TWI282905B - Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those - Google Patents

Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those Download PDF

Info

Publication number
TWI282905B
TWI282905B TW093123007A TW93123007A TWI282905B TW I282905 B TWI282905 B TW I282905B TW 093123007 A TW093123007 A TW 093123007A TW 93123007 A TW93123007 A TW 93123007A TW I282905 B TWI282905 B TW I282905B
Authority
TW
Taiwan
Prior art keywords
weight
acrylate
meth
compound
ether
Prior art date
Application number
TW093123007A
Other languages
Chinese (zh)
Other versions
TW200508800A (en
Inventor
Eiji Takamoto
Kenichi Hamada
Takaki Minowa
Kimiyasu Sano
Michinori Nishikawa
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200508800A publication Critical patent/TW200508800A/en
Application granted granted Critical
Publication of TWI282905B publication Critical patent/TWI282905B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Abstract

Disclosed is a radiation-sensitive composition that contains [A]: a copolymer of (a1) an unsaturated carboxylic acid and/or an unsaturated carboxylic acid anhydride, (a2) an epoxy-containing unsaturated compound, (a3) an unsaturated compound having at least one skeleton selected from the group consisting of a tetrahydrofuran skeleton, a furan skeleton, a tetrahydropyran skeleton, a pyran skeleton and the skeletons represented by formula (1), [where R is hydrogen or methyl, and n is an integer between 2-10], and (a4) an unsaturated compound other than the compounds of (a1), (a2) and (a3), and [B] a 1,2-naphthoquinonediazido compound, and an interlayer insulation film and a micro-lens manufactured from the composition. The radiation-sensitive composition has high radiation sensitivity and a sufficient margin for development and is capable of easily forming a patterned thin film excellent in adhesion.

Description

1282905 (1) 九、發明說明 【發明所屬之技術領域】 本發明係關於,敏輻射線性樹脂組成物,層間絶緣膜 及微透鏡,以及此等之製造方法。 【先前技術】 薄膜電晶體(以下,稱爲「TFT」)型液晶顯示元件或磁頭 元件,積體電路元件,固體攝像元件等之電子構件,一般 係爲在配置成層狀之配線之間予以絶緣用則設置層間絶緣 膜。 在形成層間絶緣膜之材料方面,爲獲得必要之圖型形 狀之步驟數予以減少,而且具有充分平坦性者爲佳,故敏 輻射線性樹脂組成物被廣泛地使用(例如,請參照日本特 開200 1 -3 5 4822號公報及特開200 1 -343 743號公報)。 在上述電子構件中,例如TFT型液晶顯示元件,係 在上述層間絶緣膜之上形成透明電極膜,進而經過在其上 形成液晶定向膜之步驟來製造,層間絶緣膜因在透明電極 膜之形成步驟中曝曬於高溫條件,或暴露於電極之圖型形 成所使用之光阻之剝離液,因此對該等充分之耐性爲必 要。 又在近年來,TFT型液晶顯示元件中,有傾向於大畫 面化,高亮度化,高精細化,高速響應化,薄型化等之動 向,使用於該等之層間絶緣膜形成用組成物方面,爲高感 度,而在所形成之層間絶緣膜於低介電常數,高透過率等 -5- 1282905 (2) 中,比習知更爲高性能被要求。 一方面,傳真機,電子影印機,固體攝像元件 片上(onchip)彩色濾光片之結像光學系或者光纖 之光學系材料方面,具有3〜100 μπι左右透鏡徑 鏡,或將此等微透鏡予以規則配列之微透鏡列陣則 者。 在微透鏡或微透鏡列陣之形成,相當於透鏡之 型形成後,藉由加熱處理可使熔體流動,就這樣作 利用之方法或將使熔體流動之透鏡圖型成爲光罩, 蝕刻在基層使透鏡形狀轉印之方法等爲周知。在前 圖型之形成,敏輻射線性樹脂組成物被廣泛地β 如,請參照日本特開平6- 1 8702號公報及特開平6-號公報)。 但是,上述般之微透鏡或微透鏡列陣所形成之 後,爲將爲配線形成部分之接合墊(bonding pad 各種絶緣膜予以除去,使平坦化膜及蝕刻用光阻膜 使用所望之光罩予以曝光,顯影將接合墊部分之触 除去,接著,則提供藉由蝕刻將平坦化膜或各種絶 去使接合墊部分予以曝光之步驟。因此在微透鏡或 列陣,平坦化膜及蝕刻光阻之塗膜形成步驟以及蝕 中,耐溶劑性或耐熱性爲必要。 爲形成此種微透鏡所用之敏輻射線性樹脂組成 高感度,又,自其所形成微透鏡具有所望之曲率半 高耐熱性,高透過率等則被要求。 等之晶 連接器 之微透 被使用 光阻圖 爲透鏡 藉由乾 述透鏡 ί用(例 136239 元件其 )上之 塗布, 刻光阻 緣膜除 微透鏡 刻步驟 物,爲 徑,而 -6 - 1282905 (3) 又,如此所得之層間絶緣膜或微透鏡,在形成該等之 際之顯影步驟中,顯影時間比最適時間即使稍稍過剩,在 圖型與基板間會有顯影液浸透而易於剝離之故,而有必要 嚴密地控制顯影時間,而在製品之原料利用率之點而言有 其問題。 如此,在將層間絶緣膜或微透鏡由敏輻射線性樹脂組 成物來形成時,在組成物方面被要求爲高感度,又在形成 步驟中之顯影步驟中顯影時間即使比所定時間爲過剩之情 形並不會產生圖型之剝離而顯示良好的密接性,且自其所 形成之層間絶緣膜則高耐熱性,高耐溶劑性,低介電常 數,高透過率等被要求,一方面,在形成微透鏡之情形, 在微透鏡係被要求良好的熔融形狀(所望之曲率半徑),高 耐熱性,高耐溶劑性,高透過率,而要滿足此種要求之敏 輻射線性樹脂組成物在習知尙無所知。 發明之揭示 本發明係根據以上之情事而完成者。因此,本發明之 目的係提供,具有高敏輻射線感度,在顯影步驟中即使超 過最適顯影時間亦具有可形成良好圖型形狀之顯影界限, 可容易形成密接性優異圖型狀薄膜之敏輻射線線性組成 物。 本發明之其他目的係提供,在用於形成層間絶緣膜之 情形,可形成高耐熱性,高耐溶劑性,高透過率,低介電 常數之層間絶緣膜,又在使用於微透鏡之形成之情形,可 (4) 1282905 形成具有高透過率與良好熔融形狀之微透鏡之敏輻射線性 樹脂組成物。 本發明之進而其他目的係提供,使用上述敏輻射線性 樹脂組成物來形成層間絶緣膜及微透鏡之方法。 本發明之進而其他目的係提供藉由本發明之方法所形 成之層間絶緣膜及微透鏡。 本發明之進而其他目的及優點,可由以下説明而更爲 明瞭。 根據本發明,本發明之上述目的及優點第1係,含 有: [A] (a 1)不飽和羧酸及/或不飽和羧酸酐 (以下,稱爲「化合物(a 1)」。), (a2)含有環氧基不飽和化合物(以下,稱爲「化合物 (a2)」) U3)含有選自四氫呋喃骨架,呋喃骨架,四氫哌喃 (pyran)骨架,哌喃骨架,及下述式(1)1282905 (1) Description of the Invention [Technical Field] The present invention relates to a radiation sensitive linear resin composition, an interlayer insulating film and a microlens, and a method of manufacturing the same. [Prior Art] A thin film transistor (hereinafter referred to as "TFT") type liquid crystal display element or magnetic head element, an integrated circuit element, and an electronic component such as a solid-state image sensor are generally disposed between wirings arranged in layers. For insulation, an interlayer insulating film is provided. In terms of the material for forming the interlayer insulating film, the number of steps for obtaining the necessary pattern shape is reduced, and it is preferable to have sufficient flatness, so that the sensitive radiation linear resin composition is widely used (for example, please refer to Japanese special opening) Japanese Patent Publication No. 200 1 -3 5 4822 and JP-A No. 2001-343743. In the above electronic component, for example, a TFT-type liquid crystal display element is formed by forming a transparent electrode film on the interlayer insulating film, and further is formed by a step of forming a liquid crystal alignment film thereon, and the interlayer insulating film is formed by the transparent electrode film. The step is exposed to high temperature conditions, or the pattern exposed to the electrode forms a stripper of the photoresist used, so that such sufficient resistance is necessary. In recent years, in the case of the TFT-type liquid crystal display device, there is a tendency to increase the thickness of the screen, to increase the brightness, to increase the brightness, to increase the response speed, and to reduce the thickness of the liquid crystal display device. It is high in sensitivity, and in the formed interlayer insulating film, low dielectric constant, high transmittance, etc. - 5,282,905 (2), higher performance than conventionally required is required. On the one hand, a fax machine, an electronic photocopier, a solid-state imaging device, an on-chip color filter, an optical system, or an optical fiber material, has a lens path of about 3 to 100 μπι, or such a microlens. A microlens array that is regularly arranged. After the formation of the microlens or microlens array, corresponding to the formation of the lens, the melt can be flowed by heat treatment, so that the method of utilizing or the lens pattern of the melt flow can be used as a mask, etching A method of transferring a lens shape in a base layer or the like is known. In the formation of the former pattern, the sensitive radiation linear resin composition is widely used, for example, in Japanese Patent Laid-Open Publication No. Hei 6-8702 and Japanese Patent Application Laid-Open No. Hei. However, after the above-described microlens or microlens array is formed, the bonding pads for the wiring forming portions are removed, and the planarizing film and the etching resist film are used as desired. Exposure, development removes the contact of the bonding pad portion, and then provides a step of exposing the bonding pad portion by etching the planarizing film or various extrudes. Therefore, in the microlens or array, the planarizing film and the etching photoresist In the coating film forming step and etching, solvent resistance or heat resistance is necessary. The sensitivity of the linear resin for forming the microlens is high sensitivity, and the microlens formed therefrom has a desired half-high heat resistance. , high transmittance, etc. are required. The micro-transparent of the crystal connector is used as a lens by means of a lens (for example, 136239 element) coating, engraved film in addition to microlens engraving The step is a diameter, and -6 - 1282905 (3) Further, the interlayer insulating film or the microlens thus obtained, in the developing step at the time of forming, the development time is more than the optimum time If there is a slight excess, the developer will permeate between the pattern and the substrate, and it is easy to peel off. Therefore, it is necessary to strictly control the development time, and there is a problem in the point of utilization of the raw material of the product. When the insulating film or the microlens is formed of a sensitive radiation linear resin composition, it is required to have high sensitivity in terms of composition, and the development time in the developing step in the forming step is not excessive even if the development time is excessive. The peeling of the type shows good adhesion, and the interlayer insulating film formed therefrom is required to have high heat resistance, high solvent resistance, low dielectric constant, high transmittance, etc., on the one hand, in the case of forming a microlens In the microlens system, a good melt shape (a desired radius of curvature), high heat resistance, high solvent resistance, and high transmittance are required, and a sensitive radiation linear resin composition satisfying such a requirement is known in the art. DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances. Accordingly, it is an object of the present invention to provide a high-sensitivity radiation sensitivity even in a developing step. The optimum development time exceeds the development limit which can form a good pattern shape, and the linear composition of the radiation sensitive pattern of the pattern-like film excellent in adhesion can be easily formed. Other objects of the present invention are provided for forming an interlayer insulating film. In this case, an interlayer insulating film having high heat resistance, high solvent resistance, high transmittance, and low dielectric constant can be formed, and in the case of forming a microlens, (4) 1282905 can be formed to have high transmittance and good melting. Further, the object of the present invention is to provide a method for forming an interlayer insulating film and a microlens using the above-mentioned radiation-sensitive linear resin composition. Further objects of the present invention are provided by the present invention. Further advantages and advantages of the present invention will become more apparent from the following description. According to the present invention, the above object and advantages of the present invention include: [A] (a 1) an unsaturated carboxylic acid and/or an unsaturated carboxylic anhydride (hereinafter referred to as "compound (a 1)"), (a2) an epoxy group-containing unsaturated compound (hereinafter referred to as "compound (a2)") U3) containing a tetrahydrofuran skeleton, a furan skeleton, a tetrahydropyran skeleton, a meridane skeleton, and the following formula (1)

