TWI326799B - - Google Patents

Download PDF

Info

Publication number
TWI326799B
TWI326799B TW093122996A TW93122996A TWI326799B TW I326799 B TWI326799 B TW I326799B TW 093122996 A TW093122996 A TW 093122996A TW 93122996 A TW93122996 A TW 93122996A TW I326799 B TWI326799 B TW I326799B
Authority
TW
Taiwan
Prior art keywords
acrylate
weight
ether
film
radiation
Prior art date
Application number
TW093122996A
Other languages
Chinese (zh)
Other versions
TW200510932A (en
Inventor
Hideki Nishimura
Takaki Minowa
Eiichiro Urushihara
Eiji Takamoto
Michinori Nishikawa
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200510932A publication Critical patent/TW200510932A/en
Application granted granted Critical
Publication of TWI326799B publication Critical patent/TWI326799B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides

Description

1326799 九、發明說明 【發明所屬之技術領域】 本發明係關於,敏輻射線性樹脂組成物,層間 及微透鏡’以及此等之製造方法。 【先前技術】 薄膜電晶體(以下’稱爲「T F T」)型液晶顯 或磁頭元件,積體電路元件,固體攝像元件等之電 ’一般係爲使配置成層狀之配線之間予以絶緣用而 間絶緣膜。 形成層間絶緣膜之材料方面,爲獲得必要之圖 之步驟數減少而且具有充分平坦性者爲佳,故敏輻 樹脂組成物被廣泛的使用(請參照日本特開2001 -號公報及特開2001·343 74 3號公報)。 在上述電子構件中,例如TFT型液晶顯示元 在上述之層間絶緣膜之上,形成透明電極膜,進而 其上形成液晶定向膜之步驟而製造,故層間絶緣膜 明電極膜之形成步驟中曝曬於高溫條件,或暴露於 圖型形成所使用之光阻之剝離液,因此對該等則需 之耐性。 又近年,在TFT型液晶顯示元件中,有傾向 面化,高亮度化,高精細化,高速響應(response 薄型化等之動向,在使用於該等之層間絶緣膜形成 物方面,爲高感度,而所形成之層間絶緣膜在高耐 絶緣膜 示元件 子部件 設置層 型形狀 射線性 354822 件,係 經過在 ,在透 電極之 要充分 於大畫 )化, 用組成 熱性, -5- 1326799 高耐溶劑性等中,比習知更增強之高性能爲所期望。 一方面,傳真機,電子影印機,固體攝像元件等之晶 載(on-chip )彩色濾光片之結像光學系或者光纖連接器 之光學系材料係使用具有3〜100 μιη左右之透鏡徑之微透 鏡,或將此等微透鏡以規則配列之微透鏡列陣(array ) 〇 - 在微透鏡或微透鏡列陣之形成,在形成相當於透鏡之 φ光阻圖型後,藉由加熱處理使熔融流動,就這樣以透鏡來 利用之方法或使熔融流動之透鏡圖型成爲光罩,藉由乾蝕 刻在基層將透鏡形狀予以轉印之方法等爲周知。在前述透 鏡圖型之形成,敏輻射線性樹脂組成物被廣泛地使用(請 參照日本特開平6- 1 8 702號公報及特開平6- 1 3 623 9號公 報)。 但是,上述般之微透鏡或微透鏡列陣所形成之元件, 在其後’爲除去爲配線形成部分之結合片(bonding pad 鲁)上之各種絶緣膜則塗布平坦化膜及蝕刻用光阻膜,使用 φ 所望之光罩予以曝光,顯影,將結合片部分之蝕刻光阻予BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation sensitive linear resin composition, interlayer and microlens ' and a method of manufacturing the same. [Prior Art] A thin film transistor (hereinafter referred to as "TFT") type liquid crystal display or magnetic head element, an integrated circuit element, a solid-state image sensor, etc., is generally used to insulate between wirings arranged in layers. Insulating film. In terms of the material for forming the interlayer insulating film, it is preferable to reduce the number of steps necessary for obtaining the necessary pattern and to have sufficient flatness, so that the sensitive radiation resin composition is widely used (refer to Japanese Laid-Open Patent Publication No. 2001-2001 and JP-A-2001). ·343 74 No. 3). In the above electronic component, for example, a TFT-type liquid crystal display element is formed on the above-mentioned interlayer insulating film, a transparent electrode film is formed, and a liquid crystal alignment film is formed thereon, so that the interlayer insulating film is exposed in the step of forming the electrode film. The high temperature conditions, or the stripping solution exposed to the pattern used to form the photoresist, is therefore required for such resistance. In recent years, in the TFT-type liquid crystal display device, the surface of the TFT-type liquid crystal display device has a tendency to be high-intensity, high-definition, and high-speed response (response to thinning, etc.), and high sensitivity in the use of the interlayer insulating film formation material. The interlayer insulating film formed in the high-resistance insulating film shows that the element sub-component is provided with a layered shape of 354,822 pieces, which is passed through, and is formed in the through-electrode to be sufficiently large, and is composed of heat, -5 - 1326799 Among the high solvent resistance and the like, higher performance than conventionally enhanced is desirable. On the one hand, an optical system of an on-chip color filter such as a facsimile machine, an electronic photocopier, a solid-state image sensor, or the like, or an optical system of an optical fiber connector, has a lens diameter of about 3 to 100 μm. a microlens, or a microlens array arranging the microlenses in a regular arrangement - in a microlens or microlens array, after forming a φ photoresist pattern corresponding to the lens, by heating In order to process the melt flow, the method of using the lens or the lens pattern of the melt flow as a mask, and the method of transferring the lens shape to the base layer by dry etching is known. In the formation of the above-mentioned lens pattern, the radiation-sensitive linear resin composition is widely used (refer to Japanese Laid-Open Patent Publication No. Hei. No. Hei. 6-8 702 and JP-A-6-136-623). However, the element formed by the above-described microlens or microlens array is coated with a planarizing film and an etching photoresist for various insulating films on the bonding pad which is removed as a wiring forming portion. The film is exposed and developed using a reticle of φ, and the etched photoresist of the bonded portion is applied.

