラン、イソシアネートメチルトリ(メトキシエトキシ)シラン、イソシアネートメチルメチルジメトキシシラン、イソシアネートメチルメチルジエトキシシラン、イソシアネートメチルメチルジ−n−プロピルオキシシラン、イソシアネートメチルメチルジ−i−プロピルオキシシラン、イソシアネートメチルエチルジメトキシシラン、イソシアネートメチルエチルジエトキシシラン、イソシアネートメチルエチルジ−n−プロピルオキシシラン、イソシアネートメチルエチルジ−i−プロピルオキシシラン、イソシアネートメチルエチルジ(メトキシエトキシ)シラン、イソシアネートメチルフェニルジメトキシシラン、イソシアネートメチルフェニルジエトキシシラン、イソシアネートメチルフェニルジ−n−プロピルオキシシラン、イソシアネートメチルフェニルジ−i−プロピルオキシシラン、イソシアネートメチルフェニルジ(メトキシエトキシ)シラン、2−イソシアネートエチルトリメトキシシラン、2−イソシアネートエチルトリエトキシシラン、2−イソシアネートエチルトリ−n−プロピルオキシシラン、2−イソシアネートエチルトリ−i−プロピルオキシシラン、2−イソシアネートエチルトリ(メトキシエトキシ)シラン、2−イソシアネートエチルメチルジメトキシシラン、2−イソシアネートエチルメチルジエトキシシラン、2−イソシアネートエチルメチルジ−n−プロピルオキシシラン、2−イソシアネートエチルメチルジ−i−プロピルオキシシラン、2−イソシアネートエチルエチルジメトキシシラン、2−イソシアネートエチルエチルジエトキシシラン、2−イソシアネートエチルエチルジ−n−プロピルオキシシラン、2−イソシアネートエチルエチルジ−i−プロピルオキシシラン、2−イソシアネートエチルエチルジ(メトキシエトキシ)シラン、2−イソシアネートエチルフェニルジメトキシシラン、2−イソシアネートエチルフェニルジエトキシシラン、2−イソシアネートエチルフェニルジ−n−プロピルオキシシラン、2−イソシアネートエチルフェニルジ−i−プロピルオキシシラン、2−イソシアネートエチルフェニルジ(メトキシエトキシ)シラン、3−イソシアネートプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、3−イソシアネートプロピルトリ−n−プロピルオキシシラン、3−イソシアネートプロピルトリ−i−プロピルオキシシラン、3−イソシアネートプロピルトリ(メトキシエトキシ)シラン、3−イソシアネートプロピルメチルジメトキシシラン、3−イソシアネートプロピルメチルジエトキシシラン、3−イソシアネートプロピルメチルジ−n−プロピルオキシシラン、3−イソシアネートプロピルメチルジ−i−プロピルオキシシラン、3−イソシアネートプロピルエチルジメトキシシラン、3−イソシアネートプロピルエチルジエトキシシラン、3−イソシアネートプロピルエチルジ−n−プロピルオキシシラン、3−イソシアネートプロピルエチルジ−i−プロピルオキシシラン、3−イソシアネートプロピルエチルジ(メトキシエトキシ)シラン、3−イソシアネートプロピルフェニルジメトキシシラン、3−イソシアネートプロピルフェニルジエトキシシラン、3−イソシアネートプロピルフェニルジ−n−プロピルオキシシラン、3−イソシアネートプロピルフェニルジ−i−プロピルオキシシラン、3−イソシアネートプロピルフェニルジ(メトキシエトキシ)シランなど;
Specific examples of compounds containing a mercapto group (1), mercaptomethyl trimethoxysilane, mercaptomethyl triethoxysilane, mercaptomethyl tri -n- propyl silane, mercaptomethyl tri -i- propyl silane, main mercapto methyltri (methoxyethoxy) silane, mercaptomethyl methyl dimethoxysilane, mercaptomethyl methyl diethoxysilane, mercaptomethyl methyl di -n- propyl silane, mercaptomethyl methyl di -i- propyl silane, main mercaptoethyloleates methylethyl dimethoxy silane , mercaptomethyl ethyl diethoxy silane, mercaptomethyl ethyl di -n- propyl silane, mercaptomethyl ethyl di -i- propyl silane, main mercaptoethyloleates methylethyl di (meth Shietokishi) silane, mercaptomethyl phenyl dimethoxy silane, mercaptomethyl phenyl diethoxy silane, mercaptomethyl phenyl di -n- propyl silane, mercaptomethyl phenyl di -i- propyl silane, main mercaptoethyloleates methylphenyl di (methoxyethoxy) silane 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethyltri-n-propyloxysilane, 2-mercaptoethyltri-i-propyloxysilane , 2 -mercaptoethyltri (methoxyethoxy) Silane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 2-mercaptoethylmethyldi-n-propyloxysilane, 2-mercaptoethyl Methyldi -i- propyl silane, 2 - mercaptoethyl ethyl dimethoxy silane, 2-mercaptoethyl ethyl diethoxy silane, 2-mercaptoethyl ethyl di -n- propyl silane, 2-mercaptoethyl ethyl di -i- propyl silane 2 -mercaptoethylethyldi (methoxyethoxy) silane, 2-mercaptoethylphenyldimethoxysilane, 2-mercaptoethylphenyldiethoxysilane, 2-mercaptoethylphenyldi-n-propyloxysilane, 2-mercaptoethylphenyldi- i- propyl silane, 2 - mercaptoethyl phenyl di (methoxyethoxy) silane, 3-mercaptopropyl trimethoxysilane, 3-mercaptopropyl triethoxysilane, 3-Merukaputopuropi Tri -n- propyl silane, 3-mercaptopropyl tri -i- propyl silane, 3 - mercaptopropyl tri (methoxyethoxy) silane, 3-mercaptopropyl methyl dimethoxysilane, 3-mercaptopropyl methyl diethoxy silane, 3- mercaptopropyl methyl di -n- propyl silane, 3-mercaptopropyl methyl di -i- propyl silane, 3 - mercaptopropyl ethyl dimethoxy silane, 3-mercaptopropyl ethyl diethoxy silane, 3-mercaptopropyl ethyl di -n- Propyloxysilane, 3-mercaptopropylethyldi-i-propyloxysilane , 3 -mercaptopropylethyldi (methoxyethoxy) silane, 3-mercaptopropylphenyldimethoxysilane, 3 -Mercaptopropylphenyldiethoxysilane, 3-mercaptopropylphenyldi-n-propyloxysilane, 3-mercaptopropylphenyldi-i-propyloxysilane , 3 -mercaptopropylphenyldi (methoxyethoxy) silane, etc .;
Specific examples of the compound having an isocyanate group (1), isocyanate methyltrimethoxysilane, isocyanate methyl triethoxysilane, isocyanate methyl tri -n- propyl silane, isocyanate methyltrimethoxysilane -i- propyl silane, Lee isocyanate methyltri (methoxyethoxy) silane, isocyanate methyl methyl dimethoxysilane, isocyanate methyl methyl diethoxy silane, isocyanate methyl di -n- propyl silane, isocyanate methyl di -i- propyl silane, Lee Socia sulfonate methyl ethyl dimethoxy silane , Isocyanate methyl ethyl diethoxysilane, isocyanate methyl ethyl di-n-propyloxy silane, isocyanate methyl ethyl di- - propyl silane, Lee Socia sulfonate methyl ethyl di (methoxyethoxy) silane, isocyanate-methylphenyl dimethoxysilane, isocyanate methylphenyl diethoxy silane, isocyanate-methylphenyl di -n- propyl silane, isocyanate-methylphenyl di -i- propyloxy silane, Lee Socia sulfonate methylphenyl di (methoxyethoxy) silane, 2-isocyanate ethyltrimethoxysilane, 2-isocyanate ethyl triethoxysilane, 2-isocyanate ethyl tri -n- propyl silane, 2-isocyanate ethyltrimethoxysilane -i- propyl silane, 2 - isocyanatoethyl tri (methoxyethoxy) silane, 2-isocyanate ethyl methyl dimethoxy silane, 2-isocyanate DOO ethyl methyl diethoxy silane, 2-isocyanate ethyl methyl di -n- propyl silane, 2-isocyanate ethyl methyl di -i- propyl silane, 2 - isocyanatoethyl ethyl dimethoxy silane, 2-isocyanate ethyl ethyldiethoxysilane, 2-isocyanatoethylethyl di-n-propyloxysilane, 2-isocyanateethyldi-i-propyloxysilane , 2 -isocyanatoethylethyldi (methoxyethoxy) silane, 2-isocyanateethylphenyldimethoxysilane, 2-isocyanateethyl phenyl diethoxy silane, 2-isocyanate ethyl-phenyl di -n- propyl silane, 2-isocyanate ethyl-phenyl di -i- propyl silane, 2 - Isoshi Sulfonate ethylphenyl di (methoxyethoxy) silane, 3-isocyanate propyl trimethoxysilane, 3-isocyanate propyl triethoxysilane, 3-isocyanate propyltrimethoxysilane -n- propyl silane, 3-isocyanate propyltrimethoxysilane -i- propyl silane, 3 -isocyanatopropyltri (methoxyethoxy) silane, 3-isocyanatopropylmethyldimethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldi-n-propyloxysilane, 3-isocyanatopropylmethyldi-i- propyl silane, 3 - isocyanate propyl ethyl dimethoxy silane, 3-isocyanate propyl ethyl diethoxy silane, 3-isocyanate propyl Ethyl di -n- propyl silane, 3-isocyanate propyl ethyl di -i- propyl silane, 3 - isocyanate propyl ethyl-di (methoxyethoxy) silane, 3-isocyanate propyl-phenyl dimethoxy silane, 3-isocyanate propyl-phenyl diethoxy silane, 3-isocyanatopropylphenyldi-n-propyloxysilane, 3-isocyanatopropylphenyldi-i-propyloxysilane , 3 -isocyanatopropylphenyldi (methoxyethoxy) silane, etc .;

