CN114249593B - 一种高熵钙钛矿结构阴极材料及制备方法与应用 - Google Patents
一种高熵钙钛矿结构阴极材料及制备方法与应用 Download PDFInfo
- Publication number
- CN114249593B CN114249593B CN202210013526.8A CN202210013526A CN114249593B CN 114249593 B CN114249593 B CN 114249593B CN 202210013526 A CN202210013526 A CN 202210013526A CN 114249593 B CN114249593 B CN 114249593B
- Authority
- CN
- China
- Prior art keywords
- powder
- entropy
- perovskite structure
- heating
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/768—Perovskite structure ABO3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Dispersion Chemistry (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种高熵钙钛矿结构阴极材料及制备方法与应用,涉及固体电解质陶瓷材料技术领域,其化学式为:La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/ 6O3‑δ,本发明通过优选高熵组元和制备工艺控制,制备具有纯相高熵陶瓷,从而实现高性能阴极材料的制备。XRD测试表明在20~60°范围内的衍射峰一致,没有其他杂相的出现,说明制备出纯相的具有钙钛矿结构的粉体。制备样品的密度随着烧结温度的提高而提高,具有良好的烧结活性,烧结温度1100℃时样品的相对密度高于95%,达到致密。制备样品在200~800℃温度区间内材料的电导率均高于90S·cm‑1,能很好的满足固体氧化物燃料电池(SOFC)的使用要求。
Description
技术领域
本发明涉及固体电解质陶瓷材料技术领域,具体是涉及一种高熵钙钛矿结构阴极材料及制备方法与应用。
背景技术
“高熵”是近年来出现的新的材料设计理论,高熵会带来热力学上的高熵效应、结构上的晶格畸变效应以及性能上的“鸡尾酒”效应,目前已成为材料研究领域的一大热点。2004年中国台湾学者叶均蔚教授最先提出了高熵合金的概念,同年牛津大学的Cantor等也提出了多主元合金的概念,两者的工作均是将多种合金元素以(近)等原子比固溶到一起,形成单相的固溶体。随着研究的不断深入,2015年,“高熵”的概念被用于氧化物陶瓷材料领域的研究,并取得了突破性进展。高熵陶瓷材料通常是指由5种或以上陶瓷组元形成的多组元固溶体,与传统陶瓷材料相比,高熵陶瓷具有良好的结构稳定性、优异的力学性能以及卓越的电学性能,在超高温材料和新能源材料领域具有潜在的应用价值。
目前,传统固相法制备高熵陶瓷存在:反应温度较高、耗时长、产物比例难以准确控制、制备过程中容易存在第二相等问题。因而采用传统固相法很难制备出纯相以及高密度的高熵陶瓷材料。另外,闪烧、放电等离子体烧结以及热压烧结等烧结方法也是制备高熵陶瓷的现有技术,但这些技术的烧结工艺较为复杂,对实验设备要求较高,因而难以推广,不能被普遍使用。
具有离子、电子混合导电性以及优异的电化学催化活性的钙钛矿(ABO3)结构氧化物是固体氧化物燃料电池(SOFC)阴极材料理想的材料体系。关于高熵钙钛矿型结构阴极陶瓷材料的研究报道较少。
发明内容
本发明提供了一种高熵钙钛矿结构阴极材料及制备方法与应用,通过优选高熵组元和制备工艺控制,制备纯相高熵陶瓷,从而实现高性能阴极材料的制备。
为了实现上述目的,本发明所采用的技术方案为:
一种高熵钙钛矿结构阴极材料,其化学式为:
La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ。
一种高熵钙钛矿结构阴极材料的制备方法,步骤如下:
①根据La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ的化学计量比,称取所需的La(NO3)3·6H2O、Bi(NO3)3·5H2O、Sr(NO3)2、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Cu(NO3)2·3H2O和Cr(NO3)3·9H2O,加入去离子水,搅拌溶解均匀,获得溶液A;