V 以除去,接著提供,藉由蝕刻將平坦化膜或各種絶緣膜除 去將結合片部分露出之步驟。因此在微透鏡或微透鏡列陣 ’在平坦化膜及蝕刻光阻之塗膜形成步驟以及蝕刻步驟中 ,耐溶劑性或耐熱性爲必要。 此種形成微透鏡所使用之敏輻射線性樹脂組成物,爲 高感度’又,自其所形成之微透鏡具有所望之曲率半徑, 故高耐熱性,高透過率等被要求。 -6- 1326799 又,如此所得之層間絶緣膜或微透鏡,在形成該等之 際之顯影步驟中,顯影時間比最適時間即使稍稍過剰’在 圖型與基板間會有顯影液浸透而易於剝離之故,而有必要 嚴密地控制顯影時間,而在製品之產率之點而言有其問題 〇 如此,在將層間絶緣膜或微透鏡由敏輻射線性樹脂組 成物來形成時,在組成物方面被要求爲高感度,又在形成 步驟中之顯影步驟中顯影時間即使比所定時間爲過剩之情 形並不會產生圖型之剝離而顯示良好的密接性,且自其所 形成之層間絶緣膜則高耐熱性,高耐溶劑性,低介電常數 ,高透過率等被要求,一方面,在形成微透鏡之情形,在 微透鏡係被要求良好的熔融形狀(所望之曲率半徑),高 耐熱性,高耐溶劑性,高透過率,而要滿足此種要求之敏 輻射線性樹脂組成物在習知尙無所知。 【發明內容】 本發明係根據以上之情事而完成者。因此,本發明之 目的係提供,具有高敏輻射線感度,在顯影步驟中即使超 過最適顯影時間亦具有可形成良好圖型形狀之顯影界限, 可容易形成密接性優異圖型狀薄膜之敏輻射線性組成物。 本發明之其他目的係提供,在用於形成層間絶緣膜之情形 ,可形成高耐熱性,高耐溶劑性,高透過率,低介電常數 之層間絶緣膜,又在使用於微透鏡之形成之情形,可形成 具有高透過率與良好熔融形狀之微透鏡之敏輻射線性樹脂 1326799 組成物。 本發明之進而其他目的係提供,使用上述敏輻射線性 樹脂組成物來形成層間絶緣膜及微透鏡之方法。 本發明之進而其他目的係提供,藉由本發明之方法所形成 之層間絶緣膜及微透鏡。 '本發明之進而其他目的及優點,可由以下説明而更爲 、明瞭 φ 根據本發明,本發明之上述目的及優點第1係,含有 [A] (al)不飽和羧酸及/或不飽和羧酸酐 (以下,稱爲「化合物(a 1 )」。), (a2)含有環氧基不飽和化合物(以下,稱爲「化合物( a2)」。) (a 3 )含有羥基或羧基之順丁烯二醯亞胺系單體(以下, 稱爲「化合物(a3 )」。),及(a4) ( al ) ,( a2 )及 ,馨(a3 )以外之不飽和化合物(以下,稱爲「化合物(a4 ) 」。)之共聚物(以下,稱爲「共聚物[A]」。),以及 [B] l,2-苯醌二疊氮化合物(以下,稱爲「[B]成分」 。)爲其特徵之敏輻射線性樹脂組成物來達成^ 本發明之目的及優點第2係, 以以下之記載順序含有以下之步驟爲其特徴之層間絶緣膜 或微透鏡之形成方法來達成。 (1 )使上述敏輻射線性樹脂組成物之塗膜形成於基板之 -8 - 1326799 步驟, (2 )在該塗膜之至少一部份照射輻射線之步驟, (3)顯影步驟,及 (4 )加熱步驟。 進而本發明之目的及優點,第3係,由上述方法所形 成之層間絶緣膜或微透鏡來達成。 本發明之敏輻射線性樹脂組成物,具有高敏輻射線感 度’具有顯影界限’即使超過顯影步驟中最適顯影時間亦 可形成良好的圖型形狀,而可容易形成密接性優異圖型狀 薄膜。 由上述組成物所形成之本發明之層間絶緣膜,對基板 之密接性良好’耐溶劑性及耐熱性優異,具有高透過率, 介電常數低,作爲電子構件之層間絶緣膜可恰當地使用。 又,由上述組成物所形成本發明微透鏡,對基板之密 接性良好,耐溶劑性及耐熱性優異,且具有高透過率與良 好的熔融形狀,作爲固體攝像元件之微透鏡可恰當地使用 【實施方式】 [實施發明之最佳形態] 以下,就本發明之敏輻射線性樹脂組成物加以詳述之。 共聚物[A] 1326799 共聚物[A]係,將化合物(al ),化合物(a2 ),化 合物(a3 ),及化合物(a4 )在溶劑中,聚合引發劑之存 在下藉由自由基聚合來製造。本發明所用之共聚物[A]’ 係將化合物(al )所衍生之構成單元,基於化合物(al ) ,(a2) ,(a3)及(a4)所衍生之重覆單元之合計,較 佳爲5〜40重量%,特佳爲含有10〜30重量%。在使用此 構成單元不足5重量%之共聚物時,在顯影步驟時會難以 φ溶解於鹼水溶液,一方面超過40重量%之共聚物會有相 對於鹼水溶液之溶解性變的過大之傾向。 化合物(a 1 )係具有自由基聚合性之不飽和羧酸及/ 或不飽和羧酸酐,可例舉例如單羧酸,二羧酸,二羧酸之 酐,多元羧酸之單〔(甲基)丙烯醯氧基烷基〕酯,在兩 末端具有羧基與羥基之聚合物之單(甲基)丙烯酸酯,具 有殘基之多環式化合物及其酐等。 該等具體例方面,可例舉,例如單羧酸則有丙烯酸, •甲基丙烯酸,巴豆酸等; 二羧酸則有順丁烯二酸,反式丁烯二酸,檸康酸,中 康酸(mesaconic acid ), 衣康酸等; 二羧酸之酐方面則有,以上述二羧酸例示之化合物之 酐等; 在多元羧酸之單〔(甲基)丙烯醯氧基烷基〕酯方面 ’則有琥珀酸單〔2-(甲基)丙烯醯氧基乙基〕,苯二甲 酸單〔2-(甲基)丙烯醯氧基乙基〕等; -10- 1326799 在兩末端具有羧基與羥基之聚合物之單(甲基)丙烯 酸酯則有ω -羧基聚己內酯單(甲基)丙烯酸酯等; 具有羧基之多環式化合物及其酐方面則可各自例舉 5-羧基雙環[2.2.1]庚-2-烯,5,6-二羧基雙環[2.2.1]-庚-2-烯,5-羧基-5-甲基雙環[2.2.1]-庚-2-烯,5-羧基-5-乙基雙 環[2.2.1]庚-2-烯’ 5-羧基-6-甲基雙環[2.2.1]-庚-2-烯,5-羧基-6-乙基雙環[2.2.1]庚-2-烯,5.6-二羧基雙環[2.2.1]-庚-2-烯酐等。 該等之中’單羧酸,二羧酸之酐可恰當使用,尤其是 丙烯酸’甲基丙烯酸,順丁烯二酸酐就共聚反應性,相對 於鹼水溶液之溶解性及獲得容易性之點而言可恰當使用。 該等,可單獨或者組合使用。 本發明所用之共聚物[Α]係,將化合物(a2 )所衍生 之構成單元,根據化合物(a 1 ) , ( a2 ) , ( a3 )及(a4 )所衍生之重覆單元之合計,較佳爲10〜70重量%,特 佳爲含有20〜60重量%。此構成單元在不足10重量%之 情形所得之層間絶緣膜或微透鏡之耐熱性或表面硬度會有 降低之傾向,一方面此構成單元之量在超過70重量%之 情形,會有敏輻射線性樹脂組成物之保存安定性降低之傾 向。 化合物(a2)係具有自由基聚合性之含環氧基不飽和 化合物,可例舉例如環氧丙基丙烯酸酯,環氧丙基甲基丙 烯酸醋,α -乙基環氧丙基丙燒酸醋,α-正丙基環氧丙基 丙烧酸醒,α-正丁基環氧丙基丙烯酸醋’丙烧酸-3,4-環氧 -11 - 1326799 丁酯,甲基丙烯酸-3,4-環氧丁酯,丙烯酸-6,7-環氧庚酯 ,甲基丙烯酸-6,7-環氧庚酯,α-乙基丙烯酸-6,7-環氧庚酯 ,〇-乙烯基苄基環氧丙基醚,間乙烯基苄基環氧丙基醚, 對乙烯基苄基環氧丙基醚等。該等之中,以環氧丙基甲基 丙烯酸酯,甲基丙烯酸-6,7-環氧庚酯,〇-乙烯基苄基環氧 丙基醚,間乙烯基苄基環氧丙基醚,對乙烯基苄基環氧丙 基醚,3,4-環氧基環己基甲基丙烯酸酯等就可使共聚反應 φ性及所得之層間絶緣膜或微透鏡之耐熱性,表面硬度提高 之點而言可恰當使用。該等,可單獨或者組合使用。 本發明所用之共聚物[Α]係,將化合物(a3 )所衍生 之構成單元,根據化合物(al ) ,( a2 ) ,( a3 )及(a4 )所衍生之重覆單元之合計,較佳爲5〜5 0重量%,特佳 爲含有5〜30重量%。此構成單元在不足5重量%之情形 ,耐熱性,耐藥品性,表面硬度會有降低之傾向,一方面 超過50重量%時,會有塗膜之成膜性降低之情形。 • 化合物(a3)係,具有自由基聚合性之羥基或具有狻 基之順丁烯二醯亞胺系單體,可例舉例如N-羥基順丁烯 二醯亞胺,N-羥甲基順丁烯二醯亞胺,N-( 2-羥乙基)順 丁烯二醯亞胺,N- ( 3-羥丙基)順丁烯二醯亞胺,N- ( 4-羥丁基)順丁烯二醯亞胺,N- ( 2-羥基環己基)順丁烯二 醯亞胺,N- ( 3-羥基環己基)順丁烯二醯亞胺’ N- ( 4-羥 基環己基)順丁烯二醯亞胺,N- ( 2-羥甲基環己基)順丁 烯二醯亞胺,N- ( 2-羥甲基苯基)順丁烯二醯亞胺’ N-( 3-羥甲基苯基)順丁烯二醯亞胺,N-( 4-羥甲基苯基)順 -12- 1326799 丁烯二醯亞胺,N- ( 4-羥甲基-3,5_二甲基苯基)順丁烯二 醯亞胺,N- ( 54-羥甲基-2,6-二甲基苯基)順丁烯二醯亞 胺,N- ( 2-羥苯基)順丁烯二醯亞胺,N- ( 3-羥苯基)順 丁烯二醯亞胺,N- ( 4-羥苯基)順丁烯二醯亞胺,N- ( 4-羥基-3, 5-二甲基苯基)順丁烯二醯亞胺,N- ( 4-羥基-2,6-二甲基苯基)順丁烯二醯亞胺,N- ( 2-羥苄基)順丁 烯二醯亞胺,N- ( 3-羥苄基)順丁烯二醯亞胺,N- ( 4-羥 苄基)順丁烯二醯亞胺,N- ( 4-羥基-3,5-二甲基苄基)順 丁烯二醯亞胺,N- ( 4-羥基-2,6-二甲基苄基)順丁烯二醯 亞胺, N- ( 2-羧基苯基)順丁烯二醯亞胺,N- ( 3-羧基苯基 )順丁烯二醯亞胺,N- ( 4-羧基苯基)順丁烯二醯亞胺, N- ( 4-羧基-3,5-二甲基苯基)順丁烯二醯亞胺,N- ( 4-羧 基-3,5-二甲基苄基)順丁烯二醯亞胺,N- ( 4-羧基-2,6-二甲基苄基)順丁烯二醯亞胺,N- ( 2-羧基苄基)順丁烯 二醯亞胺,N- ( 3-羧基苄基)順丁烯二醯亞胺,N- ( 4 ·羧 基苄基)順丁烯二醯亞胺,N- ( 4-羧基-3,5·二甲基苄基) 順丁烯二醯亞胺,N- ( 4-羧基-2,6-二甲基苄基)順丁烯二 醯亞胺,N- ( 2-羧基環己基)順丁烯二醯亞胺,N- ( 3-羧 基環己基)順丁烯二醯亞胺,N- ( 4-羧基環己基)順丁烯 二醯亞胺,N- ( 2-羧基甲基環己基)順丁烯二醯亞胺,N-(3-羧基甲基環己基)順丁烯二醯亞胺,N- (4-羧基甲基 環己基)順丁烯二醯亞胺等。 該等之中,就N- ( 4-羥基環己基)順丁烯二醯亞胺 -13- 1326799 ,N- ( 4-羥苯基)順丁烯二醯亞胺,N- ( 4-羧基 丁烯二醯亞胺可提高所得之保護膜或絶緣膜之耐 影界限之點而言可恰當使用。該等,可單獨或者 〇 本發明所用之共聚物[A]係,將化合物(a4 之構成單元,根據化合物(al ) ,( a2 ) , ( a3 )所衍生之重覆單元之合計,較佳爲1〇〜7〇重 φ佳爲含有15〜50重量%。此構成單元在不足1〇 情形,會有敏輻射線性樹脂組成物之保存安定性 向,一方面在超過70重量%時,在層間絶緣膜 之形成之顯影步驟中,會有難以溶解於鹼水溶液 化合物(a4)若爲具有自由基聚合性之不飽 並無特別限制,例如,可例舉具有(甲基)丙烯 (甲基)丙烯酸環狀烷酯,具有羥基之(甲基) 酯,(甲基)丙烯酸芳基酯,不飽和二羧酸二酯 着飽和化合物,順丁烯二醯亞胺化合物,不飽和芳 物,共軛二烯。 該等之具體例方面例如,甲基丙烯酸烷基烷 基甲基丙烯酸酯,乙基甲基丙烯酸酯,正丁基甲 酯,二級丁基甲基丙烯酸酯,三級丁基甲基丙烯 乙基己基甲基丙烯酸酯,異癸基甲基丙烯酸酯, 甲基丙烯酸酯,十三基甲基丙烯酸酯,正硬脂基 酸酯等; 丙烯酸烷酯則有甲基丙烯酸酯,異丙基丙烯 苯基)順 熱性及顯 組合使用 )所衍生 )及(a4 .量%,特 重量%之 降低之傾 或微透鏡 之情形。 和化合物 酸烷酯, )丙烯酸 ,雙環不 香族化合 酯則有甲 基丙烯酸 酸酯,2-正月桂基 甲基丙烯 酸酯等; -14 - 1326799 甲基丙烯酸環狀烷酯則有環己基甲基丙烯酸酯,2-甲 基環己基甲基丙烯酸酯,三環[5.2.1.02 6]癸-8-基甲基丙烯 酸酯,三環[5.2.1.02·6]癸-8-基氧乙基甲基丙烯酸酯,甲基 丙烯酸異硼烷酯等; 具有羥基之甲基丙烯酸酯則有羥甲基甲基丙烯酸酯, 2-羥乙基甲基丙烯酸酯,3-羥丙基甲基丙烯酸酯,4·羥丁 基甲基丙烯酸酯,二乙二醇單甲基丙烯酸酯,2,3_二羥丙 基甲基丙烯酸酯,2 -甲基丙烯醯氧基乙基糖苷(glyCoside ),4_羥苯基甲基丙烯酸酯等, 具有羥基之丙烯酸酯則有羥甲基丙烯酸酯,2 -羥乙基 丙烯酸酯,3-羥丙基丙烯酸酯,4-羥丁基丙烯酸酯,二乙 二醇單丙烯酸酯,2,3-二羥丙基丙烯酸酯,2·丙烯醯氧乙 基糖苷,4-羥苯基丙烯酸酯等; 丙烯酸環狀烷酯則有環己基丙烯酸酯,2 -甲基環己基 丙烯酸酯,三環[5.2.1.02·6]癸-8-基丙烯酸酯,三環 [5.2.1.02·6]癸-8-基氧乙基丙烯酸酯,甲基丙烯酸異硼烷酯 等; 甲基丙烯酸芳基酯則有苯基甲基丙烯酸酯,苄基甲基 丙烯酸酯等; 丙烯酸芳基酯則有苯基丙烯酸酯,苄基丙烯酸醋等; 不飽和二羧酸二酯則有順丁烯二酸二乙酯,反式丁稀 二酸二乙酯,衣康酸二乙酯等; 雙環不飽和化合物則有雙環[2.厂^庚-厂烯,5-甲基雙 環[2.2.1]庚-2-烯,5-乙基雙環[2.2.^庚-厂烯,5·甲氧基 -15- 1326799 又環[2.2.1】庚-2_烯,5_乙氧基雙環[2 2 "庚_2·烯,、6·二 甲氧基雙環[2.2」]庚·2_缔,5,6·:乙氧基雙環[2 2⑽小 烯,5·三級丁氧基羰基雙環[2.2丨]庚_2_烯,5·環己基氧羰 基雙環[2.2.1]庚_2_燒,5_苯氧羰基雙環[2 2 5,6_—(三級丁氧基羰基)雙環[2 2〗]庚_2_烯,56_二( 環己基氧羰基)雙環[2.2.1]庚_2-烯,5- (2·-羥乙基)雙 環[2.2.1]庚_2_烯,5,6_二羥雙環[2 2丨]庚-厂烯,夂6-二( 羥甲基)雙環[2.2.1]庚-2-烯,5,6-二(2,-羥乙基)雙環 [2.2.1]庚_2·烯,5_羥基·5_甲基雙環[221]庚_2_烯,5_羥 基5 -乙基雙環[2_2.1]庚-2 -烯’ 5-羥甲基-5 -甲基雙環 [2·2·1]庚-2-烯等; 順丁烯二醯亞胺化合物則有苯基順丁烯二醯亞胺,環 己基順丁烯二醯亞胺’苄基順丁烯二醯亞胺,1琥珀醯亞 胺基-3-順丁烯二醯亞胺苯甲酸酯,Ν_琥珀醯亞胺基-4_順 丁嫌二醯亞胺丁酸酯’ Ν -琥珀醯亞胺基_6_順丁烯二醯亞 .鲁胺己酸醋’ Ν -琥拍醯亞胺基-3 -順丁燃二醯亞胺丙酸醒, Ν· ( 9·吖啶基)順丁烯二醯亞胺等; 不飽和芳香族化合物則有苯乙烯,甲基苯乙烯, 間甲基苯乙烯,對甲基苯乙烯,乙烯基甲苯,對甲氧基苯 乙烯等; 共軛二烯則有1,3 -丁二烯,異戊間二烯,2,3 -二甲基-1,3-丁二烯等; 其他不飽和化合物則有丙烯腈,甲基丙烯腈,氯乙烯 ,乙烯叉二氯,丙烯醯胺,甲基丙烯醯胺,乙酸乙烯酯。 -16- 1326799 該等之中,甲基丙烯酸烷酯,甲基丙烯酸環狀烷酯, 雙環不飽和化合物,不飽和芳香族化合物,共軛二烯可恰 當使用,尤其是苯乙烯,三級丁基甲基丙烯酸酯,三環 [5.2.1.02 6]癸-8-基甲基丙烯酸酯,對甲氧基苯乙烯,2-甲 基環己基丙烯酸酯,1,3-丁二烯,雙環[2.2.1]庚-2-烯就共 聚反應性及會有相對於鹼水溶液之溶解性之點而言爲佳。 該等,可單獨或者組合使用。 本發明所用之共聚物[A ]之較佳具體例方面,可例舉 ,例如,甲基丙烯酸/苯乙烯/三環[5.2.1.〇26]癸-8-基甲基 丙烯酸酯/甲基環氧丙基丙烯酸酯/N-( 4-羥苯基)順丁燦 二醯亞胺共聚物’甲基丙烯酸/苯乙烯/三環[5.2.1.02.6]癸-8-基甲基丙烯酸酯/環氧丙基甲基丙烯酸酯/對乙烯基苄基 環氧丙基醚/>1-(4_羥基苯基)順丁烯二醯亞胺共聚物, 甲基丙烯酸/苯乙烯/三環[5.2.1.〇2.6]癸-8-基甲基丙烯酸酯/ 甲基環氧丙基丙烯酸酯/2-羥乙基甲基丙烯酸醒/Ν· 經 苯基)順丁烯二醯亞胺共聚物,甲基丙烯酸/苯乙烯/三環 [5.2_1.026]癸-8-基甲基丙烯酸酯/甲基環氧丙基丙烯酸酯/ 正硬脂甲基丙烯酸酯/Ν- ( 4-羥苯基)順丁烯二醯亞胺共 聚物’甲基丙燃酸/苯乙稀/三環[5.2.1.02.6]癸-8-基甲基丙 烧酸醋/甲基環氧丙基丙稀酸醋/N- ( 4-殘基苯基)順丁德 二醯亞胺共聚物’甲基丙稀酸/苯乙烯/三環[5 2丨〇2 6]癸_ 8-基甲基丙烯酸酯/甲基環氧丙基丙烯酸酯/Ν· ( 4_羥環己 基)順丁烧二醯亞胺共聚物》 本發明所用之共聚物[Α]係’聚苯乙煤換算重量平均 -17- 1326799 分子量(以下’稱爲「Mw」),通常爲2χ1〇3〜1χ1〇5, 較佳爲5χ1 03〜5χ1 04爲所望。在Mw不足2x1 〇3時,會有 顯影界限不充分之情形’所得之被膜之殘膜率等會降低, 或所得之層間絶緣膜或微透鏡之圖型形狀,耐熱性等惡化 之情況’一方面超過lxlO5時,感度會降低使圖型形狀劣 化。又’分子量分布(以下,稱爲「Mw/Mn」)」通常係 5.0以下’較佳爲3.0以下爲所望。Mw/Mn超過5.0時, 0所得之層間絶緣膜或微透鏡之圖型形狀會劣化。含有上述 之共聚物[A]之敏輻射線性樹脂組成物,在顯影之際’並 不會產生殘留顯影而可容易地形成所定圖型形狀。 共聚物[A]之製造所使用之溶劑方面,可例舉例如’ 醇,醚,乙二醇醚,乙二醇烷基醚乙酸酯,二乙二醇’两 二醇單烷基醚,丙二醇烷基醚乙酸酯,丙二醇烷基醚乙酸 酯,芳香族烴類,酮,酯等。 該等具體例方面,可例舉,例如醇則有甲醇,乙醇# •; 醚則有四氫呋喃等; 乙二醇醚則有乙二醇單甲基醚,乙二醇單乙基醚等; 乙二醇烷基醚乙酸酯則有甲基溶纖劑乙酸酯,乙基$ 纖劑乙酸酯等; 二乙二醇則有二乙二醇單甲基醚’ 二乙二醇單乙基醚,二乙二醇二甲基醚,二乙二醇二 乙基醚,二乙二醇乙基甲基醚等; 醇單乙基 丙二醇單烷基醚則有丙二醇單甲基醚,丙二 -18- 1326799 醚,丙二醇單丙基醚,丙二醇單丁基醚等; 丙二醇烷基醚乙酸酯則有丙二醇甲基醚乙酸酯,丙二 醇乙基醚乙酸酯,丙二醇丙基醚乙酸酯,丙二醇丁基醚乙 酸酯等; 丙二醇烷基醚乙酸酯則有丙二醇甲基醚丙酸酯,丙二 醇乙基醚丙酸酯,丙二醇丙基醚丙酸酯,丙二醇丁基醚丙 酸酯等; 芳香族烴則有甲苯,二甲苯等; 酮則有甲基乙基酮,環己酮,4-羥基-4-甲基-2-戊酮 等; 酯則可例舉乙酸甲酯,乙酸乙酯,乙酸丙酯,乙酸丁 酯,2-羥丙酸乙酯,2-羥基-2-甲基丙酸甲酯,2-羥基-2-甲基丙酸乙酯,羥甲基乙酸甲酯,羥乙酸乙酯,羥乙酸丁 酯,乳酸甲酯,乳酸乙酯,乳酸丙酯,乳酸丁酯,3 -羥甲 基丙酸甲酯,3-羥丙酸乙酯,3-羥丙酸丙酯,3-羥丙酸丁 酯,2-羥基-3-甲基丁酸甲酯,甲氧基乙酸甲酯,甲氧基 乙酸乙酯,甲氧基乙酸丙酯,甲氧基乙酸丁酯,乙氧基乙 酸甲酯,乙氧基乙酸乙酯,乙氧基乙酸丙酯,乙氧基乙酸 丁酯,丙氧基乙酸甲酯,丙氧基乙酸乙酯,丙氧基乙酸丙 酯,丙氧基乙酸丁酯,丁氧基乙酸甲酯,丁氧基乙酸乙酯 ,丁氧基乙酸丙酯,丁氧基乙酸丁酯,2-甲氧基丙酸甲酯 ’ 2-甲氧基丙酸乙酯,2-甲氧基丙酸丙酯,2-甲氧基丙酸 丁酯,2-乙氧基丙酸甲酯,2-乙氧基丙酸乙酯,2-乙氧基 丙酸丙酯,2-乙氧基丙酸丁酯,2-丁氧基丙酸甲酯,2-丁 -19- 1326799 氧基丙酸乙酯,2_丁氧基丙酸丙酯,2-丁氧基丙酸丁酯, 3 -甲氧基丙酸甲酯,3 -甲氧基丙酸乙酯,3 -甲氧基丙酸丙 酯,3-甲氧基丙酸丁酯,3-乙氧基丙酸甲酯,3-乙氧基丙 酸乙酯,3-乙氧基丙酸丙酯,3-乙氧基丙酸丁酯,3-丙氧 基丙酸甲酯,3-丙氧基丙酸乙酯,3-丙氧基丙酸丙酯,3-丙氧基丙酸丁酯,3-丁氧基丙酸甲酯,3-丁氧基丙酸乙酯 ,3-丁氧基丙酸丙酯,3-丁氧基丙酸丁酯等之酯。 φ 該等之中,以乙二醇烷基醚乙酸酯,二乙二醇,丙二 醇單烷基醚,丙二醇烷基醚乙酸酯爲佳,尤其是,二乙二 醇二甲基醚,二乙二醇乙基甲基醚,丙二醇甲基醚,丙二 醇甲基醚乙酸酯爲佳。 共聚物[A]之製造所使用之聚合引發劑方面,可使用 周知一般自由基聚合引發劑,可例舉例如2,2'·偶氮雙異 丁腈,2.2’-偶氮雙-(2,4-二甲基戊腈),2,2’-偶氮雙-( 4-甲氧基-2.4-二甲基戊腈)等之偶氮化合物;過氧化二苯 φ甲醯,月桂醯基過氧化物,三級丁基過氧特戊酸酯( pivalate ) ,1,1·-雙-(三級丁基過氧)環己烷等之有機過 氧化物··及過氧化氫。自由基聚合引發劑係使用過氧化物 之情形,可使過氧化物與還元劑一起使用之氧化還原型開 始劑亦可。 共聚物[A]之製造中,爲調整分子量則可使用分子量 調整劑。其具體例方面,可例舉,三氯甲烷,四溴化碳等 之鹵化烴類;正己基硫醇,正辛基硫醇,正十二基硫醇, 三級十二基硫醇,锍基乙酸(thioglycollic acid)等之硫 -20- 1326799 醇類;二甲基黃原酸(xanthie )硫化物,二異丙基黃原酸 二硫化物等之黃原酸類;葱品油烯(terpinolene) ,α-甲基 苯乙烯二聚物等。 [B]成分 本發明所用之1.2-苯醌二疊氮化合物[B]方面,可例 舉例如,1.2-苯醌二疊氮磺酸酯,1,2-萘醌二疊氮磺酸酯 ,1,2-苯醌二疊氮磺酸醯胺及1.2-萘醌二疊氮磺酸醯胺等 〇 該等之具體例方面,可例舉,2,3,4-三羥二苯甲酮-1,2-萘醌二疊氮-4-磺酸酯,2,3,4-三羥二苯甲酮-1,2-萘醌 二疊氮-5-磺酸酯,2,4,6-三羥二苯甲酮-1,2-萘醌二疊氮-4-磺酸酯,2,4,6-三羥二苯甲酮-1,2-萘醌二疊氮-5-磺酸酯 等之三羥二苯甲酮之1,2-萘醌二疊氮磺酸酯類;2,2',4,4'-四羥二苯甲酮-1,2-萘醌二疊氮-4-磺酸酯,2,2',4,4'-四羥 二苯甲酮-1,2-萘醌二疊氮-5-磺酸酯,2,3,4,3'-四羥二苯甲 酮-1,2-萘醌二疊氮-4-磺酸酯,2,3,4,3’-四羥二苯甲酮-1,2-萘醌二疊氮-5-磺酸酯,2,3,4,4’-四羥二苯甲酮-1,2-萘 醌二疊氮-4-磺酸酯,2,3,4,4'-四羥二苯甲酮-1,2-萘醌二 疊氮-5-磺酸酯,2,3,4,2·-四羥-4'-甲基二苯甲酮-1,2-萘醌 二疊氮-4-磺酸酯,2,3,4,2'-四羥-4’-甲基二苯甲酮-1,2-萘 醌二疊氮-5_磺酸酯,2,3,4,4、四羥-31-甲氧基二苯甲酮-1,2-萘醌二疊氮-4-磺酸酯、2,3,4,4'-四羥-3’-甲氧基二苯 甲酮-1,2-萘醌二疊氮-5-磺酸酯等之四羥二苯甲酮之1,2- -21 - 1326799 萘醌二疊氮磺酸酯; 2,3,4,2',6'-五羥二苯甲酮-1, 2-萘醌二疊氮-4-磺酸 酯,2,3,4,2’,6、五羥二苯甲酮-1,2-萘醌二疊氮-5-磺酸酯 等之五羥二苯甲酮之 1,2-萘醌二疊氮磺酸酯 ;2,4,6,3',4',5'-六羥二苯甲酮-1,2-萘醌二疊氮-4-磺酸酯, 2,4,6,3',4',5'-六羥二苯甲酮-1,2-萘醌二疊氮-5-磺酸酯, 3,4,5,3’,4’,5'-六羥二苯甲酮-1,2-萘醌二疊氮-4-磺酸酯, φ 3,4,5,3',4',5’-六羥二苯甲酮-1,2-萘醌二疊氮-5-磺酸酯等 之六羥二苯甲酮之1,2-萘醌二疊氮磺酸酯; 雙(2,4-二羥苯基)甲烷-1,2-萘醌二疊氮-4-磺酸酯, 雙(2,4-二羥苯基)甲烷-1,2-萘醌二疊氮-5-磺酸酯,雙( 對羥苯基)甲烷-1,2-萘醌二疊氮-4-磺酸酯,雙(對羥苯 基)甲烷-1,2-萘醌二疊氮-5-磺酸酯,三(對羥苯基)甲 烷-1,2-萘醌二疊氮-4-磺酸酯,三(對羥苯基)甲烷-1,2-萘醌二疊氮-5-磺酸酯,1,1,1-三(對羥苯基)乙烷-1,2-萘 馨醌二疊氮-4-磺酸酯,1,1,1-三(對羥苯基)乙烷-1,2-萘醌 二疊氮-5-磺酸酯,雙(2,3,4-三羥苯基)甲烷-1,2-萘醌二 疊氮-4-磺酸酯,雙(2,3,4-三羥苯基)甲烷-1,2-萘醌二疊 氮-5-磺酸酯,2,2-雙(2,3,4-三羥苯基)丙烷-1,2-萘醌二 疊氮-4-磺酸酯,2,2-雙(2,3,4-三羥苯基)丙烷-1,2-萘醌 二疊氮-5-磺酸酯,1,1,3-三(2,5-二甲基-4-羥苯基)-3-苯 基丙烷-1,2-萘醌二疊氮-4-磺酸酯,1,1,3-三(2,5-二甲基-4-羥苯基)-3_苯基丙烷-1,2-萘醌二疊氮-5-磺酸酯, 4,4'-〔1-〔4-〔1-〔4-羥苯基〕-1-甲基乙基〕苯基〕 -22- 1326799 亞乙基〕雙酚-1,2-萘醌二疊氮-4-磺酸酯,4,4'-〔 l-〔4- 〔1-〔 4-羥苯基〕-1-甲基乙基〕苯基〕亞乙基〕雙酚-1, 2-萘醌二疊氮-5-磺酸酯,雙(2,5-二甲基-4-羥苯基)-2- 羥苯基甲烷-1,2·萘醌二疊氮-4-磺酸酯,雙(2,5-二甲基- 4-羥苯基)-2-羥苯基甲烷-1,2-萘醌二疊氮-5-磺酸酯, 3,3,3',3·-四甲基-1,1'-螺雙氫茚-5,6,7,5’,6',7'-己醇-1,2-萘 醌二疊氮-4-磺酸酯,3,3,3\3·-四甲基-I/-螺雙氫茚- 5,6,7,5、6',7’-己醇-1,2-萘醌二疊氮-5-磺酸酯,2,2,4-三甲 基-7,2·,4'-三羥黃烷(flavan) -1,2-萘醌二疊氮-4-磺酸酯 ’ 2,2,4-三甲基-7,2',4'-三羥黃烷-1,2·萘醌二疊氮-5-磺酸 酯等之(聚羥苯基)鏈烷之1,2-萘醌二疊氮磺酸酯。 又,上述例示之1,2-萘醌二疊氮磺酸酯類之酯鍵結 變更爲醯胺鍵結之1,2-萘醌二疊氮磺酸醯胺類例如2,3,4- 三羥二苯甲酮-1,2-萘醌二疊氮-4-磺酸醯胺等可恰當使用 〇 該等之母核中,以2,3,4,4’-四羥二苯甲酮,4,4'-〔1-〔4-〔1-〔 4-羥苯基〕-1-甲基乙基〕苯基〕亞乙基〕雙酚 爲佳。 又,1,2-萘醌二疊氮磺酸鹵化物方面,以1,2 -萘醌二 疊氮磺酸氯化物爲佳,其具體例方面,可例舉1,2 -萘醌二 疊氮-4-磺酸氯化物及1,2-萘醌二疊氮-5-磺酸氯化物,其 中,以使用1,2-萘醌二疊氮-5-磺酸氯化物爲佳。 在縮合反應中,相對於於酚性化合物或醇性化合物中 0Η基數’可使用較佳爲30〜85莫耳% ,再佳爲相當於 -23- 1326799 50〜70莫耳%之1,2-萘醌二疊氮磺酸鹵化物。 縮合反應可以公知之方法來實施。 該等之1,2-苯醌二疊氮化合物可單獨或組合2種類以 上使用。 [B]成分之使用比率,相對於[A]成分100重量份,較 佳爲5〜100重量份,再佳爲10〜50重量份。 此比率在不足5重量份之情形,因輻射線之照射所生 成之酸量少,故相對於輻射線之照射部分與未照射部分之 顯影液鹼水溶液之溶解度差變小,使得圖型化有困難。又 ,因與環氧基之反應有關之酸之量變少,故無法獲得充分 耐熱性及耐溶劑性。一方面,此比率在超過1 0 0重量份之 情形,在短時間之輻射線之照射,因未反應之[B]成分多 量殘存,故對前述鹼水溶液之不溶化效果過高使得顯影有 所困難》 41其他成分 本發明之敏輻射線性樹脂組成物,含有上述之共聚物 [A]及[B]成分爲必須成分,其他可因應需要,含有[C]感 熱性酸生成化合物,[D]具有至少1個乙烯性不飽和雙鍵 之聚合性化合物,[E]共聚物[A]以外之環氧樹脂,[F]界面 活性劑,或者[G]黏接助劑。 上述[C]感熱性酸生成化合物,可作爲提高耐熱性或 硬度來使用。其具體例方面,可例舉,鎏鹽,苯并噻唑鑰 鹽,銨鹽,鐄鹽等之鑰鹽。 • 24- 1326799 上述鎏鹽之方面具體例方面,可例舉,烷基鎏鹽,苄 基鎏鹽,二苄基鎏鹽,取代苄基鎏鹽等。 該等之具體例方面,可例舉,例如,烷基鎏鹽則有 4-乙醯苯基二甲基鎏六氟銻酸鹽,4-乙醯氧基苯基二甲基 鎏六氟砷酸鹽,二甲基-4-(苄基氧羰基氧)苯基鎏六氟 銻酸鹽,二甲基-4-(苯甲醯氧基)苯基鎏六氟銻酸鹽, 二甲基-4-(苯甲醯氧基)苯基鎏六氟砷酸鹽,二甲基-3-氯-4-乙醯氧基苯基鎏六氟銻酸鹽等; 苄基鎏鹽則有苄基-4-羥苯基甲基鎏六氟銻酸鹽,苄 基-4-羥苯基甲基鎏六氟磷酸鹽,4-乙醯氧基苯基苄基甲 基鎏六氟銻酸鹽,苄基-4-甲氧基苯基甲基鎏六氟銻酸鹽 ,苄基-2-甲基-4-羥苯基甲基鎏六氟銻酸鹽,苄基-3-氯-4-羥苯基甲基鎏六氟砷酸鹽,4-甲氧基苄基-4-羥苯基甲基 鎏六氟磷酸鹽等; 二苄基鎏鹽則有二苄基-4-羥苯基鎏六氟銻酸鹽,二 苄基-4-羥苯基鎏六氟磷酸鹽,4-乙醯氧基苯基二苄基鎏 六氟銻酸鹽,二苄基-4-甲氧基苯基鎏六氟銻酸鹽,二苄 基-3-氯-4-羥苯基鎏六氟砷酸鹽,二苄基-3-甲基-4-羥-5-三級丁基苯基鎏六氟銻酸鹽,苄基-4-甲氧基苄基-4-羥苯 基鎏六氟磷酸鹽等; 取代苄基鎏鹽則有對氯苄基-4-羥苯基甲基鎏六氟銻 酸鹽,對硝基苄基-4-羥苯基甲基鎏六氟銻酸鹽,對氯苄 基-4-羥苯基甲基鎏六氟磷酸鹽,對硝基苄基-3-甲基-4-羥 苯基甲基鎏六氟銻酸鹽,3,5-二氯苄基-4-羥苯基甲基鎏六 -25- 1326799 氟銻酸鹽,0-氯苄基-3-氯-4-羥苯基甲基鎏六氟銻酸鹽等 〇 上述苯并噻唑鎗鹽之具體例方面可例舉苄基苯并噻唑 鑰六氟銻酸鹽,3 -苄基苯并噻唑鑰六氟磷酸鹽,3 -苄基苯 并噻唑鎗四氟硼酸鹽,3-(對甲氧基苄基)苯并噻唑鑰六 氟銻酸鹽,3-苄基-2-甲基硫代苯并噻唑鎗六氟銻酸鹽,3-苄基-5-氯苯并噻唑鑰六氟銻酸鹽等之苄基苯并噻唑鎗鹽 • ° 該等之中,鎏鹽及苯并噻唑鑰鹽可恰當使用,尤其是 4-乙醯氧基苯基二甲基鎏六氟砷酸鹽,苄基-4-羥苯基甲 基鎏六氟銻酸鹽,4 -乙醯氧基苯基苄基甲基鎏六氟銻酸鹽 ,二苄基-4-羥苯基鎏六氟銻酸鹽,4-乙醯氧基苯基苄基 鎏六氟銻酸鹽,3-苄基苯并噻唑鑰六氟銻酸鹽可恰當使用 〇 該等之販售品方面,可例舉San-Aid SI-L85,同SI-_L110,同 SI-L145,同 SI-L150,同 SI-L160(三新化學工 業公司製)等。 [C]成分之使用比率,相對於共聚物[A] 100重量份, 較佳爲20重量份以下,再佳爲5重量份以下。此使用量 在超過20重量份之情形,塗膜形成步驟中析出物被析出 ,會有造成塗膜形成障礙之情形。 上述[D]成分之具有至少1個乙烯性不飽和雙鍵之聚 合性化合物(以下,稱爲(D成分))。方面,可恰當地 例舉例如單官能(甲基)丙烯酸酯,2官能(甲基)丙烯 -26- 1326799 酸酯或3官能以上之(甲基)丙烯酸酯。 上述單官能(甲基)丙烯酸酯方面,可例舉例如2-羥乙基(甲基)丙烯酸酯,卡必醇(甲基)丙烯酸酯,( 甲基)丙烯酸異硼烷酯,3-甲氧基丁基(甲基)丙烯酸酯 ,2-(甲基)丙烯醯基氧乙基-2-羥丙基酞酸酯等。該等 之販售品方面,可例舉例如 AronixM-101,同M-111 ’同 M-1 14 (以上,東亞合成公司)製),KAYARAD TC-1L0S,同 TC-120S (以上,日本化藥公司)製), Bisco at 158,同 2311 (以上,大阪有機化學工業公司) )製)等。 上述2官能(甲基)丙烯酸酯方面,可例舉例如乙二 醇(甲基)丙烯酸酯,1,6-己二醇二(甲基)丙烯酸酯, 1,9-壬二醇二(甲基)丙烯酸酯,聚丙二醇二(甲基)丙 烯酸酯,四乙二醇二(甲基)丙烯酸酯,雙苯氧乙醇莽二 丙烯酸酯,雙苯氧乙醇莽二丙烯酸酯等。該等之販售品方 面,可例舉例如AronixM-210,同M-240,同M-6200 (以 上,東亞合成公司製),KAYARAD HDDA,同HX-220, 同 R-604 (以上,日本化藥公司製),Biscoat 260,同 312,同335 HP (以上,大阪有機化學工業公司製)等。 上述3官能以上之(甲基)丙烯酸酯方面,可例舉例 如三羥甲基丙烷三(甲基)丙烯酸酯,新戊四醇三(甲基 )丙烯酸酯,三((甲基)丙烯醯氧基乙基)磷酸酯,新 戊四醇四(甲基)丙烯酸酯,二新戊四醇五(甲基)丙烯 酸酯,二新戊四醇六(甲基)丙烯酸酯等,其販售品方面 -27- 1326799 ,可例舉例如 Aronix M-309,同 M-400,同 M-405,同 M-450,同 M-7100,同 M-8030,同 M-8060 (以上,東亞 合成公司製),KAYARAD TMPTA,同 DPHA,同 DPCA--20,同 DPCA-40,同 DPCA-60,同 DPCA-120(以上, 日本化藥公司製),Biscoat 295,同 300,同 360,同 GPT,同3PA,同400 (以上,大阪有機化學工業公司製 )等。 該等之中,3官能以上之(甲基)丙烯酸酯可恰當使 用,其中以三羥甲基丙烷三((甲基)丙烯酸酯,新戊四 醇四(甲基)丙烯酸酯,二新戊四醇六(甲基)丙烯酸酯 爲特佳。 該等之單官能,2官能或3官能以上之(甲基)丙烯 酸酯,可單獨或者組合使用。 [D]成分之使用比率,相對於共聚物[A]100重量份, 較佳爲50重量份以下,再佳爲30重量份以下。 以此種比率含有[D]成分,可使本發明之敏輻射線性 樹脂組成物所得之層間絶緣膜或微透鏡之耐熱性及表面硬 度等提高。此使用量超過50重量份時,在基板上形成敏 輻射線性樹脂組成物之塗膜之步驟中會產生膜破裂。 上述[E]成分共聚物[A]以外之環氧樹脂(以下,稱爲 (E成分)。)方面,只要對相溶性無影響則無限定之意 ,較佳爲將雙酚A型環氧樹脂,酚醛清漆型環氧樹脂, 甲酚酚醛清漆型環氧樹脂,環狀脂肪族環氧樹脂,環氧丙 基酯型環氧樹脂’環氧丙基胺型環氧樹脂,雜環式環氧樹 -28- 1326799 脂,環氧丙基甲基丙烯酸酯(共聚)聚合之樹脂等。該等 之中,以雙酚A型環氧樹脂,甲酣酚醛清漆型環氧樹脂 ,環氧丙基酯型環氧樹脂等爲佳。 [E]成分之使用比率,相對於共聚物[A]100重量份, 較佳爲3〇重量份以下。以此種比率含有[E]成分,可使本 發明之敏輻射線性樹脂組成物所得之保護膜或絶緣膜之耐 熱性及表面硬度等更加提高。此比率超過30重量份時, 在基板上於形成敏輻射線性樹脂組成物之塗膜之際,會有 塗膜之膜厚均勻性不充分之情形。 另外’共聚物[A]亦可稱爲「環氧樹脂」,就具有鹼 可溶性之點則與[E]成分不同。 在本發明之敏輻射線性樹脂組成物,進而爲使塗布性 提高則可使用上述[F]成分界面活性劑。在此可使用之 [F]界面活性劑方面,可恰當使用氟系界面活性劑,聚砂 氧系界面活性劑及非離子系界面活性劑。 在氟系界面活性劑之方面具體例方面,可例舉, 1,1,2,2-四氟辛基(1,1,2,2-四氟丙基)醚,i,,l2,2_四氟 辛基己基醚’八乙二醇二(1,1,2,2-四氟丁基)酸,六乙 二醇(1,1,2,2,3,3-六氟戊基)醚,八丙二醇二(1,1,2,2-四氟丁基)醚’六丙二醇二(1,1,2,2,3,3-六氟戊基)醚, 全氟十二基磺酸鈉,〗,1,2,2,8,8,9,9,〗0,1〇_十氟十二基, 1,1,2,2,3,3-八氟癸基等以外’可例舉氟院基苯擴酸鈉類; 氟烷基氧乙烯醚類;碘化氟烷基銨類,氟烷基聚氧化乙稀 酸類’全氣院基聚氧乙醇類;全戴院基垸氧酸醋類;氟系院 -29- 1326799 酯類等。該等之販售品方面,可例舉BM- 1 000,BM-l 100 (以上,BM Chemie 社製),Megafuck F142D,同 F172 ,同 F173,同 F183,同 F178,同 F191,同 F471(以上 ,大日本墨水化學工業公司製),Fulorade FC-170C,同 FC-171,同FC-430,同FC-431 (以上,住友3M公司製 ),Sufuron S-112 ,同 S-113 ,同 S-131 ,同 S-141 ,同 S-145,同 S-3 8 2,同 SC-101,同 SC-102,同 SC-103,同 SC-104,同 SC-105,同 SC-106(旭硝子公司製),EF Top EF301 -同303,同352(新秋田化成公司製)等。 上述聚矽氧系界面活性劑方面,可例舉例如DC3PA ,DC7PA , FS- 1 265 , SF-8428 , SH11PA , SH21PA , SH28PA,SH29PA,SH30PA,SH-190,SH-1 93, SZ-6 03 2 (以上,東麗 Dowcorning聚矽氧公司製),TSF-4440 , TSF-43 00 ,TSF-4445 , TSF-4446 , TSF-4460 , TSF-4452 (以上,GE東芝聚矽氧公司製)等之商品名販 •售者。 上述非離子系界面活性劑方面,可使用例如,聚氧化 乙烯月桂基醚,聚氧化乙烯硬脂醚,聚氧化乙烯油醚等之 聚氧化乙烯烷基醚類;.聚氧化乙烯辛基苯基醚,聚氧化乙 烯壬基苯基醚等之聚氧化乙烯芳基醚類;聚氧化乙烯二月 桂酸酯,聚氧化乙烯二硬脂酸酯等之聚氧化乙烯二烷基烷 酯類等;(甲基)丙烯酸系共聚物Poly flow -No.57,95 ( 共榮社化學公司製)等。 該等之界面活性劑可單獨或組合2種以上使用。 -30- 1326799 該等[F]界面活性劑,相對於共聚物[A]100重量份, 可使用較佳爲5重量份以下,再佳爲2重量份以下。[F] 界面活性劑之使用量超過5重量份時,在基板上形成塗膜 之際,會有塗膜之膜破裂易於產生之問題。 本發明之敏輻射線性樹脂組成物中,又,爲提高與基 體之黏接性則可使用[G]成分黏接助劑。此種[G]黏接助劑 方面,官能性矽烷偶合劑可恰當使用,可例舉例如羧基, 甲基丙燃醯基,異氰酸醋基,環氧基等之具有反應性取代 基之矽烷偶合劑。具體而言,可例舉三甲氧基單矽烷基苯 甲酸,r-甲基丙烯醯氧基丙基三甲氧基矽烷,乙烯三乙 醯氧基矽烷,乙烯三甲氧基矽烷,r-異氰酸酯丙基三乙 氧基矽烷,r-環氧丙氧基丙基三甲氧基矽烷,yS-(3,4-環氧基環己基)乙基三甲氧基矽烷等。此種[G]黏接助劑 ’相對於共聚物[A] 100重量份,可使用較佳爲20重量份 以下’再佳爲1 0重量份以下之量。黏接助劑之量超過20 重量份之情形,顯影步驟中會有顯影殘留易於產生之情形 敏輻射線性樹脂組成物 本發明之敏輻射線性樹脂組成物,上述之共聚物[A] 及[B]成分以及如上述之可將任意添加之其他成分均勻混 合來調製。通常,本發明之敏輻射線性樹脂組成物,較佳 爲溶解於適當溶劑而使用於溶液狀態。例如將共聚物[A] 及[B]成分以及可任意添加之其他成分,以所定之比率混 -31 - 1326799 合,來調製溶液狀態之敏輻射線性樹脂組成物。 在使用於本發明之敏輻射線性樹脂組成物之調製之溶 劑方面’可將共聚物[A]及[B]成分以及任意配合之其他成 分之各成分予以均勻溶解,且使用與各成分不反應者。 在此種溶劑方面,可例舉製造上述共聚物[A]可使用 之溶劑所例示者相同之物。 此種溶劑中’就各成分之溶解性,與各成分之反應性 • ’塗膜形成之容易性等之點而言,以乙二醇醚,乙二醇烷 基醚乙酸酯,酯及二乙二醇可恰當使用。該等之中,以二 乙二醇乙基甲基醚’二乙二醇二甲基醚,丙二醇單甲基醚 ’丙二醇二甲基醚,丙二醇二乙基醚,二丙二醇二甲基醚 ’二丙二醇二乙基醚,丙二醇單甲基醚乙酸酯,甲氧基甲 基丙酸甲酯,乙氧基丙酸乙酯特佳。 再者與前述溶劑一起爲使膜厚之面内均勻性提高,可 倂用闻沸點溶劑,在可倂用之高沸點溶劑方面,可例舉例 ϋ如N-甲基甲醯胺,Ν,Ν-二甲基甲醯胺,Ν-甲基甲醯苯 胺,Ν-甲基乙醯胺,Ν,Ν_二甲基乙醯胺,Ν_甲基吡咯酮, —甲基亞颯,苄基乙基醚’二己基醚,己二酮,異佛爾 酮’己酸,癸酸,1-辛醇,.1-壬醇,苄基醇,乙酸苄酯, 苯甲酸乙酯,草酸二乙基,順丁烯二酸二乙基,7 •丁內 醒’碳酸乙烯酯’碳酸乙烯酯,苯基溶纖素乙酸酯等。該 寺之中’以Ν -甲基卩比略酮,γ -丁內醋,Ν,Ν -二甲基乙醯 胺爲佳。 本發明之敏輻射性樹脂組成物之溶劑方面,在倂用高 -32- 1326799 沸點溶劑之情形,其使用量,相對於溶劑全量爲5 〇重量 %以下’較佳爲40重量%以下,更佳爲3〇重量%以下。 高沸點溶劑之使用量若超過此使用量時,會有塗膜之膜厚 均句性’感度及殘膜率降低之情形。 將本發明之敏輻射線性樹脂組成物以溶液狀態來調製 之情形’溶液中所佔溶劑以外之成分(亦即共聚物[Α]及 [Β]成分以及任意添加之其他成分之合計量)之比率,可 因應使用目的或所望之膜厚之値等而任意設定,但較佳爲 5〜50重量%’再佳爲10〜4〇重量%,更佳爲15〜35重 量%。 如此所調製之組成物溶液,在使用孔徑0·2μπι左右之 微孔過濾器等進行過濾後,可供使用。 層間絶緣膜,微透鏡之形成接著使用本發明之敏輻射 線性樹脂組成物,就形成本發明之層間絶緣膜,微透鏡之 方法加以說明。本發明之層間絶緣膜或微透鏡之形成方法 ,係以下之記載順序含有以下之步驟者。 (1 )將本發明之敏輻射線性組成物之塗膜形成於基 板上之步驟, (2)在該塗膜之至少一部份照射輻射線之步驟, (3 )顯影步驟,及 (4 )加熱步驟。 (1)將本發明之敏輻射線性組成物之塗膜形成於基板上 之步驟 -33- 1326799 上述(1 )之步驟中,係將本發明之組成物溶液塗布 於基板表面’藉由進行預烘烤來除去溶劑,以形成敏輻射 線性樹脂組成物之塗膜。 在可使用基板之種類方面,可例舉例如玻璃基板,矽 晶圓及在該等之表面可形成各種金属之基板。 在組成物溶液之塗布方法方面,並無特別限定,可採 用例如噴灑法,輥輪塗布法,旋轉塗布法,棒塗布法等之 Φ適宜之方法。