アミノ基を含有する化合物(1)の具体例としては、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、アミノメチルトリ−n−プロピルオキシシラン、アミノメチルトリ−i−プロピルオキシシラン、アミノメチルトリ(メトキシエトキシ)シラン、アミノメチルメチルジメトキシシラン、アミノメチルメチルジエトキシシラン、アミノメチルメチルジ−n−プロピルオキシシラン、アミノメチルメチルジ−i−プロピルオキシシラン、アミノメチルエチルジメトキシシラン、アミノメチルエチルジエトキシシラン、アミノメチルエチルジ−n−プロピルオキシシラン、アミノメチルエチルジ−i−プロピルオキシシラン、アミノメチルエチルジ(メトキシエトキシ)シラン、アミノメチルフェニルジメトキシシラン、アミノメチルフェニルジエトキシシラン、アミノメチルフェニルジ−n−プロピルオキシシラン、アミノメチルフェニルジ−i−プロピルオキシシラン、アミノメチルフェニルジ(メトキシエトキシ)シラン、2−アミノエチルトリメトキシシラン、2−アミノエチルトリエトキシシラン、2−アミノエチルトリ−n−プロピルオキシシラン、2−アミノエチルトリ−i−プロピルオキシシラン、2−アミノエチルトリ(メトキシエトキシ)シラン、2−アミノエチルメチルジメトキシシラン、2−アミノエチルメチルジエトキシシラン、2−アミノエチルメチルジ−n−プロピルオキシシラン、2−アミノエチルメチルジ−i−プロピルオキシシラン、2−アミノエチルエチルジメトキシシラン、2−アミノエチルエチルジエトキシシラン、2−アミノエチルエチルジ−n−プロピルオキシシラン、2−アミノエチルエチルジ−i−プロピルオキシシラン、2−アミノエチルエチルジ(メトキシエトキシ)シラン、2−アミノエチルフェニルジメトキシシラン、2−アミノエチルフェニルジエトキシシラン、2−アミノエチルフェニルジ−n−プロピルオキシシラン、2−アミノエチルフェニルジ−i−プロピルオキシシラン、2−アミノエチルフェニルジ(メトキシエトキシ)シラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリ−n−プロピルオキシシラン、3−アミノプロピルトリ−i−プロピルオキシシラン、3−アミノプロピルトリ(メトキシエトキシ)シラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−アミノプロピルメチルジ−n−プロピルオキシシラン、3−アミノプロピルメチルジ−i−プロピルオキシシラン、3−アミノプロピルエチルジメトキシシラン、3−アミノプロピルエチルジエトキシシラン、3−アミノプロピルエチルジ−n−プロピルオキシシラン、3−アミノプロピルエチルジ−i−プロピルオキシシラン、3−アミノプロピルエチルジ(メトキシエトキシ)シラン、3−アミノプロピルフェニルジメトキシシラン、3−アミノプロピルフェニルジエトキシシラン、3−アミノプロピルフェニルジ−n−プロピルオキシシラン、3−アミノプロピルフェニルジ−i−プロピルオキシシラン、3−アミノプロピルフェニルジ(メトキシエトキシ)シラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリ−n−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリ−i−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリ(メトキシエトキシ)シラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジ−n−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジ−i−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルエチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルエチルジエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルエチルジ−n−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルエチルジ−i−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルエチルジ(メトキシエトキシ)シラン、N−2−(アミノエチル)−3−アミノプロピルフェニルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルフェニルジエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルフェニルジ−n−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルフェニルジ−i−プロピルオキシシラン、N−2−(アミノエチル)−3−アミノプロピルフェニルジ(メトキシエトキシ)シラン、アミノメチルトリメトキシシラン、アミノメチルトリエトキシシラン、アミノメチルトリ−n−プロピルオキシシラン、アミノメチルトリ−i−プロピルオキシシラン、アミノメチルトリ(メトキシエトキシ)シラン、アミノメチルメチルジメトキシシラン、アミノメチルメチルジエトキシシラン、アミノメチルメチルジ−n−プロピルオキシシラン、アミノメチルメチルジ−i−プロピルオキシシラン、アミノメチルエチルジメトキシシラン、アミノメチルエチルジエトキシシラン、アミノメチルエチルジ−n−プロピルオキシシラン、アミノメチルエチルジ−i−プロピルオキシシラン、アミノメチルエチルジ(メトキシエトキシ)シラン、アミノメチルフェニルジメトキシシラン、アミノメチルフェニルジエトキシシラン、アミノメチルフェニルジ−n−プロピルオキシシラン、アミノメチルフェニルジ−i−プロピルオキシシラン、アミノメチルフェニルジ(メトキシエトキシ)シラン、2−アミノエチルトリメトキシシラン、2−アミノエチルトリエトキシシラン、2−アミノエチルトリ−n−プロピルオキシシラン、2−アミノエチルトリ−i−プロピルオキシシラン、2−アミノエチルトリ(メトキシエトキシ)シラン、2−アミノエチルメチルジメトキシシラン、2−アミノエチルメチルジエトキシシラン、2−アミノエチルメチルジ−n−プロピルオキシシラン、2−アミノエチルメチルジ−i−プロピルオキシシラン、2−アミノエチルエチルジメトキシシラン、2−アミノエチルエチルジエトキシシラン、2−アミノエチルエチルジ−n−プロピルオキシシラン、2−アミノエチルエチルジ−i−プロピルオキシシラン、2−アミノエチルエチルジ(メトキシエトキシ)シラン、2−アミノエチルフェニルジメトキシシラン、2−アミノエチルフェニルジエトキシシラン、2−アミノエチルフェニルジ−n−プロピルオキシシラン、2−アミノエチルフェニルジ−i−プロピルオキシシラン、2−アミノエチルフェニルジ(メトキシエトキシ)シラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリ−n−プロピルオキシシラン、N−フェニル−3−アミノプロピルトリ−i−プロピルオキシシラン、N−フェニル−3−アミノプロピルトリ(メトキシエトキシ)シラン、N−フェニル−3−アミノプロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルメチルジエトキシシラン、N−フェニル−3−アミノプロピルメチルジ−n−プロピルオキシシラン、N−フェニル−3−アミノプロピルメチルジ−i−プロピルオキシシラン、N−フェニル−3−アミノプロピルエチルジメトキシシラン、N−フェニル−3−アミノプロピルエチルジエトキシシラン、N−フェニル−3−アミノプロピルエチルジ−n−プロピルオキシシラン、N−フェニル−3−アミノプロピルエチルジ−i−プロピルオキシシラン、N−フェニル−3−アミノプロピルエチルジ(メトキシエトキシ)シラン、N−フェニル−3−アミノプロピルフェニルジメトキシシラン、N−フェニル−3−アミノプロピルフェニルジエトキシシラン、N−フェニル−3−アミノプロピルフェニルジ−n−プロピルオキシシラン、N−フェニル−3−アミノプロピルフェニルジ−i−プロピルオキシシラン、N−フェニル−3−アミノプロピルフェニルジ(メトキシエトキシ)シラン、3−トリメトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、3−トリ−n−プロピルオキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミンなど;
Specific examples of the compound containing an amino group (1), aminomethyl trimethoxy silane, aminomethyl triethoxysilane, aminomethyl tri -n- propyl silane, amino methyltrimethoxysilane -i- propyl silane, A Minomechirutori ( methoxyethoxy) silane, amino methyl dimethoxy silane, amino methyl methyl diethoxy silane, amino methyl di -n- propyl silane, amino methyl di -i- propyl silane, amino methyl ethyl dimethoxy silane, amino methylethyl diethoxy silane, aminomethyl ethyl di -n- propyl silane, aminomethyl ethyl di -i- propyl silane, amino methyl ethyl di (methoxyethoxy) silane, amino-methylphenyl dimethoxysilane, Mino methylphenyl diethoxy silane, amino-methylphenyl di -n- propyl silane, amino-methylphenyl di -i- propyl silane, amino-methylphenyl-di (methoxyethoxy) silane, 2-aminoethyl trimethoxy silane, 2- Aminoethyltriethoxysilane, 2-aminoethyltri-n-propyloxysilane, 2-aminoethyltri-i-propyloxysilane , 2 -aminoethyltri (methoxyethoxy) silane, 2-aminoethylmethyldimethoxysilane, 2 - aminoethyl methyl diethoxy silane, 2-aminoethyl methyl di -n- propyl silane, 2-aminoethyl methyl di -i- propyl silane, 2 - aminoethyl ethyl dimethoxy silane, 2-aminoethyl ethyldiethoxysilane 2-aminoethylethyldi-n-propyloxysilane, 2-aminoethylethyldi-i-propyloxysilane , 2 -aminoethylethyldi (methoxyethoxy) silane, 2-aminoethylphenyldimethoxysilane, 2-amino Ethylphenyldiethoxysilane, 2-aminoethylphenyldi-n-propyloxysilane, 2-aminoethylphenyldi-i-propyloxysilane , 2 -aminoethylphenyldi (methoxyethoxy) silane, 3-aminopropyltrimethoxy Silane, 3-aminopropyltriethoxysilane, 3-aminopropyltri-n-propyloxysilane, 3-aminopropyltri-i-propyloxysilane , 3 -aminopropyltri (methoxyethoxy) silane, 3-aminopropylmethyl Dimethoxy Run, 3-aminopropyl methyl diethoxy silane, 3-aminopropyl methyl di -n- propyl silane, 3-aminopropyl-methyl-di -i- propyl silane, 3 - aminopropyl ethyl dimethoxy silane, 3-aminopropyl-ethyl Diethoxysilane, 3-aminopropylethyldi-n-propyloxysilane, 3-aminopropylethyldi-i-propyloxysilane , 3 -aminopropylethyldi (methoxyethoxy) silane, 3-aminopropylphenyldimethoxysilane, 3-aminopropyl-phenyl diethoxy silane, 3-aminopropyl-phenyl di -n- propyl silane, 3-aminopropyl-phenyl di -i- propyl silane, 3 - aminopropyl phenyl di (methoxyethoxy) silane, N- -(Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltri-n-propyloxy Silane, N-2- (aminoethyl) -3-aminopropyltri-i-propyloxysilane , N- 2- (aminoethyl) -3-aminopropyltri (methoxyethoxy) silane, N-2- (aminoethyl) ) -3-Aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldi-n-propyloxysilane, N-2- (aminoethyl) -3-aminopropyl methyl di -i- propyl silane, N-2-(Aminoe ) -3-aminopropylethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylethyldi-n-propyloxysilane N-2- (aminoethyl) -3-aminopropylethyldi-i-propyloxysilane , N- 2- (aminoethyl) -3-aminopropylethyldi (methoxyethoxy) silane, N-2- (amino Ethyl) -3-aminopropylphenyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylphenyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylphenyldi-n-propyloxysilane N-2- (aminoethyl) -3-aminopropylphenyldi-i-propyloxysilane , N- 2- (aminoethyl) -3-aminopropylphenyldi (methoxyethoxy) silane, aminomethyltrimethoxysilane, aminomethyltriethoxysilane, aminomethyltri-n-propyloxysilane, aminomethyltri-i-propyloxysilane , A Minomechirutori (methoxyethoxy) silane, amino methyl dimethoxy silane, amino methyl methyl diethoxy silane, amino methyl di -n- propyl silane, amino methyl di -i- propyl silane, amino methyl ethyl dimethoxy silane , aminomethyl ethyldiethoxysilane, aminomethyl ethyl di -n- propyl silane, aminomethyl ethyl di -i- propyl silane, amino methyl ethyl di (methoxyethoxy) silane, Aminome Le phenyl dimethoxysilane, aminomethyl phenyl diethoxy silane, amino-methylphenyl di -n- propyl silane, amino-methylphenyl di -i- propyl silane, amino-methylphenyl-di (methoxyethoxy) silane, 2-aminoethyl-tri Methoxysilane, 2-aminoethyltriethoxysilane, 2-aminoethyltri-n-propyloxysilane, 2-aminoethyltri-i-propyloxysilane , 2 -aminoethyltri (methoxyethoxy) silane, 2-aminoethyl Methyldimethoxysilane, 2-aminoethylmethyldiethoxysilane, 2-aminoethylmethyldi-n-propyloxysilane, 2-aminoethylmethyldi-i-propyloxysilane , 2 -aminoethylethyldimethoxysilane , 2 -amino Noethylethyldiethoxysilane, 2-aminoethylethyldi-n-propyloxysilane, 2-aminoethylethyldi-i-propyloxysilane , 2 -aminoethylethyldi (methoxyethoxy) silane, 2-aminoethylphenyl Dimethoxysilane, 2-aminoethylphenyldiethoxysilane, 2-aminoethylphenyldi-n-propyloxysilane, 2-aminoethylphenyldi-i-propyloxysilane , 2 -aminoethylphenyldi (methoxyethoxy) silane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltri-n-propyloxysilane, N-phenyl-3-aminopropyltri- i- propyl silane N - phenyl-3-aminopropyltrimethoxysilane (methoxyethoxy) silane, N- phenyl-3-aminopropyl methyl dimethoxysilane, N- phenyl-3-aminopropyl methyl diethoxy silane, N- phenyl-3-aminopropyl methyl di -N-propyloxysilane, N-phenyl-3-aminopropylmethyldi-i-propyloxysilane , N -phenyl-3-aminopropylethyldimethoxysilane, N-phenyl-3-aminopropylethyldiethoxysilane, N -Phenyl-3-aminopropylethyldi-n-propyloxysilane, N-phenyl-3-aminopropylethyldi-i-propyloxysilane , N -phenyl-3-aminopropylethyldi (methoxyethoxy) silane, N -Phenyl-3-aminopropylphenol N-dimethoxysilane, N-phenyl-3-aminopropylphenyldiethoxysilane, N-phenyl-3-aminopropylphenyldi-n-propyloxysilane, N-phenyl-3-aminopropylphenyldi-i-propyloxysilane N -phenyl-3-aminopropylphenyldi (methoxyethoxy) silane, 3-trimethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-triethoxysilyl-N- (1,3- Dimethyl-butylidene) propylamine, 3-tri-n-propyloxysilyl-N- (1,3-dimethyl-butylidene) propylamine and the like;

ウレイド基を含有する化合物(1)の具体例としては、イソシアネートメチルトリメトキシシラン、ウレイドメチルトリエトキシシラン、ウレイドメチルトリ−n−プロピルオキシシラン、ウレイドメチルトリ−i−プロピルオキシシラン、ウレイドメチルトリ(メトキシエトキシ)シラン、ウレイドメチルメチルジメトキシシラン、ウレイドメチルメチルジエトキシシラン、ウレイドメチルメチルジ−n−プロピルオキシシラン、ウレイドメチルメチルジ−i−プロピルオキシシラン、ウレイドメチルエチルジメトキシシラン、ウレイドメチルエチルジエトキシシラン、ウレイドメチルエチルジ−n−プロピルオキシシラン、ウレイドメチルエチルジ−i−プロピルオキシシラン、ウレイドメチルエチルジ(メトキシエトキシ)シラン、ウレイドメチルフェニルジメトキシシラン、ウレイドメチルフェニルジエトキシシラン、ウレイドメチルフェニルジ−n−プロピルオキシシラン、ウレイドメチルフェニルジ−i−プロピルオキシシラン、ウレイドメチルフェニルジ(メトキシエトキシ)シラン、2−ウレイドエチルトリメトキシシラン、2−ウレイドエチルトリエトキシシラン、2−ウレイドエチルトリ−n−プロピルオキシシラン、2−ウレイドエチルトリ−i−プロピルオキシシラン、2−ウレイドエチルトリ(メトキシエトキシ)シラン、2−ウレイドエチルメチルジメトキシシラン、2−ウレイドエチルメチルジエトキシシラン、2−ウレイドエチルメチルジ−n−プロピルオキシシラン、2−ウレイドエチルメチルジ−i−プロピルオキシシラン、2−ウレイドエチルエチルジメトキシシラン、2−ウレイドエチルエチルジエトキシシラン、2−ウレイドエチルエチルジ−n−プロピルオキシシラン、2−ウレイドエチルエチルジ−i−プロピルオキシシラン、2−ウレイドエチルエチルジ(メトキシエトキシ)シラン、2−ウレイドエチルフェニルジメトキシシラン、2−ウレイドエチルフェニルジエトキシシラン、2−ウレイドエチルフェニルジ−n−プロピルオキシシラン、2−ウレイドエチルフェニルジ−i−プロピルオキシシラン、2−ウレイドエチルフェニルジ(メトキシエトキシ)シラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシラン、3−ウレイドプロピルトリ−n−プロピルオキシシラン、3−ウレイドプロピルトリ−i−プロピルオキシシラン、3−ウレイドプロピルトリ(メトキシエトキシ)シラン、3−ウレイドプロピルメチルジメトキシシラン、3−ウレイドプロピルメチルジエトキシシラン、3−ウレイドプロピルメチルジ−n−プロピルオキシシラン、3−ウレイドプロピルメチルジ−i−プロピルオキシシラン、3−ウレイドプロピルエチルジメトキシシラン、3−ウレイドプロピルエチルジエトキシシラン、3−ウレイドプロピルエチルジ−n−プロピルオキシシラン、3−ウレイドプロピルエチルジ−i−プロピルオキシシラン、3−ウレイドプロピルエチルジ(メトキシエトキシ)シラン、3−ウレイドプロピルフェニルジメトキシシラン、3−ウレイドプロピルフェニルジエトキシシラン、3−ウレイドプロピルフェニルジ−n−プロピルオキシシラン、3−ウレイドプロピルフェニルジ−i−プロピルオキシシラン、3−ウレイドプロピルフェニルジ(メトキシエトキシ)シランなど;
Specific examples of compounds containing ureido group (1), isocyanate methyltrimethoxysilane, ureido methyltriethoxysilane, ureido methyl tri -n- propyl silane, ureido methyltrimethoxysilane -i- propyl silane, c Reidomechiru tri (methoxyethoxy) silane, ureido-methyl dimethoxy silane, ureido methyl diethoxy silane, ureido methyl di -n- propyl silane, ureido methyl di -i- propyl silane, ureido-methylethyl dimethoxy silane, ureido methyl ethyl diethoxy silane, ureido-methylethyl di -n- propyl silane, ureido-methylethyl di -i- propyl silane, ureido-methylethyl di (methoxyethoxy) silane, c Id methylphenyl dimethoxysilane, ureido methylphenyl diethoxy silane, ureido-methylphenyl di -n- propyl silane, ureido-methylphenyl di -i- propyl silane, ureido-methylphenyl di (methoxyethoxy) silane, 2- ureidoethyl Trimethoxysilane, 2-ureidoethyltriethoxysilane, 2-ureidoethyltri-n-propyloxysilane, 2-ureidoethyltri-i-propyloxysilane , 2 -ureidoethyltri (methoxyethoxy) silane, 2-ureido Ethylmethyldimethoxysilane , 2 -ureidoethylmethyldiethoxysilane , 2 -ureidoethylmethyldi-n-propyloxysilane , 2 -ureidoethylmethyldi-i-propyloxysilane, 2-ureido Tylethyldimethoxysilane, 2-ureidoethylethyldiethoxysilane, 2-ureidoethylethyldi-n-propyloxysilane, 2-ureidoethylethyldi-i-propyloxysilane , 2 -ureidoethylethyldi (methoxyethoxy) Silane, 2-ureidoethylphenyldimethoxysilane, 2-ureidoethylphenyldiethoxysilane, 2-ureidoethylphenyldi-n-propyloxysilane, 2-ureidoethylphenyldi-i-propyloxysilane , 2 -ureidoethylphenyl Di (methoxyethoxy) silane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltri-n-propyloxysilane, 3-ureidopropyltri-i-propyloxy Run, 3 - ureidopropyltriethoxysilane (methoxyethoxy) silane, 3-ureidopropyl dimethoxysilane, 3-ureidopropyl methyl diethoxy silane, 3-ureidopropyl methyl di -n- propyl silane, 3-ureidopropyl methyl di - i-propyloxysilane , 3 -ureidopropylethyldimethoxysilane, 3-ureidopropylethyldiethoxysilane, 3-ureidopropylethyldi-n-propyloxysilane, 3-ureidopropylethyldi-i-propyloxysilane , 3 -Ureidopropylethyldi (methoxyethoxy) silane, 3-ureidopropylphenyldimethoxysilane, 3-ureidopropylphenyldiethoxysilane, 3-ureidopropylphenyldi-n-propyloxysilane, 3-ureidopropylphenyldi-i-propyloxysilane , 3 -ureidopropylphenyldi (methoxyethoxy) silane and the like;

スチリル基を含有する化合物(1)の具体例としては、スチリルトリメトキシシラン、スチリルトリエトキシシラン、スチリルトリ−n−プロピルオキシシラン、スチリルトリ−i−プロピルオキシシラン、スチリルトリ(メトキシエトキシ)シラン、スチリルメチルジメトキシシラン、スチリルメチルジエトキシシラン、スチリルメチルジ−n−プロピルオキシシラン、スチリルメチルジ−i−プロピルオキシシラン、スチリルエチルジメトキシシラン、スチリルエチルジエトキシシラン、スチリルエチルジ−n−プロピルオキシシラン、スチリルエチルジ−i−プロピルオキシシラン、スチリルエチルジ(メトキシエトキシ)シラン、スチリルフェニルジメトキシシラン、スチリルフェニルジエトキシシラン、スチリルフェニルジ−n−プロピルオキシシラン、スチリルフェニルジ−i−プロピルオキシシラン、スチリルフェニルジ(メトキシエトキシ)シランなど;
を挙げることができる。
Specific examples of compounds containing styryl group (1), styryl trimethoxysilane, styryl triethoxysilane, Suchirirutori -n- propyl silane, Suchirirutori -i- propyl silane, scan Chirirutori (methoxyethoxy) silane, styryl methyldimethoxysilane, styryl methyldiethoxysilane, Suchirirumechiruji -n- propyl silane, Suchirirumechiruji -i- propyl silane, styryl Le ethyldimethoxysilane, styryl ethyldiethoxysilane, Suchiriruechiruji -n- propyl oxysilane, Suchiriruechiruji -i- propyl silane, scan Chiriruechiruji (methoxyethoxy) silane, styryl phenyl dimethoxy silane, styryl phenyl diethoxy silane, styryl phenyl di -n- B pills silane, styryl phenyl di -i- propyl silane, scan Chirirufeniruji (methoxyethoxy) silane, and the like;
Can be mentioned.