〔式中,R表示氫或甲基,η爲2〜10之整數。〕 所示骨架之群之至少一個骨架之不飽和化合物(以 下’稱爲「化合物(a3)」。),及(a4)(al),(a2)及(a3)以外 1282905 (5) 之不飽和化合物(以下,稱爲「化合物(a4)」。)之共聚物 (以下,稱爲「共聚物[A]」。),以及 [B]l,2-苯醌二疊氮化合物(以下,稱爲「[B]成分」。) 爲其特徵之敏輻射線性樹脂組成物來達成。 本發明之目的及優點第2係, 以以下之記載順序含有以下之步驟爲其特徴之層間絶 緣膜或微透鏡之形成方法來達成。 (1) 使上述敏輻射線性樹脂組成物之塗膜形成於基板 之步驟, (2) 在該塗膜之至少一部份照射輻射線之步驟, (3) 顯影步驟,及 (4) 加熱步驟。 進而本發明之目的及優點,第3係,由上述方法所形 成之層間絶緣膜或微透鏡來達成。 本發明之敏輻射線性樹脂組成物,具有高敏輻射線感 度’在顯影步驟中具有顯影界限,即使超過最適顯影時間 亦可形成良好的圖型形狀,而可容易形成密接性優異之圖 型狀薄膜。 由上述組成物所形成之本發明之層間絶緣膜,對基板 之密接性良好,耐溶劑性及耐熱性優異,具有高透過率, 介電常數低,作爲電子構件之層間絶緣膜可恰當地使用。 又’由上述組成物所形成本發明微透鏡,對基板之密 接性良好,耐溶劑性及耐熱性優異,且具有高透過率與良 -9 - 1282905 (6) 好的熔融形狀,作爲固體攝像元件之微透鏡可恰當地使 用。 【發明內容】 實施發明之最佳形態 以下,就本發明之敏輻射線性樹脂組成物加以詳述 之。 共聚物[A] 共聚物[A]係,將化合物(al),化合物(a2),化合物 (a3),及化合物(a4)在溶劑中,聚合引發劑之存在下藉由 自由基聚合來製造。本發明所用之共聚物[A]係將化合物 (a 1)所衍生之構成單元,基於化合物(a 1),( a 2),( a 3 )及 (a4)所衍生之重覆單元之合計,較佳爲5〜40重量%,特 佳爲含有1 0〜3 0重量%。在使用此構成單元不足5重量% 之共聚物時,在顯影步驟時會難以溶解於鹼水溶液,一方 面超過40重量%之共聚物會有相對於鹼水溶液之溶解性 變的過大之傾向。 化合物(a 1)係具有自由基聚合性之不飽和羧酸及/或不 飽和羧酸酐,可例舉例如單羧酸,二羧酸,二羧酸之酐, 多元羧酸之單〔(甲基)丙烯醯氧基烷基〕酯,在兩末端具 有羧基與羥基之聚合物之單(甲基)丙烯酸酯,具有羧基之 多環式化合物及其酐等。 該等具體例方面,可例舉,例如單羧酸則有丙烯酸, -10- 1282905 (7) 甲基丙烯酸,巴豆酸等;二羧酸則有順丁烯二酸’反式丁 烯二酸,檸康酸’中康酸(mesaconic aci〇 ,衣康酸 等; 二羧酸之酐方面則有,以上述二羧酸例示之化合物之 酐等; 在多元羧酸之單〔(甲基)丙烯醯氧基烷基〕酯方面, 則有琥珀酸單〔2-(甲基)丙烯醯氧基乙基〕,苯二甲酸單 〔2-(甲基)丙烯醯氧基乙基〕等; 在兩末端具有羧基與羥基之聚合物之單(甲基)丙烯酸 酯則有ω-羧基聚己內酯單(甲基)丙烯酸酯等; 具有羧基之多環式化合物及其酐方面則可各自例舉 5·羧基雙環[2·2·1]庚-2·烯,5,6-二羧基雙環[2.2.1]-庚-2-烯,5-羧基-5-甲基雙環[2·2·1]-庚-2-烯,5-羧基-5-乙基雙 環[2.2.1]庚-2·烯,5-羧基-6-甲基雙環[2.2.1]-庚-2-烯,5-羧基-6-乙基雙環[2·2·1] 庚-2-烯,5·6_二羧基雙環[2.2.1]·庚-2-烯酐等。 該等之中,單竣酸,二羧酸之酐可恰當使用,尤其是 丙燒酸,甲基丙烯酸,順丁烯二酸酐就共聚反應性,相對 於驗水溶液之溶解性及獲得容易性之點而言可恰當使用。 該等,可單獨或者組合使用。 本發明所用之共聚物[Α]係,將化合物(a2)所衍生之 構成單兀,根據化合物(a 1),(a2),(a3 )及(a4)所衍生之重 覆單元之合計,較佳爲10〜7〇重量%,特佳爲含有20〜 6〇重量%。此構成單元在不足丨〇重量%之情形所得之層 1282905 (8) 間絶緣膜或微透鏡之耐熱性或表面硬度會有降低之傾向, 一方面此構成單元之量在超過70重量%之情形,會有敏 輻射線性樹脂組成物之保存安定性降低之傾向。 化合物(a2)係具有自由基聚合性之含環氧基不飽和化 合物,可例舉例如環氧丙基丙烯酸酯,環氧丙基甲基丙烯 酸酯,α-乙基環氧丙基丙烯酸酯,α-正丙基環氧丙基丙 烯酸酯,(X-正丁基環氧丙基丙烯酸酯,丙烯酸-3,4-環氧丁 酯,甲基丙烯酸-3,4·環氧丁酯,丙烯酸-6,7-環氧庚酯, 甲基丙烯酸-6,7-環氧庚酯,α-乙基丙烯酸-6,7·環氧庚酯, 〇-乙烯基苄基環氧丙基醚,間乙烯基苄基環氧丙基醚,對 乙烯基苄基環氧丙基醚等。該等之中,以環氧丙基甲基丙 烯酸酯,甲基丙烯酸-6,7-環氧庚酯,〇-乙烯基苄基環氧丙 基醚,間乙烯基苄基環氧丙基醚,對乙烯基苄基環氧丙基 醚,3,4_環氧基環己基甲基丙烯酸酯等就可使共聚反應性 及所得之層間絶緣膜或微透鏡之耐熱性,表面硬度提高之 點而言可恰當使用。該等,可單獨或者組合使用。 本發明所用之共聚物[Α]係,將化合物(a3)所衍生之 構成單元,根據化合物(al),(a2),(a3)及(a4)所衍生之重 覆單元之合計,較佳爲5〜50重量%,特佳爲含有1〇〜40 重量%。此構成單元在不足5重量%之情形,敏輻射線性 樹脂組成物之感度會有降低之傾向,一方面超過5 0重量 %時,在層間絶緣膜或微透鏡之形成之顯影步驟中,會有 相對於鹼水溶液之溶解性變的過大之傾向。 化合物(a3)含有選自四氫呋喃骨架,呋喃骨架,四氫 -12- 1282905 (9) 哌喃(pyran)骨架,哌喃骨架,及上述式(1)所示骨架之 群之至少一個骨架,且具有自由基聚合聚合性之不飽和化 合物,例如,在含有四氫呋喃骨架之不飽和化合物方面, 則有四氫糠基(甲基)丙烯酸酯,2-甲基丙烯醯氧基-丙酸四 氫糠基酯,(甲基)丙烯酸四氫呋喃-3-基酯等。 在含有呋喃骨架之不飽和化合物方面,則有2-甲基_ 5_(3_呋喃基)-1-戊烯-3-酮,糠基(甲基)丙烯酸酯,1-呋 喃-2-丁基-3-烯-2-酮,1-呋喃-2-丁基-3-甲氧基-3·烯-2-酮 6-(2-呋喃基)-2-甲基-1-己烯-3-酮,6-呋喃-2-基-己-1-烯-3-酮·丙烯酸2-呋喃-2-基-卜甲基-乙基酯· 6-(2_呋喃基)-6-甲基-1-庚烯-3-酮等。 含四氫哌喃骨架之不飽和化合物方面,則有(四氫哌 喃-2-基)甲基甲基丙烯酸酯,2,6-二甲基-8-(四氫哌喃-2-基氧)-辛-1-烯-3-酮,2 -甲基丙烯酸四氫哌喃-2-基酯,1-(四氫哌喃-2-氧基)-丁基-3-烯-2-酮等; 在含有哌喃骨架之不飽和化合物方面,則有4 - (1,4 -二氧雜-5-氧代-6-庚烯基)-6-甲基-2-吡咯基甲酮 (pyrrone ) ,4-(1,5 -二氧雜-6-氧代-7-辛嫌基)-6 -甲基·2- 吡咯基甲酮等; 含有上述式(1)所示骨架之不飽和化合物方面,可例 舉聚乙二醇(η= 2〜10)]單(甲基)丙烯酸酯,聚丙二醇(η = 2 〜10)單(甲基)丙烯酸酯等。 該等之中,以四氫糠基(甲基)丙烯酸酯,聚乙二醇 (η = 2〜10)單(甲基)丙烯酸酯,(甲基)丙烯酸四氫呋喃-3- -13- 1282905 (10) 基酯,1-(四氫哌喃-2-氧基)-丁基-3-烯·2-酮,糠基(甲基) 丙烯酸酯等可提高敏輻射線性樹脂組成物之感度,就可使 顯影界限增加之點而言可恰當使用。該等,可單獨或者組 合使用。 本發明所用之共聚物[A ]係,將化合物(a4 ))所衍生之 構成單元,根據化合物(a 1 ),( a 2 ),( a 3 )及(a 4 )所衍生之重 覆單元之合計,較佳爲5〜70重量%,特佳爲含有5〜50 重量%。此構成單元不足5重量%之情形,敏輻射線性樹 脂組成物之保存安定性會有降低之傾向,一方面在超過 70重量%時,層間絶緣膜或微透鏡之形成之顯影步驟中, 會有難以溶解於鹼水溶液之情形。 化合物(a4)若爲具有自由基聚合性之不飽和化合物則 並無特別限制,可例舉例如,(甲基)丙烯酸烷酯·(甲基) 丙烯酸環狀烷酯,具有羥基之(甲基)丙烯酸酯,(甲基)丙 烯酸芳基酯,不飽和二羧酸二酯,雙環不飽和化合物,順 丁烯二醯亞胺化合物,不飽和芳香族化合物,共轭二烯。 該等之具體例方面例如,甲基丙烯酸烷酯則有甲基甲 基丙烯酸酯,乙基甲基丙烯酸酯,正丁基甲基丙烯酸酯, 二級丁基甲基丙烯酸酯,三級丁基甲基丙烯酸酯,2-乙基 己基甲基丙烯酸酯,異癸基甲基丙烯酸酯,正月桂基甲基 丙烯酸酯,十三基甲基丙烯酸酯,正硬脂甲基丙烯酸酯等: 丙烯酸烷酯則有甲基丙烯酸酯,丙基異丙基丙烯酸酯 等; 甲基丙烯酸環狀烷酯則有環己基甲基丙烯酸酯,2-甲 -14 - 1282905 (11) 基環己基甲基丙烯酸酯,三環[5.2.1.02·6]癸-8-基 酸酯,三環[5·2.1.02·6]癸-8-基氧乙基甲基丙烯酸 丙烯酸異硼烷酯酯等; 丙烯酸環狀烷酯則有環己基丙烯酸酯,2-甲 丙烯酸酯,三環[5.2.1.02·6]癸-8-基丙烯酸! [5.2.1.02·6]癸-8-基氧乙基丙烯酸酯,丙烯酸異硼 具有羥基之甲基丙烯酸酯則有羥甲基甲基丙 2-羥乙基甲基丙烯酸酯,3-羥丙基甲基丙烯酸醋 基甲基丙烯酸酯,二乙二醇單甲基丙烯酸酯,2 基甲基丙烯酸酯,2-甲基丙烯醯氧基乙基糖苷, 甲基丙烯酸酯等, 具有羥基之丙烯酸酯則有羥甲基丙烯酸酯, 丙烯酸酯,3-羥丙基丙烯酸酯· 4-羥丁基丙烯酸 二醇單丙烯酸酯,2,3-二丙基羥丙基丙烯酸酯, 氧乙基糖苷,4-羥苯基丙烯酸酯等; 甲基丙烯酸芳基酯則有苯基甲基丙烯酸酯, 丙烯酸酯等, 丙烯酸芳基酯則有苯基丙烯酸酯,苄基丙烯 不飽和二羧酸二酯則有順丁烯二酸二乙酯, 二酸二乙酯,衣康酸二乙酯基等; 雙環不飽和化合物則有雙環〔2.2.1〕庚-2· 基雙環〔2.2.1〕庚-2-烯,5-乙基雙環〔2·2·1〕, 5·甲氧基雙環〔2.2.1〕庚-2·烯,5-乙氧基雙環 庚·2-烯,5,6-二甲氧基雙環〔2.2.1〕庚-2-烯, 甲基丙烯 酯,甲基 基環己基 指,三環 烷酯等 嫌酸醋, ;,4 -羥丁 ,3 -二羥丙 4-羥苯基 2 -羥乙基 酯,二乙 2·丙烯醯 苄基甲基 酸酯等; 反式丁燦 烯,5 ·甲 庚-2-烯, 〔2.2.1 〕 5,6-二乙 -15- 1282905 (12) 氧基雙環〔2·2·1〕庚-2-烯,5-三級丁氧基羰基雙環 〔2.2.1〕庚-2-烯,5-環己基氧羰基雙環〔221〕庚-2-烯,5·苯氧幾基雙環〔2.2.1〕庚-2-烯,5,6 -二(三級丁氧 基羰基)雙環〔2.2.1〕庚-2-烯,5,6 -二(環己基氧羰基)雙 環〔2.2.1〕庚-2·烯,5-(2’ -羥乙基)雙環〔2.2.1〕庚-2-烯,5,6 -二羥雙環〔2.2.1〕庚-2·烯,5,6 -二(羥甲基)雙 環〔2.2.1〕庚-2-烯,5,6-二(2、羥乙基)雙環〔2.2.1〕庚-2 -嫌,5 -經基-5-甲基雙環〔2.2.1〕庚-2-嫌,5·經基-5-乙 基雙環〔2.2.1〕庚-2-烯,5-羥甲基-5-甲基雙環〔m〕 庚-2-烯等; 順丁烯二醯亞胺化合物則有苯基順丁烯二醯亞胺,環 己基順丁烯二醯亞胺,苄基順丁烯二醯亞胺,Ν -琥珀醯亞 胺基-3 -順丁烯二醯亞胺苯甲酸酯,ν -琥珀醯亞胺基-4 -順 丁烯二醯亞胺丁酸酯,Ν -琥珀醯亞胺基·6·順丁烯二醯亞 胺己酸酯,Ν-琥珀醯亞胺基-3-順丁烯二醯亞胺丙酸酯, Ν-(9-吖啶基)順丁烯二醯亞胺等; 不飽和芳香族化合物則有苯乙烯,α -甲基苯乙烯, 間甲基苯乙烯,對甲基苯乙烯,乙烯基甲苯,對甲氧基苯 乙烯等; 共軛二烯則有1,3·丁二烯,異戊間二烯,2,3-二甲基-1,3-丁二烯等; 其他不飽和化合物則有丙烯腈,甲基丙烯腈,氯乙 烯,乙烯叉二氯,丙烯醯胺,甲基丙烯醯胺,乙酸乙烯 酯。 -16- 1282905 (13) 該等之中,以甲基丙烯酸烷酯,甲基丙烯酸環狀烷 酯,雙環不飽和化合物,不飽和芳香族化合物,共軛二烯 可恰當使用,尤其是苯乙烯,三級丁基甲基丙烯酸酯,三 環[ 5.2.1.02 6]癸-8-基甲基丙烯酸酯,對甲氧基苯乙烯,2-甲基環己基丙烯酸酯,1,3-丁二烯,雙環[2.2.1]-庚-2-烯,就共重合反應性及會有相對於鹼水溶液之溶解性之點 而言爲佳。該等,可單獨或者組合使用。 本發明所用之共聚物[A]之較佳具體例方面,可例 舉,例如,甲基丙烯酸/苯乙烯/三環[5.2.1.02·6]癸-8-基甲 基丙烯酸酯/甲基環氧丙基丙烯酸酯/四氫糠基甲基丙烯酸 酯共聚物,甲基丙烯酸/苯乙烯/三環[5.2.1.02·6]癸-8-基甲 基丙烯酸酯/甲基環氧丙基丙烯酸酯/對乙烯基苄基環氧丙 基環氧丙基醚/四氫糠基甲基丙烯酸酯共聚物,甲基丙烯 酸/苯乙烯/三環[5.2.1.02·6]癸-8-基甲基丙烯酸酯/甲基環氧 丙基丙烯酸酯/聚乙二醇單甲基丙烯酸酯共聚物,甲基丙 烯酸/苯乙烯/三環[5.2.1.02·6]癸-8-基甲基丙烯酸酯/甲基環 氧丙基丙烯酸酯/聚丙二醇單甲基丙烯酸酯共聚物。 本發明所用之共聚物[A]係,聚苯乙烯換算重量平均 分子量(以下,稱爲「Mw」),通常爲2χ103〜lxlO5,較 佳爲5χ1〇3〜5χ104爲所望。在Mw不足2χ103時,會有顯 影界限不充分之情形,所得之被膜之殘膜率等會降低’或 所得之層間絶緣膜或微透鏡之圖型形狀,耐熱性等惡化之 情況,一方面超過1 X 1 05時,感度會降低使圖型形狀劣 化。又,分子量分布(以下,稱爲「Mw/Mn」)」通常係 •17- 1282905 (14) 5.0以下,較佳爲3.0以下爲所望。Mw/Mn超過5·0時, 所得之層間絶緣膜或微透鏡之圖型形狀會劣化。含有上述 之共聚物[Α]之敏輻射線性樹脂組成物,在顯影之際,並 不會產生殘留顯影而可容易地形成所定圖型形狀。 共聚物[Α]之製造所使用之溶劑方面,例如,醇, 醚,乙二醇醚,乙二醇烷基醚乙酸酯,二乙二醇,丙二醇 單烷基醚,丙二醇烷基醚乙酸酯,丙二醇烷基醚丙酸酯, 芳香族烴,酮,酯等。 該等具體例方面,可例舉,例如醇則有甲醇,乙醇, 苄基醇,2-苯基乙基醇,3-苯基-1-丙醇等; 醚類則有四氫呋喃等; 乙二醇醚則有乙二醇單甲基醚,乙二醇單乙基醚等; 乙二醇烷基醚乙酸酯則有甲基溶纖劑乙酸酯,乙基溶 纖劑乙酸酯,乙二醇單丁基醚乙酸酯,乙二醇單乙基醚乙 酸酯等; 二乙二醇則有二乙二醇單甲基醚,二乙二醇單乙基 醚,二乙二醇二甲基醚,二乙二醇二乙基醚,二乙二醇乙 基甲基醚等, 丙二醇單烷基醚則有丙二醇單甲基醚,丙二醇單乙基 醚,丙二醇單丙基醚,丙二醇單丁基醚等; 丙二醇烷基醚乙酸酯則有丙二醇甲基醚乙酸酯,丙二 醇乙基醚乙酸酯,丙二醇丙基醚乙酸酯,丙二醇丁基醚乙 酸酯等; 丙二醇烷基醚丙酸酯則有丙二醇甲基醚丙酸酯,丙二 •18- 1282905 (15) 醇乙基醚丙酸酯,丙二醇丙基醚丙酸酯’丙二醇丁基醚丙 酸酯等, 芳香族烴則有甲苯’二甲苯等; 酮則有甲基乙基酮,環己酮,4-羥基-4-甲基-2-戊酮 等; 酯則可例舉乙酸甲酯,乙酸乙酯,乙酸丙酯,乙酸丁 酯,2-羥丙酸乙酯,2-羥基-2_甲基丙酸甲酯,2-羥基-2-甲基丙酸乙酯,羥甲基乙酸甲酯,羥乙酸乙酯,羥乙酸丁 酯,乳酸甲酯,乳酸乙酯,乳酸丙酯,乳酸丁酯,3-羥甲 基丙酸甲酯,3-羥丙酸乙酯,3-羥丙酸丙酯,3-羥丙酸丁 酯,2_羥基-3-甲基丁酸甲基,甲氧基乙酸甲酯,甲氧基 乙酸乙酯,甲氧基乙酸丙酯,甲氧基乙酸丁酯,乙氧基乙 酸甲酯,乙氧基乙酸乙酯,乙氧基乙酸丙酯,乙氧基乙酸 丁酯,丙氧基乙酸甲酯,丙氧基乙酸乙酯,丙氧基乙酸丙 酯,丙氧基乙酸丁酯,丁氧基乙酸甲酯,丁氧基乙酸乙 酯,丁氧基乙酸丙酯,丁氧基乙酸丁酯,2-甲氧基丙酸甲 酯,2-甲氧基丙酸乙酯,2-甲氧基丙基丙酯,2-甲氧基丙 酸丁酯,2-乙氧基丙酸甲酯,2-乙氧基丙酸乙酯,2-乙氧 基丙酸丙酯,2-乙氧基丙酸丁酯,2-丁氧基丙酸甲酯,2-丁氧基丙酸乙酯,2-丁氧基丙酸丙酯,2-丁氧基丙酸丁 酯,3 -甲氧基丙酸甲酯,3_甲氧基丙酸乙酯,3_甲氧基丙 酸丙酯,3-甲氧基丙酸丁酯,3-乙氧基丙酸甲酯,3-乙氧 基丙酸乙酯,3 -乙氧基丙酸丙酯,3 -乙氧基丙酸丁酯,3-丙氧基丙酸甲酯,3 -丙氧基丙酸乙酯,3_丙氧基丙酸丙 -19- 1282905 (16) 酯,3 -丙氧基丙酸丁酯,3 -丁氧基丙酸甲酯,3 -丁氧基丙 酸乙酯,3-丁氧基丙酸丙酯’ 3-丁氧基丁酯等之酯。 該等之中,以乙二醇烷基醚乙酸酯,二乙二醇,丙二 醇單烷基醚,丙二醇烷基醚乙酸酯爲佳,尤其是,二乙二 醇二甲基醚,二乙二醇乙基甲基醚,丙二醇甲基醚,丙二 醇甲基醚乙酸酯爲佳。 共聚物[A]之製造所使用之聚合引發劑方面,可使用 周知一般自由基聚合引發劑,可例舉例如2,2’-偶氮雙異 丁腈,2.2’-偶氮雙-(2,4-二甲基戊腈),2,2’-偶氮雙-(4-甲 氧基-2.4-二甲基戊腈)等之偶氮化合物;過氧化二苯甲 醯,月桂醯基過氧化物,三級丁基過氧特戊酸酯 (pivalate ) ,1,1 ’ -雙-(三級丁基過氧)環己烷等之有機過 氧化物:及過氧化氫。自由基聚合引發劑係使用過氧化物 之情形,可使過氧化物與還元劑一起使用之氧化還原型開 始劑亦可。 共聚物[A]之製造中,爲調整分子量則可使用分子量 調整劑。其具體例方面,可例舉,三氯甲烷,四溴化碳等 之鹵化烴類;正己基硫醇,正辛基硫醇,正十二基硫醇, 三級十二基硫醇,锍基乙酸(thioglycollic acid )等之硫 醇類;二甲基黃原酸(xanthic)硫化物,二異丙基黃原酸二 硫化物等之黃原酸類;葱品油烯(terpinolene ) ,a-甲基 苯乙烯二聚物等。 [B]成分 本發明所用之[B]成分可使用,由輻射線之照射使羧 -20- 1282905 (17) 酸發生之1,2-苯醌二疊氮化合物,酚性化合物或醇性化合 物(以下,稱爲『母核』。),可使用1,2-萘醌二疊氮磺酸 鹵化物之縮合物。 上述母核方面,可例舉例如,三羥苯并二苯甲酮,四 羥苯并二苯甲酮,五羥苯并二苯甲酮,六羥苯并二苯甲 酮,(聚羥苯基)鏈烷,之其他母核。 該等之具體例方面,可例舉,例如,三羥苯并二苯甲 酮則爲,2,3,4-三羥苯并二苯甲酮,2,4,6_三羥苯并二苯甲 酮等; 四羥苯并二苯甲酮則爲,2,2’,4,4’-四羥苯并二苯甲 酮,2,3,4,3’-四羥苯并二苯甲酮,2,3,4,4’-四羥苯并二苯 甲酮,2,3,4,2’-四羥-4’-甲基苯并二苯甲酮,2,3,4,4’-四 羥-3’·甲氧基苯并二苯甲酮等, 五羥苯并二苯甲酮則爲,2,3,4,2’,6’-五羥苯并二苯甲 酮等, 六羥苯并二苯甲酮則爲,2,4,6,3’,4’,5’-六羥苯并二苯 甲酮,3,4,5,3’,4’,5’-六羥苯并二苯甲酮等; (聚羥苯基)鏈烷則有,雙(2,4-二羥苯基)甲烷,雙(對 羥苯基)甲烷,三(對羥苯基)甲烷,1,1,1-三(對羥苯基)乙 烷,雙(2,3,4-三羥苯基)甲烷,2,2·雙(2,3,4-三羥苯基)丙 烷,1,1,3·三(2,5-二甲基-4-羥苯基)-3-苯基丙烷,4,4’-〔1-〔4-〔1-〔4-經苯基〕-1-甲基乙基〕苯基〕亞乙基〕 雙酚,雙(2,5-二甲基-4-羥苯基)-2-羥苯基甲烷,3,3,3’,3’-四甲基螺雙氫茚-5,6,7,5’,6’,7’-己醇,2,2,4-三甲基- -21 - 1282905 (18) 7,2’,4’-三羥黃烷等; 其他母核方面則有,2-甲基_2-(2,4-二羥苯基 經本基)-7-羥色滿(chroman) ,2-[雙{(5 -異丙基一 2-甲基)苯基}甲基],羥苯基)-1-甲基 4,6-二羥苯基)-1_甲基乙基]_3-(1-(3-{1-(4-羥苯基)_ 乙基}·4,6 -二羥苯基)·1·甲基乙基)苯,4,6 -雙{1-< 基)-1-甲基乙基}·1,3-二羥苯。 又,上述例示之母核之酯鍵結變更爲醯胺鍵結 萘醌二疊氮磺酸醯胺類,例如2,3,4-三羥苯并二三 1,2-萘醌二疊氮-4-磺酸醯胺等可恰當使用。 該等之母核之中,以2,3,4,4’-四羥苯并二苯 4,4’-〔1-〔4-〔1-〔4-羥苯基〕-1-甲基乙基〕苯基 基〕雙酚爲佳。 又,1,2·萘醌二疊氮磺酸鹵化物方面,以1,2· 疊氮磺酸氯化物爲佳,其具體例方面,可例舉1,2· 疊氮-4-磺酸氯化物及1,2-萘醌二疊氮-5-磺酸氯化 中,以使用1,2 ·萘醌二疊氮-5 -磺酸氯化物爲佳。 在縮合反應中,相對於酚性化合物或醇性化 ΟΗ基數,可使用較佳爲30〜85莫耳% ,再佳爲 5 0〜7 0莫耳%之1,2 -萘醌二疊氮磺酸鹵化物。 縮合反應可以公知之方法來實施。 該等之[Β]成分可單獨或組合2種類以上使用。 [Β]成分之使用比率,相對於共聚物[Α] 100重 較佳爲5〜1 0 0重量份,再佳爲1 〇〜5 0重量份。此 )-4-(4-b羥基-乙基}-•1-甲基 4-羥苯 之 1,2- _甲酮- 甲酮, 〕亞乙 萘醌二 萘醌二 物,其 合物中 相當於 量份, 比率不 -22- 1282905 (19) 足5重量份之情形,因相對於爲顯影液之鹼水溶液的輻射 線之照射部分與未照射部分之溶解度之差爲小,故有圖型 化困難之情形,又所得之層間絶緣膜或微透鏡之耐熱性及 耐溶劑性會有不充分之情形。一方面,此比率在超過100 重量份之情形,輻射線照射部分中對前述鹼水溶液之溶解 度並不充分,會有顯影有困難之情形。 其他成分 本發明之敏輻射線性樹脂組成物,含有上述之共聚物 [A]及[B]成分爲必須成分,其他可因應需要,含有[C]感 熱性酸生成化合物,[D]具有至少1個乙烯性不飽和雙鍵 之聚合性化合物,[E]共聚物[A]以外之環氧樹脂,[F]界面 活性劑,或者[G]黏接助劑。 上述[C ]感熱性酸生成化合物,可作爲提高耐熱性或 硬度來使用。其具體例方面,可例舉,鎏鹽,苯并噻唑鎰 鹽,錢鹽,鱗鹽等之鑰鹽。 上述鎏鹽之方面具體例方面,可例舉,烷基璧鹽,节 基鎏鹽,二苄基鎏鹽,取代苄基鎏鹽等。 該等之具體例方面,可例舉,例如,院基鎏鹽則有 4 -乙醯苯基二甲基鎏六氟銻酸鹽,4_乙醯氧基苯基二甲基 鎏六氟砷酸鹽,二甲基·4_(苄基氧羰基氧)苯基鎏六氟銻酸 鹽,二甲基- 4- (苯甲醯氧基)苯基鎏六氟銻酸鹽,二甲基_ 4-(苯甲醯氧基)苯基鎏六氟砷酸鹽,二甲基-3-氯-4-乙醯 氧基苯基鎏六氣銻酸鹽等·, 苄基鎏鹽則有节基-4-羥苯基甲基鎏六氟銻酸鹽,苄 -23· (20) 1282905 基-4_羥苯基甲基鎏六氟磷酸鹽,4_乙醯氧基苯基苄基甲 基鎏六氟銻酸鹽,苄基-4-甲氧基苯基甲基鎏六氟銻酸 鹽,苄基-2-甲基-4-羥苯基甲基鎏六氟銻酸鹽,苄基- 3-氯-4-羥苯基甲基鎏六氟砷酸鹽,4-甲氧基苄基-4-羥苯基 甲基鎏六氟磷酸鹽等; 二苄基鎏鹽則有二苄基-4-羥苯基鎏六氟銻酸鹽,二 苄基-4-羥苯基鎏六氟磷酸鹽,4-乙醯氧基苯基二苄基鎏 六氟銻酸鹽,二苄基-4-甲氧基苯基鎏六氟銻酸鹽,二苄 基-3-氯-4-羥苯基鎏六氟砷酸鹽,二苄基-3_甲基-4-羥-5-三級丁基苯基鎏六氟銻酸鹽,苄基-4-甲氧基苄基-4-羥苯 基鎏六氟磷酸鹽等; 取代苄基鎏鹽則有對氯苄基-4-羥苯基甲基鎏六氟銻 酸鹽,對硝基苄基-4-羥苯基甲基鎏六氟銻酸鹽,對氯苄 基-4-羥苯基甲基鎏六氟磷酸鹽,對硝基苄基-3-甲基-4-羥 苯基甲基鎏六氟銻酸鹽,3,5-二氯苄基-4-羥苯基甲基鎏六 氟銻酸鹽,〇-氯苄基-3-氯-4-羥苯基甲基鎏六氟銻酸鹽 等。 上述苯并噻唑鐵鹽之具體例方面可例舉苄基苯并噻唑 鑰六氟銻酸鹽,3-苄基苯并噻唑鐵六氟磷酸鹽,3-苄基苯 并噻唑銷四氟硼酸鹽,3-(對甲氧基苄基)苯并噻唑鑰六氟 銻酸鹽,3-苄基-2-甲基硫代苯并噻唑鐵六氟銻酸鹽,3-苄 基-5-氯苯并噻唑鑰六氟銻酸鹽等之苄基苯并噻唑鑰鹽。 該等之中,鎏鹽及苯并噻唑鑰鹽可恰當使用,尤其是 4_乙醯氧基苯基二甲基鎏六氟砷酸鹽,苄基-4-羥苯基甲 -24 - 1282905 (21) 基鎏六氟銻酸鹽, 鹽,二苄基-4-羥苯 基鎏六氟銻酸鹽,3 用。 4-乙酸氧基苯基苄基甲基鎏六氟銻酸 基鎏/、氟銻酸鹽,4_乙醯氧基苯基苄 •卞基苯并嚷Π坐鎗六氟銻酸鹽可恰當使 該等之販售品方面’可例舉San-Aid SI-L85,同 SI-Lno,同 SI-L145,同 SI_L150,同 SI-Li6〇(三新化學 工業公司製)等。 [C ]成分之使用比率’相對於共聚物[Α η 〇 〇重量份, 較佳爲2 0重量份以下’再佳爲5重量份以下。此使用量 在超過20重量份之情形,塗膜形成步驟中析出物被析 出,會有造成塗膜形成障礙之情形。 上述[D]成分之具有至少1個乙烯性不飽和雙鍵之聚 合性化合物(以下,稱爲(D成分))方面,可恰當地例舉 例如單官能(甲基)丙烯酸酯·,2官能(甲基)丙烯酸酯或3 官能以上之(甲基)丙烯酸酯。 上述單官能(甲基)丙烯酸酯方面,可例舉例如2 -羥乙 基(甲基)丙烯酸酯,卡必醇(甲基)丙烯酸酯,(甲基)丙烯 酸異硼烷酯,3 -甲氧基丁基(甲基)丙烯酸酯,2-(甲基)丙 烯醯基氧乙基-2-羥丙基酞酸酯等。該等之販售品方面, 可例舉例如 Aronix Μ-101,同 Μ-111,同Μ-114(以上, 東亞合成公司製),KAYARAD TC-110S,同 TC-120S(以 上,日本化藥公司製),Bisco at 158,同2311(以上,大阪 有機化學工業公司製)等。 上述2官能(甲基)丙烯酸酯方面,可例舉例如乙二醇 -25- (22) 1282905 (甲基)丙烯酸酯,1,6-己二醇二(甲基)丙烯酸酯,1,9_壬二 醇二(甲基)丙烯酸酯,聚丙二醇二(甲基)丙烯酸酯,四乙 二醇二(甲基)丙烯酸酯,雙苯氧乙醇莽二丙烯酸酯,雙苯 氧乙醇苐二丙烯酸酯等。該等之販售品方面,可例舉例如 Aronix M-210,同 M-240,同 M-6200(以上,東亞合成公 司製),KAYARAD HDDA,同 HX-220,同 R-604(以上, 日本化藥公司製),Biscoat 260,同312,同335HP(以 上,大阪有機化學工業公司製)等。 上述3官能以上之(甲基)丙烯酸酯方面,可例舉例如 三羥甲基丙烷三(甲基)丙烯酸酯,新戊四醇三(甲基)丙嫌 酸酯,三((甲基)丙烯醯氧基乙基)磷酸酯,新戊四醇四(甲 基)丙烯酸酯,二新戊四醇五(甲基)丙烯酸酯,二新戊四 醇六(甲基)丙烯酸酯等,其販售品方面,可例舉例如Wherein R represents hydrogen or a methyl group, and η is an integer of from 2 to 10. 】 The unsaturated compound of at least one skeleton of the skeleton group shown below (hereinafter referred to as "compound (a3)"), and (a4) (al), (a2) and (a3) other than 1282905 (5) a copolymer of a saturated compound (hereinafter referred to as "compound (a4)") (hereinafter referred to as "copolymer [A]"), and [B] 1,2-benzoquinonediazide compound (hereinafter, It is called "[B] component".) It is achieved by the characteristic linear radiation resin composition. OBJECT AND ADVANTAGES OF THE INVENTION The second aspect is achieved by the following procedure in which the following steps are carried out to form a method for forming an interlayer insulating film or a microlens. (1) a step of forming a coating film of the above-mentioned sensitive radiation linear resin composition on a substrate, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) a heating step . Further, the object and the advantages of the present invention are achieved by the third layer of the interlayer insulating film or the microlens formed by the above method. The sensitive radiation linear resin composition of the present invention has a high-sensitivity radiation sensitivity 'having a development limit in the development step, and a good pattern shape can be formed even if the optimum development time is exceeded, and a pattern-like film excellent in adhesion can be easily formed. . The interlayer insulating film of the present invention, which is formed of the above-mentioned composition, has excellent adhesion to a substrate, is excellent in solvent resistance and heat resistance, has high transmittance, and has a low dielectric constant, and can be suitably used as an interlayer insulating film of an electronic member. . Further, the microlens of the present invention formed of the above composition has excellent adhesion to a substrate, is excellent in solvent resistance and heat resistance, and has a high transmittance and a good melt shape of good -9 - 1282905 (6), and is used as a solid image. The microlens of the element can be used as appropriate. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the radiation sensitive linear resin composition of the present invention will be described in detail. Copolymer [A] Copolymer [A] is produced by radical polymerization of compound (al), compound (a2), compound (a3), and compound (a4) in a solvent in the presence of a polymerization initiator. . The copolymer [A] used in the present invention is a constituent unit derived from the compound (a1), based on the total of the repeating units derived from the compounds (a1), (a2), (a3) and (a4). It is preferably from 5 to 40% by weight, particularly preferably from 10 to 30% by weight. When a copolymer having less than 5% by weight of the constituent unit is used, it is difficult to dissolve in the aqueous alkali solution during the development step, and the copolymer having more than 40% by weight on one side tends to be excessively soluble in the aqueous alkali solution. The compound (a 1) is a radically polymerizable unsaturated carboxylic acid and/or an unsaturated carboxylic acid anhydride, and examples thereof include a monocarboxylic acid, a dicarboxylic acid, an anhydride of a dicarboxylic acid, and a monocarboxylic acid. A acryloxyalkylene ester, a mono(meth)acrylate having a polymer of a carboxyl group and a hydroxyl group at both terminals, a polycyclic compound having a carboxyl group, an anhydride thereof, and the like. As such specific examples, for example, monocarboxylic acid may be acrylic acid, -10- 1282905 (7) methacrylic acid, crotonic acid or the like; and dicarboxylic acid may be maleic acid 'trans-butenedioic acid. , citraconic acid 'mesaconic aci 〇 (isaconic acid, etc.; dicarboxylic acid anhydride, there are anhydrides of the compounds exemplified above as the dicarboxylic acid; mono-((methyl)) Examples of the acryloxyalkylene ester include succinic acid mono[2-(methyl)propenyloxyethyl], phthalic acid mono[2-(methyl)acryloxyethyl]; The mono(meth)acrylate having a polymer having a carboxyl group and a hydroxyl group at both terminals may have an ω-carboxypolycaprolactone mono(meth)acrylate or the like; the polycyclic compound having a carboxyl group and an anhydride thereof may each be For example, 5·carboxybicyclo[2·2·1]heptan-2-ene, 5,6-dicarboxybicyclo[2.2.1]-hept-2-ene, 5-carboxy-5-methylbicyclo[2· 2·1]-hept-2-ene, 5-carboxy-5-ethylbicyclo[2.2.1]hept-2-ene, 5-carboxy-6-methylbicyclo[2.2.1]-hept-2- Alkene, 5-carboxy-6-ethylbicyclo[2·2·1]hept-2-ene, 5·6-dicarboxybicyclo[2.2.1]·g 2-alkenic anhydride, etc. Among them, monodecanoic acid and dicarboxylic acid anhydride can be suitably used, especially propionic acid, methacrylic acid, maleic anhydride, copolymerization reactivity, relative to aqueous solution It can be suitably used in terms of solubility and ease of availability. These may be used singly or in combination. The copolymer [Α] used in the present invention is a monovalent compound derived from the compound (a2), according to the compound (a) 1), the total of the repetitive units derived from (a2), (a3) and (a4) is preferably 10 to 7% by weight, particularly preferably 20 to 6 % by weight.耐热When the weight % is obtained, the heat resistance or surface hardness of the insulating film or microlens of the layer 1282905 (8) tends to decrease. On the one hand, the amount of the constituent unit exceeds 70% by weight, and the sensitivity radiation linearity is obtained. The storage stability of the resin composition tends to be lowered. The compound (a2) is an epoxy group-containing unsaturated compound having a radical polymerizable property, and examples thereof include epoxypropyl acrylate and glycidyl methacrylate. α-Ethyl Ethoxypropyl Acrylate, α-Polypropyl Epoxypropyl acrylate, (X-n-butylepoxypropyl acrylate, 3,4-epoxybutyl acrylate, methacrylic acid-3,4·butylene acrylate, acrylic-6,7 -epoxyheptyl ester, -6,7-epoxyheptyl methacrylate, α-ethyl acrylate-6,7·epoxyheptyl ester, 〇-vinylbenzyl epoxypropyl ether, m-vinyl benzyl ester Epoxy epoxide, p-vinylbenzyl epoxypropyl ether, etc. Among them, epoxy methacrylate, methacrylate-6,7-epoxyheptyl ester, ruthenium-ethylene Copolymerization reaction can be carried out by using benzyl phenyl propyl propyl ether, m-vinyl benzyl epoxy propyl ether, p-vinylbenzyl epoxy propyl ether, 3, 4-epoxy cyclohexyl methacrylate The heat resistance of the interlayer insulating film or the microlens and the resulting surface hardness can be suitably used. These can be used singly or in combination. The copolymer [Α] used in the present invention is preferably a constituent unit derived from the compound (a3), based on the total of the repeating units derived from the compounds (al), (a2), (a3) and (a4). It is 5 to 50% by weight, particularly preferably 1 to 40% by weight. In the case where the constituent unit is less than 5% by weight, the sensitivity of the linear radiation-sensitive resin composition tends to decrease. On the other hand, when it exceeds 50% by weight, in the development step of forming the interlayer insulating film or the microlens, there may be The solubility with respect to the aqueous alkali solution tends to be too large. The compound (a3) contains at least one skeleton selected from the group consisting of a tetrahydrofuran skeleton, a furan skeleton, a tetrahydro-12-1282905 (9) pyran skeleton, a permeose skeleton, and a skeleton represented by the above formula (1), and An unsaturated compound having a radical polymerizable property, for example, in the case of an unsaturated compound containing a tetrahydrofuran skeleton, tetrahydroindenyl (meth) acrylate, 2-methylpropenyloxy-propionic acid tetrahydroanthracene A base ester, tetrahydrofuran-3-yl (meth)acrylate, and the like. In the case of unsaturated compounds containing a furan skeleton, there are 2-methyl-5-(3-furyl)-1-penten-3-one, mercapto (meth) acrylate, 1-furan-2-butene 3--3-en-2-one, 1-furan-2-butyl-3-methoxy-3-en-2-one 6-(2-furyl)-2-methyl-1-hexene 3-ketone, 6-furan-2-yl-hex-1-en-3-one·2-furan-2-yl-b-methyl-ethyl acrylate·6-(2-furyl)-6-A Keith-1-hepten-3-one and the like. In the case of an unsaturated compound containing a tetrahydropyranose skeleton, there is (tetrahydropyran-2-yl)methyl methacrylate, 2,6-dimethyl-8-(tetrahydropyran-2-yl) Oxy)-oct-1-en-3-one, 2-tetrahydropyran-2-yl methacrylate, 1-(tetrahydropyran-2-yloxy)-butyl-3-ene-2 a ketone or the like; in the case of an unsaturated compound containing a melane skeleton, there is 4-(1,4-dioxa-5-oxo-6-heptenyl)-6-methyl-2-pyrrolidinyl Pyrone, 4-(1,5-dioxa-6-oxo-7-octyl)-6-methyl-2-pyrrolidone, etc.; containing the skeleton represented by the above formula (1) The unsaturated compound may, for example, be polyethylene glycol (η = 2 to 10)] mono(meth)acrylate, polypropylene glycol (η = 2 to 10) mono(meth)acrylate or the like. Among these, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (η = 2 to 10) mono (meth) acrylate, (meth) acrylate tetrahydrofuran-3- 13- 1282905 ( 10) a base ester, 1-(tetrahydropyran-2-yloxy)-butyl-3-ene·2-one, mercapto (meth) acrylate, etc., can improve the sensitivity of the linear radiation-sensitive resin composition. It can be used as appropriate in terms of increasing the development limit. These can be used individually or in combination. The copolymer [A] used in the present invention is a constituent unit derived from the compound (a4)), and a repeating unit derived from the compounds (a 1 ), ( a 2 ), ( a 3 ) and (a 4 ) The total amount is preferably 5 to 70% by weight, particularly preferably 5 to 50% by weight. In the case where the constituent unit is less than 5% by weight, the storage stability of the radiation-sensitive linear resin composition tends to be lowered. On the other hand, in the development step of forming an interlayer insulating film or a microlens at more than 70% by weight, there will be It is difficult to dissolve in an aqueous alkali solution. The compound (a4) is not particularly limited as long as it is a radical polymerizable unsaturated compound, and examples thereof include an alkyl (meth)acrylate and a (meth)acrylic acid cyclic alkyl ester having a hydroxyl group (methyl group). Acrylate, aryl (meth) acrylate, unsaturated dicarboxylic acid diester, bicyclic unsaturated compound, maleimide compound, unsaturated aromatic compound, conjugated diene. Specific examples of such, for example, alkyl methacrylate are methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, secondary butyl methacrylate, tertiary butyl methacrylate, 2 -ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl methacrylate, tridecyl methacrylate, n-stearyl methacrylate, etc.: alkyl acrylate with methacrylic acid Ester, propyl isopropyl acrylate, etc.; cycloalkyl methacrylate is cyclohexyl methacrylate, 2-methyl-14 - 1282905 (11) cyclohexyl methacrylate, tricyclic [5.2. 