在預烘烤之條件方面,可依各成分之種類, 使用比率等而異。例如,在60〜110 °C 30秒〜15分鐘左 右。 所形成之塗膜之膜厚方面,作爲預烘烤後之値,在形 成層間絶緣膜之情形,例如以3〜6μιη,在形成微透鏡之 情形,例如以0.5〜3 μιη爲佳。 (2 )在該塗膜之至少一部份照射輻射線之步驟 φ 在上述(2)之步驟中,在所形成之塗膜透過具有所 定之圖型之光罩,予以輻射線照射後,使用顯影液進行顯 影處理,將輻射線之照射部分除去,藉以進行圖型化。在 此時所用之輻射線方面,可例舉例如紫外線,遠紫外線, X線,帶電粒子線等。 上述紫外線方面,例如g線(波長4 3 6 n m ) ,i線( 波長3 65 nrn )等。遠紫外線方面例如KrF準分子雷射等。 X線方面例如同步加速器輻射線等。帶電粒子線方面,例 如電子線等。 -34- 1326799 該等之中,以紫外線爲佳,尤其是含g線及/或i線 之輻射線爲佳。 曝光量方面,在形成層間絶緣膜之情形以5 0〜 l,500J/m2,在形成微透鏡之情形以50〜2,000J/m2爲佳。 (3 )顯影步驟 使用於顯影處理之顯影液方面,可使用例如氫氧化鈉 ,氫氧化鉀,碳酸鈉,矽酸鈉,矽酸鈉,氨,乙基胺,正 丙基胺,二乙基胺,二乙基胺乙醇,二正丙基胺,三乙基 胺,甲基二乙基胺,二甲基乙醇胺,三乙醇胺,氫氧化四 甲基銨,氫氧化四乙基銨,吡咯,吡啶,1,8-二氮雜雙環 〔5,4,〇〕-7-十一烯,1,5-二氮雜雙環〔4,3,0〕-5-壬烷等 之鹼(鹼性化合物)之水溶液。又,在上述鹼之水溶液適 量添加甲醇,乙醇等之水溶性有機溶劑或界面活性劑之水 溶液、或可將本發明之組成物溶解之各種有機溶劑作爲顯 影液使用。進而,在顯影方法方面,可適宜利用盛液法, 浸漬(clipping)法,搖動浸漬法,沖浴法等之適宜方法 。在此時之顯影時間,因組成物之組成而異,例如可爲 3 0〜1 2 0秒° 另外,周知之敏輻射線性樹脂組成物,顯影時間自最 適値超過20〜25秒左右時因在形成之圖型會有剝離產生 ’故有嚴密地控制顯影時間之必要,但在本發明之敏輻射 線性樹脂組成物之場合,自最適顯影時間超過時間在30 秒以上亦可爲良好的圖型形成,有製品原料利用率上之優 -35- 1326799V is removed, and then a step of removing the portion of the bonding sheet by etching the planarization film or various insulating films is provided. Therefore, solvent resistance or heat resistance is required in the microlens or microlens array 'in the coating film forming step and the etching step of the planarizing film and the etching photoresist. Such a sensitive radiation linear resin composition for forming a microlens is high in sensitivity, and since the microlens formed therefrom has a desired radius of curvature, high heat resistance, high transmittance, and the like are required. -6- 1326799 Further, in the development step in which the interlayer insulating film or the microlens thus obtained is formed, the development time is slightly longer than the optimum time, and the developer is impregnated between the pattern and the substrate to be easily peeled off. For this reason, it is necessary to strictly control the development time, and there is a problem in terms of the yield of the product. When the interlayer insulating film or the microlens is formed of a sensitive radiation linear resin composition, the composition is The aspect is required to be high in sensitivity, and in the developing step in the forming step, even if the development time is excessive than the predetermined time, the pattern peeling does not occur, and good adhesion is exhibited, and the interlayer insulating film formed therefrom is formed. High heat resistance, high solvent resistance, low dielectric constant, high transmittance, etc. are required. On the other hand, in the case of forming a microlens, a microlens system is required to have a good molten shape (a desired radius of curvature), which is high. Heat resistance, high solvent resistance, high transmittance, and a sensitive radiation linear resin composition which satisfies such requirements is not known at all. SUMMARY OF THE INVENTION The present invention has been completed in light of the above. Accordingly, it is an object of the present invention to provide a high-sensitivity radiation sensitivity which has a development limit which can form a good pattern shape even if the optimum development time is exceeded in the development step, and can easily form a sensitive radiation linearity of a pattern-like film excellent in adhesion. Composition. Another object of the present invention is to provide an interlayer insulating film having high heat resistance, high solvent resistance, high transmittance, low dielectric constant, and used for forming a microlens in the case of forming an interlayer insulating film. In this case, a composition of the sensitive radiation linear resin 1326799 having a microlens having a high transmittance and a good melt shape can be formed. Still another object of the present invention is to provide a method of forming an interlayer insulating film and a microlens using the above-described radiation-sensitive linear resin composition. Still another object of the present invention is to provide an interlayer insulating film and a microlens formed by the method of the present invention. Further objects and advantages of the present invention will become more apparent from the following description. According to the present invention, the above objects and advantages of the present invention, the first system, contain [A] (al) unsaturated carboxylic acid and/or unsaturated. A carboxylic anhydride (hereinafter referred to as "compound (a 1 )"), (a2) contains an epoxy group-unsaturated compound (hereinafter referred to as "compound (a2)"). (a 3) contains a hydroxyl group or a carboxyl group. Butenylenediamine-based monomer (hereinafter referred to as "compound (a3)"), and (a4) (al), (a2) and eucalyptus (a3) are unsaturated compounds (hereinafter referred to as "Compound (a4)") (hereinafter referred to as "copolymer [A]"), and [B] 1,2-benzoquinonediazide (hereinafter referred to as "[B] component The object of the present invention is to achieve the object and the advantages of the present invention. The second aspect of the present invention is achieved by the following steps, in which the following steps are included to form a special method for forming an interlayer insulating film or a microlens. . (1) a step of forming a coating film of the above-mentioned sensitive radiation linear resin composition on a substrate -8 - 1326799, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and ( 4) Heating step. Further, the object and the advantages of the present invention are achieved by the third layer of the interlayer insulating film or the microlens formed by the above method. The sensitive radiation linear resin composition of the present invention has a high-sensitivity radiation sensitivity 'having a development limit' and can form a good pattern shape even if it exceeds the optimum development time in the development step, and can easily form a pattern-like film excellent in adhesion. The interlayer insulating film of the present invention, which is formed of the above-mentioned composition, has excellent adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high transmittance, and has a low dielectric constant, and can be suitably used as an interlayer insulating film for an electronic member. . Further, the microlens of the present invention formed of the above composition has excellent adhesion to a substrate, is excellent in solvent resistance and heat resistance, and has high transmittance and a good melt shape, and can be suitably used as a microlens of a solid-state image sensor. [Embodiment] [Best Mode for Carrying Out the Invention] Hereinafter, the radiation sensitive linear resin composition of the present invention will be described in detail. Copolymer [A] 1326799 Copolymer [A], by compound polymerization of compound (al), compound (a2), compound (a3), and compound (a4) in a solvent in the presence of a polymerization initiator Manufacturing. The copolymer [A]' used in the present invention is a constituent unit derived from the compound (al), preferably based on the total of the repeating units derived from the compounds (al), (a2), (a3) and (a4). It is 5 to 40% by weight, particularly preferably 10 to 30% by weight. When the copolymer having less than 5% by weight of the constituent unit is used, it is difficult to dissolve in the aqueous alkali solution during the development step, and on the other hand, the copolymer having more than 40% by weight tends to have an excessively large solubility relative to the aqueous alkali solution. The compound (a 1 ) is a radically polymerizable unsaturated carboxylic acid and/or an unsaturated carboxylic acid anhydride, and examples thereof include a monocarboxylic acid, a dicarboxylic acid, an anhydride of a dicarboxylic acid, and a monocarboxylic acid. A acryloxyalkylene ester, a mono(meth)acrylate having a polymer of a carboxyl group and a hydroxyl group at both terminals, a polycyclic compound having a residue, an anhydride thereof, and the like. Specific examples of such specific examples include acrylic acid, methacrylic acid, crotonic acid, etc.; and dicarboxylic acid: maleic acid, trans-butenedioic acid, citraconic acid, Mesaconic acid, itaconic acid, etc.; the anhydride of a dicarboxylic acid, an anhydride of the compound exemplified by the above dicarboxylic acid, etc.; a mono[(meth)acryloxyalkyl group in a polycarboxylic acid The ester aspect has succinic acid mono [2-(methyl) propylene oxiranyl ethyl], phthalic acid mono [2-(methyl) propylene oxiranyl ethyl], etc.; -10- 1326799 in two The mono(meth)acrylate having a polymer having a carboxyl group and a hydroxyl group at the terminal may have an ω-carboxypolycaprolactone mono(meth)acrylate or the like; and a polycyclic compound having a carboxyl group and an anhydride thereof may each be exemplified 5-carboxybicyclo[2. 2. 1]hept-2-ene, 5,6-dicarboxybicyclo[2. 2. 1]-hept-2-ene, 5-carboxy-5-methylbicyclo[2. 2. 1]-hept-2-ene, 5-carboxy-5-ethylbicyclo[2. 2. 1]hept-2-ene ' 5-carboxy-6-methylbicyclo[2. 2. 1]-hept-2-ene, 5-carboxy-6-ethylbicyclo[2. 2. 1]hept-2-ene, 5. 6-dicarboxybicyclo[2. 2. 1]-hept-2-ene anhydride and the like. Among these, 'monocarboxylic acid, dicarboxylic acid anhydride can be suitably used, especially acrylic acid 'methacrylic acid, maleic anhydride, copolymerization reactivity, relative to the solubility of the alkali aqueous solution and the ease of availability. Words can be used properly. These can be used singly or in combination. The copolymer [Α] used in the present invention is a composite unit derived from the compound (a2), based on the total of the repeated units derived from the compounds (a1), (a2), (a3) and (a4). It is preferably 10 to 70% by weight, particularly preferably 20 to 60% by weight. The heat resistance or surface hardness of the interlayer insulating film or the microlens obtained by the constitution of the unit at a level of less than 10% by weight tends to decrease. On the one hand, the amount of the constituent unit is more than 70% by weight, and the sensitivity radiation linearity is obtained. The tendency of the resin composition to maintain stability is lowered. The compound (a2) is an epoxy group-containing unsaturated compound having a radical polymerizable property, and examples thereof include epoxypropyl acrylate, epoxypropyl methacrylate, and α-ethylepoxypropylpropionic acid. Vinegar, α-n-propyl epoxypropyl propyl acetonide, α-n-butyl epoxy acrylate vinegar 'propanol acid-3,4-epoxy-11 - 1326799 butyl ester, methacrylic acid-3 ,4-epoxybutyl acrylate, acrylate-6,7-epoxyheptyl ester, methacrylic acid-6,7-epoxyheptyl ester, α-ethyl acrylate-6,7-epoxyheptyl ester, fluorene-ethylene Base benzyl epoxypropyl ether, m-vinylbenzyl epoxy propyl ether, p-vinylbenzyl epoxy propyl ether and the like. Among these, epoxypropyl methacrylate, -6,7-epoxyheptyl methacrylate, fluorene-vinylbenzyl epoxypropyl ether, m-vinylbenzylepoxypropyl ether , p-vinylbenzyl epoxypropyl ether, 3,4-epoxycyclohexyl methacrylate, etc., can achieve copolymerization reaction φ and the heat resistance of the obtained interlayer insulating film or microlens, and the surface hardness is improved. It can be used properly in terms of points. These can be used singly or in combination. The copolymer [Α] used in the present invention is preferably a constituent unit derived from the compound (a3), based on the total of the repeating units derived from the compounds (al), (a2), (a3) and (a4). It is 5 to 50% by weight, particularly preferably 5 to 30% by weight. When the amount is less than 5% by weight, the heat resistance, the chemical resistance, and the surface hardness tend to be lowered. On the other hand, when the amount exceeds 50% by weight, the film formability of the coating film may be lowered. • The compound (a3) is a radical polymerizable hydroxyl group or a maleimide monomer having a mercapto group, and examples thereof include N-hydroxybutyleneimine, N-methylol group. Maleimide, N-(2-hydroxyethyl) maleimide, N-(3-hydroxypropyl) maleimide, N-(4-hydroxybutyl) ) maleimide, N-(2-hydroxycyclohexyl) maleimide, N-(3-hydroxycyclohexyl) maleimide 'N- (4-hydroxy ring) Hexyl) maleimide, N-(2-hydroxymethylcyclohexyl) maleimide, N-(2-hydroxymethylphenyl) maleimide 'N- (3-hydroxymethylphenyl) maleimide, N-(4-hydroxymethylphenyl)cis-12- 1326799 butenylenediamine, N-(4-hydroxymethyl-3 ,5-dimethylphenyl)maleimide, N-(54-hydroxymethyl-2,6-dimethylphenyl)maleimide, N-(2-hydroxyl Phenyl) maleimide, N-(3-hydroxyphenyl) maleimide, N-(4-hydroxyphenyl) maleimide, N- (4- Hydroxy-3,5-dimethylphenyl)butylene , N-(4-hydroxy-2,6-dimethylphenyl)maleimide, N-(2-hydroxybenzyl) maleimide, N-(3-hydroxybenzyl) Butylenediamine, N-(4-hydroxybenzyl) maleimide, N-(4-hydroxy-3,5-dimethylbenzyl)butylene Amine, N-(4-hydroxy-2,6-dimethylbenzyl) maleimide, N-(2-carboxyphenyl) maleimide, N-(3-carboxy Phenyl) maleimide, N-(4-carboxyphenyl) maleimide, N-(4-carboxy-3,5-dimethylphenyl)butylene Imine, N-(4-carboxy-3,5-dimethylbenzyl)maleimide, N-(4-carboxy-2,6-dimethylbenzyl)butylene Imine, N-(2-carboxybenzyl) maleimide, N-(3-carboxybenzyl) maleimide, N-(4.carboxybenzyl)butylene Yttrium imine, N-(4-carboxy-3,5.dimethylbenzyl) maleimide, N-(4-carboxy-2,6-dimethylbenzyl)butylene Yttrium, N-(2-carboxycyclohexyl) maleimide, N-(3-carboxycyclohexyl) maleimide N-(4-carboxycyclohexyl) maleimide, N-(2-carboxymethylcyclohexyl) maleimide, N-(3-carboxymethylcyclohexyl)-n-butene Diimine, N-(4-carboxymethylcyclohexyl) maleimide, and the like. Among these, N-(4-hydroxycyclohexyl) maleimide-13- 1326799, N-(4-hydroxyphenyl) maleimide, N-(4-carboxyl Butenylene diimide can be suitably used in the point that the protective film or the insulating film of the obtained protective film can be improved. These can be used alone or in the copolymer [A] system used in the present invention, and the compound (a4 The constituent unit, based on the total of the repeating units derived from the compounds (al), (a2), (a3), preferably from 1 to 7 Torr, preferably from 15 to 50% by weight. The constituent unit is less than 1 In the case of ruthenium, there is a preservation stability of the linear radiation-sensitive resin composition. On the other hand, when it exceeds 70% by weight, in the development step of forming the interlayer insulating film, it is difficult to dissolve the alkali aqueous solution compound (a4) if The radical polymerizable property is not particularly limited, and for example, a (meth)acrylic (meth)acrylic acid cyclic alkyl ester, a hydroxyl group-containing (meth) ester, and an (meth)acrylic acid aryl ester may be mentioned. , unsaturated dicarboxylic acid diester with saturated compound, maleimide compound, not full And aromatics, conjugated dienes. Specific examples of such, for example, alkyl alkyl methacrylate, ethyl methacrylate, n-butyl methyl ester, secondary butyl methacrylate, tertiary butyl Propylene ethylhexyl methacrylate, isodecyl methacrylate, methacrylate, thirteen methacrylate, n-stearyl ester, etc.; alkyl acrylate is methacrylate, different Propyl propylene phenyl) derived from heat and combined use) and (a4. %, % by weight, or as a result of a microlens. And compound acid alkyl esters, ) acrylic acid, bicyclic non-fragrance esters are methacrylate, 2-n-lauryl methacrylate, etc.; -14 - 1326799 methacrylic acid cyclic alkyl esters have cyclohexyl Acrylate, 2-methylcyclohexyl methacrylate, tricyclic [5. 2. 1. 02 6] 癸-8-yl methacrylate, tricyclic [5. 2. 1. 02·6]癸-8-yloxyethyl methacrylate, isoborane methacrylate, etc.; methacrylate with hydroxyl group is methylol methacrylate, 2-hydroxyethylmethyl Acrylate, 3-hydroxypropyl methacrylate, 4·hydroxybutyl methacrylate, diethylene glycol monomethacrylate, 2,3-dihydroxypropyl methacrylate, 2-methyl propylene oxime Oxyethylglycoside (glyCoside), 4-hydroxyphenyl methacrylate, etc., hydroxy acrylates are hydroxymethacrylate, 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 4 -hydroxybutyl acrylate, diethylene glycol monoacrylate, 2,3-dihydroxypropyl acrylate, 2 propylene oxirane ethyl glucoside, 4-hydroxyphenyl acrylate, etc.; There are cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5. 2. 1. 02·6]癸-8-yl acrylate, tricyclic [5. 2. 1. 02·6] 癸-8-yloxyethyl acrylate, isoborane methacrylate, etc.; aryl methacrylate is phenyl methacrylate, benzyl methacrylate, etc.; aryl acrylate The esters are phenyl acrylate, benzyl acrylate vinegar, etc.; the unsaturated dicarboxylic acid diester is diethyl maleate, diethyl transbutyl succinate, diethyl itaconate, etc.; Bicyclic unsaturated compounds have double rings [2. Factory ^ Geng - olefin, 5-methyl bicyclo [2. 2. 1]hept-2-ene, 5-ethylbicyclo[2. 2. ^ Geng - olefin, 5 · methoxy -15 - 1326799 and ring [2. 2. 1] G-8-ene, 5-ethoxybicyclo[2 2 "hept-2-ene,6.dimethoxybicyclo[2. 2"] Gg·2_Conclusion, 5,6·: Ethoxybicyclo[2 2 (10) olefin, 5 · Tert-butoxycarbonyl bicyclo [2. 2丨]hept-2-ene, 5·cyclohexyloxycarbonylbicyclo[2. 2. 1] Geng_2_burn, 5-phenyloxycarbonylbicyclo[2 2 5,6-(tris-butoxycarbonyl)bicyclo[2 2]hept-2-ene, 56-di(cyclohexyloxycarbonyl) Double loop [2. 2. 1] hept-2-ene, 5-(2·-hydroxyethyl)bicyclo[2. 2. 1] hept-2-ene, 5,6-dihydroxybicyclo[2 2丨]heptane-ylidene, 夂6-bis(hydroxymethyl)bicyclo[2. 