RU2749669C1 - Электродный материал для электрохимических устройств - Google Patents

Электродный материал для электрохимических устройств Download PDF

Info

Publication number
RU2749669C1
RU2749669C1 RU2020142737A RU2020142737A RU2749669C1 RU 2749669 C1 RU2749669 C1 RU 2749669C1 RU 2020142737 A RU2020142737 A RU 2020142737A RU 2020142737 A RU2020142737 A RU 2020142737A RU 2749669 C1 RU2749669 C1 RU 2749669C1
Authority
RU
Russia
Prior art keywords
praseodymium
proton
zirconates
electrochemical devices
barium cerate
Prior art date
Application number
RU2020142737A
Other languages
English (en)
Inventor
Артем Павлович Тарутин
Юлия Георгиевна Лягаева
Геннадий Константинович Вдовин
Дмитрий Андреевич Медведев
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2020142737A priority Critical patent/RU2749669C1/ru
Application granted granted Critical
Publication of RU2749669C1 publication Critical patent/RU2749669C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Изобретение относится к электродным материалам на основе никелита празеодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и других на основе протонпроводящих электролитов, принадлежащих семейству церато-цирконатов бария. Материал содержит никелит празеодима, модифицированный медью, и имеет состав Pr2Ni0.8Cu0.2O4+δ, и характеризуется снижением температуры припекания к протонпроводящему электролиту на основе церато-цирконатов бария, что является техническим результатом изобретения. Модифицирование никелита празеодима медью также способствует улучшению адгезии с протонопроводящим электролитом на основе церато-цирконатов бария. 3 ил., 1 пр.

Description

Изобретение относится к электродным материалам на основе никелита празеодима, которые могут быть использованы в среднетемпературных электрохимических устройствах, таких как твердооксидные топливные элементы, электролизеры, сенсоры и других на основе протонпроводящих электролитов, принадлежащих семейству церато-цирконатов бария.
Известны результаты исследования свойств электродного материала состава La2Ni0.9Cu0.1O4+δ, полученного модифицированием исходного материала состава La 2NiO4+δ медью [1]. Установлено, что полученный таким образом материал имеет высокую температуру припекания к протонпроводящим электролитам на основе церато-цирконатов бария.
Известен электродный материал на основе никелита празеодима состава Pr2NiO4+δ, обладающий высокой электропроводностью (70 См·см-1 при 600 °С) и приемлимым для электрохимических устройств значением ТЛКР [2]. При этом из публикации [2] следует, что значение поляризационного сопротивления, которое относится к одной из основных характеристик материала, применяемого в качестве катода в твердооксидных топливных элементах, а также величина температуры припекания к протонпроводящим электролитам на основе церато-цирконатов бария, не определены.
Задача настоящего изобретения состоит в разработке электродного материала для применения в электрохимических устройствах на протонпроводящих электролитах, принадлежащих семейству церато-цирконатов бария.
Для этого предложен электродный материал для электрохимических устройств, содержащий никелит празеодима, который отличается тем, что содержит никелит празеодима, модифицированный медью и имеет состав Pr2Ni0.8Cu0.2O4+δ.
Исследования показали, что модифицирование никелита празеодима медью способствует улучшению адгезии этого материала с протонпроводящим электролитом на основе церато-цирконатов бария и снижению температуры припекания к этому типу электролитов. При этом значения электропроводности, поляризационного сопротивления и ТЛКР полученного материала остаются приемлимыми для применения в качестве катода электрохимических устройств.
Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры припекания электродного материала на основе никелита празеодима к протонпроводящему электролиту на основе церато-цирконатов бария.
Фиг. 1,2,3 иллюстрируют заявленный материал состава Pr2Ni1–xCuxO4+δ, где x=0, 0.1, 0.2 и 0.3. При этом на фиг. 1 приведены данные рентгенофазового анализа этого материала; на фиг. 2 – величина поляризационного сопротивления электродов, изготовленных из этого материала; на фиг. 3 представлены его дилатометрические кривые. Значение коэффициента δ в составе заявленного материала Pr2Ni1–xCuxO4+δ, не указано, поскольку данный материал относится к сложнооксидным соединениям, для которых величина δ не принимает постоянных значений, а варьируется в зависимости от внешних условий. Метод раскрытия значений коэффициента δ для специалиста в области химии твердого тела известен [3].
Заявляемый материал получали с применением метода цитрат-нитратного сжигания из прекурсоров Pr(NO3)3, Cu(NO3)2 и Ni(NO3)2. Исходные соли растворяли в дистиллированной воде с добавлением лимонной кислоты в соотношении 1.5 молекулы кислоты к 1 катиону металла в растворе. Затем раствор нагревали до 150 °С до частичного выпаривания воды и образования прозрачного геля. Этот гель нагревали при 350 °С до его самовоспламенения. В результате сгорания образовывались мелкодисперсные порошки требуемого состава. Полученные порошки синтезировали двухстадийно при 1100 °С и 1150 °С в течение 5 ч и спекали при 1450 °С в течение 5 ч.
Рентгенофазовый анализ, выполненный на дифрактометре Rigaku D/MAX-2200VL/PC, показал, что спеченный образец состава Pr2Ni0.8Cu0.2O4+δ (фиг.1), является однофазным и обладает структурой типа каменной соли, принадлежащей к рядам Раддлесдена-Поппера.
Значение электропроводности материала состава Pr2Ni0.8Cu0.2O4+δ, измеренной четырехзондовым методом на постоянном токе, составляет 57 См·см–1 при 600 °С.
Величина поляризационного сопротивления электродов, выполненных из материала состава Pr2Ni0.8Cu0.2O4+δ, определяли с помощью электрохимической импедансной спектроскопии в диапазоне рабочих температур электрохимических устройств (550–700 °С) при помощи потенциостата-гальваностата Amel 2550 и частотного анализатора спектров Amel 2700 Z-Pulse (фиг.2). Показано, что замещение ионов никеля на ионы меди приводит к снижению поляризационного сопротивления, значение которого при 650 °С составляет 1.4 Ом·см2.
Исследование термомеханических свойств материала Pr2Ni0.8Cu0.2O4+δ проводили на Netzsch DIL 402 РC на воздухе в широком интервале температур от 100 до 1000 ºC для детального изучения ТКЛР. На основе полученных дилатометрических кривых было рассчитано значение ТКЛР, которое для данного материла составляет 12.65·10–6К–1 (фиг. 3).
Температура припекания электродов состава Pr2Ni0.8Cu0.2O4+δ к электролиту на основе BaCe0.6Zr0.2Y0.2O3–δ составила 900 °С с выдержкой в течение 0.5 ч. Следует отметить, что улучшенная адгезия полученного материала к данному типу электролита, позволила не только снизить температуру, но и длительность изотермической выдержки при припекании электродов к электролиту на основе церато-цирконатов бария.
Таким образом, получен твердооксидный электродный материал на основе никелата празеодима, модифицированного медью, характеризующийся снижением температуры припекания электродного материала на основе никелита празеодима к протонпроводящему электролиту на основе церато-цирконатов бария.
Источники информации:
1. A.P. Tarutin et al. Cu-substituted La2NiO4+δ as oxygen electrodes for protonic ceramic electrochemical cells // Ceram. Int. 2019. V. 45. P. 16105–16112.
2. V. A. Sadykov et al. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy // Solid State Ionics 2019. V. 333. P. 30–37.
3. A.P. Tarutin et al. Barium-doped nickelates Nd2–xBaxNiO4+δ as promising electrode materials for protonic ceramic electrochemical cells // Ceram. Int. 2020. V. 46. P. 24355–24364.

Claims (1)

  1. Электродный материал для электрохимических устройств, содержащий никелит празеодима, отличающийся тем, что материал содержит никелит празеодима, модифицированный медью, и имеет состав Pr2Ni0.8Cu0.2O4+δ.
RU2020142737A 2020-12-24 2020-12-24 Электродный материал для электрохимических устройств RU2749669C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020142737A RU2749669C1 (ru) 2020-12-24 2020-12-24 Электродный материал для электрохимических устройств

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020142737A RU2749669C1 (ru) 2020-12-24 2020-12-24 Электродный материал для электрохимических устройств

Publications (1)

Publication Number Publication Date
RU2749669C1 true RU2749669C1 (ru) 2021-06-16

Family

ID=76377500

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020142737A RU2749669C1 (ru) 2020-12-24 2020-12-24 Электродный материал для электрохимических устройств

Country Status (1)

Country Link
RU (1) RU2749669C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871637A (zh) * 2021-10-12 2021-12-31 国网江苏省电力有限公司常州供电分公司 一种高性能固体氧化物燃料电池阴极材料及其制备方法
RU2767036C1 (ru) * 2021-08-06 2022-03-16 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ получения сложных оксидов на основе никелита празеодима, допированного кобальтом
RU2792641C1 (ru) * 2021-12-15 2023-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет" Способ получения цирконата празеодима формулы Pr2Zr2O7

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2276430C2 (ru) * 2001-06-12 2006-05-10 Энергиеондерзоек Сентрум Недерланд Активный материал из смешанного оксида, электрод, способ изготовления электрода и электрохимическая ячейка, содержащая этот электрод
GB2424878A (en) * 2005-04-08 2006-10-11 Ceres Power Ltd Solid oxide fuel cell cathode material with high performance in the 450-650°C range
CN104916850A (zh) * 2015-04-27 2015-09-16 上海邦民新能源科技有限公司 固体氧化物燃料电池阴极用材料及具其复合阴极材料及其制备方法和电池复合阴极制备方法
JP2015185321A (ja) * 2014-03-24 2015-10-22 アイシン精機株式会社 固体酸化物形燃料電池用空気極及び固体酸化物形燃料電池セル
CN108649238A (zh) * 2018-05-10 2018-10-12 中国民航大学 一种钙钛矿型固体氧化物燃料电池阴极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2276430C2 (ru) * 2001-06-12 2006-05-10 Энергиеондерзоек Сентрум Недерланд Активный материал из смешанного оксида, электрод, способ изготовления электрода и электрохимическая ячейка, содержащая этот электрод
GB2424878A (en) * 2005-04-08 2006-10-11 Ceres Power Ltd Solid oxide fuel cell cathode material with high performance in the 450-650°C range
JP2015185321A (ja) * 2014-03-24 2015-10-22 アイシン精機株式会社 固体酸化物形燃料電池用空気極及び固体酸化物形燃料電池セル
CN104916850A (zh) * 2015-04-27 2015-09-16 上海邦民新能源科技有限公司 固体氧化物燃料电池阴极用材料及具其复合阴极材料及其制备方法和电池复合阴极制备方法
CN108649238A (zh) * 2018-05-10 2018-10-12 中国民航大学 一种钙钛矿型固体氧化物燃料电池阴极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. A. Sadykov et al. Tailoring the structural, thermal and transport properties of Pr2NiO4+δ through Ca-doping strategy // Solid State Ionics 2019. V. 333. P. 30-37. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2767036C1 (ru) * 2021-08-06 2022-03-16 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Способ получения сложных оксидов на основе никелита празеодима, допированного кобальтом
CN113871637A (zh) * 2021-10-12 2021-12-31 国网江苏省电力有限公司常州供电分公司 一种高性能固体氧化物燃料电池阴极材料及其制备方法
RU2792641C1 (ru) * 2021-12-15 2023-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Пермский государственный национальный исследовательский университет" Способ получения цирконата празеодима формулы Pr2Zr2O7

Similar Documents

Publication Publication Date Title
Pang et al. Systematic evaluation of cobalt-free Ln0. 5Sr0· 5Fe0· 8Cu0· 2O3− δ (Ln= La, Pr, and Nd) as cathode materials for intermediate-temperature solid oxide fuel cells
Hu et al. La2− xSrxCoO4− δ (x= 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application
Xiang et al. Effect of the lithium ion concentration on the lithium ion conductivity of Ga-doped LLZO
RU2749669C1 (ru) Электродный материал для электрохимических устройств
Feng et al. Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries
CN114249593B (zh) 一种高熵钙钛矿结构阴极材料及制备方法与应用
CN110165292A (zh) 一种改性nasicon型固态电解质片及其制备方法
CN103985880A (zh) 一种BaFeO3-δ基B位Bi2O3掺杂的固体氧化物燃料电池阴极材料及其制备方法和应用
JP7285013B2 (ja) 複合酸化物、並びにそれを電解質材料に使用した電気化学デバイス
Han et al. Nickel-based layered perovskite cathode materials for application in intermediate-temperature solid oxide fuel cells
WO2017033862A1 (ja) プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池
Yaroslavtsev et al. Cathodes based on rare-earth metal nickelate ferrites prepared from industrial raw materials for solid oxide fuel cells
West et al. Improved phase stability and electrochemical performance of (Y, In, Ca) BaCo3ZnO7+ δ cathodes for intermediate temperature solid oxide fuel cells
JP6505847B2 (ja) プロトン伝導性複合酸化物およびそれを電解質として使用した燃料電池
Il’ina et al. Lithium-conducting Solid Electrolytes Synthesized by the Sol-Gel Method in the System Li 7 La 3 Zr 2 O 12-Li 5 La 3 Nb 2 O 12
CN110856455A (zh) 固体氧化物型燃料电池用氧化钪稳定化氧化锆粉末及其制造方法、固体氧化物型燃料电池用氧化钪稳定化氧化锆烧结体及其制造方法以及固体氧化物型燃料电池
Chen et al. Preparation of V doped lanthanum silicate electrolyte ceramics by combustion method and study on conductance mechanism
CN114243095A (zh) 一种K-β"-Al2O3固态电解质、其制备方法及钾电池
RU2757926C1 (ru) Электродный материал для электрохимических устройств
CN111584911A (zh) 一种Fe3O4-BCFN中温复合固体电解质及其制备方法
Li et al. Preparation of SDC–NC nanocomposite electrolytes with elevated densities: influence of prefiring and sintering treatments on their microstructures and electrical conductivities
RU2779630C1 (ru) Электродный материал на основе никелата празеодима для электрохимических устройств
Zhou et al. CO2-tolerant and cobalt-free La4Ni3-xCuxO10±δ (x= 0, 0.3, 0.5 and 0.7) cathodes for intermediate-temperature solid oxide fuel cells
JP6818411B2 (ja) 固体酸化物形燃料電池用スカンジア安定化ジルコニア粉末及びその製造方法,固体酸化物形燃料電池用スカンジア安定化ジルコニア焼結体及びその
Zhou et al. Preparation and Properties of Low Thermal Expansion Coefficient (Y 0.5 Ca 0.5) 1− x In x BaCo 3 ZnO 7+ δ (X= 0, 0.1, 0.2, 0.3) Solid Oxide Fuel Cell Cathode Materials