1.02·6] fluoren-8-yl ester, tricyclo[5·2.1.02·6] 癸-8-yloxyethyl methacrylate isobornyl acrylate, etc.; cyclic alkyl acrylate has ring Hexyl acrylate, 2-methacrylate, tricyclo [5.2.1.02·6] 癸-8-based acrylic acid! [5.2.1.02·6]癸-8-yloxyethyl acrylate, isopropyl acrylate with hydroxyl group of methacrylate, hydroxymethylmethyl propyl 2-hydroxyethyl methacrylate, 3-hydroxypropane Methyl methacrylate methacrylate, diethylene glycol monomethacrylate, 2-yl methacrylate, 2-methacryloxyethyl glucoside, methacrylate, etc. The esters are hydroxymethacrylate, acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate diol monoacrylate, 2,3-dipropyl hydroxypropyl acrylate, oxyethyl glycoside, 4-hydroxyphenyl acrylate, etc.; aryl methacrylate is phenyl methacrylate, acrylate, etc., aryl acrylate is phenyl acrylate, benzyl propylene unsaturated dicarboxylic acid diester There are diethyl maleate, diethyl diester, diethyl itaconate, etc.; bicyclic unsaturated compounds are bicyclo [2.2.1] hept-2-ylbicyclo[2.2.1]heptane- 2-ene, 5-ethylbicyclo[2·2·1], 5·methoxybicyclo[2.2.1]heptan-2-ene, 5-ethoxybicycloheptyl-2-ene, 5,6- two Oxybicyclo[2.2.1]hept-2-ene, methacrylate, methylcyclohexyl, tricycloalkyl ester, etc.; 4,hydroxybutyrate, 3 -dihydroxypropyl 4-hydroxyl Phenyl 2-hydroxyethyl ester, diethylene-2. propylene benzyl benzyl ester, etc.; trans-butenene, 5 · methylhept-2-ene, [2.2.1] 5,6-di- 15- 1282905 (12) Oxybicyclo[2·2·1]hept-2-ene, 5-tris-butoxycarbonylbicyclo[2.2.1]hept-2-ene, 5-cyclohexyloxycarbonylbicyclo[ 221]hept-2-ene, 5·phenoxycyclobicyclo[2.2.1]hept-2-ene, 5,6-di(tertiarybutoxycarbonyl)bicyclo[2.2.1]hept-2-ene ,5,6-di(cyclohexyloxycarbonyl)bicyclo[2.2.1]heptan-2-ene, 5-(2'-hydroxyethyl)bicyclo[2.2.1]hept-2-ene, 5,6- Dihydroxybicyclo[2.2.1]heptan-2-ene, 5,6-bis(hydroxymethyl)bicyclo[2.2.1]hept-2-ene, 5,6-di(2, hydroxyethyl)bicyclo[ 2.2.1] Geng-2 - suspicion, 5-cyano-5-methylbicyclo[2.2.1]heptan-2-,5-carbyl-5-ethylbicyclo[2.2.1]hept-2- Alkene, 5-hydroxymethyl-5-methylbicyclo[m]hept-2-ene, etc.; maleimide compound has benzene Maleimide, cyclohexyl maleimide, benzyl maleimide, hydrazine-succinimide-3, maleimide benzoate, ν-Amber succinimide-4 - maleimide butyrate, hydrazine - amber quinone imine · 6 · maleimide hexanoate, hydrazine - amber quinone imine 3-methyleneimine propionate, Ν-(9-acridinyl) maleimide, etc.; unsaturated aromatic compound, styrene, α-methylstyrene, Styrene, p-methylstyrene, vinyl toluene, p-methoxystyrene, etc.; conjugated dienes are 1,3, butadiene, isoprene, 2,3-dimethyl- 1,3-butadiene and the like; other unsaturated compounds include acrylonitrile, methacrylonitrile, vinyl chloride, vinylidene dichloride, acrylamide, methacrylamide, vinyl acetate. -16- 1282905 (13) Among these, aryl methacrylate, cyclic alkyl methacrylate, bicyclic unsaturated compound, unsaturated aromatic compound, conjugated diene can be suitably used, especially styrene. , tertiary butyl methacrylate, tricyclo [ 5.2.1.02 6] fluoren-8-yl methacrylate, p-methoxy styrene, 2-methylcyclohexyl acrylate, 1,3-butadiene, Bicyclo[2.2.1]-hept-2-ene is preferred in terms of co-heavy reactivity and solubility with respect to the aqueous alkali solution. These can be used singly or in combination. As a preferable specific example of the copolymer [A] used in the present invention, for example, methacrylic acid/styrene/tricyclo[5.2.1.02·6]癸-8-ylmethacrylate/methyl group can be exemplified. Epoxypropyl acrylate/tetrahydrofurfuryl methacrylate copolymer, methacrylic acid/styrene/tricyclo[5.2.1.02·6]癸-8-yl methacrylate/methylepoxypropyl Acrylate/p-vinylbenzyl epoxypropyl epoxypropyl ether/tetrahydrofurfuryl methacrylate copolymer, methacrylic acid/styrene/tricyclo[5.2.1.02·6]癸-8-yl Methacrylate / methyl epoxy acrylate / polyethylene glycol monomethacrylate copolymer, methacrylic acid / styrene / tricyclo [5.2.1.02 · 6] 癸-8-yl methacrylic acid Ester/methylepoxypropyl acrylate/polypropylene glycol monomethacrylate copolymer. The copolymer [A] used in the present invention has a weight average molecular weight (hereinafter referred to as "Mw") in terms of polystyrene, and is usually 2χ103 to lx10, preferably 5χ1〇3 to 5χ104. When the Mw is less than 2χ103, the development limit may be insufficient, and the residual film ratio of the obtained film may be lowered or the pattern shape of the obtained interlayer insulating film or microlens may be deteriorated, and the heat resistance may be deteriorated. When 1 X 1 05, the sensitivity is lowered to deteriorate the shape of the pattern. Further, the molecular weight distribution (hereinafter referred to as "Mw/Mn")" is usually from 17 to 1282905 (14) 5.0 or less, preferably 3.0 or less. When Mw/Mn exceeds 5.0, the resulting pattern of the interlayer insulating film or the microlens is deteriorated. The radiation sensitive linear resin composition containing the above copolymer [Α] can easily form a predetermined pattern shape during development without causing residual development. The solvent used in the manufacture of the copolymer [Α], for example, an alcohol, an ether, a glycol ether, an ethylene glycol alkyl ether acetate, a diethylene glycol, a propylene glycol monoalkyl ether, a propylene glycol alkyl ether Acid esters, propylene glycol alkyl ether propionates, aromatic hydrocarbons, ketones, esters, and the like. Examples of the specific examples include, for example, methanol, methanol, ethanol, benzyl alcohol, 2-phenylethyl alcohol, 3-phenyl-1-propanol, and the like; and ethers such as tetrahydrofuran; The alcohol ethers are ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, etc.; ethylene glycol alkyl ether acetate has methyl cellosolve acetate, ethyl cellosolve acetate, Ethylene glycol monobutyl ether acetate, ethylene glycol monoethyl ether acetate, etc.; diethylene glycol is diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol Alcohol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, etc., propylene glycol monoalkyl ether is propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether , propylene glycol monobutyl ether, etc.; propylene glycol alkyl ether acetate is propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, propylene glycol butyl ether acetate, etc.; Propylene glycol alkyl ether propionate has propylene glycol methyl ether propionate, propylene s 18-18282905 (15) alcohol ethyl ether propionate, propylene glycol propyl ether propionate propylene glycol butyl ether For esters, aromatic hydrocarbons include toluene 'xylene, etc.; ketones include methyl ethyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, etc.; esters can be exemplified by acetic acid Ester, ethyl acetate, propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, hydroxymethyl Methyl acetate, ethyl hydroxyacetate, butyl glycolate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxymethylpropionate, ethyl 3-hydroxypropionate, 3 -propyl hydroxypropionate, butyl 3-hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, A Butyl oxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, butyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, propoxy Propyl propyl acetate, butyl oxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propyl butoxyacetate, butyl butoxyacetate, methyl 2-methoxypropionate, Ethyl 2-methoxypropionate, 2-methoxypropylpropyl ester, 2 - butyl methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, propyl 2-ethoxypropionate, butyl 2-ethoxypropionate, 2 Methyl butoxypropionate, ethyl 2-butoxypropionate, propyl 2-butoxypropionate, butyl 2-butoxypropionate, methyl 3-methoxypropionate, 3 Ethyl methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, 3 -propyl ethoxypropionate, butyl 3-ethoxypropionate, methyl 3-propoxypropionate, ethyl 3-propoxypropionate, 3-propoxypropionic acid propyl-19- 1282905 (16) Ester, butyl 3-propoxypropionate, methyl 3-butoxypropionate, ethyl 3-butoxypropionate, propyl 3-butoxypropionate 3-butoxy An ester of butyl butyrate or the like. Among these, ethylene glycol alkyl ether acetate, diethylene glycol, propylene glycol monoalkyl ether, propylene glycol alkyl ether acetate are preferred, especially diethylene glycol dimethyl ether, two Ethylene glycol ethyl methyl ether, propylene glycol methyl ether, and propylene glycol methyl ether acetate are preferred. As the polymerization initiator to be used for the production of the copolymer [A], a general-purpose radical polymerization initiator can be used, and for example, 2,2'-azobisisobutyronitrile, 2.2'-azobis-(2) can be exemplified. , 4-dimethylpentanenitrile), azo compound such as 2,2'-azobis-(4-methoxy-2.4-dimethylvaleronitrile); benzoic acid peroxide, laurel Peroxide, organic peroxide such as pivalate, 1,1 '-bis-(tertiary butylperoxy)cyclohexane: and hydrogen peroxide. In the case where a radical polymerization initiator is a peroxide, a redox type initiator which can be used together with a reductant can be used. In the production of the copolymer [A], a molecular weight modifier can be used to adjust the molecular weight. Specific examples thereof include halogenated hydrocarbons such as chloroform and carbon tetrabromide; n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, and tridecyl mercaptan; a thiol such as thioglycollic acid; a xanthic sulfide, a diisopropylxanthate disulfide, or the like; a terpinolene, a- Methylstyrene dimer, and the like. [B] component The [B] component used in the present invention may be a 1,2-benzoquinonediazide compound, a phenolic compound or an alcoholic compound which is caused by irradiation of radiation to a carboxy-20-1282905(17) acid. (hereinafter, referred to as "mother core".) A condensate of a 1,2-naphthoquinonediazidesulfonic acid halide can be used. The above-mentioned mother nucleus may, for example, be a trihydroxybenzophenone, a tetrahydroxybenzobenzophenone, a pentahydroxybenzobenzophenone, a hexahydroxybenzobenzophenone, or a polyhydroxybenzene. Base) alkane, the other parent core. Specific examples of the above may, for example, be a hydroxybenzobenzophenone, 2,3,4-trihydroxybenzophenone, 2,4,6-trihydroxybenzoic acid Benzophenone, etc.; tetrahydroxybenzobenzophenone is 2,2',4,4'-tetrahydroxybenzobenzophenone, 2,3,4,3'-tetrahydroxybenzobenzene Methyl ketone, 2,3,4,4'-tetrahydroxybenzobenzophenone, 2,3,4,2'-tetrahydroxy-4'-methylbenzobenzophenone, 2,3,4 , 4'-tetrahydroxy-3'-methoxybenzobenzophenone, etc., pentahydroxybenzobenzophenone is 2,3,4,2',6'-pentahydroxybenzobenzene Ketone, etc., hexahydroxybenzophenone is 2,4,6,3',4',5'-hexahydroxybenzophenone, 3,4,5,3',4' , 5'-hexahydrobenzobenzophenone, etc.; (polyhydroxyphenyl) alkane, bis(2,4-dihydroxyphenyl)methane, bis(p-hydroxyphenyl)methane, three (pair Hydroxyphenyl)methane, 1,1,1-tris(p-hydroxyphenyl)ethane, bis(2,3,4-trihydroxyphenyl)methane, 2,2·bis (2,3,4-tri Hydroxyphenyl)propane, 1,1,3·tris(2,5-dimethyl-4-hydroxyphenyl)-3-phenylpropane, 4,4'-[1-[4-[1-[ 4-Phenyl]-1-methyl B Phenyl]ethylene]bisphenol, bis(2,5-dimethyl-4-hydroxyphenyl)-2-hydroxyphenylmethane, 3,3,3',3'-tetramethyl snail Dihydroanthracene-5,6,7,5',6',7'-hexanol, 2,2,4-trimethyl--21- 1282905 (18) 7,2',4'-trishydroxy yellow Alkanes and the like; other mother cores are, 2-methyl-2-(2,4-dihydroxyphenyl via benzyl)-7-hydroxychroman, 2-[double {(5-isopropyl) 2-methyl)phenyl}methyl],hydroxyphenyl)-1-methyl 4,6-dihydroxyphenyl)-1_methylethyl]_3-(1-(3-{1- (4-hydroxyphenyl)-ethyl}·4,6-dihydroxyphenyl)·1·methylethyl)benzene, 4,6-bis{1-<yl)-1-methylethyl }·1,3-Dihydroxybenzene. Further, the ester bond of the above-exemplified parent core is changed to a guanamine-bonded naphthoquinonediazidesulfonium sulfonamide such as 2,3,4-trihydroxybenzotris-1,2-naphthoquinonediazide The -4-sulfonic acid decylamine or the like can be suitably used. Among the mother nucleus, 2,3,4,4'-tetrahydroxybenzobiphenyl 4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methyl Ethyl]phenyl] bisphenol is preferred. Further, in the case of the 1,2·naphthoquinonediazidesulfonic acid halide, the 1,2· azidosulfonic acid chloride is preferred, and specific examples thereof include 1,2·azido-4-sulfonic acid. In the chlorination of chloride and 1,2-naphthoquinonediazide-5-sulfonic acid, it is preferred to use 1,2?naphthoquinonediazide-5-sulfonic acid chloride. In the condensation reaction, 1,2 -naphthoquinonediazide may preferably be used in an amount of preferably 30 to 85 mol%, more preferably 50 to 70 mol%, based on the phenolic compound or the number of the alcohol group. Sulfonic acid halide. The condensation reaction can be carried out by a known method. These [Β] components can be used singly or in combination of two or more types. The use ratio of the [Β] component is preferably from 5 to 100 parts by weight, more preferably from 1 to 50 parts by weight, based on 100 parts by weight of the copolymer [Α]. This is a compound of 4-(4-bhydroxy-ethyl}-•1-methyl 4-hydroxybenzene 1,2- ketone-ketone,] etetylene naphthoquinone In the case of 5 parts by weight of the foot, the difference in solubility between the irradiated portion and the unirradiated portion with respect to the radiation of the aqueous solution of the developer is small, so In the case where the patterning is difficult, the heat resistance and solvent resistance of the obtained interlayer insulating film or microlens may be insufficient. On the one hand, in the case where the ratio exceeds 100 parts by weight, the radiation irradiation portion is as described above. The solubility of the aqueous alkali solution is not sufficient, and development may be difficult. Other components The sensitive radiation linear resin composition of the present invention contains the above-mentioned copolymers [A] and [B] as essential components, and other needs may be required. a [C] sensible acid generating compound, [D] a polymerizable compound having at least one ethylenically unsaturated double bond, [E] an epoxy resin other than the copolymer [A], [F] a surfactant, or [G] adhesion aid. The above [C] sensible acid generating compound can be used as heat resistance The specific example may, for example, be a salt of a sulfonium salt, a benzothiazolium salt, a money salt or a squamous salt. The specific example of the above sulfonium salt may, for example, be an alkyl sulfonium salt. a sulfonium salt, a dibenzyl sulfonium salt, a substituted benzyl sulfonium salt, etc. Examples of such specific examples include, for example, a sulfonium salt having 4-acetamidophenyldimethylsulfonium hexafluoride. Citrate, 4_acetoxyphenyldimethylhydrazine hexafluoroarsenate, dimethyl·4_(benzyloxycarbonyloxy)phenylphosphonium hexafluoroantimonate, dimethyl-4-( Benzyl oxime)phenyl hexafluoroantimonate, dimethyl-4- 4-(benzyl methoxy)phenyl hexafluoroarsenate, dimethyl-3-chloro-4-ethyl oxime Phenyl hydrazine hexafluoroantimonate, etc., benzyl sulfonium salt has a benzyl-4-hydroxyphenylmethyl hydrazine hexafluoroantimonate, benzyl -23 (20) 1282905 keto-4 hydroxyphenyl Methyl hydrazine hexafluorophosphate, 4_acetoxyphenylbenzylmethyl hexafluoroantimonate, benzyl-4-methoxyphenylmethyl hexafluoroantimonate, benzyl-2 -Methyl-4-hydroxyphenylmethylhydrazine hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylphosphonium hexafluoroarsenate, 4-methoxy Benzyl-4-hydroxyphenylmethylphosphonium hexafluorophosphate; etc.; dibenzyl sulfonium salt is dibenzyl-4-hydroxyphenylphosphonium hexafluoroantimonate, dibenzyl-4-hydroxyphenyl Hexafluorophosphate, 4-ethenyloxyphenyldibenzylphosphonium hexafluoroantimonate, dibenzyl-4-methoxyphenylphosphonium hexafluoroantimonate, dibenzyl-3-chloro- 4-hydroxyphenylphosphonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-tertiary butylphenylphosphonium hexafluoroantimonate, benzyl-4-methoxybenzyl -4-hydroxyphenylphosphonium hexafluorophosphate; the substituted benzyl sulfonium salt is p-chlorobenzyl-4-hydroxyphenylmethyl hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenyl Methyl hydrazine hexafluoroantimonate, p-chlorobenzyl-4-hydroxyphenylmethyl sulfonium hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethyl hexafluoroantimonic acid Salt, 3,5-dichlorobenzyl-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, hydrazine-chlorobenzyl-3-chloro-4-hydroxyphenylmethylphosphonium hexafluoroantimonate, and the like. Specific examples of the above benzothiazole iron salt include benzyl benzothiazole hexafluoroantimonate, 3-benzylbenzothiazole iron hexafluorophosphate, and 3-benzyl benzothiazole pin tetrafluoroborate. , 3-(p-methoxybenzyl)benzothiazole hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazolyl hexafluoroantimonate, 3-benzyl-5-chloro a benzyl benzothiazole key salt such as benzothiazole hexafluoroantimonate. Among these, sulfonium salts and benzothiazole salts can be suitably used, especially 4_acetoxyphenyl dimethyl hexafluoro arsenate, benzyl-4-hydroxyphenyl methyl-24 - 1282905 (21) Based on hexafluoroantimonate, salt, dibenzyl-4-hydroxyphenylphosphonium hexafluoroantimonate, 3 used. 4-acetoxyphenylbenzylmethylphosphonium hexafluoroantimonate hydrazine/, fluoroantimonate, 4-ethyloxyphenylbenzyl hydrazinobenzoquinone hexafluoroantimonate For the above-mentioned sales items, San-Aid SI-L85, the same as SI-Lno, the same SI-L145, the same as SI_L150, and the same SI-Li6〇 (manufactured by Sanshin Chemical Industry Co., Ltd.) can be exemplified. The use ratio of the component [C] is more preferably 5 parts by weight or less based on the copolymer [? η 〇 〇 by weight, preferably 20 parts by weight or less. When the amount used is more than 20 parts by weight, precipitates are precipitated in the coating film forming step, which may cause formation of a barrier film. The polymerizable compound having at least one ethylenically unsaturated double bond (hereinafter referred to as (component D)) of the component [D] can be suitably exemplified by, for example, a monofunctional (meth) acrylate. (Meth) acrylate or a trifunctional or higher (meth) acrylate. The monofunctional (meth) acrylate may, for example, be 2-hydroxyethyl (meth) acrylate, carbitol (meth) acrylate, isobornyl (meth) acrylate, 3-methyl Oxybutyl (meth) acrylate, 2-(methyl) propylene decyl oxyethyl 2-hydroxypropyl decanoate, and the like. For such a product, for example, Aronix Μ-101, Μ-111, Μ-114 (above, manufactured by Toagosei Co., Ltd.), KAYARAD TC-110S, and TC-120S (above, Japanese chemical) Company system), Bisco at 158, same as 2311 (above, Osaka Organic Chemical Industry Co., Ltd.). The above bifunctional (meth) acrylate may, for example, be ethylene glycol-25-(22) 1282905 (meth) acrylate, 1,6-hexanediol di(meth) acrylate, 1, 9 _decanediol di(meth)acrylate, polypropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, bisphenoxyethanol oxime diacrylate, bisphenoxyethanol oxime diacrylate Ester and the like. For such a product, for example, Aronix M-210, M-240, M-6200 (above, manufactured by Toagosei Co., Ltd.), KAYARAD HDDA, HX-220, and R-604 (above, Nisshin Chemical Co., Ltd., Biscoat 260, 312, 335HP (above, Osaka Organic Chemical Industry Co., Ltd.). The above trifunctional or higher (meth) acrylate may, for example, be trimethylolpropane tri(meth)acrylate, neopentyltriol tris(methyl)propionate, or tris((methyl)). Acryloxyethyl)phosphate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc. For the sale item, for example, for example,