2. 1]hept-2-ene, 5,6-di(2,-hydroxyethyl)bicyclo [2. 2. 1] hept-2-ene, 5-hydroxy-5-methylbicyclo[221]hept-2-ene, 5-hydroxy 5-ethylbicyclo[2_2. 1] hept-2-ene' 5-hydroxymethyl-5-methylbicyclo[2·2·1]hept-2-ene; etc.; maleimide compound has phenyl cis-butenylene Imine, cyclohexyl maleimide, 'benzyl butylidene imide, 1 amber quinone imido-3-methylene quinone imide benzoate, Ν amber imidate Base-4_ cis-butyl quinone imine butyrate ' Ν - amber quinone imine _6_ maleate . 鲁amine caproic acid vinegar Ν 琥 琥 琥 琥 琥 琥 醯 醯 琥 顺 顺 顺 顺 顺 顺 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 不 不 不 不 不 不 不The compound is styrene, methyl styrene, m-methyl styrene, p-methyl styrene, vinyl toluene, p-methoxy styrene, etc.; conjugated diene has 1,3 -butadiene, Pentadiene, 2,3-dimethyl-1,3-butadiene, etc.; other unsaturated compounds are acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene dichloride, acrylamide, methyl Acrylamide, vinyl acetate. -16- 1326799 Among these, alkyl methacrylate, cyclic alkyl methacrylate, bicyclic unsaturated compound, unsaturated aromatic compound, conjugated diene can be suitably used, especially styrene, tertiary butyl Acrylate, tricyclic [5. 2. 1. 02 6] 癸-8-yl methacrylate, p-methoxystyrene, 2-methylcyclohexyl acrylate, 1,3-butadiene, bicyclo [2. 2. 1] Hept-2-ene is preferred in terms of copolymerization reactivity and solubility with respect to an aqueous alkali solution. These can be used singly or in combination. Preferred examples of the copolymer [A] used in the present invention may, for example, be methacrylic acid/styrene/tricyclic [5. 2. 1. 〇26]癸-8-yl methacrylate/methylepoxypropyl acrylate/N-(4-hydroxyphenyl)cis-butyl bis-imine copolymer 'methacrylic acid/styrene/tricyclic [5. 2. 1. 02. 6] 癸-8-yl methacrylate/glycidyl methacrylate/p-vinylbenzylepoxypropyl ether/> 1-(4-hydroxyphenyl) maleimide Copolymer, methacrylic acid / styrene / tricyclic [5. 2. 1. 〇2. 6] 癸-8-yl methacrylate / methyl epoxy acrylate / 2 - hydroxyethyl methacrylate awake / Ν · phenyl) maleimide copolymer, methacrylic acid /styrene / tricyclic [5. 2_1. 026] 癸-8-yl methacrylate / methyl epoxy acrylate / n-stearyl methacrylate / Ν - ( 4-hydroxyphenyl) maleimide copolymer 'methyl Propionic acid / styrene / tricyclic [5. 2. 1. 02. 6] 癸-8-yl methacrylic acid vinegar / methyl epoxy propyl acrylate vinegar / N- (4-resin phenyl) cis-butane diimine copolymer 'methyl acrylate /styrene/tricyclo[5 2丨〇2 6]癸_ 8-yl methacrylate/methylepoxypropyl acrylate/Ν·(4_hydroxycyclohexyl) cis-butadiene diimine copolymer The copolymer [Α] used in the present invention is a polystyrene-butadiene converted weight average -17 - 1326799 molecular weight (hereinafter referred to as "Mw"), usually 2χ1〇3~1χ1〇5, preferably 5χ1 03 ~5χ1 04 is expected. When the Mw is less than 2x1 〇3, the development limit may be insufficient. The residual film ratio of the obtained film may be lowered, or the pattern shape of the obtained interlayer insulating film or microlens may be deteriorated. When the aspect exceeds lxlO5, the sensitivity is lowered to deteriorate the shape of the pattern. Further, the molecular weight distribution (hereinafter referred to as "Mw/Mn") is usually 5. 0 or less 'is preferably 3. 0 is below. Mw/Mn exceeds 5. At 0 o'clock, the pattern shape of the interlayer insulating film or the microlens obtained by 0 is deteriorated. The radiation sensitive linear resin composition containing the above copolymer [A] can be easily formed into a predetermined pattern shape without developing residual development at the time of development. The solvent used in the production of the copolymer [A] may, for example, be 'alcohol, ether, glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol' diglycol monoalkyl ether, Propylene glycol alkyl ether acetate, propylene glycol alkyl ether acetate, aromatic hydrocarbons, ketones, esters, and the like. Examples of the specific examples include, for example, an alcohol having methanol, ethanol # •; an ether having tetrahydrofuran; and a glycol ether having ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and the like; Glycol alkyl ether acetate is methyl cellosolve acetate, ethyl fiber acetate, etc.; diethylene glycol is diethylene glycol monomethyl ether diethylene glycol monoethyl Ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, etc.; alcohol monoethyl propylene glycol monoalkyl ether is propylene glycol monomethyl ether, C 2-18-1326799 ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, etc.; propylene glycol alkyl ether acetate has propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether Acid ester, propylene glycol butyl ether acetate, etc.; propylene glycol alkyl ether acetate has propylene glycol methyl ether propionate, propylene glycol ethyl ether propionate, propylene glycol propyl ether propionate, propylene glycol butyl ether Acid esters, etc.; aromatic hydrocarbons include toluene, xylene, etc.; ketones include methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; The ester may, for example, be methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, 2-hydroxy-2-methyl Ethyl propionate, methyl hydroxymethyl acetate, ethyl hydroxyacetate, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxymethylpropionate, 3- Ethyl hydroxypropionate, propyl 3-hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, A Propyl oxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, methyl propoxyacetate, propoxy Ethyl acetate, propyl propyl acetate, butyl propyl acetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butyl butoxyacetate, 2-methyl Methyl oxypropionate ethyl 2-methoxypropionate, propyl 2-methoxypropionate, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, 2-B Ethyl oxypropionate, propyl 2-ethoxypropionate, dibutyl 2-ethoxypropionate , methyl 2-butoxypropionate, 2-but-19- 1326799 ethyl oxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, 3-methoxy Methyl propionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxyl Ethyl propionate, propyl 3-ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, 3-propoxy Propyl propionate, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate, 3-butoxy An ester of butyl propionate or the like. φ among these, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate is preferred, especially diethylene glycol dimethyl ether, Diethylene glycol ethyl methyl ether, propylene glycol methyl ether, and propylene glycol methyl ether acetate are preferred. As the polymerization initiator to be used for the production of the copolymer [A], a general-purpose radical polymerization initiator can be used, and for example, 2,2'-azobisisobutyronitrile can be exemplified. 2'-Azobis-(2,4-dimethylvaleronitrile), 2,2'-azobis-(4-methoxy-2. Azo compound such as 4-dimethylvaleronitrile; diphenyl phthalate, lauryl peroxide, pivalate, 1,1·-bis Organic peroxides such as (tertiary butyl peroxy)cyclohexane and hydrogen peroxide. In the case where a radical polymerization initiator is a peroxide, a redox type initiator which can be used together with a reductant can be used. In the production of the copolymer [A], a molecular weight modifier can be used to adjust the molecular weight. Specific examples thereof include halogenated hydrocarbons such as chloroform and carbon tetrabromide; n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and tridecyl mercaptan; Sulfur-20- 1326799 alcohol such as thioglycollic acid; xanthie sulfide, diisopropyl xanthate disulfide, etc.; terpinolene ), α-methylstyrene dimer, and the like. [B] component used in the present invention 1. As the 2-benzoquinonediazide compound [B], for example, 1. 2-benzoquinonediazide sulfonate, 1,2-naphthoquinonediazide sulfonate, 1,2-benzoquinone diazidosulfonate decylamine and 1. 2-naphthoquinone diazidosulfonate decylamine and the like, and specific examples thereof, 2,3,4-trihydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonate Acid ester, 2,3,4-trihydroxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate, 2,4,6-trihydroxybenzophenone-1,2-naphthalene a quinone diazide-4-sulfonate, 2,4,6-trihydroxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate, etc. 2-naphthoquinonediazide sulfonate; 2,2',4,4'-tetrahydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonate, 2,2', 4,4'-tetrahydroxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate, 2,3,4,3'-tetrahydroxybenzophenone-1,2-naphthoquinone Diazide-4-sulfonate, 2,3,4,3'-tetrahydroxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate, 2,3,4,4' -tetrahydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonate, 2,3,4,4'-tetrahydroxybenzophenone-1,2-naphthoquinonediazide- 5-sulfonate, 2,3,4,2·-tetrahydroxy-4'-methylbenzophenone-1,2-naphthoquinonediazide-4-sulfonate, 2,3,4, 2'-tetrahydroxy-4'-methylbenzophenone-1,2-naphthoquinonediazide-5-sulfonate, 2,3,4,4, tetrahydroxy-31-methoxydiphenyl Ketone-1,2-naphthoquinonediazide-4-sulfonate, 2 1,2-, 4,4'-tetrahydroxy-3'-methoxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate, etc. 1,2-tetrahydroxybenzophenone -21 - 1326799 naphthoquinonediazide sulfonate; 2,3,4,2',6'-pentahydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonate, 2, 1,2-naphthoquinonediazide sulfonate of pentahydroxybenzophenone such as 3,4,2',6, pentahydroxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate Acid ester; 2,4,6,3',4',5'-hexahydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonate, 2,4,6,3', 4',5'-hexahydroxybenzophenone-1,2-naphthoquinonediazide-5-sulfonate, 3,4,5,3',4',5'-hexahydroxybenzophenone -1,2-naphthoquinonediazide-4-sulfonate, φ 3,4,5,3',4',5'-hexahydroxybenzophenone-1,2-naphthoquinonediazide- 1,2-naphthoquinonediazide sulfonate of hexahydroxybenzophenone such as 5-sulfonate; bis(2,4-dihydroxyphenyl)methane-1,2-naphthoquinonediazide- 4-sulfonate, bis(2,4-dihydroxyphenyl)methane-1,2-naphthoquinonediazide-5-sulfonate, bis(p-hydroxyphenyl)methane-1,2-naphthoquinone Diazide-4-sulfonate, bis(p-hydroxyphenyl)methane-1,2-naphthoquinonediazide-5-sulfonate, tris(p-hydroxyphenyl)methane-1, 2-naphthoquinonediazide-4-sulfonate, tris(p-hydroxyphenyl)methane-1,2-naphthoquinonediazide-5-sulfonate, 1,1,1-tris (p-hydroxybenzene) Ethyl-1,2-naphthoquinonediazide-4-sulfonate, 1,1,1-tris(p-hydroxyphenyl)ethane-1,2-naphthoquinonediazide-5- Sulfonate, bis(2,3,4-trihydroxyphenyl)methane-1,2-naphthoquinonediazide-4-sulfonate, bis(2,3,4-trihydroxyphenyl)methane- 1,2-naphthoquinonediazide-5-sulfonate, 2,2-bis(2,3,4-trihydroxyphenyl)propane-1,2-naphthoquinonediazide-4-sulfonate , 2,2-bis(2,3,4-trihydroxyphenyl)propane-1,2-naphthoquinonediazide-5-sulfonate, 1,1,3-tris(2,5-dimethyl 4-hydroxyphenyl)-3-phenylpropane-1,2-naphthoquinonediazide-4-sulfonate, 1,1,3-tris(2,5-dimethyl-4-hydroxyl Phenyl)-3_phenylpropane-1,2-naphthoquinonediazide-5-sulfonate, 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1- Methyl ethyl]phenyl] -22- 1326799 ethylene]bisphenol-1,2-naphthoquinonediazide-4-sulfonate, 4,4'-[ l-[4- 〔1-[ 4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol-1, 2-naphthoquinonediazide-5-sulfonate, bis(2,5-dimethyl- 4-hydroxyl Phenyl)-2-hydroxyphenylmethane-1,2.naphthoquinonediazide-4-sulfonate, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane -1,2-naphthoquinonediazide-5-sulfonate, 3,3,3',3·-tetramethyl-1,1'-spirohydroindole-5,6,7,5', 6',7'-hexanol-1,2-naphthoquinonediazide-4-sulfonate, 3,3,3\3·-tetramethyl-I/-spirobihydroindole-5,6, 7,5,6',7'-hexanol-1,2-naphthoquinonediazide-5-sulfonate, 2,2,4-trimethyl-7,2·,4'-trishydroxy yellow Flavan -1,2-naphthoquinonediazide-4-sulfonate ' 2,2,4-trimethyl-7,2',4'-trihydroxyflavan-1,2.naphthoquinone 1,2-naphthoquinonediazide sulfonate of (polyhydroxyphenyl)alkane such as diazide-5-sulfonate. Further, the ester bond of the above-exemplified 1,2-naphthoquinonediazide sulfonate is changed to a guanamine-bonded 1,2-naphthoquinonediazidesulfonate amide such as 2,3,4- Trihydroxybenzophenone-1,2-naphthoquinonediazide-4-sulfonic acid decylamine can be suitably used in the mother nucleus of these, 2,3,4,4'-tetrahydroxydiphenyl A ketone, 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol is preferred. Further, the 1,2-naphthoquinonediazidesulfonic acid halide is preferably 1,2-naphthoquinonediazidesulfonic acid chloride, and specific examples thereof include 1,2-naphthoquinone quinone. Nitro-4-sulfonic acid chloride and 1,2-naphthoquinonediazide-5-sulfonic acid chloride, wherein 1,2-naphthoquinonediazide-5-sulfonic acid chloride is preferably used. In the condensation reaction, it is preferably used in an amount of from 30 to 85 mol%, more preferably from -23 to 1326799 50 to 70 mol%, of the phenolic compound or the alcohol compound. - Naphthoquinonediazide sulfonic acid halide. The condensation reaction can be carried out by a known method. These 1,2-benzoquinonediazide compounds may be used alone or in combination of two or more. The use ratio of the component [B] is preferably from 5 to 100 parts by weight, more preferably from 10 to 50 parts by weight, per 100 parts by weight of the component [A]. When the ratio is less than 5 parts by weight, the amount of acid generated by the irradiation of the radiation is small, so that the difference in solubility between the irradiated portion of the irradiated line and the unalected portion of the developing solution aqueous solution becomes small, so that the patterning has difficult. Further, since the amount of the acid associated with the reaction with the epoxy group is small, sufficient heat resistance and solvent resistance cannot be obtained. On the one hand, in the case where the ratio exceeds 100 parts by weight, the irradiation of the radiation for a short period of time, since the unreacted [B] component remains in a large amount, the insolubilizing effect on the aqueous alkali solution is too high, making development difficult. 41 Other components The sensitive radiation linear resin composition of the present invention contains the above-mentioned copolymers [A] and [B] as essential components, and other may contain [C] sensible acid-generating compounds, [D] A polymerizable compound having at least one ethylenically unsaturated double bond, an epoxy resin other than the [E] copolymer [A], a [F] surfactant, or a [G] adhesion aid. The above [C] sensible acid generating compound can be used as heat resistance or hardness. Specific examples thereof include a salt of a sulfonium salt, a benzothiazole key salt, an ammonium salt, and a phosphonium salt. • 24- 1326799 Specific examples of the above-mentioned onium salt may, for example, be an alkyl phosphonium salt, a benzyl phosphonium salt, a dibenzyl phosphonium salt, a substituted benzyl phosphonium salt or the like. Specific examples of the above may, for example, be an alkyl phosphonium salt, 4-ethenyl phenyl dimethyl hexafluoroantimonate, 4-ethenyloxy phenyl dimethyl hexafluoro arsenate. Acid salt, dimethyl-4-(benzyloxycarbonyloxy)phenylphosphonium hexafluoroantimonate, dimethyl-4-(benzylideneoxy)phenylphosphonium hexafluoroantimonate, dimethyl -4-(benzylideneoxy)phenylphosphonium hexafluoroarsenate, dimethyl-3-chloro-4-ethenyloxyphenylphosphonium hexafluoroantimonate, etc.; benzyl sulfonium salt is benzyl 4-hydroxyphenylmethyl sulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethyl sulfonium hexafluorophosphate, 4-ethoxycarbonylphenylbenzylmethyl hexafluoroantimonate , benzyl-4-methoxyphenylmethylhydrazine hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, benzyl-3-chloro-4 -Hydroxyphenylmethylhydrazine hexafluoroarsenate, 4-methoxybenzyl-4-hydroxyphenylmethylphosphonium hexafluorophosphate, etc.; dibenzyl sulfonium salt with dibenzyl-4-hydroxybenzene Hexafluoroantimonate, dibenzyl-4-hydroxyphenylphosphonium hexafluorophosphate, 4-ethenyloxyphenyldibenzylphosphonium hexafluoroantimonate, dibenzyl-4-methoxy Phenylhydrazine hexafluoroantimonate, dibenzyl-3 -Chloro-4-hydroxyphenylphosphonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-tertiary butylphenylphosphonium hexafluoroantimonate, benzyl-4-methoxy Benzyl-4-hydroxyphenylphosphonium hexafluorophosphate, etc.; substituted benzyl sulfonium salt, p-chlorobenzyl-4-hydroxyphenylmethyl hexafluoroantimonate, p-nitrobenzyl-4- Hydroxyphenylmethyl hydrazine hexafluoroantimonate, p-chlorobenzyl-4-hydroxyphenylmethyl sulfonium hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethyl fluorene Fluoride, 3,5-dichlorobenzyl-4-hydroxyphenylmethylphosphonium-6- 1326799 fluorodecanoate, 0-chlorobenzyl-3-chloro-4-hydroxyphenylmethylhydrazine Specific examples of the above benzothiazole gun salt such as hexafluoroantimonate may be benzyl benzothiazole hexafluoroantimonate, 3-benzylbenzothiazole hexafluorophosphate, 3-benzylbenzene Thiazole gun tetrafluoroborate, 3-(p-methoxybenzyl)benzothiazole hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazole gun hexafluoroantimonate, 3 -Benzyl-5-chlorobenzothiazyl hexafluoroantimonate, etc. Benzylbenzothiazole gun salt • ° Among these, sulfonium salts and benzothiazole key salts can be used properly, especially 4-ethyl hydrazine Oxyl Dimethyl hydrazine hexafluoroarsenate, benzyl-4-hydroxyphenylmethyl sulfonium hexafluoroantimonate, 4-ethoxycarbonyl phenyl benzyl hydrazine