②将称量好的初始原料放入烧杯中,加入蒸馏水,搅拌溶解混合均匀;
③向步骤②所得溶液添加分散剂,加热搅拌溶解,搅拌过程中调节溶液pH值维持9,直至形成凝胶;
④将凝胶干燥后研磨,移入马弗炉中进行加热处理,获得前驱体粉体;
⑤将热处理所得前驱体粉体放入装有氧化锆球的球磨罐中,加入研磨介质,用行星式球磨机球磨,烘干、过筛后再放入马弗炉煅烧,得到高熵钙钛矿结构氧化物粉体;
⑥向步骤⑤所得粉体中加粘结剂造粒并过筛后压制成长条形坯体,坯体在空气气氛中烧结,制得所述高电导高熵钙钛矿结构阴极材料。
作为本发明的优选技术方案,制备方法中:
步骤③中所采用的分散剂为柠檬酸、EDTA、乙二醇,加入的柠檬酸、EDTA、乙二醇与步骤②溶液中总金属离子摩尔比为1∶1.5∶3∶1。在70~90℃下搅拌加热溶解。通过氨水或氢氧化钠水溶液调节溶液pH值。
步骤④中将凝胶干燥后研磨,移入马弗炉中采用两步升温法对干凝胶进行加热处理,首先由室温每分钟5℃升温至250℃,在250℃保温2小时后再每分钟10℃由250℃升温至500℃,保温时间2小时,获得前驱体粉体。
步骤⑤中将热处理所得前驱体粉体放入装有氧化锆球的球磨罐中,加入乙醇,球磨罐中粉体、氧化锆球和乙醇的重量比为1∶4∶0.9,用行星式球磨机以转数120r/min球磨8h,球磨后将物料取出烘干、过筛再放入马弗炉在空气气氛600℃煅烧3小时得到高熵钙钛矿结构氧化物粉体。
步骤⑥中向步骤⑤所得粉体中加浓度为3%的聚乙烯醇溶液作为粘结剂进行造粒,聚乙烯醇溶液的质量是粉体质量的5%,并过100目筛后压制成长条形坯体,坯体在900~1100℃空气气氛中烧结5~8小时,制得所述高电导高熵钙钛矿结构阴极材料。
与现有技术相比,本发明的有益效果表现在:
本发明通过优选高熵组元和制备工艺控制,制备纯相高熵陶瓷,从而实现高性能阴极材料的制备。XRD测试表明在20~60°范围内的衍射峰一致,没有其他杂相的出现,说明制备出纯相的具有钙钛矿结构的粉体。制备样品的密度随着烧结温度的提高而提高,具有良好的烧结活性,烧结温度1100℃时样品的相对密度高于95%,达到致密。制备样品的电导率先随着温度的升高而升高,表现为一种半导体导电机制;随着温度的进一步升高,电导率随着温度的升高而降低,表现为一种金属性导电机制。在200~800℃温度区间内材料的电导率均高于90S·cm-1,能很好的满足固体氧化物燃料电池(SOFC)的使用要求。
附图说明
图1为实施例1制备样品的XRD图谱。
图2为实施例1制备样品的密度与烧结温度的关系曲线。
图3为直流四端子法测电阻示意图。
图4为实施例1制备样品的电导率与测试温度的关系曲线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种高熵钙钛矿结构阴极材料的制备方法,步骤如下:
①根据La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ的化学计量比,称取所需的La(NO3)3·6H2O、Bi(NO3)3·5H2O、Sr(NO3)2、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Cu(NO3)2·3H2O和Cr(NO3)3·9H2O,加入去离子水,搅拌溶解均匀,获得溶液A。
②将称量好的初始原料放入烧杯中,加入蒸馏水,搅拌溶解混合均匀。
③向步骤②所得溶液添加柠檬酸、EDTA、乙二醇,加入的柠檬酸、EDTA、乙二醇与步骤②溶液中总金属离子摩尔比为1∶1.5∶3∶1。加热至80℃搅拌溶解,并在搅拌过程中滴加氨水,调节溶液pH值维持9,直至形成凝胶。
④将凝胶放入干燥箱110℃干燥后研磨,移入马弗炉中采用两步升温法对干凝胶进行加热处理,首先由室温每分钟5℃升温至250℃,在250℃保温2小时后再每分钟10℃由250℃升温至500℃,保温时间2小时,获得前驱体粉体。
⑤将热处理所得前驱体粉体放入装有氧化锆球球磨罐中,加乙醇,球磨罐中粉体、氧化锆球和乙醇的重量比例为1∶4∶0.9,用行星式球磨机以转数120r/min球磨8h,球磨后将物料取出烘干、过筛再放入马弗炉在空气气氛600℃煅烧3小时得到高熵钙钛矿结构氧化物粉体。
⑥向步骤⑤所得粉体中加浓度为3%的聚乙烯醇溶液(加入粉体质量的5%)作为粘结剂进行造粒,并过100目筛后压制成长条形坯体,坯体在900~1100℃空气气氛中烧结6小时,制得所述高电导高熵钙钛矿结构阴极材料。
实施例1制备La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ粉体和烧结体的性能表征。
1、粉体的结构测试