Aronix M-3 09,同 M-400,同 M-405,同 M-450,同 M· 7100’同M-803 0,同M-8060(以上,東亞合成公司)製), KAYARAD TMPTA,同 DPHA,同 DPCA —20,同 DPCA· 40,同 DPCA-60,同 DPCA-120(以上,曰本化藥公司 製),Biscoat 2 95,同 3 00,同 3 60,同 GPT,同 3PA,同 400(以上,大阪有機化學工業公司)製等。 該等之中’ 3官能以上之(甲基)丙烯酸酯可恰當使 用’其中以三羥甲基丙烷三(甲基)丙烯酸酯,新戊四醇四 (甲基)丙烯酸酯,二新戊四醇六(甲基)丙烯酸酯爲特佳。 該等之單官能,2官能或3官能以上之(甲基)丙綠酸 酯,可單獨或者組合使用。 -26- 1282905 (23) [D] 成分之使用比率,相對於共聚物[A]100重量份, 較佳爲5 0重量份以下,再佳爲3 0重量份以下。 以此種比率含有[D]成分,可使本發明之敏輻射線性 樹S曰組成物所得之層間絶緣膜或微透鏡之耐熱性及表面硬 度等提局。此使用量超過5 0重量份時,在基板上形成敏 輻射線性樹脂組成物之塗膜之步驟中會產生膜皸裂。 爲上述[E]成分共聚物[A]以外之環氧樹脂(以下,稱 爲(E成分)。)方面,只要對相溶性無影響則無限定之 意,較佳爲將雙酚 A型環氧樹脂,酚醛淸漆型環氧樹 脂,甲酚酚醛淸漆型環氧樹脂,環狀脂肪族環氧樹脂,環 氧丙基酯型環氧樹脂,環氧丙基胺型環氧樹脂,雜環式環 氧樹脂,環氧丙基甲基丙烯酸酯,予以(共聚)聚合之樹脂 等。該等之中,以雙酚 A型環氧樹脂,甲酚酚醛淸漆型 環氧樹脂,環氧丙基酯型環氧樹脂等爲佳。 [E] 成分之使用比率,相對於共聚物[A] 100重量份, 較佳爲30重量份以下。以此種比率含有[E]成分,可使本 發明之敏輻射線性樹脂組成物所得之保護膜或絶緣膜之耐 熱性及表面硬度等更加提高。此比率超過3 0重量份時, 在基板上於形成敏輻射線性樹脂組成物之塗膜之際,會有 塗膜之膜厚均勻性不充分之情形。 另外,共聚物[A]亦可稱爲「環氧樹脂」,就具有鹼 可溶性之點則與[E]成分不同。 在本發明之敏輻射線性樹脂組成物,進而爲使塗布性 提高則可使用上述[F]成分之界面活性劑。在此可使用之 -27- 1282905 (24) [F ]界面活性劑方面,可恰當使用氟系界面活性劑,聚矽 氧系界面活性劑及非離子系界面活性劑。 在氟系界面活性劑之具體例方面,可例舉,1 , i,2,2 -四氟辛基(1,1,2,2 -四氟丙基)醚,l,,i,2,2 -四氟辛基己基 醚’八乙二醇二(1,1,2,2 -四氟丁基)醚,六乙二醇 (^,^々一一-六氟戊基彡醚’八丙二醇二^丨^一-四氟丁基) 醚,六丙二醇二(1,1,2,2,3,3-六氟戊基)醚,全氟十二基磺 酸鈉,1,1,2525858,9,9,10,10-十氟十二基,1,1,2,2,3,3-六 氟癸基等以外,可例舉氟烷基苯磺酸鈉類;氟烷基氧乙烯 醚類;碘化氟烷基銨類,氟烷基聚氧化乙烯醚類,全氟烷 基聚氧乙醇類;全氟烷基烷氧酸酯類;氟系烷酯類等。該 等之販售品方面,可例舉BM-1000,BM-1100(以上,BM Chemie 社製),Megafuck F142D,同 F172,同 F173,同 F1 83,同F178,同F191,伺F471(以上,大日’本墨水化 學工業公司製),Fulorade FC-170C,同 FC-171,同 FC-43 0,同 FC-431(以上,住友 3M 公司製),Sufuron S-112 ,同 S-113 ,同 S-131 ,同 S-141 ,同 S-145 ,同 S-382 ,同 SC-101 ,同 SC-102 ,同 SC-103 ,同 SC-104 ,同 SC-105,同 SC-106(旭硝子公司製),EF Top EF301,同 3 03,同3 52 (新秋田化成公司製)等。 上述聚矽氧系界面活性劑方面,可例舉例如DC3PA, DC7PA,FS- 1 265,SF-842 8,SH1IPA,SH21PA,SH28PA, SH29PA,SH30PA,SH-190,SH-193, SZ- 603 2 (以上, 東麗 Dowcorning 聚石夕氧公司製),TSF-4440,TSF-4300, -28- (25) 1282905 TSF-4445,TSF-4446,TSF-4460,TSF-4452(以上,GE 東 芝聚矽氧公司製)等之商品名販售者。 上述非離子系界面活性劑方面,可使用例如,聚氧化 乙烯月桂基醚,聚氧化乙烯硬脂醚,聚氧化乙烯油醚等之 聚氧化乙烯烷基醚類;聚氧化乙烯辛基苯基醚,聚氧化乙 烯壬基苯基醚等之聚氧化乙烯芳基醚類;聚氧化乙烯二月 桂酸酯,聚氧化乙烯二硬脂酸酯等之聚氧化乙烯二烷基烷 酯類等;(甲基)丙烯酸系共聚物Poly- flow -No.57,95(共 榮社化學公司製)等。 該等之界面活性劑可單獨或組合2種以上使用。 該等[F]界面活性劑,相對於共聚物[A] 100重量份’ 可使用較佳爲5重量份以下,再佳爲2重量份以下。[F] 界面活性劑之使用量超過5重量份時,在基板上形成塗膜 之際,會有塗膜之膜破裂易於產生之問題。 本發明之敏輻射線性樹脂組成物中,又,爲提高與基 體之黏接性則可使用[G]成分黏接助劑。此種[G]黏接助劑 方面,官能性矽烷偶合劑可恰當使用,可例舉例如竣基’ 甲基丙烯醯基,異氰酸酯基,環氧基等之具有反應性取代 基之矽烷偶合劑。具體而言,可例舉三甲氧基單矽烷基苯 甲酸,r -甲基丙烯醯氧基丙基三甲氧基矽烷,乙烯三乙 醯氧基矽烷,乙烯三甲氧基矽烷,r-異氰酸酯丙基三乙 氧基矽烷,r-環氧丙氧基丙基三甲氧基矽烷,A-(3,4-環 氧基環己基)乙基三甲氧基矽烷等。此種[G]黏接助劑’相 對於共聚物[A] 100重量份,可使用較佳爲20重量份以 -29- 1282905 (26) 下,再佳爲1 0重量份以下之量。黏接助劑之量超過2 0重 量份之情形’顯影步驟中會有顯影殘留易於產生之情形。 敏輻射線性樹脂組成物 本發明之敏輻射線性樹脂組成物,可以上述之共聚物 [A]及[B]成分以及如上述之可將任意添加之其他成分均勻 混合來調製。通常,本發明之敏輻射線性樹脂組成物,較 佳爲溶解於適當溶劑而使用於溶液狀態。例如將共聚物[A] 及[B]成分以及可任意添加之其他成分,以所定之比率混 合’來調製溶液狀態之敏輻射線性樹脂組成物。 在使用於本發明之敏輻射線性樹脂組成物之調製之溶 劑方面,可將共聚物[A]及[B]成分以及任意配合之其他成 分之各成分予以均勻溶解,且使用與各成分不反應者。 在此種溶劑方面,可例舉製造上述共聚物[A]可使用 之溶劑所例示者相同之物。 此種溶劑中,就各成分之溶解性,與各成分之反應 性,塗膜形成之容易性等之點而言,以乙二醇醚,乙二醇 烷基醚乙酸酯,酯及二乙二醇可恰當使用。該等之中,以 二乙二醇乙基甲基醚,二乙二醇二甲基醚,丙二醇單甲基 醚,丙二醇二甲基醚,丙二醇二乙基醚,二丙二醇二甲基 醚,二丙二醇二乙基醚,丙二醇單甲基醚乙酸酯,甲氧基 甲基丙酸甲酯,乙氧基丙酸乙酯特佳。 再者與前述溶劑一起爲使膜厚之面内均勻性提高,可 倂用高沸點溶劑·在可倂用之高沸點溶劑方面,可例舉例 -30- 1282905 (27) 如N-甲基甲醯胺,Ν·Ν-二甲基甲醯胺,N-甲基甲醯苯胺 N-甲基乙醯胺,N,N-二甲基乙醯胺,N-甲基吡咯酮,二甲 基亞颯,苄基乙基醚,二己基醚,己二酮,異佛爾酮,己 酸,癸酸’ 1 -辛醇,1 -壬醇,苄基醇,乙酸苄酯,苯甲酸 乙酯’草酸二乙基,順丁烯二酸二乙基,r-丁內酯,碳 酸乙烯酯,碳酸乙烯酯,苯基溶纖素乙酸酯等。該等之 中,以N-甲基吡咯酮,γ- 丁內酯,N,N-二甲基乙醯胺爲 佳。 本發明之敏輻射性樹脂組成物之溶劑方面,在倂用高 沸點溶劑之情形,其使用量,相對於溶劑全量爲5 0重量 %以下,較佳爲40重量%以下,更佳爲30重量%以下。 高沸點溶劑之使用量若超過此使用量時,會有塗膜之膜厚 均勻性,感度及殘膜率降低之情形。 將本發明之敏輻射線性樹脂組成物以溶液狀態來調製 之情形,溶液中所佔溶劑以外之成分(亦即共聚物[A]及[B] 成分以及任意添加之其他成分之合計量)之比率,可因應 使用目的或所望之膜厚之値等而任意設定,但較佳爲5〜 50重量%,再佳爲10〜40重量%,更佳爲15〜35重量 %。· 如此所調製之組成物溶液,在使用孔徑0.2 μιη左右之 微孔過濾器等進行過濾後,可供使用。 層間絶緣膜,微透鏡之形成 接著使用本發明之敏輻射線性樹脂組成物,就形成本 發明之層間絶緣膜,微透鏡之方法加以說明。本發明之層 -31 - 1282905 (28) 間絶緣膜或微透鏡之形成方法,係以下之記載順序含有以 下之步驟者。 (1) 將本發明之敏輻射線性組成物之塗膜形成於基板 上之步驟, (2) 在該塗膜之至少一部份照射輻射線之步驟, (3) 顯影步驟,及 (4) 加熱步驟。 (1)將本發明之敏輻射線性組成物之塗膜形成於基板 上之步驟 上述(1)之步驟中,係將本發明之組成物溶液塗布於 基板表面,藉由進行預烘烤來除去溶劑,以形成敏輻射線 性樹脂組成物之塗膜。 在可使用基板之種類方面,可例舉例如玻璃基板,矽 晶圓及在該等之表面可形成各種金屬之基板。 在組成物溶液之塗布方法方面,並無特別限定,可採 用例如噴灑法,輥輪塗布法,旋轉塗布法,棒塗布法等之 適宜之方法。在預烘烤之條件方面,可依各成分之種類, 使用比率等而異。例如,在6 0〜1 1 〇 °C 3 0秒〜1 5分鐘左 右。 所形成之塗膜之膜厚方面’作爲預烘烤後之値,在形 成層間絶緣膜之情形,例如以3〜6 μιη,在形成微透鏡之 情形,例如以〇 . 5〜3 μιη爲佳。 _(2)在該塗膜之至少一部份照射輻射線之步驟 在上述(2)之步驟中,在所形成之塗膜透過具有所定 -32- 1282905 (29) 之圖型之光罩,予以輻射線照射後,使用顯影液進行顯影 處理’將輻射線之照射部分除去,藉以進行圖型化。在此 時所用之輻射線方面,可例舉例如紫外線,遠紫外線,χ 線,帶電粒子線等。 上述紫外線方面,例如g線(波長43 6nm),i線(波長 3 65nm)等。遠紫外線方面例如KrF準分子雷射等。χ線方 面例如同步加速器輻射線等。帶電粒子線方面,例如電子 線等該等之中’以紫外線爲佳,尤其是含g線及/或i線 之輻射線爲佳。 曝光量方面,在形成層間絶緣膜之情形以5 〇〜 l,5 00J/m2,在形成微透鏡之情形以50〜2,000J/m2爲佳。 (3)顯影步驟 使用於顯影處理之顯影液方面,可使用例如氫氧化 鈉’氫氧化鉀,碳酸鈉,矽酸鈉,矽酸鈉,氨,乙基胺, 正丙基胺,二乙基胺,二乙基胺乙醇,二正丙基胺,三乙 基胺,甲基二乙基胺,二甲基乙醇胺,三乙醇胺,氫氧化 四甲基銨’氫氧化四乙基銨,吡咯,吡啶,1,8 -二氮雜雙 環〔5,4,0〕-7-十一烯,1,5-二氮雜雙環〔4,3,0〕-5-壬烷 等之鹼(鹼性化合物)之水溶液。又,在上述鹼之水溶液適 量添加甲醇,乙醇等之水溶性有機溶劑或界面活性劑之水 溶液、或可將本發明之組成物溶解之各種有機溶劑作爲顯 影液使用。進而,在顯影方法方面,可適宜利用盛液法, 浸漬(dipping )法,搖動浸漬法,沖浴法等之適宜方 法。在此時之顯影時間,因組成物之組成而異,例如可爲 -33- 1282905 (30) 3 0〜1 2 0秒。 另外,周知之敏輻射線性樹脂組成物,顯影時間自 適値超過20〜25秒左右時因在形成之圖型會有剝離 生’故有嚴密地控制顯影時間之必要,但在本發明之敏 射線性樹脂組成物之場合’自最適顯影時間超過時間 3 〇秒以上亦可爲良好的圖型形成,有製品原料利用率 之優點。 (4)加熱步驟 如上述在實施之(3)顯影步驟後,相對於圖型化之 膜,較佳爲例如進行流水洗淨之淸洗處理,進而,較佳 藉由高壓水銀燈等使輻射線全面照射(後曝光),來進行 薄膜中殘存1,2_苯醌二疊氮化合物之分解處理後,將此 膜,藉由熱板,烤爐等之加熱裝置進行加熱處理(事後 烤處理),來進行該薄膜之硬化處理。在上述後曝光步 中曝光量,較佳爲2,000〜5,000J/m2左右。又,此硬 處理中煅燒溫度,例如爲1 2 0〜2 5 (TC。加熱時間,可 加熱機器之種類而異,例如在熱板上進行加熱處理之情 爲5〜3 0分鐘,在烤爐中進行加熱處理之情形爲3 0〜 分鐘。此時,可使用進行二次以上加熱步驟步進烘烤 (step bake )等。 如此,對應於爲目的之層間絶緣膜或微透鏡,可將 型狀薄膜形成於基板之表面上。 以上述方式形成之層間絶緣膜及微透鏡,如後述之 施例所可明白,密接性,耐熱性,耐溶劑性,及透明性 最 產 在 上 薄 爲 該 薄 烘 驟 化 因 形 90 法 圖 實 等 -34- 1282905 (31) 爲優異。 層間絶緣膜 如上述方式形成之本發明之層間絶緣膜,對基板之密 接性良好,耐溶劑性及耐熱性優異,具有高透過率,介電 常數亦低,作爲電子構件之層間絶緣膜可恰當使用。 微透鏡 如上述方式形成之本發明之微透鏡,對基板之密接性 良好,耐溶劑性及耐熱性優異,且具有高透過率與良好的 熔融形狀,作爲固體攝像元件之微透鏡可恰當使用。 又,本發明之微透鏡之形狀,係如第1圖(a)所示, 爲半凸透鏡形狀。 【實施方式】 以下以合成例,實施例例示,進而具體說明本發明, 但本發明並非限定於以下之實施例。 共聚物[A]之合成例 合成例1 在具備冷却管,攪拌機之燒瓶,裝入2,2’-偶氮雙 (2,4-二甲基戊腈)10重量份,二乙二醇乙基甲基醚250重 量份。接著,裝入苯乙烯5重量份,甲基丙烯酸14重量 份,三環[5·2.1.02·6]癸-8-基甲基丙烯酸酯11重量份,四 -35- 1282905 (32) 氫糠基甲基丙烯酸酯30重量份,環氧丙基甲基丙嫌酸酯 45重量份,及ct-甲基苯乙烯二聚物3重量份’以氮取代 後,開始緩慢攪拌。溶液之溫度上升至7 0 °C ’將此溫度 保持4小時得到含共聚物[A-1 ]之聚合物溶液。 共聚物[A-1]之聚苯乙烯換算重量平均分子量(Mw)爲 8,000,分子量分布(Mw/Mn)爲2.2。又’在此所得之聚合 物溶液之固形成份濃度爲,2 9 · 8重量%。 合成例2 在具備冷却管,攪拌機之燒瓶裝入,2,2’-偶氮雙 (2,4-二甲基戊腈)7重量份,二乙二醇乙基甲基醚200重 量份。接著,裝入甲基丙烯酸18重量份,苯乙烯6重量 份,三環[5.2.1.02·6]癸-8-基甲基丙燃酸醋11重量份,環 氧丙基甲基丙烯酸酯30重量份,對乙烯基苄基環氧丙基 醚15重量份,四氫糠基甲基丙烯酸酯20重量份,及α-甲基苯乙烯二聚物3重量份,以氮取代後,開始緩慢攪 拌。使溶液之溫度上升至7 0 °C,保持此溫度5小時,得 到含共聚物[A-2]之聚合物溶液。 共聚物[A-2]之聚苯乙烯換算重量平均分子量(MW)爲 11,000,分子量分布(Mw/Mn)爲2.5。又,在此所得之聚 合物溶液之固形成份濃度爲,3 1 .5重量%。 合成例3 在具備冷却管,攪拌機之燒瓶,裝入2.2’-偶氮雙 -36- 1282905 (33) (2,4·二甲基戊腈)6重量份及二乙二醇乙基甲基醚200重 量份。接著,裝入甲基丙烯酸16重量份,環氧丙基甲基 丙烯酸酯18重量份,三環[5.2.1.02·6]癸-8-基甲基丙烯酸 酯6重量份,對乙烯基苄基環氧丙基醚3 0重量份,聚乙 二醇(n = 2)單甲基丙烯酸酯30重量份及α-甲基苯乙烯二聚 物3重量份,以氮取代後,開始緩慢攪拌。使溶液之溫度 上升至70°C ·保持此溫度4.5小時得到含有共聚物[Α-3] 之聚合物溶液。 共聚物[A-3]之聚苯乙烯換算重量平均分子量(Mw)爲 13,000,分子量分布(Mw/Mn)爲1 .8。又,在此所得之聚 合物溶液之固形成份濃度爲3 2.7重量%。 合成例4 在具備冷却管,攪拌機之燒瓶,裝入2.2’ -偶氮雙 (2,4-二甲基戊腈)8.5重量份及二乙二醇乙基甲基醚220 重量份。接著,裝入甲基丙烯酸20重量份,環氧丙基甲 基丙烯酸酯45重量份,三環[5.2.1.02·6]癸-8-基甲基丙烯 酸酯15重量份,聚乙二醇(n = 3)單甲基丙烯酸酯20重量 份及α-甲基苯乙烯二聚物3重量份,以氮取代後,開始 緩慢攪拌。使溶液之溫度上升至7(TC,保持此溫度4.5小 時,得到含共聚物[A - 4 ]之聚合物溶液。 共聚物[A_4]之聚苯乙烯換算重量平均分子量(Mw)爲 8, 〇〇〇,分子量分布(Mw/Mn)爲 1.9。又,在此所得之聚合 物溶液之固形成份濃度爲3 1 · 5重量%。 -37- 1282905 (34) 比較合成例l 在具備冷却管,攪拌機之燒瓶,裝入2.2 ’ -偶氮雙 (2,4-二甲基戊腈)8重量份及二乙二醇乙基甲基醚220重 量份。接著,裝入苯乙烯20重量份,甲基丙烯酸20重量 份,環氧丙基甲基丙烯酸酯40重量份及苯基順丁烯二醯 亞胺20重量份,以氮取代後,開始緩慢攪拌。使溶液之 溫度上升至7 0 °C,保持此溫度5小時,得到含有共聚物 [a-1]之聚合物溶液。 共聚物[a-1]之聚苯乙烯換算重量平均分子量(Mw)爲 7,5 00,分子量分布(Mw/Mn)爲2.4。又,在此所得之聚合 物溶液之固形成份濃度爲3 0.6重量%。 實施例1 [敏輻射線性樹脂組成物之調製] 將上述合成例1所得之聚合物溶液(相當於共聚物[A-1]1〇〇重量份(固形成份)與,成分[B]係以4,4’-[1-[4-[1-[4-羥苯基]-1-甲基乙基]苯基]亞乙基]雙酚(1.0莫耳)與 1,2-萘醌二疊氮-5-磺酸氯化物(1.0莫耳)之縮合物(B-1)30 重量份予以混合,在溶解於二乙二醇乙基甲基醚使固形成 份濃度成爲30重量%後,以孔徑0·2μηι之膜過濾器過 濾,來調製敏輻射線性樹脂組成物之溶液(S- 1 )。 實施例2〜9,比較例1 -38- 1282905 (35) [敏輻射線性樹脂組成物之調製] 除了在實施例1中,[A]成分及[B]成分係使用,如表 1之種類,量以外,其他與實施例1同樣來實施,並調製 敏輻射線性樹脂組成物之溶液(S - 2)〜(S · 9),及(s -1)。 另外,實施例8中· [B]成分之記載係表示,各自倂 用2種類之1,2-苯醌二疊氮化合物。 實施例1 〇 除了在實施例1中,溶解於二乙二醇乙基甲基醚使固 形成份濃度成爲1 5重量%以外其他與實施例1同樣來調 製組成物,以調製敏輻射線性樹脂組成物之溶液(s_ i 〇)。 實施例1 1 除了在實施例1中,使固形成份濃度成爲2〇重量% 來溶解於二乙二醇乙基甲基醚/二乙二醇二乙基醚=9n以 外其他與實施例1同樣來調製組成物,並調製敏輻射線性 樹脂之溶液(S-1 1)。 表1中,成分簡稱以下列化合物表示。 (Β-1)··4,4’-[1-[4-[1-[4-羥苯基]-1-甲基乙基]苯基]亞 乙基]雙酣(1.0莫耳)與12 —萘醌二疊氮-5_磺酸氯化物(20 莫耳)之縮合物 (Β-2):4,4’-[卜[4·[1_〔4-羥苯基〕·1-甲基乙基]苯基] 亞乙基]雙酹(1.0莫耳)與1,2 -萘醌二疊氮-5_磺酸氯化物 (1.0莫耳)之縮合物 -39- 1282905 (36) (8-3):2,3,4,4’-四氫羥苯并二苯甲酮(1」 萘醌二疊氮-5-磺酸酯〈2.44莫耳〉 (Β-4):4,4’-[1-[4· -[1-[4_羥苯基]-1-甲 亞乙基]雙酚(1·〇莫耳)與1,2-萘醌二疊氮 (2.0莫耳)之縮合物 (F):SH,28PA(東麗· Dowcorning·聚石夕 〕莫耳)與1,2- 基乙基]苯基] -4-磺酸氯化物 氧公司製) -40- 1282905 (37) 表1 I ! ! ! 組成物種 共聚物A B成分 其他成分 種類 重量份 種類 重量份 種類 重量份 Γ 丨實施例1 (S-1) A-4 100 ! B-1 30 轉 華 實施例2 (S-2) A-3 100 B-1 25 ί實施例3 ί ................. (S-3) A-2 100 B-1 30 ! 實施例4 (S-4) A-1 100 B-1 35 實施例5 (S-5) A-1 100 B-2 40 擊 實施例6 (S-6) A-1 100 B-3 30 擊 實施例7 (S-7) A-1 100 B-4 30 i實施例8 (S-8) A-1 100 B-1+B-2 20+15 丨: 實施例9 (S-9) A-4 100 B-1 30 F 0.01 1 ί實施例10 (S-10) A-4 100 B-1 30 一 ;實施例11 (S-11) A-4 100 ! B-1 30 ί 1 比較例1 (s-1) a-1 100 B-3 30 - - 註)表1中,-係表示並不添加其他成分。 實施例12〜22,比較例2〜4 &lt;層間絶緣膜之性能評價&gt; 使用如上述般調製之敏輻射線性樹脂組成物,如以下 方式評價層間絶緣膜之各種特性。另外,比較例3及4所 -41 - 1282905 (38) 使用之組成物,均爲間/對甲酚酚醛淸漆與1,2-萘醌二疊 氮-5-磺酸酯之組成物之販售品(東京應化公司製)。 [感度之評價] 在矽基板上,就實施例1 2〜2 0,比較例2〜4使用旋 轉器,而就實施例2 1〜22則使用狹縫模頭塗料器,在塗 布表2之組成物後,在9 0 °C於熱板上預烘烤2分鐘來形 成膜厚3.0 μιη之塗膜。在所得塗膜透過具有所定圖型之圖 型光罩,以佳能公司製PLA-501F曝光機(超高壓水銀燈) 使曝光時間變化來進行曝光後,以表2記載濃度之氫氧化 四甲基銨水溶液,以251,90秒盛液法顯影。以超純水 進行1分鐘流水洗淨,乾燥之,在晶圓上形成圖型。爲可 使3.0 μιη之線與間隙(10對1)之間隙•圖型完全溶解則測 定必要曝光量。以該値爲感度,如表 2所示。此値爲 l,000J/m2以下時,感度可謂良好。 〔顯影界限之評價〕 在矽基板上,就實施例1 2〜2 0,比較例2〜4使用旋 轉器,就實施例2 1〜22則使用狹縫模頭塗料器,在塗布 表2之組成物後,在9 0 °C於熱板上預烘烤2分鐘來形成 膜厚3.0 μηι之塗膜。在所得塗膜透過具有3.0 μιη之線與間 隙(10對1)之圖型之光罩,使用佳能公司製PLA-501F曝 光機(超高壓水銀燈),以相當於上述「[感度之評價]」所 測定感度之値之曝光量進行曝光,以表2所記載濃度之氫 -42- 1282905 (39) 氧化四甲基銨水溶液於25 °C,90秒之盛液法進行顯影。 接著以超純水進行1分流水洗淨,乾燥之,在晶圓上形成 圖型。此時’爲使線(line )線寬成爲3μιη使必要之顯影 時間爲最適顯影時間而如表2所示。又,由最適顯影時間 進而持續顯影之際來測定3.0 μιη之線•圖型至剝離爲止之 時間,而顯影界限係如表2所示。此値在3 0秒以上時, 顯影界限可謂良好。 〔耐溶劑性之評價〕 在砂基板上’就實施例1 2〜2 0,比較例2〜4使用旋 轉器,就實施例2 1〜22則使用狹縫模頭塗料器,在以表 2之組成物塗布後,在9(TC於熱板上預烘烤2分鐘來形成 膜厚3·0μιη之塗膜。在所得塗膜,以佳能公司製PLA_ 5 〇 1 F曝光機(超高壓水銀燈)予以曝光使累計照射量達到 3,000J/m2,將此矽基板在淨爐(Clean oven)内以220 °C 加熱1小時得到硬化膜。測定所得硬化膜之膜厚(T 1 )。接 著,將此硬化膜所形成矽基板控制於7 0 °C溫度之二甲基 亞颯中予以浸漬20分鐘後,來測定該硬化膜之膜厚(U), 並算出浸漬所致膜厚變化率{ | tl-Tl | / T1 } X 100 〔%〕。結果如表2所示。此値在5 %以下時,耐溶劑性 可謂良好。 另外,在耐溶劑性之評價中,因形成之膜之圖型化並 不要,故輻射線照射步驟及顯影步驟予以省略,並提供僅 有塗膜形成步驟,事後烘烤步驟及加熱步驟之評價。 •43- 1282905 (40) 〔耐熱性之評價〕 與上述耐溶劑性之評價相同來形成硬化膜,來測定所 得硬化膜之膜厚(T2)。接著,將此硬化膜基板在淨爐内以 24 0 °C進行1小時追加烘烤後,來測定該硬化膜之膜厚 (t2),並算出追加烘烤所致膜厚變化率{ | t2-T2 | / T 2 } X 1 0 0〔 %〕。結果如表2所示。此値在5 %以下時, 耐熱性可謂良好。 〔透明性之評價〕 上述之耐溶劑性之評價中,以玻璃基板「Corning 7059(Corning公司製)」替代矽基板以外,其他則同樣方 式在玻璃基板上形成硬化膜。將具有此硬化膜之玻璃基板 之光線透過率以分光光度計「1 50-20型Double beam(曰 立製作所公司製)」,在4 0 0〜8 0 Onm之範圍之波長測定。 此時之最低光線透過率之値如表2所示。此値爲90%以上 時,透明性可謂良好。 〔比介電常數之評價〕 在已硏磨之SUS3 04製基板上使用旋轉器,就實施例 1 2〜20,比較例2〜4係使用旋轉器,就實施例2 ]〜22則 使用狹縫模頭塗料器,將表2之組成物塗布後,在9(TC 於熱板上預烘烤2分鐘來形成膜厚3.0 μιη之塗膜。在所得 塗膜以佳能公司製PLA-501F曝光機(超高壓水銀燈)曝光 -44- 1282905 (41) 成累計照射量爲3,000J/m2,將此基板在淨爐内於220 °C 煅燒1小時,以獲得硬化膜。 關於此硬化膜,藉由蒸鍍法形成Pt/Pd電極圖型,來 做成介電常數測定用樣本。將該基板以頻率10kHz之頻 率,使用横河.HEWLETT PACKARD公司製 HP 1 645 1 B 電極及 HP4284A Precision LCR 測量計,藉由 CV法來測定該基板之比介電常數。結果如表2所示。此 値在3 · 6以下時,介電常數可謂良好。 另外’在介電常數之評價中,因所形成之膜之圖型化 並不要’故輻射線照射步驟及顯影步驟可省略,僅提供塗 膜形成步驟,事後烘烤步驟及加熱步驟之評價。 -45 - 1282905 (42) CNI嗽 比介電常 數 寸 CO CO 寸 CO CO CO CO CO 寸 CO CO CO 寸 CO 寸 CO 寸 CO 寸 CO UO CO 卜 00 卜 CO 起A 盔家 CM σ&gt; CO σ&gt; CO O) T— O) CO σ&gt; C\l σ&gt; T— 〇&gt; 寸 ο 荔 S CO σ&gt; CO CO CNI 00 耐熱性 膜厚變化 率(%) CO CO CM CM CO CO CO CM CO CO CM CO m 硬化後膜 厚(ym) 寸 c\i CO c\i 寸 c\i iT&gt; c\i LO csi CO csi CO c\i 寸 c\i 寸 csi 寸 rsi 寸 c\i 寸 c\i o c\i T— 耐溶劑性 膜厚變化 率(%) CO CO CN CO CM CM CO CNI CO CO CO CO o CN 硬化後膜 厚(μηι) 寸 csi CO cm* 寸 csi l〇 csi LO c\i CO c\i CO c\i 寸 c\i 寸 c\i 寸 c\i 寸 c\i 寸 csi o c\i O) t— 顯影界限 現象顯影 界限(秒) ιο CO 另 m CO o CO o CO l〇 CO o CO in CO m CO to to CNJ 最適顯影 時間(秒) ο CD o CO § § o o CD o CD § § § 8 § o CD § 感度評價 感度 (J/m2) ο ΙΟ s to s LO o CD o s o m l〇 o § o lO in o s o o lO O o lO o 卜 2200 ! 2200 顯影液濃 度(重量%) 寸 d in o’ in o 寸 o 寸 o’ 寸 o 1 2.38 I 寸 〇· 寸 o 寸 o’ 寸 o o 2.38 2.38 組成物種 I (S-1) I I (S-2) I 1 (S-3) I 1 (S-4) I 1 (S-5) I | (S-6) I I (S-7) | | (S-8) I 1 (S-9) I 1 (S-10) I I (S-11) I L,i) I OFRP- 800 OFPR- 5000 I實施例12| I實施例131 實施例14 i實施例15| 實施例16 |實施例17丨 實施例18 實施例19 實施例20 實施例21! 實施例22 比較例2 比較例3j 比較例4 -46- 1282905 (43) 實施例2 3〜3 3,比較例5〜7 &lt;微透鏡之性能評價&gt; 使用上述方式調製之敏輻射線性樹脂組成物,以如以 下方式之微透鏡來評價各種特性。另外,耐熱性之評價, 透明性之評價請參照以上述層間絶緣膜之性能評價之結 果。 又,比較例6及7所使用之組成物,均爲間/對甲酚 酚醛淸漆與1,2-萘醌二疊氮-5-磺酸酯之組成物販售品(東 京應化公司製)。 〔感度之評價〕 在矽基板上,就實施例2 3〜3 1,比較例5〜7使用旋 轉器,而就實施例3 2〜3 3則使用狹縫模頭塗料器,在將 表3之組成物塗布後,在90 °C熱板上預烘烤2分鐘來形 成膜厚3·0μηι之塗膜。在所得塗膜透過具有所定圖型之圖 型光罩,以Nikon公司製NSR 1 75 5 i7A縮小投影曝光機 (ΝΑ = 0·50,λ = 3 65ηιη)使曝光時間變化予以曝光,以表 3 所記載濃度之氫氧化四甲基銨水溶液以2 5 °C,1分之盛液 法進行顯影。以水淸洗,乾燥之,在晶圓上形成圖型。來 測定在〇·8μιη線與間隙圖型(1對1)之線寬成爲〇·8μηι所 必要之曝光時間。以此値爲感度,如表3所示。此値在 2,50(U/m2以下之情形,感度可謂良好。 -47- 1282905 (44) 〔顯影界限之評價〕 在矽基板上,就實施例23〜3 1,比較例5〜7使用旋 轉器,而就實施例3 2〜3 3則使用狹縫模頭塗料器,在將 表3之組成物塗布後,在90 °C於熱板上預烘烤2分,形 成膜厚3.0 μηι之塗膜。在所得塗膜上透過具有所定圖型之 圖型光罩,以Nikon公司製NSR 1 7 5 5 i7A縮小投影曝光機 (ΝΑ = 0·5 0 , λ = 3 65ηιη)進行相當於上述[感度評價]所測定感 度之値之曝光量來進行曝光,以表3所記載濃度之氫氧化 四甲基銨水溶液以25 t,1分之盛液法進行顯影。以水淸 洗,乾燥之,在晶圓上形成圖型。要使〇. 8 μηι線與間隙圖 型(1對1)之間隙線寬成爲〇·8 μηι使必要之顯影時間爲最 適顯影時間則如表3所示。又,由最適顯影時間進而持續 顯影之際,來測定寬0.8 μιη之圖型至剝離爲止之時間(顯 影界限),顯影界限則以表3表示。此値爲3 0秒以上時, 顯影界限爲良好。 〔耐溶劑性之評價〕 在矽基板上,就實施例23〜3 1,比較例5〜7使用旋 轉器,而就實施例3 2〜3 3則使用狹縫模頭塗料器,在將 表3之組成物塗布後,在9 0 °C於熱板上預烘烤2分鐘以 形成膜厚3.0μπι之塗膜。在所得塗膜以佳能公司製PLA-5 0 1 F曝光機(超高壓水銀燈)予以曝光使累計照射量成爲 3,000 J/m2,使此矽基板在淨爐内於220 °C加熱1小時得到 硬化膜。測定所得硬化膜之膜厚(T3)。接著,在將此硬化 -48- 1282905 (45) 膜所形成之矽基板控制溫度爲5 0 °C之異P 分鐘浸漬後,測定該硬化膜之膜厚(t3), 厚變化率{ I t3-T3 丨 /Τ3}χ100〔%〕。 示。此値在5%以下時,耐溶劑性爲良好。 另外,耐溶劑性之評價中形成之膜, 要,故可省略輻射線照射步驟及顯影步驟 塗膜形成步驟,事後烘烤步驟及加熱步驟 〔微透鏡之形成〕 在矽基板上,就實施例23〜3 1,比g 轉器,而就實施例3 2〜3 3則使用狹縫模 表3之組成物塗布後,在90 °C 2分鐘於熱 成膜厚3.0 μιη之塗膜。在所得塗膜透過 (dot) · 2·0μπι間隙圖型之圖型光罩以 NSR1 75 5i7A縮小投影曝光機(ΝΑ = 0·50, 於上述[〔感度之評價〕]測定感度之値之 在表3之感度之評價中以顯影液濃度記載 四甲基銨水溶液以2 5 °C,1分鐘盛液法 洗,予以乾燥在晶圓上形成圖型。其後 PLA_501F曝光機(超高壓水銀燈燈)予以 量成爲3,000J/m2。其後以熱板在160°(:力[ 而在23 0°C加熱10分鐘使圖型熔體流動 形成微透鏡。 所形成之微透鏡之底部(與基板接觸 1基醇中進行1 0 算出浸漬所致膜 結果如表3所 之圖型化爲不需 ,而提供僅進行 之評價。 ί例5〜7使用旋 頭塗料器,在將 板上預烘烤來形 Ϊ具有4·0μιη點 :Nikon 公司製 λ = 365ηηι)以相當 曝光量進行曝光, 之濃度之氫氧化 來顯影。以水淸 ,以佳能公司製 曝光使累計照射 ]熱1 〇分鐘後進 (melt flow)以 之面)之尺寸(直 -49- (46) 1282905 徑)及剖面形狀如表3所示。微透鏡底部之尺寸在超過 4·0/ηη不足5·0μηι時’可稱爲良好。又,此尺寸在5 〇/xm 以上時,鄰接之透鏡彼此之間爲接觸狀態,並不佳。又, 剖面形狀在第1圖所示之模式圖中,在如(a)之半凸透鏡 形狀時爲良好,而如(b)之大致台形狀上之情形則爲不 良。 -50- 1282905Aronix M-3 09, with M-400, with M-405, with M-450, with M·7100' with M-803 0, with M-8060 (above, East Asia Synthetic Company), KAYARAD TMPTA, same DPHA, same as DPCA-20, DPCA 40, DPCA-60, DPCA-120 (above, manufactured by Sakamoto Chemical Co., Ltd.), Biscoat 2 95, same as 00, same as 3, 60, GPT, 3PA, Same as 400 (above, Osaka Organic Chemical Industry Co., Ltd.). Among these, '3-functional or higher (meth) acrylate can be suitably used' among them trimethylolpropane tri(meth)acrylate, neopentyltetrakis(meth)acrylate, dipentaerythritol Alcohol hexa(meth) acrylate is particularly preferred. These monofunctional, bifunctional or trifunctional or higher (meth) chlorophyllates may be used singly or in combination. -26- 1282905 (23) The use ratio of the component [D] is preferably 50 parts by weight or less, more preferably 30 parts by weight or less based on 100 parts by weight of the copolymer [A]. When the component [D] is contained in such a ratio, the heat resistance and surface hardness of the interlayer insulating film or the microlens obtained by the composition of the sensitive radiation linear tree S of the present invention can be improved. When the amount used exceeds 50 parts by weight, film splitting occurs in the step of forming a coating film of the radiation-sensitive linear resin composition on the substrate. The epoxy resin other than the above-mentioned [E] component copolymer [A] (hereinafter referred to as (E component)) is not limited as long as it does not affect the compatibility, and is preferably a bisphenol A type ring. Oxygen resin, phenolic enamel type epoxy resin, cresol novolac lacquer type epoxy resin, cyclic aliphatic epoxy resin, epoxy propyl ester type epoxy resin, epoxy propyl amine type epoxy resin, miscellaneous Ring epoxy resin, epoxy propyl methacrylate, (co)polymerized resin, and the like. Among these, bisphenol A type epoxy resin, cresol novolac type epoxy resin, and epoxy propyl ester type epoxy resin are preferable. The use ratio of the component [E] is preferably 30 parts by weight or less based on 100 parts by weight of the copolymer [A]. When the component [E] is contained in such a ratio, the heat resistance and surface hardness of the protective film or the insulating film obtained by the radiation sensitive linear resin composition of the present invention can be further improved. When the ratio exceeds 30 parts by weight, the film thickness uniformity of the coating film may be insufficient when the coating film of the radiation sensitive linear resin composition is formed on the substrate. Further, the copolymer [A] may also be referred to as "epoxy resin", and the point of having alkali solubility is different from the component [E]. In the sensitive radiation linear resin composition of the present invention, in addition, in order to improve the coatability, the surfactant of the above [F] component can be used. Here, -27- 1282905 (24) [F] surfactant can be suitably used as a fluorine-based surfactant, a polyoxy-based surfactant, and a non-ionic surfactant. In the specific example of the fluorine-based surfactant, 1, i, 2, 2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, l, i, 2, 2-tetrafluorooctylhexyl ether 'octaethylene glycol di(1,1,2,2-tetrafluorobutyl)ether, hexaethylene glycol (^,^々一一-hexafluoropentyl oxime ether' eight Propylene glycol di- 丨^-tetrafluorobutyl)ether, hexapropanediol bis(1,1,2,2,3,3-hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 1,1, Other than 2525858, 9, 9, 10, 10-decafluorodode, 1,1,2,2,3,3-hexafluoroantimony, etc., sodium fluoroalkylbenzenesulfonate; fluoroalkyl group Oxyethylene ethers; fluoroalkylammonium iodides, fluoroalkyl polyoxyethylene ethers, perfluoroalkyl polyoxyl alcohols; perfluoroalkyl alkoxylates; fluoroalkanoates. For such merchandise, BM-1000, BM-1100 (above, BM Chemie), Megafuck F142D, F172, F173, F1 83, F178, F191, F471 (above) , Daely 'Ink Chemical Industry Co., Ltd.', Fulorade FC-170C, with FC-171, with FC-43 0, with FC-431 (above, Sumitomo 3M), Sufuron S-112, with S-113 , with S-131, with S-141, with S-145, with S-382, with SC-101, with SC-102, with SC-103, with SC-104, with SC-105, with SC-106 (made by Asahi Glass Co., Ltd.), EF Top EF301, the same as 3 03, the same as 3 52 (manufactured by New Akita Chemical Co., Ltd.). The polyoxo-based surfactant may, for example, be DC3PA, DC7PA, FS-1 265, SF-842 8, SH1IPA, SH21PA, SH28PA, SH29PA, SH30PA, SH-190, SH-193, SZ-603 2 (above, Toray Dow Corning Co., Ltd.), TSF-4440, TSF-4300, -28- (25) 1282905 TSF-4445, TSF-4446, TSF-4460, TSF-4452 (above, GE Toshiba A product name seller such as a company of Niobium Co., Ltd.). As the nonionic surfactant, for example, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octyl phenyl ether; a polyoxyethylene aryl ether such as polyoxyethylene nonylphenyl ether; a polyoxyethylene dialkyl alkyl ester such as polyoxyethylene dilaurate or polyoxyethylene distearate; Acrylic copolymer Poly- flow - No. 57, 95 (manufactured by Kyoeisha Chemical Co., Ltd.). These surfactants can be used individually or in combination of 2 or more types. The [F] surfactant may be used in an amount of preferably 5 parts by weight or less, more preferably 2 parts by weight or less based on 100 parts by weight of the copolymer [A]. [F] When the amount of the surfactant used exceeds 5 parts by weight, when the coating film is formed on the substrate, there is a problem that the film of the coating film is easily broken. In the sensitive radiation linear resin composition of the present invention, in order to improve the adhesion to the substrate, the [G] component adhesion aid can be used. In the case of such a [G] adhesion aid, a functional decane coupling agent can be suitably used, and for example, a decane coupling agent having a reactive substituent such as a fluorenyl 'methacryl fluorenyl group, an isocyanate group or an epoxy group can be exemplified. . Specifically, trimethoxymonodecyl benzoic acid, r-methyl propylene methoxy propyl trimethoxy decane, ethylene triethoxy decane, ethylene trimethoxy decane, and r-isocyanate propyl may, for example, be mentioned. Triethoxy decane, r-glycidoxypropyltrimethoxydecane, A-(3,4-epoxycyclohexyl)ethyltrimethoxydecane, and the like. The [G] adhesion aid' may be used in an amount of preferably 20 parts by weight, preferably -29 to 1282905 (26), more preferably 10 parts by weight or less, based on 100 parts by weight of the copolymer [A]. In the case where the amount of the adhesion aid exceeds 20 parts by weight, there is a case where development residue is liable to occur in the development step. Sensitive Radiation Linear Resin Composition The sensitive radiation linear resin composition of the present invention can be prepared by uniformly mixing the above copolymers [A] and [B] and the above-mentioned other components which can be arbitrarily added. In general, the sensitive radiation linear resin composition of the present invention is preferably used in a solution state by dissolving in a suitable solvent. For example, the copolymer [A] and [B] components and other components which can be arbitrarily added are mixed at a predetermined ratio to prepare a photosensitive radiation linear resin composition in a solution state. In terms of the solvent used for the preparation of the sensitive radiation linear resin composition of the present invention, the components of the copolymer [A] and [B] and the components of any of the other components may be uniformly dissolved and used without reacting with the respective components. By. As such a solvent, the same ones as those exemplified for the solvent which can be used for the production of the above copolymer [A] can be mentioned. In such a solvent, glycol ether, ethylene glycol alkyl ether acetate, ester and two are used in terms of solubility of each component, reactivity with each component, easiness of formation of a coating film, and the like. Ethylene glycol can be used as appropriate. Among these, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, dipropylene glycol dimethyl ether, Dipropylene glycol diethyl ether, propylene glycol monomethyl ether acetate, methyl methoxymethyl propionate, ethyl ethoxy propionate is particularly preferred. Further, in order to improve the in-plane uniformity of the film thickness together with the solvent, a high-boiling solvent can be used. In the case of a high-boiling solvent which can be used, for example, -30-1282905 (27) such as N-methyl group Amidoxime, Ν·Ν-dimethylformamide, N-methylformanilide N-methylacetamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl Azulene, benzyl ethyl ether, dihexyl ether, hexanedione, isophorone, caproic acid, capric acid '1-octyl alcohol, 1-nonanol, benzyl alcohol, benzyl acetate, ethyl benzoate 'Diethyl oxalate, diethyl maleate, r-butyrolactone, ethylene carbonate, ethylene carbonate, phenyl cellosolve acetate, and the like. Among these, N-methylpyrrolidone, γ-butyrolactone, and N,N-dimethylacetamide are preferred. In the case of the solvent of the radiation-sensitive resin composition of the present invention, in the case of using a high-boiling solvent, the amount thereof is 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight based on the total amount of the solvent. %the following. When the amount of the high-boiling solvent used exceeds this amount, the film thickness uniformity of the coating film may be lowered, and the sensitivity and the residual film ratio may be lowered. When the sensitive radiation linear resin composition of the present invention is prepared in a solution state, the components other than the solvent (that is, the total amount of the copolymer [A] and [B] components and any other components added) in the solution are The ratio can be arbitrarily set depending on the purpose of use or the desired film thickness, etc., but is preferably from 5 to 50% by weight, more preferably from 10 to 40% by weight, still more preferably from 15 to 35% by weight. - The composition solution thus prepared can be used after being filtered using a micropore filter having a pore size of about 0.2 μm. Interlayer insulating film, formation of microlens Next, the method of forming the interlayer insulating film of the present invention and the microlens by using the sensitive radiation linear resin composition of the present invention will be described. The layer of the present invention -31 - 1282905 (28) The method of forming the insulating film or the microlens, the following steps are included in the following description. (1) a step of forming a coating film of the linear composition of the sensitive radiation of the present invention on a substrate, (2) a step of irradiating at least a portion of the coating film with radiation, (3) a developing step, and (4) Heating step. (1) Step of Forming Coating Film of Linear Sensitive Composition of the Present Invention on Substrate In the step (1) above, a solution of the composition of the present invention is applied onto a surface of a substrate and removed by prebaking A solvent to form a coating film of the radiation sensitive linear resin composition. The type of the substrate that can be used may, for example, be a glass substrate, a ruthenium wafer, or a substrate on which various metals can be formed. The coating method of the composition solution is not particularly limited, and a suitable method such as a spray method, a roll coating method, a spin coating method, or a bar coating method can be employed. The pre-baking conditions may vary depending on the type of each component, the ratio of use, and the like. For example, at 6 0~1 1 〇 °C 3 0 seconds ~ 1 5 minutes left and right. The film thickness of the formed coating film is used as a crucible after prebaking, and in the case of forming an interlayer insulating film, for example, 3 to 6 μm, in the case of forming a microlens, for example, 〇. 5~3 μηη is preferable. . _(2) a step of irradiating at least a portion of the coating film with radiation in the step (2), wherein the formed coating film is passed through a mask having a pattern of -32-1282905 (29), After irradiation with a radiation, development treatment is carried out using a developing solution', and the irradiated portion of the radiation is removed, thereby patterning. The radiation used at this time may, for example, be ultraviolet rays, far ultraviolet rays, krypton rays, charged particle rays, or the like. The ultraviolet rays are, for example, a g line (wavelength of 4 6 nm), an i line (wavelength of 3 65 nm), or the like. For far ultraviolet rays, for example, KrF excimer lasers and the like. The squall line is, for example, a synchrotron radiation. In the case of a charged particle beam, for example, an electron beam, etc., it is preferable that ultraviolet rays are used, and particularly, a radiation containing g-line and/or i-line is preferable. In terms of the amount of exposure, 5 〇 to 1,500 J/m 2 is formed in the case of forming the interlayer insulating film, and 50 to 2,000 