hexafluoroantimonate, dibenzyl 4-hydroxyphenylphosphonium hexafluoroantimonate, 4-acetoxyphenylbenzylphosphonium hexafluoroantimonate, 3-benzylbenzothiazole hexafluoroantimonate can be suitably used in these The sales item may, for example, be San-Aid SI-L85, the same as SI-_L110, the same SI-L145, the same SI-L150, and the same SI-L160 (manufactured by Sanshin Chemical Industry Co., Ltd.). The use ratio of the component [C] is preferably 20 parts by weight or less, more preferably 5 parts by weight or less based on 100 parts by weight of the copolymer [A]. When the amount is more than 20 parts by weight, precipitates are precipitated in the coating film forming step, which may cause formation of a coating film. A polymerizable compound (hereinafter referred to as (D component)) having at least one ethylenically unsaturated double bond of the above [D] component. In the aspect, for example, a monofunctional (meth) acrylate, a bifunctional (meth) propylene-26-1326799 acid ester or a trifunctional or higher functional (meth) acrylate can be suitably exemplified. The above monofunctional (meth) acrylate may, for example, be 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, (iso) alkyl (meth) acrylate, 3-methyl Oxybutyl (meth) acrylate, 2-(methyl) propylene decyl oxyethyl 2-hydroxypropyl decanoate, and the like. For such a product, for example, Aronix M-101, M-111 'M-1 14 (above, East Asia Synthetic Co., Ltd.), KAYARAD TC-1L0S, and TC-120S (above, Japan) Pharmaceutical company), Bisco at 158, with 2311 (above, Osaka Organic Chemical Industry Co., Ltd.)). The above bifunctional (meth) acrylate may, for example, be ethylene glycol (meth) acrylate, 1,6-hexane diol di(meth) acrylate, 1,9-nonanediol bis (a) Acrylate, polypropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, bisphenoxyethanol oxime diacrylate, bisphenoxyethanol oxime diacrylate, and the like. For such a sales item, for example, Aronix M-210, the same M-240, the same M-6200 (above, manufactured by Toagosei Co., Ltd.), KAYARAD HDDA, the same HX-220, and the same R-604 (above, Japan) Chemical Co., Ltd.), Biscoat 260, 312, and 335 HP (above, Osaka Organic Chemical Industry Co., Ltd.). The trifunctional or higher (meth) acrylate may, for example, be trimethylolpropane tri(meth)acrylate, neopentyltriol tri(meth)acrylate or tris((meth)acryl oxime). Oxyethyl ethyl phosphate, neopentyl alcohol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc., sold Article -27- 1326799, for example, Aronix M-309, with M-400, with M-405, with M-450, with M-7100, with M-8030, with M-8060 (above, East Asian synthesis) Company system), KAYARAD TMPTA, same as DPHA, DPCA--20, DPCA-40, DPCA-60, DPCA-120 (above, Nippon Kayaku Co., Ltd.), Biscoat 295, same 300, same 360, same GPT, the same as 3PA, the same as 400 (above, Osaka Organic Chemical Industry Co., Ltd.). Among these, a trifunctional or higher (meth) acrylate can be suitably used, among which trimethylolpropane tri((meth)acrylate, neopentyltetrakis(meth)acrylate, dioxane The tetraol hexa(meth) acrylate is particularly preferred. The monofunctional, bifunctional or trifunctional or higher functional (meth) acrylates may be used singly or in combination. [D] component ratio, relative to copolymerization 100 parts by weight, preferably 50 parts by weight or less, more preferably 30 parts by weight or less. The [D] component is contained in such a ratio, and the interlayer insulating film obtained by the radiation sensitive linear resin composition of the present invention can be obtained. Or the heat resistance and surface hardness of the microlens are increased. When the amount exceeds 50 parts by weight, film rupture occurs in the step of forming a coating film of the radiation sensitive linear resin composition on the substrate. The above [E] component copolymer [ The epoxy resin other than A) (hereinafter referred to as (E component)) is not limited as long as it does not affect the compatibility, and is preferably a bisphenol A type epoxy resin or a novolak type epoxy resin. , cresol novolak type epoxy resin, ring Aliphatic epoxy resin, epoxy propyl ester type epoxy resin 'epoxypropyl amine type epoxy resin, heterocyclic epoxy tree-28- 1326799 grease, epoxy propyl methacrylate (copolymerization) polymerization Resin, etc. Among these, bisphenol A type epoxy resin, formaldehyde novolak type epoxy resin, glycidyl acrylate type epoxy resin, etc. are preferable. The use ratio of [E] component is relative to 100 parts by weight of the copolymer [A], preferably 3 parts by weight or less. The [E] component is contained in such a ratio, and the heat resistance of the protective film or the insulating film obtained by the radiation sensitive linear resin composition of the present invention and When the ratio exceeds 30 parts by weight, when the coating film of the radiation sensitive linear resin composition is formed on the substrate, the film thickness uniformity of the coating film may be insufficient. A] may also be referred to as "epoxy resin", and the point which has alkali solubility differs from [E] component. The above-mentioned [F] can be used to improve the coating property in the sensitive radiation linear resin composition of the present invention. Ingredient surfactant. In terms of [F] surfactant, A fluorine-based surfactant, a polysulfonated surfactant, and a nonionic surfactant are suitably used. Specific examples of the fluorine-based surfactant include 1,1,2,2-tetrafluorooctane. (1,1,2,2-tetrafluoropropyl)ether, i,, l2,2-tetrafluorooctylhexyl ether 'octaethylene glycol di(1,1,2,2-tetrafluorobutyl) Acid, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl)ether, octapropylene glycol bis(1,1,2,2-tetrafluorobutyl)ether 'hexapropylene glycol di(1) ,1,2,2,3,3-hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 〗 1,2,2,8,8,9,9,〗 0,1〇_十Fluoric dodecyl, 1,1,2,2,3,3-octafluorofluorenyl, etc. may be exemplified by fluoride-based benzene sodium sulphate; fluoroalkyl oxyethylene ethers; fluoroalkyl ammonium iodide Class, fluoroalkyl polyoxyethylene acid type 'all gas-based polyoxyethylenes; all-dial-based oxy-acid vinegar; fluorine department -29- 1326799 esters. For such merchandise, BM-1 000, BM-l 100 (above, BM Chemie), Megafuck F142D, F172, F173, F183, F178, F191, F471 (F471) Above, manufactured by Dainippon Ink Chemical Industry Co., Ltd., Fulorade FC-170C, with FC-171, with FC-430, with FC-431 (above, Sumitomo 3M), Sufuron S-112, with S-113, same S-131, same as S-141, same as S-145, same as S-3 8 2, same as SC-101, same as SC-102, same with SC-103, same with SC-104, with SC-105, with SC-106 (made by Asahi Glass Co., Ltd.), EF Top EF301 - the same as 303, the same 352 (new Akita Chemical Co., Ltd.). The polyoxo-based surfactant may, for example, be DC3PA, DC7PA, FS-1265, SF-8428, SH11PA, SH21PA, SH28PA, SH29PA, SH30PA, SH-190, SH-1 93, SZ-6 03 2 (above, Toray Dow Corning Co., Ltd.), TSF-4440, TSF-43 00, TSF-4445, TSF-4446, TSF-4460, TSF-4452 (above, GE Toshiba Poly Oxygen Co., Ltd.) Trade name sellers and sellers. As the nonionic surfactant, for example, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyethylene oxide oleyl ether or the like can be used; Polyoxyethylene aryl ethers such as polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene dioxane such as polyoxyethylene dilaurate or polyoxyethylene distearate Alkyl esters, etc.; (meth)acrylic copolymer Poly flow -No. 57,95 (made by Kyoeisha Chemical Co., Ltd.), etc. These surfactants can be used individually or in combination of 2 or more types. -30- 1326799 These [F] surfactants are preferably used in an amount of preferably 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the copolymer [A]. [F] When the amount of the surfactant used exceeds 5 parts by weight, when the coating film is formed on the substrate, there is a problem that the film of the coating film is easily broken. In the sensitive radiation linear resin composition of the present invention, in order to improve the adhesion to the substrate, the [G] component adhesion aid can be used. In the case of such a [G] adhesion aid, the functional decane coupling agent can be suitably used, and examples thereof include a reactive substituent such as a carboxyl group, a methyl propyl fluorenyl group, an isocyanate group or an epoxy group. Decane coupling agent. Specifically, trimethoxymonodecyl benzoic acid, r-methyl propylene oxypropyl trimethoxy decane, ethylene triethoxy decane, ethylene trimethoxy decane, and r-isocyanate propyl may, for example, be mentioned. Triethoxy decane, r-glycidoxypropyltrimethoxydecane, yS-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, and the like. The [G] adhesion aid ‘ can be used in an amount of preferably 20 parts by weight or less and more preferably 10 parts by weight or less based on 100 parts by weight of the copolymer [A]. In the case where the amount of the adhesion aid exceeds 20 parts by weight, there is a case where the development residue is liable to occur in the development step. The radiation sensitive linear resin composition of the present invention is a sensitive radiation linear resin composition, and the above copolymers [A] and [B] The components and the other components added as described above may be uniformly mixed and prepared. In general, the radiation sensitive linear resin composition of the present invention is preferably used in a solution state by dissolving in a suitable solvent. For example, the copolymer [A] and [B] components and other components which can be arbitrarily added are mixed at a predetermined ratio of -31 - 1326799 to prepare a photosensitive radiation linear resin composition in a solution state. In terms of the solvent used for the preparation of the sensitive radiation linear resin composition of the present invention, the components of the copolymers [A] and [B] and the components of any of the other components may be uniformly dissolved and used without reacting with the respective components. By. As such a solvent, the same ones as those exemplified for the solvent which can be used for the production of the above copolymer [A] can be mentioned. In such a solvent, the solubility of each component, the reactivity with each component, the easiness of formation of a coating film, etc., are glycol ether, ethylene glycol alkyl ether acetate, ester and Diethylene glycol can be used as appropriate. Among these, diethylene glycol ethyl methyl ether 'diethylene glycol dimethyl ether, propylene glycol monomethyl ether 'propylene glycol dimethyl ether, propylene glycol diethyl ether, dipropylene glycol dimethyl ether' Dipropylene glycol diethyl ether, propylene glycol monomethyl ether acetate, methyl methoxymethyl propionate, ethyl ethoxy propionate is particularly preferred. Further, in order to improve the in-plane uniformity of the film thickness together with the solvent, a solvent having a boiling point can be used, and in the case of a high-boiling solvent which can be used, for example, N-methylformamide, hydrazine, hydrazine can be exemplified. - dimethylformamide, hydrazine-methylformamide, hydrazine-methylacetamide, hydrazine, hydrazine-dimethylacetamide, hydrazine-methylpyrrolidone, methylmeridene, benzyl Ethyl ether 'dihexyl ether, hexanedione, isophorone' hexanoic acid, citric acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, 7 • butyl ketone 'ethylene carbonate' ethylene carbonate, phenyl fusible Acetate and the like. Among the temples, Ν-methylindole ketone, γ-butane vinegar, hydrazine, hydrazine-dimethylacetamide are preferred. In the case of the solvent of the radiation-sensitive resin composition of the present invention, when the solvent is used in a high-32 to 1326799 boiling point, the amount thereof is 5% by weight or less with respect to the total amount of the solvent, preferably 40% by weight or less. It is preferably 3% by weight or less. When the amount of the high-boiling solvent used exceeds the amount used, the film thickness of the coating film may be reduced in the sense of the sentence and the residual film rate may be lowered. The case where the sensitive radiation linear resin composition of the present invention is prepared in a solution state, the components other than the solvent occupied by the solution (that is, the total amount of the copolymer [Α] and [Β] components and any other components added arbitrarily) The ratio may be arbitrarily set depending on the purpose of use or the desired film thickness, but is preferably 5 to 50% by weight, more preferably 10 to 4% by weight, still more preferably 15 to 35% by weight. The composition solution thus prepared can be used after being filtered using a micropore filter having a pore size of about 0.2 μm or the like. Interlayer insulating film, formation of microlens Next, using the sensitive radiation linear resin composition of the present invention, the interlayer insulating film of the present invention and the method of the microlens are described. The method for forming the interlayer insulating film or the microlens of the present invention includes the following steps in the order described below. (1) a step of forming a coating film of the sensitive radiation linear composition of the present invention on a substrate, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) Heating step. (1) A step of forming a coating film of the linear composition for sensitive radiation of the present invention on a substrate - 33 - 1326799 In the step (1) above, the solution of the composition of the present invention is applied to the surface of the substrate by Baking is performed to remove the solvent to form a coating film of the radiation sensitive linear resin composition. The type of the substrate that can be used may, for example, be a glass substrate, a ruthenium wafer, or a substrate on which various metals can be formed. The coating method of the composition solution is not particularly limited, and a suitable method such as a spray method, a roll coating method, a spin coating method, or a bar coating method can be employed. The pre-baking conditions may vary depending on the type of each component, the ratio of use, and the like. For example, at 60~110 °C for 30 seconds ~ 15 minutes or so. In the case of the film thickness of the formed coating film, as the ruthenium after the prebaking, in the case of forming the interlayer insulating film, for example, 3 to 6 μm, in the case of forming a microlens, for example, 0. 5~3 μιη is preferred. (2) a step of irradiating at least a portion of the coating film with radiation φ. In the step (2) above, after the formed coating film is passed through a mask having a predetermined pattern and irradiated with radiation, the film is used. The developing solution is subjected to development processing to remove the irradiated portion of the radiation, thereby patterning. As the radiation used at this time, for example, ultraviolet rays, far ultraviolet rays, X-rays, charged particle rays, and the like can be exemplified. The above ultraviolet rays are, for example, a g line (wavelength 4 3 6 n m ), an i line (wavelength 3 65 nrn ), or the like. For far ultraviolet rays, for example, KrF excimer lasers and the like. X-ray aspects such as synchrotron radiation and the like. In the case of charged particle lines, such as electron lines. -34- 1326799 Among these, ultraviolet light is preferred, especially radiation containing g-line and/or i-line. The amount of exposure is preferably 50 to 1,500 J/m 2 in the case of forming an interlayer insulating film, and 50 to 2,000 J/m 2 in the case of forming a microlens. (3) Developing step For the developing solution for developing treatment, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium citrate, ammonia, ethylamine, n-propylamine, diethyl ether can be used. Amine, diethylamine ethanol, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, Pyridine, 1,8-diazabicyclo[5,4,fluorenyl]-7-undecene, 1,5-diazabicyclo[4,3,0]-5-nonane, etc. An aqueous solution of the compound). Further, an aqueous solution of a water-soluble organic solvent such as methanol or ethanol or a surfactant, or various organic solvents capable of dissolving the composition of the present invention may be used as a developing solution in an appropriate amount in the aqueous alkali solution. Further, in terms of the development method, a suitable method such as a liquid-filling method, a clipping method, a shaking method, a bathing method, or the like can be suitably employed. The development time at this time varies depending on the composition of the composition, and may be, for example, 30 to 12 seconds. In addition, the known linear composition of the radiation-sensitive resin has a development time of more than 20 to 25 seconds since the optimum temperature. In the case where the formed pattern is peeled off, it is necessary to strictly control the development time. However, in the case of the sensitive radiation linear resin composition of the present invention, it may be a good figure from the optimum development time exceeding 30 seconds. Form formation, excellent utilization of raw materials of products -35 - 1326799