これらのうち、エポキシ基、オキセタニル基、メルカプト基を含有する化合物(1)が好ましく用いられ、特に3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、(3−エチルオキセタン−3−イル)プロピルトリメトキシシラン、(3−エチルオキセタン−3−イル)プロピルトリエトキシシラン、3−メルカプトトリメトキシシラン、3−メルカプトトリエトキシシランが[A]成分との反応性および保存安定性の点からとりわけ好ましい。 Among these, an epoxy group, an oxetanyl group, compounds containing main mercapto group (1) are preferably used, particularly 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl triethoxysilane, 3-glycidol Xylpropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, (3- Ethyloxetane-3-yl) propyltrimethoxysilane, (3-ethyloxetane-3-yl) propyltriethoxysilane, 3-mercaptotrimethoxysilane, 3-mercaptotriethoxysilane are reactive with the component [A] and Particularly preferred from the viewpoint of storage stability.

化合物(2)の具体例としては、テトラメトキシシラン、テトラエトキシシラン(通称TEOS)、テトラ−n−プロピルオキシシラン、テトライソプロピルオキシシラン、テトラ−n−ブトキシシランの如きテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロピルオキシシラン、エチルトリエトキシシラン、シクロヘキシルトリエトキシシランの如きモノアルキルトリアルコキシシラン;フェニルトリエトキシシラン、ナフチルトリエトキシシラン、4−クロロフェニルトリエトキシシラン、4−シアノフェニルトリエトキシシラン、4−アミノフェニルトリエトキシシラン、4−ニトロフェニルトリエトキシシラン、4−メチルフェニルトリエトキシシラン、4−ヒドロキシフェニルトリエトキシシランの如きモノアリールトリアルコキシシラン;フェノキシトリエトキシシラン、ナフチルオキシトリエトキシシラン、4−クロロフェニルオキシトリエトキシシラン、4−シアノフェニルトリオキシエトキシシラン、4−アミノフェニルオキシトリエトキシシラン、4−ニトロフェニルオキシトリエトキシシラン、4−メチルフェニルオキシトリエトキシシラン、4−ヒドロキシフェニルオキシトリエトキシシランの如きモノアリールオキシトリアルコキシシラン;モノヒドロキシトリメトキシシラン、モノヒドロキシトリエトキシシラン、モノヒドロキシトリ−n−プロピルオキシシランの如きモノヒドロキシトリアルコキシシラン;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ−n−プロピルオキシシラン、メチル(エチル)ジエトキシシラン、メチル(シクロヘキシル)ジエトキシシランの如きジアルキルジアルコキシシラン;メチル(フェニル)ジエトキシシランの如きモノアルキルモノアリールジアルコキシシラン;ジフェニルジエトキシシランの如きジアリールジアルコキシシラン;ジフェノキシジエトキシシランの如きジアリールオキシジアルコキシシラン;メチル(フェノキシ)ジエトキシシランの如きモノアルキルモノアリールオキシジアルコキシシラン;フェニル(フェノキシ)ジエトキシシランの如きモノアリールモノアリールオキシジアルコキシシラン;ジヒドロキシジメトキシシラン、ジヒドロキシジエトキシシラン、ジヒドロキシジ−n−プロピルオキシシランの如きジヒドロキシジアルコキシシラン;メチル(ヒドロキシ)ジメトキシシランの如きモノアルキルモノヒドロキシジアルコキシシラン;フェニル(ヒドロキシ)ジメトキシシランの如きモノアリールモノヒドロキシジアルコキシシラン;トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチル−n−プロピルオキシシラン、ジメチル(エチル)エトキシシラン、ジメチル(シクロヘキシル)エトキシシランの如きトリアルキルモノアルコキシシラン;ジメチル(フェニル)エトキシシランの如きジアルキルモノアリールモノアルコキシシラン;メチル(ジフェニル)エトキシシランの如きモノアルキルジアリールモノアルコキシシラン;トリフェノキシエトキシシランの如きトリアリールオキシモノアルコキシシラン;メチル(ジフェノキシ)エトキシシランの如きモノアルキルジアリールオキシモノアルコキシシラン;フェニル(ジフェノキシ)エトキシシランの如きモノアリールジアリールオキシモノアルコキシシラン;ジメチル(フェノキシ)エトキシシランの如きジアルキルモノアリールオキシモノアルコキシシラン;ジフェニル(フェノキシ)エトキシシランの如きジアリールモノアリールオキシモノアルコキシシラン;メチル(フェニル)(フェノキシ)エトキシシランの如きモノアルキルモノアリールモノアリールオキシモノアルコキシシラン;トリヒドロキシメトキシシラン、トリヒドロキシエトキシシラン、トリヒドロキシ−n−プロピルオキシシランの如きトリヒドロキシモノアルコキシシランを挙げることができる。   Specific examples of the compound (2) include tetramethoxysilane, tetraethoxysilane (commonly referred to as TEOS), tetraalkoxysilane such as tetra-n-propyloxysilane, tetraisopropyloxysilane, tetra-n-butoxysilane; methyltrimethoxy Monoalkyltrialkoxysilanes such as silane, methyltriethoxysilane, methyltri-n-propyloxysilane, ethyltriethoxysilane, cyclohexyltriethoxysilane; phenyltriethoxysilane, naphthyltriethoxysilane, 4-chlorophenyltriethoxysilane, 4 -Cyanophenyltriethoxysilane, 4-aminophenyltriethoxysilane, 4-nitrophenyltriethoxysilane, 4-methylphenyltriethoxysilane, 4-hydroxyphenyl Monoaryltrialkoxysilanes such as triethoxysilane; phenoxytriethoxysilane, naphthyloxytriethoxysilane, 4-chlorophenyloxytriethoxysilane, 4-cyanophenyltrioxyethoxysilane, 4-aminophenyloxytriethoxysilane, 4- Monoaryloxytrialkoxysilanes such as nitrophenyloxytriethoxysilane, 4-methylphenyloxytriethoxysilane, 4-hydroxyphenyloxytriethoxysilane; monohydroxytrimethoxysilane, monohydroxytriethoxysilane, monohydroxytri-n Monohydroxytrialkoxysilanes such as propyloxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propyl Dialkyl dialkoxysilanes such as xylsilane, methyl (ethyl) diethoxysilane, methyl (cyclohexyl) diethoxysilane; monoalkylmonoaryl dialkoxysilanes such as methyl (phenyl) diethoxysilane; diaryl dialkoxy such as diphenyldiethoxysilane Silanes; diaryloxy dialkoxy silanes such as diphenoxydiethoxy silane; monoalkyl monoaryloxy dialkoxy silanes such as methyl (phenoxy) diethoxy silane; monoaryl monoaryloxy dialkoxy silanes such as phenyl (phenoxy) diethoxy silane Dihydroxydialkoxysilanes such as dihydroxydimethoxysilane, dihydroxydiethoxysilane, dihydroxydi-n-propyloxysilane; Monoalkyl monohydroxy dialkoxysilanes such as ru (hydroxy) dimethoxysilane; monoaryl monohydroxy dialkoxysilanes such as phenyl (hydroxy) dimethoxysilane; trimethylmethoxysilane, trimethylethoxysilane, trimethyl-n-propyloxysilane, dimethyl ( Trialkylmonoalkoxysilanes such as ethyl) ethoxysilane, dimethyl (cyclohexyl) ethoxysilane; dialkylmonoarylmonoalkoxysilanes such as dimethyl (phenyl) ethoxysilane; monoalkyldiarylmonoalkoxysilanes such as methyl (diphenyl) ethoxysilane; Triaryloxy monoalkoxysilanes such as phenoxyethoxysilane; mono such as methyl (diphenoxy) ethoxysilane Alkyl diaryloxy monoalkoxysilanes; monoaryl diaryloxy monoalkoxy silanes such as phenyl (diphenoxy) ethoxysilane; dialkyl monoaryloxy monoalkoxy silanes such as dimethyl (phenoxy) ethoxysilane; diaryl monoaryls such as diphenyl (phenoxy) ethoxysilane Oxymonoalkoxysilanes; monoalkylmonoarylmonoaryloxymonoalkoxysilanes such as methyl (phenyl) (phenoxy) ethoxysilane; trihydroxymonosilanes such as trihydroxymethoxysilane, trihydroxyethoxysilane, trihydroxy-n-propyloxysilane Mention may be made of alkoxysilanes.

これらのうち、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランが反応性、基板に対する密着性の点で好ましい。
これらの化合物は任意の複数を任意の組成で併用してもよい。
上記の化合物を、共加水分解反応に付すことより本発明で使用される[C]成分とすることができる。
Among these, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane It is preferable in terms of reactivity and adhesion to the substrate.
Any number of these compounds may be used in combination with any composition.
By subjecting the above compound to a cohydrolysis reaction, the [C] component used in the present invention can be obtained.

加水分解反応は、好ましくは適当な溶媒中で行われる。このような溶媒としては、例えばメタノール、エタノール、n−プロパノール、イソプロピルアルコール、n−ブタノール、イソブチルアルコール、t−ブチルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールメチルエーテルアセテート、テトラヒドロフラン、ジオキサン、アセトニトリルの如き水溶性溶剤またはそれらの水溶液が挙げられる。
これらの水溶性溶剤は後の工程で除去されるので、メタノール、エタノール、n−プロパノール、イソプロピルアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン等の比較的沸点の低いものが好適であり、原料溶解性の点でアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類がさらに好ましく、最も好ましいのはメチルイソブチルケトンである。
The hydrolysis reaction is preferably performed in a suitable solvent. Examples of such solvents include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, t-butyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, propylene glycol monomethyl ether, propylene glycol methyl ether acetate, Examples thereof include water-soluble solvents such as tetrahydrofuran, dioxane and acetonitrile, and aqueous solutions thereof.
Since these water-soluble solvents are removed in a later step, those having a relatively low boiling point such as methanol, ethanol, n-propanol, isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, and tetrahydrofuran are suitable, and the raw material is dissolved. From the viewpoint of properties, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone are more preferable, and methyl isobutyl ketone is most preferable.

[C]成分を合成するための加水分解反応は、好ましくは、酸触媒(例えば、塩酸、硫酸、硝酸、蟻酸、シュウ酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、酸性イオン交換樹脂、各種ルイス酸等)または塩基触媒(例えば、アンモニア、1級アミン類、2級アミン類、3級アミン類、ピリジン等の含窒素芳香族化合物、塩基性イオン交換樹脂、水酸化ナトリウム等の水酸化物、炭酸カリウム等の炭酸塩、酢酸ナトリウム等のカルボン酸塩、各種ルイス塩基等)存在下で行われる。水の使用量、反応温度、反応時間は適宜設定される。例えば下記の条件が採用できる。
水の使用量は上記式(1)または(2)で表される化合物中のアルコキシル基とハロゲン原子の合計量1モルに対して、好ましくは1.5モル以下、より好ましくは1モル以下、さらに好ましくは0.9モル以下の量である。
反応温度は、好ましくは40〜200℃、より好ましくは50〜150℃である。
反応時間は、好ましくは30分〜24時間、より好ましくは1〜12時間である。
The hydrolysis reaction for synthesizing the component [C] is preferably an acid catalyst (for example, hydrochloric acid, sulfuric acid, nitric acid, formic acid, oxalic acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, acidic ion exchange resin, various Lewis acids, etc.) or base catalysts (eg, ammonia, primary amines, secondary amines, tertiary amines, nitrogen-containing aromatic compounds such as pyridine, basic ion exchange resins, hydroxides such as sodium hydroxide) , Carbonates such as potassium carbonate, carboxylates such as sodium acetate, and various Lewis bases). The amount of water used, the reaction temperature, and the reaction time are appropriately set. For example, the following conditions can be adopted.
The amount of water used is preferably 1.5 mol or less, more preferably 1 mol or less, with respect to 1 mol of the total amount of alkoxyl groups and halogen atoms in the compound represented by the formula (1) or (2). More preferably, the amount is 0.9 mol or less.
The reaction temperature is preferably 40 to 200 ° C, more preferably 50 to 150 ° C.
The reaction time is preferably 30 minutes to 24 hours, more preferably 1 to 12 hours.

その他の成分
本発明の感放射線性樹脂組成物は、上記の共重合体[A]、[B]、および[C]成分を必須成分として含有するが、その他必要に応じて[D]感熱性酸生成化合物、[E]少なくとも1個のエチレン性不飽和二重結合を有する重合性化合物、[F]共重合体[A]以外のエポキシ樹脂、[G]界面活性剤、あるいは[H]接着助剤を含有することができる。
上記[D]感熱性酸生成化合物は、耐熱性や硬度を向上させるために用いることができる。その具体例としては、スルホニウム塩、ベンゾチアゾニウム塩、アンモニウム塩、ホスホニウム塩などのオニウム塩が挙げられる。
上記スルホニウム塩の具体例としては、アルキルスルホニウム塩、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩などを挙げることができる。
Other Components The radiation-sensitive resin composition of the present invention contains the above-mentioned copolymers [A], [B], and [C] as essential components, but [D] is heat sensitive as necessary. Acid generating compound, [E] polymerizable compound having at least one ethylenically unsaturated double bond, epoxy resin other than [F] copolymer [A], [G] surfactant, or [H] adhesion An auxiliary agent can be contained.
[D] The heat-sensitive acid generating compound can be used to improve heat resistance and hardness. Specific examples thereof include onium salts such as sulfonium salts, benzothiazonium salts, ammonium salts, and phosphonium salts.
Specific examples of the sulfonium salt include alkylsulfonium salts, benzylsulfonium salts, dibenzylsulfonium salts, substituted benzylsulfonium salts and the like.