J/m 2 is preferable in the case of forming the microlens. (3) Developing step For the developing solution for developing treatment, for example, sodium hydroxide 'potassium hydroxide, sodium carbonate, sodium citrate, sodium citrate, ammonia, ethylamine, n-propylamine, diethyl ether can be used. Amine, diethylamine ethanol, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, Pyridine, 1,8-diazabicyclo[5,4,0]-7-undecene, 1,5-diazabicyclo[4,3,0]-5-nonane, etc. An aqueous solution of the compound). Further, an aqueous solution of a water-soluble organic solvent such as methanol or ethanol or a surfactant, or various organic solvents capable of dissolving the composition of the present invention may be used as a developing solution in an appropriate amount in the aqueous alkali solution. Further, in the development method, a suitable method such as a liquid-filling method, a dipping method, a shaking method, a bathing method, or the like can be suitably employed. The development time at this time varies depending on the composition of the composition, and may be, for example, -33 to 1282905 (30) 3 0 to 1 2 0 seconds. In addition, it is known that the radiation-sensitive linear resin composition has a development time of more than about 20 to 25 seconds, and there is a need to closely control the development time due to the peeling of the formed pattern, but the sensitive radiation of the present invention In the case of the resin composition, it is also possible to form a good pattern from the optimum development time of more than 3 seconds, and it has the advantage of utilizing the raw material of the product. (4) Heating step After the development step (3) described above, it is preferable to perform a rinse treatment with a running water, for example, with respect to the patterned film, and further preferably, the radiation is made by a high pressure mercury lamp or the like. After the total irradiation (post-exposure), the decomposition treatment of the residual 1,2-benzoquinonediazide compound in the film is carried out, and then the film is heated by a heating device such as a hot plate or an oven (post-bake treatment). To perform the hardening treatment of the film. The exposure amount in the above post-exposure step is preferably about 2,000 to 5,000 J/m2. Further, the calcination temperature in the hard treatment is, for example, 1 2 0 to 2 5 (TC. The heating time varies depending on the type of the heatable machine, for example, heat treatment on a hot plate is 5 to 30 minutes, and is baked. The heat treatment in the furnace is 30 to minutes. In this case, step bake or the like may be used for the second or more heating steps. Thus, corresponding to the purpose of the interlayer insulating film or microlens, The pattern film is formed on the surface of the substrate. The interlayer insulating film and the microlens formed in the above manner can be understood from the examples described later, and the adhesion, heat resistance, solvent resistance, and transparency are most thinly formed. The thin film is excellent in the shape of the film, and the interlayer insulating film of the present invention, which is formed as described above, has good adhesion to the substrate, solvent resistance and heat resistance. It is excellent, has high transmittance, and has low dielectric constant, and can be suitably used as an interlayer insulating film of an electronic component. The microlens of the present invention formed as described above has good adhesion to a substrate and solvent resistance. It is excellent in heat resistance, has high transmittance, and has a good melt shape, and can be suitably used as a microlens of a solid-state image sensor. The shape of the microlens of the present invention is a semi-convex lens as shown in Fig. 1(a). [Embodiment] Hereinafter, the present invention will be specifically described by way of Synthesis Examples and Examples, but the present invention is not limited to the following examples. Synthesis Example of Copolymer [A] Synthesis Example 1 A cooling tube and a stirrer are provided. The flask was charged with 10 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 250 parts by weight of diethylene glycol ethyl methyl ether. Then, 5 parts by weight of styrene was charged. 14 parts by weight of methacrylic acid, 11 parts by weight of tricyclo[5·2.1.02·6]癸-8-yl methacrylate, 30 parts by weight of tetra-35-1282905 (32) hydroquinone methacrylate, 45 parts by weight of the epoxidized propyl methacrylate, and 3 parts by weight of the ct-methyl styrene dimer, after being replaced by nitrogen, began to stir slowly. The temperature of the solution rose to 70 ° C. The polymer solution containing the copolymer [A-1] was obtained for 4 hours. The polystyrene conversion weight of the copolymer [A-1] The amount average molecular weight (Mw) was 8,000, and the molecular weight distribution (Mw/Mn) was 2.2. Further, the solid solution concentration of the polymer solution obtained herein was 2.98% by weight. Synthesis Example 2 A cooling tube and a mixer were provided. The flask was charged with 7 parts by weight of 2,2'-azobis(2,4-dimethylvaleronitrile) and 200 parts by weight of diethylene glycol ethyl methyl ether. Then, 18 parts by weight of methacrylic acid was charged. Parts, 6 parts by weight of styrene, 11 parts by weight of tricyclo [5.2.1.02·6] 癸-8-yl methacrylic acid vinegar, 30 parts by weight of epoxy propyl methacrylate, p-vinylbenzyl ring 15 parts by weight of oxypropyl ether, 20 parts by weight of tetrahydrofurfuryl methacrylate, and 3 parts by weight of α-methylstyrene dimer, after being substituted with nitrogen, started to stir slowly. The temperature of the solution was raised to 70 ° C, and this temperature was maintained for 5 hours to obtain a polymer solution containing the copolymer [A-2]. The copolymer [A-2] had a polystyrene-equivalent weight average molecular weight (MW) of 11,000 and a molecular weight distribution (Mw/Mn) of 2.5. Further, the solid solution concentration of the polymer solution obtained here was 31.5% by weight. Synthesis Example 3 In a flask equipped with a cooling tube and a stirrer, 6 parts by weight of 2.2'-azobis-36- 1282905 (33) (2,4·dimethylvaleronitrile) and diethylene glycol ethylmethyl group were charged. 200 parts by weight of ether. Next, 16 parts by weight of methacrylic acid, 18 parts by weight of glycidyl methacrylate, and 6 parts by weight of tricyclo[5.2.1.06·6]non-8-yl methacrylate, p-vinylbenzyl group were charged. 30 parts by weight of glycidyl ether, 30 parts by weight of polyethylene glycol (n = 2) monomethacrylate, and 3 parts by weight of α-methylstyrene dimer, after being substituted with nitrogen, started to stir slowly. The temperature of the solution was raised to 70 ° C. This temperature was maintained for 4.5 hours to obtain a polymer solution containing the copolymer [Α-3]. The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer [A-3] was 13,000, and the molecular weight distribution (Mw/Mn) was 1.8. Further, the solid solution concentration of the polymer solution obtained herein was 32.7 wt%. Synthesis Example 4 In a flask equipped with a cooling tube and a stirrer, 8.5 parts by weight of 2.2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether were charged. Next, 20 parts by weight of methacrylic acid, 45 parts by weight of glycidyl methacrylate, 15 parts by weight of tricyclo [5.2.1.02·6] fluoren-8-yl methacrylate, and polyethylene glycol ( n = 3) 20 parts by weight of monomethacrylate and 3 parts by weight of α-methylstyrene dimer, and after being substituted with nitrogen, stirring was started slowly. The temperature of the solution was raised to 7 (TC, and the temperature was maintained for 4.5 hours to obtain a polymer solution containing the copolymer [A - 4 ]. The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer [A_4] was 8, 〇 〇〇, the molecular weight distribution (Mw/Mn) was 1.9. Further, the solid solution concentration of the polymer solution obtained herein was 3 1 · 5 wt%. -37 - 1282905 (34) Comparative Synthesis Example 1 With a cooling tube, The flask of the mixer was charged with 8 parts by weight of 2.2'-azobis(2,4-dimethylvaleronitrile) and 220 parts by weight of diethylene glycol ethyl methyl ether. Then, 20 parts by weight of styrene was charged. 20 parts by weight of methacrylic acid, 40 parts by weight of epoxy propyl methacrylate and 20 parts by weight of phenyl maleimide, after being substituted with nitrogen, stirring was started slowly, and the temperature of the solution was raised to 70 °. C, maintaining this temperature for 5 hours, the polymer solution containing the copolymer [a-1] was obtained. The polystyrene-equivalent weight average molecular weight (Mw) of the copolymer [a-1] was 7,500, and the molecular weight distribution (Mw) /Mn) was 2.4. Further, the solid solution concentration of the polymer solution obtained herein was 3.66% by weight. Preparation of Linear Resin Composition] The polymer solution obtained in the above Synthesis Example 1 (corresponding to the copolymer [A-1] 1 part by weight (solid component) and the component [B] was 4, 4'-[ 1-[4-[1-[4-Hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]bisphenol (1.0 mol) and 1,2-naphthoquinonediazide-5- 30 parts by weight of a condensate (B-1) of a sulfonic acid chloride (1.0 mol) was mixed, and after dissolving in diethylene glycol ethyl methyl ether, the solid content concentration was 30% by weight, and the pore diameter was 0·2 μm. The membrane filter was filtered to modulate the solution of the sensitive radiation linear resin composition (S-1). Examples 2 to 9, Comparative Example 1 - 38 - 1282905 (35) [Modulation of the sensitive radiation linear resin composition] In the first embodiment, the components [A] and [B] were used in the same manner as in Example 1 except that the amounts of the components (A) and (B) were used, and a solution of the radiation-sensitive linear resin composition (S - 2) was prepared. ~(S·9), and (s-1). In the eighth embodiment, the description of the component [B] indicates that two types of 1,2-benzoquinonediazide compounds are used. Except in Example 1, dissolved in The composition was prepared in the same manner as in Example 1 except that the concentration of the solid content of the ethylene glycol ethyl methyl ether was changed to 15% by weight to prepare a solution (s_i 〇) of the radiation sensitive linear resin composition. In the first embodiment, the composition was prepared in the same manner as in Example 1 except that the solid content concentration was 2% by weight and dissolved in diethylene glycol ethyl methyl ether/diethylene glycol diethyl ether = 9n. And modulating the solution of the sensitive radiation linear resin (S-1 1). In Table 1, the component abbreviations are represented by the following compounds. (Β-1)··4,4'-[1-[4-[1-[4-hydroxyphenyl]-1-methylethyl]phenyl]ethylidene]biguanide (1.0 mol) Condensate with 12-naphthoquinonediazide-5-sulfonic acid chloride (20 mol) (Β-2): 4,4'-[Bu [4·[1_[4-hydroxyphenyl]·1 a condensate of -methylethyl]phenyl]ethylene]biguanide (1.0 mol) with 1,2-naphthoquinonediazide-5-sulfonic acid chloride (1.0 mol) -39- 1282905 ( 36) (8-3): 2,3,4,4'-tetrahydrohydroxybenzobenzophenone (1" naphthoquinonediazide-5-sulfonate <2.44 mol> (Β-4) :4,4'-[1-[4·-[1-[4-hydroxyphenyl]-1-methylethylene]bisphenol (1·〇莫耳) and 1,2-naphthoquinonediazide (2.0 mol) condensate (F): SH, 28PA (Toray Dowcorning, Ju Shi Xi Mo) and 1,2-ethylethyl]phenyl]-4-sulfonic acid chloride oxygen ) -40- 1282905 (37) Table 1 I ! ! ! Composition Species Copolymer AB Component Other Component Species Weight Parts Species Weight Parts Type Weight Γ Example 1 (S-1) A-4 100 ! B-1 30 Transferring Example 2 (S-2) A-3 100 B-1 25 ί Embodiment 3 ί ................. (S-3) A-2 100 B -1 30 ! Example 4 (S-4) A-1 100 B-1 35 Example 5 (S-5) A-1 100 B-2 40 Example 6 (S-6) A-1 100 B-3 30 Example 7 (S-7) A-1 100 B-4 30 i Example 8 (S-8) A-1 100 B-1+B-2 20+15 丨: Example 9 (S-9) A-4 100 B-1 30 F 0.01 1 ί Example 10 (S -10) A-4 100 B-1 30 one; Example 11 (S-11) A-4 100 ! B-1 30 ί 1 Comparative Example 1 (s-1) a-1 100 B-3 30 - - Note) In Table 1, the - indicates that no other components are added. Examples 12 to 22, Comparative Examples 2 to 4 &lt;Evaluation of the performance of the interlayer insulating film&gt; Using the sensitive radiation linear resin composition prepared as described above, various characteristics of the interlayer insulating film were evaluated in the following manner. Further, the compositions used in Comparative Examples 3 and 4 - 41 - 1282905 (38) are all compositions of m-p-cresol novolac lacquer and 1,2-naphthoquinonediazide-5-sulfonate. Sales item (made by Tokyo Yinghua Co., Ltd.). [Evaluation of Sensitivity] On the ruthenium substrate, Examples 1 2 to 2 0 were used, and Comparative Examples 2 to 4 used a rotator, and in Examples 2 1 to 22, a slit die coater was used, and in Table 2 After the composition, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film having a film thickness of 3.0 μm. After the obtained coating film was passed through a pattern mask having a predetermined pattern and exposed to a change in exposure time by a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc., the concentration of tetramethylammonium hydroxide was as shown in Table 2. The aqueous solution was developed in a 251, 90 second liquid solution. It was washed with ultrapure water for 1 minute, dried, and patterned on the wafer. To make the gap between the line of 3.0 μηη and the gap (10 to 1) • The pattern is completely dissolved to measure the necessary exposure. Take this 値 as the sensitivity, as shown in Table 2. When the 値 is l,000 J/m2 or less, the sensitivity is good. [Evaluation of development limit] On the ruthenium substrate, Examples 12 to 2 0, Comparative Examples 2 to 4 used a rotator, and in Examples 2 1 to 22, a slit die coater was used, and in Table 2 After the composition, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film having a film thickness of 3.0 μm. The obtained coating film was passed through a mask having a pattern of a line of 3.0 μm and a gap (10 to 1), and a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc. was used to correspond to the above-mentioned "[Evaluation of Sensitivity]" The exposure amount of the measured sensitivity was subjected to exposure, and development was carried out by using a hydrogen-42-282829 (39) aqueous solution of tetramethylammonium chloride in the concentration shown in Table 2 at 25 ° C for 90 seconds. Then, it is washed with 1 minute of water with ultrapure water, dried, and patterned on the wafer. At this time, the line width of the line was set to 3 μm to make the necessary development time the optimum development time as shown in Table 2. Further, when the optimum development time was continued and the development was continued, the time from the pattern of 3.0 μm to the time of peeling was measured, and the development limit was as shown in Table 2. When the crucible is more than 30 seconds, the development limit is good. [Evaluation of Solvent Resistance] On the sand substrate, 'Examples 1 2 to 2 0, Comparative Examples 2 to 4 used a rotator, and Examples 2 1 to 22 used a slit die coater, and Table 2 After the composition was applied, it was prebaked on a hot plate for 2 minutes on a hot plate for 2 minutes to form a coating film having a film thickness of 3·0 μm. In the obtained coating film, a PLA_ 5 〇1 F exposure machine (super high pressure mercury lamp) manufactured by Canon Inc. was used. The exposure was carried out so that the total irradiation amount was 3,000 J/m 2 , and the ruthenium substrate was heated at 220 ° C for 1 hour in a Clean oven to obtain a cured film. The film thickness (T 1 ) of the obtained cured film was measured. The ruthenium substrate formed by the cured film was immersed in a dimethyl sulfoxide at a temperature of 70 ° C for 20 minutes, and then the film thickness (U) of the cured film was measured, and the film thickness change rate due to immersion was calculated. tl-Tl | / T1 } X 100 [%]. The results are shown in Table 2. When the enthalpy is 5% or less, the solvent resistance is good. In addition, in the evaluation of solvent resistance, the film formed The patterning is not required, so the radiation irradiation step and the development step are omitted, and only the coating film forming step is provided, and the film is baked afterwards. Evaluation of the procedure and the heating step. 43- 1282905 (40) [Evaluation of heat resistance] The cured film was formed in the same manner as the evaluation of the solvent resistance described above, and the film thickness (T2) of the obtained cured film was measured. The film substrate was additionally baked at 240 ° C for 1 hour in a clean furnace, and the film thickness (t2) of the cured film was measured, and the film thickness change rate due to additional baking was calculated { | t2-T2 | / T 2 } X 1 0 0 [%]. The results are shown in Table 2. When the enthalpy is 5 % or less, the heat resistance is good. [Evaluation of transparency] In the evaluation of the solvent resistance described above, the glass substrate "Corning" 7059 (manufactured by Corning), in addition to the ruthenium substrate, a cured film is formed on the glass substrate in the same manner. The light transmittance of the glass substrate having the cured film is spectrophotometer "1 50-20 type Double beam (曰"Limited by Seiko Co., Ltd.) is measured at a wavelength in the range of 400 to 80%. The lowest light transmittance at this time is shown in Table 2. When the enthalpy is 90% or more, the transparency is good. Evaluation of Specific Dielectric Constant] on the SUS3 04 substrate that has been honed Using a rotator, Examples 1 2 to 20, Comparative Examples 2 to 4 used a rotator, and in Examples 2 to 22, a slit die coater was used, and after the composition of Table 2 was applied, at 9 ( The TC was prebaked on a hot plate for 2 minutes to form a coating film having a film thickness of 3.0 μm. The obtained coating film was exposed to a PLA-501F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc. - 44 - 1282905 (41) to form a cumulative exposure amount. At 3,000 J/m2, the substrate was calcined in a clean furnace at 220 ° C for 1 hour to obtain a cured film. With respect to this cured film, a Pt/Pd electrode pattern was formed by a vapor deposition method to prepare a sample for measuring a dielectric constant. The substrate was measured at a frequency of 10 kHz using a HP 1 645 1 B electrode manufactured by Yokogawa HEWLETT PACKARD Co., Ltd. and an HP 4284A Precision LCR meter, and the specific dielectric constant of the substrate was measured by a CV method. The results are shown in Table 2. When the 値 is 3 or less, the dielectric constant is good. Further, in the evaluation of the dielectric constant, the pattern formed by the film is not required. Therefore, the radiation irradiation step and the development step can be omitted, and only the coating film forming step, the post-baking step and the heating step are evaluated. -45 - 1282905 (42) CNI嗽Comparative Dielectric Constant CO CO Inch CO CO CO CO CO Inch CO CO CO Inch CO Inch CO Inch CO Inch CO UO CO Bu 00 Bu CO From A Helmet CM σ&gt; CO σ&gt; CO O) T— O) CO σ&gt; C\l σ&gt; T— 〇&gt; οο 荔S CO σ&gt; CO CO CNI 00 Heat resistance film thickness change rate (%) CO CO CM CM CO CO CO CM CO CO CM CO m hardened film thickness (ym) inch c\i CO c\i inch c\i iT&gt; c\i LO csi CO csi CO c\i inch c\i inch csi inch rsi inch c\i inch c\ Ioc\i T—solvent film thickness change rate (%) CO CO CN CO CM CM CO CNI CO CO CO CO o CN After hardening film thickness (μηι) inch csi CO cm* inch csi l〇csi LO c\i CO c\i CO c\i inch c\i inch c\i inch c\i inch c\i inch csi oc\i O) t- development limit phenomenon development limit (seconds) ιο CO another m CO o CO o CO l〇CO o CO in CO m CO to to CNJ Optimum development time (seconds) ο CD o CO § § oo CD o CD § § § 8 § o CD § Sensitivity evaluation sensitivity (J/m2) ο ΙΟ s to s LO o CD osoml〇o § o lO in osoo lO O o lO o 2200 ! 2200 developer concentration (% by weight) inch d in o In o inch o inch o' inch o 1 2.38 I inch inch · inch o inch o' inch oo 2.38 2.38 composition species I (S-1) II (S-2) I 1 (S-3) I 1 (S- 4) I 1 (S-5) I | (S-6) II (S-7) | | (S-8) I 1 (S-9) I 1 (S-10) II (S-11) IL i) I OFRP-800 OFPR-5000 I Example 12| I Example 131 Example 14 i Example 15| Example 16|Example 17丨 Example 18 Example 19 Example 20 Example 21! Example 22 Comparative Example 2 Comparative Example 3j Comparative Example 4 - 46 - 1282905 (43) Example 2 3 to 3 3, Comparative Example 5 to 7 &lt;Performance Evaluation of Microlens&gt; Using the sensitive radiation linear resin composition prepared in the above manner, various characteristics were evaluated by a microlens as in the following manner. In addition, for the evaluation of heat resistance, the evaluation of the transparency is based on the evaluation of the performance of the above interlayer insulating film. Further, the compositions used in Comparative Examples 6 and 7 were all composed of a composition of m-p-cresol novolac lacquer and 1,2-naphthoquinonediazide-5-sulfonate (manufactured by Tokyo Yinghua Co., Ltd.). ). [Evaluation of Sensitivity] On the crucible substrate, in the case of Examples 2 3 to 3 1, Comparative Examples 5 to 7 used a rotator, and in Examples 3 2 to 3 3, a slit die coater was used, and in Table 3 After the composition was applied, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a coating film having a film thickness of 3.0 μm. The obtained coating film was passed through a pattern mask having a predetermined pattern, and a NSR 1 75 5 i7A reduction projection exposure machine (ΝΑ = 0·50, λ = 3 65 ηιη) manufactured by Nikon Co., Ltd. was used to expose the change in exposure time to Table 3 The tetramethylammonium hydroxide aqueous solution of the stated concentration was developed at a liquid concentration of 25 ° C for 1 minute. Wash with water, dry it, and form a pattern on the wafer. It is necessary to measure the exposure time necessary for the line width of the 〇·8 μιη line and the gap pattern (1 to 1) to become 〇·8 μηι. This is the sensitivity, as shown in Table 3. In the case of 2,50 (U/m2 or less, the sensitivity is good. -47- 1282905 (44) [Evaluation of development limit] On the substrate, the examples 23 to 3, and the comparative examples 5 to 7 were used. Rotator, and in the case of Example 3 2 to 3 3, a slit die coater was used, and after coating the composition of Table 3, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a film thickness of 3.0 μηι. The coating film was passed through a pattern mask having a predetermined pattern on the obtained coating film, and the NSR 1 7 5 5 i7A reduction projection exposure machine (ΝΑ = 0·5 0 , λ = 3 65 ηιη) manufactured by Nikon Co., Ltd. was equivalent. The exposure amount of the sensitivity measured by the above [sensitivity evaluation] was exposed, and the tetramethylammonium hydroxide aqueous solution of the concentration shown in Table 3 was developed by a liquid filling method of 25 t, 1 minute, washed with water, and dried. To form a pattern on the wafer, the gap width between the μ. 8 μηι line and the gap pattern (1 to 1) is 〇·8 μηι, so that the necessary development time is the optimum development time as shown in Table 3. Further, when the optimum development time is continued and the development is continued, the pattern of the width of 0.8 μm is measured until the time of peeling (development) The development limit is shown in Table 3. When the enthalpy is 30 seconds or more, the development limit is good. [Evaluation of Solvent Resistance] On the ruthenium substrate, Examples 23 to 3, Comparative Examples 5 to 7 A rotator was used, and in the case of Examples 3 2 to 3 3, a slit die coater was used, and after coating the composition of Table 3, it was prebaked on a hot plate at 90 ° C for 2 minutes to form a film thickness. The coating film of 3.0 μm was applied. The obtained coating film was exposed by a PLA-5 0 1 F exposure machine (ultra-high pressure mercury lamp) manufactured by Canon Inc. so that the total irradiation amount became 3,000 J/m 2 so that the ruthenium substrate was in the furnace at 220 °. C was heated for 1 hour to obtain a cured film. The film thickness (T3) of the obtained cured film was measured. Next, the 矽 substrate formed at this hardened -48-1282905 (45) film was controlled at a temperature of 50 ° C. Then, the film thickness (t3) of the cured film was measured, and the thickness change rate was {I t3 - T3 丨 / Τ 3} χ 100 [%]. When the 値 was 5% or less, the solvent resistance was good. The film formed in the evaluation of the nature, so that the radiation irradiation step and the development step coating film forming step can be omitted, the post-baking step and the addition Thermal step [formation of microlens] On the ruthenium substrate, the examples 23 to 3 1, the ratio of the gyrator, and the examples 3 2 to 3 3 were coated with the composition of the slit dies 3, at 90 °C for 2 minutes on a film with a thickness of 3.0 μm, and the resulting film is passed through a dot mask of 2 × 0 μm gap pattern to reduce the projection exposure machine with NSR1 75 5i7A (ΝΑ = 0·50, In the evaluation of the sensitivity of Table 3 in the above [[Evaluation of Sensitivity]], the tetramethylammonium aqueous solution was washed at 25 ° C for 1 minute in a developer concentration, and dried on the wafer. Form the pattern on it. Thereafter, the PLA_501F exposure machine (Ultra High Pressure Mercury Lamp) was 3,000 J/m2. Thereafter, the hot plate was heated at 160° (: force [while heating at 23 ° C for 10 minutes to form a microlens through the melt of the pattern. The bottom of the formed microlens (10° calculated by contacting the substrate with 1 base alcohol) The results of the impregnation-induced film were not required as shown in Table 3. However, only the evaluation was carried out. ίExamples 5 to 7 were pre-baked on a plate using a spin coater to have a point of 4·0 μm : λ = 365ηηι) manufactured by Nikon Co., Ltd. is exposed to a certain amount of exposure, and the concentration is oxidized to develop. In the case of water mash, the exposure of Canon Inc. is used to make the total irradiation] hot for 1 minute and then melt flow. The dimensions (straight-49-(46) 1282905 diameter) and cross-sectional shape are shown in Table 3. When the size of the bottom of the microlens exceeds 4·0/ηη and is less than 5·0 μη, it can be said to be good. Further, when the size is 5 〇/xm or more, the adjacent lenses are in contact with each other, which is not preferable. Further, the cross-sectional shape is good in the shape of the lenticular lens as in (a) in the pattern diagram shown in Fig. 1, and is not good in the case of the general table shape as in (b). -50- 1282905

ε撇 微透鏡形狀 剖面形狀 CO CO 03 CO CO CO ω * 底部尺寸 (μιη ) CNI — CO — CO — CO — CO — CO — LO — cq — CN — CN — CNI 寸 — 超過5.0 超過5.0 耐溶劑性 膜厚變化 率(%) T— CN CM T~ CM t— X— CN τ— C\{ 00 ο 硬化後膜 厚(μηι) c\i CO c\i 寸 c\i LO c\i LO CN CO c\i CO csi 寸 c\i 寸 c\i 寸 csi 寸 c\i 寸 c\i ο csi σ&gt; τ— 顯影界限 現象顯影 界限(秒) LO CO 另 m CO 〇 CO o CO LO CO o CO LO CO in CO 另 LO t— in CN 最適顯影 時間(秒) s § o CO § S o § o CD o CO o CO ο CD § § § 感度評價 感度 (J/m2) 620 690 670 730 620 690 I 720 I 680 620 620 620 840 2800 3000 顯影液濃 度(雷量%) 寸 d LO 〇 LO 〇 寸 d 寸 o 寸 d I 2.38 I 寸 d 寸 d 寸 d 寸 d in d 2.38 2.38 組成物種 I (s-1) I I (S-2) I I (S-3) I I (S-4) I I (S-5) I I (S-6) I I (S-7) | I (S-8) I I (S-9) I I (S-10) I I (s-11) I I (s-1) I OFRP- 800 〇FPR- 5000 實施例23 實施例24 實施例25 實施例26 實施例27 實施例28 實施例29 實施例30 I實施例311 實施例32 實施例33 比較例5 比較例ό 比較例7 笔辁條騸班壊轺-驩·驢鰥^瑯鍰r (拋 -51 - (48) 1282905 【圖式簡單說明】 第1圖係,微透鏡之剖面形狀之模式圖。 -52-撇 撇 microlens shape cross-sectional shape CO CO 03 CO CO CO ω * bottom size (μιη) CNI — CO — CO — CO — CO — CO — LO — cq — CN — CN — CNI inch — more than 5.0 over 5.0 Solvent resistance Film thickness change rate (%) T— CN CM T~ CM t— X— CN τ— C\{ 00 ο Thick film thickness after hardening (μηι) c\i CO c\i inch c\i LO c\i LO CN CO c\i CO csi inch c\i inch c\i inch csi inch c\i inch c\i ο csi σ&gt; τ—development boundary phenomenon development limit (seconds) LO CO another m CO 〇CO o CO LO CO o CO LO CO in CO Additional LO t — in CN Optimum development time (seconds) s § o CO § S o § o CD o CO o CO ο CD § § § Sensitivity evaluation sensitivity (J/m2) 620 690 670 730 620 690 I 720 I 680 620 620 620 840 2800 3000 Developer concentration (% of mine) inch d LO 〇LO 〇 inch d inch o inch d I 2.38 I inch d inch d inch d inch d in d 2.38 2.38 composition species I (s -1) II (S-2) II (S-3) II (S-4) II (S-5) II (S-6) II (S-7) | I (S-8) II (S- 9) II (S-10) II (s-11) II (s-1) I OFRP-800 〇FPR-5000 Example 23 Example 24 Example 25 Example 26 Example 27 Example 28 Example 29 Example 30 I Example 311 Example 32 Example 33 Comparative Example 5 Comparative Example ό Comparative Example 7 辁条辁骟班壊轺-欢·驴鳏^琅锾r (Throwing -51 - (48) 1282905 [Simple description of the diagram] Fig. 1 is a schematic diagram of the cross-sectional shape of the microlens. -52-