不同物质都有特定的原子种类、原子排列方式和点阵参数,在X射线作用下晶体的不同晶面发生各自的衍射,呈现出特定的衍射花样。采用X射线粉末衍射,确定粉体的结构。图1是步骤⑤制备的高熵钙钛矿结构氧化物La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ粉体的XRD谱图(600℃空气气氛中煅烧3小时获得样品),从图1中可以看出,La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ粉体在32.86°,40.82°,47.33°和57.55°处显示出较强的衍射峰,与标准PDF卡片中钙钛矿材料(JCPDS No.48-124)在20~60°范围内的衍射峰一致,没有其他杂相的出现,说明制备出纯相的具有钙钛矿结构的粉体。
2、烧结体的密度测试
采用阿基米德法测量烧结体的表观密度。图2是La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/ 6O3-δ在900~1100℃空气气氛中烧结6小时后样烧结体的密度与烧结温度的关系曲线,由图可以看出,样品的密度随着烧结温度的提高而提高,烧结温度1100℃时样品的相对密度高于95%,达到致密。说明本发明制备的粉体具有良好的烧结活性。
3、烧结体的电导率测试:
采用直流四端子法测试阴极材料的电阻值,进而计算阴极材料的电导率。使用直流电压电流源、直流数字电压表、电阻炉等仪器,对150~800℃温度区间内阴极材料的电阻进行测试。直流四端子法测电阻示意图如图3所示。电导率计算公式为:
σ=L/(R·S)
式中,σ为电解质电导率,单位S/cm;
L为阴极样品条长度,单位cm;
R为阴极电阻,单位Ω;
S为阴极样品条横截面积,单位cm2。
图4为La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ材料空气气氛中测量的电导率与温度关系曲线。从图4可以看出样品(1100℃空气气氛中烧结6小时)的电导率先随着温度的升高而升高,表现为一种半导体导电机制;随着温度的进一步升高,电导率随着温度的升高而降低,表现为一种金属性导电机制。在200~800℃温度区间内材料的电导率均高于90S·cm-1,能很好的满足固体氧化物燃料电池(SOFC)的使用要求。
实施例2
一种高熵钙钛矿结构阴极材料的制备方法,步骤如下:
①根据La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ的化学计量比,称取所需的La(NO3)3·6H2O、Bi(NO3)3·5H2O、Sr(NO3)2、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Cu(NO3)2·3H2O和Cr(NO3)3·9H2O,加入去离子水,搅拌溶解均匀,获得溶液A。
②将称量好的初始原料放入烧杯中,加入蒸馏水,搅拌溶解混合均匀。
③向步骤②所得溶液添加柠檬酸、EDTA、乙二醇,加入的柠檬酸、EDTA、乙二醇与步骤②溶液中总金属离子摩尔比为1∶1.5∶3∶1。加热至70℃搅拌溶解,并在搅拌过程中滴加氢氧化钠溶液,调节溶液pH值维持9,直至形成凝胶。
④将凝胶放入干燥箱110℃干燥后研磨,移入马弗炉中采用两步升温法对干凝胶进行加热处理,首先由室温每分钟5℃升温至250℃,在250℃保温2小时后再每分钟10℃由250℃升温至500℃,保温时间2小时,获得前驱体粉体。
⑤将热处理所得前驱体粉体放入装有氧化锆球球磨罐中,加乙醇,球磨罐中粉体、氧化锆球和乙醇的重量比例为1∶4∶0.9,用行星式球磨机以转数120r/min球磨8h,球磨后将物料取出烘干、过筛再放入马弗炉在空气气氛600℃煅烧3小时得到高熵钙钛矿结构氧化物粉体。
⑥向步骤⑤所得粉体中加浓度为3%的聚乙烯醇溶液(加入粉体质量的5%)作为粘结剂进行造粒,并过100目筛后压制成长条形坯体,坯体在1100℃空气气氛中烧结5小时,制得所述高电导高熵钙钛矿结构阴极材料。
实施例3
一种高熵钙钛矿结构阴极材料的制备方法,步骤如下:
①根据La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ的化学计量比,称取所需的La(NO3)3·6H2O、Bi(NO3)3·5H2O、Sr(NO3)2、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Cu(NO3)2·3H2O和Cr(NO3)3·9H2O,加入去离子水,搅拌溶解均匀,获得溶液A。
②将称量好的初始原料放入烧杯中,加入蒸馏水,搅拌溶解混合均匀。