(4 )加熱步驟 如上述在實施之(3)顯影步驟後,相對於圖型化之 薄膜,較佳爲例如進行流水洗淨之清洗處理,進而,較佳 爲藉由高壓水銀燈等使輻射線全面照射(後曝光),來進 行該薄膜中殘存1,2·苯醌二疊氮化合物之分解處理後,將 φ此薄膜,藉由熱板,烤爐等之加熱裝置進行加熱處理(事 後烘烤處理),來進行該薄膜之硬化處理。在上述後曝光 步驟中曝光量,較佳爲2,000〜5,000J/m2左右。又,此 硬化處理中煅燒溫度,例如爲120〜250 °C。加熱時間, 可因加熱機器之種類而異,例如在熱板上進行加熱處理之 情形爲5〜3 0分鐘,在烤爐中進行加熱處理之情形爲3 0 〜90分鐘。此時,可使用進行二次以上加熱步驟步進烘 烤法(step bake)等。 • 如此,對應於爲目的之層間絶緣膜或微透鏡,可將圖 型狀薄膜形成於基板之表面上。 以上述方式形成之層間絶緣膜及微透鏡,如後述之實 施例所可明白,密接性,耐熱性,耐溶劑性,及透明性等 爲優異。 層間絶緣膜 如上述方式形成之本發明之層間絶緣膜,對基板之密 接性良好,耐溶劑性及耐熱性優異,具有高透過率,介電 -36- 1326799 常數亦低,作爲電子構件之層間絶緣膜可恰當使用。 微透鏡 如上述方式形成之本發明之微透鏡,對基板之密接性 良好,耐溶劑性及耐熱性優異,且具有高透過率與良好的 熔融形狀,作爲固體攝像元件之微透鏡可恰當使用。 又,本發明之微透鏡之形狀,係如第1圖(a )所示 ,爲半凸透鏡形狀。 實施例 以下以合成例,實施例例示,進而具體說明本發明, 但本發明並非限定於以下之實施例。 共聚物[A]之合成例 合成例1 在具備冷却管,攪拌機之燒瓶,裝入2,2’-偶氮雙( 2,4·二甲基戊腈)1〇重量份,二乙二醇乙基甲基醚250重 量份。接著裝入甲基丙烯酸15重量份,苯乙烯1〇重量份 ’環氧丙基甲基丙烯酸酯40重量份,三環[5.2.1 .〇2 6]癸-8-基甲基丙烯酸酯10重量份,N-(4·羥苯基)順丁烯二 醯亞胺25重量份及a-甲基苯乙烯二聚物5重量份予以氮 取代後,開始緩慢地攪拌。 將溶液溫度上升至70°C,此溫度保持5小時得到含 有共聚物[A-1]之聚合物溶液。 -37- 1326799 共聚物[A-l]之聚苯乙烯換算重量平均分子量(Mw) 爲8,〇〇〇,分子量分布(Mw/Mn)爲2.1。又,在此所得 之聚合物溶液之固形成份濃度爲,29.8重量%。 合成例2 •在具備冷却管,攪拌機之燒瓶裝入,2,2’ -偶氮雙( • 2,4 -二甲基戊腈)6重量份,二乙二醇乙基甲基醚200重 肇量份。接著,裝入甲基丙烯酸15重量份,苯乙烯5重量 份’環氧丙基甲基丙烯酸酯30重量份,三環[5.2. 1.02.6] 癸-8-基甲基丙烯酸酯10重量份,對乙烯苄基環氧丙基醚 3 〇重量份’ N- ( 4-羥苯基)順丁烯二醯亞胺! 〇重量份及 α-甲基苯乙烯二聚物3重量份,以氮取代後,開始緩慢攪 拌。使溶液溫度上升至7 0。(:,保持此溫度5小時,得到 含有共聚物[A-2]之聚合物溶液。 共聚物[A-2]之聚苯乙烯換算重量平均分子量(Mw) .鲁爲13,000,分子量分布(Mw/Mn)爲2·2。又,在此所得 之聚合物溶液之固形成份濃度爲,3 2 · 7重量% . 合成例3 在具備冷却管,攪拌機之燒瓶,裝入2.2,-偶氮雙(2 ’ 4 -二甲基戊腈)7重量份及二乙二醇乙基甲基酸220重 量份。接著裝入甲基丙烯酸10重量份,苯乙烯5重量份 ’環氧丙基甲基丙烯酸酯30重量份,對乙烯基苄基環氧 丙基醚20重量份’ 2-羥乙基甲基丙烯酸酯30重量份,Ν- •38- 1326799 (4-羥苯基)順丁烯二醯亞胺5重量份及α -甲基苯乙烯 二聚物3重量份,以氮取代後,開始緩慢攪拌。使溶液之 溫度上升至70°C,將此溫度保持5小時得到含有共聚物 [A-3]之聚合物溶液。 共聚物[A-3]之聚苯乙烯換算重量平均分子量(Mw) 爲11,000,分子量分布(M w/Mn )爲2.4。又,在此所得 之聚合物溶液之固形成份濃度爲3 1 .5重量%。 合成例4 在具備冷却管,攪拌機之燒瓶,裝入2,2’-偶氮雙( 2,4-二甲基戊腈)10重量份及二乙二醇乙基甲基醚220重 量份。接著裝入甲基丙烯酸重量份,環氧丙基甲基丙 烯酸酯30重量份,三環[5.2.1.02·6]癸-8-基甲基丙烯酸酯 20重量份,對-乙烯基苄基環氧丙基醚18重量份’正硬 脂甲基丙烯酸酯10重量份,N-( 4-羥苯基)順丁烯二醯 亞胺12重量份及α-甲基苯乙烯二聚物5重量份’以氮取 代後,開始緩慢攪拌。將溶液之溫度上升至70 °C ’將此 溫度保持5小時獲得含有共聚物[A-4]之聚合物溶液。 共聚物[A-4]之聚苯乙烯換算重量平均分子量(Mw) 爲 8,000,分子量分布(M w/Mn )爲1 . 8。又’在此所得 之聚合物溶液之固形成份濃度爲31·5重量%。 合成例5 在具備冷却管’攪拌機之燒瓶,裝入2,2'·偶氮雙( -39- 1326799 2,4 -二甲基戊腈)i〇重量份,二乙二醇乙基甲基醚250重 量份。接著,裝入甲基丙烯酸15重量份,苯乙烯10重量 份,三環[5.2.1.02·6]癸-8-基甲基丙烯酸酯17重量份,環 氧丙基甲基丙烯酸酯50重量份,N- (4 -羧基苯基)順丁 烯二醯亞胺8重量份及ex-甲基苯乙烯二聚物5重量份, 以氮取代後,開始緩慢攪拌。將溶液之溫度上升至70°C ,將此溫度保持5小時,得到含有共聚物[A-5]之聚合物 φ溶液。 共聚物[A-5]之聚苯乙燏換算重量平均分子量(Mw) 爲 8,0 00,分子量分布(Mw/Mn )爲 2.0。又,在此所得 之聚合物溶液之固形成份濃度爲,2 9.8重量%。 合成例6 在具備冷却管,攪拌機之燒瓶,裝入2,2’-偶氮雙( 2,4-二甲基戊腈)10重量份,二乙二醇乙基甲基醚220重 隹量份。接著,裝入甲基丙烯酸15重量份,苯乙烯10重量 份,三環[5.2.1.02·6]癸-8-基甲基丙烯酸酯10重量份,環 氧丙基甲基丙烯酸酯50重量份,N-( 4-羥環己基)順丁 烯二醯亞胺15重量份及α-甲基苯乙烯二聚物5重量份, 以氮取代後,開始緩慢攪拌。將溶液之溫度上升至70°C ,使此溫度保持5小時,得到含有共聚物[A-6]之聚合物 溶液。 共聚物[A-6]之聚苯乙烯換算重量平均分子量(Mw) 爲8,000,分子量分布(Mw/Mn )爲2.4。又,在此所得 -40- 1326799 之聚合物溶液之固形成份濃度爲,2 9.8重量%。 比較合成例1 在具備冷却管,攪拌機之燒瓶,裝入2,2'-偉 2,4-二甲基戊腈)8重量份,二乙二醇乙基甲基醚 量份。接著,裝入甲基丙烯酸20重量份,苯乙烯 份,環氧丙基甲基丙烯酸酯40重量份及苯基順] 亞胺20重量份,以氮取代後,開始緩慢攪拌。步 溫度上升至7(TC,使此溫度保持5小時,得到, 物[a -1 ]之聚合物溶液。 共聚物[a-1]之聚苯乙烯換算重量平均分子量 爲 7,5 00,分子量分布(Mw/Mn )爲 2.4。又,宅 之聚合物溶液之固形成份濃度爲,3 0.6重量%。 實施例1 [敏輻射線性樹脂組成物之調製] 將合成例1所得之聚合物溶液(相當於共聚 】100重量份(固形成份))與,成分[B]係以4〆 [1-[4-羥苯基]-1-甲基乙基]苯基]亞乙基]雙酚(ι·〇 與1,2-萘醌二疊氮-5-磺酸氯化物(1.0莫耳)之雜 B-1) 30重量份予以混合,在溶解於二乙二醇乙基 使固形成份濃度成爲30重量%後,以孔徑0.2 μιη 過濾器過濾,來調製敏輻射線性樹脂組成物之溶 氮雙( 220重 20重量 烯二醯 溶液之 有共聚 (M w ) 此所得 勿【A- 1 ,-[1-[4- 莫耳) 合物( 甲基醚 之微孔 t ( S-1 -41 - 1326799 實施例2〜9,比較例1 [敏輻射線性樹脂組成物之調製] 除了在實施例1中,[A]成分及[B]成分係使用,如表 1之種類,量以外,其他與實施例1同樣來實施,並調製 敏輻射線性樹脂組成物之溶液(S-2 )〜(S-9 ) , ( n )° φ 又,表1中,成分之略稱係如下列之化合物。 (B-l) :4,4’-[1-[4-[1-[4-羥苯基]-1-甲基乙基]苯基] 亞乙基]雙酚(1.0莫耳)與1,2-萘醌二疊氮-5-磺酸氯化 物(1.0莫耳)之縮合物 (B-2) :2,3,4,4·-四羥苯并二苯甲酮(1.0莫耳)與 1,2-萘醌二疊氮-5-磺酸酯(2.5莫耳) (Β-3) :4,4,-[1·[4-[1-[4-羥苯基]-1-甲基乙基]苯基] 亞乙基]雙酚(1_0莫耳)與1,2-萘醌二疊氮-5-磺酸氯化 φ物(2.0莫耳)之縮合物, (Β-4) :4,4,-[1-[4-[1-[4-羥苯基]-1-甲基乙基]苯基] 亞乙基]雙酚(1.0莫耳)與1,2-萘醌二疊氮-4-磺酸氯化 物(2.0莫耳)之縮合物 -42 - 1326799 奉1 1 共聚物A ‘一1--- —------- j B成分 1 組成物種 丨 lll'l " * »!·- •‘· Λ---- 「— j ;mm 丨量(重量份) 丨麵 |量(重量包 ,,實施例1 (S-1) A-l 1 100 1 ! Β-1 i . _ j 35 — 丨實施例2 (S-2) A-2 100 Β·1 35 一 實施例3 (S-3) A-3 100 B-l 35 實施例4 (S-4) A-4 100 Β-1 35 實施例5 (S-5) A-5 100 B-l 35 __ 實施例ό (S-6) A-6 100 Β-1 35 實施例7 (S-7) A-l 100 B-2 30 實施例8 (S-8) A-l 1 100 B-3 25 實施例9 (S-9) A-l 100 B-4 25 ^ 比較例1 (s-1) a-l 100 B-l 35 實施例1 〇〜1 8,比較例2〜4 <層間絶緣膜之性能評價> 使用如上述般調製之敏輻射線性樹脂組成物’如以Τ 方式評價層間絶緣膜之各種特性。另外,比較例3及4 m 使用之組成物,均爲間/對甲酚酚醛清漆與1,2-萘醌=« 氮-5-磺酸酯之組成物之販售品(東京應化公司製)° [感度之評價] 在矽基板上使用旋轉器,將表2之組成物塗布後’在 90 °C於熱板上預烘烤2分鐘來形成膜厚3.0μιη之塗膜。在 所得塗膜透過具有所定圖型之圖型光罩,以佳能公司製 PLA-501F曝光機(超高壓水銀燈)使曝光時間變化來進 -43- 1326799 行曝光後,以表2記載濃度之氫 25t,90秒盛液法顯影。以超糸 ,乾燥之,在晶圓上形成圖型。 (1 〇對1 )之間隙、圖型完全溶 該値爲感度,如表2所示。此値 度可謂良好。 φ 〔顯影界限之評價〕 在砂基板上使用旋轉器,將 9(TC於熱板上預烘烤2分鐘來形 所得塗膜透過具有3.0 μιη之線與 光罩,使用佳能公司製PLA-501 ),以相當於上述「[感度之評ί! 光量進行曝光,以表2所記載濃 液於25°C,90秒之盛液法進行 φ 1分流水洗淨,乾燥之,在晶圓 線(line)線寬成爲3 μιη使必要 間而如表2所示。又,由最適顯 來測定3.0 μηι之線•圖型至剝離 係如表2所示。此値在30秒以 〔耐溶劑性之評價〕 在矽基板上使用旋轉器,在 氧化四甲基銨水溶液,以 β水進行1分鐘流水洗淨 爲可使3·0μιη之線與間隙 解則測定必要曝光量。以 爲1,000J/m2以下時,感 表2之組成物塗布後,在 成膜厚3·0μηι之塗膜。在 間隙(1 〇對1 )之圖型之 F曝光機(超高壓水銀燈 I ]」所測定感度之値之曝 度之氫氧化四甲基銨水溶 顯影。接著以超純水進行 上形成圖型。此時,爲使 之顯影時間爲最適顯影時 影時間進而持續顯影之際 爲止之時間,而顯影界限 上時,顯影界限可謂良好 塗布表2之組成物後,在 -44- 1326799 90 °C於熱板上預烘烤2分鐘來形成膜厚3.0 μηι之塗膜。在 所得塗膜,以佳能公司製PLA-501 F曝光機(超高壓水銀 燈)予以曝光使累計照射量達到3,000J/m2,將此矽基板 在淨爐(clean oven)内以220°C加熱1小時得到硬化膜 。測定所得硬化膜之膜厚(T〗)。接著,將此硬化膜所形 成矽基板控制於70°C溫度之二甲基亞颯中予以浸漬20分 鐘後,來測定該硬化膜之膜厚(11 ),並算出浸漬所致膜 厚變化率{| tl-Tl| /Τ1}χ1〇〇〔%〕。結果如表2所示。 此値在5 %以下時,耐溶劑性可謂良好。 另外,在耐溶劑性之評價中,因形成之膜之圖型化並 不要,故輻射線照射步驟及顯影步驟予以省略,並提供僅 有塗膜形成步驟,事後烘烤步驟及加熱步驟之評價。 〔耐熱性之評價〕 與上述耐溶劑性之評價相同來形成硬化膜,來測定所 得硬化膜之膜厚(Τ2)。接著,將此硬化膜基板在淨爐内 以24 0°C進行1小時追加烘烤後,來測定該硬化膜之膜厚 (t2 ) ’並算出追加烘烤所致膜厚變化率{ | t2-T2 | /T2 } X 1 00〔 %〕。結果如表2所示。此値在5 %以下時,.耐熱 性可謂良好。 〔透明性之評價〕 上述之耐溶劑性之評價中,以玻璃基板「Corning 7 05 9 ( Corning公司製)」替代矽基板以外,其他則同樣 -45- 1326799 方式次玻璃基板上形成硬化膜。將具有此硬化膜之玻璃基 板之光線透過率以分光光度計「150-20型Double beam ( 日立製作所公司製)」,於400〜800nm之範圍之波長測 定。此時之最低光線透過率之値如表2所示。此値爲90% 以上時,透明性可謂良好。 〔比介電常數之評價〕 φ 在已硏磨之SUS304製基板上使用旋轉器,將表2之 組成物塗布後,在90°C於熱板上預烘烤2分鐘來形成膜 厚3.0μπι之塗膜。在所得塗膜以佳能公司製PLA-501F曝 光機(超高壓水銀燈)曝光成累計照射量爲3,000J/m2, 將此基板在淨爐内於220 °C煅燒1小時,以獲得硬化膜。 關於此硬化膜,藉由蒸鑛法形成Pt/Pd電極圖型,來 做成介電常數測定用樣本。將該基板以頻率10kHz之頻率 ’使用橫河· HEWLETT PACKARD公司製HP16451B電極及 _ HP4284A Precision LCR測量計,藉由cv法來測定該基 板之比介電常數。結果如表2所示》此値在3.6以下時, 介電常數可謂良好。 另外’在介電常數之評價中,因所形成之膜之圖型化 並不要,故輻射線照射步驟及顯影步驟可省略,僅提供塗 膜形成步驟’事後烘烤步驟及加熱步驟之評價。 -46- 1326799 介道常數 1. cn Ό \〇 cn rn un rn v〇 r〇 rn rn νή 卜 r- rn 透明性 (%) 1 Os <Ν ΟΝ <s ON CN Os ON o g 5; 5; m Os m 〇〇 CN 00 耐熱性 膜厚變化 率(%) (N (Ν cn m (N m (N (N (N CO 寸 硬化後膜 厚(μηι) 寸 (Ν m <Ν 寸 m oi (N 对 ri 寸 CN CN <N 守 (N o (N O) 耐溶劑性 膜厚變化 率(%) (N ΓΟ m (N CN CN <N (N m 〇 CN 硬化後膜 厚(μηι) 寸 oi m 令 c4 m oi 寸 寸 cs 寸 oi 寸 r4 对 CN 寸 c^i o CN Os 顯像界限 顯現界限 (秒) wn m 沄 m ur> yn m <N 最適顯像 時間(秒) § s o s s § 〇 〇 § S § 5¾ 感度 (J/m2) 700 600 600 800 o r- 750 o 00 700 550 700 2200 2200 紘 m 飽 顯像液濃度 (aa%) o 3 〇 2.38 寸 o 寸 o 寸 o 〇 〇 〇 2.38 2.38 組成物種 1_ /—\ 也 也 CjT Co w 〇〇 也 w /<—s OFPR-800 OFPR-5000 ΪΙ施例10 tt施例11 施例12 α施例i3 膽例14 1JI施例15 H施例16 W施例π ! 鍾例18 比較例2 比較例3 比較例4 -47- 1326799 實施例1 9〜2 7,比較例5〜7 <微透鏡之性能評價> 使用上述方式調製之敏輻射線性樹脂組 下方式之微透鏡來評價各種特性。另外’耐 透明性之評價請參照以上述層間絶緣膜之性 〇 又,比較例5及0所使用之組成物’ φ酚醛清漆與1,2-萘醌二疊氮-5-磺酸酯之組 東京應化公司製)。 〔感度之評價〕 在矽基板上使用旋轉器,將表3之組成 90°C熱板上預烘烤2分鐘來形成膜厚3·0μηι 得塗膜透過具有所定圖型之圖型光罩,以 NSR 1 75 5 i7A縮小投影曝光機(ΝΑ = 0.50、λ φ光時間變化予以曝光,以表3所記載濃度之 銨水溶液以25 °C,1分之盛液法進行顯影。 燥之,在晶圓上形成圖型。來測定在0.8 μηι (1對Ο之線寬成爲〇. 8 μηι所必要之曝光 爲感度,如表3所示。此値在2,500J/m2以 度可謂良好。 〔顯影界限之評價〕 在矽基板上使用旋轉器,來塗布表3之 .成物,以如以 •熱性之評價, :能評價之結果 均爲間/對甲酚 成物販售品( 物塗布後,在 之塗膜。在所 Nikon公司製 =3 6 5nm )使曝 氫氧化四甲基 以水清洗,乾 線與間隙圖型 時間。以此値 下之情形,感 組成物後,在 -48- 1326799 90 °C於熱板上預烘烤2分,形成膜厚3.Ομιη之塗膜。在所 得塗膜上透過具有所定圖型之圖型光罩,以Nikon公司製 NSR 1 75 5 i7A 縮小投影曝光機(ΝΑ = 0.50,λ = 3 65ηηι)進行 相當於上述[感度評價]所測定感度之値之曝光量來進行曝 光,以表3所記載濃度之氫氧化四甲基銨水溶液以25 t ’ 1分之盛液法進行顯影。以水清洗,乾燥之,在晶圓上 形成圖型。要使〇 · 8 μηι線與間隙圖型(1對1 )之間隙線 寬成爲0 · 8 μιη使必要之顯影時間爲最適顯影時間則如表3 所示。又,由最適顯影時間進而持續顯影之際,來測定寬 0 · 8 μιη之圖型至剝離爲止之時間(顯影界限),顯影界限 則以表3表示。此値爲3 0秒以上時,顯影界限爲良好。 〔耐溶劑性之評價〕 在矽基板上使用旋轉器,將表3之組成物塗布後,在 9 〇°C於熱板上預烘烤2分鐘以形成膜厚3.0 μιη之塗膜。在 所得塗膜以佳能公司製P LA- 5 0 1 F曝光機(超高壓水銀燈 )予以曝光使累計照射量成爲3,000J/m2,使此矽基板在 淨爐内於220 °C加熱1小時得到硬化膜。測定所得硬化膜 之膜厚(T3)。接著,在將此硬化膜所形成之矽基板控制 溫度爲50C之異丙基_中進彳7 10分鐘浸漬後,測定該硬 化膜之膜厚(t3 ),算出浸漬所致膜厚變化率{丨t3-T3丨 /T3} X 100〔 %〕。結果如表3所示。此値在5%以下時, 耐溶劑性爲良好。 另外,耐溶劑性之評價中形成之膜之圖型化爲不需要 -49- 1326799 ’故可省略輻射線照射步驟及顯影步驟,而提供僅進行塗 膜形成步驟,事後烘烤步驟及加熱步驟之評價。 〔微透鏡之形成〕 在砂基板上使用旋轉器,將表3之組成物塗布後,在 90°C2分鐘於熱板上預烘烤來形成膜厚3_0μιη之塗膜。在 所得塗膜透過具有4.0μπι點(dot ) · 2·0μπι間隙圖型之 φ圖型光罩以Nikon公司製NSR1755i7A縮小投影曝光機( ΝΑ = 0·50 ’ λ = 3 6 5ηιη )以相當於上述[〔感度之評價〕]測 ; 定感度之値之曝光量進行曝光,在表3之感度之評價中以 顯影液濃度記載之濃度之氫氧化四甲基銨水溶液以25 °C ,1分鐘盛液法來顯影。以水清洗,予以乾燥在晶圓上形 成圖型。其後,以佳能公司製PLA-501F曝光機(超高壓 水銀燈)予以曝光使累計照射量成爲3,0 00J/m2。其後以 熱板在160 °C加熱10分鐘後進而在23 0 °C加熱10分鐘使 φ圖型熔融流動(melt flow )以形成微透鏡。 所形成之微透鏡之底部(與基板接觸之面)之尺寸( 直徑)及剖面形狀如表3所示。微透鏡底部之尺寸在超過 4·0μηι不足5.0μιη時,可稱爲良好。又,此尺寸在5.0μηι 以上時,鄰接之透鏡彼此之間爲接觸狀態,並不佳。又, 剖面形狀在第1圖所示之模式圖中,在如(a)之半凸透 鏡形狀時爲良好,而如(b )之大致台形狀上之情形則爲 不良。 -50- 1326799 微透鏡形狀 剖面形狀 3 3 g $ 3 3 3 * 底部尺寸 (μη) (Ν — 寸 寸’ 寸· κη ΓΛ — m 寸 — 5.0超 5.0超 耐溶劑性 膜厚變化 率(%) — — — — — — — — — CN 〇〇 〇 硬化後膜 厚(μιη) 寸 oi <N (N 寸 CN 寸 oi 寸 CN 寸 CN CN 寸 oi 〇 CN 〇 (N 顯像界限 顯現界 限(秒) un m ΓΠ un m κη tn ΓΝΪ 最適顯像 時間(秒) s S 〇 § S o 〇 § § § 感度評價 11 ο s O CN 卜 s Os Ο s O 〇\ S 〇\ o oo 660 840 2800 3000 顯像液濃度 (重 3%) ο 寸 Ο 2.38 寸 ο 寸 o o o O tn Ο 2.38 2.38 組成物種 /<—s 1 /·—s m w irT 也 Co w oo w /-*—s OFPR-800 OFPR-5000 W施例19 Π施例20 Ilf施例21 W施例22 W施例23 龍例24 Ilf施例25 W施例26 ω施例27 比較例5 比較例6 1 比較例7(4) Heating step After the developing step (3) is carried out, it is preferable to perform a washing treatment for washing with water, for example, with respect to the patterned film, and further preferably, the radiation is made by a high pressure mercury lamp or the like. After total irradiation (post-exposure), the decomposition treatment of the residual 1,2·benzoquinonediazide compound in the film is carried out, and then the film is heated by a heating device such as a hot plate or an oven (after baking) Bake treatment) to perform hardening treatment of the film. The exposure amount in the above post-exposure step is preferably about 2,000 to 5,000 J/m2. Further, the calcination temperature in the hardening treatment is, for example, 120 to 250 °C. The heating time may vary depending on the type of the heating machine. For example, the heat treatment on the hot plate is 5 to 30 minutes, and the heat treatment in the oven is 30 to 90 minutes. In this case, a step bake or the like may be used in which the heating step is performed twice or more. • Thus, a pattern-like film can be formed on the surface of the substrate corresponding to the purpose of the interlayer insulating film or the microlens. The interlayer insulating film and the microlens formed as described above are excellent in adhesion, heat resistance, solvent resistance, transparency, and the like, as will be understood from the examples described later. The interlayer insulating film of the present invention formed as described above has excellent adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high transmittance, and has a low dielectric constant of -36 to 1326799, and is used as an interlayer of an electronic component. The insulating film can be used as appropriate. Microlens The microlens of the present invention which is formed as described above is excellent in adhesion to a substrate, is excellent in solvent resistance and heat resistance, and has high transmittance and a good melt shape, and can be suitably used as a microlens of a solid-state image sensor. Further, the shape of the microlens of the present invention is a semiconvex lens shape as shown in Fig. 1(a). EXAMPLES Hereinafter, the present invention will be specifically described by way of Synthesis Examples and Examples, but the present invention is not limited to the examples below. Synthesis Example of Copolymer [A] Synthesis Example 1 In a flask equipped with a cooling tube and a stirrer, 2 parts by weight of 2,2'-azobis(2,4·dimethylvaleronitrile) was added, and diethylene glycol was added. Ethyl methyl ether 250 parts by weight. Next, 15 parts by weight of methacrylic acid, styrene 1 part by weight of 'epoxypropyl methacrylate 40 parts by weight, tricyclo[5.2.1.〇26"癸-8-ylmethacrylate 10 was charged. After 25 parts by weight of N-(4-hydroxyphenyl)maleimide and 5 parts by weight of a-methylstyrene dimer were substituted with nitrogen, stirring was started slowly. The temperature of the solution was raised to 70 ° C, and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-1]. -37- 1326799 The copolymer [A-1] had a polystyrene-equivalent weight average molecular weight (Mw) of 8, and had a molecular weight distribution (Mw/Mn) of 2.1. Further, the solid solution concentration of the polymer solution obtained here was 29.8% by weight. Synthesis Example 2: In a flask equipped with a cooling tube and a stirrer, 6 parts by weight of 2,2'-azobis(•2,4-dimethylvaleronitrile), and diethylene glycol ethyl methyl ether 200 weight Quantities. Next, 15 parts by weight of methacrylic acid, 5 parts by weight of styrene, 30 parts by weight of 'epoxypropyl methacrylate, and 10 parts by weight of tricyclo [5.2.1.02.6] fluoren-8-yl methacrylate were charged. , p-vinylbenzyl epoxypropyl ether 3 〇 parts by weight of 'N-(4-hydroxyphenyl) maleimide! The yttrium by weight and 3 parts by weight of the α-methylstyrene dimer, after being substituted with nitrogen, started to stir slowly. The solution temperature was raised to 70. (:, maintaining this temperature for 5 hours, a polymer solution containing the copolymer [A-2] was obtained. The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer [A-2] was 13,000, and the molecular weight distribution (Mw) /Mn) is 2·2. Further, the solid solution concentration of the polymer solution obtained here is 3 2 · 7 wt%. Synthesis Example 3 In a flask equipped with a cooling tube and a stirrer, 2.2,-azo double was charged. 7 parts by weight of (2'4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethylmethyl acid, followed by 10 parts by weight of methacrylic acid and 5 parts by weight of styrene-epoxypropylmethyl group 30 parts by weight of acrylate, 20 parts by weight of p-vinylbenzylepoxypropyl ether, 30 parts by weight of '2-hydroxyethyl methacrylate, Ν- •38- 1326799 (4-hydroxyphenyl)-butylene 5 parts by weight of quinone and 3 parts by weight of α-methylstyrene dimer, after being substituted with nitrogen, started to stir slowly. The temperature of the solution was raised to 70 ° C, and the temperature was maintained for 5 hours to obtain a copolymer containing [ A-3] polymer solution. The copolymer [A-3] has a polystyrene-equivalent weight average molecular weight (Mw) of 11,000 and a molecular weight distribution (M w/Mn ). 2.4. Further, the solid solution concentration of the polymer solution obtained herein was 31.5 wt%. Synthesis Example 4 In a flask equipped with a cooling tube and a stirrer, 2,2'-azobis (2,4-) was charged. 10 parts by weight of dimethylvaleronitrile and 220 parts by weight of diethylene glycol ethyl methyl ether, followed by methacrylic acid by weight, 30 parts by weight of propylene methacrylate, tricyclo [5.2.1.02 6] 癸-8-yl methacrylate 20 parts by weight, p-vinylbenzyl epoxy propyl ether 18 parts by weight 'n-stearyl methacrylate 10 parts by weight, N-(4-hydroxyphenyl) 12 parts by weight of maleimide and 5 parts by weight of 'α-methylstyrene dimer' were replaced by nitrogen, and stirring was started slowly. The temperature of the solution was raised to 70 ° C. This temperature was maintained for 5 hours. The polymer solution containing the copolymer [A-4] was obtained. The copolymer [A-4] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw/Mn) of 1.8. Further, the solid solution concentration of the polymer solution obtained herein was 31.5 wt%. Synthesis Example 5 In a flask equipped with a cooling tube 'mixer, 2,2'·azo double (-39) was charged. - 1326799 2,4-dimethylvaleronitrile)i parts by weight, 250 parts by weight of diethylene glycol ethyl methyl ether. Next, 15 parts by weight of methacrylic acid, 10 parts by weight of styrene, tricyclo [ 5.2.1.02·6] 17 parts by weight of fluoren-8-yl methacrylate, 50 parts by weight of epoxy propyl methacrylate, and 8 parts by weight of N-(4-carboxyphenyl) maleimide After 5 parts by weight of ex-methylstyrene dimer, after substituting with nitrogen, stirring was started slowly. The temperature of the solution was raised to 70 ° C, and this temperature was maintained for 5 hours to obtain a polymer φ solution containing the copolymer [A-5]. The polystyrene of the copolymer [A-5] had a weight average molecular weight (Mw) of 8,0 00 and a molecular weight distribution (Mw/Mn) of 2.0. Further, the solid solution concentration of the polymer solution obtained here was 29.8% by weight. Synthesis Example 6 In a flask equipped with a cooling tube and a stirrer, 10 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and diethylene glycol ethyl methyl ether 220 were added. Share. Next, 15 parts by weight of methacrylic acid, 10 parts by weight of styrene, 10 parts by weight of tricyclo[5.2.1.06·6]癸-8-yl methacrylate, and 50 parts by weight of glycidyl methacrylate were charged. 15 parts by weight of N-(4-hydroxycyclohexyl)maleimide and 5 parts by weight of α-methylstyrene dimer were slowly stirred after being substituted with nitrogen. The temperature of the solution was raised to 70 ° C, and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-6]. The copolymer [A-6] had a polystyrene-equivalent weight average molecular weight (Mw) of 8,000 and a molecular weight distribution (Mw/Mn) of 2.4. Further, the solid solution concentration of the polymer solution of -40 to 1326799 obtained herein was 29.8% by weight. Comparative Synthesis Example 1 In a flask equipped with a cooling tube and a stirrer, 8 parts by weight of 2,2'-wei 2,4-dimethylvaleronitrile was placed, and diethylene glycol ethyl methyl ether was used. Next, 20 parts by weight of methacrylic acid, styrene portion, 40 parts by weight of propylene methacrylate and 20 parts by weight of phenyl cis-imine were charged, and after nitrogen substitution, stirring was started slowly. The temperature of the step was raised to 7 (TC, and the temperature was maintained for 5 hours to obtain a polymer solution of [a-1]. The polystyrene-equivalent weight average molecular weight of the copolymer [a-1] was 7,500, and the molecular weight was 7,500. The distribution (Mw/Mn) was 2.4. Further, the solid content concentration of the polymer solution of the house was 3.66% by weight. Example 1 [Preparation of a linear radiation-sensitive resin composition] The polymer solution obtained in Synthesis Example 1 ( Equivalent to copolymerization] 100 parts by weight (solid component)), and component [B] is 4 〆[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol ( 30% by weight of ι·〇 and 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.0 mol), and dissolved in diethylene glycol ethyl to form solid concentration After becoming 30% by weight, it is filtered through a 0.2 μιη filter with a pore size to modulate the nitrogen-dissolving bismuth of the linear radiation-sensitive resin composition (220 wt% of the weight of the diene solution) (Mw). -[1-[4-mole] compound (microporous methyl ether t (S-1 -41 - 1326799 Examples 2 to 9, Comparative Example 1 [Modulation of sensitive radiation linear resin composition] In the first embodiment, the components [A] and [B] were used, and the solution of the linear radiation-sensitive resin composition (S-2) was prepared in the same manner as in Example 1 except for the type and the amount of Table 1. ~(S-9) , ( n )° φ Also, in Table 1, the abbreviations of the components are as follows: (Bl) : 4,4'-[1-[4-[1-[4-hydroxyl Condensate of phenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.0 mol) (B-2): 2,3,4,4·-tetrahydroxybenzobenzophenone (1.0 mol) and 1,2-naphthoquinonediazide-5-sulfonate (2.5 m) ( Β-3) : 4,4,-[1·[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1_0 mol) with 1 a condensate of 2-naphthoquinonediazide-5-sulfonic acid chloroform (2.0 mol), (Β-4): 4,4,-[1-[4-[1-[4-hydroxyl Condensate of phenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-4-sulfonic acid chloride (2.0 mol) -42 - 1326799 奉1 1 Copolymer A '一1--- --------- j B Component 1 Composition species 丨lll'l " * »!·- •'· Λ---- " — j ;mm丨 quantity (parts by weight) 丨 surface|quantity (weight package, example 1 (S-1) Al 1 100 1 ! Β-1 i . _ j 35 — 丨 Example 2 (S-2) A-2 100 Β·1 35 One Embodiment 3 (S-3) A-3 100 Bl 35 Embodiment 4 (S-4) A-4 100 Β-1 35 Example 5 (S-5) A-5 100 Bl 35 __ EXAMPLES (S-6) A-6 100 Β-1 35 Example 7 (S-7) Al 100 B-2 30 Example 8 (S-8) Al 1 100 B-3 25 Example 9 (S -9) Al 100 B-4 25 ^ Comparative Example 1 (s-1) al 100 Bl 35 Example 1 〇~1 8 , Comparative Example 2 to 4 <Performance Evaluation of Interlayer Insulating Film> Using Modulation as described above The sensitized radiation linear resin composition' evaluates various characteristics of the interlayer insulating film in a Τ manner. Further, the compositions used in Comparative Examples 3 and 4 m were all sold as a composition of m-p-cresol novolak and 1,2-naphthoquinone = «nitro-5-sulfonate (Tokyo Yinghua Co., Ltd. [Evaluation of Sensitivity] A coating film having a thickness of 3.0 μm was formed by pre-baking the composition of Table 2 on a crucible substrate by using a rotator and pre-baking at 90 ° C for 2 minutes on a hot plate. After the obtained coating film was passed through a pattern mask having a predetermined pattern, the exposure time was changed by a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc., and the exposure was carried out at -43 to 1326799, and the hydrogen in the concentration shown in Table 2 was used. 25t, 90 seconds liquid solution development. The pattern is formed on the wafer by super-drying and drying. (1 〇 to 1) The gap and pattern are completely dissolved. The 値 is sensitivity, as shown in Table 2. This is good. φ [Evaluation of development limit] Using a rotator on a sand substrate, 9 (TC) was prebaked on a hot plate for 2 minutes to form a coating film having a line of 3.0 μm and a photomask, and PLA-501 manufactured by Canon Inc. was used. ), in the above-mentioned "[Sensitivity evaluation! Light exposure is performed, and the concentrated liquid described in Table 2 is washed at 25 ° C for 90 seconds, and the φ 1 split water is washed and dried, in the wafer line. (line) line width becomes 3 μηη to make the necessary room and is shown in Table 2. Also, the line of 3.0 μηι is determined by the most suitable method. The pattern to the peeling system is shown in Table 2. This is at 30 seconds to [solvent resistant] Evaluation of the properties: Using a rotator on a ruthenium substrate, the aqueous solution of tetramethylammonium chloride was washed with β water for 1 minute, and the necessary exposure amount was measured by dissolving the line of 3·0 μιη and the gap. When /m2 or less, the composition of the sensor 2 is coated, and the film thickness is 3·0μηι. The sensitivity of the F exposure machine (ultra-high pressure mercury lamp I] in the gap (1 〇 to 1) is measured. After exposure to tetramethylammonium hydroxide, the water is developed, and then formed into a pattern with ultrapure water. In order to make the development time the optimum time for the development of the shadow time and then the development, while the development limit, the development limit can be said to be good after coating the composition of Table 2, at -44 - 1326799 90 ° C in the heat The sheet was prebaked for 2 minutes to form a coating film having a film thickness of 3.0 μm. The obtained coating film was exposed to a PLA-501 F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc., so that the total irradiation amount reached 3,000 J/m 2 . The ruthenium substrate was heated in a clean oven at 220 ° C for 1 hour to obtain a cured film. The film thickness (T) of the obtained cured film was measured. Then, the ruthenium substrate formed by the cured film was controlled at a temperature of 70 ° C. After immersing in the dimethyl hydrazine for 20 minutes, the film thickness (11) of the cured film was measured, and the film thickness change rate {| tl-Tl| / Τ 1} χ 1 〇〇 [%] due to immersion was calculated. The results are shown in Table 2. When the enthalpy is 5% or less, the solvent resistance is good. In addition, in the evaluation of the solvent resistance, since the pattern of the formed film is not required, the radiation irradiation step and the development step are not required. It is omitted, and only the film forming step is provided, and it is baked afterwards. Evaluation of the procedure and the heating step. [Evaluation of heat resistance] A cured film was formed in the same manner as the evaluation of the solvent resistance, and the film thickness (Τ2) of the obtained cured film was measured. Next, the cured film substrate was placed in a clean furnace. After baking at 240 ° C for 1 hour, the film thickness (t2 ) of the cured film was measured and the film thickness change rate due to additional baking was calculated { | t2-T2 | /T2 } X 1 00 [%] The results are shown in Table 2. When the enthalpy is 5% or less, the heat resistance is good. [Evaluation of transparency] In the evaluation of the solvent resistance described above, a glass substrate "Corning 7 05 9 (manufactured by Corning)) was used. In addition to the ruthenium substrate, the same is formed on the glass substrate of the same -45- 1326799 mode. The light transmittance of the glass substrate having the cured film was measured by a spectrophotometer "150-20 type Double beam (manufactured by Hitachi, Ltd.)" at a wavelength in the range of 400 to 800 nm. The lowest light transmittance at this time is shown in Table 2. When the enthalpy is 90% or more, the transparency is good. [Evaluation of Specific Dielectric Constant] φ The composition of Table 2 was applied to a SUS304 substrate which had been honed, and then the composition of Table 2 was applied, and then baked at 90 ° C for 2 minutes on a hot plate to form a film thickness of 3.0 μm. Coating film. The obtained coating film was exposed to a cumulative irradiation amount of 3,000 J/m 2 by a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc., and the substrate was calcined at 220 ° C for 1 hour in a clean room to obtain a cured film. With respect to this cured film, a Pt/Pd electrode pattern was formed by a steaming method to prepare a sample for measuring a dielectric constant. The substrate was measured at a frequency of 10 kHz by using the HP16451B electrode manufactured by Yokogawa HEWLETT PACKARD Co., Ltd. and the HP4284A Precision LCR meter, and the specific dielectric constant of the substrate was measured by the cv method. As a result, as shown in Table 2, when the enthalpy was 3.6 or less, the dielectric constant was good. Further, in the evaluation of the dielectric constant, since the pattern of the formed film is not required, the radiation irradiation step and the development step can be omitted, and only the evaluation of the coating film forming step & the post-baking step and the heating step can be provided. -46- 1326799 Channel constant 1. cn Ό \〇cn rn un rn v〇r〇rn rn νή 卜r- rn Transparency (%) 1 Os <Ν ΟΝ <s ON CN Os ON og 5; 5 m Os m 〇〇CN 00 Heat resistance film thickness change rate (%) (N (Ν cn m (N (N (N (N (N (N ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Oi (N vs. ri inch CN CN <N 守(N o (NO) Solvent-resistant film thickness change rate (%) (N CN m (N CN CN <N (N m 〇CN hardened film thickness (μηι ) inch oi m c4 m oi inch inch cs inch oi inch r4 to CN inch c^io CN Os development limit boundary (seconds) wn m 沄m ur> yn m <N optimum imaging time (seconds) § soss § 〇〇§ S § 53⁄4 Sensitivity (J/m2) 700 600 600 800 o r- 750 o 00 700 550 700 2200 2200 纮m Saturated liquid concentration (aa%) o 3 〇2.38 inch o inch o inch o 〇 〇〇 2.38 2.38 Composition species 1_ / -\ Also CjT Co w 〇〇 also w / < - s OFPR-800 OFPR-5000 ΪΙ Example 10 tt Example 11 Example 12 α Example i3 biliary case 14 1JI Shi Example 15 H Example 16 W Example π ! Clock Example 18 Comparative Example 2 Comparative Example 3 Comparative Example 4 - 47- 1326799 Example 1 9 to 2 7, Comparative Example 5 to 7 <Performance Evaluation of Microlens> Various characteristics were evaluated using the microlens in the manner of the radiation-sensitive linear resin group prepared in the above manner. For the evaluation, please refer to the composition of the above-mentioned interlayer insulating film, and the composition used in Comparative Examples 5 and 0, φ novolac and 1,2-naphthoquinonediazide-5-sulfonate, Tokyo Yinghua Co., Ltd. [Evaluation] [Evaluation of Sensitivity] Using a rotator on a ruthenium substrate, the composition of Table 3 was prebaked on a 90 °C hot plate for 2 minutes to form a film thickness of 3·0μηι. The film was passed through a pattern having a predetermined pattern. The mask was exposed to a NSR 1 75 5 i7A reduction projection exposure machine (ΝΑ = 0.50, λ φ light time change, and developed in an aqueous solution of the concentration shown in Table 3 at 25 ° C for 1 minute. Dry, forming a pattern on the wafer. To measure the sensitivity at 0.8 μηι (1 line width of Ο. 8 μηι is the sensitivity, as shown in Table 3. This 値 is good at 2,500 J/m2. [Evaluation of development limit] A rotator was used on the substrate to coat the composition of Table 3. For evaluation of the heat, the results can be evaluated as inter-/p-cresol-selling products (after coating, the film is applied. Nikon company made = 3 6 5nm) to expose tetramethylammonium hydroxide to water, dry line and gap pattern time. After the squatting situation, after sensing the composition, at -48-1326799 90 °C on the hot plate The film was pre-baked for 2 minutes to form a film having a film thickness of 3.Ομηη. The pattern film mask having a predetermined pattern was passed through the obtained coating film, and the projection exposure machine was reduced by NSR 1 75 5 i7A manufactured by Nikon Co., Ltd. (ΝΑ = 0.50) λ = 3 65 ηηι) The exposure amount corresponding to the sensitivity measured by the above [sensitivity evaluation] was performed, and the exposure was carried out at a concentration of 25 t '1 liter of the tetramethylammonium hydroxide aqueous solution at the concentration shown in Table 3. Develop it. Wash with water, dry it, and form a pattern on the wafer. To make 〇· 8 μηι The gap line width between the line and the gap pattern (1 to 1) becomes 0 · 8 μm, so that the necessary development time is the optimum development time as shown in Table 3. Further, the width is measured by the optimum development time and further development. The time from 0 to 8 μηη to the time of peeling (development limit), and the development limit is shown in Table 3. When the 値 is 30 seconds or more, the development limit is good. [Evaluation of Solvent Resistance] on the ruthenium substrate After coating the composition of Table 3 using a spinner, it was prebaked on a hot plate at 9 ° C for 2 minutes to form a coating film having a film thickness of 3.0 μm. The obtained coating film was made by Canon Inc. P LA- 5 0 The 1 F exposure machine (ultra-high pressure mercury lamp) was exposed so that the total irradiation amount was 3,000 J/m 2 , and the ruthenium substrate was heated in a clean furnace at 220 ° C for 1 hour to obtain a cured film. The film thickness of the obtained cured film (T3) was measured. Then, after the immersion substrate having a temperature of 50 C controlled by the cured film was immersed for 7 minutes for 10 minutes, the film thickness (t3) of the cured film was measured, and the film thickness change rate due to the immersion was calculated. {丨t3-T3丨/T3} X 100[%]. The results are shown in Table 3. This is now When the content is 5% or less, the solvent resistance is good. In addition, the pattern formed by the evaluation of the solvent resistance is not required to be -49-1326799', so that the radiation irradiation step and the development step can be omitted, and only the coating can be provided. Evaluation of film formation step, post-baking step and heating step. [Formation of microlens] The composition of Table 3 was applied on a sand substrate using a spinner, and then prebaked on a hot plate at 90 ° C for 2 minutes. A coating film having a film thickness of 3_0 μm was formed. The obtained coating film was passed through a φ pattern mask having a dot pattern of 4.0 μπι (dot) · 2·0 μπι to reduce the projection exposure machine (ΝΑ = 0·50 ' λ = 3 6 5ηιη ) by Nikon NSR1755i7A. The above [[sensitivity evaluation]] measured; the exposure amount of the sensitivity is exposed, and in the evaluation of the sensitivity of Table 3, the tetramethylammonium hydroxide aqueous solution at a concentration of the developer concentration is 25 ° C for 1 minute. Liquid method to develop. It is washed with water and dried to form a pattern on the wafer. Thereafter, the PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc. was used to expose the cumulative irradiation amount to 3,00 J/m2. Thereafter, the film was heated at 160 ° C for 10 minutes, and further heated at 23 ° C for 10 minutes to form a φ pattern melt flow to form a microlens. The dimensions (diameter) and cross-sectional shape of the bottom of the formed microlens (the surface in contact with the substrate) are shown in Table 3. When the size of the bottom of the microlens exceeds 4.0 μm to less than 5.0 μm, it can be said to be good. Further, when the size is 5.0 μm or more, the adjacent lenses are in contact with each other, which is not preferable. Further, the cross-sectional shape is good in the shape of the semi-convex lens as in (a) in the pattern diagram shown in Fig. 1, and is inferior in the case of the substantially mesa shape of (b). -50- 1326799 Microlens shape cross-sectional shape 3 3 g $ 3 3 3 * Bottom size (μη) (Ν - inch inch ' inch · κη ΓΛ — m inch — 5.0 super 5.0 super solvent-resistant film thickness change rate (%) — — — — — — — — — CN 〇〇〇 hardened film thickness (μιη) inch oi < N (N inch CN inch oi inch CN inch CN CN inch oi 〇CN 〇 (N development limit boundary (seconds) m ΓΝΪ S S S 〇 § Image concentration (weight 3%) ο inch Ο 2.38 inch ο inch ooo O tn Ο 2.38 2.38 composition species /<-s 1 /·-smw irT also Co w oo w /-*-s OFPR-800 OFPR-5000 W Example 19 Example 20 Ilf Example 21 W Example 22 W Example 23 Dragon Example 24 Ilf Example 25 W Example 26 ω Example 27 Comparative Example 5 Comparative Example 6 1 Comparative Example 7

-51 - 1326799 【圖式簡單說明】 第1圖係,微透鏡之剖面形狀之模式圖。 -52--51 - 1326799 [Simple description of the drawing] Fig. 1 is a schematic view showing the sectional shape of the microlens. -52-

Claims (1)

1326799 l _ —- »·· ' -申請專利範圍 1. 一種敏輻射線性樹|g li k fi名警4徵爲含有, [A] : (al)不飽和羧酸及/或不飽和羧酸酐,(a2)至少 一種選自由環氧丙基丙烯酸酯、環氧丙基甲基丙烯酸酯、 α-乙基環氧丙基丙烯酸酯、α-η-丙基環氧丙基丙烯酸酯 、α-η-丁基環氧丙基丙烯酸酯、丙烯酸-3,4-環氧丁酯、 甲基丙烯酸-3,4-環氧丁酯、丙烯酸-6,7-環氧庚酯、甲基 丙烯酸-6,7-環氧庚酯、α-乙基丙烯酸-6,7·環氧庚酯,〇-乙 烯基苄基環氧丙基醚,m-乙烯基苄基環氧丙基醚,ρ-乙烯 基苄基環氧丙基醚及3,4-環氧基環己基甲基丙烯酸酯所成 群之含環氧基不飽和化合物, (a3)含羥基或羧基之順丁烯二醯亞胺系單體,及 (a4)至少一種選自由(甲基)丙烯酸烷酯,(甲基)丙烯 酸環狀烷酯,具有羥基之(甲基)丙烯酸酯,(甲基)丙烯酸 芳基酯,不飽和二羧酸二酯,雙環不飽和化合物,順丁烯 二醯亞胺化合物,不飽和芳香族化合物及共軛二烯所成群 之不飽和化合物,以及 [B] : 1,2-苯醌二疊氮化合物。 2 .如申請專利範圍第1項之敏輻射線性樹脂組成物 ,其爲層間絶緣膜形成用。 3. 如申請專利範圍第1項之敏輻射線性樹脂組成物, 其爲微透鏡形成用。 4. 一種層間絶緣膜之形成方法,其特徵爲,含有以 以下記載順序之步驟, -53- 1326799 (1) 將如申請專利範圍第丨項之敏輻射線性樹脂組成 物之塗膜形成於基板上之步驟, (2) 在該塗膜之至少一部分照射輻射線之步驟 (3) 顯影步驟,及 (4) 加熱步驟。 5. —種微透鏡之形成方法,其特徵爲,含有以以下 之記載順序之步驟, (1) 將如申請專利範圍第1項之敏輻射線性樹脂組成 物之塗膜形成於基板上之步驟, (2) 在該塗膜之至少一部份照射輻射線之步驟, (3) 顯影步驟,及 (4) 加熱步驟。 -54-1326799 l _ —- »·· ' - Patent application scope 1. A sensitive radiation linear tree | g li k fi police 4 is contained, [A] : (al) unsaturated carboxylic acid and / or unsaturated carboxylic anhydride (a2) at least one selected from the group consisting of epoxy propyl acrylate, epoxy propyl methacrylate, α-ethyl epoxy propyl acrylate, α-η-propyl epoxy propyl acrylate, α- Η-butyl epoxypropyl acrylate, 3,4-epoxybutyl acrylate, 3,4-epoxybutyl methacrylate, -6,7-epoxyheptyl acrylate, methacrylic acid- 6,7-epoxyheptyl ester, α-ethyl acrylate-6,7·epoxyheptyl ester, 〇-vinylbenzyl epoxy propyl ether, m-vinylbenzyl epoxy propyl ether, ρ- An epoxy group-containing unsaturated compound in the group consisting of vinylbenzyl epoxypropyl ether and 3,4-epoxycyclohexyl methacrylate, (a3) a maleic acid imide with a hydroxyl group or a carboxyl group a monomer, and (a4) at least one selected from the group consisting of alkyl (meth)acrylate, cyclic alkyl (meth)acrylate, (meth)acrylate having a hydroxyl group, aryl (meth)acrylate, not Saturated dicarboxylic acid diester, double ring A saturated compound, a maleimide compound, an unsaturated compound in which an unsaturated aromatic compound and a conjugated diene are grouped, and [B]: 1,2-benzoquinonediazide compound. 2. The sensitive radiation linear resin composition of claim 1, which is used for forming an interlayer insulating film. 3. The sensitive radiation linear resin composition of claim 1, which is for microlens formation. A method of forming an interlayer insulating film, comprising the step of: in the following order, -53- 1326799 (1) forming a coating film of a sensitive radiation linear resin composition according to the scope of the application of the patent application The above steps, (2) the step of irradiating at least a portion of the coating film with radiation (3), the step of heating, and (4) the step of heating. 5. A method of forming a microlens, comprising the steps of: in the following order, (1) a step of forming a coating film of a radiation sensitive linear resin composition according to claim 1 of the patent application scope on a substrate (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) a heating step. -54-
TW093122996A 2003-07-31 2004-07-30 Radiation-sensitive resin composition, interlayer insulating film, microlens and their manufacturing method TW200510932A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283291A JP4127150B2 (en) 2003-07-31 2003-07-31 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof

Publications (2)

Publication Number Publication Date
TW200510932A TW200510932A (en) 2005-03-16
TWI326799B true TWI326799B (en) 2010-07-01

Family

ID=34268219

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093122996A TW200510932A (en) 2003-07-31 2004-07-30 Radiation-sensitive resin composition, interlayer insulating film, microlens and their manufacturing method

Country Status (3)

Country Link
JP (1) JP4127150B2 (en)
KR (1) KR101021725B1 (en)
TW (1) TW200510932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570503B (en) * 2012-03-27 2017-02-11 日產化學工業股份有限公司 Photosensitive resin composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221468B1 (en) * 2005-01-27 2013-01-11 주식회사 동진쎄미켐 Photosensitive resin composition
KR100758879B1 (en) * 2006-07-13 2007-09-14 제일모직주식회사 One-solution type thermosetting composition for protective film of color filter
KR100908694B1 (en) * 2006-08-07 2009-07-22 도쿄 오카 고교 가부시키가이샤 Photosensitive resin composition for interlayer insulating film and method of forming interlayer insulating film
JP4935565B2 (en) * 2007-08-01 2012-05-23 住友化学株式会社 Photosensitive resin composition
JP5240459B2 (en) * 2008-02-19 2013-07-17 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP5182365B2 (en) * 2008-03-31 2013-04-17 Jsr株式会社 Positive radiation-sensitive resin composition, microlens and method for forming microlens
WO2020032173A1 (en) * 2018-08-10 2020-02-13 株式会社大阪ソーダ Acrylic copolymer and rubber material
JP7451270B2 (en) 2020-04-09 2024-03-18 Jsr株式会社 Method for processing radiation-sensitive compositions

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114166B2 (en) * 1992-10-22 2000-12-04 ジェイエスアール株式会社 Radiation-sensitive resin composition for microlenses
KR100252546B1 (en) * 1997-11-01 2000-04-15 김영환 Polymer resin and method for preparing the same
SG85221A1 (en) * 1999-12-01 2001-12-19 Jsr Corp Radiation sensitive composition and color liquid crystal display device
JP3965868B2 (en) * 2000-06-12 2007-08-29 Jsr株式会社 Interlayer insulation film and microlens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570503B (en) * 2012-03-27 2017-02-11 日產化學工業股份有限公司 Photosensitive resin composition

Also Published As

Publication number Publication date
KR20050014742A (en) 2005-02-07
KR101021725B1 (en) 2011-03-15
JP2005049720A (en) 2005-02-24
JP4127150B2 (en) 2008-07-30
TW200510932A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP4207604B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for forming them
JP4656316B2 (en) Interlayer insulating film, microlens, and manufacturing method thereof
JP4905700B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
JP4168443B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
KR101421299B1 (en) Radiation-sensitive resin composition, interlayer insulation film and microlens, and process for producing them
KR101538804B1 (en) Radiation sensitive resin composition, and interlayer insulation film and method for producing the same
JP5105073B2 (en) Radiation-sensitive resin composition, and method for producing interlayer insulating film and microlens
JP4650639B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP4677871B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
JP4544370B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5177404B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens and method for producing the same
TWI326799B (en)
TWI383255B (en) A method for forming a radiation linear resin composition and an interlayer insulating film and a microlens
TWI282905B (en) Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those
JP2007101759A (en) Radiation-sensitive resin composition, and formation of interlayer insulation film and microlens
TWI285791B (en) Radiation-sensitive resin composition, interlayer insulating film and microlens
JP2006201549A (en) Radiation sensitive resin composition, interlayer insulation film and microlens