Claims (1)

1282905 十、申請專利範圍 第93 123007號專利申請案 中文申請專利範圍修正本 民國96年2月14日修正 1· 一種敏輻射線性樹脂組成物,其特徵爲含有, [A] : (al)不飽和羧酸及/或不飽和羧酸酐所衍生構成單 元5〜40重量%,(a2)選自環氧丙基甲基丙烯酸酯、甲基 丙烯酸-6,7-環氧庚酯、鄰乙烯基苄基環氧丙基醚、間乙烯 基苄基環氧丙基醚、對乙烯基苄基環氧丙基醚及3,4-環氧 基環己基甲基丙烯酸酯所成群之至少一種含環氧基不飽和 化合物所衍生構成單元10〜70重量%,(a3)選自四氫糠基 (甲基)丙烯酸酯、聚乙二醇(n = 2〜10)單(甲基)丙烯酸酯、 (甲基)丙烯酸四氫呋喃-3-基酯、1-(四氫哌喃-2-氧基)-丁 基-3-丨希-2-嗣及糖基(甲基)丙嫌酸醋 所成群之至少一種不飽和化合物所衍生構成單元 5〜50重量%及卜4)選自(甲基)丙烯酸烷酯、(甲基)丙烯酸 環狀烷酯、具有羥基之(甲基)丙烯酸酯、(甲基)丙烯酸芳 基酯、不飽和二羧酸二酯、雙環不飽和化合物、順丁烯二 醯亞胺化合物、不飽和芳香族化合物、共軛二烯所成群之 至少一種不飽和化合物所衍生構成單元5〜7 0重量%所成 共聚物,以及 [B]選自三羥苯并二苯甲酮與1,2-萘醌二疊氮磺酸鹵 化物之縮合物、四羥苯并二苯甲酮與1,2 -萘醌二疊氮磺酸 鹵化物之縮合物、五羥苯并二苯甲酮與1,2_萘醌二疊氮磺 1282905 酸鹵化物之縮合物、六羥苯并二苯甲酮與1,2-萘醌二疊氮 磺酸鹵化物之縮合物及(聚羥苯基)鏈烷與1,2-萘醌二疊氮 磺酸鹵化物之縮合物所成群之至少一種1,2-苯醌二疊氮化 合物,相對於共聚物[A]100重量份,爲含有5〜100重量 份者。 2 .如申請專利範圍第1項之敏輻射線性樹脂組成物, 其爲層間絶緣膜形成用。 3 .如申請專利範圍第 1項之敏輻射線性樹脂組成 物,其爲微透鏡形成用。 -2-1282905 X. Patent Application No. 93 123007 Patent Application Revision of Chinese Patent Application Revision Amendment of the Republic of China on February 14, 1996 1. A sensitive radiation linear resin composition characterized by containing, [A] : (al) no The saturated carboxylic acid and/or unsaturated carboxylic acid anhydride is derived from 5 to 40% by weight of the constituent unit, and (a2) is selected from the group consisting of epoxypropyl methacrylate, methacrylic acid-6,7-epoxyheptyl ester, o-vinyl group At least one of a group consisting of benzylepoxypropyl ether, m-vinylbenzylepoxypropyl ether, p-vinylbenzylepoxypropyl ether, and 3,4-epoxycyclohexyl methacrylate The epoxy group-unsaturated compound is derived from 10 to 70% by weight of the constituent unit, and (a3) is selected from the group consisting of tetrahydroindenyl (meth) acrylate and polyethylene glycol (n = 2 to 10) mono(meth) acrylate. , tetrahydrofuran-3-yl (meth)acrylate, 1-(tetrahydropyran-2-yloxy)-butyl-3-oxime-2-indole and glycosyl (methyl) propylene vinegar 5 to 50% by weight of the constituent units derived from the at least one unsaturated compound in groups and 4) selected from the group consisting of alkyl (meth)acrylate and (meth)acrylic acid ring An alkyl ester, a (meth) acrylate having a hydroxyl group, an aryl (meth) acrylate, an unsaturated dicarboxylic acid diester, a bicyclic unsaturated compound, a maleimide compound, an unsaturated aromatic compound, The at least one unsaturated compound in which the conjugated diene is grouped is derived from the constituent unit 5 to 70% by weight of the copolymer, and [B] is selected from the group consisting of tris benzobenzophenone and 1,2-naphthoquinone a condensate of azide sulfonic acid halide, a condensate of tetrahydroxybenzophenone with 1,2-naphthoquinonediazidesulfonic acid halide, pentahydroxybenzobenzophenone and 1,2-naphthyl a condensate of quinonediazide sulfonate 1282905 acid halide, a condensate of hexahydrobenzobenzophenone and 1,2-naphthoquinonediazidesulfonic acid halide, and (polyhydroxyphenyl)alkane with 1, At least one 1,2-benzoquinonediazide compound in a group of condensates of 2-naphthoquinonediazidesulfonic acid halides, which is contained in an amount of 5 to 100 parts by weight based on 100 parts by weight of the copolymer [A] . 2. The sensitive radiation linear resin composition of claim 1, which is used for forming an interlayer insulating film. 3. The sensitive radiation linear resin composition of claim 1, which is for microlens formation. -2-
TW093123007A 2003-08-01 2004-07-30 Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those TWI282905B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003284716 2003-08-01
JP2004045724A JP4315013B2 (en) 2003-08-01 2004-02-23 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof

Publications (2)

Publication Number Publication Date
TW200508800A TW200508800A (en) 2005-03-01
TWI282905B true TWI282905B (en) 2007-06-21

Family

ID=34425100

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093123007A TWI282905B (en) 2003-08-01 2004-07-30 Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those

Country Status (3)

Country Link
JP (1) JP4315013B2 (en)
KR (1) KR100806495B1 (en)
TW (1) TWI282905B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050113351A (en) * 2004-05-27 2005-12-02 주식회사 동진쎄미켐 Photosensitive resin composition
JP2006259438A (en) * 2005-03-18 2006-09-28 Jsr Corp Radiation-sensitive resin composition, protrusion and spacer formed of the same, and liquid crystal display element equipped with them
JP4687359B2 (en) * 2005-10-03 2011-05-25 Jsr株式会社 Radiation sensitive resin composition and formation of interlayer insulating film and microlens
KR101288411B1 (en) * 2005-12-02 2013-07-22 삼성디스플레이 주식회사 Photosensitive resin composition, method for forming a photoresist pattern and method for manufacturing a display substrate using the same
JP4635935B2 (en) * 2006-03-29 2011-02-23 Jsr株式会社 Radiation-sensitive composition for forming colored layer, color filter, and color liquid crystal display element
KR100908694B1 (en) * 2006-08-07 2009-07-22 도쿄 오카 고교 가부시키가이샤 Photosensitive resin composition for interlayer insulating film and method of forming interlayer insulating film
JP2014009334A (en) * 2012-07-02 2014-01-20 Dai Ichi Kogyo Seiyaku Co Ltd Cross-linked polymer via photo-induced cationic polymerization

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122031A (en) 1980-03-01 1981-09-25 Japan Synthetic Rubber Co Ltd Positive type photosensitive resin composition
JPS63303343A (en) 1987-06-03 1988-12-09 Konica Corp Photosensitive composition and photosensitive planographic plate
JP2000327875A (en) 1999-05-21 2000-11-28 Jsr Corp Radiation-sensitive resin composition for spacer united with color filter protection film or tft interlayer insulation film
TW555822B (en) * 2001-03-15 2003-10-01 Jsr Corp Light diffuse reflecting film-forming composition, manufacturing method thereof, light diffuse reflecting film and liquid crystal display element
JP4524944B2 (en) * 2001-03-28 2010-08-18 Jsr株式会社 Radiation sensitive resin composition, its use for forming interlayer insulating film and microlens, and interlayer insulating film and microlens
JP4093457B2 (en) 2002-05-13 2008-06-04 東京応化工業株式会社 Photosensitive resin composition and pattern forming method using the same

Also Published As

Publication number Publication date
KR20050016044A (en) 2005-02-21
JP4315013B2 (en) 2009-08-19
TW200508800A (en) 2005-03-01
JP2005070735A (en) 2005-03-17
KR100806495B1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4207604B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for forming them
JP4656316B2 (en) Interlayer insulating film, microlens, and manufacturing method thereof
JP4905700B2 (en) Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
TWI405038B (en) A radiation-sensitive resin composition, an interlayer insulating film and a microlens, and a method for manufacturing the same
JP4168443B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5110279B2 (en) Radiation sensitive resin composition, interlayer insulating film and method for producing the same
TWI410667B (en) Sensing linear resin composition, interlayer insulating film and method for forming the same, microlens and method for forming the same
TWI361951B (en)
TWI451194B (en) Radiosensitive resin composition, interlayer insulation film, microlens and methods for manufacturing them
JP5177404B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens and method for producing the same
TWI430026B (en) Sensitive linear resin composition, interlayer insulating film and microlens, and the like
TWI383255B (en) A method for forming a radiation linear resin composition and an interlayer insulating film and a microlens
TWI282905B (en) Radiation-sensitive resin composition, interlayer insulation film and micro-lens, and method for manufacturing those
TWI326799B (en)
JP4670568B2 (en) Radiation sensitive resin composition and formation of interlayer insulating film and microlens
JP4766268B2 (en) Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP3733946B2 (en) Radiation sensitive resin composition for forming interlayer insulating film and microlens