③向步骤②所得溶液添加柠檬酸、EDTA、乙二醇,加入的柠檬酸、EDTA、乙二醇与步骤②溶液中总金属离子摩尔比为1∶1.5∶3∶1。加热至90℃搅拌溶解,并在搅拌过程中滴加氨水,调节溶液pH值维持9,直至形成凝胶。
④将凝胶放入干燥箱110℃干燥后研磨,移入马弗炉中采用两步升温法对干凝胶进行加热处理,首先由室温每分钟5℃升温至250℃,在250℃保温2小时后再每分钟10℃由250℃升温至500℃,保温时间2小时,获得前驱体粉体。
⑤将热处理所得前驱体粉体放入装有氧化锆球球磨罐中,加乙醇,球磨罐中粉体、氧化锆球和乙醇的重量比例为1∶4∶0.9,用行星式球磨机以转数120r/min球磨8h,球磨后将物料取出烘干、过筛再放入马弗炉在空气气氛600℃煅烧3小时得到高熵钙钛矿结构氧化物粉体。
⑥向步骤⑤所得粉体中加浓度为3%的聚乙烯醇溶液(加入粉体质量的5%)作为粘结剂进行造粒,并过100目筛后压制成长条形坯体,坯体在900℃空气气氛中烧结8小时,制得所述高电导高熵钙钛矿结构阴极材料。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
Claims (4)
1.一种高熵钙钛矿结构阴极材料的制备方法,其特征在于,所述高熵钙钛矿结构阴极材料的化学式为:
La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ;
制备方法步骤如下:
①根据La0.6Bi0.2Sr0.2(CoFeMnNiCuCr)1/6O3-δ的化学计量比,称取所需的La(NO3)3·6H2O、Bi(NO3)3·5H2O、Sr(NO3)2、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O、Ni(NO3)2·6H2O、Cu(NO3)2·3H2O和Cr(NO3)3·9H2O,加入去离子水,搅拌溶解均匀,获得溶液A;
②将称量好的初始原料放入烧杯中,加入蒸馏水,搅拌溶解混合均匀;
③向步骤②所得溶液添加分散剂,加热搅拌溶解,搅拌过程中调节溶液pH值维持9,直至形成凝胶;
④将凝胶干燥后研磨,移入马弗炉中采用两步升温法对干凝胶进行加热处理,首先由室温每分钟5℃升温至250℃,在250℃保温2小时后再每分钟10℃由250℃升温至500℃,保温时间2小时,获得前驱体粉体;
⑤将热处理所得前驱体粉体放入装有氧化锆球的球磨罐中,加入乙醇,球磨罐中粉体、氧化锆球和乙醇的重量比为1∶4∶0.9,用行星式球磨机以转数120 r/min球磨8 h,球磨后将物料取出烘干、过筛再放入马弗炉在空气气氛600℃煅烧3小时得到高熵钙钛矿结构氧化物粉体;
⑥向步骤⑤所得粉体中加浓度为3%的聚乙烯醇溶液作为粘结剂进行造粒,聚乙烯醇溶液的质量是粉体质量的5%,并过100目筛后压制成长条形坯体,坯体在900~1100℃空气气氛中烧结5~8小时,制得所述高熵钙钛矿结构阴极材料。
2.如权利要求1所述的制备方法,其特征在于,步骤③中所采用的分散剂为柠檬酸、EDTA、乙二醇,加入的柠檬酸、EDTA、乙二醇与步骤②溶液中总金属离子摩尔比为1∶1.5∶3∶1。
3.如权利要求1所述的制备方法,其特征在于,步骤③中在70~90℃下搅拌加热溶解。
4.如权利要求1所述的制备方法,其特征在于,步骤③中通过氨水或氢氧化钠水溶液调节溶液pH值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210013526.8A CN114249593B (zh) | 2022-01-06 | 2022-01-06 | 一种高熵钙钛矿结构阴极材料及制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210013526.8A CN114249593B (zh) | 2022-01-06 | 2022-01-06 | 一种高熵钙钛矿结构阴极材料及制备方法与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114249593A CN114249593A (zh) | 2022-03-29 |
CN114249593B true CN114249593B (zh) | 2022-09-02 |
Family
ID=80799484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210013526.8A Active CN114249593B (zh) | 2022-01-06 | 2022-01-06 | 一种高熵钙钛矿结构阴极材料及制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114249593B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114883580A (zh) * | 2022-04-10 | 2022-08-09 | 上海交通大学 | 一种钙钛矿型高熵阴极材料及其制备方法与应用 |