これらの具体例としては、アルキルスルホニウム塩として、例えば4−アセトフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ジメチル−4−(ベンジルオキシカルボニルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル−4−(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアルセネート、ジメチル−3−クロロ−4−アセトキシフェニルスルホニウムヘキサフルオロアンチモネートなど;
ベンジルスルホニウム塩として、例えばベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−2−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、4−メトキシベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェートなど;
ジベンジルスルホニウム塩として、例えばジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4−アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル−3−クロロ−4−ヒドロキシフェニルスルホニウムヘキサフルオロアルセネート、ジベンジル−3−メチル−4−ヒドロキシ−5−tert−ブチルフェニルスルホニウムヘキサフルオロアンチモネート、ベンジル−4−メトキシベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロホスフェートなど;
置換ベンジルスルホニウム塩として、例えばp−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−ニトロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p−クロロベンジル−4−ヒドロキシフェニルメチルスルホニウム ヘキサフルオロホスフェート、p−ニトロベンジル−3−メチル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5−ジクロロベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、o−クロロベンジル−3−クロロ−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネートなどをそれぞれ挙げることができる。
Specific examples thereof include alkylsulfonium salts such as 4-acetophenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimony. Dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate, etc .;
Examples of benzylsulfonium salts include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, and benzyl-4-methoxyphenylmethyl. Sulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenylmethyl Sulfonium hexafluorophosphate, etc .;
Examples of dibenzylsulfonium salts include dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyl dibenzylsulfonium hexafluoroantimonate, dibenzyl-4-methoxyphenylsulfonium hexa Fluoroantimonate, dibenzyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-tert-butylphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl-4 -Hydroxyphenylsulfonium hexafluorophosphate and the like;
Examples of substituted benzylsulfonium salts include p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, and p-chlorobenzyl-4-hydroxyphenylmethylsulfonium. Hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, o-chlorobenzyl-3-chloro Examples thereof include -4-hydroxyphenylmethylsulfonium hexafluoroantimonate.

上記ベンゾチアゾニウム塩の具体例としては3−ベンジルベンゾチアゾニウム ヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾニウムヘキサフルオロホスフェート、3−ベンジルベンゾチアゾニウムテトラフルオロボレート、3−(p−メトキシベンジル)ベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−2−メチルチオベンゾチアゾニウムヘキサフルオロアンチモネート、3−ベンジル−5−クロロベンゾチアゾニウムヘキサフルオロアンチモネートなどのベンジルベンゾチアゾニウム塩が挙げられる。   Specific examples of the benzothiazonium salt include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3- (p- Benzylbenzothiazonium such as methoxybenzyl) benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate Salt.

これらのうち、スルホニウム塩およびベンゾチアゾニウム塩が好ましく用いられ、特に4−アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ベンジル−4−ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ジベンジル−4−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、4−アセトキシフェニルベンジルスルホニウムヘキサフルオロアンチモネート、3−ベンジルベンゾチアゾリウムヘキサフルオロアンチモネートが好ましく用いられる。
これらの市販品としては、サンエイドSI−L85、同SI−L110、同SI−L145、同SI−L150、同SI−L160(三新化学工業(株)製)などが挙げられる。
Of these, sulfonium salts and benzothiazonium salts are preferably used, particularly 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylmethylsulfonium hexanium. Fluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, 4-acetoxyphenylbenzylsulfonium hexafluoroantimonate, and 3-benzylbenzothiazolium hexafluoroantimonate are preferably used.
Examples of these commercially available products include Sun-Aid SI-L85, SI-L110, SI-L145, SI-L150, SI-L160 (manufactured by Sanshin Chemical Industry Co., Ltd.).

[D]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは20重量部以下、より好ましくは5重量部以下である。この使用量が20重量部を超える場合には、塗膜形成工程において析出物が析出し、塗膜形成に支障をきたす場合がある。
上記[E]成分である少なくとも1個のエチレン性不飽和二重結合を有する重合性化合物(以下、「E成分」ということがある。)としては、例えば単官能(メタ)アクリレート、2官能(メタ)アクリレートまたは3官能以上の(メタ)アクリレートを好適に挙げることができる。
The proportion of the component [D] used is preferably 20 parts by weight or less, more preferably 5 parts by weight or less with respect to 100 parts by weight of the copolymer [A]. When the amount used exceeds 20 parts by weight, precipitates may be deposited in the coating film forming step, which may hinder the coating film formation.
Examples of the polymerizable compound having at least one ethylenically unsaturated double bond (hereinafter, also referred to as “E component”) as the [E] component are monofunctional (meth) acrylates, bifunctional ( Preferable examples include (meth) acrylate or tri- or higher functional (meth) acrylate.

上記単官能(メタ)アクリレートとしては、例えば2−ヒドロキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、イソボロニル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシプロピルフタレートなどが挙げられる。これらの市販品としては、例えばアロニックスM−101、同M−111、同M−114(以上、東亞合成(株)製)、KAYARAD TC−110S、同TC−120S(以上、日本化薬(株)製)、ビスコート158、同2311(以上、大阪有機化学工業(株)製)等が挙げられる。   Examples of the monofunctional (meth) acrylate include 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, isobornyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, and 2- (meth) acryloyloxyethyl. And 2-hydroxypropyl phthalate. As these commercial products, for example, Aronix M-101, M-111, M-114 (above, manufactured by Toagosei Co., Ltd.), KAYARAD TC-110S, TC-120S (above, Nippon Kayaku Co., Ltd.) ) Co., Ltd.), Biscoat 158, 2311 (above, manufactured by Osaka Organic Chemical Industry Co., Ltd.).

上記2官能(メタ)アクリレートとしては、例えばエチレングリコール(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ビスフェノキシエタノールフルオレンジアクリレート、ビスフェノキシエタノールフルオレンジアクリレートなどが挙げられる。これらの市販品としては、例えばアロニックスM−210、同M−240、同M−6200(以上、東亞合成(株)製)、KAYARAD HDDA、同HX−220、同R−604(以上、日本化薬(株)製)、ビスコート260、同312、同335HP(以上、大阪有機化学工業(株)製)などが挙げられる。   Examples of the bifunctional (meth) acrylate include ethylene glycol (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, polypropylene glycol di (meth) acrylate, Examples include tetraethylene glycol di (meth) acrylate, bisphenoxyethanol full orange acrylate, and bisphenoxyethanol full orange acrylate. As these commercial products, for example, Aronix M-210, M-240, M-6200 (above, manufactured by Toagosei Co., Ltd.), KAYARAD HDDA, HX-220, R-604 (above, Nippon Kayaku) Medicine Co., Ltd.), Biscoat 260, 312 and 335HP (above, Osaka Organic Chemical Industries, Ltd.).

上記3官能以上の(メタ)アクリレートとしては、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリ((メタ)アクリロイロキシエチル)フォスフェート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられ、その市販品としては、例えばアロニックスM−309、同M−400、同M−405、同M−450、同M−7100、同M−8030、同M−8060(以上、東亞合成(株)製)、KAYARAD TMPTA、同DPHA、同DPCA−20、同DPCA−30、同DPCA−60、同DPCA−120(以上、日本化薬(株)製)、ビスコート295、同300、同360、同GPT、同3PA、同400(以上、大阪有機化学工業(株)製)などが挙げられる。   Examples of the trifunctional or higher functional (meth) acrylate include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, tri ((meth) acryloyloxyethyl) phosphate, and pentaerythritol tetra (meth) acrylate. , Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like, and as commercially available products thereof, for example, Aronix M-309, M-400, M-405, M-450, M-7100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.), KAYARAD TMPTA, DPHA, DPCA-20, DPCA-30, DPCA-60, DPCA-120 (Nippon Kayaku Co., Ltd.), screw Over DOO 295, the 300, the 360, the GPT, said 3PA, the 400 (manufactured by Osaka Organic Chemical Industry Ltd.) and the like.

これらのうち、3官能以上の(メタ)アクリレートが好ましく用いられ、そのうちでもトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートが特に好ましい。
これらの単官能、2官能または3官能以上の(メタ)アクリレートは、単独であるいは組み合わせて用いられる。[E]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは50重量部以下、より好ましくは30重量部以下である。
このような割合で[E]成分を含有させることにより、本発明の感放射線性樹脂組成物から得られる層間絶縁膜またはマイクロレンズの耐熱性および表面硬度等を向上させることができる。この使用量が50重量部を超えると、基板上に感放射線性樹脂組成物の塗膜を形成する工程において膜荒れが生じることがある。
Of these, a tri- or higher functional (meth) acrylate is preferably used, and among them, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol hexa (meth) acrylate are particularly preferable.
These monofunctional, bifunctional, or trifunctional or higher (meth) acrylates are used alone or in combination. [E] The use ratio of the component is preferably 50 parts by weight or less, more preferably 30 parts by weight or less with respect to 100 parts by weight of the copolymer [A].
By including the [E] component at such a ratio, the heat resistance, surface hardness, etc. of the interlayer insulating film or microlens obtained from the radiation-sensitive resin composition of the present invention can be improved. If the amount used exceeds 50 parts by weight, film roughening may occur in the step of forming a coating film of the radiation-sensitive resin composition on the substrate.

上記[F]成分である共重合体[A]以外のエポキシ樹脂(以下、「F成分」ということがある。)としては、相溶性に影響がないかぎり限定されるものではない。好ましくはビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、環状脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式エポキシ樹脂、グリシジルメタアクリレートを(共)重合した樹脂等を挙げることができる。これらのうち、ビスフェノールA型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂等が特に好ましい。   The epoxy resin other than the copolymer [A] as the [F] component (hereinafter sometimes referred to as “F component”) is not limited as long as the compatibility is not affected. Preferably, bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, cyclic aliphatic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, heterocyclic epoxy resin, glycidyl methacrylate ) Polymerized resins and the like can be mentioned. Of these, bisphenol A type epoxy resins, cresol novolac type epoxy resins, glycidyl ester type epoxy resins and the like are particularly preferable.

[F]成分の使用割合は、共重合体[A]100重量部に対して、好ましくは30重量部以下である。このような割合で[F]成分が含有されることにより、本発明の感放射線性樹脂組成物から得られる保護膜または絶縁膜の耐熱性および表面硬度等をさらに向上させることができる。この割合が30重量部を超えると、基板上に感放射線性樹脂組成物の塗膜を形成する際、塗膜の膜厚均一性が不十分となる場合がある。
なお、共重合体[A]も「エポキシ樹脂」といい得るが、アルカリ可溶性を有する点で[F]成分とは異なる。[F]成分はアルカリ不溶性である。
The proportion of the component [F] used is preferably 30 parts by weight or less with respect to 100 parts by weight of the copolymer [A]. By containing the component [F] at such a ratio, the heat resistance and surface hardness of the protective film or insulating film obtained from the radiation-sensitive resin composition of the present invention can be further improved. When this ratio exceeds 30 parts by weight, the film thickness uniformity of the coating film may be insufficient when a coating film of the radiation sensitive resin composition is formed on the substrate.
The copolymer [A] can also be referred to as an “epoxy resin”, but differs from the [F] component in that it has alkali solubility. [F] component is alkali-insoluble.

本発明の感放射線性樹脂組成物には、さらに塗布性を向上するため上記[G]成分である界面活性剤を使用することができる。ここで使用できる[G]界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤およびノニオン系界面活性剤を好適に用いることができる。   In the radiation sensitive resin composition of the present invention, a surfactant which is the above [G] component can be used in order to further improve the coating property. As the [G] surfactant that can be used here, fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants can be suitably used.

フッ素系界面活性剤の具体例としては、1,1,2,2−テトラフロロオクチル(1,1,2,2−テトラフロロプロピル)エーテル、1,1,2,2−テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2−テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3−ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10−デカフロロドデカン、1,1,2,2,3,3−ヘキサフロロデカン等の他、フルオロアルキルベンゼンスルホン酸ナトリウム;フルオロアルキルオキシエチレンエーテル;フルオロアルキルアンモニウムヨージド、フルオロアルキルポリオキシエチレンエーテル、パーフルオロアルキルポリオキシエタノール;パーフルオロアルキルアルコキシレート;フッ素系アルキルエステル等を挙げることができる。これらの市販品としては、BM−1000、BM−1100(以上、BM Chemie社製)、メガファックF142D、同F172、同F173、同F183、同F178、同F191、同F471(以上、大日本インキ化学工業(株)製)、フロラードFC−170C、FC−171、FC−430、FC−431(以上、住友スリーエム(株)製)、サーフロンS−112、同S−113、同S−131、同S−141、同S−145、同S−382、同SC−101、同SC−102、同SC−103、同SC−104、同SC−105、同SC−106(旭硝子(株)製)、エフトップEF301、同303、同352(新秋田化成(株)製)などが挙げられる。   Specific examples of the fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether. , Octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1,1 , 2,2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecyl sulfonate, 1,1,2,2,8 , 8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, etc. Sodium Zensuruhon acid; fluoroalkyl polyoxyethylene ethers; fluoroalkyl ammonium iodide, fluoroalkyl polyoxyethylene ethers, perfluoroalkyl polyoxyethylene ethanol; can be exemplified fluorine-based alkyl esters; perfluoroalkyl alkoxylates. These commercial products include BM-1000, BM-1100 (manufactured by BM Chemie), MegaFuck F142D, F172, F173, F183, F178, F191, F191 (and above, Dainippon Ink). Chemical Industries, Ltd.), Fluorad FC-170C, FC-171, FC-430, FC-431 (above, manufactured by Sumitomo 3M), Surflon S-112, S-113, S-131, S-141, S-145, S-382, SC-101, SC-102, SC-103, SC-104, SC-105, SC-106 (manufactured by Asahi Glass Co., Ltd.) ), F-top EF301, 303, and 352 (manufactured by Shin-Akita Kasei Co., Ltd.).

上記シリコーン系界面活性剤としては、例えばDC3PA、DC7PA、FS−1265、SF−8428、SH11PA、SH21PA、SH28PA、SH29PA、SH30PA、SH−190、SH−193、SZ−6032(以上、東レ・ダウコーニング・シリコーン(株)製)、TSF−4440、TSF−4300、TSF−4445、TSF−4446、TSF−4460、TSF−4452(以上、GE東芝シリコーン(株)製)等の商品名で市販されているものを挙げることができる。   Examples of the silicone surfactant include DC3PA, DC7PA, FS-1265, SF-8428, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH-190, SH-193, SZ-6032 (above, Toray Dow Corning) -Silicone Co., Ltd.), TSF-4440, TSF-4300, TSF-4445, TSF-4446, TSF-4460, TSF-4442 (above, GE Toshiba Silicone Co., Ltd.) are commercially available. You can list what you have.

上記ノニオン系界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアリールエーテル類;ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレートなどのポリオキシエチレンジアルキルエステル類など;(メタ)アクリル酸系共重合体ポリフローNo.57、95(共栄社化学(株)製)などを使用することができる。   Examples of the nonionic surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether Polyoxyethylene aryl ethers such as polyoxyethylene dilaurate, polyoxyethylene dialkyl esters such as polyoxyethylene distearate, etc .; (meth) acrylic acid copolymer polyflow Nos. 57 and 95 (Kyoeisha Chemical Co., Ltd.) ))) Can be used.

これらの界面活性剤は単独でまたは2種以上を組み合わせて使用することができる。
これらの[G]界面活性剤は、共重合体[A]100重量部に対して、好ましくは5重量部以下、より好ましくは2重量部以下で用いられる。[G]界面活性剤の使用量が5重量部を超えると、基板上に塗膜を形成する際、塗膜の膜あれが生じやすくなることがある。
These surfactants can be used alone or in combination of two or more.
These [G] surfactants are preferably used in an amount of 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the copolymer [A]. [G] If the amount of the surfactant used exceeds 5 parts by weight, the coating film may be easily formed when the coating film is formed on the substrate.

本発明の感放射線性樹脂組成物においてでは、また、基体との接着性を向上させるために[H]成分である接着助剤を使用することもできる。このような[H]接着助剤としては、官能性シランカップリング剤が好ましく使用され、例えばカルボキシル基、メタクリロイル基、イソシアネート基、エポキシ基などの反応性置換基を有するシランカップリング剤が挙げられる。具体的にはトリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアナートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられる。このような[H]接着助剤は、共重合体[A]100重量部に対して、好ましくは20重量部以下、より好ましくは10重量部以下の量で用いられる。接着助剤の量が20重量部を超える場合は、現像工程において現像残りが生じやすくなる場合がある。   In the radiation sensitive resin composition of the present invention, an adhesion assistant as the [H] component can also be used in order to improve the adhesion to the substrate. As such [H] adhesion assistant, a functional silane coupling agent is preferably used, and examples thereof include a silane coupling agent having a reactive substituent such as a carboxyl group, a methacryloyl group, an isocyanate group, and an epoxy group. . Specifically, trimethoxysilylbenzoic acid, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like. Such [H] adhesion assistant is preferably used in an amount of 20 parts by weight or less, more preferably 10 parts by weight or less, based on 100 parts by weight of the copolymer [A]. In the case where the amount of the adhesion assistant exceeds 20 parts by weight, there may be a case where a development residue is likely to occur in the development process.

感放射線性樹脂組成物
本発明の感放射線性樹脂組成物は、上記の共重合体[A]、[B]および[C]成分ならびに上記の如き任意的に添加するその他の成分を均一に混合することによって調製される。通常、本発明の感放射線性樹脂組成物は、好ましくは適当な溶媒に溶解されて溶液状態で用いられる。例えば共重合体[A]、[B]および[C]成分ならびに任意的に添加されるその他の成分を、所定の割合で混合することにより、溶液状態の感放射線性樹脂組成物を調製することができる。
Radiation-sensitive resin composition The radiation-sensitive resin composition of the present invention is a uniform mixture of the above-mentioned copolymer [A], [B] and [C] components and other components optionally added as described above. To be prepared. Usually, the radiation-sensitive resin composition of the present invention is preferably used in a solution state after being dissolved in an appropriate solvent. For example, preparing a radiation-sensitive resin composition in a solution state by mixing the copolymer [A], [B] and [C] components and other optionally added components in a predetermined ratio. Can do.

本発明の感放射線性樹脂組成物の調製に用いられる溶媒としては、共重合体[A]、[B]および[C]成分ならびに任意的に配合されるその他の成分の各成分を均一に溶解し、各成分と反応しないものが用いられる。
このような溶媒としては、上述した共重合体[A]を製造するために使用できる溶媒として例示したものと同様のものを挙げることができる。
As the solvent used for the preparation of the radiation sensitive resin composition of the present invention, the respective components of the copolymer [A], [B] and [C] components and other components optionally blended are uniformly dissolved. And what does not react with each component is used.
As such a solvent, the thing similar to what was illustrated as a solvent which can be used in order to manufacture copolymer [A] mentioned above can be mentioned.

このような溶媒のうち、各成分の溶解性、各成分との反応性、塗膜形成のしやすさ等の点から、アルコール、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、エステルおよびジエチレングリコールが好ましく用いられる。これらのうち、ベンジルアルコール、2−フェニルエチルアルコール、3−フェニル−1−プロパノール、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノメチルエーテルアセテート、メトキシプロピオン酸メチル、エトキシプロピオン酸エチルが特に好ましく使用できる。   Among such solvents, alcohol, glycol ether, ethylene glycol alkyl ether acetate, ester and diethylene glycol are preferably used from the viewpoints of solubility of each component, reactivity with each component, ease of film formation, and the like. . Among these, benzyl alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, Purpylene glycol monomethyl ether acetate, methyl methoxypropionate, and ethyl ethoxypropionate can be particularly preferably used.

さらに前記溶媒とともに膜厚の面内均一性を高めるため、高沸点溶媒を併用することもできる。併用できる高沸点溶媒としては、例えばN−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルホルムアニリド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1−オクタノール、1−ノナノール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γ−ブチロラクトン、炭酸エチレン、炭酸プロピレン、フェニルセロソルブアセテートなどが挙げられる。これらのうち、N−メチルピロリドン、γ−ブチロラクトン、N,N−ジメチルアセトアミドが好ましい。   Furthermore, in order to improve the in-plane uniformity of the film thickness together with the solvent, a high boiling point solvent can be used in combination. Examples of the high boiling point solvent that can be used in combination include N-methylformamide, N, N-dimethylformamide, N-methylformanilide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and benzylethyl ether. , Dihexyl ether, acetonyl acetone, isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ethylene carbonate, propylene carbonate, phenyl Examples include cellosolve acetate. Of these, N-methylpyrrolidone, γ-butyrolactone, and N, N-dimethylacetamide are preferable.

本発明の感放射性樹脂組成物の溶媒として、高沸点溶媒を併用する場合、その使用量は、溶媒全量に対して、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは30重量%以下とすることができる。高沸点溶媒の使用量がこの使用量を越えると、塗膜の膜厚均一性、感度および残膜率が低下する場合がある。
本発明の感放射線性樹脂組成物を溶液状態として調製する場合、溶液中に占める溶媒以外の成分(すなわち共重合体[A]、[B]および[C]成分ならびに任意的に添加されるその他の成分の合計量)の割合は、使用目的や所望の膜厚の値等に応じて任意に設定することができるが、好ましくは5〜50重量%、より好ましくは10〜40重量%、さらに好ましくは15〜35重量%である。
このようにして調製された組成物溶液は、孔径0.2μm程度のミリポアフィルタなどを用いて濾過した後、使用に供することもできる。
When a high boiling point solvent is used in combination as the solvent of the radiation sensitive resin composition of the present invention, the amount used is preferably 50% by weight or less, more preferably 40% by weight or less, still more preferably 30%, based on the total amount of the solvent. It can be made into weight% or less. If the amount of the high-boiling solvent used exceeds this amount, the coating film thickness uniformity, sensitivity, and residual film rate may decrease.
When preparing the radiation sensitive resin composition of the present invention in a solution state, components other than the solvent in the solution (that is, the copolymer [A], [B] and [C] components and other optionally added) The ratio of the total amount of the components can be arbitrarily set according to the purpose of use, the value of the desired film thickness, etc., but is preferably 5 to 50% by weight, more preferably 10 to 40% by weight, Preferably it is 15 to 35% by weight.
The composition solution thus prepared can be used after being filtered using a Millipore filter having a pore size of about 0.2 μm.

層間絶縁膜、マイクロレンズの形成
次に本発明の感放射線性樹脂組成物を用いて、本発明の層間絶縁膜、マイクロレンズを形成する方法について述べる。本発明の層間絶縁膜またはマイクロレンズの形成方法は、以下の工程を以下に記載順で含む。
Formation of Interlayer Insulating Film and Microlens Next, a method for forming the interlayer insulating film and microlens of the present invention using the radiation sensitive resin composition of the present invention will be described. The method for forming an interlayer insulating film or microlens of the present invention includes the following steps in the order described below.

(1)本発明の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)現像工程、および
(4)加熱工程。
(1) The process of forming the coating film of the radiation sensitive resin composition of this invention on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) Development step, and (4) Heating step.

(1)本発明の感放射線性樹脂組成物の塗膜を基板上に形成する工程
上記(1)の工程においては、本発明の組成物溶液を基板表面に塗布し、好ましくはプレベークを行うことにより溶剤を除去して、感放射線性樹脂組成物の塗膜を形成する。
使用できる基板の種類としては、例えばガラス基板、シリコンウエハーおよびこれらの表面に各種金属が形成された基板を挙げることができる。
組成物溶液の塗布方法としては、特に限定されず、例えばスプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、インクジェット法等の適宜の方法を採用することができ、特にスピンコート法、スリットダイ塗布法が好ましい。プレベークの条件としては、各成分の種類、使用割合等によっても異なる。例えば、60〜110℃で30秒間〜15分間程度とすることができる。
形成される塗膜の膜厚としては、プレベーク後の値として、層間絶縁膜を形成する場合にあっては例えば3〜6μm、マイクロレンズを形成する場合にあっては例えば0.5〜3μmが好ましい。
(1) Step of forming a coating film of the radiation sensitive resin composition of the present invention on a substrate In the step of (1) above, the composition solution of the present invention is applied to the substrate surface, preferably prebaked. To remove the solvent and form a coating film of the radiation-sensitive resin composition.
Examples of the types of substrates that can be used include glass substrates, silicon wafers, and substrates on which various metals are formed.
The method of applying the composition solution is not particularly limited, and an appropriate method such as a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, a bar coating method, an ink jet method, or the like is employed. In particular, spin coating and slit die coating are preferred. Prebaking conditions vary depending on the type of each component, the proportion of use, and the like. For example, it can be set at 60 to 110 ° C. for about 30 seconds to 15 minutes.
The thickness of the coating film to be formed is, for example, 3 to 6 μm when the interlayer insulating film is formed, and 0.5 to 3 μm, for example, when the microlens is formed, as the value after pre-baking. preferable.

(2)該塗膜の少なくとも一部に放射線を照射する工程
上記(2)の工程においては、形成された塗膜に所定のパターンを有するマスクを介して、放射線を照射した後、現像液を用いて現像処理して放射線の照射部分を除去することによりパターニングを行う。このとき用いられる放射線としては、例えば紫外線、遠紫外線、X線、荷電粒子線等が挙げられる。
上記紫外線としては例えばg線(波長436nm)、i線(波長365nm)等が挙げられる。遠紫外線としては例えばKrFエキシマレーザー等が挙げられる。X線としては例えばシンクロトロン放射線等が挙げられる。荷電粒子線として例えば電子線等を挙げることができる。
これらのうち、紫外線が好ましく、なかでもg線および/またはi線を含む放射線が特に好ましい。
露光量としては、層間絶縁膜を形成する場合にあっては50〜1,500J/m、マイクロレンズを形成する場合にあっては50〜2,000J/mとすることが好ましい。
(2) Step of irradiating at least a part of the coating film In the step (2), the developer is irradiated with radiation through a mask having a predetermined pattern on the formed coating film. The patterning is performed by removing the irradiated portion using the development process. Examples of the radiation used at this time include ultraviolet rays, far ultraviolet rays, X-rays, and charged particle beams.
Examples of the ultraviolet rays include g-line (wavelength 436 nm), i-line (wavelength 365 nm), and the like. Examples of the far ultraviolet rays include KrF excimer laser. Examples of X-rays include synchrotron radiation. Examples of the charged particle beam include an electron beam.
Among these, ultraviolet rays are preferable, and radiation containing g-line and / or i-line is particularly preferable.
The exposure amount, 50~1,500J / m 2 In the case of forming an interlayer insulating film, in the case of forming a micro-lens is preferably set to 50~2,000J / m 2.

(3)現像工程
現像処理に用いられる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア、エチルアミン、n−プロピルアミン、ジエチルアミン、ジエチルアミノエタノール、ジ−n−プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、1,8−ジアザビシクロ〔5,4,0〕−7−ウンデセン、1,5−ジアザビシクロ〔4,3,0〕−5−ノナン等のアルカリ(塩基性化合物)の水溶液を用いることができる。また、上記のアルカリの水溶液にメタノール、エタノール等の水溶性有機溶媒や界面活性剤を適当量添加した水溶液、または本発明の組成物を溶解する各種有機溶媒を現像液として使用することができる。さらに、現像方法としては、例えば液盛り法、ディッピング法、揺動浸漬法、シャワー法等の適宜の方法を利用することができる。このときの現像時間は、組成物の組成によって異なるが、例えば30〜120秒間とすることができる。
なお、従来知られている感放射線性樹脂組成物は、現像時間が最適値から20〜25秒程度超過すると形成したパターンに剥がれが生じるため現像時間を厳密に制御する必要があったが、本発明の感放射線性樹脂組成物の場合、最適現像時間からの超過時間が30秒以上となっても良好なパターン形成が可能であり、製品歩留り上の利点がある。
(3) Development process Examples of the developer used in the development process include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, diethylaminoethanol, di-acid. N-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, 1,8-diazabicyclo [5,4,0] -7-undecene An aqueous solution of an alkali (basic compound) such as 1,5-diazabicyclo [4,3,0] -5-nonane can be used. In addition, an aqueous solution obtained by adding an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant to the aqueous alkali solution described above, or various organic solvents that dissolve the composition of the present invention can be used as a developing solution. Furthermore, as a developing method, for example, an appropriate method such as a liquid piling method, a dipping method, a rocking dipping method, a shower method, or the like can be used. The development time at this time varies depending on the composition of the composition, but can be, for example, 30 to 120 seconds.
In addition, the conventionally known radiation-sensitive resin composition has been required to strictly control the development time because the formed pattern peels when the development time exceeds about 20 to 25 seconds from the optimum value. In the case of the radiation-sensitive resin composition of the invention, good pattern formation is possible even when the excess time from the optimum development time is 30 seconds or more, and there is an advantage in product yield.

(4)加熱工程
上記のように実施した(3)現像工程後に、パターニングされた薄膜に対して、好ましくは例えば流水洗浄によるリンス処理を行い、さらに、好ましくは高圧水銀灯などによる放射線を全面に照射(後露光)することにより、当該薄膜中に残存する1,2−キノンジアジト化合物の分解処理を行った後、この薄膜を、ホットプレート、オーブン等の加熱装置により加熱処理(ポストベーク処理)することにより、当該薄膜の硬化処理を行う。上記後露光工程における露光量は、好ましくは2,000〜5,000J/m程度である。また、この硬化処理における焼成温度は、例えば120〜250℃である。加熱時間は、加熱機器の種類により異なるが、例えばホットプレート上で加熱処理を行う場合には5〜30分間、オーブン中で加熱処理を行う場合には30〜90分間とすることができる。この際に、2回以上の加熱工程を行うステップベーク法等を用いることもできる。
このようにして、目的とする層間絶縁膜またはマイクロレンズに対応する、パターン状薄膜を基板の表面上に形成することができる。
上記のようにして形成された層間絶縁膜およびマイクロレンズは、後述の実施例から明らかにされるように、密着性、耐熱性、耐溶剤性、および透明性等に優れるものである。
(4) Heating step (3) Performed as described above (3) After the development step, the patterned thin film is preferably rinsed, for example, by washing with running water, and more preferably irradiated with radiation from a high-pressure mercury lamp or the like. (After post-exposure), the 1,2-quinonediadito compound remaining in the thin film is decomposed, and then the thin film is heated (post-baked) with a heating device such as a hot plate or an oven. Then, the thin film is cured. The exposure amount in the post-exposure step is preferably about 2,000 to 5,000 J / m 2 . Moreover, the baking temperature in this hardening process is 120-250 degreeC, for example. Although heating time changes with kinds of heating apparatus, for example, when performing heat processing on a hotplate, it can be set to 30 to 90 minutes when performing heat processing in oven, for example. At this time, a step baking method or the like in which a heating process is performed twice or more can also be used.
In this way, a patterned thin film corresponding to the target interlayer insulating film or microlens can be formed on the surface of the substrate.
The interlayer insulating film and the microlens formed as described above are excellent in adhesion, heat resistance, solvent resistance, transparency, and the like, as will be apparent from the examples described later.

層間絶縁膜
上記のようにして形成された本発明の層間絶縁膜は、基板への密着性が良好であり、耐溶剤性および耐熱性に優れ、高い透過率を有し、誘電率が低いものであり、電子部品の層間絶縁膜として好適に使用できる。
Interlayer Insulating Film The interlayer insulating film of the present invention formed as described above has good adhesion to the substrate, excellent solvent resistance and heat resistance, high transmittance, and low dielectric constant. Therefore, it can be suitably used as an interlayer insulating film of electronic parts.

マイクロレンズ
上記のようにして形成された本発明のマイクロレンズは、基板への密着性が良好であり、耐溶剤性および耐熱性に優れ、かつ高い透過率と良好なメルト形状を有するものであり、固体撮像素子のマイクロレンズとして好適に使用できる。
なお、本発明のマイクロレンズの形状は、図1(a)に示したように、半凸レンズ形状となる。
The microlens of the present invention formed as described above has good adhesion to the substrate, excellent solvent resistance and heat resistance, and has high transmittance and a good melt shape. It can be suitably used as a microlens for a solid-state imaging device.
The shape of the microlens of the present invention is a semi-convex lens shape as shown in FIG.

以下に合成例、実施例を示して、本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to synthesis examples and examples. However, the present invention is not limited to the following examples.

共重合体[A]の合成例
合成例1
冷却管、攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7重量部、ジエチレングリコールエチルメチルエーテル200重量部を仕込んだ。引き続きメタクリル酸16重量部、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート16重量部、2−メチルシクロヘキシルアクリレート20重量部、メタクリル酸グリシジル40重量部、スチレン10重量部およびα−メチルスチレンダイマー3重量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を4時間保持し共重合体[A−1]を含む重合体溶液を得た。
共重合体[A−1]のポリスチレン換算重量平均分子量(Mw)は8,000、分子量分布(Mw/Mn)は2.3であった。また、ここで得られた重合体溶液の固形分濃度は、34.4重量%であった。
Synthesis example of copolymer [A] Synthesis example 1
A flask equipped with a condenser and a stirrer was charged with 7 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 16 parts by weight of methacrylic acid, 16 parts by weight of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, 20 parts by weight of 2-methylcyclohexyl acrylate, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of styrene After 3 parts by weight of α-methylstyrene dimer was charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 4 hours to obtain a polymer solution containing the copolymer [A-1].
The copolymer [A-1] had a polystyrene equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw / Mn) of 2.3. The solid content concentration of the polymer solution obtained here was 34.4% by weight.

合成例2
冷却管、攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8重量部およびジエチレングリコールエチルメチルエーテル220重量部を仕込んだ。引き続きメタクリル酸11重量部、テトラヒドロフルフリルメタクリレート12重量部、メタクリル酸グリシジル40重量部、N−シクロヘキシルマレイミド15重量部、ラウリルメタクリレート10重量部、α−メチル−p−ヒドロキシスチレン10重量部、およびα−メチルスチレンダイマー3重量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し共重合体[A−2]を含む重合体溶液を得た。
共重合体[A−2]のポリスチレン換算重量平均分子量(Mw)は8,000、分子量分布(Mw/Mn)は2.3であった。また、ここで得られた重合体溶液の固形分濃度は31.9重量%であった。
Synthesis example 2
A flask equipped with a condenser and a stirrer was charged with 8 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 11 parts by weight of methacrylic acid, 12 parts by weight of tetrahydrofurfuryl methacrylate, 40 parts by weight of glycidyl methacrylate, 15 parts by weight of N-cyclohexylmaleimide, 10 parts by weight of lauryl methacrylate, 10 parts by weight of α-methyl-p-hydroxystyrene, and α -After 3 parts by weight of methylstyrene dimer was charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-2].
The copolymer [A-2] had a polystyrene equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw / Mn) of 2.3. Moreover, the solid content concentration of the polymer solution obtained here was 31.9% by weight.

合成例3
冷却管、攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8重量部およびジエチレングリコールエチルメチルエーテル220重量部を仕込んだ。引き続きスチレン10重量部、メタクリル酸20重量部、メタクリル酸グリシジル40重量部、(3−エチルオキセタン−3−イル)メタクリレート10重量部およびトリシクロ[5.2.1.02,6]デカン−8−イルメタクリレート20重量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し共重合体[A−3]を含む重合体溶液を得た。
共重合体[A−3]のポリスチレン換算重量平均分子量(Mw)は7,900、分子量分布(Mw/Mn)は2.4であった。また、ここで得られた重合体溶液の固形分濃度は31.6重量%であった。
Synthesis example 3
A flask equipped with a condenser and a stirrer was charged with 8 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 10 parts by weight of styrene, 20 parts by weight of methacrylic acid, 40 parts by weight of glycidyl methacrylate, 10 parts by weight of (3-ethyloxetane-3-yl) methacrylate and tricyclo [5.2.1.0 2,6 ] decane-8. -After 20 parts by weight of yl methacrylate was charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-3].
The copolymer [A-3] had a polystyrene equivalent weight average molecular weight (Mw) of 7,900 and a molecular weight distribution (Mw / Mn) of 2.4. The solid content concentration of the polymer solution obtained here was 31.6% by weight.

合成例4
冷却管、攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)8重量部およびジエチレングリコールエチルメチルエーテル220重量部を仕込んだ。引き続きスチレン5重量部、メタクリル酸16重量部、メタクリル酸グリシジル40重量部、およびN−(4−ヒドロキシフェニル)メタクリルアミド10重量部を仕込み窒素置換した後、1,3−ブタジエンを5重量部添加し、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し共重合体[A−4]を含む重合体溶液を得た。
共重合体[A−4]のポリスチレン換算重量平均分子量(Mw)は7,900、分子量分布(Mw/Mn)は2.4であった。また、ここで得られた重合体溶液の固形分濃度は31.5重量%であった。
Synthesis example 4
A flask equipped with a condenser and a stirrer was charged with 8 parts by weight of 2,2′-azobis (2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Subsequently, 5 parts by weight of styrene, 16 parts by weight of methacrylic acid, 40 parts by weight of glycidyl methacrylate, and 10 parts by weight of N- (4-hydroxyphenyl) methacrylamide were charged with nitrogen, and then 5 parts by weight of 1,3-butadiene was added. Then, the stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-4].
The copolymer [A-4] had a polystyrene equivalent weight average molecular weight (Mw) of 7,900 and a molecular weight distribution (Mw / Mn) of 2.4. Further, the solid content concentration of the polymer solution obtained here was 31.5% by weight.

シロキサンオリゴマー[C]の合成例
合成例1
500mLの三つ口フラスコにフェニルトリメトキシシラン39.6g、(3−エチルオキセタン−3−イル)プロピルトリエトキシシラン64.0gをとり、メチルイソブチルケトン100gを加えて溶解させ、得られた混合溶液をマグネチックスターラにより撹拌しながら60℃に加温した。これに、1重量%のシュウ酸を含んだ8.6gのイオン交換水を1時間かけて連続的に添加した。そして、60℃で4時間反応させた後、得られた反応液を室温まで冷却した。その後、反応副生成物であるアルコール分を反応液から減圧留去した。この重合体[C−1]の重量平均分子量は1,600であった。
Synthesis Example 1 of Siloxane Oligomer [C] Synthesis Example 1
In a 500 mL three-necked flask, 39.6 g of phenyltrimethoxysilane and 64.0 g of (3-ethyloxetane-3-yl) propyltriethoxysilane are added and dissolved by adding 100 g of methyl isobutyl ketone, and the resulting mixed solution Was heated to 60 ° C. while stirring with a magnetic stirrer. To this, 8.6 g of ion-exchanged water containing 1% by weight of oxalic acid was continuously added over 1 hour. And after making it react at 60 degreeC for 4 hours, the obtained reaction liquid was cooled to room temperature. Thereafter, the alcohol as a reaction by-product was distilled off from the reaction solution under reduced pressure. The weight average molecular weight of this polymer [C-1] was 1,600.

合成例2
500mLの三つ口フラスコにジフェニルジメトキシシラン48.8g、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン49.2gをとり、プロピレングリコールメチルエーテルアセテート100gを加えて溶解させ、得られた混合溶液をマグネチックスターラにより撹拌しながら60℃に加温した。これに、1重量%のシュウ酸を含んだ8.6gのイオン交換水を1時間かけて連続的に添加した。そして、60℃で4時間反応させた後、得られた反応液を室温まで冷却した。その後、反応副生成物であるアルコール分を反応液から減圧留去した。この重合体[C−2]の重量平均分子量は2,000であった。
Synthesis example 2
Into a 500 mL three-necked flask, 48.8 g of diphenyldimethoxysilane and 49.2 g of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane are added and dissolved by adding 100 g of propylene glycol methyl ether acetate. The solution was heated to 60 ° C. while stirring with a magnetic stirrer. To this, 8.6 g of ion-exchanged water containing 1% by weight of oxalic acid was continuously added over 1 hour. And after making it react at 60 degreeC for 4 hours, the obtained reaction liquid was cooled to room temperature. Thereafter, the alcohol as a reaction by-product was distilled off from the reaction solution under reduced pressure. The weight average molecular weight of this polymer [C-2] was 2,000.

合成例3
500mLの三つ口フラスコにテトラメトキシシラン30.4g、3−グリシドキシプロピルトリメトキシシラン47.2gをとり、プロピレングリコールメチルエーテル100gを加えて溶解させ、得られた混合溶液をマグネチックスターラにより撹拌しながら60℃に加温した。これに、1重量%のシュウ酸を含んだ8.6gのイオン交換水を1時間かけて連続的に添加した。そして、60℃で4時間反応させた後、得られた反応液を室温まで冷却した。その後、反応副生成物であるアルコール分を反応液から減圧留去した。この重合体[C−3]の重量平均分子量は1,400であった。
Synthesis example 3
In a 500 mL three-necked flask, 30.4 g of tetramethoxysilane and 47.2 g of 3-glycidoxypropyltrimethoxysilane are added and dissolved by adding 100 g of propylene glycol methyl ether. Warm to 60 ° C. with stirring. To this, 8.6 g of ion-exchanged water containing 1% by weight of oxalic acid was continuously added over 1 hour. And after making it react at 60 degreeC for 4 hours, the obtained reaction liquid was cooled to room temperature. Thereafter, the alcohol as a reaction by-product was distilled off from the reaction solution under reduced pressure. The weight average molecular weight of this polymer [C-3] was 1,400.

合成例4
500mLの三つ口フラスコにメチルトリメトキシシラン27.2g、3−メルカプトトリメトキシシラン39.2gをとり、プロピレングリコールメチルエーテル100gを加えて溶解させ、得られた混合溶液をマグネチックスターラにより撹拌しながら60℃に加温した。これに、1重量%のシュウ酸を含んだ8.6gのイオン交換水を1時間かけて連続的に添加した。そして、60℃で4時間反応させた後、得られた反応液を室温まで冷却した。その後、反応副生成物であるアルコール分を反応液から減圧留去した。この重合体[C−4]の重量平均分子量は1,900であった。
Synthesis example 4
In a 500 mL three-necked flask, take 27.2 g of methyltrimethoxysilane and 39.2 g of 3-mercaptotrimethoxysilane, dissolve by adding 100 g of propylene glycol methyl ether, and stir the resulting mixed solution with a magnetic stirrer. The mixture was heated to 60 ° C. To this, 8.6 g of ion-exchanged water containing 1% by weight of oxalic acid was continuously added over 1 hour. And after making it react at 60 degreeC for 4 hours, the obtained reaction liquid was cooled to room temperature. Thereafter, the alcohol as a reaction by-product was distilled off from the reaction solution under reduced pressure. The weight average molecular weight of this polymer [C-4] was 1,900.

実施例1
[感放射線性樹脂組成物の調製]
上記合成例1で合成した[A]成分として重合体[A−1]を含有する溶液を、重合体[A−1]100重量部(固形分)に相当する量、成分[B]として4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(2.0モル)の縮合物(B−1)30重量部、および重合体[C−1]を3重量部(固形分)とを混合し、固形分濃度が30重量%となるようにジエチレングリコールエチルメチルエーテルに溶解させた後、口径0.2μmのメンブランフィルタで濾過して、感放射線性樹脂組成物の溶液(S−1)を調製した。
Example 1
[Preparation of radiation-sensitive resin composition]
A solution containing the polymer [A-1] as the component [A] synthesized in Synthesis Example 1 was added in an amount corresponding to 100 parts by weight (solid content) of the polymer [A-1], and 4 as the component [B]. , 4 ′-[1- [4- [1- [4-Hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid chloride ( 2.0 mol) of the condensate (B-1) 30 parts by weight and 3 parts by weight (solid content) of the polymer [C-1] are mixed so that the solid content concentration is 30% by weight. After dissolving in ethyl methyl ether, the solution was filtered through a membrane filter having a diameter of 0.2 μm to prepare a solution (S-1) of a radiation sensitive resin composition.

実施例2〜16、比較例1
[感放射線性樹脂組成物の調製]
実施例1において、[A]成分および[B]成分として、表1に記載のとおりの種類、量を使用した他は、実施例1と同様にして実施し、感放射線性樹脂組成物の溶液(S−2)〜(S−16)および(s−1)を調製した。
なお、実施例2、6、10、14において、[B]成分の記載は、それぞれ2種類の1,2−キノンジアジド化合物を併用したことを表す。
Examples 2 to 16, Comparative Example 1
[Preparation of radiation-sensitive resin composition]
In Example 1, a solution of the radiation-sensitive resin composition was carried out in the same manner as in Example 1 except that the types and amounts shown in Table 1 were used as the [A] component and the [B] component. (S-2) to (S-16) and (s-1) were prepared.
In Examples 2, 6, 10, and 14, the description of the component [B] represents that two types of 1,2-quinonediazide compounds were used in combination.

実施例17
実施例1において、固形分濃度が20重量%になるようにジエチレングリコールエチルメチルエーテル/プロピレングリコールモノメチルエーテルアセテート=6/4に溶解したことと、(F)を添加したこと以外は実施例1と同様に組成物を調製し、感放射線性樹脂組成物の溶液(S−17)を調製した。
Example 17
In Example 1, it was the same as Example 1 except that it was dissolved in diethylene glycol ethyl methyl ether / propylene glycol monomethyl ether acetate = 6/4 so that the solid content concentration was 20% by weight, and (F) was added. A composition was prepared, and a solution (S-17) of a radiation sensitive resin composition was prepared.

表1中、成分の略称は次の化合物を示す。
(B−1):4,4’−[1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(2.0モル)の縮合物
(B−2):4,4’− [1−[4−[1−[4−ヒドロキシフェニル]−1−メチルエチル]フェニル]エチリデン]ビスフェノール(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸クロリド(1.0モル)の縮合物
(B−3): 2,3,4,4’−テトラヒドロキシベンゾフェノン(1.0モル)と1,2−ナフトキノンジアジド−5−スルホン酸エステル(2.44モル)
(F):SH−28PA(東レ・ダウコーニング・シリコーン(株)製)
In Table 1, the abbreviations of the components indicate the following compounds.
(B-1): 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene] bisphenol (1.0 mol) and 1,2-naphthoquinonediazide Condensate (B-2) of -5-sulfonic acid chloride (2.0 mol): 4,4 ′-[1- [4- [1- [4-hydroxyphenyl] -1-methylethyl] phenyl] ethylidene Condensate of bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.0 mol) (B-3): 2,3,4,4′-tetrahydroxybenzophenone (1 .0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid ester (2.44 mol)
(F): SH-28PA (Toray Dow Corning Silicone Co., Ltd.)

Figure 0004849251
Figure 0004849251

実施例18〜34、比較例2
<層間絶縁膜としての性能評価>
上記のように調製した感放射線性樹脂組成物を使用し、以下のように層間絶縁膜としての各種の特性を評価した。
Examples 18 to 34, Comparative Example 2
<Performance evaluation as interlayer insulation film>
Using the radiation-sensitive resin composition prepared as described above, various characteristics as an interlayer insulating film were evaluated as follows.

[感度の評価]
シリコン基板上に、実施例18〜33、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。実施例34についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。得られた塗膜に所定のパターンを有するパターンマスクを介してキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で露光時間を変化させて露光を行った後、表2に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、0.4%の濃度の現像液を用いた場合は80秒、2.38%の濃度の現像液を用いた場合は50秒間、液盛り法で現像した。超純水で1分間流水洗浄を行い、乾燥させてウエハー上にパターンを形成した。3.0μmのライン・アンド・スペース(10対1)のスペース・パターンが完全に溶解するために必要な露光量を測定した。この値を感度として、表2に示した。この値が1,000J/m以下の場合に感度が良好であると言える。
[Evaluation of sensitivity]
On Examples 18 to 33 and Comparative Example 2 on a silicon substrate, the composition described in Table 2 was applied using a spinner, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 3. A 0 μm coating film was formed. About Example 34, it apply | coated with the slit die coater, After vacuum-drying at 0.5 Torr, it prebaked on a hotplate for 2 minutes at 90 degreeC, and formed the coating film with a film thickness of 3.0 micrometers. The obtained coating film was exposed through a pattern mask having a predetermined pattern with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc., and the exposure time was changed. When using a developer with a concentration of tetramethylammonium hydroxide at 25 ° C. and a concentration of 0.4%, 80 seconds when using a developer with a concentration of 0.4%, 50 seconds when using a developer with a concentration of 2.38% Developed with. The substrate was washed with ultrapure water for 1 minute and dried to form a pattern on the wafer. The amount of exposure required to completely dissolve the 3.0 μm line-and-space (10 to 1) space pattern was measured. This value is shown in Table 2 as sensitivity. It can be said that the sensitivity is good when this value is 1,000 J / m 2 or less.

〔現像マージンの評価〕
シリコン基板上に、実施例18〜33、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。実施例34についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。得られた塗膜に3.0μmのライン・アンド・スペース(10対1)のパターンを有するマスクを介してキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)を使用し、上記「[感度の評価]」にて測定した感度の値に相当する露光量で露光を行い、表2に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、現像時間を変化させて液盛り法で現像した。次いで超純水で1分間流水洗浄を行い、乾燥させてウエハー上にパターンを形成した。このとき、ライン線幅が3μmとなるのに必要な現像時間を最適現像時間として表2に示した。また、最適現像時間からさらに現像を続けた際に3.0μmのライン・パターンが剥がれるまでの時間を測定し、現像マージンとして表2に示した。この値が30秒以上のとき、現像マージンは良好であるといえる。
[Evaluation of development margin]
On Examples 18 to 33 and Comparative Example 2 on a silicon substrate, the composition described in Table 2 was applied using a spinner, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 3. A 0 μm coating film was formed. About Example 34, it apply | coated with the slit die coater, After vacuum-drying at 0.5 Torr, it prebaked on a hotplate for 2 minutes at 90 degreeC, and formed the coating film with a film thickness of 3.0 micrometers. Using a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc. through a mask having a 3.0 μm line and space (10 to 1) pattern on the obtained coating film, Exposure is carried out with an exposure amount corresponding to the sensitivity value measured in [Evaluation of Sensitivity], and a liquid piling method is performed by changing the development time with an aqueous tetramethylammonium hydroxide solution having the concentration shown in Table 2 at 25 ° C. Developed with. Subsequently, the substrate was washed with ultrapure water for 1 minute and dried to form a pattern on the wafer. At this time, the development time required for the line width to be 3 μm is shown in Table 2 as the optimum development time. Further, when the development was further continued from the optimum development time, the time until the 3.0 μm line pattern was peeled off was measured and shown in Table 2 as a development margin. When this value is 30 seconds or more, it can be said that the development margin is good.

〔耐溶剤性の評価〕
リコン基板上に、実施例18〜33、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして塗膜を形成した。実施例34についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして塗膜を形成した。得られた塗膜にキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で積算照射量が3,000J/m2となるように露光し、このシリコン基板をクリーンオーブン内にて220℃で1時間加熱して膜厚3.0μmの硬化膜を得た。得られた硬化膜の膜厚(T1)を測定した。そして、この硬化膜が形成されたシリコン基板を70℃に温度制御されたジメチルスルホキシド中に20分間浸漬させた後、当該硬化膜の膜厚(t1)を測定し、浸漬による膜厚変化率{|t1−T1|/T1}×100〔%〕を算出した。結果を表2に示す。この値が5%以下のとき、耐溶剤性は良好といえる。
なお、耐溶剤性の評価においては形成する膜のパターニングは不要のため、放射線照射工程および現像工程は省略し、塗膜形成工程、ポストベーク工程および加熱工程のみ行い評価に供した。
[Evaluation of solvent resistance]
On the recon substrate, Examples 18 to 33 and Comparative Example 2 were coated with the composition shown in Table 2 using a spinner and then pre-baked on a hot plate at 90 ° C. for 2 minutes to form a coating film. did. Example 34 was coated with a slit die coater, vacuum dried at 0.5 Torr, and then pre-baked on a hot plate at 90 ° C. for 2 minutes to form a coating film. The obtained coating film was exposed to a cumulative irradiation amount of 3,000 J / m 2 with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Inc., and this silicon substrate was exposed to 220 in a clean oven. Heated at 0 ° C. for 1 hour to obtain a cured film having a thickness of 3.0 μm. The film thickness (T1) of the obtained cured film was measured. And after immersing the silicon substrate in which this cured film was formed in dimethyl sulfoxide temperature-controlled at 70 degreeC for 20 minutes, the film thickness (t1) of the said cured film was measured, and the film thickness change rate by immersion { | T1-T1 | / T1} × 100 [%] was calculated. The results are shown in Table 2. When this value is 5% or less, the solvent resistance is good.
In the evaluation of solvent resistance, since the patterning of the film to be formed is unnecessary, the radiation irradiation process and the development process were omitted, and only the coating film forming process, the post-baking process, and the heating process were performed for evaluation.

〔耐熱性の評価〕
上記の耐溶剤性の評価と同様にして硬化膜を形成し、得られた硬化膜の膜厚(T2)を測定した。次いで、この硬化膜基板をクリーンオーブン内にて240℃で1時間追加ベークした後、当該硬化膜の膜厚(t2)を測定し、追加ベークによる膜厚変化率{|t2−T2|/T2}×100〔%〕を算出した。結果を表2に示す。この値が5%以下のとき、耐熱性は良好といえる。
[Evaluation of heat resistance]
A cured film was formed in the same manner as the evaluation of the solvent resistance, and the film thickness (T2) of the obtained cured film was measured. Then, after this cured film substrate was additionally baked in a clean oven at 240 ° C. for 1 hour, the film thickness (t2) of the cured film was measured, and the film thickness change rate {| t2-T2 | / T2 due to the additional baking } × 100 [%] was calculated. The results are shown in Table 2. When this value is 5% or less, the heat resistance is good.

〔硬化膜密着性の評価〕
上記の耐溶剤性の評価と同様にして硬化膜を形成し、あらかじめエポキシ樹脂が塗布されている直径0.27cmの円形接着面を持つアルミ製スタットピン(QUAD社製)を、基板に対してピンが垂直になるよう硬化膜上に接着し、クリーンオーブン内にて150℃で1時間ベークを行いエポキシ樹脂を硬化させた。その後、引っ張り試験機「Motorized Stand SDMS−0201−100SL((株)今田製作所製)」を用いてスタットピンを引っ張ることで基板と硬化膜が剥離する際の力の測定を行った。そのときの力の値を表2に示す。この値が150N以上であると基板に対する密着性が良好であるといえる。
[Evaluation of cured film adhesion]
A cured film is formed in the same manner as the evaluation of the solvent resistance, and an aluminum stat pin (manufactured by QUAD) having a circular adhesive surface with a diameter of 0.27 cm, to which an epoxy resin is applied in advance, is attached to the substrate. The pin was adhered onto the cured film so as to be vertical, and baked at 150 ° C. for 1 hour in a clean oven to cure the epoxy resin. Then, the force at the time of peeling a board | substrate and a cured film was measured by pulling a stat pin using the tensile tester "Motorized Standard SDMS-0201-100SL (made by Imada Manufacturing Co., Ltd.)". Table 2 shows the force values at that time. When this value is 150 N or more, it can be said that the adhesion to the substrate is good.

〔透明性の評価〕
上記の耐溶剤性の評価において、シリコン基板の代わりにガラス基板「コーニング7059(コーニング社製)」を用いたこと以外は同様にしてガラス基板上に硬化膜を形成した。この硬化膜を有するガラス基板の光線透過率を分光光度計「150−20型ダブルビーム((株)日立製作所製)」を用いて400〜800nmの範囲の波長で測定した。そのときの最低光線透過率の値を表2に示す。この値が90%以上のとき、透明性は良好といえる。
[Evaluation of transparency]
In the evaluation of the solvent resistance, a cured film was formed on the glass substrate in the same manner except that a glass substrate “Corning 7059 (manufactured by Corning)” was used instead of the silicon substrate. The light transmittance of the glass substrate having this cured film was measured at a wavelength in the range of 400 to 800 nm using a spectrophotometer “150-20 type double beam (manufactured by Hitachi, Ltd.)”. Table 2 shows the values of the minimum light transmittance at that time. When this value is 90% or more, it can be said that the transparency is good.

〔比誘電率の評価〕
研磨したSUS304製基板上に、実施例18〜34、比較例2についてはスピンナーを用いて、表2に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。実施例35についてはスリットダイコーターにより塗布を行い、0.5Torrにて真空乾燥を行った後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。得られた塗膜にキャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で積算照射量が3,000J/mとなるように露光し、この基板をクリーンオーブン内にて220℃で1時間焼成することにより、硬化膜を得た。この硬化膜について、蒸着法によりPt/Pd電極パターンを形成させ誘電率測定用サンプルを作成した。該基板を周波数10kHzの周波数で、横河・ヒューレットパッカード(株)製HP16451B電極およびHP4284AプレシジョンLCRメーターを用いてCV法により当該基板の比誘電率を測定した。結果を表2に示した。この値が3.9以下のとき、誘電率は良好といえる。
なお、誘電率の評価においては形成する膜のパターニングは不要のため、放射線照射工程および現像工程は省略し、塗膜形成工程、ポストベーク工程および加熱工程のみ行い評価に供した。
[Evaluation of relative permittivity]
After applying the composition shown in Table 2 on a polished SUS304 substrate using Examples 18 to 34 and Comparative Example 2 using a spinner, the film was prebaked on a hot plate at 90 ° C. for 2 minutes. A coating film having a thickness of 3.0 μm was formed. About Example 35, it apply | coated with the slit die coater, After vacuum-drying at 0.5 Torr, it prebaked on a hotplate at 90 degreeC for 2 minute (s), and formed the coating film with a film thickness of 3.0 micrometers. The obtained coating film was exposed with a PLA-501F exposure machine (extra-high pressure mercury lamp) manufactured by Canon Co., Ltd. so that the integrated irradiation amount was 3,000 J / m 2, and this substrate was 220 ° C. in a clean oven. The cured film was obtained by baking for 1 hour. About this cured film, the Pt / Pd electrode pattern was formed by the vapor deposition method, and the sample for dielectric constant measurement was created. The relative dielectric constant of the substrate was measured at a frequency of 10 kHz by a CV method using an HP16451B electrode and an HP4284A precision LCR meter manufactured by Yokogawa-Hewlett-Packard Co., Ltd. The results are shown in Table 2. When this value is 3.9 or less, the dielectric constant is good.
In the evaluation of the dielectric constant, since the patterning of the film to be formed is unnecessary, the radiation irradiation process and the development process were omitted, and only the coating film forming process, the post-baking process, and the heating process were performed for evaluation.

Figure 0004849251
Figure 0004849251

実施例35〜50、比較例3
<マイクロレンズとしての性能評価>
上記のように調製した感放射線性樹脂組成物を使用し、以下のようにマイクロレンズとしての各種の特性を評価した。なお耐溶剤性の評価、耐熱性の評価、透明性の評価は上記層間絶縁膜としての性能評価における結果を参照されたい。
Examples 35-50, Comparative Example 3
<Performance evaluation as a micro lens>
Using the radiation-sensitive resin composition prepared as described above, various characteristics as a microlens were evaluated as follows. For the evaluation of solvent resistance, evaluation of heat resistance, and evaluation of transparency, refer to the results in the performance evaluation as the interlayer insulating film.

〔感度の評価〕
シリコン基板上に、実施例35〜50、比較例3についてはスピンナーを用いて、表3に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚2.0μmの塗膜を形成した。得られた塗膜に所定のパターンを有するパターンマスクを介してニコン(株)製NSR1755i7A縮小投影露光機(NA=0.50、λ=365nm)で露光時間を変化させて露光し、表3に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、1分間液盛り法で現像した。水でリンスし、乾燥してウェハー上にパターンを形成した。0.8μmライン・アンド・スペ−スパタ−ン(1対1)のスペース線幅が0.8μmとなるのに必要な露光時間を測定した。この値を感度として、表3に示した。この値が2,000J/m以下の場合に感度が良好であると言える。
[Evaluation of sensitivity]
On the silicon substrate, Examples 35 to 50 and Comparative Example 3 were coated with the composition shown in Table 3 using a spinner, and then pre-baked on a hot plate at 90 ° C. for 2 minutes. A 0 μm coating film was formed. The obtained coating film was exposed with a NSR1755i7A reduction projection exposure machine (NA = 0.50, λ = 365 nm) manufactured by Nikon Corporation through a pattern mask having a predetermined pattern, and exposure was performed in Table 3. Development was carried out by a puddle method at 25 ° C. for 1 minute in an aqueous tetramethylammonium hydroxide solution having the concentration described. It was rinsed with water and dried to form a pattern on the wafer. The exposure time required for the space line width of the 0.8 μm line and space pattern (one to one) to be 0.8 μm was measured. This value is shown in Table 3 as sensitivity. It can be said that the sensitivity is good when this value is 2,000 J / m 2 or less.

〔現像マージンの評価〕
シリコン基板上に、実施例35〜50、比較例3についてはスピンナーを用いて、表3に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚2.0μmの塗膜を形成した。得られた塗膜に所定のパターンを有するパターンマスクを介してニコン(株)製NSR1755i7A縮小投影露光機(NA=0.50、λ=365nm)で上記「[感度の評価]」にて測定した感度の値に相当する露光量で露光を行い、表3に記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、1分間液盛り法で現像した。水でリンスし、乾燥してウエハー上にパターンを形成した。0.8μmライン・アンド・スペ−スパタ−ン(1対1)のスペース線幅が0.8μmとなるのに必要な現像時間を最適現像時間として表3に示した。また、最適現像時間からさらに現像を続けた際に幅0.8μmのパターンが剥がれるまでの時間(現像マージン)を測定し、現像マージンとして表3に示した。この値が30秒以上のとき、現像マージンは良好であるといえる。
[Evaluation of development margin]
On the silicon substrate, Examples 35 to 50 and Comparative Example 3 were coated with the composition shown in Table 3 using a spinner, and then pre-baked on a hot plate at 90 ° C. for 2 minutes. A 0 μm coating film was formed. The obtained coating film was measured by the above-mentioned “[Evaluation of sensitivity]” with a NSR1755i7A reduction projection exposure machine (NA = 0.50, λ = 365 nm) manufactured by Nikon Corporation through a pattern mask having a predetermined pattern. Exposure was carried out with an exposure amount corresponding to the sensitivity value, and development was carried out with a tetramethylammonium hydroxide aqueous solution having a concentration shown in Table 3 at 25 ° C. for 1 minute. It was rinsed with water and dried to form a pattern on the wafer. Table 3 shows the development time required for the space line width of 0.8 μm line and space pattern (one to one) to be 0.8 μm as the optimum development time. Further, the time (development margin) until the pattern having a width of 0.8 μm was peeled off when the development was further continued from the optimum development time was shown in Table 3 as the development margin. When this value is 30 seconds or more, it can be said that the development margin is good.

〔マイクロレンズの形成〕
シリコン基板上に実施例35〜50、比較例3についてはスピンナーを用いて、表3に記載の組成物を塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚2.0μmの塗膜を形成した。得られた塗膜に4.0μmドット・2.0μmスペ−スパタ−ンを有するパターンマスクを介してニコン(株)製NSR1755i7A縮小投影露光機(NA=0.50、λ=365nm)で上記「[感度の評価]」にて測定した感度の値に相当する露光量で露光を行い、表3の感度の評価における現像液濃度として記載した濃度のテトラメチルアンモニウムヒドロキシド水溶液にて25℃、1分間液盛り法で現像した。水でリンスし、乾燥してウエハー上にパターンを形成した。その後、キャノン(株)製PLA−501F露光機(超高圧水銀ランプ)で積算照射量が3,000J/m2となるように露光した。その後ホットプレートにて160℃で10分間加熱後さらに230℃で10分間加熱してパターンをメルトフローさせマイクロレンズを形成した。
[Formation of microlenses]
For Examples 35 to 50 and Comparative Example 3 on a silicon substrate, the composition described in Table 3 was applied using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to obtain a film thickness of 2.0 μm. The coating film was formed. The obtained coating film was passed through a pattern mask having 4.0 [mu] m dots and 2.0 [mu] m space pattern with the NSR1755i7A reduction projection exposure machine (NA = 0.50, [lambda] = 365 nm) manufactured by Nikon Corporation. Exposure is performed with an exposure amount corresponding to the sensitivity value measured in [Evaluation of Sensitivity], and 25 ° C. is applied in a tetramethylammonium hydroxide aqueous solution having a concentration described as the developer concentration in the sensitivity evaluation in Table 3. Development was carried out by a puddle method for 1 minute. It was rinsed with water and dried to form a pattern on the wafer. Then, it exposed so that an integrated irradiation amount might be set to 3,000 J / m < 2 > with the PLA-501F exposure machine (extra-high pressure mercury lamp) by Canon. Thereafter, the pattern was melt-flowed by heating at 160 ° C. for 10 minutes on a hot plate and further at 230 ° C. for 10 minutes to form a microlens.

形成されたマイクロレンズの底部(基板に接する面)の寸法(直径)および断面形状を表3に示す。マイクロレンズ底部の寸法は4.0μmを超え5.0μm未満であるとき、良好といえる。なお、この寸法が5.0μm以上となると、隣接するレンズ同士が接触する状態であり、好ましくない。また、断面形状は図1に示した模式図において、(a)のような半凸レンズ形状であるときに良好であり、(b)のような略台形上の場合は不良である。   Table 3 shows the size (diameter) and cross-sectional shape of the bottom (surface contacting the substrate) of the formed microlens. It can be said that the microlens bottom portion is good when it is larger than 4.0 μm and smaller than 5.0 μm. In addition, when this dimension is 5.0 μm or more, the adjacent lenses are in contact with each other, which is not preferable. Further, the cross-sectional shape is good when it is a semi-convex lens shape as shown in (a) in the schematic diagram shown in FIG. 1, and it is bad when it is on a substantially trapezoidal shape as shown in (b).

Figure 0004849251
Figure 0004849251

マイクロレンズの断面形状の模式図である。It is a schematic diagram of the cross-sectional shape of a micro lens.

Claims (7)

[A](a1)不飽和カルボン酸および/または不飽和カルボン酸無水物、
(a2)エポキシ基および/またはオキセタニル基含有不飽和化合物、および
(a3)(a1)成分および(a2)成分以外の不飽和化合物の共重合体
[B]1,2−キノンジアジド化合物、ならびに
[C]下記式(1)および下記式(2)のそれぞれで表されるアルコキシシランを加水分解したシロキサンオリゴマー
Si(R (R (OR 10 (1)
ここでR はエポキシ基、オキセタニル基、エピスルフィド基、ビニル基、アリル基、(メタ)アクリロイル基、カルボキシル基、メルカプト基、イソシアネート基、アミノ基、ウレイド基またはスチリル基を含有する置換基を表わし、R 、R 10 は同一でも異なっていてもよく、それぞれ1価の有機基であり、sは1〜3の整数であり、t、uはそれぞれ0〜3の整数である。但し、s+t+u=4である、
Si(R 11 (OR 12 4−x (2)
ここでR 11 、R 12 は、同一でも異なっていてもよく、それぞれ1価の有機基でありそして、xは0〜2の整数である、
を含有することを特徴とする感放射線性樹脂組成物。
[A] (a1) unsaturated carboxylic acid and / or unsaturated carboxylic acid anhydride,
(A2) an epoxy group and / or oxetanyl group-containing unsaturated compound, and (a3) a copolymer of unsaturated compounds other than components (a1) and (a2) [B] 1,2-quinonediazide compounds, and [C A siloxane oligomer obtained by hydrolyzing an alkoxysilane represented by each of the following formulas (1) and (2)
Si (R 8 ) s (R 9 ) t (OR 10 ) u (1)
R 8 represents a substituent containing an epoxy group, oxetanyl group, episulfide group, vinyl group, allyl group, (meth) acryloyl group, carboxyl group, mercapto group, isocyanate group, amino group, ureido group or styryl group. , R 9 and R 10 may be the same or different, each is a monovalent organic group, s is an integer of 1 to 3, and t and u are integers of 0 to 3, respectively. However, s + t + u = 4,
Si (R 11 ) x (OR 12 ) 4-x (2)
Here, R 11 and R 12 may be the same or different, each is a monovalent organic group, and x is an integer of 0 to 2.
A radiation-sensitive resin composition comprising:
層間絶縁膜形成用である請求項1に記載の感放射線性樹脂組成物。   The radiation-sensitive resin composition according to claim 1, which is used for forming an interlayer insulating film. 以下の工程を以下に記載順で含むことを特徴とする層間絶縁膜の形成方法。
(1)請求項1に記載の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)現像工程、および
(4)加熱工程。
A method for forming an interlayer insulating film, comprising the following steps in the order described below.
(1) The process of forming the coating film of the radiation sensitive resin composition of Claim 1 on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) Development step, and (4) Heating step.
請求項の方法により形成された層間絶縁膜。 An interlayer insulating film formed by the method according to claim 3 . マイクロレンズ形成用である請求項1に記載の感放射線性樹脂組成物。   The radiation-sensitive resin composition according to claim 1, which is used for forming a microlens. 以下の工程を以下に記載順で含むことを特徴とするマイクロレンズの形成方法。
(1)請求項1に記載の感放射線性樹脂組成物の塗膜を基板上に形成する工程、
(2)該塗膜の少なくとも一部に放射線を照射する工程、
(3)現像工程、および
(4)加熱工程。
A method for forming a microlens comprising the following steps in the order described below.
(1) The process of forming the coating film of the radiation sensitive resin composition of Claim 1 on a board | substrate,
(2) A step of irradiating at least a part of the coating film with radiation,
(3) Development step, and (4) Heating step.
請求項の方法により形成されたマイクロレンズ。
A microlens formed by the method of claim 6 .
JP2007009145A 2007-01-18 2007-01-18 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof Active JP4849251B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007009145A JP4849251B2 (en) 2007-01-18 2007-01-18 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
TW097101656A TWI425315B (en) 2007-01-18 2008-01-16 Sensitive radiation linear resin composition, interlayer insulating film and microlens, and the like
KR1020080005152A KR101432300B1 (en) 2007-01-18 2008-01-17 Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for producing the same
CN200810003519XA CN101226329B (en) 2007-01-18 2008-01-18 Radiation sensitive resin composition, laminated insulating film, micro lens and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009145A JP4849251B2 (en) 2007-01-18 2007-01-18 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof

Publications (2)

Publication Number Publication Date
JP2008176037A JP2008176037A (en) 2008-07-31
JP4849251B2 true JP4849251B2 (en) 2012-01-11

Family

ID=39703107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009145A Active JP4849251B2 (en) 2007-01-18 2007-01-18 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof

Country Status (2)

Country Link
JP (1) JP4849251B2 (en)
CN (1) CN101226329B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181725B2 (en) * 2008-02-27 2013-04-10 日本ゼオン株式会社 Photosensitive resin composition, laminate, method for producing the same, and electronic component
KR101288572B1 (en) * 2008-12-17 2013-07-22 제일모직주식회사 Hardmask Composition Coated under Photoresist with Improved Storage Stability
KR101669085B1 (en) * 2009-01-28 2016-10-25 제이에스알 가부시끼가이샤 Radiation sensitive resin composition, and interlayer insulating film and forming method thereof
CN101872123B (en) * 2009-04-27 2013-07-24 Jsr株式会社 Radioactive rays sensitive resin compound, distance piece or protection film for liquid crystal display and forming method thereof
JP5504824B2 (en) * 2009-10-28 2014-05-28 Jsr株式会社 Positive radiation-sensitive resin composition, interlayer insulating film and method for forming the same
JP2011138116A (en) * 2009-12-04 2011-07-14 Jsr Corp Radiation sensitive resin composition, interlayer insulating film, and method for forming the same
JP5362696B2 (en) * 2009-12-22 2013-12-11 エルジー・ケム・リミテッド Polyfunctional acrylic compound and photosensitive composition containing the same
JP5454321B2 (en) * 2010-04-14 2014-03-26 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP5625460B2 (en) * 2010-04-15 2014-11-19 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP5648518B2 (en) * 2011-02-10 2015-01-07 Jsr株式会社 Positive-type radiation-sensitive resin composition, interlayer insulating film for display element, and method for forming the same
JP6186766B2 (en) * 2012-03-30 2017-08-30 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having the cured film
CN105531627B (en) * 2013-09-13 2019-10-11 富士胶片株式会社 Photosensitive polymer combination, the manufacturing method of cured film, cured film, liquid crystal display device and organic EL display device
US10604653B2 (en) * 2015-10-19 2020-03-31 Dow Toray Co., Ltd. Active energy ray curable hot melt silicone composition, cured product thereof, and method of producing film
KR102310794B1 (en) * 2016-05-19 2021-10-12 롬엔드하스전자재료코리아유한회사 Photosensitive resin composition and cured film prepared therefrom
KR20190136248A (en) * 2018-05-30 2019-12-10 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
JP7450333B2 (en) * 2018-12-21 2024-03-15 Jsr株式会社 Radiation-sensitive resin composition and method for forming microlenses
TWI796541B (en) * 2018-12-31 2023-03-21 南韓商東進世美肯股份有限公司 Positive photosensitive resin composition, method for forming a pattern of a display device using this and a display device comprising a cured product thereof
KR20210001705A (en) * 2019-06-28 2021-01-06 롬엔드하스전자재료코리아유한회사 Positive-type photosensitive resin composition and cured film prepared therefrom
CN113201138B (en) * 2021-02-03 2022-11-22 惠州学院 Transparent light-curable high-refractive-index mercapto silicone oil and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110641A (en) * 1997-12-04 2000-08-29 Shipley Company, L.L.C. Radiation sensitive composition containing novel dye
JP3835120B2 (en) * 2000-05-22 2006-10-18 Jsr株式会社 Radiation sensitive resin composition, interlayer insulating film and microlens
JP4283582B2 (en) * 2002-04-15 2009-06-24 シャープ株式会社 Radiation-sensitive resin composition, method for forming patterned insulating film, active matrix substrate, flat display device including the same, and method for manufacturing flat display device
TW200617590A (en) * 2004-06-30 2006-06-01 Sumitomo Chemical Co Radiation sensitive resin composition
JP2006048017A (en) * 2004-06-30 2006-02-16 Sumitomo Chemical Co Ltd Radiation sensitive resin composition
US20060008735A1 (en) * 2004-07-09 2006-01-12 Jsr Corporation Radiation sensitive resin composition for forming microlens
JP4586703B2 (en) * 2004-10-14 2010-11-24 住友化学株式会社 Radiation sensitive resin composition
JP4655864B2 (en) * 2004-10-14 2011-03-23 住友化学株式会社 Radiation sensitive resin composition
KR101209049B1 (en) * 2004-12-24 2012-12-07 스미또모 가가꾸 가부시끼가이샤 Photosensitive resin and thin film panel comprising pattern made of the photosensitive resin and method for manufacturing the thin film panel
JP2006259083A (en) * 2005-03-16 2006-09-28 Tokyo Ohka Kogyo Co Ltd Photosensitive resin composition for interlayer insulation film
JP2006259472A (en) * 2005-03-18 2006-09-28 Jsr Corp Radiation-sensitive resin composition, projection and spacer formed of it, and liquid crystal display element with them
JP4670693B2 (en) * 2005-03-18 2011-04-13 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
KR101288411B1 (en) * 2005-12-02 2013-07-22 삼성디스플레이 주식회사 Photosensitive resin composition, method for forming a photoresist pattern and method for manufacturing a display substrate using the same
WO2007132890A1 (en) * 2006-05-16 2007-11-22 Nissan Chemical Industries, Ltd. Positive photosensitive resin composition and porous film obtained therefrom
JP5169027B2 (en) * 2006-05-29 2013-03-27 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film

Also Published As

Publication number Publication date
JP2008176037A (en) 2008-07-31
CN101226329A (en) 2008-07-23
CN101226329B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4849251B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4656316B2 (en) Interlayer insulating film, microlens, and manufacturing method thereof
JP5240459B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP4905700B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP5105073B2 (en) Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens
JP4947300B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP4748324B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and manufacturing method thereof
JP4168443B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5110279B2 (en) Radiation sensitive resin composition, interlayer insulating film and method for producing the same
JP4650639B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5177404B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens and method for producing the same
JP4544370B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4748323B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5029836B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4127150B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5157860B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
KR101432300B1 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for producing the same
JP4315013B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4766268B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP3733946B2 (en) Radiation sensitive resin composition for forming interlayer insulating film and microlens
JP2009204864A (en) Radiation-sensitive resin composition, interlayer dielectric and microlens, and methods for producing those
JP2009204865A (en) Radiation sensitive resin composition, interlayer dielectric, microlens, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4849251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250