CN114824303B (zh) * | 2022-05-20 | 2023-11-21 | 中国矿业大学 | 一种r-p型层状中熵钙钛矿结构阴极材料及其制备方法 |
CN115050978A (zh) * | 2022-06-23 | 2022-09-13 | 电子科技大学 | 高熵固体氧化物燃料电池及其制备与应用 |
CN115064693B (zh) * | 2022-06-24 | 2024-05-28 | 中南大学 | 一种o3相高熵层状金属氧化物及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150037694A1 (en) * | 2013-08-01 | 2015-02-05 | National Central University | Preparation method of electrolytes for solid oxide fuel cells |
CN108649235A (zh) * | 2018-04-23 | 2018-10-12 | 北京科技大学 | 一种a位层状钙钛矿型电极材料及其制备方法 |
CN108689709A (zh) * | 2018-05-17 | 2018-10-23 | 韶关学院 | 一种铌酸钛铜巨介电陶瓷的制备方法 |
CN110563462A (zh) * | 2019-09-19 | 2019-12-13 | 安徽工业大学 | B位六元高熵的新型钙钛矿型高熵氧化物材料及制备方法 |
CN110845237A (zh) * | 2019-11-28 | 2020-02-28 | 太原理工大学 | 高熵陶瓷粉体及其制备方法和高熵陶瓷块体 |
CN112897989A (zh) * | 2021-02-02 | 2021-06-04 | 西北工业大学 | 一种B位高熵钙钛矿氧化物Sr0.9La0.1MO3陶瓷及其制备方法 |
-
2022
- 2022-01-06 CN CN202210013526.8A patent/CN114249593B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150037694A1 (en) * | 2013-08-01 | 2015-02-05 | National Central University | Preparation method of electrolytes for solid oxide fuel cells |
CN108649235A (zh) * | 2018-04-23 | 2018-10-12 | 北京科技大学 | 一种a位层状钙钛矿型电极材料及其制备方法 |
CN108689709A (zh) * | 2018-05-17 | 2018-10-23 | 韶关学院 | 一种铌酸钛铜巨介电陶瓷的制备方法 |
CN110563462A (zh) * | 2019-09-19 | 2019-12-13 | 安徽工业大学 | B位六元高熵的新型钙钛矿型高熵氧化物材料及制备方法 |
CN110845237A (zh) * | 2019-11-28 | 2020-02-28 | 太原理工大学 | 高熵陶瓷粉体及其制备方法和高熵陶瓷块体 |
CN112897989A (zh) * | 2021-02-02 | 2021-06-04 | 西北工业大学 | 一种B位高熵钙钛矿氧化物Sr0.9La0.1MO3陶瓷及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Structural, Magnetic and Magnetocaloric Properties of Nanostructured La0.5Bi0.2Sr0.3MnO3 Perovskites;Anita D. Souza et al.;《Physica B: Physics of Condensed Matter》;20200301;第580卷;摘要 * |
固体氧化物燃料电池阴极材料La0.8Sr0.2Cu1-xCoxO2.5-D的制备和性能研究;李松波等;《化工新型材料》;20100930;第38卷(第9期);第106-108页 * |
Also Published As
Publication number | Publication date |
---|---|
CN114249593A (zh) | 2022-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114249593B (zh) | 一种高熵钙钛矿结构阴极材料及制备方法与应用 | |
Dikmen et al. | Hydrothermal preparation and electrochemical properties of Gd3+ and Bi3+, Sm3+, La3+, and Nd3+ codoped ceria-based electrolytes for intermediate temperature-solid oxide fuel cell | |
CN112467119A (zh) | 一种层状高熵氧化物钠离子电池正极材料制备方法及应用 | |
Li et al. | Evaluation of double perovskite Sr2FeTiO6− δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells | |
CN114824303B (zh) | 一种r-p型层状中熵钙钛矿结构阴极材料及其制备方法 | |
Tsvetkova et al. | Investigation of GdBaCo2− xFexO6− δ (x= 0, 0.2)–Ce0. 8Sm0. 2O2 composite cathodes for intermediate temperature solid oxide fuel cells | |
CN102842723B (zh) | 钙钛矿结构中温固体氧化物燃料电池阴极材料的制备方法 | |
CN108794001B (zh) | 一种改性ZrO2基固体复合电解质陶瓷材料的制备方法 | |
CN108390087B (zh) | 一种复合固体电解质及其制备方法 | |
Cheng et al. | Effects of Fe 2 O 3 addition on the electrical properties of SDC solid electrolyte ceramics | |
CN112408490B (zh) | 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法 | |
CN105932299A (zh) | 具有复合相结构的中低温固体氧化物燃料电池阴极材料 | |
CN109650873B (zh) | 一种Ca-W混合掺杂Bi2O3固体电解质的制备方法 | |
CN100449835C (zh) | 一种复合掺杂氧化铈电解质及其制备方法 | |
Sharma et al. | Synthesis and characterization of nanocrystalline MnCo2O4-δ spinel for protective coating application in SOFC | |
CN117117208A (zh) | 一种镧掺杂的中温sofc阴极材料及其制备方法和应用 | |
CN115947387A (zh) | 一种b位五元高熵双钙钛矿结构氧化物电极材料及其制备方法 | |
Arabaci | Ceria-based solid electrolytes for IT-SOFC applications | |
CN109742431B (zh) | 一种氧化铈基体掺杂氧化镝复合电解质材料及其制备方法 | |
CN115101761A (zh) | 一种质子陶瓷燃料电池阴极材料及其制法与应用 | |
CN115172768A (zh) | 一种固体氧化物燃料电池复合阴极及其制备方法 | |
CN109686989B (zh) | 固态燃料电池负极材料的制备方法 | |
CN114243095A (zh) | 一种K-β"-Al2O3固态电解质、其制备方法及钾电池 | |
CN114361540B (zh) | 一种高导电率钼酸镧基复合电解质材料及其制备方法 | |
Zhou et al. | Preparation and Properties of Low Thermal Expansion Coefficient (Y 0.5 Ca 0.5) 1− x In x BaCo 3 ZnO 7+ δ (X= 0, 0.1, 0.2, 0.3) Solid Oxide Fuel Cell Cathode Materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |